2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
27 #include <net/inet_common.h>
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
33 int sysctl_tcp_abort_on_overflow __read_mostly;
35 struct inet_timewait_death_row tcp_death_row = {
36 .sysctl_max_tw_buckets = NR_FILE * 2,
37 .hashinfo = &tcp_hashinfo,
39 EXPORT_SYMBOL_GPL(tcp_death_row);
41 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
45 if (after(end_seq, s_win) && before(seq, e_win))
47 return seq == e_win && seq == end_seq;
50 static enum tcp_tw_status
51 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
52 const struct sk_buff *skb, int mib_idx)
54 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
56 if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
57 &tcptw->tw_last_oow_ack_time)) {
58 /* Send ACK. Note, we do not put the bucket,
59 * it will be released by caller.
64 /* We are rate-limiting, so just release the tw sock and drop skb. */
66 return TCP_TW_SUCCESS;
70 * * Main purpose of TIME-WAIT state is to close connection gracefully,
71 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
72 * (and, probably, tail of data) and one or more our ACKs are lost.
73 * * What is TIME-WAIT timeout? It is associated with maximal packet
74 * lifetime in the internet, which results in wrong conclusion, that
75 * it is set to catch "old duplicate segments" wandering out of their path.
76 * It is not quite correct. This timeout is calculated so that it exceeds
77 * maximal retransmission timeout enough to allow to lose one (or more)
78 * segments sent by peer and our ACKs. This time may be calculated from RTO.
79 * * When TIME-WAIT socket receives RST, it means that another end
80 * finally closed and we are allowed to kill TIME-WAIT too.
81 * * Second purpose of TIME-WAIT is catching old duplicate segments.
82 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
83 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
84 * * If we invented some more clever way to catch duplicates
85 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
87 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
88 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
89 * from the very beginning.
91 * NOTE. With recycling (and later with fin-wait-2) TW bucket
92 * is _not_ stateless. It means, that strictly speaking we must
93 * spinlock it. I do not want! Well, probability of misbehaviour
94 * is ridiculously low and, seems, we could use some mb() tricks
95 * to avoid misread sequence numbers, states etc. --ANK
97 * We don't need to initialize tmp_out.sack_ok as we don't use the results
100 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
101 const struct tcphdr *th)
103 struct tcp_options_received tmp_opt;
104 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
105 bool paws_reject = false;
107 tmp_opt.saw_tstamp = 0;
108 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
109 tcp_parse_options(skb, &tmp_opt, 0, NULL);
111 if (tmp_opt.saw_tstamp) {
112 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
113 tmp_opt.ts_recent = tcptw->tw_ts_recent;
114 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
115 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
119 if (tw->tw_substate == TCP_FIN_WAIT2) {
120 /* Just repeat all the checks of tcp_rcv_state_process() */
122 /* Out of window, send ACK */
124 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
126 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
127 return tcp_timewait_check_oow_rate_limit(
128 tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
133 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
138 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
139 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
141 return TCP_TW_SUCCESS;
144 /* New data or FIN. If new data arrive after half-duplex close,
148 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
151 /* FIN arrived, enter true time-wait state. */
152 tw->tw_substate = TCP_TIME_WAIT;
153 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
154 if (tmp_opt.saw_tstamp) {
155 tcptw->tw_ts_recent_stamp = get_seconds();
156 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
159 if (tcp_death_row.sysctl_tw_recycle &&
160 tcptw->tw_ts_recent_stamp &&
161 tcp_tw_remember_stamp(tw))
162 inet_twsk_reschedule(tw, tw->tw_timeout);
164 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
169 * Now real TIME-WAIT state.
172 * "When a connection is [...] on TIME-WAIT state [...]
173 * [a TCP] MAY accept a new SYN from the remote TCP to
174 * reopen the connection directly, if it:
176 * (1) assigns its initial sequence number for the new
177 * connection to be larger than the largest sequence
178 * number it used on the previous connection incarnation,
181 * (2) returns to TIME-WAIT state if the SYN turns out
182 * to be an old duplicate".
186 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
187 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
188 /* In window segment, it may be only reset or bare ack. */
191 /* This is TIME_WAIT assassination, in two flavors.
192 * Oh well... nobody has a sufficient solution to this
195 if (sysctl_tcp_rfc1337 == 0) {
197 inet_twsk_deschedule_put(tw);
198 return TCP_TW_SUCCESS;
201 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
203 if (tmp_opt.saw_tstamp) {
204 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
205 tcptw->tw_ts_recent_stamp = get_seconds();
209 return TCP_TW_SUCCESS;
212 /* Out of window segment.
214 All the segments are ACKed immediately.
216 The only exception is new SYN. We accept it, if it is
217 not old duplicate and we are not in danger to be killed
218 by delayed old duplicates. RFC check is that it has
219 newer sequence number works at rates <40Mbit/sec.
220 However, if paws works, it is reliable AND even more,
221 we even may relax silly seq space cutoff.
223 RED-PEN: we violate main RFC requirement, if this SYN will appear
224 old duplicate (i.e. we receive RST in reply to SYN-ACK),
225 we must return socket to time-wait state. It is not good,
229 if (th->syn && !th->rst && !th->ack && !paws_reject &&
230 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
231 (tmp_opt.saw_tstamp &&
232 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
233 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
236 TCP_SKB_CB(skb)->tcp_tw_isn = isn;
241 NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
244 /* In this case we must reset the TIMEWAIT timer.
246 * If it is ACKless SYN it may be both old duplicate
247 * and new good SYN with random sequence number <rcv_nxt.
248 * Do not reschedule in the last case.
250 if (paws_reject || th->ack)
251 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
253 return tcp_timewait_check_oow_rate_limit(
254 tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
257 return TCP_TW_SUCCESS;
259 EXPORT_SYMBOL(tcp_timewait_state_process);
262 * Move a socket to time-wait or dead fin-wait-2 state.
264 void tcp_time_wait(struct sock *sk, int state, int timeo)
266 const struct inet_connection_sock *icsk = inet_csk(sk);
267 const struct tcp_sock *tp = tcp_sk(sk);
268 struct inet_timewait_sock *tw;
269 bool recycle_ok = false;
271 if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
272 recycle_ok = tcp_remember_stamp(sk);
274 tw = inet_twsk_alloc(sk, &tcp_death_row, state);
277 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
278 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
279 struct inet_sock *inet = inet_sk(sk);
281 tw->tw_transparent = inet->transparent;
282 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
283 tcptw->tw_rcv_nxt = tp->rcv_nxt;
284 tcptw->tw_snd_nxt = tp->snd_nxt;
285 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
286 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
287 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
288 tcptw->tw_ts_offset = tp->tsoffset;
289 tcptw->tw_last_oow_ack_time = 0;
291 #if IS_ENABLED(CONFIG_IPV6)
292 if (tw->tw_family == PF_INET6) {
293 struct ipv6_pinfo *np = inet6_sk(sk);
295 tw->tw_v6_daddr = sk->sk_v6_daddr;
296 tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
297 tw->tw_tclass = np->tclass;
298 tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
299 tw->tw_ipv6only = sk->sk_ipv6only;
303 #ifdef CONFIG_TCP_MD5SIG
305 * The timewait bucket does not have the key DB from the
306 * sock structure. We just make a quick copy of the
307 * md5 key being used (if indeed we are using one)
308 * so the timewait ack generating code has the key.
311 struct tcp_md5sig_key *key;
312 tcptw->tw_md5_key = NULL;
313 key = tp->af_specific->md5_lookup(sk, sk);
315 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
316 if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
322 /* Get the TIME_WAIT timeout firing. */
327 tw->tw_timeout = rto;
329 tw->tw_timeout = TCP_TIMEWAIT_LEN;
330 if (state == TCP_TIME_WAIT)
331 timeo = TCP_TIMEWAIT_LEN;
334 inet_twsk_schedule(tw, timeo);
335 /* Linkage updates. */
336 __inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
339 /* Sorry, if we're out of memory, just CLOSE this
340 * socket up. We've got bigger problems than
341 * non-graceful socket closings.
343 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
346 tcp_update_metrics(sk);
350 void tcp_twsk_destructor(struct sock *sk)
352 #ifdef CONFIG_TCP_MD5SIG
353 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
355 if (twsk->tw_md5_key)
356 kfree_rcu(twsk->tw_md5_key, rcu);
359 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
361 /* Warning : This function is called without sk_listener being locked.
362 * Be sure to read socket fields once, as their value could change under us.
364 void tcp_openreq_init_rwin(struct request_sock *req,
365 const struct sock *sk_listener,
366 const struct dst_entry *dst)
368 struct inet_request_sock *ireq = inet_rsk(req);
369 const struct tcp_sock *tp = tcp_sk(sk_listener);
370 u16 user_mss = READ_ONCE(tp->rx_opt.user_mss);
371 int full_space = tcp_full_space(sk_listener);
372 int mss = dst_metric_advmss(dst);
376 if (user_mss && user_mss < mss)
379 window_clamp = READ_ONCE(tp->window_clamp);
380 /* Set this up on the first call only */
381 req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
383 /* limit the window selection if the user enforce a smaller rx buffer */
384 if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
385 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
386 req->rsk_window_clamp = full_space;
388 /* tcp_full_space because it is guaranteed to be the first packet */
389 tcp_select_initial_window(full_space,
390 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
392 &req->rsk_window_clamp,
395 dst_metric(dst, RTAX_INITRWND));
396 ireq->rcv_wscale = rcv_wscale;
398 EXPORT_SYMBOL(tcp_openreq_init_rwin);
400 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
401 const struct request_sock *req)
403 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
406 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
408 struct inet_connection_sock *icsk = inet_csk(sk);
409 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
410 bool ca_got_dst = false;
412 if (ca_key != TCP_CA_UNSPEC) {
413 const struct tcp_congestion_ops *ca;
416 ca = tcp_ca_find_key(ca_key);
417 if (likely(ca && try_module_get(ca->owner))) {
418 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
419 icsk->icsk_ca_ops = ca;
425 /* If no valid choice made yet, assign current system default ca. */
427 (!icsk->icsk_ca_setsockopt ||
428 !try_module_get(icsk->icsk_ca_ops->owner)))
429 tcp_assign_congestion_control(sk);
431 tcp_set_ca_state(sk, TCP_CA_Open);
433 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
435 /* This is not only more efficient than what we used to do, it eliminates
436 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
438 * Actually, we could lots of memory writes here. tp of listening
439 * socket contains all necessary default parameters.
441 struct sock *tcp_create_openreq_child(const struct sock *sk,
442 struct request_sock *req,
445 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
448 const struct inet_request_sock *ireq = inet_rsk(req);
449 struct tcp_request_sock *treq = tcp_rsk(req);
450 struct inet_connection_sock *newicsk = inet_csk(newsk);
451 struct tcp_sock *newtp = tcp_sk(newsk);
453 /* Now setup tcp_sock */
454 newtp->pred_flags = 0;
456 newtp->rcv_wup = newtp->copied_seq =
457 newtp->rcv_nxt = treq->rcv_isn + 1;
460 newtp->snd_sml = newtp->snd_una =
461 newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
463 tcp_prequeue_init(newtp);
464 INIT_LIST_HEAD(&newtp->tsq_node);
466 tcp_init_wl(newtp, treq->rcv_isn);
469 newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
470 newtp->rtt_min[0].rtt = ~0U;
471 newicsk->icsk_rto = TCP_TIMEOUT_INIT;
473 newtp->packets_out = 0;
474 newtp->retrans_out = 0;
475 newtp->sacked_out = 0;
476 newtp->fackets_out = 0;
477 newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
478 tcp_enable_early_retrans(newtp);
479 newtp->tlp_high_seq = 0;
480 newtp->lsndtime = treq->snt_synack.stamp_jiffies;
481 newsk->sk_txhash = treq->txhash;
482 newtp->last_oow_ack_time = 0;
483 newtp->total_retrans = req->num_retrans;
485 /* So many TCP implementations out there (incorrectly) count the
486 * initial SYN frame in their delayed-ACK and congestion control
487 * algorithms that we must have the following bandaid to talk
488 * efficiently to them. -DaveM
490 newtp->snd_cwnd = TCP_INIT_CWND;
491 newtp->snd_cwnd_cnt = 0;
493 tcp_init_xmit_timers(newsk);
494 __skb_queue_head_init(&newtp->out_of_order_queue);
495 newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
497 newtp->rx_opt.saw_tstamp = 0;
499 newtp->rx_opt.dsack = 0;
500 newtp->rx_opt.num_sacks = 0;
504 if (sock_flag(newsk, SOCK_KEEPOPEN))
505 inet_csk_reset_keepalive_timer(newsk,
506 keepalive_time_when(newtp));
508 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
509 if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
511 tcp_enable_fack(newtp);
513 newtp->window_clamp = req->rsk_window_clamp;
514 newtp->rcv_ssthresh = req->rsk_rcv_wnd;
515 newtp->rcv_wnd = req->rsk_rcv_wnd;
516 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
517 if (newtp->rx_opt.wscale_ok) {
518 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
519 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
521 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
522 newtp->window_clamp = min(newtp->window_clamp, 65535U);
524 newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
525 newtp->rx_opt.snd_wscale);
526 newtp->max_window = newtp->snd_wnd;
528 if (newtp->rx_opt.tstamp_ok) {
529 newtp->rx_opt.ts_recent = req->ts_recent;
530 newtp->rx_opt.ts_recent_stamp = get_seconds();
531 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
533 newtp->rx_opt.ts_recent_stamp = 0;
534 newtp->tcp_header_len = sizeof(struct tcphdr);
537 #ifdef CONFIG_TCP_MD5SIG
538 newtp->md5sig_info = NULL; /*XXX*/
539 if (newtp->af_specific->md5_lookup(sk, newsk))
540 newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
542 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
543 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
544 newtp->rx_opt.mss_clamp = req->mss;
545 tcp_ecn_openreq_child(newtp, req);
546 newtp->fastopen_rsk = NULL;
547 newtp->syn_data_acked = 0;
548 newtp->rack.mstamp.v64 = 0;
549 newtp->rack.advanced = 0;
551 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
555 EXPORT_SYMBOL(tcp_create_openreq_child);
558 * Process an incoming packet for SYN_RECV sockets represented as a
559 * request_sock. Normally sk is the listener socket but for TFO it
560 * points to the child socket.
562 * XXX (TFO) - The current impl contains a special check for ack
563 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
565 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
568 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
569 struct request_sock *req,
572 struct tcp_options_received tmp_opt;
574 const struct tcphdr *th = tcp_hdr(skb);
575 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
576 bool paws_reject = false;
579 tmp_opt.saw_tstamp = 0;
580 if (th->doff > (sizeof(struct tcphdr)>>2)) {
581 tcp_parse_options(skb, &tmp_opt, 0, NULL);
583 if (tmp_opt.saw_tstamp) {
584 tmp_opt.ts_recent = req->ts_recent;
585 /* We do not store true stamp, but it is not required,
586 * it can be estimated (approximately)
589 tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
590 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
594 /* Check for pure retransmitted SYN. */
595 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
596 flg == TCP_FLAG_SYN &&
599 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
600 * this case on figure 6 and figure 8, but formal
601 * protocol description says NOTHING.
602 * To be more exact, it says that we should send ACK,
603 * because this segment (at least, if it has no data)
606 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
607 * describe SYN-RECV state. All the description
608 * is wrong, we cannot believe to it and should
609 * rely only on common sense and implementation
612 * Enforce "SYN-ACK" according to figure 8, figure 6
613 * of RFC793, fixed by RFC1122.
615 * Note that even if there is new data in the SYN packet
616 * they will be thrown away too.
618 * Reset timer after retransmitting SYNACK, similar to
619 * the idea of fast retransmit in recovery.
621 if (!tcp_oow_rate_limited(sock_net(sk), skb,
622 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
623 &tcp_rsk(req)->last_oow_ack_time) &&
625 !inet_rtx_syn_ack(sk, req)) {
626 unsigned long expires = jiffies;
628 expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
631 mod_timer_pending(&req->rsk_timer, expires);
633 req->rsk_timer.expires = expires;
638 /* Further reproduces section "SEGMENT ARRIVES"
639 for state SYN-RECEIVED of RFC793.
640 It is broken, however, it does not work only
641 when SYNs are crossed.
643 You would think that SYN crossing is impossible here, since
644 we should have a SYN_SENT socket (from connect()) on our end,
645 but this is not true if the crossed SYNs were sent to both
646 ends by a malicious third party. We must defend against this,
647 and to do that we first verify the ACK (as per RFC793, page
648 36) and reset if it is invalid. Is this a true full defense?
649 To convince ourselves, let us consider a way in which the ACK
650 test can still pass in this 'malicious crossed SYNs' case.
651 Malicious sender sends identical SYNs (and thus identical sequence
652 numbers) to both A and B:
657 By our good fortune, both A and B select the same initial
658 send sequence number of seven :-)
660 A: sends SYN|ACK, seq=7, ack_seq=8
661 B: sends SYN|ACK, seq=7, ack_seq=8
663 So we are now A eating this SYN|ACK, ACK test passes. So
664 does sequence test, SYN is truncated, and thus we consider
667 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
668 bare ACK. Otherwise, we create an established connection. Both
669 ends (listening sockets) accept the new incoming connection and try
670 to talk to each other. 8-)
672 Note: This case is both harmless, and rare. Possibility is about the
673 same as us discovering intelligent life on another plant tomorrow.
675 But generally, we should (RFC lies!) to accept ACK
676 from SYNACK both here and in tcp_rcv_state_process().
677 tcp_rcv_state_process() does not, hence, we do not too.
679 Note that the case is absolutely generic:
680 we cannot optimize anything here without
681 violating protocol. All the checks must be made
682 before attempt to create socket.
685 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
686 * and the incoming segment acknowledges something not yet
687 * sent (the segment carries an unacceptable ACK) ...
690 * Invalid ACK: reset will be sent by listening socket.
691 * Note that the ACK validity check for a Fast Open socket is done
692 * elsewhere and is checked directly against the child socket rather
693 * than req because user data may have been sent out.
695 if ((flg & TCP_FLAG_ACK) && !fastopen &&
696 (TCP_SKB_CB(skb)->ack_seq !=
697 tcp_rsk(req)->snt_isn + 1))
700 /* Also, it would be not so bad idea to check rcv_tsecr, which
701 * is essentially ACK extension and too early or too late values
702 * should cause reset in unsynchronized states.
705 /* RFC793: "first check sequence number". */
707 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
708 tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
709 /* Out of window: send ACK and drop. */
710 if (!(flg & TCP_FLAG_RST))
711 req->rsk_ops->send_ack(sk, skb, req);
713 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
717 /* In sequence, PAWS is OK. */
719 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
720 req->ts_recent = tmp_opt.rcv_tsval;
722 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
723 /* Truncate SYN, it is out of window starting
724 at tcp_rsk(req)->rcv_isn + 1. */
725 flg &= ~TCP_FLAG_SYN;
728 /* RFC793: "second check the RST bit" and
729 * "fourth, check the SYN bit"
731 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
732 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
733 goto embryonic_reset;
736 /* ACK sequence verified above, just make sure ACK is
737 * set. If ACK not set, just silently drop the packet.
739 * XXX (TFO) - if we ever allow "data after SYN", the
740 * following check needs to be removed.
742 if (!(flg & TCP_FLAG_ACK))
745 /* For Fast Open no more processing is needed (sk is the
751 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
752 if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
753 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
754 inet_rsk(req)->acked = 1;
755 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
759 /* OK, ACK is valid, create big socket and
760 * feed this segment to it. It will repeat all
761 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
762 * ESTABLISHED STATE. If it will be dropped after
763 * socket is created, wait for troubles.
765 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
768 goto listen_overflow;
770 sock_rps_save_rxhash(child, skb);
771 tcp_synack_rtt_meas(child, req);
772 return inet_csk_complete_hashdance(sk, child, req, own_req);
775 if (!sysctl_tcp_abort_on_overflow) {
776 inet_rsk(req)->acked = 1;
781 if (!(flg & TCP_FLAG_RST)) {
782 /* Received a bad SYN pkt - for TFO We try not to reset
783 * the local connection unless it's really necessary to
784 * avoid becoming vulnerable to outside attack aiming at
785 * resetting legit local connections.
787 req->rsk_ops->send_reset(sk, skb);
788 } else if (fastopen) { /* received a valid RST pkt */
789 reqsk_fastopen_remove(sk, req, true);
793 inet_csk_reqsk_queue_drop(sk, req);
794 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
798 EXPORT_SYMBOL(tcp_check_req);
801 * Queue segment on the new socket if the new socket is active,
802 * otherwise we just shortcircuit this and continue with
805 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
806 * when entering. But other states are possible due to a race condition
807 * where after __inet_lookup_established() fails but before the listener
808 * locked is obtained, other packets cause the same connection to
812 int tcp_child_process(struct sock *parent, struct sock *child,
816 int state = child->sk_state;
818 if (!sock_owned_by_user(child)) {
819 ret = tcp_rcv_state_process(child, skb);
820 /* Wakeup parent, send SIGIO */
821 if (state == TCP_SYN_RECV && child->sk_state != state)
822 parent->sk_data_ready(parent);
824 /* Alas, it is possible again, because we do lookup
825 * in main socket hash table and lock on listening
826 * socket does not protect us more.
828 __sk_add_backlog(child, skb);
831 bh_unlock_sock(child);
835 EXPORT_SYMBOL(tcp_child_process);