2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
29 #include "transaction.h"
30 #include "dev-replace.h"
35 * This is the implementation for the generic read ahead framework.
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
58 #define MAX_IN_FLIGHT 6
61 struct list_head list;
62 struct reada_control *rc;
70 struct list_head extctl;
73 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
82 struct list_head list;
85 struct btrfs_device *device;
86 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
92 struct reada_machine_work {
93 struct btrfs_work work;
94 struct btrfs_fs_info *fs_info;
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104 struct btrfs_key *top, u64 generation);
107 /* in case of err, eb might be NULL */
108 static void __readahead_hook(struct btrfs_fs_info *fs_info,
109 struct reada_extent *re, struct extent_buffer *eb,
116 struct list_head list;
118 spin_lock(&re->lock);
120 * just take the full list from the extent. afterwards we
121 * don't need the lock anymore
123 list_replace_init(&re->extctl, &list);
125 spin_unlock(&re->lock);
128 * this is the error case, the extent buffer has not been
129 * read correctly. We won't access anything from it and
130 * just cleanup our data structures. Effectively this will
131 * cut the branch below this node from read ahead.
137 * FIXME: currently we just set nritems to 0 if this is a leaf,
138 * effectively ignoring the content. In a next step we could
139 * trigger more readahead depending from the content, e.g.
140 * fetch the checksums for the extents in the leaf.
142 if (!btrfs_header_level(eb))
145 nritems = btrfs_header_nritems(eb);
146 generation = btrfs_header_generation(eb);
147 for (i = 0; i < nritems; i++) {
148 struct reada_extctl *rec;
150 struct btrfs_key key;
151 struct btrfs_key next_key;
153 btrfs_node_key_to_cpu(eb, &key, i);
155 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
158 bytenr = btrfs_node_blockptr(eb, i);
159 n_gen = btrfs_node_ptr_generation(eb, i);
161 list_for_each_entry(rec, &list, list) {
162 struct reada_control *rc = rec->rc;
165 * if the generation doesn't match, just ignore this
166 * extctl. This will probably cut off a branch from
167 * prefetch. Alternatively one could start a new (sub-)
168 * prefetch for this branch, starting again from root.
169 * FIXME: move the generation check out of this loop
172 if (rec->generation != generation) {
174 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
175 key.objectid, key.type, key.offset,
176 rec->generation, generation);
179 if (rec->generation == generation &&
180 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
181 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
182 reada_add_block(rc, bytenr, &next_key, n_gen);
188 * free extctl records
190 while (!list_empty(&list)) {
191 struct reada_control *rc;
192 struct reada_extctl *rec;
194 rec = list_first_entry(&list, struct reada_extctl, list);
195 list_del(&rec->list);
199 kref_get(&rc->refcnt);
200 if (atomic_dec_and_test(&rc->elems)) {
201 kref_put(&rc->refcnt, reada_control_release);
204 kref_put(&rc->refcnt, reada_control_release);
206 reada_extent_put(fs_info, re); /* one ref for each entry */
212 int btree_readahead_hook(struct extent_buffer *eb, int err)
214 struct btrfs_fs_info *fs_info = eb->fs_info;
216 struct reada_extent *re;
219 spin_lock(&fs_info->reada_lock);
220 re = radix_tree_lookup(&fs_info->reada_tree,
221 eb->start >> PAGE_SHIFT);
224 spin_unlock(&fs_info->reada_lock);
230 __readahead_hook(fs_info, re, eb, err);
231 reada_extent_put(fs_info, re); /* our ref */
234 reada_start_machine(fs_info);
238 static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
239 struct btrfs_bio *bbio)
241 struct btrfs_fs_info *fs_info = dev->fs_info;
243 struct reada_zone *zone;
244 struct btrfs_block_group_cache *cache = NULL;
250 spin_lock(&fs_info->reada_lock);
251 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
252 logical >> PAGE_SHIFT, 1);
253 if (ret == 1 && logical >= zone->start && logical <= zone->end) {
254 kref_get(&zone->refcnt);
255 spin_unlock(&fs_info->reada_lock);
259 spin_unlock(&fs_info->reada_lock);
261 cache = btrfs_lookup_block_group(fs_info, logical);
265 start = cache->key.objectid;
266 end = start + cache->key.offset - 1;
267 btrfs_put_block_group(cache);
269 zone = kzalloc(sizeof(*zone), GFP_KERNEL);
273 ret = radix_tree_preload(GFP_KERNEL);
281 INIT_LIST_HEAD(&zone->list);
282 spin_lock_init(&zone->lock);
284 kref_init(&zone->refcnt);
286 zone->device = dev; /* our device always sits at index 0 */
287 for (i = 0; i < bbio->num_stripes; ++i) {
288 /* bounds have already been checked */
289 zone->devs[i] = bbio->stripes[i].dev;
291 zone->ndevs = bbio->num_stripes;
293 spin_lock(&fs_info->reada_lock);
294 ret = radix_tree_insert(&dev->reada_zones,
295 (unsigned long)(zone->end >> PAGE_SHIFT),
298 if (ret == -EEXIST) {
300 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
301 logical >> PAGE_SHIFT, 1);
302 if (ret == 1 && logical >= zone->start && logical <= zone->end)
303 kref_get(&zone->refcnt);
307 spin_unlock(&fs_info->reada_lock);
308 radix_tree_preload_end();
313 static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
315 struct btrfs_key *top)
318 struct reada_extent *re = NULL;
319 struct reada_extent *re_exist = NULL;
320 struct btrfs_bio *bbio = NULL;
321 struct btrfs_device *dev;
322 struct btrfs_device *prev_dev;
326 unsigned long index = logical >> PAGE_SHIFT;
327 int dev_replace_is_ongoing;
330 spin_lock(&fs_info->reada_lock);
331 re = radix_tree_lookup(&fs_info->reada_tree, index);
334 spin_unlock(&fs_info->reada_lock);
339 re = kzalloc(sizeof(*re), GFP_KERNEL);
343 re->logical = logical;
345 INIT_LIST_HEAD(&re->extctl);
346 spin_lock_init(&re->lock);
352 length = fs_info->nodesize;
353 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
355 if (ret || !bbio || length < fs_info->nodesize)
358 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
360 "readahead: more than %d copies not supported",
365 real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
366 for (nzones = 0; nzones < real_stripes; ++nzones) {
367 struct reada_zone *zone;
369 dev = bbio->stripes[nzones].dev;
371 /* cannot read ahead on missing device. */
375 zone = reada_find_zone(dev, logical, bbio);
379 re->zones[re->nzones++] = zone;
380 spin_lock(&zone->lock);
382 kref_get(&zone->refcnt);
384 spin_unlock(&zone->lock);
385 spin_lock(&fs_info->reada_lock);
386 kref_put(&zone->refcnt, reada_zone_release);
387 spin_unlock(&fs_info->reada_lock);
389 if (re->nzones == 0) {
390 /* not a single zone found, error and out */
394 ret = radix_tree_preload(GFP_KERNEL);
398 /* insert extent in reada_tree + all per-device trees, all or nothing */
399 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
400 spin_lock(&fs_info->reada_lock);
401 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
402 if (ret == -EEXIST) {
403 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
405 spin_unlock(&fs_info->reada_lock);
406 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
407 radix_tree_preload_end();
411 spin_unlock(&fs_info->reada_lock);
412 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
413 radix_tree_preload_end();
416 radix_tree_preload_end();
418 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
419 &fs_info->dev_replace);
420 for (nzones = 0; nzones < re->nzones; ++nzones) {
421 dev = re->zones[nzones]->device;
423 if (dev == prev_dev) {
425 * in case of DUP, just add the first zone. As both
426 * are on the same device, there's nothing to gain
428 * Also, it wouldn't work, as the tree is per device
429 * and adding would fail with EEXIST
436 if (dev_replace_is_ongoing &&
437 dev == fs_info->dev_replace.tgtdev) {
439 * as this device is selected for reading only as
440 * a last resort, skip it for read ahead.
445 ret = radix_tree_insert(&dev->reada_extents, index, re);
447 while (--nzones >= 0) {
448 dev = re->zones[nzones]->device;
450 /* ignore whether the entry was inserted */
451 radix_tree_delete(&dev->reada_extents, index);
453 radix_tree_delete(&fs_info->reada_tree, index);
454 spin_unlock(&fs_info->reada_lock);
455 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
460 spin_unlock(&fs_info->reada_lock);
461 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
466 btrfs_put_bbio(bbio);
470 for (nzones = 0; nzones < re->nzones; ++nzones) {
471 struct reada_zone *zone;
473 zone = re->zones[nzones];
474 kref_get(&zone->refcnt);
475 spin_lock(&zone->lock);
477 if (zone->elems == 0) {
479 * no fs_info->reada_lock needed, as this can't be
482 kref_put(&zone->refcnt, reada_zone_release);
484 spin_unlock(&zone->lock);
486 spin_lock(&fs_info->reada_lock);
487 kref_put(&zone->refcnt, reada_zone_release);
488 spin_unlock(&fs_info->reada_lock);
490 btrfs_put_bbio(bbio);
495 static void reada_extent_put(struct btrfs_fs_info *fs_info,
496 struct reada_extent *re)
499 unsigned long index = re->logical >> PAGE_SHIFT;
501 spin_lock(&fs_info->reada_lock);
503 spin_unlock(&fs_info->reada_lock);
507 radix_tree_delete(&fs_info->reada_tree, index);
508 for (i = 0; i < re->nzones; ++i) {
509 struct reada_zone *zone = re->zones[i];
511 radix_tree_delete(&zone->device->reada_extents, index);
514 spin_unlock(&fs_info->reada_lock);
516 for (i = 0; i < re->nzones; ++i) {
517 struct reada_zone *zone = re->zones[i];
519 kref_get(&zone->refcnt);
520 spin_lock(&zone->lock);
522 if (zone->elems == 0) {
523 /* no fs_info->reada_lock needed, as this can't be
525 kref_put(&zone->refcnt, reada_zone_release);
527 spin_unlock(&zone->lock);
529 spin_lock(&fs_info->reada_lock);
530 kref_put(&zone->refcnt, reada_zone_release);
531 spin_unlock(&fs_info->reada_lock);
537 static void reada_zone_release(struct kref *kref)
539 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
541 radix_tree_delete(&zone->device->reada_zones,
542 zone->end >> PAGE_SHIFT);
547 static void reada_control_release(struct kref *kref)
549 struct reada_control *rc = container_of(kref, struct reada_control,
555 static int reada_add_block(struct reada_control *rc, u64 logical,
556 struct btrfs_key *top, u64 generation)
558 struct btrfs_fs_info *fs_info = rc->fs_info;
559 struct reada_extent *re;
560 struct reada_extctl *rec;
563 re = reada_find_extent(fs_info, logical, top);
567 rec = kzalloc(sizeof(*rec), GFP_KERNEL);
569 reada_extent_put(fs_info, re);
574 rec->generation = generation;
575 atomic_inc(&rc->elems);
577 spin_lock(&re->lock);
578 list_add_tail(&rec->list, &re->extctl);
579 spin_unlock(&re->lock);
581 /* leave the ref on the extent */
587 * called with fs_info->reada_lock held
589 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
592 unsigned long index = zone->end >> PAGE_SHIFT;
594 for (i = 0; i < zone->ndevs; ++i) {
595 struct reada_zone *peer;
596 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
597 if (peer && peer->device != zone->device)
603 * called with fs_info->reada_lock held
605 static int reada_pick_zone(struct btrfs_device *dev)
607 struct reada_zone *top_zone = NULL;
608 struct reada_zone *top_locked_zone = NULL;
610 u64 top_locked_elems = 0;
611 unsigned long index = 0;
614 if (dev->reada_curr_zone) {
615 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
616 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
617 dev->reada_curr_zone = NULL;
619 /* pick the zone with the most elements */
621 struct reada_zone *zone;
623 ret = radix_tree_gang_lookup(&dev->reada_zones,
624 (void **)&zone, index, 1);
627 index = (zone->end >> PAGE_SHIFT) + 1;
629 if (zone->elems > top_locked_elems) {
630 top_locked_elems = zone->elems;
631 top_locked_zone = zone;
634 if (zone->elems > top_elems) {
635 top_elems = zone->elems;
641 dev->reada_curr_zone = top_zone;
642 else if (top_locked_zone)
643 dev->reada_curr_zone = top_locked_zone;
647 dev->reada_next = dev->reada_curr_zone->start;
648 kref_get(&dev->reada_curr_zone->refcnt);
649 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
654 static int reada_start_machine_dev(struct btrfs_device *dev)
656 struct btrfs_fs_info *fs_info = dev->fs_info;
657 struct reada_extent *re = NULL;
659 struct extent_buffer *eb = NULL;
664 spin_lock(&fs_info->reada_lock);
665 if (dev->reada_curr_zone == NULL) {
666 ret = reada_pick_zone(dev);
668 spin_unlock(&fs_info->reada_lock);
673 * FIXME currently we issue the reads one extent at a time. If we have
674 * a contiguous block of extents, we could also coagulate them or use
675 * plugging to speed things up
677 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
678 dev->reada_next >> PAGE_SHIFT, 1);
679 if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
680 ret = reada_pick_zone(dev);
682 spin_unlock(&fs_info->reada_lock);
686 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
687 dev->reada_next >> PAGE_SHIFT, 1);
690 spin_unlock(&fs_info->reada_lock);
693 dev->reada_next = re->logical + fs_info->nodesize;
696 spin_unlock(&fs_info->reada_lock);
698 spin_lock(&re->lock);
699 if (re->scheduled || list_empty(&re->extctl)) {
700 spin_unlock(&re->lock);
701 reada_extent_put(fs_info, re);
705 spin_unlock(&re->lock);
710 for (i = 0; i < re->nzones; ++i) {
711 if (re->zones[i]->device == dev) {
716 logical = re->logical;
718 atomic_inc(&dev->reada_in_flight);
719 ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
721 __readahead_hook(fs_info, re, NULL, ret);
723 __readahead_hook(fs_info, re, eb, ret);
726 free_extent_buffer(eb);
728 atomic_dec(&dev->reada_in_flight);
729 reada_extent_put(fs_info, re);
735 static void reada_start_machine_worker(struct btrfs_work *work)
737 struct reada_machine_work *rmw;
738 struct btrfs_fs_info *fs_info;
741 rmw = container_of(work, struct reada_machine_work, work);
742 fs_info = rmw->fs_info;
746 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
747 task_nice_ioprio(current));
748 set_task_ioprio(current, BTRFS_IOPRIO_READA);
749 __reada_start_machine(fs_info);
750 set_task_ioprio(current, old_ioprio);
752 atomic_dec(&fs_info->reada_works_cnt);
755 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
757 struct btrfs_device *device;
758 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
765 mutex_lock(&fs_devices->device_list_mutex);
766 list_for_each_entry(device, &fs_devices->devices, dev_list) {
767 if (atomic_read(&device->reada_in_flight) <
769 enqueued += reada_start_machine_dev(device);
771 mutex_unlock(&fs_devices->device_list_mutex);
773 } while (enqueued && total < 10000);
779 * If everything is already in the cache, this is effectively single
780 * threaded. To a) not hold the caller for too long and b) to utilize
781 * more cores, we broke the loop above after 10000 iterations and now
782 * enqueue to workers to finish it. This will distribute the load to
785 for (i = 0; i < 2; ++i) {
786 reada_start_machine(fs_info);
787 if (atomic_read(&fs_info->reada_works_cnt) >
788 BTRFS_MAX_MIRRORS * 2)
793 static void reada_start_machine(struct btrfs_fs_info *fs_info)
795 struct reada_machine_work *rmw;
797 rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
799 /* FIXME we cannot handle this properly right now */
802 btrfs_init_work(&rmw->work, btrfs_readahead_helper,
803 reada_start_machine_worker, NULL, NULL);
804 rmw->fs_info = fs_info;
806 btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
807 atomic_inc(&fs_info->reada_works_cnt);
811 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
813 struct btrfs_device *device;
814 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
821 spin_lock(&fs_info->reada_lock);
822 list_for_each_entry(device, &fs_devices->devices, dev_list) {
823 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
824 atomic_read(&device->reada_in_flight));
827 struct reada_zone *zone;
828 ret = radix_tree_gang_lookup(&device->reada_zones,
829 (void **)&zone, index, 1);
832 pr_debug(" zone %llu-%llu elems %llu locked %d devs",
833 zone->start, zone->end, zone->elems,
835 for (j = 0; j < zone->ndevs; ++j) {
837 zone->devs[j]->devid);
839 if (device->reada_curr_zone == zone)
840 pr_cont(" curr off %llu",
841 device->reada_next - zone->start);
843 index = (zone->end >> PAGE_SHIFT) + 1;
848 struct reada_extent *re = NULL;
850 ret = radix_tree_gang_lookup(&device->reada_extents,
851 (void **)&re, index, 1);
854 pr_debug(" re: logical %llu size %u empty %d scheduled %d",
855 re->logical, fs_info->nodesize,
856 list_empty(&re->extctl), re->scheduled);
858 for (i = 0; i < re->nzones; ++i) {
859 pr_cont(" zone %llu-%llu devs",
862 for (j = 0; j < re->zones[i]->ndevs; ++j) {
864 re->zones[i]->devs[j]->devid);
868 index = (re->logical >> PAGE_SHIFT) + 1;
877 struct reada_extent *re = NULL;
879 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
883 if (!re->scheduled) {
884 index = (re->logical >> PAGE_SHIFT) + 1;
887 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
888 re->logical, fs_info->nodesize,
889 list_empty(&re->extctl), re->scheduled);
890 for (i = 0; i < re->nzones; ++i) {
891 pr_cont(" zone %llu-%llu devs",
894 for (j = 0; j < re->zones[i]->ndevs; ++j) {
896 re->zones[i]->devs[j]->devid);
900 index = (re->logical >> PAGE_SHIFT) + 1;
902 spin_unlock(&fs_info->reada_lock);
909 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
910 struct btrfs_key *key_start, struct btrfs_key *key_end)
912 struct reada_control *rc;
916 struct extent_buffer *node;
917 static struct btrfs_key max_key = {
923 rc = kzalloc(sizeof(*rc), GFP_KERNEL);
925 return ERR_PTR(-ENOMEM);
927 rc->fs_info = root->fs_info;
928 rc->key_start = *key_start;
929 rc->key_end = *key_end;
930 atomic_set(&rc->elems, 0);
931 init_waitqueue_head(&rc->wait);
932 kref_init(&rc->refcnt);
933 kref_get(&rc->refcnt); /* one ref for having elements */
935 node = btrfs_root_node(root);
937 generation = btrfs_header_generation(node);
938 free_extent_buffer(node);
940 ret = reada_add_block(rc, start, &max_key, generation);
946 reada_start_machine(root->fs_info);
952 int btrfs_reada_wait(void *handle)
954 struct reada_control *rc = handle;
955 struct btrfs_fs_info *fs_info = rc->fs_info;
957 while (atomic_read(&rc->elems)) {
958 if (!atomic_read(&fs_info->reada_works_cnt))
959 reada_start_machine(fs_info);
960 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
962 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
965 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
967 kref_put(&rc->refcnt, reada_control_release);
972 int btrfs_reada_wait(void *handle)
974 struct reada_control *rc = handle;
975 struct btrfs_fs_info *fs_info = rc->fs_info;
977 while (atomic_read(&rc->elems)) {
978 if (!atomic_read(&fs_info->reada_works_cnt))
979 reada_start_machine(fs_info);
980 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
984 kref_put(&rc->refcnt, reada_control_release);
990 void btrfs_reada_detach(void *handle)
992 struct reada_control *rc = handle;
994 kref_put(&rc->refcnt, reada_control_release);