2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/netlink.h>
80 #include <linux/tcp.h>
82 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
83 EXPORT_SYMBOL(sysctl_ip_default_ttl);
86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
88 int (*output)(struct net *, struct sock *, struct sk_buff *));
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
94 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
96 EXPORT_SYMBOL(ip_send_check);
98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
100 struct iphdr *iph = ip_hdr(skb);
102 iph->tot_len = htons(skb->len);
104 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
105 net, sk, skb, NULL, skb_dst(skb)->dev,
109 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
113 err = __ip_local_out(net, sk, skb);
114 if (likely(err == 1))
115 err = dst_output(net, sk, skb);
119 EXPORT_SYMBOL_GPL(ip_local_out);
121 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
123 int ttl = inet->uc_ttl;
126 ttl = ip4_dst_hoplimit(dst);
131 * Add an ip header to a skbuff and send it out.
134 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
135 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
137 struct inet_sock *inet = inet_sk(sk);
138 struct rtable *rt = skb_rtable(skb);
139 struct net *net = sock_net(sk);
142 /* Build the IP header. */
143 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
144 skb_reset_network_header(skb);
148 iph->tos = inet->tos;
149 iph->ttl = ip_select_ttl(inet, &rt->dst);
150 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
152 iph->protocol = sk->sk_protocol;
153 if (ip_dont_fragment(sk, &rt->dst)) {
154 iph->frag_off = htons(IP_DF);
158 __ip_select_ident(net, iph, 1);
161 if (opt && opt->opt.optlen) {
162 iph->ihl += opt->opt.optlen>>2;
163 ip_options_build(skb, &opt->opt, daddr, rt, 0);
166 skb->priority = sk->sk_priority;
167 skb->mark = sk->sk_mark;
170 return ip_local_out(net, skb->sk, skb);
172 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
174 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
176 struct dst_entry *dst = skb_dst(skb);
177 struct rtable *rt = (struct rtable *)dst;
178 struct net_device *dev = dst->dev;
179 unsigned int hh_len = LL_RESERVED_SPACE(dev);
180 struct neighbour *neigh;
183 if (rt->rt_type == RTN_MULTICAST) {
184 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
185 } else if (rt->rt_type == RTN_BROADCAST)
186 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
188 /* Be paranoid, rather than too clever. */
189 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
190 struct sk_buff *skb2;
192 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
198 skb_set_owner_w(skb2, skb->sk);
204 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
205 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
206 if (unlikely(!neigh))
207 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
208 if (!IS_ERR(neigh)) {
209 int res = dst_neigh_output(dst, neigh, skb);
211 rcu_read_unlock_bh();
214 rcu_read_unlock_bh();
216 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
222 static int ip_finish_output_gso(struct net *net, struct sock *sk,
223 struct sk_buff *skb, unsigned int mtu)
225 netdev_features_t features;
226 struct sk_buff *segs;
229 /* common case: locally created skb or seglen is <= mtu */
230 if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) ||
231 skb_gso_network_seglen(skb) <= mtu)
232 return ip_finish_output2(net, sk, skb);
234 /* Slowpath - GSO segment length is exceeding the dst MTU.
236 * This can happen in two cases:
237 * 1) TCP GRO packet, DF bit not set
238 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
239 * from host network stack.
241 features = netif_skb_features(skb);
242 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
243 if (IS_ERR_OR_NULL(segs)) {
251 struct sk_buff *nskb = segs->next;
255 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
265 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
269 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
270 /* Policy lookup after SNAT yielded a new policy */
271 if (skb_dst(skb)->xfrm) {
272 IPCB(skb)->flags |= IPSKB_REROUTED;
273 return dst_output(net, sk, skb);
276 mtu = ip_skb_dst_mtu(skb);
278 return ip_finish_output_gso(net, sk, skb, mtu);
280 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
281 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
283 return ip_finish_output2(net, sk, skb);
286 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
288 struct rtable *rt = skb_rtable(skb);
289 struct net_device *dev = rt->dst.dev;
292 * If the indicated interface is up and running, send the packet.
294 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
297 skb->protocol = htons(ETH_P_IP);
300 * Multicasts are looped back for other local users
303 if (rt->rt_flags&RTCF_MULTICAST) {
305 #ifdef CONFIG_IP_MROUTE
306 /* Small optimization: do not loopback not local frames,
307 which returned after forwarding; they will be dropped
308 by ip_mr_input in any case.
309 Note, that local frames are looped back to be delivered
312 This check is duplicated in ip_mr_input at the moment.
315 ((rt->rt_flags & RTCF_LOCAL) ||
316 !(IPCB(skb)->flags & IPSKB_FORWARDED))
319 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
321 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
322 net, sk, newskb, NULL, newskb->dev,
326 /* Multicasts with ttl 0 must not go beyond the host */
328 if (ip_hdr(skb)->ttl == 0) {
334 if (rt->rt_flags&RTCF_BROADCAST) {
335 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
337 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
338 net, sk, newskb, NULL, newskb->dev,
342 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
343 net, sk, skb, NULL, skb->dev,
345 !(IPCB(skb)->flags & IPSKB_REROUTED));
348 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
350 struct net_device *dev = skb_dst(skb)->dev;
352 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
355 skb->protocol = htons(ETH_P_IP);
357 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
358 net, sk, skb, NULL, dev,
360 !(IPCB(skb)->flags & IPSKB_REROUTED));
364 * copy saddr and daddr, possibly using 64bit load/stores
366 * iph->saddr = fl4->saddr;
367 * iph->daddr = fl4->daddr;
369 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
371 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
372 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
373 memcpy(&iph->saddr, &fl4->saddr,
374 sizeof(fl4->saddr) + sizeof(fl4->daddr));
377 /* Note: skb->sk can be different from sk, in case of tunnels */
378 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
380 struct inet_sock *inet = inet_sk(sk);
381 struct net *net = sock_net(sk);
382 struct ip_options_rcu *inet_opt;
388 /* Skip all of this if the packet is already routed,
389 * f.e. by something like SCTP.
392 inet_opt = rcu_dereference(inet->inet_opt);
394 rt = skb_rtable(skb);
398 /* Make sure we can route this packet. */
399 rt = (struct rtable *)__sk_dst_check(sk, 0);
403 /* Use correct destination address if we have options. */
404 daddr = inet->inet_daddr;
405 if (inet_opt && inet_opt->opt.srr)
406 daddr = inet_opt->opt.faddr;
408 /* If this fails, retransmit mechanism of transport layer will
409 * keep trying until route appears or the connection times
412 rt = ip_route_output_ports(net, fl4, sk,
413 daddr, inet->inet_saddr,
418 sk->sk_bound_dev_if);
421 sk_setup_caps(sk, &rt->dst);
423 skb_dst_set_noref(skb, &rt->dst);
426 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
429 /* OK, we know where to send it, allocate and build IP header. */
430 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
431 skb_reset_network_header(skb);
433 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
434 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
435 iph->frag_off = htons(IP_DF);
438 iph->ttl = ip_select_ttl(inet, &rt->dst);
439 iph->protocol = sk->sk_protocol;
440 ip_copy_addrs(iph, fl4);
442 /* Transport layer set skb->h.foo itself. */
444 if (inet_opt && inet_opt->opt.optlen) {
445 iph->ihl += inet_opt->opt.optlen >> 2;
446 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
449 ip_select_ident_segs(net, skb, sk,
450 skb_shinfo(skb)->gso_segs ?: 1);
452 /* TODO : should we use skb->sk here instead of sk ? */
453 skb->priority = sk->sk_priority;
454 skb->mark = sk->sk_mark;
456 res = ip_local_out(net, sk, skb);
462 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
464 return -EHOSTUNREACH;
466 EXPORT_SYMBOL(ip_queue_xmit);
468 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
470 to->pkt_type = from->pkt_type;
471 to->priority = from->priority;
472 to->protocol = from->protocol;
474 skb_dst_copy(to, from);
476 to->mark = from->mark;
478 /* Copy the flags to each fragment. */
479 IPCB(to)->flags = IPCB(from)->flags;
481 #ifdef CONFIG_NET_SCHED
482 to->tc_index = from->tc_index;
485 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
486 to->ipvs_property = from->ipvs_property;
488 skb_copy_secmark(to, from);
491 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
493 int (*output)(struct net *, struct sock *, struct sk_buff *))
495 struct iphdr *iph = ip_hdr(skb);
497 if ((iph->frag_off & htons(IP_DF)) == 0)
498 return ip_do_fragment(net, sk, skb, output);
500 if (unlikely(!skb->ignore_df ||
501 (IPCB(skb)->frag_max_size &&
502 IPCB(skb)->frag_max_size > mtu))) {
503 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
504 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
510 return ip_do_fragment(net, sk, skb, output);
514 * This IP datagram is too large to be sent in one piece. Break it up into
515 * smaller pieces (each of size equal to IP header plus
516 * a block of the data of the original IP data part) that will yet fit in a
517 * single device frame, and queue such a frame for sending.
520 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
521 int (*output)(struct net *, struct sock *, struct sk_buff *))
525 struct net_device *dev;
526 struct sk_buff *skb2;
527 unsigned int mtu, hlen, left, len, ll_rs;
529 __be16 not_last_frag;
530 struct rtable *rt = skb_rtable(skb);
535 /* for offloaded checksums cleanup checksum before fragmentation */
536 if (skb->ip_summed == CHECKSUM_PARTIAL &&
537 (err = skb_checksum_help(skb)))
541 * Point into the IP datagram header.
546 mtu = ip_skb_dst_mtu(skb);
547 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
548 mtu = IPCB(skb)->frag_max_size;
551 * Setup starting values.
555 mtu = mtu - hlen; /* Size of data space */
556 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
558 /* When frag_list is given, use it. First, check its validity:
559 * some transformers could create wrong frag_list or break existing
560 * one, it is not prohibited. In this case fall back to copying.
562 * LATER: this step can be merged to real generation of fragments,
563 * we can switch to copy when see the first bad fragment.
565 if (skb_has_frag_list(skb)) {
566 struct sk_buff *frag, *frag2;
567 int first_len = skb_pagelen(skb);
569 if (first_len - hlen > mtu ||
570 ((first_len - hlen) & 7) ||
571 ip_is_fragment(iph) ||
575 skb_walk_frags(skb, frag) {
576 /* Correct geometry. */
577 if (frag->len > mtu ||
578 ((frag->len & 7) && frag->next) ||
579 skb_headroom(frag) < hlen)
580 goto slow_path_clean;
582 /* Partially cloned skb? */
583 if (skb_shared(frag))
584 goto slow_path_clean;
589 frag->destructor = sock_wfree;
591 skb->truesize -= frag->truesize;
594 /* Everything is OK. Generate! */
598 frag = skb_shinfo(skb)->frag_list;
599 skb_frag_list_init(skb);
600 skb->data_len = first_len - skb_headlen(skb);
601 skb->len = first_len;
602 iph->tot_len = htons(first_len);
603 iph->frag_off = htons(IP_MF);
607 /* Prepare header of the next frame,
608 * before previous one went down. */
610 frag->ip_summed = CHECKSUM_NONE;
611 skb_reset_transport_header(frag);
612 __skb_push(frag, hlen);
613 skb_reset_network_header(frag);
614 memcpy(skb_network_header(frag), iph, hlen);
616 iph->tot_len = htons(frag->len);
617 ip_copy_metadata(frag, skb);
619 ip_options_fragment(frag);
620 offset += skb->len - hlen;
621 iph->frag_off = htons(offset>>3);
623 iph->frag_off |= htons(IP_MF);
624 /* Ready, complete checksum */
628 err = output(net, sk, skb);
631 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
641 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
650 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
654 skb_walk_frags(skb, frag2) {
658 frag2->destructor = NULL;
659 skb->truesize += frag2->truesize;
666 left = skb->len - hlen; /* Space per frame */
667 ptr = hlen; /* Where to start from */
669 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
672 * Fragment the datagram.
675 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
676 not_last_frag = iph->frag_off & htons(IP_MF);
679 * Keep copying data until we run out.
684 /* IF: it doesn't fit, use 'mtu' - the data space left */
687 /* IF: we are not sending up to and including the packet end
688 then align the next start on an eight byte boundary */
693 /* Allocate buffer */
694 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
701 * Set up data on packet
704 ip_copy_metadata(skb2, skb);
705 skb_reserve(skb2, ll_rs);
706 skb_put(skb2, len + hlen);
707 skb_reset_network_header(skb2);
708 skb2->transport_header = skb2->network_header + hlen;
711 * Charge the memory for the fragment to any owner
716 skb_set_owner_w(skb2, skb->sk);
719 * Copy the packet header into the new buffer.
722 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
725 * Copy a block of the IP datagram.
727 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
732 * Fill in the new header fields.
735 iph->frag_off = htons((offset >> 3));
737 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
738 iph->frag_off |= htons(IP_DF);
740 /* ANK: dirty, but effective trick. Upgrade options only if
741 * the segment to be fragmented was THE FIRST (otherwise,
742 * options are already fixed) and make it ONCE
743 * on the initial skb, so that all the following fragments
744 * will inherit fixed options.
747 ip_options_fragment(skb);
750 * Added AC : If we are fragmenting a fragment that's not the
751 * last fragment then keep MF on each bit
753 if (left > 0 || not_last_frag)
754 iph->frag_off |= htons(IP_MF);
759 * Put this fragment into the sending queue.
761 iph->tot_len = htons(len + hlen);
765 err = output(net, sk, skb2);
769 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
772 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
777 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
780 EXPORT_SYMBOL(ip_do_fragment);
783 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
785 struct msghdr *msg = from;
787 if (skb->ip_summed == CHECKSUM_PARTIAL) {
788 if (copy_from_iter(to, len, &msg->msg_iter) != len)
792 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
794 skb->csum = csum_block_add(skb->csum, csum, odd);
798 EXPORT_SYMBOL(ip_generic_getfrag);
801 csum_page(struct page *page, int offset, int copy)
806 csum = csum_partial(kaddr + offset, copy, 0);
811 static inline int ip_ufo_append_data(struct sock *sk,
812 struct sk_buff_head *queue,
813 int getfrag(void *from, char *to, int offset, int len,
814 int odd, struct sk_buff *skb),
815 void *from, int length, int hh_len, int fragheaderlen,
816 int transhdrlen, int maxfraglen, unsigned int flags)
821 /* There is support for UDP fragmentation offload by network
822 * device, so create one single skb packet containing complete
825 skb = skb_peek_tail(queue);
827 skb = sock_alloc_send_skb(sk,
828 hh_len + fragheaderlen + transhdrlen + 20,
829 (flags & MSG_DONTWAIT), &err);
834 /* reserve space for Hardware header */
835 skb_reserve(skb, hh_len);
837 /* create space for UDP/IP header */
838 skb_put(skb, fragheaderlen + transhdrlen);
840 /* initialize network header pointer */
841 skb_reset_network_header(skb);
843 /* initialize protocol header pointer */
844 skb->transport_header = skb->network_header + fragheaderlen;
848 __skb_queue_tail(queue, skb);
849 } else if (skb_is_gso(skb)) {
853 skb->ip_summed = CHECKSUM_PARTIAL;
854 /* specify the length of each IP datagram fragment */
855 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
856 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
859 return skb_append_datato_frags(sk, skb, getfrag, from,
860 (length - transhdrlen));
863 static int __ip_append_data(struct sock *sk,
865 struct sk_buff_head *queue,
866 struct inet_cork *cork,
867 struct page_frag *pfrag,
868 int getfrag(void *from, char *to, int offset,
869 int len, int odd, struct sk_buff *skb),
870 void *from, int length, int transhdrlen,
873 struct inet_sock *inet = inet_sk(sk);
876 struct ip_options *opt = cork->opt;
883 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
884 int csummode = CHECKSUM_NONE;
885 struct rtable *rt = (struct rtable *)cork->dst;
888 skb = skb_peek_tail(queue);
890 exthdrlen = !skb ? rt->dst.header_len : 0;
891 mtu = cork->fragsize;
892 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
893 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
894 tskey = sk->sk_tskey++;
896 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
898 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
899 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
900 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
902 if (cork->length + length > maxnonfragsize - fragheaderlen) {
903 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
904 mtu - (opt ? opt->optlen : 0));
909 * transhdrlen > 0 means that this is the first fragment and we wish
910 * it won't be fragmented in the future.
913 length + fragheaderlen <= mtu &&
914 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
915 !(flags & MSG_MORE) &&
917 csummode = CHECKSUM_PARTIAL;
919 cork->length += length;
920 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
921 (sk->sk_protocol == IPPROTO_UDP) &&
922 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
923 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
924 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
925 hh_len, fragheaderlen, transhdrlen,
932 /* So, what's going on in the loop below?
934 * We use calculated fragment length to generate chained skb,
935 * each of segments is IP fragment ready for sending to network after
936 * adding appropriate IP header.
943 /* Check if the remaining data fits into current packet. */
944 copy = mtu - skb->len;
946 copy = maxfraglen - skb->len;
949 unsigned int datalen;
950 unsigned int fraglen;
951 unsigned int fraggap;
952 unsigned int alloclen;
953 struct sk_buff *skb_prev;
957 fraggap = skb_prev->len - maxfraglen;
962 * If remaining data exceeds the mtu,
963 * we know we need more fragment(s).
965 datalen = length + fraggap;
966 if (datalen > mtu - fragheaderlen)
967 datalen = maxfraglen - fragheaderlen;
968 fraglen = datalen + fragheaderlen;
970 if ((flags & MSG_MORE) &&
971 !(rt->dst.dev->features&NETIF_F_SG))
976 alloclen += exthdrlen;
978 /* The last fragment gets additional space at tail.
979 * Note, with MSG_MORE we overallocate on fragments,
980 * because we have no idea what fragment will be
983 if (datalen == length + fraggap)
984 alloclen += rt->dst.trailer_len;
987 skb = sock_alloc_send_skb(sk,
988 alloclen + hh_len + 15,
989 (flags & MSG_DONTWAIT), &err);
992 if (atomic_read(&sk->sk_wmem_alloc) <=
994 skb = sock_wmalloc(sk,
995 alloclen + hh_len + 15, 1,
1004 * Fill in the control structures
1006 skb->ip_summed = csummode;
1008 skb_reserve(skb, hh_len);
1010 /* only the initial fragment is time stamped */
1011 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1013 skb_shinfo(skb)->tskey = tskey;
1017 * Find where to start putting bytes.
1019 data = skb_put(skb, fraglen + exthdrlen);
1020 skb_set_network_header(skb, exthdrlen);
1021 skb->transport_header = (skb->network_header +
1023 data += fragheaderlen + exthdrlen;
1026 skb->csum = skb_copy_and_csum_bits(
1027 skb_prev, maxfraglen,
1028 data + transhdrlen, fraggap, 0);
1029 skb_prev->csum = csum_sub(skb_prev->csum,
1032 pskb_trim_unique(skb_prev, maxfraglen);
1035 copy = datalen - transhdrlen - fraggap;
1036 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1043 length -= datalen - fraggap;
1046 csummode = CHECKSUM_NONE;
1049 * Put the packet on the pending queue.
1051 __skb_queue_tail(queue, skb);
1058 if (!(rt->dst.dev->features&NETIF_F_SG)) {
1062 if (getfrag(from, skb_put(skb, copy),
1063 offset, copy, off, skb) < 0) {
1064 __skb_trim(skb, off);
1069 int i = skb_shinfo(skb)->nr_frags;
1072 if (!sk_page_frag_refill(sk, pfrag))
1075 if (!skb_can_coalesce(skb, i, pfrag->page,
1078 if (i == MAX_SKB_FRAGS)
1081 __skb_fill_page_desc(skb, i, pfrag->page,
1083 skb_shinfo(skb)->nr_frags = ++i;
1084 get_page(pfrag->page);
1086 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1088 page_address(pfrag->page) + pfrag->offset,
1089 offset, copy, skb->len, skb) < 0)
1092 pfrag->offset += copy;
1093 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1095 skb->data_len += copy;
1096 skb->truesize += copy;
1097 atomic_add(copy, &sk->sk_wmem_alloc);
1108 cork->length -= length;
1109 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1113 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1114 struct ipcm_cookie *ipc, struct rtable **rtp)
1116 struct ip_options_rcu *opt;
1120 * setup for corking.
1125 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1127 if (unlikely(!cork->opt))
1130 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1131 cork->flags |= IPCORK_OPT;
1132 cork->addr = ipc->addr;
1138 * We steal reference to this route, caller should not release it
1141 cork->fragsize = ip_sk_use_pmtu(sk) ?
1142 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1143 cork->dst = &rt->dst;
1145 cork->ttl = ipc->ttl;
1146 cork->tos = ipc->tos;
1147 cork->priority = ipc->priority;
1148 cork->tx_flags = ipc->tx_flags;
1154 * ip_append_data() and ip_append_page() can make one large IP datagram
1155 * from many pieces of data. Each pieces will be holded on the socket
1156 * until ip_push_pending_frames() is called. Each piece can be a page
1159 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1160 * this interface potentially.
1162 * LATER: length must be adjusted by pad at tail, when it is required.
1164 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1165 int getfrag(void *from, char *to, int offset, int len,
1166 int odd, struct sk_buff *skb),
1167 void *from, int length, int transhdrlen,
1168 struct ipcm_cookie *ipc, struct rtable **rtp,
1171 struct inet_sock *inet = inet_sk(sk);
1174 if (flags&MSG_PROBE)
1177 if (skb_queue_empty(&sk->sk_write_queue)) {
1178 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1185 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1186 sk_page_frag(sk), getfrag,
1187 from, length, transhdrlen, flags);
1190 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1191 int offset, size_t size, int flags)
1193 struct inet_sock *inet = inet_sk(sk);
1194 struct sk_buff *skb;
1196 struct ip_options *opt = NULL;
1197 struct inet_cork *cork;
1202 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1207 if (flags&MSG_PROBE)
1210 if (skb_queue_empty(&sk->sk_write_queue))
1213 cork = &inet->cork.base;
1214 rt = (struct rtable *)cork->dst;
1215 if (cork->flags & IPCORK_OPT)
1218 if (!(rt->dst.dev->features&NETIF_F_SG))
1221 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1222 mtu = cork->fragsize;
1224 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1225 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1226 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1228 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1229 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1230 mtu - (opt ? opt->optlen : 0));
1234 skb = skb_peek_tail(&sk->sk_write_queue);
1238 cork->length += size;
1239 if ((size + skb->len > mtu) &&
1240 (sk->sk_protocol == IPPROTO_UDP) &&
1241 (rt->dst.dev->features & NETIF_F_UFO)) {
1242 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1243 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1247 if (skb_is_gso(skb)) {
1251 /* Check if the remaining data fits into current packet. */
1252 len = mtu - skb->len;
1254 len = maxfraglen - skb->len;
1257 struct sk_buff *skb_prev;
1261 fraggap = skb_prev->len - maxfraglen;
1263 alloclen = fragheaderlen + hh_len + fraggap + 15;
1264 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1265 if (unlikely(!skb)) {
1271 * Fill in the control structures
1273 skb->ip_summed = CHECKSUM_NONE;
1275 skb_reserve(skb, hh_len);
1278 * Find where to start putting bytes.
1280 skb_put(skb, fragheaderlen + fraggap);
1281 skb_reset_network_header(skb);
1282 skb->transport_header = (skb->network_header +
1285 skb->csum = skb_copy_and_csum_bits(skb_prev,
1287 skb_transport_header(skb),
1289 skb_prev->csum = csum_sub(skb_prev->csum,
1291 pskb_trim_unique(skb_prev, maxfraglen);
1295 * Put the packet on the pending queue.
1297 __skb_queue_tail(&sk->sk_write_queue, skb);
1304 if (skb_append_pagefrags(skb, page, offset, len)) {
1309 if (skb->ip_summed == CHECKSUM_NONE) {
1311 csum = csum_page(page, offset, len);
1312 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1316 skb->data_len += len;
1317 skb->truesize += len;
1318 atomic_add(len, &sk->sk_wmem_alloc);
1325 cork->length -= size;
1326 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1330 static void ip_cork_release(struct inet_cork *cork)
1332 cork->flags &= ~IPCORK_OPT;
1335 dst_release(cork->dst);
1340 * Combined all pending IP fragments on the socket as one IP datagram
1341 * and push them out.
1343 struct sk_buff *__ip_make_skb(struct sock *sk,
1345 struct sk_buff_head *queue,
1346 struct inet_cork *cork)
1348 struct sk_buff *skb, *tmp_skb;
1349 struct sk_buff **tail_skb;
1350 struct inet_sock *inet = inet_sk(sk);
1351 struct net *net = sock_net(sk);
1352 struct ip_options *opt = NULL;
1353 struct rtable *rt = (struct rtable *)cork->dst;
1358 skb = __skb_dequeue(queue);
1361 tail_skb = &(skb_shinfo(skb)->frag_list);
1363 /* move skb->data to ip header from ext header */
1364 if (skb->data < skb_network_header(skb))
1365 __skb_pull(skb, skb_network_offset(skb));
1366 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1367 __skb_pull(tmp_skb, skb_network_header_len(skb));
1368 *tail_skb = tmp_skb;
1369 tail_skb = &(tmp_skb->next);
1370 skb->len += tmp_skb->len;
1371 skb->data_len += tmp_skb->len;
1372 skb->truesize += tmp_skb->truesize;
1373 tmp_skb->destructor = NULL;
1377 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1378 * to fragment the frame generated here. No matter, what transforms
1379 * how transforms change size of the packet, it will come out.
1381 skb->ignore_df = ip_sk_ignore_df(sk);
1383 /* DF bit is set when we want to see DF on outgoing frames.
1384 * If ignore_df is set too, we still allow to fragment this frame
1386 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1387 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1388 (skb->len <= dst_mtu(&rt->dst) &&
1389 ip_dont_fragment(sk, &rt->dst)))
1392 if (cork->flags & IPCORK_OPT)
1397 else if (rt->rt_type == RTN_MULTICAST)
1400 ttl = ip_select_ttl(inet, &rt->dst);
1405 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1408 iph->protocol = sk->sk_protocol;
1409 ip_copy_addrs(iph, fl4);
1410 ip_select_ident(net, skb, sk);
1413 iph->ihl += opt->optlen>>2;
1414 ip_options_build(skb, opt, cork->addr, rt, 0);
1417 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1418 skb->mark = sk->sk_mark;
1420 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1424 skb_dst_set(skb, &rt->dst);
1426 if (iph->protocol == IPPROTO_ICMP)
1427 icmp_out_count(net, ((struct icmphdr *)
1428 skb_transport_header(skb))->type);
1430 ip_cork_release(cork);
1435 int ip_send_skb(struct net *net, struct sk_buff *skb)
1439 err = ip_local_out(net, skb->sk, skb);
1442 err = net_xmit_errno(err);
1444 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1450 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1452 struct sk_buff *skb;
1454 skb = ip_finish_skb(sk, fl4);
1458 /* Netfilter gets whole the not fragmented skb. */
1459 return ip_send_skb(sock_net(sk), skb);
1463 * Throw away all pending data on the socket.
1465 static void __ip_flush_pending_frames(struct sock *sk,
1466 struct sk_buff_head *queue,
1467 struct inet_cork *cork)
1469 struct sk_buff *skb;
1471 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1474 ip_cork_release(cork);
1477 void ip_flush_pending_frames(struct sock *sk)
1479 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1482 struct sk_buff *ip_make_skb(struct sock *sk,
1484 int getfrag(void *from, char *to, int offset,
1485 int len, int odd, struct sk_buff *skb),
1486 void *from, int length, int transhdrlen,
1487 struct ipcm_cookie *ipc, struct rtable **rtp,
1490 struct inet_cork cork;
1491 struct sk_buff_head queue;
1494 if (flags & MSG_PROBE)
1497 __skb_queue_head_init(&queue);
1502 err = ip_setup_cork(sk, &cork, ipc, rtp);
1504 return ERR_PTR(err);
1506 err = __ip_append_data(sk, fl4, &queue, &cork,
1507 ¤t->task_frag, getfrag,
1508 from, length, transhdrlen, flags);
1510 __ip_flush_pending_frames(sk, &queue, &cork);
1511 return ERR_PTR(err);
1514 return __ip_make_skb(sk, fl4, &queue, &cork);
1518 * Fetch data from kernel space and fill in checksum if needed.
1520 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1521 int len, int odd, struct sk_buff *skb)
1525 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1526 skb->csum = csum_block_add(skb->csum, csum, odd);
1531 * Generic function to send a packet as reply to another packet.
1532 * Used to send some TCP resets/acks so far.
1534 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1535 const struct ip_options *sopt,
1536 __be32 daddr, __be32 saddr,
1537 const struct ip_reply_arg *arg,
1540 struct ip_options_data replyopts;
1541 struct ipcm_cookie ipc;
1543 struct rtable *rt = skb_rtable(skb);
1544 struct net *net = sock_net(sk);
1545 struct sk_buff *nskb;
1549 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1558 if (replyopts.opt.opt.optlen) {
1559 ipc.opt = &replyopts.opt;
1561 if (replyopts.opt.opt.srr)
1562 daddr = replyopts.opt.opt.faddr;
1565 oif = arg->bound_dev_if;
1566 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1569 flowi4_init_output(&fl4, oif,
1570 IP4_REPLY_MARK(net, skb->mark),
1572 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1573 ip_reply_arg_flowi_flags(arg),
1575 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1576 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1577 rt = ip_route_output_key(net, &fl4);
1581 inet_sk(sk)->tos = arg->tos;
1583 sk->sk_priority = skb->priority;
1584 sk->sk_protocol = ip_hdr(skb)->protocol;
1585 sk->sk_bound_dev_if = arg->bound_dev_if;
1586 sk->sk_sndbuf = sysctl_wmem_default;
1587 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1588 len, 0, &ipc, &rt, MSG_DONTWAIT);
1589 if (unlikely(err)) {
1590 ip_flush_pending_frames(sk);
1594 nskb = skb_peek(&sk->sk_write_queue);
1596 if (arg->csumoffset >= 0)
1597 *((__sum16 *)skb_transport_header(nskb) +
1598 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1600 nskb->ip_summed = CHECKSUM_NONE;
1601 ip_push_pending_frames(sk, &fl4);
1607 void __init ip_init(void)
1612 #if defined(CONFIG_IP_MULTICAST)