]> Git Repo - linux.git/blob - mm/memory.c
afs: convert afs_writepages_region() to use filemap_get_folios_tag()
[linux.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh ([email protected])
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              ([email protected])
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126                                         1;
127 #else
128                                         2;
129 #endif
130
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134         /*
135          * Transitioning a PTE from 'old' to 'young' can be expensive on
136          * some architectures, even if it's performed in hardware. By
137          * default, "false" means prefaulted entries will be 'young'.
138          */
139         return false;
140 }
141 #endif
142
143 static int __init disable_randmaps(char *s)
144 {
145         randomize_va_space = 0;
146         return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152
153 unsigned long highest_memmap_pfn __read_mostly;
154
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160         zero_pfn = page_to_pfn(ZERO_PAGE(0));
161         return 0;
162 }
163 early_initcall(init_zero_pfn);
164
165 void mm_trace_rss_stat(struct mm_struct *mm, int member)
166 {
167         trace_rss_stat(mm, member);
168 }
169
170 /*
171  * Note: this doesn't free the actual pages themselves. That
172  * has been handled earlier when unmapping all the memory regions.
173  */
174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
175                            unsigned long addr)
176 {
177         pgtable_t token = pmd_pgtable(*pmd);
178         pmd_clear(pmd);
179         pte_free_tlb(tlb, token, addr);
180         mm_dec_nr_ptes(tlb->mm);
181 }
182
183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184                                 unsigned long addr, unsigned long end,
185                                 unsigned long floor, unsigned long ceiling)
186 {
187         pmd_t *pmd;
188         unsigned long next;
189         unsigned long start;
190
191         start = addr;
192         pmd = pmd_offset(pud, addr);
193         do {
194                 next = pmd_addr_end(addr, end);
195                 if (pmd_none_or_clear_bad(pmd))
196                         continue;
197                 free_pte_range(tlb, pmd, addr);
198         } while (pmd++, addr = next, addr != end);
199
200         start &= PUD_MASK;
201         if (start < floor)
202                 return;
203         if (ceiling) {
204                 ceiling &= PUD_MASK;
205                 if (!ceiling)
206                         return;
207         }
208         if (end - 1 > ceiling - 1)
209                 return;
210
211         pmd = pmd_offset(pud, start);
212         pud_clear(pud);
213         pmd_free_tlb(tlb, pmd, start);
214         mm_dec_nr_pmds(tlb->mm);
215 }
216
217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
218                                 unsigned long addr, unsigned long end,
219                                 unsigned long floor, unsigned long ceiling)
220 {
221         pud_t *pud;
222         unsigned long next;
223         unsigned long start;
224
225         start = addr;
226         pud = pud_offset(p4d, addr);
227         do {
228                 next = pud_addr_end(addr, end);
229                 if (pud_none_or_clear_bad(pud))
230                         continue;
231                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
232         } while (pud++, addr = next, addr != end);
233
234         start &= P4D_MASK;
235         if (start < floor)
236                 return;
237         if (ceiling) {
238                 ceiling &= P4D_MASK;
239                 if (!ceiling)
240                         return;
241         }
242         if (end - 1 > ceiling - 1)
243                 return;
244
245         pud = pud_offset(p4d, start);
246         p4d_clear(p4d);
247         pud_free_tlb(tlb, pud, start);
248         mm_dec_nr_puds(tlb->mm);
249 }
250
251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252                                 unsigned long addr, unsigned long end,
253                                 unsigned long floor, unsigned long ceiling)
254 {
255         p4d_t *p4d;
256         unsigned long next;
257         unsigned long start;
258
259         start = addr;
260         p4d = p4d_offset(pgd, addr);
261         do {
262                 next = p4d_addr_end(addr, end);
263                 if (p4d_none_or_clear_bad(p4d))
264                         continue;
265                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266         } while (p4d++, addr = next, addr != end);
267
268         start &= PGDIR_MASK;
269         if (start < floor)
270                 return;
271         if (ceiling) {
272                 ceiling &= PGDIR_MASK;
273                 if (!ceiling)
274                         return;
275         }
276         if (end - 1 > ceiling - 1)
277                 return;
278
279         p4d = p4d_offset(pgd, start);
280         pgd_clear(pgd);
281         p4d_free_tlb(tlb, p4d, start);
282 }
283
284 /*
285  * This function frees user-level page tables of a process.
286  */
287 void free_pgd_range(struct mmu_gather *tlb,
288                         unsigned long addr, unsigned long end,
289                         unsigned long floor, unsigned long ceiling)
290 {
291         pgd_t *pgd;
292         unsigned long next;
293
294         /*
295          * The next few lines have given us lots of grief...
296          *
297          * Why are we testing PMD* at this top level?  Because often
298          * there will be no work to do at all, and we'd prefer not to
299          * go all the way down to the bottom just to discover that.
300          *
301          * Why all these "- 1"s?  Because 0 represents both the bottom
302          * of the address space and the top of it (using -1 for the
303          * top wouldn't help much: the masks would do the wrong thing).
304          * The rule is that addr 0 and floor 0 refer to the bottom of
305          * the address space, but end 0 and ceiling 0 refer to the top
306          * Comparisons need to use "end - 1" and "ceiling - 1" (though
307          * that end 0 case should be mythical).
308          *
309          * Wherever addr is brought up or ceiling brought down, we must
310          * be careful to reject "the opposite 0" before it confuses the
311          * subsequent tests.  But what about where end is brought down
312          * by PMD_SIZE below? no, end can't go down to 0 there.
313          *
314          * Whereas we round start (addr) and ceiling down, by different
315          * masks at different levels, in order to test whether a table
316          * now has no other vmas using it, so can be freed, we don't
317          * bother to round floor or end up - the tests don't need that.
318          */
319
320         addr &= PMD_MASK;
321         if (addr < floor) {
322                 addr += PMD_SIZE;
323                 if (!addr)
324                         return;
325         }
326         if (ceiling) {
327                 ceiling &= PMD_MASK;
328                 if (!ceiling)
329                         return;
330         }
331         if (end - 1 > ceiling - 1)
332                 end -= PMD_SIZE;
333         if (addr > end - 1)
334                 return;
335         /*
336          * We add page table cache pages with PAGE_SIZE,
337          * (see pte_free_tlb()), flush the tlb if we need
338          */
339         tlb_change_page_size(tlb, PAGE_SIZE);
340         pgd = pgd_offset(tlb->mm, addr);
341         do {
342                 next = pgd_addr_end(addr, end);
343                 if (pgd_none_or_clear_bad(pgd))
344                         continue;
345                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
346         } while (pgd++, addr = next, addr != end);
347 }
348
349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350                    struct vm_area_struct *vma, unsigned long floor,
351                    unsigned long ceiling)
352 {
353         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
354
355         do {
356                 unsigned long addr = vma->vm_start;
357                 struct vm_area_struct *next;
358
359                 /*
360                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361                  * be 0.  This will underflow and is okay.
362                  */
363                 next = mas_find(&mas, ceiling - 1);
364
365                 /*
366                  * Hide vma from rmap and truncate_pagecache before freeing
367                  * pgtables
368                  */
369                 unlink_anon_vmas(vma);
370                 unlink_file_vma(vma);
371
372                 if (is_vm_hugetlb_page(vma)) {
373                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
374                                 floor, next ? next->vm_start : ceiling);
375                 } else {
376                         /*
377                          * Optimization: gather nearby vmas into one call down
378                          */
379                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
380                                && !is_vm_hugetlb_page(next)) {
381                                 vma = next;
382                                 next = mas_find(&mas, ceiling - 1);
383                                 unlink_anon_vmas(vma);
384                                 unlink_file_vma(vma);
385                         }
386                         free_pgd_range(tlb, addr, vma->vm_end,
387                                 floor, next ? next->vm_start : ceiling);
388                 }
389                 vma = next;
390         } while (vma);
391 }
392
393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
394 {
395         spinlock_t *ptl = pmd_lock(mm, pmd);
396
397         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
398                 mm_inc_nr_ptes(mm);
399                 /*
400                  * Ensure all pte setup (eg. pte page lock and page clearing) are
401                  * visible before the pte is made visible to other CPUs by being
402                  * put into page tables.
403                  *
404                  * The other side of the story is the pointer chasing in the page
405                  * table walking code (when walking the page table without locking;
406                  * ie. most of the time). Fortunately, these data accesses consist
407                  * of a chain of data-dependent loads, meaning most CPUs (alpha
408                  * being the notable exception) will already guarantee loads are
409                  * seen in-order. See the alpha page table accessors for the
410                  * smp_rmb() barriers in page table walking code.
411                  */
412                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
413                 pmd_populate(mm, pmd, *pte);
414                 *pte = NULL;
415         }
416         spin_unlock(ptl);
417 }
418
419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
420 {
421         pgtable_t new = pte_alloc_one(mm);
422         if (!new)
423                 return -ENOMEM;
424
425         pmd_install(mm, pmd, &new);
426         if (new)
427                 pte_free(mm, new);
428         return 0;
429 }
430
431 int __pte_alloc_kernel(pmd_t *pmd)
432 {
433         pte_t *new = pte_alloc_one_kernel(&init_mm);
434         if (!new)
435                 return -ENOMEM;
436
437         spin_lock(&init_mm.page_table_lock);
438         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
439                 smp_wmb(); /* See comment in pmd_install() */
440                 pmd_populate_kernel(&init_mm, pmd, new);
441                 new = NULL;
442         }
443         spin_unlock(&init_mm.page_table_lock);
444         if (new)
445                 pte_free_kernel(&init_mm, new);
446         return 0;
447 }
448
449 static inline void init_rss_vec(int *rss)
450 {
451         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452 }
453
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
455 {
456         int i;
457
458         if (current->mm == mm)
459                 sync_mm_rss(mm);
460         for (i = 0; i < NR_MM_COUNTERS; i++)
461                 if (rss[i])
462                         add_mm_counter(mm, i, rss[i]);
463 }
464
465 /*
466  * This function is called to print an error when a bad pte
467  * is found. For example, we might have a PFN-mapped pte in
468  * a region that doesn't allow it.
469  *
470  * The calling function must still handle the error.
471  */
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473                           pte_t pte, struct page *page)
474 {
475         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476         p4d_t *p4d = p4d_offset(pgd, addr);
477         pud_t *pud = pud_offset(p4d, addr);
478         pmd_t *pmd = pmd_offset(pud, addr);
479         struct address_space *mapping;
480         pgoff_t index;
481         static unsigned long resume;
482         static unsigned long nr_shown;
483         static unsigned long nr_unshown;
484
485         /*
486          * Allow a burst of 60 reports, then keep quiet for that minute;
487          * or allow a steady drip of one report per second.
488          */
489         if (nr_shown == 60) {
490                 if (time_before(jiffies, resume)) {
491                         nr_unshown++;
492                         return;
493                 }
494                 if (nr_unshown) {
495                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
496                                  nr_unshown);
497                         nr_unshown = 0;
498                 }
499                 nr_shown = 0;
500         }
501         if (nr_shown++ == 0)
502                 resume = jiffies + 60 * HZ;
503
504         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505         index = linear_page_index(vma, addr);
506
507         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
508                  current->comm,
509                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
510         if (page)
511                 dump_page(page, "bad pte");
512         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
513                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
514         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
515                  vma->vm_file,
516                  vma->vm_ops ? vma->vm_ops->fault : NULL,
517                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
518                  mapping ? mapping->a_ops->read_folio : NULL);
519         dump_stack();
520         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
521 }
522
523 /*
524  * vm_normal_page -- This function gets the "struct page" associated with a pte.
525  *
526  * "Special" mappings do not wish to be associated with a "struct page" (either
527  * it doesn't exist, or it exists but they don't want to touch it). In this
528  * case, NULL is returned here. "Normal" mappings do have a struct page.
529  *
530  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531  * pte bit, in which case this function is trivial. Secondly, an architecture
532  * may not have a spare pte bit, which requires a more complicated scheme,
533  * described below.
534  *
535  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536  * special mapping (even if there are underlying and valid "struct pages").
537  * COWed pages of a VM_PFNMAP are always normal.
538  *
539  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
541  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542  * mapping will always honor the rule
543  *
544  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
545  *
546  * And for normal mappings this is false.
547  *
548  * This restricts such mappings to be a linear translation from virtual address
549  * to pfn. To get around this restriction, we allow arbitrary mappings so long
550  * as the vma is not a COW mapping; in that case, we know that all ptes are
551  * special (because none can have been COWed).
552  *
553  *
554  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
555  *
556  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557  * page" backing, however the difference is that _all_ pages with a struct
558  * page (that is, those where pfn_valid is true) are refcounted and considered
559  * normal pages by the VM. The disadvantage is that pages are refcounted
560  * (which can be slower and simply not an option for some PFNMAP users). The
561  * advantage is that we don't have to follow the strict linearity rule of
562  * PFNMAP mappings in order to support COWable mappings.
563  *
564  */
565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
566                             pte_t pte)
567 {
568         unsigned long pfn = pte_pfn(pte);
569
570         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
571                 if (likely(!pte_special(pte)))
572                         goto check_pfn;
573                 if (vma->vm_ops && vma->vm_ops->find_special_page)
574                         return vma->vm_ops->find_special_page(vma, addr);
575                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
576                         return NULL;
577                 if (is_zero_pfn(pfn))
578                         return NULL;
579                 if (pte_devmap(pte))
580                 /*
581                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582                  * and will have refcounts incremented on their struct pages
583                  * when they are inserted into PTEs, thus they are safe to
584                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585                  * do not have refcounts. Example of legacy ZONE_DEVICE is
586                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
587                  */
588                         return NULL;
589
590                 print_bad_pte(vma, addr, pte, NULL);
591                 return NULL;
592         }
593
594         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
595
596         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597                 if (vma->vm_flags & VM_MIXEDMAP) {
598                         if (!pfn_valid(pfn))
599                                 return NULL;
600                         goto out;
601                 } else {
602                         unsigned long off;
603                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
604                         if (pfn == vma->vm_pgoff + off)
605                                 return NULL;
606                         if (!is_cow_mapping(vma->vm_flags))
607                                 return NULL;
608                 }
609         }
610
611         if (is_zero_pfn(pfn))
612                 return NULL;
613
614 check_pfn:
615         if (unlikely(pfn > highest_memmap_pfn)) {
616                 print_bad_pte(vma, addr, pte, NULL);
617                 return NULL;
618         }
619
620         /*
621          * NOTE! We still have PageReserved() pages in the page tables.
622          * eg. VDSO mappings can cause them to exist.
623          */
624 out:
625         return pfn_to_page(pfn);
626 }
627
628 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
629                             pte_t pte)
630 {
631         struct page *page = vm_normal_page(vma, addr, pte);
632
633         if (page)
634                 return page_folio(page);
635         return NULL;
636 }
637
638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
639 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
640                                 pmd_t pmd)
641 {
642         unsigned long pfn = pmd_pfn(pmd);
643
644         /*
645          * There is no pmd_special() but there may be special pmds, e.g.
646          * in a direct-access (dax) mapping, so let's just replicate the
647          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
648          */
649         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
650                 if (vma->vm_flags & VM_MIXEDMAP) {
651                         if (!pfn_valid(pfn))
652                                 return NULL;
653                         goto out;
654                 } else {
655                         unsigned long off;
656                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
657                         if (pfn == vma->vm_pgoff + off)
658                                 return NULL;
659                         if (!is_cow_mapping(vma->vm_flags))
660                                 return NULL;
661                 }
662         }
663
664         if (pmd_devmap(pmd))
665                 return NULL;
666         if (is_huge_zero_pmd(pmd))
667                 return NULL;
668         if (unlikely(pfn > highest_memmap_pfn))
669                 return NULL;
670
671         /*
672          * NOTE! We still have PageReserved() pages in the page tables.
673          * eg. VDSO mappings can cause them to exist.
674          */
675 out:
676         return pfn_to_page(pfn);
677 }
678 #endif
679
680 static void restore_exclusive_pte(struct vm_area_struct *vma,
681                                   struct page *page, unsigned long address,
682                                   pte_t *ptep)
683 {
684         pte_t pte;
685         swp_entry_t entry;
686
687         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
688         if (pte_swp_soft_dirty(*ptep))
689                 pte = pte_mksoft_dirty(pte);
690
691         entry = pte_to_swp_entry(*ptep);
692         if (pte_swp_uffd_wp(*ptep))
693                 pte = pte_mkuffd_wp(pte);
694         else if (is_writable_device_exclusive_entry(entry))
695                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
696
697         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
698
699         /*
700          * No need to take a page reference as one was already
701          * created when the swap entry was made.
702          */
703         if (PageAnon(page))
704                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
705         else
706                 /*
707                  * Currently device exclusive access only supports anonymous
708                  * memory so the entry shouldn't point to a filebacked page.
709                  */
710                 WARN_ON_ONCE(1);
711
712         set_pte_at(vma->vm_mm, address, ptep, pte);
713
714         /*
715          * No need to invalidate - it was non-present before. However
716          * secondary CPUs may have mappings that need invalidating.
717          */
718         update_mmu_cache(vma, address, ptep);
719 }
720
721 /*
722  * Tries to restore an exclusive pte if the page lock can be acquired without
723  * sleeping.
724  */
725 static int
726 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
727                         unsigned long addr)
728 {
729         swp_entry_t entry = pte_to_swp_entry(*src_pte);
730         struct page *page = pfn_swap_entry_to_page(entry);
731
732         if (trylock_page(page)) {
733                 restore_exclusive_pte(vma, page, addr, src_pte);
734                 unlock_page(page);
735                 return 0;
736         }
737
738         return -EBUSY;
739 }
740
741 /*
742  * copy one vm_area from one task to the other. Assumes the page tables
743  * already present in the new task to be cleared in the whole range
744  * covered by this vma.
745  */
746
747 static unsigned long
748 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
749                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
750                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
751 {
752         unsigned long vm_flags = dst_vma->vm_flags;
753         pte_t pte = *src_pte;
754         struct page *page;
755         swp_entry_t entry = pte_to_swp_entry(pte);
756
757         if (likely(!non_swap_entry(entry))) {
758                 if (swap_duplicate(entry) < 0)
759                         return -EIO;
760
761                 /* make sure dst_mm is on swapoff's mmlist. */
762                 if (unlikely(list_empty(&dst_mm->mmlist))) {
763                         spin_lock(&mmlist_lock);
764                         if (list_empty(&dst_mm->mmlist))
765                                 list_add(&dst_mm->mmlist,
766                                                 &src_mm->mmlist);
767                         spin_unlock(&mmlist_lock);
768                 }
769                 /* Mark the swap entry as shared. */
770                 if (pte_swp_exclusive(*src_pte)) {
771                         pte = pte_swp_clear_exclusive(*src_pte);
772                         set_pte_at(src_mm, addr, src_pte, pte);
773                 }
774                 rss[MM_SWAPENTS]++;
775         } else if (is_migration_entry(entry)) {
776                 page = pfn_swap_entry_to_page(entry);
777
778                 rss[mm_counter(page)]++;
779
780                 if (!is_readable_migration_entry(entry) &&
781                                 is_cow_mapping(vm_flags)) {
782                         /*
783                          * COW mappings require pages in both parent and child
784                          * to be set to read. A previously exclusive entry is
785                          * now shared.
786                          */
787                         entry = make_readable_migration_entry(
788                                                         swp_offset(entry));
789                         pte = swp_entry_to_pte(entry);
790                         if (pte_swp_soft_dirty(*src_pte))
791                                 pte = pte_swp_mksoft_dirty(pte);
792                         if (pte_swp_uffd_wp(*src_pte))
793                                 pte = pte_swp_mkuffd_wp(pte);
794                         set_pte_at(src_mm, addr, src_pte, pte);
795                 }
796         } else if (is_device_private_entry(entry)) {
797                 page = pfn_swap_entry_to_page(entry);
798
799                 /*
800                  * Update rss count even for unaddressable pages, as
801                  * they should treated just like normal pages in this
802                  * respect.
803                  *
804                  * We will likely want to have some new rss counters
805                  * for unaddressable pages, at some point. But for now
806                  * keep things as they are.
807                  */
808                 get_page(page);
809                 rss[mm_counter(page)]++;
810                 /* Cannot fail as these pages cannot get pinned. */
811                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
812
813                 /*
814                  * We do not preserve soft-dirty information, because so
815                  * far, checkpoint/restore is the only feature that
816                  * requires that. And checkpoint/restore does not work
817                  * when a device driver is involved (you cannot easily
818                  * save and restore device driver state).
819                  */
820                 if (is_writable_device_private_entry(entry) &&
821                     is_cow_mapping(vm_flags)) {
822                         entry = make_readable_device_private_entry(
823                                                         swp_offset(entry));
824                         pte = swp_entry_to_pte(entry);
825                         if (pte_swp_uffd_wp(*src_pte))
826                                 pte = pte_swp_mkuffd_wp(pte);
827                         set_pte_at(src_mm, addr, src_pte, pte);
828                 }
829         } else if (is_device_exclusive_entry(entry)) {
830                 /*
831                  * Make device exclusive entries present by restoring the
832                  * original entry then copying as for a present pte. Device
833                  * exclusive entries currently only support private writable
834                  * (ie. COW) mappings.
835                  */
836                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
837                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
838                         return -EBUSY;
839                 return -ENOENT;
840         } else if (is_pte_marker_entry(entry)) {
841                 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
842                         set_pte_at(dst_mm, addr, dst_pte, pte);
843                 return 0;
844         }
845         if (!userfaultfd_wp(dst_vma))
846                 pte = pte_swp_clear_uffd_wp(pte);
847         set_pte_at(dst_mm, addr, dst_pte, pte);
848         return 0;
849 }
850
851 /*
852  * Copy a present and normal page.
853  *
854  * NOTE! The usual case is that this isn't required;
855  * instead, the caller can just increase the page refcount
856  * and re-use the pte the traditional way.
857  *
858  * And if we need a pre-allocated page but don't yet have
859  * one, return a negative error to let the preallocation
860  * code know so that it can do so outside the page table
861  * lock.
862  */
863 static inline int
864 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
865                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
866                   struct page **prealloc, struct page *page)
867 {
868         struct page *new_page;
869         pte_t pte;
870
871         new_page = *prealloc;
872         if (!new_page)
873                 return -EAGAIN;
874
875         /*
876          * We have a prealloc page, all good!  Take it
877          * over and copy the page & arm it.
878          */
879         *prealloc = NULL;
880         copy_user_highpage(new_page, page, addr, src_vma);
881         __SetPageUptodate(new_page);
882         page_add_new_anon_rmap(new_page, dst_vma, addr);
883         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
884         rss[mm_counter(new_page)]++;
885
886         /* All done, just insert the new page copy in the child */
887         pte = mk_pte(new_page, dst_vma->vm_page_prot);
888         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
889         if (userfaultfd_pte_wp(dst_vma, *src_pte))
890                 /* Uffd-wp needs to be delivered to dest pte as well */
891                 pte = pte_mkuffd_wp(pte);
892         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
893         return 0;
894 }
895
896 /*
897  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
898  * is required to copy this pte.
899  */
900 static inline int
901 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903                  struct page **prealloc)
904 {
905         struct mm_struct *src_mm = src_vma->vm_mm;
906         unsigned long vm_flags = src_vma->vm_flags;
907         pte_t pte = *src_pte;
908         struct page *page;
909
910         page = vm_normal_page(src_vma, addr, pte);
911         if (page && PageAnon(page)) {
912                 /*
913                  * If this page may have been pinned by the parent process,
914                  * copy the page immediately for the child so that we'll always
915                  * guarantee the pinned page won't be randomly replaced in the
916                  * future.
917                  */
918                 get_page(page);
919                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
920                         /* Page maybe pinned, we have to copy. */
921                         put_page(page);
922                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
923                                                  addr, rss, prealloc, page);
924                 }
925                 rss[mm_counter(page)]++;
926         } else if (page) {
927                 get_page(page);
928                 page_dup_file_rmap(page, false);
929                 rss[mm_counter(page)]++;
930         }
931
932         /*
933          * If it's a COW mapping, write protect it both
934          * in the parent and the child
935          */
936         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
937                 ptep_set_wrprotect(src_mm, addr, src_pte);
938                 pte = pte_wrprotect(pte);
939         }
940         VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
941
942         /*
943          * If it's a shared mapping, mark it clean in
944          * the child
945          */
946         if (vm_flags & VM_SHARED)
947                 pte = pte_mkclean(pte);
948         pte = pte_mkold(pte);
949
950         if (!userfaultfd_wp(dst_vma))
951                 pte = pte_clear_uffd_wp(pte);
952
953         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
954         return 0;
955 }
956
957 static inline struct page *
958 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
959                    unsigned long addr)
960 {
961         struct page *new_page;
962
963         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
964         if (!new_page)
965                 return NULL;
966
967         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
968                 put_page(new_page);
969                 return NULL;
970         }
971         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
972
973         return new_page;
974 }
975
976 static int
977 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
978                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
979                unsigned long end)
980 {
981         struct mm_struct *dst_mm = dst_vma->vm_mm;
982         struct mm_struct *src_mm = src_vma->vm_mm;
983         pte_t *orig_src_pte, *orig_dst_pte;
984         pte_t *src_pte, *dst_pte;
985         spinlock_t *src_ptl, *dst_ptl;
986         int progress, ret = 0;
987         int rss[NR_MM_COUNTERS];
988         swp_entry_t entry = (swp_entry_t){0};
989         struct page *prealloc = NULL;
990
991 again:
992         progress = 0;
993         init_rss_vec(rss);
994
995         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
996         if (!dst_pte) {
997                 ret = -ENOMEM;
998                 goto out;
999         }
1000         src_pte = pte_offset_map(src_pmd, addr);
1001         src_ptl = pte_lockptr(src_mm, src_pmd);
1002         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1003         orig_src_pte = src_pte;
1004         orig_dst_pte = dst_pte;
1005         arch_enter_lazy_mmu_mode();
1006
1007         do {
1008                 /*
1009                  * We are holding two locks at this point - either of them
1010                  * could generate latencies in another task on another CPU.
1011                  */
1012                 if (progress >= 32) {
1013                         progress = 0;
1014                         if (need_resched() ||
1015                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1016                                 break;
1017                 }
1018                 if (pte_none(*src_pte)) {
1019                         progress++;
1020                         continue;
1021                 }
1022                 if (unlikely(!pte_present(*src_pte))) {
1023                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1024                                                   dst_pte, src_pte,
1025                                                   dst_vma, src_vma,
1026                                                   addr, rss);
1027                         if (ret == -EIO) {
1028                                 entry = pte_to_swp_entry(*src_pte);
1029                                 break;
1030                         } else if (ret == -EBUSY) {
1031                                 break;
1032                         } else if (!ret) {
1033                                 progress += 8;
1034                                 continue;
1035                         }
1036
1037                         /*
1038                          * Device exclusive entry restored, continue by copying
1039                          * the now present pte.
1040                          */
1041                         WARN_ON_ONCE(ret != -ENOENT);
1042                 }
1043                 /* copy_present_pte() will clear `*prealloc' if consumed */
1044                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1045                                        addr, rss, &prealloc);
1046                 /*
1047                  * If we need a pre-allocated page for this pte, drop the
1048                  * locks, allocate, and try again.
1049                  */
1050                 if (unlikely(ret == -EAGAIN))
1051                         break;
1052                 if (unlikely(prealloc)) {
1053                         /*
1054                          * pre-alloc page cannot be reused by next time so as
1055                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1056                          * will allocate page according to address).  This
1057                          * could only happen if one pinned pte changed.
1058                          */
1059                         put_page(prealloc);
1060                         prealloc = NULL;
1061                 }
1062                 progress += 8;
1063         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1064
1065         arch_leave_lazy_mmu_mode();
1066         spin_unlock(src_ptl);
1067         pte_unmap(orig_src_pte);
1068         add_mm_rss_vec(dst_mm, rss);
1069         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1070         cond_resched();
1071
1072         if (ret == -EIO) {
1073                 VM_WARN_ON_ONCE(!entry.val);
1074                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1075                         ret = -ENOMEM;
1076                         goto out;
1077                 }
1078                 entry.val = 0;
1079         } else if (ret == -EBUSY) {
1080                 goto out;
1081         } else if (ret ==  -EAGAIN) {
1082                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1083                 if (!prealloc)
1084                         return -ENOMEM;
1085         } else if (ret) {
1086                 VM_WARN_ON_ONCE(1);
1087         }
1088
1089         /* We've captured and resolved the error. Reset, try again. */
1090         ret = 0;
1091
1092         if (addr != end)
1093                 goto again;
1094 out:
1095         if (unlikely(prealloc))
1096                 put_page(prealloc);
1097         return ret;
1098 }
1099
1100 static inline int
1101 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1102                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1103                unsigned long end)
1104 {
1105         struct mm_struct *dst_mm = dst_vma->vm_mm;
1106         struct mm_struct *src_mm = src_vma->vm_mm;
1107         pmd_t *src_pmd, *dst_pmd;
1108         unsigned long next;
1109
1110         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1111         if (!dst_pmd)
1112                 return -ENOMEM;
1113         src_pmd = pmd_offset(src_pud, addr);
1114         do {
1115                 next = pmd_addr_end(addr, end);
1116                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1117                         || pmd_devmap(*src_pmd)) {
1118                         int err;
1119                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1120                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1121                                             addr, dst_vma, src_vma);
1122                         if (err == -ENOMEM)
1123                                 return -ENOMEM;
1124                         if (!err)
1125                                 continue;
1126                         /* fall through */
1127                 }
1128                 if (pmd_none_or_clear_bad(src_pmd))
1129                         continue;
1130                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1131                                    addr, next))
1132                         return -ENOMEM;
1133         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1134         return 0;
1135 }
1136
1137 static inline int
1138 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1140                unsigned long end)
1141 {
1142         struct mm_struct *dst_mm = dst_vma->vm_mm;
1143         struct mm_struct *src_mm = src_vma->vm_mm;
1144         pud_t *src_pud, *dst_pud;
1145         unsigned long next;
1146
1147         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1148         if (!dst_pud)
1149                 return -ENOMEM;
1150         src_pud = pud_offset(src_p4d, addr);
1151         do {
1152                 next = pud_addr_end(addr, end);
1153                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1154                         int err;
1155
1156                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1157                         err = copy_huge_pud(dst_mm, src_mm,
1158                                             dst_pud, src_pud, addr, src_vma);
1159                         if (err == -ENOMEM)
1160                                 return -ENOMEM;
1161                         if (!err)
1162                                 continue;
1163                         /* fall through */
1164                 }
1165                 if (pud_none_or_clear_bad(src_pud))
1166                         continue;
1167                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1168                                    addr, next))
1169                         return -ENOMEM;
1170         } while (dst_pud++, src_pud++, addr = next, addr != end);
1171         return 0;
1172 }
1173
1174 static inline int
1175 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1177                unsigned long end)
1178 {
1179         struct mm_struct *dst_mm = dst_vma->vm_mm;
1180         p4d_t *src_p4d, *dst_p4d;
1181         unsigned long next;
1182
1183         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1184         if (!dst_p4d)
1185                 return -ENOMEM;
1186         src_p4d = p4d_offset(src_pgd, addr);
1187         do {
1188                 next = p4d_addr_end(addr, end);
1189                 if (p4d_none_or_clear_bad(src_p4d))
1190                         continue;
1191                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1192                                    addr, next))
1193                         return -ENOMEM;
1194         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1195         return 0;
1196 }
1197
1198 /*
1199  * Return true if the vma needs to copy the pgtable during this fork().  Return
1200  * false when we can speed up fork() by allowing lazy page faults later until
1201  * when the child accesses the memory range.
1202  */
1203 static bool
1204 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1205 {
1206         /*
1207          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1208          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1209          * contains uffd-wp protection information, that's something we can't
1210          * retrieve from page cache, and skip copying will lose those info.
1211          */
1212         if (userfaultfd_wp(dst_vma))
1213                 return true;
1214
1215         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1216                 return true;
1217
1218         if (src_vma->anon_vma)
1219                 return true;
1220
1221         /*
1222          * Don't copy ptes where a page fault will fill them correctly.  Fork
1223          * becomes much lighter when there are big shared or private readonly
1224          * mappings. The tradeoff is that copy_page_range is more efficient
1225          * than faulting.
1226          */
1227         return false;
1228 }
1229
1230 int
1231 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1232 {
1233         pgd_t *src_pgd, *dst_pgd;
1234         unsigned long next;
1235         unsigned long addr = src_vma->vm_start;
1236         unsigned long end = src_vma->vm_end;
1237         struct mm_struct *dst_mm = dst_vma->vm_mm;
1238         struct mm_struct *src_mm = src_vma->vm_mm;
1239         struct mmu_notifier_range range;
1240         bool is_cow;
1241         int ret;
1242
1243         if (!vma_needs_copy(dst_vma, src_vma))
1244                 return 0;
1245
1246         if (is_vm_hugetlb_page(src_vma))
1247                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1248
1249         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1250                 /*
1251                  * We do not free on error cases below as remove_vma
1252                  * gets called on error from higher level routine
1253                  */
1254                 ret = track_pfn_copy(src_vma);
1255                 if (ret)
1256                         return ret;
1257         }
1258
1259         /*
1260          * We need to invalidate the secondary MMU mappings only when
1261          * there could be a permission downgrade on the ptes of the
1262          * parent mm. And a permission downgrade will only happen if
1263          * is_cow_mapping() returns true.
1264          */
1265         is_cow = is_cow_mapping(src_vma->vm_flags);
1266
1267         if (is_cow) {
1268                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1269                                         0, src_mm, addr, end);
1270                 mmu_notifier_invalidate_range_start(&range);
1271                 /*
1272                  * Disabling preemption is not needed for the write side, as
1273                  * the read side doesn't spin, but goes to the mmap_lock.
1274                  *
1275                  * Use the raw variant of the seqcount_t write API to avoid
1276                  * lockdep complaining about preemptibility.
1277                  */
1278                 mmap_assert_write_locked(src_mm);
1279                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1280         }
1281
1282         ret = 0;
1283         dst_pgd = pgd_offset(dst_mm, addr);
1284         src_pgd = pgd_offset(src_mm, addr);
1285         do {
1286                 next = pgd_addr_end(addr, end);
1287                 if (pgd_none_or_clear_bad(src_pgd))
1288                         continue;
1289                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1290                                             addr, next))) {
1291                         ret = -ENOMEM;
1292                         break;
1293                 }
1294         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1295
1296         if (is_cow) {
1297                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1298                 mmu_notifier_invalidate_range_end(&range);
1299         }
1300         return ret;
1301 }
1302
1303 /* Whether we should zap all COWed (private) pages too */
1304 static inline bool should_zap_cows(struct zap_details *details)
1305 {
1306         /* By default, zap all pages */
1307         if (!details)
1308                 return true;
1309
1310         /* Or, we zap COWed pages only if the caller wants to */
1311         return details->even_cows;
1312 }
1313
1314 /* Decides whether we should zap this page with the page pointer specified */
1315 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1316 {
1317         /* If we can make a decision without *page.. */
1318         if (should_zap_cows(details))
1319                 return true;
1320
1321         /* E.g. the caller passes NULL for the case of a zero page */
1322         if (!page)
1323                 return true;
1324
1325         /* Otherwise we should only zap non-anon pages */
1326         return !PageAnon(page);
1327 }
1328
1329 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1330 {
1331         if (!details)
1332                 return false;
1333
1334         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1335 }
1336
1337 /*
1338  * This function makes sure that we'll replace the none pte with an uffd-wp
1339  * swap special pte marker when necessary. Must be with the pgtable lock held.
1340  */
1341 static inline void
1342 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1343                               unsigned long addr, pte_t *pte,
1344                               struct zap_details *details, pte_t pteval)
1345 {
1346         if (zap_drop_file_uffd_wp(details))
1347                 return;
1348
1349         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1350 }
1351
1352 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1353                                 struct vm_area_struct *vma, pmd_t *pmd,
1354                                 unsigned long addr, unsigned long end,
1355                                 struct zap_details *details)
1356 {
1357         struct mm_struct *mm = tlb->mm;
1358         int force_flush = 0;
1359         int rss[NR_MM_COUNTERS];
1360         spinlock_t *ptl;
1361         pte_t *start_pte;
1362         pte_t *pte;
1363         swp_entry_t entry;
1364
1365         tlb_change_page_size(tlb, PAGE_SIZE);
1366 again:
1367         init_rss_vec(rss);
1368         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1369         pte = start_pte;
1370         flush_tlb_batched_pending(mm);
1371         arch_enter_lazy_mmu_mode();
1372         do {
1373                 pte_t ptent = *pte;
1374                 struct page *page;
1375
1376                 if (pte_none(ptent))
1377                         continue;
1378
1379                 if (need_resched())
1380                         break;
1381
1382                 if (pte_present(ptent)) {
1383                         unsigned int delay_rmap;
1384
1385                         page = vm_normal_page(vma, addr, ptent);
1386                         if (unlikely(!should_zap_page(details, page)))
1387                                 continue;
1388                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1389                                                         tlb->fullmm);
1390                         tlb_remove_tlb_entry(tlb, pte, addr);
1391                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1392                                                       ptent);
1393                         if (unlikely(!page))
1394                                 continue;
1395
1396                         delay_rmap = 0;
1397                         if (!PageAnon(page)) {
1398                                 if (pte_dirty(ptent)) {
1399                                         set_page_dirty(page);
1400                                         if (tlb_delay_rmap(tlb)) {
1401                                                 delay_rmap = 1;
1402                                                 force_flush = 1;
1403                                         }
1404                                 }
1405                                 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1406                                         mark_page_accessed(page);
1407                         }
1408                         rss[mm_counter(page)]--;
1409                         if (!delay_rmap) {
1410                                 page_remove_rmap(page, vma, false);
1411                                 if (unlikely(page_mapcount(page) < 0))
1412                                         print_bad_pte(vma, addr, ptent, page);
1413                         }
1414                         if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1415                                 force_flush = 1;
1416                                 addr += PAGE_SIZE;
1417                                 break;
1418                         }
1419                         continue;
1420                 }
1421
1422                 entry = pte_to_swp_entry(ptent);
1423                 if (is_device_private_entry(entry) ||
1424                     is_device_exclusive_entry(entry)) {
1425                         page = pfn_swap_entry_to_page(entry);
1426                         if (unlikely(!should_zap_page(details, page)))
1427                                 continue;
1428                         /*
1429                          * Both device private/exclusive mappings should only
1430                          * work with anonymous page so far, so we don't need to
1431                          * consider uffd-wp bit when zap. For more information,
1432                          * see zap_install_uffd_wp_if_needed().
1433                          */
1434                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1435                         rss[mm_counter(page)]--;
1436                         if (is_device_private_entry(entry))
1437                                 page_remove_rmap(page, vma, false);
1438                         put_page(page);
1439                 } else if (!non_swap_entry(entry)) {
1440                         /* Genuine swap entry, hence a private anon page */
1441                         if (!should_zap_cows(details))
1442                                 continue;
1443                         rss[MM_SWAPENTS]--;
1444                         if (unlikely(!free_swap_and_cache(entry)))
1445                                 print_bad_pte(vma, addr, ptent, NULL);
1446                 } else if (is_migration_entry(entry)) {
1447                         page = pfn_swap_entry_to_page(entry);
1448                         if (!should_zap_page(details, page))
1449                                 continue;
1450                         rss[mm_counter(page)]--;
1451                 } else if (pte_marker_entry_uffd_wp(entry)) {
1452                         /* Only drop the uffd-wp marker if explicitly requested */
1453                         if (!zap_drop_file_uffd_wp(details))
1454                                 continue;
1455                 } else if (is_hwpoison_entry(entry) ||
1456                            is_swapin_error_entry(entry)) {
1457                         if (!should_zap_cows(details))
1458                                 continue;
1459                 } else {
1460                         /* We should have covered all the swap entry types */
1461                         WARN_ON_ONCE(1);
1462                 }
1463                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1464                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1465         } while (pte++, addr += PAGE_SIZE, addr != end);
1466
1467         add_mm_rss_vec(mm, rss);
1468         arch_leave_lazy_mmu_mode();
1469
1470         /* Do the actual TLB flush before dropping ptl */
1471         if (force_flush) {
1472                 tlb_flush_mmu_tlbonly(tlb);
1473                 tlb_flush_rmaps(tlb, vma);
1474         }
1475         pte_unmap_unlock(start_pte, ptl);
1476
1477         /*
1478          * If we forced a TLB flush (either due to running out of
1479          * batch buffers or because we needed to flush dirty TLB
1480          * entries before releasing the ptl), free the batched
1481          * memory too. Restart if we didn't do everything.
1482          */
1483         if (force_flush) {
1484                 force_flush = 0;
1485                 tlb_flush_mmu(tlb);
1486         }
1487
1488         if (addr != end) {
1489                 cond_resched();
1490                 goto again;
1491         }
1492
1493         return addr;
1494 }
1495
1496 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1497                                 struct vm_area_struct *vma, pud_t *pud,
1498                                 unsigned long addr, unsigned long end,
1499                                 struct zap_details *details)
1500 {
1501         pmd_t *pmd;
1502         unsigned long next;
1503
1504         pmd = pmd_offset(pud, addr);
1505         do {
1506                 next = pmd_addr_end(addr, end);
1507                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1508                         if (next - addr != HPAGE_PMD_SIZE)
1509                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1510                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1511                                 goto next;
1512                         /* fall through */
1513                 } else if (details && details->single_folio &&
1514                            folio_test_pmd_mappable(details->single_folio) &&
1515                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1516                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1517                         /*
1518                          * Take and drop THP pmd lock so that we cannot return
1519                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1520                          * but not yet decremented compound_mapcount().
1521                          */
1522                         spin_unlock(ptl);
1523                 }
1524
1525                 /*
1526                  * Here there can be other concurrent MADV_DONTNEED or
1527                  * trans huge page faults running, and if the pmd is
1528                  * none or trans huge it can change under us. This is
1529                  * because MADV_DONTNEED holds the mmap_lock in read
1530                  * mode.
1531                  */
1532                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1533                         goto next;
1534                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1535 next:
1536                 cond_resched();
1537         } while (pmd++, addr = next, addr != end);
1538
1539         return addr;
1540 }
1541
1542 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1543                                 struct vm_area_struct *vma, p4d_t *p4d,
1544                                 unsigned long addr, unsigned long end,
1545                                 struct zap_details *details)
1546 {
1547         pud_t *pud;
1548         unsigned long next;
1549
1550         pud = pud_offset(p4d, addr);
1551         do {
1552                 next = pud_addr_end(addr, end);
1553                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1554                         if (next - addr != HPAGE_PUD_SIZE) {
1555                                 mmap_assert_locked(tlb->mm);
1556                                 split_huge_pud(vma, pud, addr);
1557                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1558                                 goto next;
1559                         /* fall through */
1560                 }
1561                 if (pud_none_or_clear_bad(pud))
1562                         continue;
1563                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1564 next:
1565                 cond_resched();
1566         } while (pud++, addr = next, addr != end);
1567
1568         return addr;
1569 }
1570
1571 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1572                                 struct vm_area_struct *vma, pgd_t *pgd,
1573                                 unsigned long addr, unsigned long end,
1574                                 struct zap_details *details)
1575 {
1576         p4d_t *p4d;
1577         unsigned long next;
1578
1579         p4d = p4d_offset(pgd, addr);
1580         do {
1581                 next = p4d_addr_end(addr, end);
1582                 if (p4d_none_or_clear_bad(p4d))
1583                         continue;
1584                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1585         } while (p4d++, addr = next, addr != end);
1586
1587         return addr;
1588 }
1589
1590 void unmap_page_range(struct mmu_gather *tlb,
1591                              struct vm_area_struct *vma,
1592                              unsigned long addr, unsigned long end,
1593                              struct zap_details *details)
1594 {
1595         pgd_t *pgd;
1596         unsigned long next;
1597
1598         BUG_ON(addr >= end);
1599         tlb_start_vma(tlb, vma);
1600         pgd = pgd_offset(vma->vm_mm, addr);
1601         do {
1602                 next = pgd_addr_end(addr, end);
1603                 if (pgd_none_or_clear_bad(pgd))
1604                         continue;
1605                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1606         } while (pgd++, addr = next, addr != end);
1607         tlb_end_vma(tlb, vma);
1608 }
1609
1610
1611 static void unmap_single_vma(struct mmu_gather *tlb,
1612                 struct vm_area_struct *vma, unsigned long start_addr,
1613                 unsigned long end_addr,
1614                 struct zap_details *details)
1615 {
1616         unsigned long start = max(vma->vm_start, start_addr);
1617         unsigned long end;
1618
1619         if (start >= vma->vm_end)
1620                 return;
1621         end = min(vma->vm_end, end_addr);
1622         if (end <= vma->vm_start)
1623                 return;
1624
1625         if (vma->vm_file)
1626                 uprobe_munmap(vma, start, end);
1627
1628         if (unlikely(vma->vm_flags & VM_PFNMAP))
1629                 untrack_pfn(vma, 0, 0);
1630
1631         if (start != end) {
1632                 if (unlikely(is_vm_hugetlb_page(vma))) {
1633                         /*
1634                          * It is undesirable to test vma->vm_file as it
1635                          * should be non-null for valid hugetlb area.
1636                          * However, vm_file will be NULL in the error
1637                          * cleanup path of mmap_region. When
1638                          * hugetlbfs ->mmap method fails,
1639                          * mmap_region() nullifies vma->vm_file
1640                          * before calling this function to clean up.
1641                          * Since no pte has actually been setup, it is
1642                          * safe to do nothing in this case.
1643                          */
1644                         if (vma->vm_file) {
1645                                 zap_flags_t zap_flags = details ?
1646                                     details->zap_flags : 0;
1647                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1648                                                              NULL, zap_flags);
1649                         }
1650                 } else
1651                         unmap_page_range(tlb, vma, start, end, details);
1652         }
1653 }
1654
1655 /**
1656  * unmap_vmas - unmap a range of memory covered by a list of vma's
1657  * @tlb: address of the caller's struct mmu_gather
1658  * @mt: the maple tree
1659  * @vma: the starting vma
1660  * @start_addr: virtual address at which to start unmapping
1661  * @end_addr: virtual address at which to end unmapping
1662  *
1663  * Unmap all pages in the vma list.
1664  *
1665  * Only addresses between `start' and `end' will be unmapped.
1666  *
1667  * The VMA list must be sorted in ascending virtual address order.
1668  *
1669  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1670  * range after unmap_vmas() returns.  So the only responsibility here is to
1671  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1672  * drops the lock and schedules.
1673  */
1674 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1675                 struct vm_area_struct *vma, unsigned long start_addr,
1676                 unsigned long end_addr)
1677 {
1678         struct mmu_notifier_range range;
1679         struct zap_details details = {
1680                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1681                 /* Careful - we need to zap private pages too! */
1682                 .even_cows = true,
1683         };
1684         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1685
1686         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1687                                 start_addr, end_addr);
1688         mmu_notifier_invalidate_range_start(&range);
1689         do {
1690                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1691         } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1692         mmu_notifier_invalidate_range_end(&range);
1693 }
1694
1695 /**
1696  * zap_page_range_single - remove user pages in a given range
1697  * @vma: vm_area_struct holding the applicable pages
1698  * @address: starting address of pages to zap
1699  * @size: number of bytes to zap
1700  * @details: details of shared cache invalidation
1701  *
1702  * The range must fit into one VMA.
1703  */
1704 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1705                 unsigned long size, struct zap_details *details)
1706 {
1707         const unsigned long end = address + size;
1708         struct mmu_notifier_range range;
1709         struct mmu_gather tlb;
1710
1711         lru_add_drain();
1712         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1713                                 address, end);
1714         if (is_vm_hugetlb_page(vma))
1715                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1716                                                      &range.end);
1717         tlb_gather_mmu(&tlb, vma->vm_mm);
1718         update_hiwater_rss(vma->vm_mm);
1719         mmu_notifier_invalidate_range_start(&range);
1720         /*
1721          * unmap 'address-end' not 'range.start-range.end' as range
1722          * could have been expanded for hugetlb pmd sharing.
1723          */
1724         unmap_single_vma(&tlb, vma, address, end, details);
1725         mmu_notifier_invalidate_range_end(&range);
1726         tlb_finish_mmu(&tlb);
1727 }
1728
1729 /**
1730  * zap_vma_ptes - remove ptes mapping the vma
1731  * @vma: vm_area_struct holding ptes to be zapped
1732  * @address: starting address of pages to zap
1733  * @size: number of bytes to zap
1734  *
1735  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1736  *
1737  * The entire address range must be fully contained within the vma.
1738  *
1739  */
1740 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1741                 unsigned long size)
1742 {
1743         if (!range_in_vma(vma, address, address + size) ||
1744                         !(vma->vm_flags & VM_PFNMAP))
1745                 return;
1746
1747         zap_page_range_single(vma, address, size, NULL);
1748 }
1749 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1750
1751 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1752 {
1753         pgd_t *pgd;
1754         p4d_t *p4d;
1755         pud_t *pud;
1756         pmd_t *pmd;
1757
1758         pgd = pgd_offset(mm, addr);
1759         p4d = p4d_alloc(mm, pgd, addr);
1760         if (!p4d)
1761                 return NULL;
1762         pud = pud_alloc(mm, p4d, addr);
1763         if (!pud)
1764                 return NULL;
1765         pmd = pmd_alloc(mm, pud, addr);
1766         if (!pmd)
1767                 return NULL;
1768
1769         VM_BUG_ON(pmd_trans_huge(*pmd));
1770         return pmd;
1771 }
1772
1773 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1774                         spinlock_t **ptl)
1775 {
1776         pmd_t *pmd = walk_to_pmd(mm, addr);
1777
1778         if (!pmd)
1779                 return NULL;
1780         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1781 }
1782
1783 static int validate_page_before_insert(struct page *page)
1784 {
1785         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1786                 return -EINVAL;
1787         flush_dcache_page(page);
1788         return 0;
1789 }
1790
1791 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1792                         unsigned long addr, struct page *page, pgprot_t prot)
1793 {
1794         if (!pte_none(*pte))
1795                 return -EBUSY;
1796         /* Ok, finally just insert the thing.. */
1797         get_page(page);
1798         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1799         page_add_file_rmap(page, vma, false);
1800         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1801         return 0;
1802 }
1803
1804 /*
1805  * This is the old fallback for page remapping.
1806  *
1807  * For historical reasons, it only allows reserved pages. Only
1808  * old drivers should use this, and they needed to mark their
1809  * pages reserved for the old functions anyway.
1810  */
1811 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1812                         struct page *page, pgprot_t prot)
1813 {
1814         int retval;
1815         pte_t *pte;
1816         spinlock_t *ptl;
1817
1818         retval = validate_page_before_insert(page);
1819         if (retval)
1820                 goto out;
1821         retval = -ENOMEM;
1822         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1823         if (!pte)
1824                 goto out;
1825         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1826         pte_unmap_unlock(pte, ptl);
1827 out:
1828         return retval;
1829 }
1830
1831 #ifdef pte_index
1832 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1833                         unsigned long addr, struct page *page, pgprot_t prot)
1834 {
1835         int err;
1836
1837         if (!page_count(page))
1838                 return -EINVAL;
1839         err = validate_page_before_insert(page);
1840         if (err)
1841                 return err;
1842         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1843 }
1844
1845 /* insert_pages() amortizes the cost of spinlock operations
1846  * when inserting pages in a loop. Arch *must* define pte_index.
1847  */
1848 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1849                         struct page **pages, unsigned long *num, pgprot_t prot)
1850 {
1851         pmd_t *pmd = NULL;
1852         pte_t *start_pte, *pte;
1853         spinlock_t *pte_lock;
1854         struct mm_struct *const mm = vma->vm_mm;
1855         unsigned long curr_page_idx = 0;
1856         unsigned long remaining_pages_total = *num;
1857         unsigned long pages_to_write_in_pmd;
1858         int ret;
1859 more:
1860         ret = -EFAULT;
1861         pmd = walk_to_pmd(mm, addr);
1862         if (!pmd)
1863                 goto out;
1864
1865         pages_to_write_in_pmd = min_t(unsigned long,
1866                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1867
1868         /* Allocate the PTE if necessary; takes PMD lock once only. */
1869         ret = -ENOMEM;
1870         if (pte_alloc(mm, pmd))
1871                 goto out;
1872
1873         while (pages_to_write_in_pmd) {
1874                 int pte_idx = 0;
1875                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1876
1877                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1878                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1879                         int err = insert_page_in_batch_locked(vma, pte,
1880                                 addr, pages[curr_page_idx], prot);
1881                         if (unlikely(err)) {
1882                                 pte_unmap_unlock(start_pte, pte_lock);
1883                                 ret = err;
1884                                 remaining_pages_total -= pte_idx;
1885                                 goto out;
1886                         }
1887                         addr += PAGE_SIZE;
1888                         ++curr_page_idx;
1889                 }
1890                 pte_unmap_unlock(start_pte, pte_lock);
1891                 pages_to_write_in_pmd -= batch_size;
1892                 remaining_pages_total -= batch_size;
1893         }
1894         if (remaining_pages_total)
1895                 goto more;
1896         ret = 0;
1897 out:
1898         *num = remaining_pages_total;
1899         return ret;
1900 }
1901 #endif  /* ifdef pte_index */
1902
1903 /**
1904  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1905  * @vma: user vma to map to
1906  * @addr: target start user address of these pages
1907  * @pages: source kernel pages
1908  * @num: in: number of pages to map. out: number of pages that were *not*
1909  * mapped. (0 means all pages were successfully mapped).
1910  *
1911  * Preferred over vm_insert_page() when inserting multiple pages.
1912  *
1913  * In case of error, we may have mapped a subset of the provided
1914  * pages. It is the caller's responsibility to account for this case.
1915  *
1916  * The same restrictions apply as in vm_insert_page().
1917  */
1918 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1919                         struct page **pages, unsigned long *num)
1920 {
1921 #ifdef pte_index
1922         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1923
1924         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1925                 return -EFAULT;
1926         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1927                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1928                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1929                 vma->vm_flags |= VM_MIXEDMAP;
1930         }
1931         /* Defer page refcount checking till we're about to map that page. */
1932         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1933 #else
1934         unsigned long idx = 0, pgcount = *num;
1935         int err = -EINVAL;
1936
1937         for (; idx < pgcount; ++idx) {
1938                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1939                 if (err)
1940                         break;
1941         }
1942         *num = pgcount - idx;
1943         return err;
1944 #endif  /* ifdef pte_index */
1945 }
1946 EXPORT_SYMBOL(vm_insert_pages);
1947
1948 /**
1949  * vm_insert_page - insert single page into user vma
1950  * @vma: user vma to map to
1951  * @addr: target user address of this page
1952  * @page: source kernel page
1953  *
1954  * This allows drivers to insert individual pages they've allocated
1955  * into a user vma.
1956  *
1957  * The page has to be a nice clean _individual_ kernel allocation.
1958  * If you allocate a compound page, you need to have marked it as
1959  * such (__GFP_COMP), or manually just split the page up yourself
1960  * (see split_page()).
1961  *
1962  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1963  * took an arbitrary page protection parameter. This doesn't allow
1964  * that. Your vma protection will have to be set up correctly, which
1965  * means that if you want a shared writable mapping, you'd better
1966  * ask for a shared writable mapping!
1967  *
1968  * The page does not need to be reserved.
1969  *
1970  * Usually this function is called from f_op->mmap() handler
1971  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1972  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1973  * function from other places, for example from page-fault handler.
1974  *
1975  * Return: %0 on success, negative error code otherwise.
1976  */
1977 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1978                         struct page *page)
1979 {
1980         if (addr < vma->vm_start || addr >= vma->vm_end)
1981                 return -EFAULT;
1982         if (!page_count(page))
1983                 return -EINVAL;
1984         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1985                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1986                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1987                 vma->vm_flags |= VM_MIXEDMAP;
1988         }
1989         return insert_page(vma, addr, page, vma->vm_page_prot);
1990 }
1991 EXPORT_SYMBOL(vm_insert_page);
1992
1993 /*
1994  * __vm_map_pages - maps range of kernel pages into user vma
1995  * @vma: user vma to map to
1996  * @pages: pointer to array of source kernel pages
1997  * @num: number of pages in page array
1998  * @offset: user's requested vm_pgoff
1999  *
2000  * This allows drivers to map range of kernel pages into a user vma.
2001  *
2002  * Return: 0 on success and error code otherwise.
2003  */
2004 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2005                                 unsigned long num, unsigned long offset)
2006 {
2007         unsigned long count = vma_pages(vma);
2008         unsigned long uaddr = vma->vm_start;
2009         int ret, i;
2010
2011         /* Fail if the user requested offset is beyond the end of the object */
2012         if (offset >= num)
2013                 return -ENXIO;
2014
2015         /* Fail if the user requested size exceeds available object size */
2016         if (count > num - offset)
2017                 return -ENXIO;
2018
2019         for (i = 0; i < count; i++) {
2020                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2021                 if (ret < 0)
2022                         return ret;
2023                 uaddr += PAGE_SIZE;
2024         }
2025
2026         return 0;
2027 }
2028
2029 /**
2030  * vm_map_pages - maps range of kernel pages starts with non zero offset
2031  * @vma: user vma to map to
2032  * @pages: pointer to array of source kernel pages
2033  * @num: number of pages in page array
2034  *
2035  * Maps an object consisting of @num pages, catering for the user's
2036  * requested vm_pgoff
2037  *
2038  * If we fail to insert any page into the vma, the function will return
2039  * immediately leaving any previously inserted pages present.  Callers
2040  * from the mmap handler may immediately return the error as their caller
2041  * will destroy the vma, removing any successfully inserted pages. Other
2042  * callers should make their own arrangements for calling unmap_region().
2043  *
2044  * Context: Process context. Called by mmap handlers.
2045  * Return: 0 on success and error code otherwise.
2046  */
2047 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2048                                 unsigned long num)
2049 {
2050         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2051 }
2052 EXPORT_SYMBOL(vm_map_pages);
2053
2054 /**
2055  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2056  * @vma: user vma to map to
2057  * @pages: pointer to array of source kernel pages
2058  * @num: number of pages in page array
2059  *
2060  * Similar to vm_map_pages(), except that it explicitly sets the offset
2061  * to 0. This function is intended for the drivers that did not consider
2062  * vm_pgoff.
2063  *
2064  * Context: Process context. Called by mmap handlers.
2065  * Return: 0 on success and error code otherwise.
2066  */
2067 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2068                                 unsigned long num)
2069 {
2070         return __vm_map_pages(vma, pages, num, 0);
2071 }
2072 EXPORT_SYMBOL(vm_map_pages_zero);
2073
2074 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2075                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2076 {
2077         struct mm_struct *mm = vma->vm_mm;
2078         pte_t *pte, entry;
2079         spinlock_t *ptl;
2080
2081         pte = get_locked_pte(mm, addr, &ptl);
2082         if (!pte)
2083                 return VM_FAULT_OOM;
2084         if (!pte_none(*pte)) {
2085                 if (mkwrite) {
2086                         /*
2087                          * For read faults on private mappings the PFN passed
2088                          * in may not match the PFN we have mapped if the
2089                          * mapped PFN is a writeable COW page.  In the mkwrite
2090                          * case we are creating a writable PTE for a shared
2091                          * mapping and we expect the PFNs to match. If they
2092                          * don't match, we are likely racing with block
2093                          * allocation and mapping invalidation so just skip the
2094                          * update.
2095                          */
2096                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2097                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2098                                 goto out_unlock;
2099                         }
2100                         entry = pte_mkyoung(*pte);
2101                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2102                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2103                                 update_mmu_cache(vma, addr, pte);
2104                 }
2105                 goto out_unlock;
2106         }
2107
2108         /* Ok, finally just insert the thing.. */
2109         if (pfn_t_devmap(pfn))
2110                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2111         else
2112                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2113
2114         if (mkwrite) {
2115                 entry = pte_mkyoung(entry);
2116                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2117         }
2118
2119         set_pte_at(mm, addr, pte, entry);
2120         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2121
2122 out_unlock:
2123         pte_unmap_unlock(pte, ptl);
2124         return VM_FAULT_NOPAGE;
2125 }
2126
2127 /**
2128  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2129  * @vma: user vma to map to
2130  * @addr: target user address of this page
2131  * @pfn: source kernel pfn
2132  * @pgprot: pgprot flags for the inserted page
2133  *
2134  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2135  * to override pgprot on a per-page basis.
2136  *
2137  * This only makes sense for IO mappings, and it makes no sense for
2138  * COW mappings.  In general, using multiple vmas is preferable;
2139  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2140  * impractical.
2141  *
2142  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2143  * a value of @pgprot different from that of @vma->vm_page_prot.
2144  *
2145  * Context: Process context.  May allocate using %GFP_KERNEL.
2146  * Return: vm_fault_t value.
2147  */
2148 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2149                         unsigned long pfn, pgprot_t pgprot)
2150 {
2151         /*
2152          * Technically, architectures with pte_special can avoid all these
2153          * restrictions (same for remap_pfn_range).  However we would like
2154          * consistency in testing and feature parity among all, so we should
2155          * try to keep these invariants in place for everybody.
2156          */
2157         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2158         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2159                                                 (VM_PFNMAP|VM_MIXEDMAP));
2160         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2161         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2162
2163         if (addr < vma->vm_start || addr >= vma->vm_end)
2164                 return VM_FAULT_SIGBUS;
2165
2166         if (!pfn_modify_allowed(pfn, pgprot))
2167                 return VM_FAULT_SIGBUS;
2168
2169         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2170
2171         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2172                         false);
2173 }
2174 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2175
2176 /**
2177  * vmf_insert_pfn - insert single pfn into user vma
2178  * @vma: user vma to map to
2179  * @addr: target user address of this page
2180  * @pfn: source kernel pfn
2181  *
2182  * Similar to vm_insert_page, this allows drivers to insert individual pages
2183  * they've allocated into a user vma. Same comments apply.
2184  *
2185  * This function should only be called from a vm_ops->fault handler, and
2186  * in that case the handler should return the result of this function.
2187  *
2188  * vma cannot be a COW mapping.
2189  *
2190  * As this is called only for pages that do not currently exist, we
2191  * do not need to flush old virtual caches or the TLB.
2192  *
2193  * Context: Process context.  May allocate using %GFP_KERNEL.
2194  * Return: vm_fault_t value.
2195  */
2196 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2197                         unsigned long pfn)
2198 {
2199         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2200 }
2201 EXPORT_SYMBOL(vmf_insert_pfn);
2202
2203 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2204 {
2205         /* these checks mirror the abort conditions in vm_normal_page */
2206         if (vma->vm_flags & VM_MIXEDMAP)
2207                 return true;
2208         if (pfn_t_devmap(pfn))
2209                 return true;
2210         if (pfn_t_special(pfn))
2211                 return true;
2212         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2213                 return true;
2214         return false;
2215 }
2216
2217 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2218                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2219                 bool mkwrite)
2220 {
2221         int err;
2222
2223         BUG_ON(!vm_mixed_ok(vma, pfn));
2224
2225         if (addr < vma->vm_start || addr >= vma->vm_end)
2226                 return VM_FAULT_SIGBUS;
2227
2228         track_pfn_insert(vma, &pgprot, pfn);
2229
2230         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2231                 return VM_FAULT_SIGBUS;
2232
2233         /*
2234          * If we don't have pte special, then we have to use the pfn_valid()
2235          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2236          * refcount the page if pfn_valid is true (hence insert_page rather
2237          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2238          * without pte special, it would there be refcounted as a normal page.
2239          */
2240         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2241             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2242                 struct page *page;
2243
2244                 /*
2245                  * At this point we are committed to insert_page()
2246                  * regardless of whether the caller specified flags that
2247                  * result in pfn_t_has_page() == false.
2248                  */
2249                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2250                 err = insert_page(vma, addr, page, pgprot);
2251         } else {
2252                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2253         }
2254
2255         if (err == -ENOMEM)
2256                 return VM_FAULT_OOM;
2257         if (err < 0 && err != -EBUSY)
2258                 return VM_FAULT_SIGBUS;
2259
2260         return VM_FAULT_NOPAGE;
2261 }
2262
2263 /**
2264  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2265  * @vma: user vma to map to
2266  * @addr: target user address of this page
2267  * @pfn: source kernel pfn
2268  * @pgprot: pgprot flags for the inserted page
2269  *
2270  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2271  * to override pgprot on a per-page basis.
2272  *
2273  * Typically this function should be used by drivers to set caching- and
2274  * encryption bits different than those of @vma->vm_page_prot, because
2275  * the caching- or encryption mode may not be known at mmap() time.
2276  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2277  * to set caching and encryption bits for those vmas (except for COW pages).
2278  * This is ensured by core vm only modifying these page table entries using
2279  * functions that don't touch caching- or encryption bits, using pte_modify()
2280  * if needed. (See for example mprotect()).
2281  * Also when new page-table entries are created, this is only done using the
2282  * fault() callback, and never using the value of vma->vm_page_prot,
2283  * except for page-table entries that point to anonymous pages as the result
2284  * of COW.
2285  *
2286  * Context: Process context.  May allocate using %GFP_KERNEL.
2287  * Return: vm_fault_t value.
2288  */
2289 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2290                                  pfn_t pfn, pgprot_t pgprot)
2291 {
2292         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2293 }
2294 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2295
2296 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2297                 pfn_t pfn)
2298 {
2299         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2300 }
2301 EXPORT_SYMBOL(vmf_insert_mixed);
2302
2303 /*
2304  *  If the insertion of PTE failed because someone else already added a
2305  *  different entry in the mean time, we treat that as success as we assume
2306  *  the same entry was actually inserted.
2307  */
2308 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2309                 unsigned long addr, pfn_t pfn)
2310 {
2311         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2312 }
2313 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2314
2315 /*
2316  * maps a range of physical memory into the requested pages. the old
2317  * mappings are removed. any references to nonexistent pages results
2318  * in null mappings (currently treated as "copy-on-access")
2319  */
2320 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2321                         unsigned long addr, unsigned long end,
2322                         unsigned long pfn, pgprot_t prot)
2323 {
2324         pte_t *pte, *mapped_pte;
2325         spinlock_t *ptl;
2326         int err = 0;
2327
2328         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2329         if (!pte)
2330                 return -ENOMEM;
2331         arch_enter_lazy_mmu_mode();
2332         do {
2333                 BUG_ON(!pte_none(*pte));
2334                 if (!pfn_modify_allowed(pfn, prot)) {
2335                         err = -EACCES;
2336                         break;
2337                 }
2338                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2339                 pfn++;
2340         } while (pte++, addr += PAGE_SIZE, addr != end);
2341         arch_leave_lazy_mmu_mode();
2342         pte_unmap_unlock(mapped_pte, ptl);
2343         return err;
2344 }
2345
2346 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2347                         unsigned long addr, unsigned long end,
2348                         unsigned long pfn, pgprot_t prot)
2349 {
2350         pmd_t *pmd;
2351         unsigned long next;
2352         int err;
2353
2354         pfn -= addr >> PAGE_SHIFT;
2355         pmd = pmd_alloc(mm, pud, addr);
2356         if (!pmd)
2357                 return -ENOMEM;
2358         VM_BUG_ON(pmd_trans_huge(*pmd));
2359         do {
2360                 next = pmd_addr_end(addr, end);
2361                 err = remap_pte_range(mm, pmd, addr, next,
2362                                 pfn + (addr >> PAGE_SHIFT), prot);
2363                 if (err)
2364                         return err;
2365         } while (pmd++, addr = next, addr != end);
2366         return 0;
2367 }
2368
2369 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2370                         unsigned long addr, unsigned long end,
2371                         unsigned long pfn, pgprot_t prot)
2372 {
2373         pud_t *pud;
2374         unsigned long next;
2375         int err;
2376
2377         pfn -= addr >> PAGE_SHIFT;
2378         pud = pud_alloc(mm, p4d, addr);
2379         if (!pud)
2380                 return -ENOMEM;
2381         do {
2382                 next = pud_addr_end(addr, end);
2383                 err = remap_pmd_range(mm, pud, addr, next,
2384                                 pfn + (addr >> PAGE_SHIFT), prot);
2385                 if (err)
2386                         return err;
2387         } while (pud++, addr = next, addr != end);
2388         return 0;
2389 }
2390
2391 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2392                         unsigned long addr, unsigned long end,
2393                         unsigned long pfn, pgprot_t prot)
2394 {
2395         p4d_t *p4d;
2396         unsigned long next;
2397         int err;
2398
2399         pfn -= addr >> PAGE_SHIFT;
2400         p4d = p4d_alloc(mm, pgd, addr);
2401         if (!p4d)
2402                 return -ENOMEM;
2403         do {
2404                 next = p4d_addr_end(addr, end);
2405                 err = remap_pud_range(mm, p4d, addr, next,
2406                                 pfn + (addr >> PAGE_SHIFT), prot);
2407                 if (err)
2408                         return err;
2409         } while (p4d++, addr = next, addr != end);
2410         return 0;
2411 }
2412
2413 /*
2414  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2415  * must have pre-validated the caching bits of the pgprot_t.
2416  */
2417 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2418                 unsigned long pfn, unsigned long size, pgprot_t prot)
2419 {
2420         pgd_t *pgd;
2421         unsigned long next;
2422         unsigned long end = addr + PAGE_ALIGN(size);
2423         struct mm_struct *mm = vma->vm_mm;
2424         int err;
2425
2426         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2427                 return -EINVAL;
2428
2429         /*
2430          * Physically remapped pages are special. Tell the
2431          * rest of the world about it:
2432          *   VM_IO tells people not to look at these pages
2433          *      (accesses can have side effects).
2434          *   VM_PFNMAP tells the core MM that the base pages are just
2435          *      raw PFN mappings, and do not have a "struct page" associated
2436          *      with them.
2437          *   VM_DONTEXPAND
2438          *      Disable vma merging and expanding with mremap().
2439          *   VM_DONTDUMP
2440          *      Omit vma from core dump, even when VM_IO turned off.
2441          *
2442          * There's a horrible special case to handle copy-on-write
2443          * behaviour that some programs depend on. We mark the "original"
2444          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2445          * See vm_normal_page() for details.
2446          */
2447         if (is_cow_mapping(vma->vm_flags)) {
2448                 if (addr != vma->vm_start || end != vma->vm_end)
2449                         return -EINVAL;
2450                 vma->vm_pgoff = pfn;
2451         }
2452
2453         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2454
2455         BUG_ON(addr >= end);
2456         pfn -= addr >> PAGE_SHIFT;
2457         pgd = pgd_offset(mm, addr);
2458         flush_cache_range(vma, addr, end);
2459         do {
2460                 next = pgd_addr_end(addr, end);
2461                 err = remap_p4d_range(mm, pgd, addr, next,
2462                                 pfn + (addr >> PAGE_SHIFT), prot);
2463                 if (err)
2464                         return err;
2465         } while (pgd++, addr = next, addr != end);
2466
2467         return 0;
2468 }
2469
2470 /**
2471  * remap_pfn_range - remap kernel memory to userspace
2472  * @vma: user vma to map to
2473  * @addr: target page aligned user address to start at
2474  * @pfn: page frame number of kernel physical memory address
2475  * @size: size of mapping area
2476  * @prot: page protection flags for this mapping
2477  *
2478  * Note: this is only safe if the mm semaphore is held when called.
2479  *
2480  * Return: %0 on success, negative error code otherwise.
2481  */
2482 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2483                     unsigned long pfn, unsigned long size, pgprot_t prot)
2484 {
2485         int err;
2486
2487         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2488         if (err)
2489                 return -EINVAL;
2490
2491         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2492         if (err)
2493                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2494         return err;
2495 }
2496 EXPORT_SYMBOL(remap_pfn_range);
2497
2498 /**
2499  * vm_iomap_memory - remap memory to userspace
2500  * @vma: user vma to map to
2501  * @start: start of the physical memory to be mapped
2502  * @len: size of area
2503  *
2504  * This is a simplified io_remap_pfn_range() for common driver use. The
2505  * driver just needs to give us the physical memory range to be mapped,
2506  * we'll figure out the rest from the vma information.
2507  *
2508  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2509  * whatever write-combining details or similar.
2510  *
2511  * Return: %0 on success, negative error code otherwise.
2512  */
2513 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2514 {
2515         unsigned long vm_len, pfn, pages;
2516
2517         /* Check that the physical memory area passed in looks valid */
2518         if (start + len < start)
2519                 return -EINVAL;
2520         /*
2521          * You *really* shouldn't map things that aren't page-aligned,
2522          * but we've historically allowed it because IO memory might
2523          * just have smaller alignment.
2524          */
2525         len += start & ~PAGE_MASK;
2526         pfn = start >> PAGE_SHIFT;
2527         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2528         if (pfn + pages < pfn)
2529                 return -EINVAL;
2530
2531         /* We start the mapping 'vm_pgoff' pages into the area */
2532         if (vma->vm_pgoff > pages)
2533                 return -EINVAL;
2534         pfn += vma->vm_pgoff;
2535         pages -= vma->vm_pgoff;
2536
2537         /* Can we fit all of the mapping? */
2538         vm_len = vma->vm_end - vma->vm_start;
2539         if (vm_len >> PAGE_SHIFT > pages)
2540                 return -EINVAL;
2541
2542         /* Ok, let it rip */
2543         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2544 }
2545 EXPORT_SYMBOL(vm_iomap_memory);
2546
2547 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2548                                      unsigned long addr, unsigned long end,
2549                                      pte_fn_t fn, void *data, bool create,
2550                                      pgtbl_mod_mask *mask)
2551 {
2552         pte_t *pte, *mapped_pte;
2553         int err = 0;
2554         spinlock_t *ptl;
2555
2556         if (create) {
2557                 mapped_pte = pte = (mm == &init_mm) ?
2558                         pte_alloc_kernel_track(pmd, addr, mask) :
2559                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2560                 if (!pte)
2561                         return -ENOMEM;
2562         } else {
2563                 mapped_pte = pte = (mm == &init_mm) ?
2564                         pte_offset_kernel(pmd, addr) :
2565                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2566         }
2567
2568         BUG_ON(pmd_huge(*pmd));
2569
2570         arch_enter_lazy_mmu_mode();
2571
2572         if (fn) {
2573                 do {
2574                         if (create || !pte_none(*pte)) {
2575                                 err = fn(pte++, addr, data);
2576                                 if (err)
2577                                         break;
2578                         }
2579                 } while (addr += PAGE_SIZE, addr != end);
2580         }
2581         *mask |= PGTBL_PTE_MODIFIED;
2582
2583         arch_leave_lazy_mmu_mode();
2584
2585         if (mm != &init_mm)
2586                 pte_unmap_unlock(mapped_pte, ptl);
2587         return err;
2588 }
2589
2590 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2591                                      unsigned long addr, unsigned long end,
2592                                      pte_fn_t fn, void *data, bool create,
2593                                      pgtbl_mod_mask *mask)
2594 {
2595         pmd_t *pmd;
2596         unsigned long next;
2597         int err = 0;
2598
2599         BUG_ON(pud_huge(*pud));
2600
2601         if (create) {
2602                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2603                 if (!pmd)
2604                         return -ENOMEM;
2605         } else {
2606                 pmd = pmd_offset(pud, addr);
2607         }
2608         do {
2609                 next = pmd_addr_end(addr, end);
2610                 if (pmd_none(*pmd) && !create)
2611                         continue;
2612                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2613                         return -EINVAL;
2614                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2615                         if (!create)
2616                                 continue;
2617                         pmd_clear_bad(pmd);
2618                 }
2619                 err = apply_to_pte_range(mm, pmd, addr, next,
2620                                          fn, data, create, mask);
2621                 if (err)
2622                         break;
2623         } while (pmd++, addr = next, addr != end);
2624
2625         return err;
2626 }
2627
2628 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2629                                      unsigned long addr, unsigned long end,
2630                                      pte_fn_t fn, void *data, bool create,
2631                                      pgtbl_mod_mask *mask)
2632 {
2633         pud_t *pud;
2634         unsigned long next;
2635         int err = 0;
2636
2637         if (create) {
2638                 pud = pud_alloc_track(mm, p4d, addr, mask);
2639                 if (!pud)
2640                         return -ENOMEM;
2641         } else {
2642                 pud = pud_offset(p4d, addr);
2643         }
2644         do {
2645                 next = pud_addr_end(addr, end);
2646                 if (pud_none(*pud) && !create)
2647                         continue;
2648                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2649                         return -EINVAL;
2650                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2651                         if (!create)
2652                                 continue;
2653                         pud_clear_bad(pud);
2654                 }
2655                 err = apply_to_pmd_range(mm, pud, addr, next,
2656                                          fn, data, create, mask);
2657                 if (err)
2658                         break;
2659         } while (pud++, addr = next, addr != end);
2660
2661         return err;
2662 }
2663
2664 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2665                                      unsigned long addr, unsigned long end,
2666                                      pte_fn_t fn, void *data, bool create,
2667                                      pgtbl_mod_mask *mask)
2668 {
2669         p4d_t *p4d;
2670         unsigned long next;
2671         int err = 0;
2672
2673         if (create) {
2674                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2675                 if (!p4d)
2676                         return -ENOMEM;
2677         } else {
2678                 p4d = p4d_offset(pgd, addr);
2679         }
2680         do {
2681                 next = p4d_addr_end(addr, end);
2682                 if (p4d_none(*p4d) && !create)
2683                         continue;
2684                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2685                         return -EINVAL;
2686                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2687                         if (!create)
2688                                 continue;
2689                         p4d_clear_bad(p4d);
2690                 }
2691                 err = apply_to_pud_range(mm, p4d, addr, next,
2692                                          fn, data, create, mask);
2693                 if (err)
2694                         break;
2695         } while (p4d++, addr = next, addr != end);
2696
2697         return err;
2698 }
2699
2700 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2701                                  unsigned long size, pte_fn_t fn,
2702                                  void *data, bool create)
2703 {
2704         pgd_t *pgd;
2705         unsigned long start = addr, next;
2706         unsigned long end = addr + size;
2707         pgtbl_mod_mask mask = 0;
2708         int err = 0;
2709
2710         if (WARN_ON(addr >= end))
2711                 return -EINVAL;
2712
2713         pgd = pgd_offset(mm, addr);
2714         do {
2715                 next = pgd_addr_end(addr, end);
2716                 if (pgd_none(*pgd) && !create)
2717                         continue;
2718                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2719                         return -EINVAL;
2720                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2721                         if (!create)
2722                                 continue;
2723                         pgd_clear_bad(pgd);
2724                 }
2725                 err = apply_to_p4d_range(mm, pgd, addr, next,
2726                                          fn, data, create, &mask);
2727                 if (err)
2728                         break;
2729         } while (pgd++, addr = next, addr != end);
2730
2731         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2732                 arch_sync_kernel_mappings(start, start + size);
2733
2734         return err;
2735 }
2736
2737 /*
2738  * Scan a region of virtual memory, filling in page tables as necessary
2739  * and calling a provided function on each leaf page table.
2740  */
2741 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2742                         unsigned long size, pte_fn_t fn, void *data)
2743 {
2744         return __apply_to_page_range(mm, addr, size, fn, data, true);
2745 }
2746 EXPORT_SYMBOL_GPL(apply_to_page_range);
2747
2748 /*
2749  * Scan a region of virtual memory, calling a provided function on
2750  * each leaf page table where it exists.
2751  *
2752  * Unlike apply_to_page_range, this does _not_ fill in page tables
2753  * where they are absent.
2754  */
2755 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2756                                  unsigned long size, pte_fn_t fn, void *data)
2757 {
2758         return __apply_to_page_range(mm, addr, size, fn, data, false);
2759 }
2760 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2761
2762 /*
2763  * handle_pte_fault chooses page fault handler according to an entry which was
2764  * read non-atomically.  Before making any commitment, on those architectures
2765  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2766  * parts, do_swap_page must check under lock before unmapping the pte and
2767  * proceeding (but do_wp_page is only called after already making such a check;
2768  * and do_anonymous_page can safely check later on).
2769  */
2770 static inline int pte_unmap_same(struct vm_fault *vmf)
2771 {
2772         int same = 1;
2773 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2774         if (sizeof(pte_t) > sizeof(unsigned long)) {
2775                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2776                 spin_lock(ptl);
2777                 same = pte_same(*vmf->pte, vmf->orig_pte);
2778                 spin_unlock(ptl);
2779         }
2780 #endif
2781         pte_unmap(vmf->pte);
2782         vmf->pte = NULL;
2783         return same;
2784 }
2785
2786 /*
2787  * Return:
2788  *      0:              copied succeeded
2789  *      -EHWPOISON:     copy failed due to hwpoison in source page
2790  *      -EAGAIN:        copied failed (some other reason)
2791  */
2792 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2793                                       struct vm_fault *vmf)
2794 {
2795         int ret;
2796         void *kaddr;
2797         void __user *uaddr;
2798         bool locked = false;
2799         struct vm_area_struct *vma = vmf->vma;
2800         struct mm_struct *mm = vma->vm_mm;
2801         unsigned long addr = vmf->address;
2802
2803         if (likely(src)) {
2804                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2805                         memory_failure_queue(page_to_pfn(src), 0);
2806                         return -EHWPOISON;
2807                 }
2808                 return 0;
2809         }
2810
2811         /*
2812          * If the source page was a PFN mapping, we don't have
2813          * a "struct page" for it. We do a best-effort copy by
2814          * just copying from the original user address. If that
2815          * fails, we just zero-fill it. Live with it.
2816          */
2817         kaddr = kmap_atomic(dst);
2818         uaddr = (void __user *)(addr & PAGE_MASK);
2819
2820         /*
2821          * On architectures with software "accessed" bits, we would
2822          * take a double page fault, so mark it accessed here.
2823          */
2824         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2825                 pte_t entry;
2826
2827                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2828                 locked = true;
2829                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2830                         /*
2831                          * Other thread has already handled the fault
2832                          * and update local tlb only
2833                          */
2834                         update_mmu_tlb(vma, addr, vmf->pte);
2835                         ret = -EAGAIN;
2836                         goto pte_unlock;
2837                 }
2838
2839                 entry = pte_mkyoung(vmf->orig_pte);
2840                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2841                         update_mmu_cache(vma, addr, vmf->pte);
2842         }
2843
2844         /*
2845          * This really shouldn't fail, because the page is there
2846          * in the page tables. But it might just be unreadable,
2847          * in which case we just give up and fill the result with
2848          * zeroes.
2849          */
2850         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2851                 if (locked)
2852                         goto warn;
2853
2854                 /* Re-validate under PTL if the page is still mapped */
2855                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2856                 locked = true;
2857                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2858                         /* The PTE changed under us, update local tlb */
2859                         update_mmu_tlb(vma, addr, vmf->pte);
2860                         ret = -EAGAIN;
2861                         goto pte_unlock;
2862                 }
2863
2864                 /*
2865                  * The same page can be mapped back since last copy attempt.
2866                  * Try to copy again under PTL.
2867                  */
2868                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2869                         /*
2870                          * Give a warn in case there can be some obscure
2871                          * use-case
2872                          */
2873 warn:
2874                         WARN_ON_ONCE(1);
2875                         clear_page(kaddr);
2876                 }
2877         }
2878
2879         ret = 0;
2880
2881 pte_unlock:
2882         if (locked)
2883                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2884         kunmap_atomic(kaddr);
2885         flush_dcache_page(dst);
2886
2887         return ret;
2888 }
2889
2890 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2891 {
2892         struct file *vm_file = vma->vm_file;
2893
2894         if (vm_file)
2895                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2896
2897         /*
2898          * Special mappings (e.g. VDSO) do not have any file so fake
2899          * a default GFP_KERNEL for them.
2900          */
2901         return GFP_KERNEL;
2902 }
2903
2904 /*
2905  * Notify the address space that the page is about to become writable so that
2906  * it can prohibit this or wait for the page to get into an appropriate state.
2907  *
2908  * We do this without the lock held, so that it can sleep if it needs to.
2909  */
2910 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2911 {
2912         vm_fault_t ret;
2913         struct page *page = vmf->page;
2914         unsigned int old_flags = vmf->flags;
2915
2916         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2917
2918         if (vmf->vma->vm_file &&
2919             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2920                 return VM_FAULT_SIGBUS;
2921
2922         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2923         /* Restore original flags so that caller is not surprised */
2924         vmf->flags = old_flags;
2925         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2926                 return ret;
2927         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2928                 lock_page(page);
2929                 if (!page->mapping) {
2930                         unlock_page(page);
2931                         return 0; /* retry */
2932                 }
2933                 ret |= VM_FAULT_LOCKED;
2934         } else
2935                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2936         return ret;
2937 }
2938
2939 /*
2940  * Handle dirtying of a page in shared file mapping on a write fault.
2941  *
2942  * The function expects the page to be locked and unlocks it.
2943  */
2944 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2945 {
2946         struct vm_area_struct *vma = vmf->vma;
2947         struct address_space *mapping;
2948         struct page *page = vmf->page;
2949         bool dirtied;
2950         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2951
2952         dirtied = set_page_dirty(page);
2953         VM_BUG_ON_PAGE(PageAnon(page), page);
2954         /*
2955          * Take a local copy of the address_space - page.mapping may be zeroed
2956          * by truncate after unlock_page().   The address_space itself remains
2957          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2958          * release semantics to prevent the compiler from undoing this copying.
2959          */
2960         mapping = page_rmapping(page);
2961         unlock_page(page);
2962
2963         if (!page_mkwrite)
2964                 file_update_time(vma->vm_file);
2965
2966         /*
2967          * Throttle page dirtying rate down to writeback speed.
2968          *
2969          * mapping may be NULL here because some device drivers do not
2970          * set page.mapping but still dirty their pages
2971          *
2972          * Drop the mmap_lock before waiting on IO, if we can. The file
2973          * is pinning the mapping, as per above.
2974          */
2975         if ((dirtied || page_mkwrite) && mapping) {
2976                 struct file *fpin;
2977
2978                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2979                 balance_dirty_pages_ratelimited(mapping);
2980                 if (fpin) {
2981                         fput(fpin);
2982                         return VM_FAULT_COMPLETED;
2983                 }
2984         }
2985
2986         return 0;
2987 }
2988
2989 /*
2990  * Handle write page faults for pages that can be reused in the current vma
2991  *
2992  * This can happen either due to the mapping being with the VM_SHARED flag,
2993  * or due to us being the last reference standing to the page. In either
2994  * case, all we need to do here is to mark the page as writable and update
2995  * any related book-keeping.
2996  */
2997 static inline void wp_page_reuse(struct vm_fault *vmf)
2998         __releases(vmf->ptl)
2999 {
3000         struct vm_area_struct *vma = vmf->vma;
3001         struct page *page = vmf->page;
3002         pte_t entry;
3003
3004         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3005         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3006
3007         /*
3008          * Clear the pages cpupid information as the existing
3009          * information potentially belongs to a now completely
3010          * unrelated process.
3011          */
3012         if (page)
3013                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3014
3015         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3016         entry = pte_mkyoung(vmf->orig_pte);
3017         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3018         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3019                 update_mmu_cache(vma, vmf->address, vmf->pte);
3020         pte_unmap_unlock(vmf->pte, vmf->ptl);
3021         count_vm_event(PGREUSE);
3022 }
3023
3024 /*
3025  * Handle the case of a page which we actually need to copy to a new page,
3026  * either due to COW or unsharing.
3027  *
3028  * Called with mmap_lock locked and the old page referenced, but
3029  * without the ptl held.
3030  *
3031  * High level logic flow:
3032  *
3033  * - Allocate a page, copy the content of the old page to the new one.
3034  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3035  * - Take the PTL. If the pte changed, bail out and release the allocated page
3036  * - If the pte is still the way we remember it, update the page table and all
3037  *   relevant references. This includes dropping the reference the page-table
3038  *   held to the old page, as well as updating the rmap.
3039  * - In any case, unlock the PTL and drop the reference we took to the old page.
3040  */
3041 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3042 {
3043         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3044         struct vm_area_struct *vma = vmf->vma;
3045         struct mm_struct *mm = vma->vm_mm;
3046         struct page *old_page = vmf->page;
3047         struct page *new_page = NULL;
3048         pte_t entry;
3049         int page_copied = 0;
3050         struct mmu_notifier_range range;
3051         int ret;
3052
3053         delayacct_wpcopy_start();
3054
3055         if (unlikely(anon_vma_prepare(vma)))
3056                 goto oom;
3057
3058         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3059                 new_page = alloc_zeroed_user_highpage_movable(vma,
3060                                                               vmf->address);
3061                 if (!new_page)
3062                         goto oom;
3063         } else {
3064                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3065                                 vmf->address);
3066                 if (!new_page)
3067                         goto oom;
3068
3069                 ret = __wp_page_copy_user(new_page, old_page, vmf);
3070                 if (ret) {
3071                         /*
3072                          * COW failed, if the fault was solved by other,
3073                          * it's fine. If not, userspace would re-fault on
3074                          * the same address and we will handle the fault
3075                          * from the second attempt.
3076                          * The -EHWPOISON case will not be retried.
3077                          */
3078                         put_page(new_page);
3079                         if (old_page)
3080                                 put_page(old_page);
3081
3082                         delayacct_wpcopy_end();
3083                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3084                 }
3085                 kmsan_copy_page_meta(new_page, old_page);
3086         }
3087
3088         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3089                 goto oom_free_new;
3090         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3091
3092         __SetPageUptodate(new_page);
3093
3094         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3095                                 vmf->address & PAGE_MASK,
3096                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3097         mmu_notifier_invalidate_range_start(&range);
3098
3099         /*
3100          * Re-check the pte - we dropped the lock
3101          */
3102         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3103         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3104                 if (old_page) {
3105                         if (!PageAnon(old_page)) {
3106                                 dec_mm_counter(mm, mm_counter_file(old_page));
3107                                 inc_mm_counter(mm, MM_ANONPAGES);
3108                         }
3109                 } else {
3110                         inc_mm_counter(mm, MM_ANONPAGES);
3111                 }
3112                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3113                 entry = mk_pte(new_page, vma->vm_page_prot);
3114                 entry = pte_sw_mkyoung(entry);
3115                 if (unlikely(unshare)) {
3116                         if (pte_soft_dirty(vmf->orig_pte))
3117                                 entry = pte_mksoft_dirty(entry);
3118                         if (pte_uffd_wp(vmf->orig_pte))
3119                                 entry = pte_mkuffd_wp(entry);
3120                 } else {
3121                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3122                 }
3123
3124                 /*
3125                  * Clear the pte entry and flush it first, before updating the
3126                  * pte with the new entry, to keep TLBs on different CPUs in
3127                  * sync. This code used to set the new PTE then flush TLBs, but
3128                  * that left a window where the new PTE could be loaded into
3129                  * some TLBs while the old PTE remains in others.
3130                  */
3131                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3132                 page_add_new_anon_rmap(new_page, vma, vmf->address);
3133                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3134                 /*
3135                  * We call the notify macro here because, when using secondary
3136                  * mmu page tables (such as kvm shadow page tables), we want the
3137                  * new page to be mapped directly into the secondary page table.
3138                  */
3139                 BUG_ON(unshare && pte_write(entry));
3140                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3141                 update_mmu_cache(vma, vmf->address, vmf->pte);
3142                 if (old_page) {
3143                         /*
3144                          * Only after switching the pte to the new page may
3145                          * we remove the mapcount here. Otherwise another
3146                          * process may come and find the rmap count decremented
3147                          * before the pte is switched to the new page, and
3148                          * "reuse" the old page writing into it while our pte
3149                          * here still points into it and can be read by other
3150                          * threads.
3151                          *
3152                          * The critical issue is to order this
3153                          * page_remove_rmap with the ptp_clear_flush above.
3154                          * Those stores are ordered by (if nothing else,)
3155                          * the barrier present in the atomic_add_negative
3156                          * in page_remove_rmap.
3157                          *
3158                          * Then the TLB flush in ptep_clear_flush ensures that
3159                          * no process can access the old page before the
3160                          * decremented mapcount is visible. And the old page
3161                          * cannot be reused until after the decremented
3162                          * mapcount is visible. So transitively, TLBs to
3163                          * old page will be flushed before it can be reused.
3164                          */
3165                         page_remove_rmap(old_page, vma, false);
3166                 }
3167
3168                 /* Free the old page.. */
3169                 new_page = old_page;
3170                 page_copied = 1;
3171         } else {
3172                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3173         }
3174
3175         if (new_page)
3176                 put_page(new_page);
3177
3178         pte_unmap_unlock(vmf->pte, vmf->ptl);
3179         /*
3180          * No need to double call mmu_notifier->invalidate_range() callback as
3181          * the above ptep_clear_flush_notify() did already call it.
3182          */
3183         mmu_notifier_invalidate_range_only_end(&range);
3184         if (old_page) {
3185                 if (page_copied)
3186                         free_swap_cache(old_page);
3187                 put_page(old_page);
3188         }
3189
3190         delayacct_wpcopy_end();
3191         return 0;
3192 oom_free_new:
3193         put_page(new_page);
3194 oom:
3195         if (old_page)
3196                 put_page(old_page);
3197
3198         delayacct_wpcopy_end();
3199         return VM_FAULT_OOM;
3200 }
3201
3202 /**
3203  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3204  *                        writeable once the page is prepared
3205  *
3206  * @vmf: structure describing the fault
3207  *
3208  * This function handles all that is needed to finish a write page fault in a
3209  * shared mapping due to PTE being read-only once the mapped page is prepared.
3210  * It handles locking of PTE and modifying it.
3211  *
3212  * The function expects the page to be locked or other protection against
3213  * concurrent faults / writeback (such as DAX radix tree locks).
3214  *
3215  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3216  * we acquired PTE lock.
3217  */
3218 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3219 {
3220         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3221         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3222                                        &vmf->ptl);
3223         /*
3224          * We might have raced with another page fault while we released the
3225          * pte_offset_map_lock.
3226          */
3227         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3228                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3229                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3230                 return VM_FAULT_NOPAGE;
3231         }
3232         wp_page_reuse(vmf);
3233         return 0;
3234 }
3235
3236 /*
3237  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3238  * mapping
3239  */
3240 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3241 {
3242         struct vm_area_struct *vma = vmf->vma;
3243
3244         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3245                 vm_fault_t ret;
3246
3247                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3248                 vmf->flags |= FAULT_FLAG_MKWRITE;
3249                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3250                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3251                         return ret;
3252                 return finish_mkwrite_fault(vmf);
3253         }
3254         wp_page_reuse(vmf);
3255         return 0;
3256 }
3257
3258 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3259         __releases(vmf->ptl)
3260 {
3261         struct vm_area_struct *vma = vmf->vma;
3262         vm_fault_t ret = 0;
3263
3264         get_page(vmf->page);
3265
3266         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3267                 vm_fault_t tmp;
3268
3269                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3270                 tmp = do_page_mkwrite(vmf);
3271                 if (unlikely(!tmp || (tmp &
3272                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3273                         put_page(vmf->page);
3274                         return tmp;
3275                 }
3276                 tmp = finish_mkwrite_fault(vmf);
3277                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3278                         unlock_page(vmf->page);
3279                         put_page(vmf->page);
3280                         return tmp;
3281                 }
3282         } else {
3283                 wp_page_reuse(vmf);
3284                 lock_page(vmf->page);
3285         }
3286         ret |= fault_dirty_shared_page(vmf);
3287         put_page(vmf->page);
3288
3289         return ret;
3290 }
3291
3292 /*
3293  * This routine handles present pages, when
3294  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3295  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3296  *   (FAULT_FLAG_UNSHARE)
3297  *
3298  * It is done by copying the page to a new address and decrementing the
3299  * shared-page counter for the old page.
3300  *
3301  * Note that this routine assumes that the protection checks have been
3302  * done by the caller (the low-level page fault routine in most cases).
3303  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3304  * done any necessary COW.
3305  *
3306  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3307  * though the page will change only once the write actually happens. This
3308  * avoids a few races, and potentially makes it more efficient.
3309  *
3310  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3311  * but allow concurrent faults), with pte both mapped and locked.
3312  * We return with mmap_lock still held, but pte unmapped and unlocked.
3313  */
3314 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3315         __releases(vmf->ptl)
3316 {
3317         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3318         struct vm_area_struct *vma = vmf->vma;
3319         struct folio *folio = NULL;
3320
3321         if (likely(!unshare)) {
3322                 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3323                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3324                         return handle_userfault(vmf, VM_UFFD_WP);
3325                 }
3326
3327                 /*
3328                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3329                  * is flushed in this case before copying.
3330                  */
3331                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3332                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3333                         flush_tlb_page(vmf->vma, vmf->address);
3334         }
3335
3336         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3337
3338         /*
3339          * Shared mapping: we are guaranteed to have VM_WRITE and
3340          * FAULT_FLAG_WRITE set at this point.
3341          */
3342         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3343                 /*
3344                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3345                  * VM_PFNMAP VMA.
3346                  *
3347                  * We should not cow pages in a shared writeable mapping.
3348                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3349                  */
3350                 if (!vmf->page)
3351                         return wp_pfn_shared(vmf);
3352                 return wp_page_shared(vmf);
3353         }
3354
3355         if (vmf->page)
3356                 folio = page_folio(vmf->page);
3357
3358         /*
3359          * Private mapping: create an exclusive anonymous page copy if reuse
3360          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3361          */
3362         if (folio && folio_test_anon(folio)) {
3363                 /*
3364                  * If the page is exclusive to this process we must reuse the
3365                  * page without further checks.
3366                  */
3367                 if (PageAnonExclusive(vmf->page))
3368                         goto reuse;
3369
3370                 /*
3371                  * We have to verify under folio lock: these early checks are
3372                  * just an optimization to avoid locking the folio and freeing
3373                  * the swapcache if there is little hope that we can reuse.
3374                  *
3375                  * KSM doesn't necessarily raise the folio refcount.
3376                  */
3377                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3378                         goto copy;
3379                 if (!folio_test_lru(folio))
3380                         /*
3381                          * Note: We cannot easily detect+handle references from
3382                          * remote LRU pagevecs or references to LRU folios.
3383                          */
3384                         lru_add_drain();
3385                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3386                         goto copy;
3387                 if (!folio_trylock(folio))
3388                         goto copy;
3389                 if (folio_test_swapcache(folio))
3390                         folio_free_swap(folio);
3391                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3392                         folio_unlock(folio);
3393                         goto copy;
3394                 }
3395                 /*
3396                  * Ok, we've got the only folio reference from our mapping
3397                  * and the folio is locked, it's dark out, and we're wearing
3398                  * sunglasses. Hit it.
3399                  */
3400                 page_move_anon_rmap(vmf->page, vma);
3401                 folio_unlock(folio);
3402 reuse:
3403                 if (unlikely(unshare)) {
3404                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3405                         return 0;
3406                 }
3407                 wp_page_reuse(vmf);
3408                 return 0;
3409         }
3410 copy:
3411         /*
3412          * Ok, we need to copy. Oh, well..
3413          */
3414         if (folio)
3415                 folio_get(folio);
3416
3417         pte_unmap_unlock(vmf->pte, vmf->ptl);
3418 #ifdef CONFIG_KSM
3419         if (folio && folio_test_ksm(folio))
3420                 count_vm_event(COW_KSM);
3421 #endif
3422         return wp_page_copy(vmf);
3423 }
3424
3425 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3426                 unsigned long start_addr, unsigned long end_addr,
3427                 struct zap_details *details)
3428 {
3429         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3430 }
3431
3432 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3433                                             pgoff_t first_index,
3434                                             pgoff_t last_index,
3435                                             struct zap_details *details)
3436 {
3437         struct vm_area_struct *vma;
3438         pgoff_t vba, vea, zba, zea;
3439
3440         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3441                 vba = vma->vm_pgoff;
3442                 vea = vba + vma_pages(vma) - 1;
3443                 zba = max(first_index, vba);
3444                 zea = min(last_index, vea);
3445
3446                 unmap_mapping_range_vma(vma,
3447                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3448                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3449                                 details);
3450         }
3451 }
3452
3453 /**
3454  * unmap_mapping_folio() - Unmap single folio from processes.
3455  * @folio: The locked folio to be unmapped.
3456  *
3457  * Unmap this folio from any userspace process which still has it mmaped.
3458  * Typically, for efficiency, the range of nearby pages has already been
3459  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3460  * truncation or invalidation holds the lock on a folio, it may find that
3461  * the page has been remapped again: and then uses unmap_mapping_folio()
3462  * to unmap it finally.
3463  */
3464 void unmap_mapping_folio(struct folio *folio)
3465 {
3466         struct address_space *mapping = folio->mapping;
3467         struct zap_details details = { };
3468         pgoff_t first_index;
3469         pgoff_t last_index;
3470
3471         VM_BUG_ON(!folio_test_locked(folio));
3472
3473         first_index = folio->index;
3474         last_index = folio->index + folio_nr_pages(folio) - 1;
3475
3476         details.even_cows = false;
3477         details.single_folio = folio;
3478         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3479
3480         i_mmap_lock_read(mapping);
3481         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3482                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3483                                          last_index, &details);
3484         i_mmap_unlock_read(mapping);
3485 }
3486
3487 /**
3488  * unmap_mapping_pages() - Unmap pages from processes.
3489  * @mapping: The address space containing pages to be unmapped.
3490  * @start: Index of first page to be unmapped.
3491  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3492  * @even_cows: Whether to unmap even private COWed pages.
3493  *
3494  * Unmap the pages in this address space from any userspace process which
3495  * has them mmaped.  Generally, you want to remove COWed pages as well when
3496  * a file is being truncated, but not when invalidating pages from the page
3497  * cache.
3498  */
3499 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3500                 pgoff_t nr, bool even_cows)
3501 {
3502         struct zap_details details = { };
3503         pgoff_t first_index = start;
3504         pgoff_t last_index = start + nr - 1;
3505
3506         details.even_cows = even_cows;
3507         if (last_index < first_index)
3508                 last_index = ULONG_MAX;
3509
3510         i_mmap_lock_read(mapping);
3511         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3512                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3513                                          last_index, &details);
3514         i_mmap_unlock_read(mapping);
3515 }
3516 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3517
3518 /**
3519  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3520  * address_space corresponding to the specified byte range in the underlying
3521  * file.
3522  *
3523  * @mapping: the address space containing mmaps to be unmapped.
3524  * @holebegin: byte in first page to unmap, relative to the start of
3525  * the underlying file.  This will be rounded down to a PAGE_SIZE
3526  * boundary.  Note that this is different from truncate_pagecache(), which
3527  * must keep the partial page.  In contrast, we must get rid of
3528  * partial pages.
3529  * @holelen: size of prospective hole in bytes.  This will be rounded
3530  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3531  * end of the file.
3532  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3533  * but 0 when invalidating pagecache, don't throw away private data.
3534  */
3535 void unmap_mapping_range(struct address_space *mapping,
3536                 loff_t const holebegin, loff_t const holelen, int even_cows)
3537 {
3538         pgoff_t hba = holebegin >> PAGE_SHIFT;
3539         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3540
3541         /* Check for overflow. */
3542         if (sizeof(holelen) > sizeof(hlen)) {
3543                 long long holeend =
3544                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3545                 if (holeend & ~(long long)ULONG_MAX)
3546                         hlen = ULONG_MAX - hba + 1;
3547         }
3548
3549         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3550 }
3551 EXPORT_SYMBOL(unmap_mapping_range);
3552
3553 /*
3554  * Restore a potential device exclusive pte to a working pte entry
3555  */
3556 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3557 {
3558         struct folio *folio = page_folio(vmf->page);
3559         struct vm_area_struct *vma = vmf->vma;
3560         struct mmu_notifier_range range;
3561
3562         if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3563                 return VM_FAULT_RETRY;
3564         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3565                                 vma->vm_mm, vmf->address & PAGE_MASK,
3566                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3567         mmu_notifier_invalidate_range_start(&range);
3568
3569         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3570                                 &vmf->ptl);
3571         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3572                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3573
3574         pte_unmap_unlock(vmf->pte, vmf->ptl);
3575         folio_unlock(folio);
3576
3577         mmu_notifier_invalidate_range_end(&range);
3578         return 0;
3579 }
3580
3581 static inline bool should_try_to_free_swap(struct folio *folio,
3582                                            struct vm_area_struct *vma,
3583                                            unsigned int fault_flags)
3584 {
3585         if (!folio_test_swapcache(folio))
3586                 return false;
3587         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3588             folio_test_mlocked(folio))
3589                 return true;
3590         /*
3591          * If we want to map a page that's in the swapcache writable, we
3592          * have to detect via the refcount if we're really the exclusive
3593          * user. Try freeing the swapcache to get rid of the swapcache
3594          * reference only in case it's likely that we'll be the exlusive user.
3595          */
3596         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3597                 folio_ref_count(folio) == 2;
3598 }
3599
3600 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3601 {
3602         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3603                                        vmf->address, &vmf->ptl);
3604         /*
3605          * Be careful so that we will only recover a special uffd-wp pte into a
3606          * none pte.  Otherwise it means the pte could have changed, so retry.
3607          *
3608          * This should also cover the case where e.g. the pte changed
3609          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3610          * So is_pte_marker() check is not enough to safely drop the pte.
3611          */
3612         if (pte_same(vmf->orig_pte, *vmf->pte))
3613                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3614         pte_unmap_unlock(vmf->pte, vmf->ptl);
3615         return 0;
3616 }
3617
3618 /*
3619  * This is actually a page-missing access, but with uffd-wp special pte
3620  * installed.  It means this pte was wr-protected before being unmapped.
3621  */
3622 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3623 {
3624         /*
3625          * Just in case there're leftover special ptes even after the region
3626          * got unregistered - we can simply clear them.  We can also do that
3627          * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3628          * ranges, but it should be more efficient to be done lazily here.
3629          */
3630         if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3631                 return pte_marker_clear(vmf);
3632
3633         /* do_fault() can handle pte markers too like none pte */
3634         return do_fault(vmf);
3635 }
3636
3637 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3638 {
3639         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3640         unsigned long marker = pte_marker_get(entry);
3641
3642         /*
3643          * PTE markers should never be empty.  If anything weird happened,
3644          * the best thing to do is to kill the process along with its mm.
3645          */
3646         if (WARN_ON_ONCE(!marker))
3647                 return VM_FAULT_SIGBUS;
3648
3649         /* Higher priority than uffd-wp when data corrupted */
3650         if (marker & PTE_MARKER_SWAPIN_ERROR)
3651                 return VM_FAULT_SIGBUS;
3652
3653         if (pte_marker_entry_uffd_wp(entry))
3654                 return pte_marker_handle_uffd_wp(vmf);
3655
3656         /* This is an unknown pte marker */
3657         return VM_FAULT_SIGBUS;
3658 }
3659
3660 /*
3661  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3662  * but allow concurrent faults), and pte mapped but not yet locked.
3663  * We return with pte unmapped and unlocked.
3664  *
3665  * We return with the mmap_lock locked or unlocked in the same cases
3666  * as does filemap_fault().
3667  */
3668 vm_fault_t do_swap_page(struct vm_fault *vmf)
3669 {
3670         struct vm_area_struct *vma = vmf->vma;
3671         struct folio *swapcache, *folio = NULL;
3672         struct page *page;
3673         struct swap_info_struct *si = NULL;
3674         rmap_t rmap_flags = RMAP_NONE;
3675         bool exclusive = false;
3676         swp_entry_t entry;
3677         pte_t pte;
3678         int locked;
3679         vm_fault_t ret = 0;
3680         void *shadow = NULL;
3681
3682         if (!pte_unmap_same(vmf))
3683                 goto out;
3684
3685         entry = pte_to_swp_entry(vmf->orig_pte);
3686         if (unlikely(non_swap_entry(entry))) {
3687                 if (is_migration_entry(entry)) {
3688                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3689                                              vmf->address);
3690                 } else if (is_device_exclusive_entry(entry)) {
3691                         vmf->page = pfn_swap_entry_to_page(entry);
3692                         ret = remove_device_exclusive_entry(vmf);
3693                 } else if (is_device_private_entry(entry)) {
3694                         vmf->page = pfn_swap_entry_to_page(entry);
3695                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3696                                         vmf->address, &vmf->ptl);
3697                         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3698                                 spin_unlock(vmf->ptl);
3699                                 goto out;
3700                         }
3701
3702                         /*
3703                          * Get a page reference while we know the page can't be
3704                          * freed.
3705                          */
3706                         get_page(vmf->page);
3707                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3708                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3709                         put_page(vmf->page);
3710                 } else if (is_hwpoison_entry(entry)) {
3711                         ret = VM_FAULT_HWPOISON;
3712                 } else if (is_pte_marker_entry(entry)) {
3713                         ret = handle_pte_marker(vmf);
3714                 } else {
3715                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3716                         ret = VM_FAULT_SIGBUS;
3717                 }
3718                 goto out;
3719         }
3720
3721         /* Prevent swapoff from happening to us. */
3722         si = get_swap_device(entry);
3723         if (unlikely(!si))
3724                 goto out;
3725
3726         folio = swap_cache_get_folio(entry, vma, vmf->address);
3727         if (folio)
3728                 page = folio_file_page(folio, swp_offset(entry));
3729         swapcache = folio;
3730
3731         if (!folio) {
3732                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3733                     __swap_count(entry) == 1) {
3734                         /* skip swapcache */
3735                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3736                                                 vma, vmf->address, false);
3737                         page = &folio->page;
3738                         if (folio) {
3739                                 __folio_set_locked(folio);
3740                                 __folio_set_swapbacked(folio);
3741
3742                                 if (mem_cgroup_swapin_charge_folio(folio,
3743                                                         vma->vm_mm, GFP_KERNEL,
3744                                                         entry)) {
3745                                         ret = VM_FAULT_OOM;
3746                                         goto out_page;
3747                                 }
3748                                 mem_cgroup_swapin_uncharge_swap(entry);
3749
3750                                 shadow = get_shadow_from_swap_cache(entry);
3751                                 if (shadow)
3752                                         workingset_refault(folio, shadow);
3753
3754                                 folio_add_lru(folio);
3755
3756                                 /* To provide entry to swap_readpage() */
3757                                 folio_set_swap_entry(folio, entry);
3758                                 swap_readpage(page, true, NULL);
3759                                 folio->private = NULL;
3760                         }
3761                 } else {
3762                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3763                                                 vmf);
3764                         if (page)
3765                                 folio = page_folio(page);
3766                         swapcache = folio;
3767                 }
3768
3769                 if (!folio) {
3770                         /*
3771                          * Back out if somebody else faulted in this pte
3772                          * while we released the pte lock.
3773                          */
3774                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3775                                         vmf->address, &vmf->ptl);
3776                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3777                                 ret = VM_FAULT_OOM;
3778                         goto unlock;
3779                 }
3780
3781                 /* Had to read the page from swap area: Major fault */
3782                 ret = VM_FAULT_MAJOR;
3783                 count_vm_event(PGMAJFAULT);
3784                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3785         } else if (PageHWPoison(page)) {
3786                 /*
3787                  * hwpoisoned dirty swapcache pages are kept for killing
3788                  * owner processes (which may be unknown at hwpoison time)
3789                  */
3790                 ret = VM_FAULT_HWPOISON;
3791                 goto out_release;
3792         }
3793
3794         locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3795
3796         if (!locked) {
3797                 ret |= VM_FAULT_RETRY;
3798                 goto out_release;
3799         }
3800
3801         if (swapcache) {
3802                 /*
3803                  * Make sure folio_free_swap() or swapoff did not release the
3804                  * swapcache from under us.  The page pin, and pte_same test
3805                  * below, are not enough to exclude that.  Even if it is still
3806                  * swapcache, we need to check that the page's swap has not
3807                  * changed.
3808                  */
3809                 if (unlikely(!folio_test_swapcache(folio) ||
3810                              page_private(page) != entry.val))
3811                         goto out_page;
3812
3813                 /*
3814                  * KSM sometimes has to copy on read faults, for example, if
3815                  * page->index of !PageKSM() pages would be nonlinear inside the
3816                  * anon VMA -- PageKSM() is lost on actual swapout.
3817                  */
3818                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3819                 if (unlikely(!page)) {
3820                         ret = VM_FAULT_OOM;
3821                         goto out_page;
3822                 }
3823                 folio = page_folio(page);
3824
3825                 /*
3826                  * If we want to map a page that's in the swapcache writable, we
3827                  * have to detect via the refcount if we're really the exclusive
3828                  * owner. Try removing the extra reference from the local LRU
3829                  * pagevecs if required.
3830                  */
3831                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3832                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3833                         lru_add_drain();
3834         }
3835
3836         cgroup_throttle_swaprate(page, GFP_KERNEL);
3837
3838         /*
3839          * Back out if somebody else already faulted in this pte.
3840          */
3841         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3842                         &vmf->ptl);
3843         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3844                 goto out_nomap;
3845
3846         if (unlikely(!folio_test_uptodate(folio))) {
3847                 ret = VM_FAULT_SIGBUS;
3848                 goto out_nomap;
3849         }
3850
3851         /*
3852          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3853          * must never point at an anonymous page in the swapcache that is
3854          * PG_anon_exclusive. Sanity check that this holds and especially, that
3855          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3856          * check after taking the PT lock and making sure that nobody
3857          * concurrently faulted in this page and set PG_anon_exclusive.
3858          */
3859         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3860         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3861
3862         /*
3863          * Check under PT lock (to protect against concurrent fork() sharing
3864          * the swap entry concurrently) for certainly exclusive pages.
3865          */
3866         if (!folio_test_ksm(folio)) {
3867                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3868                 if (folio != swapcache) {
3869                         /*
3870                          * We have a fresh page that is not exposed to the
3871                          * swapcache -> certainly exclusive.
3872                          */
3873                         exclusive = true;
3874                 } else if (exclusive && folio_test_writeback(folio) &&
3875                           data_race(si->flags & SWP_STABLE_WRITES)) {
3876                         /*
3877                          * This is tricky: not all swap backends support
3878                          * concurrent page modifications while under writeback.
3879                          *
3880                          * So if we stumble over such a page in the swapcache
3881                          * we must not set the page exclusive, otherwise we can
3882                          * map it writable without further checks and modify it
3883                          * while still under writeback.
3884                          *
3885                          * For these problematic swap backends, simply drop the
3886                          * exclusive marker: this is perfectly fine as we start
3887                          * writeback only if we fully unmapped the page and
3888                          * there are no unexpected references on the page after
3889                          * unmapping succeeded. After fully unmapped, no
3890                          * further GUP references (FOLL_GET and FOLL_PIN) can
3891                          * appear, so dropping the exclusive marker and mapping
3892                          * it only R/O is fine.
3893                          */
3894                         exclusive = false;
3895                 }
3896         }
3897
3898         /*
3899          * Remove the swap entry and conditionally try to free up the swapcache.
3900          * We're already holding a reference on the page but haven't mapped it
3901          * yet.
3902          */
3903         swap_free(entry);
3904         if (should_try_to_free_swap(folio, vma, vmf->flags))
3905                 folio_free_swap(folio);
3906
3907         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3908         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3909         pte = mk_pte(page, vma->vm_page_prot);
3910
3911         /*
3912          * Same logic as in do_wp_page(); however, optimize for pages that are
3913          * certainly not shared either because we just allocated them without
3914          * exposing them to the swapcache or because the swap entry indicates
3915          * exclusivity.
3916          */
3917         if (!folio_test_ksm(folio) &&
3918             (exclusive || folio_ref_count(folio) == 1)) {
3919                 if (vmf->flags & FAULT_FLAG_WRITE) {
3920                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3921                         vmf->flags &= ~FAULT_FLAG_WRITE;
3922                 }
3923                 rmap_flags |= RMAP_EXCLUSIVE;
3924         }
3925         flush_icache_page(vma, page);
3926         if (pte_swp_soft_dirty(vmf->orig_pte))
3927                 pte = pte_mksoft_dirty(pte);
3928         if (pte_swp_uffd_wp(vmf->orig_pte))
3929                 pte = pte_mkuffd_wp(pte);
3930         vmf->orig_pte = pte;
3931
3932         /* ksm created a completely new copy */
3933         if (unlikely(folio != swapcache && swapcache)) {
3934                 page_add_new_anon_rmap(page, vma, vmf->address);
3935                 folio_add_lru_vma(folio, vma);
3936         } else {
3937                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3938         }
3939
3940         VM_BUG_ON(!folio_test_anon(folio) ||
3941                         (pte_write(pte) && !PageAnonExclusive(page)));
3942         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3943         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3944
3945         folio_unlock(folio);
3946         if (folio != swapcache && swapcache) {
3947                 /*
3948                  * Hold the lock to avoid the swap entry to be reused
3949                  * until we take the PT lock for the pte_same() check
3950                  * (to avoid false positives from pte_same). For
3951                  * further safety release the lock after the swap_free
3952                  * so that the swap count won't change under a
3953                  * parallel locked swapcache.
3954                  */
3955                 folio_unlock(swapcache);
3956                 folio_put(swapcache);
3957         }
3958
3959         if (vmf->flags & FAULT_FLAG_WRITE) {
3960                 ret |= do_wp_page(vmf);
3961                 if (ret & VM_FAULT_ERROR)
3962                         ret &= VM_FAULT_ERROR;
3963                 goto out;
3964         }
3965
3966         /* No need to invalidate - it was non-present before */
3967         update_mmu_cache(vma, vmf->address, vmf->pte);
3968 unlock:
3969         pte_unmap_unlock(vmf->pte, vmf->ptl);
3970 out:
3971         if (si)
3972                 put_swap_device(si);
3973         return ret;
3974 out_nomap:
3975         pte_unmap_unlock(vmf->pte, vmf->ptl);
3976 out_page:
3977         folio_unlock(folio);
3978 out_release:
3979         folio_put(folio);
3980         if (folio != swapcache && swapcache) {
3981                 folio_unlock(swapcache);
3982                 folio_put(swapcache);
3983         }
3984         if (si)
3985                 put_swap_device(si);
3986         return ret;
3987 }
3988
3989 /*
3990  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3991  * but allow concurrent faults), and pte mapped but not yet locked.
3992  * We return with mmap_lock still held, but pte unmapped and unlocked.
3993  */
3994 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3995 {
3996         struct vm_area_struct *vma = vmf->vma;
3997         struct page *page;
3998         vm_fault_t ret = 0;
3999         pte_t entry;
4000
4001         /* File mapping without ->vm_ops ? */
4002         if (vma->vm_flags & VM_SHARED)
4003                 return VM_FAULT_SIGBUS;
4004
4005         /*
4006          * Use pte_alloc() instead of pte_alloc_map().  We can't run
4007          * pte_offset_map() on pmds where a huge pmd might be created
4008          * from a different thread.
4009          *
4010          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4011          * parallel threads are excluded by other means.
4012          *
4013          * Here we only have mmap_read_lock(mm).
4014          */
4015         if (pte_alloc(vma->vm_mm, vmf->pmd))
4016                 return VM_FAULT_OOM;
4017
4018         /* See comment in handle_pte_fault() */
4019         if (unlikely(pmd_trans_unstable(vmf->pmd)))
4020                 return 0;
4021
4022         /* Use the zero-page for reads */
4023         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4024                         !mm_forbids_zeropage(vma->vm_mm)) {
4025                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4026                                                 vma->vm_page_prot));
4027                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4028                                 vmf->address, &vmf->ptl);
4029                 if (!pte_none(*vmf->pte)) {
4030                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4031                         goto unlock;
4032                 }
4033                 ret = check_stable_address_space(vma->vm_mm);
4034                 if (ret)
4035                         goto unlock;
4036                 /* Deliver the page fault to userland, check inside PT lock */
4037                 if (userfaultfd_missing(vma)) {
4038                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4039                         return handle_userfault(vmf, VM_UFFD_MISSING);
4040                 }
4041                 goto setpte;
4042         }
4043
4044         /* Allocate our own private page. */
4045         if (unlikely(anon_vma_prepare(vma)))
4046                 goto oom;
4047         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4048         if (!page)
4049                 goto oom;
4050
4051         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4052                 goto oom_free_page;
4053         cgroup_throttle_swaprate(page, GFP_KERNEL);
4054
4055         /*
4056          * The memory barrier inside __SetPageUptodate makes sure that
4057          * preceding stores to the page contents become visible before
4058          * the set_pte_at() write.
4059          */
4060         __SetPageUptodate(page);
4061
4062         entry = mk_pte(page, vma->vm_page_prot);
4063         entry = pte_sw_mkyoung(entry);
4064         if (vma->vm_flags & VM_WRITE)
4065                 entry = pte_mkwrite(pte_mkdirty(entry));
4066
4067         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4068                         &vmf->ptl);
4069         if (!pte_none(*vmf->pte)) {
4070                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4071                 goto release;
4072         }
4073
4074         ret = check_stable_address_space(vma->vm_mm);
4075         if (ret)
4076                 goto release;
4077
4078         /* Deliver the page fault to userland, check inside PT lock */
4079         if (userfaultfd_missing(vma)) {
4080                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4081                 put_page(page);
4082                 return handle_userfault(vmf, VM_UFFD_MISSING);
4083         }
4084
4085         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4086         page_add_new_anon_rmap(page, vma, vmf->address);
4087         lru_cache_add_inactive_or_unevictable(page, vma);
4088 setpte:
4089         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4090
4091         /* No need to invalidate - it was non-present before */
4092         update_mmu_cache(vma, vmf->address, vmf->pte);
4093 unlock:
4094         pte_unmap_unlock(vmf->pte, vmf->ptl);
4095         return ret;
4096 release:
4097         put_page(page);
4098         goto unlock;
4099 oom_free_page:
4100         put_page(page);
4101 oom:
4102         return VM_FAULT_OOM;
4103 }
4104
4105 /*
4106  * The mmap_lock must have been held on entry, and may have been
4107  * released depending on flags and vma->vm_ops->fault() return value.
4108  * See filemap_fault() and __lock_page_retry().
4109  */
4110 static vm_fault_t __do_fault(struct vm_fault *vmf)
4111 {
4112         struct vm_area_struct *vma = vmf->vma;
4113         vm_fault_t ret;
4114
4115         /*
4116          * Preallocate pte before we take page_lock because this might lead to
4117          * deadlocks for memcg reclaim which waits for pages under writeback:
4118          *                              lock_page(A)
4119          *                              SetPageWriteback(A)
4120          *                              unlock_page(A)
4121          * lock_page(B)
4122          *                              lock_page(B)
4123          * pte_alloc_one
4124          *   shrink_page_list
4125          *     wait_on_page_writeback(A)
4126          *                              SetPageWriteback(B)
4127          *                              unlock_page(B)
4128          *                              # flush A, B to clear the writeback
4129          */
4130         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4131                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4132                 if (!vmf->prealloc_pte)
4133                         return VM_FAULT_OOM;
4134         }
4135
4136         ret = vma->vm_ops->fault(vmf);
4137         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4138                             VM_FAULT_DONE_COW)))
4139                 return ret;
4140
4141         if (unlikely(PageHWPoison(vmf->page))) {
4142                 struct page *page = vmf->page;
4143                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4144                 if (ret & VM_FAULT_LOCKED) {
4145                         if (page_mapped(page))
4146                                 unmap_mapping_pages(page_mapping(page),
4147                                                     page->index, 1, false);
4148                         /* Retry if a clean page was removed from the cache. */
4149                         if (invalidate_inode_page(page))
4150                                 poisonret = VM_FAULT_NOPAGE;
4151                         unlock_page(page);
4152                 }
4153                 put_page(page);
4154                 vmf->page = NULL;
4155                 return poisonret;
4156         }
4157
4158         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4159                 lock_page(vmf->page);
4160         else
4161                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4162
4163         return ret;
4164 }
4165
4166 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4167 static void deposit_prealloc_pte(struct vm_fault *vmf)
4168 {
4169         struct vm_area_struct *vma = vmf->vma;
4170
4171         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4172         /*
4173          * We are going to consume the prealloc table,
4174          * count that as nr_ptes.
4175          */
4176         mm_inc_nr_ptes(vma->vm_mm);
4177         vmf->prealloc_pte = NULL;
4178 }
4179
4180 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4181 {
4182         struct vm_area_struct *vma = vmf->vma;
4183         bool write = vmf->flags & FAULT_FLAG_WRITE;
4184         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4185         pmd_t entry;
4186         int i;
4187         vm_fault_t ret = VM_FAULT_FALLBACK;
4188
4189         if (!transhuge_vma_suitable(vma, haddr))
4190                 return ret;
4191
4192         page = compound_head(page);
4193         if (compound_order(page) != HPAGE_PMD_ORDER)
4194                 return ret;
4195
4196         /*
4197          * Just backoff if any subpage of a THP is corrupted otherwise
4198          * the corrupted page may mapped by PMD silently to escape the
4199          * check.  This kind of THP just can be PTE mapped.  Access to
4200          * the corrupted subpage should trigger SIGBUS as expected.
4201          */
4202         if (unlikely(PageHasHWPoisoned(page)))
4203                 return ret;
4204
4205         /*
4206          * Archs like ppc64 need additional space to store information
4207          * related to pte entry. Use the preallocated table for that.
4208          */
4209         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4210                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4211                 if (!vmf->prealloc_pte)
4212                         return VM_FAULT_OOM;
4213         }
4214
4215         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4216         if (unlikely(!pmd_none(*vmf->pmd)))
4217                 goto out;
4218
4219         for (i = 0; i < HPAGE_PMD_NR; i++)
4220                 flush_icache_page(vma, page + i);
4221
4222         entry = mk_huge_pmd(page, vma->vm_page_prot);
4223         if (write)
4224                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4225
4226         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4227         page_add_file_rmap(page, vma, true);
4228
4229         /*
4230          * deposit and withdraw with pmd lock held
4231          */
4232         if (arch_needs_pgtable_deposit())
4233                 deposit_prealloc_pte(vmf);
4234
4235         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4236
4237         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4238
4239         /* fault is handled */
4240         ret = 0;
4241         count_vm_event(THP_FILE_MAPPED);
4242 out:
4243         spin_unlock(vmf->ptl);
4244         return ret;
4245 }
4246 #else
4247 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4248 {
4249         return VM_FAULT_FALLBACK;
4250 }
4251 #endif
4252
4253 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4254 {
4255         struct vm_area_struct *vma = vmf->vma;
4256         bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4257         bool write = vmf->flags & FAULT_FLAG_WRITE;
4258         bool prefault = vmf->address != addr;
4259         pte_t entry;
4260
4261         flush_icache_page(vma, page);
4262         entry = mk_pte(page, vma->vm_page_prot);
4263
4264         if (prefault && arch_wants_old_prefaulted_pte())
4265                 entry = pte_mkold(entry);
4266         else
4267                 entry = pte_sw_mkyoung(entry);
4268
4269         if (write)
4270                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4271         if (unlikely(uffd_wp))
4272                 entry = pte_mkuffd_wp(entry);
4273         /* copy-on-write page */
4274         if (write && !(vma->vm_flags & VM_SHARED)) {
4275                 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4276                 page_add_new_anon_rmap(page, vma, addr);
4277                 lru_cache_add_inactive_or_unevictable(page, vma);
4278         } else {
4279                 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4280                 page_add_file_rmap(page, vma, false);
4281         }
4282         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4283 }
4284
4285 static bool vmf_pte_changed(struct vm_fault *vmf)
4286 {
4287         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4288                 return !pte_same(*vmf->pte, vmf->orig_pte);
4289
4290         return !pte_none(*vmf->pte);
4291 }
4292
4293 /**
4294  * finish_fault - finish page fault once we have prepared the page to fault
4295  *
4296  * @vmf: structure describing the fault
4297  *
4298  * This function handles all that is needed to finish a page fault once the
4299  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4300  * given page, adds reverse page mapping, handles memcg charges and LRU
4301  * addition.
4302  *
4303  * The function expects the page to be locked and on success it consumes a
4304  * reference of a page being mapped (for the PTE which maps it).
4305  *
4306  * Return: %0 on success, %VM_FAULT_ code in case of error.
4307  */
4308 vm_fault_t finish_fault(struct vm_fault *vmf)
4309 {
4310         struct vm_area_struct *vma = vmf->vma;
4311         struct page *page;
4312         vm_fault_t ret;
4313
4314         /* Did we COW the page? */
4315         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4316                 page = vmf->cow_page;
4317         else
4318                 page = vmf->page;
4319
4320         /*
4321          * check even for read faults because we might have lost our CoWed
4322          * page
4323          */
4324         if (!(vma->vm_flags & VM_SHARED)) {
4325                 ret = check_stable_address_space(vma->vm_mm);
4326                 if (ret)
4327                         return ret;
4328         }
4329
4330         if (pmd_none(*vmf->pmd)) {
4331                 if (PageTransCompound(page)) {
4332                         ret = do_set_pmd(vmf, page);
4333                         if (ret != VM_FAULT_FALLBACK)
4334                                 return ret;
4335                 }
4336
4337                 if (vmf->prealloc_pte)
4338                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4339                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4340                         return VM_FAULT_OOM;
4341         }
4342
4343         /*
4344          * See comment in handle_pte_fault() for how this scenario happens, we
4345          * need to return NOPAGE so that we drop this page.
4346          */
4347         if (pmd_devmap_trans_unstable(vmf->pmd))
4348                 return VM_FAULT_NOPAGE;
4349
4350         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4351                                       vmf->address, &vmf->ptl);
4352
4353         /* Re-check under ptl */
4354         if (likely(!vmf_pte_changed(vmf))) {
4355                 do_set_pte(vmf, page, vmf->address);
4356
4357                 /* no need to invalidate: a not-present page won't be cached */
4358                 update_mmu_cache(vma, vmf->address, vmf->pte);
4359
4360                 ret = 0;
4361         } else {
4362                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4363                 ret = VM_FAULT_NOPAGE;
4364         }
4365
4366         pte_unmap_unlock(vmf->pte, vmf->ptl);
4367         return ret;
4368 }
4369
4370 static unsigned long fault_around_bytes __read_mostly =
4371         rounddown_pow_of_two(65536);
4372
4373 #ifdef CONFIG_DEBUG_FS
4374 static int fault_around_bytes_get(void *data, u64 *val)
4375 {
4376         *val = fault_around_bytes;
4377         return 0;
4378 }
4379
4380 /*
4381  * fault_around_bytes must be rounded down to the nearest page order as it's
4382  * what do_fault_around() expects to see.
4383  */
4384 static int fault_around_bytes_set(void *data, u64 val)
4385 {
4386         if (val / PAGE_SIZE > PTRS_PER_PTE)
4387                 return -EINVAL;
4388         if (val > PAGE_SIZE)
4389                 fault_around_bytes = rounddown_pow_of_two(val);
4390         else
4391                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4392         return 0;
4393 }
4394 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4395                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4396
4397 static int __init fault_around_debugfs(void)
4398 {
4399         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4400                                    &fault_around_bytes_fops);
4401         return 0;
4402 }
4403 late_initcall(fault_around_debugfs);
4404 #endif
4405
4406 /*
4407  * do_fault_around() tries to map few pages around the fault address. The hope
4408  * is that the pages will be needed soon and this will lower the number of
4409  * faults to handle.
4410  *
4411  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4412  * not ready to be mapped: not up-to-date, locked, etc.
4413  *
4414  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4415  * only once.
4416  *
4417  * fault_around_bytes defines how many bytes we'll try to map.
4418  * do_fault_around() expects it to be set to a power of two less than or equal
4419  * to PTRS_PER_PTE.
4420  *
4421  * The virtual address of the area that we map is naturally aligned to
4422  * fault_around_bytes rounded down to the machine page size
4423  * (and therefore to page order).  This way it's easier to guarantee
4424  * that we don't cross page table boundaries.
4425  */
4426 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4427 {
4428         unsigned long address = vmf->address, nr_pages, mask;
4429         pgoff_t start_pgoff = vmf->pgoff;
4430         pgoff_t end_pgoff;
4431         int off;
4432
4433         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4434         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4435
4436         address = max(address & mask, vmf->vma->vm_start);
4437         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4438         start_pgoff -= off;
4439
4440         /*
4441          *  end_pgoff is either the end of the page table, the end of
4442          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4443          */
4444         end_pgoff = start_pgoff -
4445                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4446                 PTRS_PER_PTE - 1;
4447         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4448                         start_pgoff + nr_pages - 1);
4449
4450         if (pmd_none(*vmf->pmd)) {
4451                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4452                 if (!vmf->prealloc_pte)
4453                         return VM_FAULT_OOM;
4454         }
4455
4456         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4457 }
4458
4459 /* Return true if we should do read fault-around, false otherwise */
4460 static inline bool should_fault_around(struct vm_fault *vmf)
4461 {
4462         /* No ->map_pages?  No way to fault around... */
4463         if (!vmf->vma->vm_ops->map_pages)
4464                 return false;
4465
4466         if (uffd_disable_fault_around(vmf->vma))
4467                 return false;
4468
4469         return fault_around_bytes >> PAGE_SHIFT > 1;
4470 }
4471
4472 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4473 {
4474         vm_fault_t ret = 0;
4475
4476         /*
4477          * Let's call ->map_pages() first and use ->fault() as fallback
4478          * if page by the offset is not ready to be mapped (cold cache or
4479          * something).
4480          */
4481         if (should_fault_around(vmf)) {
4482                 ret = do_fault_around(vmf);
4483                 if (ret)
4484                         return ret;
4485         }
4486
4487         ret = __do_fault(vmf);
4488         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4489                 return ret;
4490
4491         ret |= finish_fault(vmf);
4492         unlock_page(vmf->page);
4493         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4494                 put_page(vmf->page);
4495         return ret;
4496 }
4497
4498 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4499 {
4500         struct vm_area_struct *vma = vmf->vma;
4501         vm_fault_t ret;
4502
4503         if (unlikely(anon_vma_prepare(vma)))
4504                 return VM_FAULT_OOM;
4505
4506         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4507         if (!vmf->cow_page)
4508                 return VM_FAULT_OOM;
4509
4510         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4511                                 GFP_KERNEL)) {
4512                 put_page(vmf->cow_page);
4513                 return VM_FAULT_OOM;
4514         }
4515         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4516
4517         ret = __do_fault(vmf);
4518         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4519                 goto uncharge_out;
4520         if (ret & VM_FAULT_DONE_COW)
4521                 return ret;
4522
4523         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4524         __SetPageUptodate(vmf->cow_page);
4525
4526         ret |= finish_fault(vmf);
4527         unlock_page(vmf->page);
4528         put_page(vmf->page);
4529         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4530                 goto uncharge_out;
4531         return ret;
4532 uncharge_out:
4533         put_page(vmf->cow_page);
4534         return ret;
4535 }
4536
4537 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4538 {
4539         struct vm_area_struct *vma = vmf->vma;
4540         vm_fault_t ret, tmp;
4541
4542         ret = __do_fault(vmf);
4543         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4544                 return ret;
4545
4546         /*
4547          * Check if the backing address space wants to know that the page is
4548          * about to become writable
4549          */
4550         if (vma->vm_ops->page_mkwrite) {
4551                 unlock_page(vmf->page);
4552                 tmp = do_page_mkwrite(vmf);
4553                 if (unlikely(!tmp ||
4554                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4555                         put_page(vmf->page);
4556                         return tmp;
4557                 }
4558         }
4559
4560         ret |= finish_fault(vmf);
4561         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4562                                         VM_FAULT_RETRY))) {
4563                 unlock_page(vmf->page);
4564                 put_page(vmf->page);
4565                 return ret;
4566         }
4567
4568         ret |= fault_dirty_shared_page(vmf);
4569         return ret;
4570 }
4571
4572 /*
4573  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4574  * but allow concurrent faults).
4575  * The mmap_lock may have been released depending on flags and our
4576  * return value.  See filemap_fault() and __folio_lock_or_retry().
4577  * If mmap_lock is released, vma may become invalid (for example
4578  * by other thread calling munmap()).
4579  */
4580 static vm_fault_t do_fault(struct vm_fault *vmf)
4581 {
4582         struct vm_area_struct *vma = vmf->vma;
4583         struct mm_struct *vm_mm = vma->vm_mm;
4584         vm_fault_t ret;
4585
4586         /*
4587          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4588          */
4589         if (!vma->vm_ops->fault) {
4590                 /*
4591                  * If we find a migration pmd entry or a none pmd entry, which
4592                  * should never happen, return SIGBUS
4593                  */
4594                 if (unlikely(!pmd_present(*vmf->pmd)))
4595                         ret = VM_FAULT_SIGBUS;
4596                 else {
4597                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4598                                                        vmf->pmd,
4599                                                        vmf->address,
4600                                                        &vmf->ptl);
4601                         /*
4602                          * Make sure this is not a temporary clearing of pte
4603                          * by holding ptl and checking again. A R/M/W update
4604                          * of pte involves: take ptl, clearing the pte so that
4605                          * we don't have concurrent modification by hardware
4606                          * followed by an update.
4607                          */
4608                         if (unlikely(pte_none(*vmf->pte)))
4609                                 ret = VM_FAULT_SIGBUS;
4610                         else
4611                                 ret = VM_FAULT_NOPAGE;
4612
4613                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4614                 }
4615         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4616                 ret = do_read_fault(vmf);
4617         else if (!(vma->vm_flags & VM_SHARED))
4618                 ret = do_cow_fault(vmf);
4619         else
4620                 ret = do_shared_fault(vmf);
4621
4622         /* preallocated pagetable is unused: free it */
4623         if (vmf->prealloc_pte) {
4624                 pte_free(vm_mm, vmf->prealloc_pte);
4625                 vmf->prealloc_pte = NULL;
4626         }
4627         return ret;
4628 }
4629
4630 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4631                       unsigned long addr, int page_nid, int *flags)
4632 {
4633         get_page(page);
4634
4635         count_vm_numa_event(NUMA_HINT_FAULTS);
4636         if (page_nid == numa_node_id()) {
4637                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4638                 *flags |= TNF_FAULT_LOCAL;
4639         }
4640
4641         return mpol_misplaced(page, vma, addr);
4642 }
4643
4644 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4645 {
4646         struct vm_area_struct *vma = vmf->vma;
4647         struct page *page = NULL;
4648         int page_nid = NUMA_NO_NODE;
4649         bool writable = false;
4650         int last_cpupid;
4651         int target_nid;
4652         pte_t pte, old_pte;
4653         int flags = 0;
4654
4655         /*
4656          * The "pte" at this point cannot be used safely without
4657          * validation through pte_unmap_same(). It's of NUMA type but
4658          * the pfn may be screwed if the read is non atomic.
4659          */
4660         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4661         spin_lock(vmf->ptl);
4662         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4663                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4664                 goto out;
4665         }
4666
4667         /* Get the normal PTE  */
4668         old_pte = ptep_get(vmf->pte);
4669         pte = pte_modify(old_pte, vma->vm_page_prot);
4670
4671         /*
4672          * Detect now whether the PTE could be writable; this information
4673          * is only valid while holding the PT lock.
4674          */
4675         writable = pte_write(pte);
4676         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4677             can_change_pte_writable(vma, vmf->address, pte))
4678                 writable = true;
4679
4680         page = vm_normal_page(vma, vmf->address, pte);
4681         if (!page || is_zone_device_page(page))
4682                 goto out_map;
4683
4684         /* TODO: handle PTE-mapped THP */
4685         if (PageCompound(page))
4686                 goto out_map;
4687
4688         /*
4689          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4690          * much anyway since they can be in shared cache state. This misses
4691          * the case where a mapping is writable but the process never writes
4692          * to it but pte_write gets cleared during protection updates and
4693          * pte_dirty has unpredictable behaviour between PTE scan updates,
4694          * background writeback, dirty balancing and application behaviour.
4695          */
4696         if (!writable)
4697                 flags |= TNF_NO_GROUP;
4698
4699         /*
4700          * Flag if the page is shared between multiple address spaces. This
4701          * is later used when determining whether to group tasks together
4702          */
4703         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4704                 flags |= TNF_SHARED;
4705
4706         page_nid = page_to_nid(page);
4707         /*
4708          * For memory tiering mode, cpupid of slow memory page is used
4709          * to record page access time.  So use default value.
4710          */
4711         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4712             !node_is_toptier(page_nid))
4713                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4714         else
4715                 last_cpupid = page_cpupid_last(page);
4716         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4717                         &flags);
4718         if (target_nid == NUMA_NO_NODE) {
4719                 put_page(page);
4720                 goto out_map;
4721         }
4722         pte_unmap_unlock(vmf->pte, vmf->ptl);
4723         writable = false;
4724
4725         /* Migrate to the requested node */
4726         if (migrate_misplaced_page(page, vma, target_nid)) {
4727                 page_nid = target_nid;
4728                 flags |= TNF_MIGRATED;
4729         } else {
4730                 flags |= TNF_MIGRATE_FAIL;
4731                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4732                 spin_lock(vmf->ptl);
4733                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4734                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4735                         goto out;
4736                 }
4737                 goto out_map;
4738         }
4739
4740 out:
4741         if (page_nid != NUMA_NO_NODE)
4742                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4743         return 0;
4744 out_map:
4745         /*
4746          * Make it present again, depending on how arch implements
4747          * non-accessible ptes, some can allow access by kernel mode.
4748          */
4749         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4750         pte = pte_modify(old_pte, vma->vm_page_prot);
4751         pte = pte_mkyoung(pte);
4752         if (writable)
4753                 pte = pte_mkwrite(pte);
4754         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4755         update_mmu_cache(vma, vmf->address, vmf->pte);
4756         pte_unmap_unlock(vmf->pte, vmf->ptl);
4757         goto out;
4758 }
4759
4760 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4761 {
4762         if (vma_is_anonymous(vmf->vma))
4763                 return do_huge_pmd_anonymous_page(vmf);
4764         if (vmf->vma->vm_ops->huge_fault)
4765                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4766         return VM_FAULT_FALLBACK;
4767 }
4768
4769 /* `inline' is required to avoid gcc 4.1.2 build error */
4770 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4771 {
4772         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4773         vm_fault_t ret;
4774
4775         if (vma_is_anonymous(vmf->vma)) {
4776                 if (likely(!unshare) &&
4777                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4778                         return handle_userfault(vmf, VM_UFFD_WP);
4779                 return do_huge_pmd_wp_page(vmf);
4780         }
4781
4782         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4783                 if (vmf->vma->vm_ops->huge_fault) {
4784                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4785                         if (!(ret & VM_FAULT_FALLBACK))
4786                                 return ret;
4787                 }
4788         }
4789
4790         /* COW or write-notify handled on pte level: split pmd. */
4791         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4792
4793         return VM_FAULT_FALLBACK;
4794 }
4795
4796 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4797 {
4798 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4799         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4800         /* No support for anonymous transparent PUD pages yet */
4801         if (vma_is_anonymous(vmf->vma))
4802                 return VM_FAULT_FALLBACK;
4803         if (vmf->vma->vm_ops->huge_fault)
4804                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4805 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4806         return VM_FAULT_FALLBACK;
4807 }
4808
4809 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4810 {
4811 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4812         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4813         vm_fault_t ret;
4814
4815         /* No support for anonymous transparent PUD pages yet */
4816         if (vma_is_anonymous(vmf->vma))
4817                 goto split;
4818         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4819                 if (vmf->vma->vm_ops->huge_fault) {
4820                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4821                         if (!(ret & VM_FAULT_FALLBACK))
4822                                 return ret;
4823                 }
4824         }
4825 split:
4826         /* COW or write-notify not handled on PUD level: split pud.*/
4827         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4828 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4829         return VM_FAULT_FALLBACK;
4830 }
4831
4832 /*
4833  * These routines also need to handle stuff like marking pages dirty
4834  * and/or accessed for architectures that don't do it in hardware (most
4835  * RISC architectures).  The early dirtying is also good on the i386.
4836  *
4837  * There is also a hook called "update_mmu_cache()" that architectures
4838  * with external mmu caches can use to update those (ie the Sparc or
4839  * PowerPC hashed page tables that act as extended TLBs).
4840  *
4841  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4842  * concurrent faults).
4843  *
4844  * The mmap_lock may have been released depending on flags and our return value.
4845  * See filemap_fault() and __folio_lock_or_retry().
4846  */
4847 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4848 {
4849         pte_t entry;
4850
4851         if (unlikely(pmd_none(*vmf->pmd))) {
4852                 /*
4853                  * Leave __pte_alloc() until later: because vm_ops->fault may
4854                  * want to allocate huge page, and if we expose page table
4855                  * for an instant, it will be difficult to retract from
4856                  * concurrent faults and from rmap lookups.
4857                  */
4858                 vmf->pte = NULL;
4859                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4860         } else {
4861                 /*
4862                  * If a huge pmd materialized under us just retry later.  Use
4863                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4864                  * of pmd_trans_huge() to ensure the pmd didn't become
4865                  * pmd_trans_huge under us and then back to pmd_none, as a
4866                  * result of MADV_DONTNEED running immediately after a huge pmd
4867                  * fault in a different thread of this mm, in turn leading to a
4868                  * misleading pmd_trans_huge() retval. All we have to ensure is
4869                  * that it is a regular pmd that we can walk with
4870                  * pte_offset_map() and we can do that through an atomic read
4871                  * in C, which is what pmd_trans_unstable() provides.
4872                  */
4873                 if (pmd_devmap_trans_unstable(vmf->pmd))
4874                         return 0;
4875                 /*
4876                  * A regular pmd is established and it can't morph into a huge
4877                  * pmd from under us anymore at this point because we hold the
4878                  * mmap_lock read mode and khugepaged takes it in write mode.
4879                  * So now it's safe to run pte_offset_map().
4880                  */
4881                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4882                 vmf->orig_pte = *vmf->pte;
4883                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4884
4885                 /*
4886                  * some architectures can have larger ptes than wordsize,
4887                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4888                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4889                  * accesses.  The code below just needs a consistent view
4890                  * for the ifs and we later double check anyway with the
4891                  * ptl lock held. So here a barrier will do.
4892                  */
4893                 barrier();
4894                 if (pte_none(vmf->orig_pte)) {
4895                         pte_unmap(vmf->pte);
4896                         vmf->pte = NULL;
4897                 }
4898         }
4899
4900         if (!vmf->pte) {
4901                 if (vma_is_anonymous(vmf->vma))
4902                         return do_anonymous_page(vmf);
4903                 else
4904                         return do_fault(vmf);
4905         }
4906
4907         if (!pte_present(vmf->orig_pte))
4908                 return do_swap_page(vmf);
4909
4910         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4911                 return do_numa_page(vmf);
4912
4913         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4914         spin_lock(vmf->ptl);
4915         entry = vmf->orig_pte;
4916         if (unlikely(!pte_same(*vmf->pte, entry))) {
4917                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4918                 goto unlock;
4919         }
4920         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4921                 if (!pte_write(entry))
4922                         return do_wp_page(vmf);
4923                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4924                         entry = pte_mkdirty(entry);
4925         }
4926         entry = pte_mkyoung(entry);
4927         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4928                                 vmf->flags & FAULT_FLAG_WRITE)) {
4929                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4930         } else {
4931                 /* Skip spurious TLB flush for retried page fault */
4932                 if (vmf->flags & FAULT_FLAG_TRIED)
4933                         goto unlock;
4934                 /*
4935                  * This is needed only for protection faults but the arch code
4936                  * is not yet telling us if this is a protection fault or not.
4937                  * This still avoids useless tlb flushes for .text page faults
4938                  * with threads.
4939                  */
4940                 if (vmf->flags & FAULT_FLAG_WRITE)
4941                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4942         }
4943 unlock:
4944         pte_unmap_unlock(vmf->pte, vmf->ptl);
4945         return 0;
4946 }
4947
4948 /*
4949  * By the time we get here, we already hold the mm semaphore
4950  *
4951  * The mmap_lock may have been released depending on flags and our
4952  * return value.  See filemap_fault() and __folio_lock_or_retry().
4953  */
4954 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4955                 unsigned long address, unsigned int flags)
4956 {
4957         struct vm_fault vmf = {
4958                 .vma = vma,
4959                 .address = address & PAGE_MASK,
4960                 .real_address = address,
4961                 .flags = flags,
4962                 .pgoff = linear_page_index(vma, address),
4963                 .gfp_mask = __get_fault_gfp_mask(vma),
4964         };
4965         struct mm_struct *mm = vma->vm_mm;
4966         unsigned long vm_flags = vma->vm_flags;
4967         pgd_t *pgd;
4968         p4d_t *p4d;
4969         vm_fault_t ret;
4970
4971         pgd = pgd_offset(mm, address);
4972         p4d = p4d_alloc(mm, pgd, address);
4973         if (!p4d)
4974                 return VM_FAULT_OOM;
4975
4976         vmf.pud = pud_alloc(mm, p4d, address);
4977         if (!vmf.pud)
4978                 return VM_FAULT_OOM;
4979 retry_pud:
4980         if (pud_none(*vmf.pud) &&
4981             hugepage_vma_check(vma, vm_flags, false, true, true)) {
4982                 ret = create_huge_pud(&vmf);
4983                 if (!(ret & VM_FAULT_FALLBACK))
4984                         return ret;
4985         } else {
4986                 pud_t orig_pud = *vmf.pud;
4987
4988                 barrier();
4989                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4990
4991                         /*
4992                          * TODO once we support anonymous PUDs: NUMA case and
4993                          * FAULT_FLAG_UNSHARE handling.
4994                          */
4995                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
4996                                 ret = wp_huge_pud(&vmf, orig_pud);
4997                                 if (!(ret & VM_FAULT_FALLBACK))
4998                                         return ret;
4999                         } else {
5000                                 huge_pud_set_accessed(&vmf, orig_pud);
5001                                 return 0;
5002                         }
5003                 }
5004         }
5005
5006         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5007         if (!vmf.pmd)
5008                 return VM_FAULT_OOM;
5009
5010         /* Huge pud page fault raced with pmd_alloc? */
5011         if (pud_trans_unstable(vmf.pud))
5012                 goto retry_pud;
5013
5014         if (pmd_none(*vmf.pmd) &&
5015             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5016                 ret = create_huge_pmd(&vmf);
5017                 if (!(ret & VM_FAULT_FALLBACK))
5018                         return ret;
5019         } else {
5020                 vmf.orig_pmd = *vmf.pmd;
5021
5022                 barrier();
5023                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5024                         VM_BUG_ON(thp_migration_supported() &&
5025                                           !is_pmd_migration_entry(vmf.orig_pmd));
5026                         if (is_pmd_migration_entry(vmf.orig_pmd))
5027                                 pmd_migration_entry_wait(mm, vmf.pmd);
5028                         return 0;
5029                 }
5030                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5031                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5032                                 return do_huge_pmd_numa_page(&vmf);
5033
5034                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5035                             !pmd_write(vmf.orig_pmd)) {
5036                                 ret = wp_huge_pmd(&vmf);
5037                                 if (!(ret & VM_FAULT_FALLBACK))
5038                                         return ret;
5039                         } else {
5040                                 huge_pmd_set_accessed(&vmf);
5041                                 return 0;
5042                         }
5043                 }
5044         }
5045
5046         return handle_pte_fault(&vmf);
5047 }
5048
5049 /**
5050  * mm_account_fault - Do page fault accounting
5051  *
5052  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5053  *        of perf event counters, but we'll still do the per-task accounting to
5054  *        the task who triggered this page fault.
5055  * @address: the faulted address.
5056  * @flags: the fault flags.
5057  * @ret: the fault retcode.
5058  *
5059  * This will take care of most of the page fault accounting.  Meanwhile, it
5060  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5061  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5062  * still be in per-arch page fault handlers at the entry of page fault.
5063  */
5064 static inline void mm_account_fault(struct pt_regs *regs,
5065                                     unsigned long address, unsigned int flags,
5066                                     vm_fault_t ret)
5067 {
5068         bool major;
5069
5070         /*
5071          * We don't do accounting for some specific faults:
5072          *
5073          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5074          *   includes arch_vma_access_permitted() failing before reaching here.
5075          *   So this is not a "this many hardware page faults" counter.  We
5076          *   should use the hw profiling for that.
5077          *
5078          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5079          *   once they're completed.
5080          */
5081         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5082                 return;
5083
5084         /*
5085          * We define the fault as a major fault when the final successful fault
5086          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5087          * handle it immediately previously).
5088          */
5089         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5090
5091         if (major)
5092                 current->maj_flt++;
5093         else
5094                 current->min_flt++;
5095
5096         /*
5097          * If the fault is done for GUP, regs will be NULL.  We only do the
5098          * accounting for the per thread fault counters who triggered the
5099          * fault, and we skip the perf event updates.
5100          */
5101         if (!regs)
5102                 return;
5103
5104         if (major)
5105                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5106         else
5107                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5108 }
5109
5110 #ifdef CONFIG_LRU_GEN
5111 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5112 {
5113         /* the LRU algorithm only applies to accesses with recency */
5114         current->in_lru_fault = vma_has_recency(vma);
5115 }
5116
5117 static void lru_gen_exit_fault(void)
5118 {
5119         current->in_lru_fault = false;
5120 }
5121 #else
5122 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5123 {
5124 }
5125
5126 static void lru_gen_exit_fault(void)
5127 {
5128 }
5129 #endif /* CONFIG_LRU_GEN */
5130
5131 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5132                                        unsigned int *flags)
5133 {
5134         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5135                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5136                         return VM_FAULT_SIGSEGV;
5137                 /*
5138                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5139                  * just treat it like an ordinary read-fault otherwise.
5140                  */
5141                 if (!is_cow_mapping(vma->vm_flags))
5142                         *flags &= ~FAULT_FLAG_UNSHARE;
5143         } else if (*flags & FAULT_FLAG_WRITE) {
5144                 /* Write faults on read-only mappings are impossible ... */
5145                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5146                         return VM_FAULT_SIGSEGV;
5147                 /* ... and FOLL_FORCE only applies to COW mappings. */
5148                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5149                                  !is_cow_mapping(vma->vm_flags)))
5150                         return VM_FAULT_SIGSEGV;
5151         }
5152         return 0;
5153 }
5154
5155 /*
5156  * By the time we get here, we already hold the mm semaphore
5157  *
5158  * The mmap_lock may have been released depending on flags and our
5159  * return value.  See filemap_fault() and __folio_lock_or_retry().
5160  */
5161 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5162                            unsigned int flags, struct pt_regs *regs)
5163 {
5164         vm_fault_t ret;
5165
5166         __set_current_state(TASK_RUNNING);
5167
5168         count_vm_event(PGFAULT);
5169         count_memcg_event_mm(vma->vm_mm, PGFAULT);
5170
5171         ret = sanitize_fault_flags(vma, &flags);
5172         if (ret)
5173                 return ret;
5174
5175         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5176                                             flags & FAULT_FLAG_INSTRUCTION,
5177                                             flags & FAULT_FLAG_REMOTE))
5178                 return VM_FAULT_SIGSEGV;
5179
5180         /*
5181          * Enable the memcg OOM handling for faults triggered in user
5182          * space.  Kernel faults are handled more gracefully.
5183          */
5184         if (flags & FAULT_FLAG_USER)
5185                 mem_cgroup_enter_user_fault();
5186
5187         lru_gen_enter_fault(vma);
5188
5189         if (unlikely(is_vm_hugetlb_page(vma)))
5190                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5191         else
5192                 ret = __handle_mm_fault(vma, address, flags);
5193
5194         lru_gen_exit_fault();
5195
5196         if (flags & FAULT_FLAG_USER) {
5197                 mem_cgroup_exit_user_fault();
5198                 /*
5199                  * The task may have entered a memcg OOM situation but
5200                  * if the allocation error was handled gracefully (no
5201                  * VM_FAULT_OOM), there is no need to kill anything.
5202                  * Just clean up the OOM state peacefully.
5203                  */
5204                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5205                         mem_cgroup_oom_synchronize(false);
5206         }
5207
5208         mm_account_fault(regs, address, flags, ret);
5209
5210         return ret;
5211 }
5212 EXPORT_SYMBOL_GPL(handle_mm_fault);
5213
5214 #ifndef __PAGETABLE_P4D_FOLDED
5215 /*
5216  * Allocate p4d page table.
5217  * We've already handled the fast-path in-line.
5218  */
5219 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5220 {
5221         p4d_t *new = p4d_alloc_one(mm, address);
5222         if (!new)
5223                 return -ENOMEM;
5224
5225         spin_lock(&mm->page_table_lock);
5226         if (pgd_present(*pgd)) {        /* Another has populated it */
5227                 p4d_free(mm, new);
5228         } else {
5229                 smp_wmb(); /* See comment in pmd_install() */
5230                 pgd_populate(mm, pgd, new);
5231         }
5232         spin_unlock(&mm->page_table_lock);
5233         return 0;
5234 }
5235 #endif /* __PAGETABLE_P4D_FOLDED */
5236
5237 #ifndef __PAGETABLE_PUD_FOLDED
5238 /*
5239  * Allocate page upper directory.
5240  * We've already handled the fast-path in-line.
5241  */
5242 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5243 {
5244         pud_t *new = pud_alloc_one(mm, address);
5245         if (!new)
5246                 return -ENOMEM;
5247
5248         spin_lock(&mm->page_table_lock);
5249         if (!p4d_present(*p4d)) {
5250                 mm_inc_nr_puds(mm);
5251                 smp_wmb(); /* See comment in pmd_install() */
5252                 p4d_populate(mm, p4d, new);
5253         } else  /* Another has populated it */
5254                 pud_free(mm, new);
5255         spin_unlock(&mm->page_table_lock);
5256         return 0;
5257 }
5258 #endif /* __PAGETABLE_PUD_FOLDED */
5259
5260 #ifndef __PAGETABLE_PMD_FOLDED
5261 /*
5262  * Allocate page middle directory.
5263  * We've already handled the fast-path in-line.
5264  */
5265 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5266 {
5267         spinlock_t *ptl;
5268         pmd_t *new = pmd_alloc_one(mm, address);
5269         if (!new)
5270                 return -ENOMEM;
5271
5272         ptl = pud_lock(mm, pud);
5273         if (!pud_present(*pud)) {
5274                 mm_inc_nr_pmds(mm);
5275                 smp_wmb(); /* See comment in pmd_install() */
5276                 pud_populate(mm, pud, new);
5277         } else {        /* Another has populated it */
5278                 pmd_free(mm, new);
5279         }
5280         spin_unlock(ptl);
5281         return 0;
5282 }
5283 #endif /* __PAGETABLE_PMD_FOLDED */
5284
5285 /**
5286  * follow_pte - look up PTE at a user virtual address
5287  * @mm: the mm_struct of the target address space
5288  * @address: user virtual address
5289  * @ptepp: location to store found PTE
5290  * @ptlp: location to store the lock for the PTE
5291  *
5292  * On a successful return, the pointer to the PTE is stored in @ptepp;
5293  * the corresponding lock is taken and its location is stored in @ptlp.
5294  * The contents of the PTE are only stable until @ptlp is released;
5295  * any further use, if any, must be protected against invalidation
5296  * with MMU notifiers.
5297  *
5298  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5299  * should be taken for read.
5300  *
5301  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5302  * it is not a good general-purpose API.
5303  *
5304  * Return: zero on success, -ve otherwise.
5305  */
5306 int follow_pte(struct mm_struct *mm, unsigned long address,
5307                pte_t **ptepp, spinlock_t **ptlp)
5308 {
5309         pgd_t *pgd;
5310         p4d_t *p4d;
5311         pud_t *pud;
5312         pmd_t *pmd;
5313         pte_t *ptep;
5314
5315         pgd = pgd_offset(mm, address);
5316         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5317                 goto out;
5318
5319         p4d = p4d_offset(pgd, address);
5320         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5321                 goto out;
5322
5323         pud = pud_offset(p4d, address);
5324         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5325                 goto out;
5326
5327         pmd = pmd_offset(pud, address);
5328         VM_BUG_ON(pmd_trans_huge(*pmd));
5329
5330         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5331                 goto out;
5332
5333         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5334         if (!pte_present(*ptep))
5335                 goto unlock;
5336         *ptepp = ptep;
5337         return 0;
5338 unlock:
5339         pte_unmap_unlock(ptep, *ptlp);
5340 out:
5341         return -EINVAL;
5342 }
5343 EXPORT_SYMBOL_GPL(follow_pte);
5344
5345 /**
5346  * follow_pfn - look up PFN at a user virtual address
5347  * @vma: memory mapping
5348  * @address: user virtual address
5349  * @pfn: location to store found PFN
5350  *
5351  * Only IO mappings and raw PFN mappings are allowed.
5352  *
5353  * This function does not allow the caller to read the permissions
5354  * of the PTE.  Do not use it.
5355  *
5356  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5357  */
5358 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5359         unsigned long *pfn)
5360 {
5361         int ret = -EINVAL;
5362         spinlock_t *ptl;
5363         pte_t *ptep;
5364
5365         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5366                 return ret;
5367
5368         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5369         if (ret)
5370                 return ret;
5371         *pfn = pte_pfn(*ptep);
5372         pte_unmap_unlock(ptep, ptl);
5373         return 0;
5374 }
5375 EXPORT_SYMBOL(follow_pfn);
5376
5377 #ifdef CONFIG_HAVE_IOREMAP_PROT
5378 int follow_phys(struct vm_area_struct *vma,
5379                 unsigned long address, unsigned int flags,
5380                 unsigned long *prot, resource_size_t *phys)
5381 {
5382         int ret = -EINVAL;
5383         pte_t *ptep, pte;
5384         spinlock_t *ptl;
5385
5386         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5387                 goto out;
5388
5389         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5390                 goto out;
5391         pte = *ptep;
5392
5393         if ((flags & FOLL_WRITE) && !pte_write(pte))
5394                 goto unlock;
5395
5396         *prot = pgprot_val(pte_pgprot(pte));
5397         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5398
5399         ret = 0;
5400 unlock:
5401         pte_unmap_unlock(ptep, ptl);
5402 out:
5403         return ret;
5404 }
5405
5406 /**
5407  * generic_access_phys - generic implementation for iomem mmap access
5408  * @vma: the vma to access
5409  * @addr: userspace address, not relative offset within @vma
5410  * @buf: buffer to read/write
5411  * @len: length of transfer
5412  * @write: set to FOLL_WRITE when writing, otherwise reading
5413  *
5414  * This is a generic implementation for &vm_operations_struct.access for an
5415  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5416  * not page based.
5417  */
5418 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5419                         void *buf, int len, int write)
5420 {
5421         resource_size_t phys_addr;
5422         unsigned long prot = 0;
5423         void __iomem *maddr;
5424         pte_t *ptep, pte;
5425         spinlock_t *ptl;
5426         int offset = offset_in_page(addr);
5427         int ret = -EINVAL;
5428
5429         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5430                 return -EINVAL;
5431
5432 retry:
5433         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5434                 return -EINVAL;
5435         pte = *ptep;
5436         pte_unmap_unlock(ptep, ptl);
5437
5438         prot = pgprot_val(pte_pgprot(pte));
5439         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5440
5441         if ((write & FOLL_WRITE) && !pte_write(pte))
5442                 return -EINVAL;
5443
5444         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5445         if (!maddr)
5446                 return -ENOMEM;
5447
5448         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5449                 goto out_unmap;
5450
5451         if (!pte_same(pte, *ptep)) {
5452                 pte_unmap_unlock(ptep, ptl);
5453                 iounmap(maddr);
5454
5455                 goto retry;
5456         }
5457
5458         if (write)
5459                 memcpy_toio(maddr + offset, buf, len);
5460         else
5461                 memcpy_fromio(buf, maddr + offset, len);
5462         ret = len;
5463         pte_unmap_unlock(ptep, ptl);
5464 out_unmap:
5465         iounmap(maddr);
5466
5467         return ret;
5468 }
5469 EXPORT_SYMBOL_GPL(generic_access_phys);
5470 #endif
5471
5472 /*
5473  * Access another process' address space as given in mm.
5474  */
5475 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5476                        int len, unsigned int gup_flags)
5477 {
5478         struct vm_area_struct *vma;
5479         void *old_buf = buf;
5480         int write = gup_flags & FOLL_WRITE;
5481
5482         if (mmap_read_lock_killable(mm))
5483                 return 0;
5484
5485         /* ignore errors, just check how much was successfully transferred */
5486         while (len) {
5487                 int bytes, ret, offset;
5488                 void *maddr;
5489                 struct page *page = NULL;
5490
5491                 ret = get_user_pages_remote(mm, addr, 1,
5492                                 gup_flags, &page, &vma, NULL);
5493                 if (ret <= 0) {
5494 #ifndef CONFIG_HAVE_IOREMAP_PROT
5495                         break;
5496 #else
5497                         /*
5498                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5499                          * we can access using slightly different code.
5500                          */
5501                         vma = vma_lookup(mm, addr);
5502                         if (!vma)
5503                                 break;
5504                         if (vma->vm_ops && vma->vm_ops->access)
5505                                 ret = vma->vm_ops->access(vma, addr, buf,
5506                                                           len, write);
5507                         if (ret <= 0)
5508                                 break;
5509                         bytes = ret;
5510 #endif
5511                 } else {
5512                         bytes = len;
5513                         offset = addr & (PAGE_SIZE-1);
5514                         if (bytes > PAGE_SIZE-offset)
5515                                 bytes = PAGE_SIZE-offset;
5516
5517                         maddr = kmap(page);
5518                         if (write) {
5519                                 copy_to_user_page(vma, page, addr,
5520                                                   maddr + offset, buf, bytes);
5521                                 set_page_dirty_lock(page);
5522                         } else {
5523                                 copy_from_user_page(vma, page, addr,
5524                                                     buf, maddr + offset, bytes);
5525                         }
5526                         kunmap(page);
5527                         put_page(page);
5528                 }
5529                 len -= bytes;
5530                 buf += bytes;
5531                 addr += bytes;
5532         }
5533         mmap_read_unlock(mm);
5534
5535         return buf - old_buf;
5536 }
5537
5538 /**
5539  * access_remote_vm - access another process' address space
5540  * @mm:         the mm_struct of the target address space
5541  * @addr:       start address to access
5542  * @buf:        source or destination buffer
5543  * @len:        number of bytes to transfer
5544  * @gup_flags:  flags modifying lookup behaviour
5545  *
5546  * The caller must hold a reference on @mm.
5547  *
5548  * Return: number of bytes copied from source to destination.
5549  */
5550 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5551                 void *buf, int len, unsigned int gup_flags)
5552 {
5553         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5554 }
5555
5556 /*
5557  * Access another process' address space.
5558  * Source/target buffer must be kernel space,
5559  * Do not walk the page table directly, use get_user_pages
5560  */
5561 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5562                 void *buf, int len, unsigned int gup_flags)
5563 {
5564         struct mm_struct *mm;
5565         int ret;
5566
5567         mm = get_task_mm(tsk);
5568         if (!mm)
5569                 return 0;
5570
5571         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5572
5573         mmput(mm);
5574
5575         return ret;
5576 }
5577 EXPORT_SYMBOL_GPL(access_process_vm);
5578
5579 /*
5580  * Print the name of a VMA.
5581  */
5582 void print_vma_addr(char *prefix, unsigned long ip)
5583 {
5584         struct mm_struct *mm = current->mm;
5585         struct vm_area_struct *vma;
5586
5587         /*
5588          * we might be running from an atomic context so we cannot sleep
5589          */
5590         if (!mmap_read_trylock(mm))
5591                 return;
5592
5593         vma = find_vma(mm, ip);
5594         if (vma && vma->vm_file) {
5595                 struct file *f = vma->vm_file;
5596                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5597                 if (buf) {
5598                         char *p;
5599
5600                         p = file_path(f, buf, PAGE_SIZE);
5601                         if (IS_ERR(p))
5602                                 p = "?";
5603                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5604                                         vma->vm_start,
5605                                         vma->vm_end - vma->vm_start);
5606                         free_page((unsigned long)buf);
5607                 }
5608         }
5609         mmap_read_unlock(mm);
5610 }
5611
5612 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5613 void __might_fault(const char *file, int line)
5614 {
5615         if (pagefault_disabled())
5616                 return;
5617         __might_sleep(file, line);
5618 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5619         if (current->mm)
5620                 might_lock_read(&current->mm->mmap_lock);
5621 #endif
5622 }
5623 EXPORT_SYMBOL(__might_fault);
5624 #endif
5625
5626 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5627 /*
5628  * Process all subpages of the specified huge page with the specified
5629  * operation.  The target subpage will be processed last to keep its
5630  * cache lines hot.
5631  */
5632 static inline void process_huge_page(
5633         unsigned long addr_hint, unsigned int pages_per_huge_page,
5634         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5635         void *arg)
5636 {
5637         int i, n, base, l;
5638         unsigned long addr = addr_hint &
5639                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5640
5641         /* Process target subpage last to keep its cache lines hot */
5642         might_sleep();
5643         n = (addr_hint - addr) / PAGE_SIZE;
5644         if (2 * n <= pages_per_huge_page) {
5645                 /* If target subpage in first half of huge page */
5646                 base = 0;
5647                 l = n;
5648                 /* Process subpages at the end of huge page */
5649                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5650                         cond_resched();
5651                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5652                 }
5653         } else {
5654                 /* If target subpage in second half of huge page */
5655                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5656                 l = pages_per_huge_page - n;
5657                 /* Process subpages at the begin of huge page */
5658                 for (i = 0; i < base; i++) {
5659                         cond_resched();
5660                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5661                 }
5662         }
5663         /*
5664          * Process remaining subpages in left-right-left-right pattern
5665          * towards the target subpage
5666          */
5667         for (i = 0; i < l; i++) {
5668                 int left_idx = base + i;
5669                 int right_idx = base + 2 * l - 1 - i;
5670
5671                 cond_resched();
5672                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5673                 cond_resched();
5674                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5675         }
5676 }
5677
5678 static void clear_gigantic_page(struct page *page,
5679                                 unsigned long addr,
5680                                 unsigned int pages_per_huge_page)
5681 {
5682         int i;
5683         struct page *p;
5684
5685         might_sleep();
5686         for (i = 0; i < pages_per_huge_page; i++) {
5687                 p = nth_page(page, i);
5688                 cond_resched();
5689                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5690         }
5691 }
5692
5693 static void clear_subpage(unsigned long addr, int idx, void *arg)
5694 {
5695         struct page *page = arg;
5696
5697         clear_user_highpage(page + idx, addr);
5698 }
5699
5700 void clear_huge_page(struct page *page,
5701                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5702 {
5703         unsigned long addr = addr_hint &
5704                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5705
5706         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5707                 clear_gigantic_page(page, addr, pages_per_huge_page);
5708                 return;
5709         }
5710
5711         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5712 }
5713
5714 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5715                                     unsigned long addr,
5716                                     struct vm_area_struct *vma,
5717                                     unsigned int pages_per_huge_page)
5718 {
5719         int i;
5720         struct page *dst_base = dst;
5721         struct page *src_base = src;
5722
5723         for (i = 0; i < pages_per_huge_page; i++) {
5724                 dst = nth_page(dst_base, i);
5725                 src = nth_page(src_base, i);
5726
5727                 cond_resched();
5728                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5729         }
5730 }
5731
5732 struct copy_subpage_arg {
5733         struct page *dst;
5734         struct page *src;
5735         struct vm_area_struct *vma;
5736 };
5737
5738 static void copy_subpage(unsigned long addr, int idx, void *arg)
5739 {
5740         struct copy_subpage_arg *copy_arg = arg;
5741
5742         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5743                            addr, copy_arg->vma);
5744 }
5745
5746 void copy_user_huge_page(struct page *dst, struct page *src,
5747                          unsigned long addr_hint, struct vm_area_struct *vma,
5748                          unsigned int pages_per_huge_page)
5749 {
5750         unsigned long addr = addr_hint &
5751                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5752         struct copy_subpage_arg arg = {
5753                 .dst = dst,
5754                 .src = src,
5755                 .vma = vma,
5756         };
5757
5758         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5759                 copy_user_gigantic_page(dst, src, addr, vma,
5760                                         pages_per_huge_page);
5761                 return;
5762         }
5763
5764         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5765 }
5766
5767 long copy_huge_page_from_user(struct page *dst_page,
5768                                 const void __user *usr_src,
5769                                 unsigned int pages_per_huge_page,
5770                                 bool allow_pagefault)
5771 {
5772         void *page_kaddr;
5773         unsigned long i, rc = 0;
5774         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5775         struct page *subpage;
5776
5777         for (i = 0; i < pages_per_huge_page; i++) {
5778                 subpage = nth_page(dst_page, i);
5779                 if (allow_pagefault)
5780                         page_kaddr = kmap(subpage);
5781                 else
5782                         page_kaddr = kmap_atomic(subpage);
5783                 rc = copy_from_user(page_kaddr,
5784                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5785                 if (allow_pagefault)
5786                         kunmap(subpage);
5787                 else
5788                         kunmap_atomic(page_kaddr);
5789
5790                 ret_val -= (PAGE_SIZE - rc);
5791                 if (rc)
5792                         break;
5793
5794                 flush_dcache_page(subpage);
5795
5796                 cond_resched();
5797         }
5798         return ret_val;
5799 }
5800 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5801
5802 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5803
5804 static struct kmem_cache *page_ptl_cachep;
5805
5806 void __init ptlock_cache_init(void)
5807 {
5808         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5809                         SLAB_PANIC, NULL);
5810 }
5811
5812 bool ptlock_alloc(struct page *page)
5813 {
5814         spinlock_t *ptl;
5815
5816         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5817         if (!ptl)
5818                 return false;
5819         page->ptl = ptl;
5820         return true;
5821 }
5822
5823 void ptlock_free(struct page *page)
5824 {
5825         kmem_cache_free(page_ptl_cachep, page->ptl);
5826 }
5827 #endif
This page took 0.356978 seconds and 4 git commands to generate.