2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/bug.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/kvm.h>
31 #include <linux/kvm_irqfd.h>
32 #include <linux/irqbypass.h>
33 #include <linux/sched/stat.h>
34 #include <trace/events/kvm.h>
35 #include <kvm/arm_pmu.h>
36 #include <kvm/arm_psci.h>
38 #define CREATE_TRACE_POINTS
41 #include <linux/uaccess.h>
42 #include <asm/ptrace.h>
44 #include <asm/tlbflush.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cpufeature.h>
48 #include <asm/kvm_arm.h>
49 #include <asm/kvm_asm.h>
50 #include <asm/kvm_mmu.h>
51 #include <asm/kvm_emulate.h>
52 #include <asm/kvm_coproc.h>
53 #include <asm/sections.h>
56 __asm__(".arch_extension virt");
59 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
62 /* Per-CPU variable containing the currently running vcpu. */
63 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
65 /* The VMID used in the VTTBR */
66 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 static u32 kvm_next_vmid;
68 static DEFINE_SPINLOCK(kvm_vmid_lock);
70 static bool vgic_present;
72 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
74 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
76 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
79 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
82 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
83 * Must be called from non-preemptible context
85 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
87 return __this_cpu_read(kvm_arm_running_vcpu);
91 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
93 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 return &kvm_arm_running_vcpu;
98 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
100 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
103 int kvm_arch_hardware_setup(void)
108 void kvm_arch_check_processor_compat(void *rtn)
115 * kvm_arch_init_vm - initializes a VM data structure
116 * @kvm: pointer to the KVM struct
118 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
122 ret = kvm_arm_setup_stage2(kvm, type);
126 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
127 if (!kvm->arch.last_vcpu_ran)
130 for_each_possible_cpu(cpu)
131 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
133 ret = kvm_alloc_stage2_pgd(kvm);
137 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
139 goto out_free_stage2_pgd;
141 kvm_vgic_early_init(kvm);
143 /* Mark the initial VMID generation invalid */
144 kvm->arch.vmid.vmid_gen = 0;
146 /* The maximum number of VCPUs is limited by the host's GIC model */
147 kvm->arch.max_vcpus = vgic_present ?
148 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
152 kvm_free_stage2_pgd(kvm);
154 free_percpu(kvm->arch.last_vcpu_ran);
155 kvm->arch.last_vcpu_ran = NULL;
159 bool kvm_arch_has_vcpu_debugfs(void)
164 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
169 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
171 return VM_FAULT_SIGBUS;
176 * kvm_arch_destroy_vm - destroy the VM data structure
177 * @kvm: pointer to the KVM struct
179 void kvm_arch_destroy_vm(struct kvm *kvm)
183 kvm_vgic_destroy(kvm);
185 free_percpu(kvm->arch.last_vcpu_ran);
186 kvm->arch.last_vcpu_ran = NULL;
188 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
190 kvm_arch_vcpu_free(kvm->vcpus[i]);
191 kvm->vcpus[i] = NULL;
194 atomic_set(&kvm->online_vcpus, 0);
197 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
201 case KVM_CAP_IRQCHIP:
204 case KVM_CAP_IOEVENTFD:
205 case KVM_CAP_DEVICE_CTRL:
206 case KVM_CAP_USER_MEMORY:
207 case KVM_CAP_SYNC_MMU:
208 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
209 case KVM_CAP_ONE_REG:
210 case KVM_CAP_ARM_PSCI:
211 case KVM_CAP_ARM_PSCI_0_2:
212 case KVM_CAP_READONLY_MEM:
213 case KVM_CAP_MP_STATE:
214 case KVM_CAP_IMMEDIATE_EXIT:
215 case KVM_CAP_VCPU_EVENTS:
218 case KVM_CAP_ARM_SET_DEVICE_ADDR:
221 case KVM_CAP_NR_VCPUS:
222 r = num_online_cpus();
224 case KVM_CAP_MAX_VCPUS:
227 case KVM_CAP_NR_MEMSLOTS:
228 r = KVM_USER_MEM_SLOTS;
230 case KVM_CAP_MSI_DEVID:
234 r = kvm->arch.vgic.msis_require_devid;
236 case KVM_CAP_ARM_USER_IRQ:
238 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
239 * (bump this number if adding more devices)
244 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
250 long kvm_arch_dev_ioctl(struct file *filp,
251 unsigned int ioctl, unsigned long arg)
256 struct kvm *kvm_arch_alloc_vm(void)
259 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
261 return vzalloc(sizeof(struct kvm));
264 void kvm_arch_free_vm(struct kvm *kvm)
272 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
275 struct kvm_vcpu *vcpu;
277 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
282 if (id >= kvm->arch.max_vcpus) {
287 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
293 err = kvm_vcpu_init(vcpu, kvm, id);
297 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
303 kvm_vcpu_uninit(vcpu);
305 kmem_cache_free(kvm_vcpu_cache, vcpu);
310 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
314 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
316 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
317 static_branch_dec(&userspace_irqchip_in_use);
319 kvm_mmu_free_memory_caches(vcpu);
320 kvm_timer_vcpu_terminate(vcpu);
321 kvm_pmu_vcpu_destroy(vcpu);
322 kvm_vcpu_uninit(vcpu);
323 kmem_cache_free(kvm_vcpu_cache, vcpu);
326 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
328 kvm_arch_vcpu_free(vcpu);
331 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
333 return kvm_timer_is_pending(vcpu);
336 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
338 kvm_vgic_v4_enable_doorbell(vcpu);
341 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
343 kvm_vgic_v4_disable_doorbell(vcpu);
346 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
348 /* Force users to call KVM_ARM_VCPU_INIT */
349 vcpu->arch.target = -1;
350 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
352 /* Set up the timer */
353 kvm_timer_vcpu_init(vcpu);
355 kvm_arm_reset_debug_ptr(vcpu);
357 return kvm_vgic_vcpu_init(vcpu);
360 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
364 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
367 * We might get preempted before the vCPU actually runs, but
368 * over-invalidation doesn't affect correctness.
370 if (*last_ran != vcpu->vcpu_id) {
371 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
372 *last_ran = vcpu->vcpu_id;
376 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
378 kvm_arm_set_running_vcpu(vcpu);
380 kvm_timer_vcpu_load(vcpu);
381 kvm_vcpu_load_sysregs(vcpu);
382 kvm_arch_vcpu_load_fp(vcpu);
384 if (single_task_running())
385 vcpu_clear_wfe_traps(vcpu);
387 vcpu_set_wfe_traps(vcpu);
390 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
392 kvm_arch_vcpu_put_fp(vcpu);
393 kvm_vcpu_put_sysregs(vcpu);
394 kvm_timer_vcpu_put(vcpu);
399 kvm_arm_set_running_vcpu(NULL);
402 static void vcpu_power_off(struct kvm_vcpu *vcpu)
404 vcpu->arch.power_off = true;
405 kvm_make_request(KVM_REQ_SLEEP, vcpu);
409 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
410 struct kvm_mp_state *mp_state)
412 if (vcpu->arch.power_off)
413 mp_state->mp_state = KVM_MP_STATE_STOPPED;
415 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
420 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
421 struct kvm_mp_state *mp_state)
425 switch (mp_state->mp_state) {
426 case KVM_MP_STATE_RUNNABLE:
427 vcpu->arch.power_off = false;
429 case KVM_MP_STATE_STOPPED:
430 vcpu_power_off(vcpu);
440 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
441 * @v: The VCPU pointer
443 * If the guest CPU is not waiting for interrupts or an interrupt line is
444 * asserted, the CPU is by definition runnable.
446 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
448 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
449 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
450 && !v->arch.power_off && !v->arch.pause);
453 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
455 return vcpu_mode_priv(vcpu);
458 /* Just ensure a guest exit from a particular CPU */
459 static void exit_vm_noop(void *info)
463 void force_vm_exit(const cpumask_t *mask)
466 smp_call_function_many(mask, exit_vm_noop, NULL, true);
471 * need_new_vmid_gen - check that the VMID is still valid
472 * @vmid: The VMID to check
474 * return true if there is a new generation of VMIDs being used
476 * The hardware supports a limited set of values with the value zero reserved
477 * for the host, so we check if an assigned value belongs to a previous
478 * generation, which which requires us to assign a new value. If we're the
479 * first to use a VMID for the new generation, we must flush necessary caches
480 * and TLBs on all CPUs.
482 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
484 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
485 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
486 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
490 * update_vmid - Update the vmid with a valid VMID for the current generation
491 * @kvm: The guest that struct vmid belongs to
492 * @vmid: The stage-2 VMID information struct
494 static void update_vmid(struct kvm_vmid *vmid)
496 if (!need_new_vmid_gen(vmid))
499 spin_lock(&kvm_vmid_lock);
502 * We need to re-check the vmid_gen here to ensure that if another vcpu
503 * already allocated a valid vmid for this vm, then this vcpu should
506 if (!need_new_vmid_gen(vmid)) {
507 spin_unlock(&kvm_vmid_lock);
511 /* First user of a new VMID generation? */
512 if (unlikely(kvm_next_vmid == 0)) {
513 atomic64_inc(&kvm_vmid_gen);
517 * On SMP we know no other CPUs can use this CPU's or each
518 * other's VMID after force_vm_exit returns since the
519 * kvm_vmid_lock blocks them from reentry to the guest.
521 force_vm_exit(cpu_all_mask);
523 * Now broadcast TLB + ICACHE invalidation over the inner
524 * shareable domain to make sure all data structures are
527 kvm_call_hyp(__kvm_flush_vm_context);
530 vmid->vmid = kvm_next_vmid;
532 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
535 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
537 spin_unlock(&kvm_vmid_lock);
540 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
542 struct kvm *kvm = vcpu->kvm;
545 if (likely(vcpu->arch.has_run_once))
548 vcpu->arch.has_run_once = true;
550 if (likely(irqchip_in_kernel(kvm))) {
552 * Map the VGIC hardware resources before running a vcpu the
553 * first time on this VM.
555 if (unlikely(!vgic_ready(kvm))) {
556 ret = kvm_vgic_map_resources(kvm);
562 * Tell the rest of the code that there are userspace irqchip
565 static_branch_inc(&userspace_irqchip_in_use);
568 ret = kvm_timer_enable(vcpu);
572 ret = kvm_arm_pmu_v3_enable(vcpu);
577 bool kvm_arch_intc_initialized(struct kvm *kvm)
579 return vgic_initialized(kvm);
582 void kvm_arm_halt_guest(struct kvm *kvm)
585 struct kvm_vcpu *vcpu;
587 kvm_for_each_vcpu(i, vcpu, kvm)
588 vcpu->arch.pause = true;
589 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
592 void kvm_arm_resume_guest(struct kvm *kvm)
595 struct kvm_vcpu *vcpu;
597 kvm_for_each_vcpu(i, vcpu, kvm) {
598 vcpu->arch.pause = false;
599 swake_up_one(kvm_arch_vcpu_wq(vcpu));
603 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
605 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
607 swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
608 (!vcpu->arch.pause)));
610 if (vcpu->arch.power_off || vcpu->arch.pause) {
611 /* Awaken to handle a signal, request we sleep again later. */
612 kvm_make_request(KVM_REQ_SLEEP, vcpu);
616 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
618 return vcpu->arch.target >= 0;
621 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
623 if (kvm_request_pending(vcpu)) {
624 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
625 vcpu_req_sleep(vcpu);
628 * Clear IRQ_PENDING requests that were made to guarantee
629 * that a VCPU sees new virtual interrupts.
631 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
636 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
637 * @vcpu: The VCPU pointer
638 * @run: The kvm_run structure pointer used for userspace state exchange
640 * This function is called through the VCPU_RUN ioctl called from user space. It
641 * will execute VM code in a loop until the time slice for the process is used
642 * or some emulation is needed from user space in which case the function will
643 * return with return value 0 and with the kvm_run structure filled in with the
644 * required data for the requested emulation.
646 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
650 if (unlikely(!kvm_vcpu_initialized(vcpu)))
653 ret = kvm_vcpu_first_run_init(vcpu);
657 if (run->exit_reason == KVM_EXIT_MMIO) {
658 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
663 if (run->immediate_exit)
668 kvm_sigset_activate(vcpu);
671 run->exit_reason = KVM_EXIT_UNKNOWN;
674 * Check conditions before entering the guest
678 update_vmid(&vcpu->kvm->arch.vmid);
680 check_vcpu_requests(vcpu);
683 * Preparing the interrupts to be injected also
684 * involves poking the GIC, which must be done in a
685 * non-preemptible context.
689 kvm_pmu_flush_hwstate(vcpu);
693 kvm_vgic_flush_hwstate(vcpu);
696 * Exit if we have a signal pending so that we can deliver the
697 * signal to user space.
699 if (signal_pending(current)) {
701 run->exit_reason = KVM_EXIT_INTR;
705 * If we're using a userspace irqchip, then check if we need
706 * to tell a userspace irqchip about timer or PMU level
707 * changes and if so, exit to userspace (the actual level
708 * state gets updated in kvm_timer_update_run and
709 * kvm_pmu_update_run below).
711 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
712 if (kvm_timer_should_notify_user(vcpu) ||
713 kvm_pmu_should_notify_user(vcpu)) {
715 run->exit_reason = KVM_EXIT_INTR;
720 * Ensure we set mode to IN_GUEST_MODE after we disable
721 * interrupts and before the final VCPU requests check.
722 * See the comment in kvm_vcpu_exiting_guest_mode() and
723 * Documentation/virtual/kvm/vcpu-requests.rst
725 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
727 if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
728 kvm_request_pending(vcpu)) {
729 vcpu->mode = OUTSIDE_GUEST_MODE;
730 isb(); /* Ensure work in x_flush_hwstate is committed */
731 kvm_pmu_sync_hwstate(vcpu);
732 if (static_branch_unlikely(&userspace_irqchip_in_use))
733 kvm_timer_sync_hwstate(vcpu);
734 kvm_vgic_sync_hwstate(vcpu);
740 kvm_arm_setup_debug(vcpu);
742 /**************************************************************
745 trace_kvm_entry(*vcpu_pc(vcpu));
746 guest_enter_irqoff();
749 kvm_arm_vhe_guest_enter();
750 ret = kvm_vcpu_run_vhe(vcpu);
751 kvm_arm_vhe_guest_exit();
753 ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
756 vcpu->mode = OUTSIDE_GUEST_MODE;
760 *************************************************************/
762 kvm_arm_clear_debug(vcpu);
765 * We must sync the PMU state before the vgic state so
766 * that the vgic can properly sample the updated state of the
769 kvm_pmu_sync_hwstate(vcpu);
772 * Sync the vgic state before syncing the timer state because
773 * the timer code needs to know if the virtual timer
774 * interrupts are active.
776 kvm_vgic_sync_hwstate(vcpu);
779 * Sync the timer hardware state before enabling interrupts as
780 * we don't want vtimer interrupts to race with syncing the
781 * timer virtual interrupt state.
783 if (static_branch_unlikely(&userspace_irqchip_in_use))
784 kvm_timer_sync_hwstate(vcpu);
786 kvm_arch_vcpu_ctxsync_fp(vcpu);
789 * We may have taken a host interrupt in HYP mode (ie
790 * while executing the guest). This interrupt is still
791 * pending, as we haven't serviced it yet!
793 * We're now back in SVC mode, with interrupts
794 * disabled. Enabling the interrupts now will have
795 * the effect of taking the interrupt again, in SVC
801 * We do local_irq_enable() before calling guest_exit() so
802 * that if a timer interrupt hits while running the guest we
803 * account that tick as being spent in the guest. We enable
804 * preemption after calling guest_exit() so that if we get
805 * preempted we make sure ticks after that is not counted as
809 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
811 /* Exit types that need handling before we can be preempted */
812 handle_exit_early(vcpu, run, ret);
816 ret = handle_exit(vcpu, run, ret);
819 /* Tell userspace about in-kernel device output levels */
820 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
821 kvm_timer_update_run(vcpu);
822 kvm_pmu_update_run(vcpu);
825 kvm_sigset_deactivate(vcpu);
831 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
837 if (number == KVM_ARM_IRQ_CPU_IRQ)
838 bit_index = __ffs(HCR_VI);
839 else /* KVM_ARM_IRQ_CPU_FIQ */
840 bit_index = __ffs(HCR_VF);
842 hcr = vcpu_hcr(vcpu);
844 set = test_and_set_bit(bit_index, hcr);
846 set = test_and_clear_bit(bit_index, hcr);
849 * If we didn't change anything, no need to wake up or kick other CPUs
855 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
856 * trigger a world-switch round on the running physical CPU to set the
857 * virtual IRQ/FIQ fields in the HCR appropriately.
859 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
865 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
868 u32 irq = irq_level->irq;
869 unsigned int irq_type, vcpu_idx, irq_num;
870 int nrcpus = atomic_read(&kvm->online_vcpus);
871 struct kvm_vcpu *vcpu = NULL;
872 bool level = irq_level->level;
874 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
875 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
876 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
878 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
881 case KVM_ARM_IRQ_TYPE_CPU:
882 if (irqchip_in_kernel(kvm))
885 if (vcpu_idx >= nrcpus)
888 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
892 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
895 return vcpu_interrupt_line(vcpu, irq_num, level);
896 case KVM_ARM_IRQ_TYPE_PPI:
897 if (!irqchip_in_kernel(kvm))
900 if (vcpu_idx >= nrcpus)
903 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
907 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
910 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
911 case KVM_ARM_IRQ_TYPE_SPI:
912 if (!irqchip_in_kernel(kvm))
915 if (irq_num < VGIC_NR_PRIVATE_IRQS)
918 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
924 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
925 const struct kvm_vcpu_init *init)
928 int phys_target = kvm_target_cpu();
930 if (init->target != phys_target)
934 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
935 * use the same target.
937 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
940 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
941 for (i = 0; i < sizeof(init->features) * 8; i++) {
942 bool set = (init->features[i / 32] & (1 << (i % 32)));
944 if (set && i >= KVM_VCPU_MAX_FEATURES)
948 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
949 * use the same feature set.
951 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
952 test_bit(i, vcpu->arch.features) != set)
956 set_bit(i, vcpu->arch.features);
959 vcpu->arch.target = phys_target;
961 /* Now we know what it is, we can reset it. */
962 return kvm_reset_vcpu(vcpu);
966 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
967 struct kvm_vcpu_init *init)
971 ret = kvm_vcpu_set_target(vcpu, init);
976 * Ensure a rebooted VM will fault in RAM pages and detect if the
977 * guest MMU is turned off and flush the caches as needed.
979 if (vcpu->arch.has_run_once)
980 stage2_unmap_vm(vcpu->kvm);
982 vcpu_reset_hcr(vcpu);
985 * Handle the "start in power-off" case.
987 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
988 vcpu_power_off(vcpu);
990 vcpu->arch.power_off = false;
995 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
996 struct kvm_device_attr *attr)
1000 switch (attr->group) {
1002 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1009 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1010 struct kvm_device_attr *attr)
1014 switch (attr->group) {
1016 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1023 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1024 struct kvm_device_attr *attr)
1028 switch (attr->group) {
1030 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1037 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1038 struct kvm_vcpu_events *events)
1040 memset(events, 0, sizeof(*events));
1042 return __kvm_arm_vcpu_get_events(vcpu, events);
1045 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1046 struct kvm_vcpu_events *events)
1050 /* check whether the reserved field is zero */
1051 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1052 if (events->reserved[i])
1055 /* check whether the pad field is zero */
1056 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1057 if (events->exception.pad[i])
1060 return __kvm_arm_vcpu_set_events(vcpu, events);
1063 long kvm_arch_vcpu_ioctl(struct file *filp,
1064 unsigned int ioctl, unsigned long arg)
1066 struct kvm_vcpu *vcpu = filp->private_data;
1067 void __user *argp = (void __user *)arg;
1068 struct kvm_device_attr attr;
1072 case KVM_ARM_VCPU_INIT: {
1073 struct kvm_vcpu_init init;
1076 if (copy_from_user(&init, argp, sizeof(init)))
1079 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1082 case KVM_SET_ONE_REG:
1083 case KVM_GET_ONE_REG: {
1084 struct kvm_one_reg reg;
1087 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1091 if (copy_from_user(®, argp, sizeof(reg)))
1094 if (ioctl == KVM_SET_ONE_REG)
1095 r = kvm_arm_set_reg(vcpu, ®);
1097 r = kvm_arm_get_reg(vcpu, ®);
1100 case KVM_GET_REG_LIST: {
1101 struct kvm_reg_list __user *user_list = argp;
1102 struct kvm_reg_list reg_list;
1106 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1110 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1113 reg_list.n = kvm_arm_num_regs(vcpu);
1114 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1119 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1122 case KVM_SET_DEVICE_ATTR: {
1124 if (copy_from_user(&attr, argp, sizeof(attr)))
1126 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1129 case KVM_GET_DEVICE_ATTR: {
1131 if (copy_from_user(&attr, argp, sizeof(attr)))
1133 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1136 case KVM_HAS_DEVICE_ATTR: {
1138 if (copy_from_user(&attr, argp, sizeof(attr)))
1140 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1143 case KVM_GET_VCPU_EVENTS: {
1144 struct kvm_vcpu_events events;
1146 if (kvm_arm_vcpu_get_events(vcpu, &events))
1149 if (copy_to_user(argp, &events, sizeof(events)))
1154 case KVM_SET_VCPU_EVENTS: {
1155 struct kvm_vcpu_events events;
1157 if (copy_from_user(&events, argp, sizeof(events)))
1160 return kvm_arm_vcpu_set_events(vcpu, &events);
1170 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1171 * @kvm: kvm instance
1172 * @log: slot id and address to which we copy the log
1174 * Steps 1-4 below provide general overview of dirty page logging. See
1175 * kvm_get_dirty_log_protect() function description for additional details.
1177 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1178 * always flush the TLB (step 4) even if previous step failed and the dirty
1179 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1180 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1181 * writes will be marked dirty for next log read.
1183 * 1. Take a snapshot of the bit and clear it if needed.
1184 * 2. Write protect the corresponding page.
1185 * 3. Copy the snapshot to the userspace.
1186 * 4. Flush TLB's if needed.
1188 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1193 mutex_lock(&kvm->slots_lock);
1195 r = kvm_get_dirty_log_protect(kvm, log, &flush);
1198 kvm_flush_remote_tlbs(kvm);
1200 mutex_unlock(&kvm->slots_lock);
1204 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
1209 mutex_lock(&kvm->slots_lock);
1211 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1214 kvm_flush_remote_tlbs(kvm);
1216 mutex_unlock(&kvm->slots_lock);
1220 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1221 struct kvm_arm_device_addr *dev_addr)
1223 unsigned long dev_id, type;
1225 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1226 KVM_ARM_DEVICE_ID_SHIFT;
1227 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1228 KVM_ARM_DEVICE_TYPE_SHIFT;
1231 case KVM_ARM_DEVICE_VGIC_V2:
1234 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1240 long kvm_arch_vm_ioctl(struct file *filp,
1241 unsigned int ioctl, unsigned long arg)
1243 struct kvm *kvm = filp->private_data;
1244 void __user *argp = (void __user *)arg;
1247 case KVM_CREATE_IRQCHIP: {
1251 mutex_lock(&kvm->lock);
1252 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1253 mutex_unlock(&kvm->lock);
1256 case KVM_ARM_SET_DEVICE_ADDR: {
1257 struct kvm_arm_device_addr dev_addr;
1259 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1261 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1263 case KVM_ARM_PREFERRED_TARGET: {
1265 struct kvm_vcpu_init init;
1267 err = kvm_vcpu_preferred_target(&init);
1271 if (copy_to_user(argp, &init, sizeof(init)))
1281 static void cpu_init_hyp_mode(void *dummy)
1283 phys_addr_t pgd_ptr;
1284 unsigned long hyp_stack_ptr;
1285 unsigned long stack_page;
1286 unsigned long vector_ptr;
1288 /* Switch from the HYP stub to our own HYP init vector */
1289 __hyp_set_vectors(kvm_get_idmap_vector());
1291 pgd_ptr = kvm_mmu_get_httbr();
1292 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1293 hyp_stack_ptr = stack_page + PAGE_SIZE;
1294 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1296 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1297 __cpu_init_stage2();
1300 static void cpu_hyp_reset(void)
1302 if (!is_kernel_in_hyp_mode())
1303 __hyp_reset_vectors();
1306 static void cpu_hyp_reinit(void)
1310 if (is_kernel_in_hyp_mode())
1311 kvm_timer_init_vhe();
1313 cpu_init_hyp_mode(NULL);
1315 kvm_arm_init_debug();
1318 kvm_vgic_init_cpu_hardware();
1321 static void _kvm_arch_hardware_enable(void *discard)
1323 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1325 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1329 int kvm_arch_hardware_enable(void)
1331 _kvm_arch_hardware_enable(NULL);
1335 static void _kvm_arch_hardware_disable(void *discard)
1337 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1339 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1343 void kvm_arch_hardware_disable(void)
1345 _kvm_arch_hardware_disable(NULL);
1348 #ifdef CONFIG_CPU_PM
1349 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1354 * kvm_arm_hardware_enabled is left with its old value over
1355 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1360 if (__this_cpu_read(kvm_arm_hardware_enabled))
1362 * don't update kvm_arm_hardware_enabled here
1363 * so that the hardware will be re-enabled
1364 * when we resume. See below.
1369 case CPU_PM_ENTER_FAILED:
1371 if (__this_cpu_read(kvm_arm_hardware_enabled))
1372 /* The hardware was enabled before suspend. */
1382 static struct notifier_block hyp_init_cpu_pm_nb = {
1383 .notifier_call = hyp_init_cpu_pm_notifier,
1386 static void __init hyp_cpu_pm_init(void)
1388 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1390 static void __init hyp_cpu_pm_exit(void)
1392 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1395 static inline void hyp_cpu_pm_init(void)
1398 static inline void hyp_cpu_pm_exit(void)
1403 static int init_common_resources(void)
1405 kvm_set_ipa_limit();
1410 static int init_subsystems(void)
1415 * Enable hardware so that subsystem initialisation can access EL2.
1417 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1420 * Register CPU lower-power notifier
1425 * Init HYP view of VGIC
1427 err = kvm_vgic_hyp_init();
1430 vgic_present = true;
1434 vgic_present = false;
1442 * Init HYP architected timer support
1444 err = kvm_timer_hyp_init(vgic_present);
1449 kvm_coproc_table_init();
1452 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1457 static void teardown_hyp_mode(void)
1462 for_each_possible_cpu(cpu)
1463 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1468 * Inits Hyp-mode on all online CPUs
1470 static int init_hyp_mode(void)
1476 * Allocate Hyp PGD and setup Hyp identity mapping
1478 err = kvm_mmu_init();
1483 * Allocate stack pages for Hypervisor-mode
1485 for_each_possible_cpu(cpu) {
1486 unsigned long stack_page;
1488 stack_page = __get_free_page(GFP_KERNEL);
1494 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1498 * Map the Hyp-code called directly from the host
1500 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1501 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1503 kvm_err("Cannot map world-switch code\n");
1507 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1508 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1510 kvm_err("Cannot map rodata section\n");
1514 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1515 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1517 kvm_err("Cannot map bss section\n");
1521 err = kvm_map_vectors();
1523 kvm_err("Cannot map vectors\n");
1528 * Map the Hyp stack pages
1530 for_each_possible_cpu(cpu) {
1531 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1532 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1536 kvm_err("Cannot map hyp stack\n");
1541 for_each_possible_cpu(cpu) {
1542 kvm_cpu_context_t *cpu_ctxt;
1544 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1545 kvm_init_host_cpu_context(cpu_ctxt, cpu);
1546 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1549 kvm_err("Cannot map host CPU state: %d\n", err);
1554 err = hyp_map_aux_data();
1556 kvm_err("Cannot map host auxilary data: %d\n", err);
1561 teardown_hyp_mode();
1562 kvm_err("error initializing Hyp mode: %d\n", err);
1566 static void check_kvm_target_cpu(void *ret)
1568 *(int *)ret = kvm_target_cpu();
1571 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1573 struct kvm_vcpu *vcpu;
1576 mpidr &= MPIDR_HWID_BITMASK;
1577 kvm_for_each_vcpu(i, vcpu, kvm) {
1578 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1584 bool kvm_arch_has_irq_bypass(void)
1589 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1590 struct irq_bypass_producer *prod)
1592 struct kvm_kernel_irqfd *irqfd =
1593 container_of(cons, struct kvm_kernel_irqfd, consumer);
1595 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1598 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1599 struct irq_bypass_producer *prod)
1601 struct kvm_kernel_irqfd *irqfd =
1602 container_of(cons, struct kvm_kernel_irqfd, consumer);
1604 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1608 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1610 struct kvm_kernel_irqfd *irqfd =
1611 container_of(cons, struct kvm_kernel_irqfd, consumer);
1613 kvm_arm_halt_guest(irqfd->kvm);
1616 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1618 struct kvm_kernel_irqfd *irqfd =
1619 container_of(cons, struct kvm_kernel_irqfd, consumer);
1621 kvm_arm_resume_guest(irqfd->kvm);
1625 * Initialize Hyp-mode and memory mappings on all CPUs.
1627 int kvm_arch_init(void *opaque)
1633 if (!is_hyp_mode_available()) {
1634 kvm_info("HYP mode not available\n");
1638 in_hyp_mode = is_kernel_in_hyp_mode();
1640 if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1641 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1645 for_each_online_cpu(cpu) {
1646 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1648 kvm_err("Error, CPU %d not supported!\n", cpu);
1653 err = init_common_resources();
1658 err = init_hyp_mode();
1663 err = init_subsystems();
1668 kvm_info("VHE mode initialized successfully\n");
1670 kvm_info("Hyp mode initialized successfully\n");
1676 teardown_hyp_mode();
1681 /* NOP: Compiling as a module not supported */
1682 void kvm_arch_exit(void)
1684 kvm_perf_teardown();
1687 static int arm_init(void)
1689 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1693 module_init(arm_init);