4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
39 static LIST_HEAD(super_blocks);
40 static DEFINE_SPINLOCK(sb_lock);
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 * One thing we have to be careful of with a per-sb shrinker is that we don't
50 * drop the last active reference to the superblock from within the shrinker.
51 * If that happens we could trigger unregistering the shrinker from within the
52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53 * take a passive reference to the superblock to avoid this from occurring.
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 struct shrink_control *sc)
58 struct super_block *sb;
65 sb = container_of(shrink, struct super_block, s_shrink);
68 * Deadlock avoidance. We may hold various FS locks, and we don't want
69 * to recurse into the FS that called us in clear_inode() and friends..
71 if (!(sc->gfp_mask & __GFP_FS))
74 if (!trylock_super(sb))
77 if (sb->s_op->nr_cached_objects)
78 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
80 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
81 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
82 total_objects = dentries + inodes + fs_objects + 1;
86 /* proportion the scan between the caches */
87 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
92 * prune the dcache first as the icache is pinned by it, then
93 * prune the icache, followed by the filesystem specific caches
95 * Ensure that we always scan at least one object - memcg kmem
96 * accounting uses this to fully empty the caches.
98 sc->nr_to_scan = dentries + 1;
99 freed = prune_dcache_sb(sb, sc);
100 sc->nr_to_scan = inodes + 1;
101 freed += prune_icache_sb(sb, sc);
104 sc->nr_to_scan = fs_objects + 1;
105 freed += sb->s_op->free_cached_objects(sb, sc);
108 up_read(&sb->s_umount);
112 static unsigned long super_cache_count(struct shrinker *shrink,
113 struct shrink_control *sc)
115 struct super_block *sb;
116 long total_objects = 0;
118 sb = container_of(shrink, struct super_block, s_shrink);
121 * Don't call trylock_super as it is a potential
122 * scalability bottleneck. The counts could get updated
123 * between super_cache_count and super_cache_scan anyway.
124 * Call to super_cache_count with shrinker_rwsem held
125 * ensures the safety of call to list_lru_shrink_count() and
126 * s_op->nr_cached_objects().
128 if (sb->s_op && sb->s_op->nr_cached_objects)
129 total_objects = sb->s_op->nr_cached_objects(sb, sc);
131 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
132 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
134 total_objects = vfs_pressure_ratio(total_objects);
135 return total_objects;
139 * destroy_super - frees a superblock
140 * @s: superblock to free
142 * Frees a superblock.
144 static void destroy_super(struct super_block *s)
147 list_lru_destroy(&s->s_dentry_lru);
148 list_lru_destroy(&s->s_inode_lru);
149 for (i = 0; i < SB_FREEZE_LEVELS; i++)
150 percpu_counter_destroy(&s->s_writers.counter[i]);
152 WARN_ON(!list_empty(&s->s_mounts));
159 * alloc_super - create new superblock
160 * @type: filesystem type superblock should belong to
161 * @flags: the mount flags
163 * Allocates and initializes a new &struct super_block. alloc_super()
164 * returns a pointer new superblock or %NULL if allocation had failed.
166 static struct super_block *alloc_super(struct file_system_type *type, int flags)
168 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
169 static const struct super_operations default_op;
175 INIT_LIST_HEAD(&s->s_mounts);
177 if (security_sb_alloc(s))
180 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
181 if (percpu_counter_init(&s->s_writers.counter[i], 0,
184 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
185 &type->s_writers_key[i], 0);
187 init_waitqueue_head(&s->s_writers.wait);
188 init_waitqueue_head(&s->s_writers.wait_unfrozen);
189 s->s_bdi = &noop_backing_dev_info;
191 INIT_HLIST_NODE(&s->s_instances);
192 INIT_HLIST_BL_HEAD(&s->s_anon);
193 mutex_init(&s->s_sync_lock);
194 INIT_LIST_HEAD(&s->s_inodes);
195 spin_lock_init(&s->s_inode_list_lock);
197 if (list_lru_init_memcg(&s->s_dentry_lru))
199 if (list_lru_init_memcg(&s->s_inode_lru))
202 init_rwsem(&s->s_umount);
203 lockdep_set_class(&s->s_umount, &type->s_umount_key);
205 * sget() can have s_umount recursion.
207 * When it cannot find a suitable sb, it allocates a new
208 * one (this one), and tries again to find a suitable old
211 * In case that succeeds, it will acquire the s_umount
212 * lock of the old one. Since these are clearly distrinct
213 * locks, and this object isn't exposed yet, there's no
216 * Annotate this by putting this lock in a different
219 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
221 atomic_set(&s->s_active, 1);
222 mutex_init(&s->s_vfs_rename_mutex);
223 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
224 mutex_init(&s->s_dquot.dqio_mutex);
225 mutex_init(&s->s_dquot.dqonoff_mutex);
226 s->s_maxbytes = MAX_NON_LFS;
227 s->s_op = &default_op;
228 s->s_time_gran = 1000000000;
229 s->cleancache_poolid = CLEANCACHE_NO_POOL;
231 s->s_shrink.seeks = DEFAULT_SEEKS;
232 s->s_shrink.scan_objects = super_cache_scan;
233 s->s_shrink.count_objects = super_cache_count;
234 s->s_shrink.batch = 1024;
235 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
243 /* Superblock refcounting */
246 * Drop a superblock's refcount. The caller must hold sb_lock.
248 static void __put_super(struct super_block *sb)
250 if (!--sb->s_count) {
251 list_del_init(&sb->s_list);
257 * put_super - drop a temporary reference to superblock
258 * @sb: superblock in question
260 * Drops a temporary reference, frees superblock if there's no
263 static void put_super(struct super_block *sb)
267 spin_unlock(&sb_lock);
272 * deactivate_locked_super - drop an active reference to superblock
273 * @s: superblock to deactivate
275 * Drops an active reference to superblock, converting it into a temprory
276 * one if there is no other active references left. In that case we
277 * tell fs driver to shut it down and drop the temporary reference we
280 * Caller holds exclusive lock on superblock; that lock is released.
282 void deactivate_locked_super(struct super_block *s)
284 struct file_system_type *fs = s->s_type;
285 if (atomic_dec_and_test(&s->s_active)) {
286 cleancache_invalidate_fs(s);
287 unregister_shrinker(&s->s_shrink);
291 * Since list_lru_destroy() may sleep, we cannot call it from
292 * put_super(), where we hold the sb_lock. Therefore we destroy
293 * the lru lists right now.
295 list_lru_destroy(&s->s_dentry_lru);
296 list_lru_destroy(&s->s_inode_lru);
301 up_write(&s->s_umount);
305 EXPORT_SYMBOL(deactivate_locked_super);
308 * deactivate_super - drop an active reference to superblock
309 * @s: superblock to deactivate
311 * Variant of deactivate_locked_super(), except that superblock is *not*
312 * locked by caller. If we are going to drop the final active reference,
313 * lock will be acquired prior to that.
315 void deactivate_super(struct super_block *s)
317 if (!atomic_add_unless(&s->s_active, -1, 1)) {
318 down_write(&s->s_umount);
319 deactivate_locked_super(s);
323 EXPORT_SYMBOL(deactivate_super);
326 * grab_super - acquire an active reference
327 * @s: reference we are trying to make active
329 * Tries to acquire an active reference. grab_super() is used when we
330 * had just found a superblock in super_blocks or fs_type->fs_supers
331 * and want to turn it into a full-blown active reference. grab_super()
332 * is called with sb_lock held and drops it. Returns 1 in case of
333 * success, 0 if we had failed (superblock contents was already dead or
334 * dying when grab_super() had been called). Note that this is only
335 * called for superblocks not in rundown mode (== ones still on ->fs_supers
336 * of their type), so increment of ->s_count is OK here.
338 static int grab_super(struct super_block *s) __releases(sb_lock)
341 spin_unlock(&sb_lock);
342 down_write(&s->s_umount);
343 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
347 up_write(&s->s_umount);
353 * trylock_super - try to grab ->s_umount shared
354 * @sb: reference we are trying to grab
356 * Try to prevent fs shutdown. This is used in places where we
357 * cannot take an active reference but we need to ensure that the
358 * filesystem is not shut down while we are working on it. It returns
359 * false if we cannot acquire s_umount or if we lose the race and
360 * filesystem already got into shutdown, and returns true with the s_umount
361 * lock held in read mode in case of success. On successful return,
362 * the caller must drop the s_umount lock when done.
364 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
365 * The reason why it's safe is that we are OK with doing trylock instead
366 * of down_read(). There's a couple of places that are OK with that, but
367 * it's very much not a general-purpose interface.
369 bool trylock_super(struct super_block *sb)
371 if (down_read_trylock(&sb->s_umount)) {
372 if (!hlist_unhashed(&sb->s_instances) &&
373 sb->s_root && (sb->s_flags & MS_BORN))
375 up_read(&sb->s_umount);
382 * generic_shutdown_super - common helper for ->kill_sb()
383 * @sb: superblock to kill
385 * generic_shutdown_super() does all fs-independent work on superblock
386 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
387 * that need destruction out of superblock, call generic_shutdown_super()
388 * and release aforementioned objects. Note: dentries and inodes _are_
389 * taken care of and do not need specific handling.
391 * Upon calling this function, the filesystem may no longer alter or
392 * rearrange the set of dentries belonging to this super_block, nor may it
393 * change the attachments of dentries to inodes.
395 void generic_shutdown_super(struct super_block *sb)
397 const struct super_operations *sop = sb->s_op;
400 shrink_dcache_for_umount(sb);
402 sb->s_flags &= ~MS_ACTIVE;
404 fsnotify_unmount_inodes(sb);
408 if (sb->s_dio_done_wq) {
409 destroy_workqueue(sb->s_dio_done_wq);
410 sb->s_dio_done_wq = NULL;
416 if (!list_empty(&sb->s_inodes)) {
417 printk("VFS: Busy inodes after unmount of %s. "
418 "Self-destruct in 5 seconds. Have a nice day...\n",
423 /* should be initialized for __put_super_and_need_restart() */
424 hlist_del_init(&sb->s_instances);
425 spin_unlock(&sb_lock);
426 up_write(&sb->s_umount);
429 EXPORT_SYMBOL(generic_shutdown_super);
432 * sget - find or create a superblock
433 * @type: filesystem type superblock should belong to
434 * @test: comparison callback
435 * @set: setup callback
436 * @flags: mount flags
437 * @data: argument to each of them
439 struct super_block *sget(struct file_system_type *type,
440 int (*test)(struct super_block *,void *),
441 int (*set)(struct super_block *,void *),
445 struct super_block *s = NULL;
446 struct super_block *old;
452 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
453 if (!test(old, data))
455 if (!grab_super(old))
458 up_write(&s->s_umount);
466 spin_unlock(&sb_lock);
467 s = alloc_super(type, flags);
469 return ERR_PTR(-ENOMEM);
475 spin_unlock(&sb_lock);
476 up_write(&s->s_umount);
481 strlcpy(s->s_id, type->name, sizeof(s->s_id));
482 list_add_tail(&s->s_list, &super_blocks);
483 hlist_add_head(&s->s_instances, &type->fs_supers);
484 spin_unlock(&sb_lock);
485 get_filesystem(type);
486 register_shrinker(&s->s_shrink);
492 void drop_super(struct super_block *sb)
494 up_read(&sb->s_umount);
498 EXPORT_SYMBOL(drop_super);
501 * iterate_supers - call function for all active superblocks
502 * @f: function to call
503 * @arg: argument to pass to it
505 * Scans the superblock list and calls given function, passing it
506 * locked superblock and given argument.
508 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
510 struct super_block *sb, *p = NULL;
513 list_for_each_entry(sb, &super_blocks, s_list) {
514 if (hlist_unhashed(&sb->s_instances))
517 spin_unlock(&sb_lock);
519 down_read(&sb->s_umount);
520 if (sb->s_root && (sb->s_flags & MS_BORN))
522 up_read(&sb->s_umount);
531 spin_unlock(&sb_lock);
535 * iterate_supers_type - call function for superblocks of given type
537 * @f: function to call
538 * @arg: argument to pass to it
540 * Scans the superblock list and calls given function, passing it
541 * locked superblock and given argument.
543 void iterate_supers_type(struct file_system_type *type,
544 void (*f)(struct super_block *, void *), void *arg)
546 struct super_block *sb, *p = NULL;
549 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
551 spin_unlock(&sb_lock);
553 down_read(&sb->s_umount);
554 if (sb->s_root && (sb->s_flags & MS_BORN))
556 up_read(&sb->s_umount);
565 spin_unlock(&sb_lock);
568 EXPORT_SYMBOL(iterate_supers_type);
571 * get_super - get the superblock of a device
572 * @bdev: device to get the superblock for
574 * Scans the superblock list and finds the superblock of the file system
575 * mounted on the device given. %NULL is returned if no match is found.
578 struct super_block *get_super(struct block_device *bdev)
580 struct super_block *sb;
587 list_for_each_entry(sb, &super_blocks, s_list) {
588 if (hlist_unhashed(&sb->s_instances))
590 if (sb->s_bdev == bdev) {
592 spin_unlock(&sb_lock);
593 down_read(&sb->s_umount);
595 if (sb->s_root && (sb->s_flags & MS_BORN))
597 up_read(&sb->s_umount);
598 /* nope, got unmounted */
604 spin_unlock(&sb_lock);
608 EXPORT_SYMBOL(get_super);
611 * get_super_thawed - get thawed superblock of a device
612 * @bdev: device to get the superblock for
614 * Scans the superblock list and finds the superblock of the file system
615 * mounted on the device. The superblock is returned once it is thawed
616 * (or immediately if it was not frozen). %NULL is returned if no match
619 struct super_block *get_super_thawed(struct block_device *bdev)
622 struct super_block *s = get_super(bdev);
623 if (!s || s->s_writers.frozen == SB_UNFROZEN)
625 up_read(&s->s_umount);
626 wait_event(s->s_writers.wait_unfrozen,
627 s->s_writers.frozen == SB_UNFROZEN);
631 EXPORT_SYMBOL(get_super_thawed);
634 * get_active_super - get an active reference to the superblock of a device
635 * @bdev: device to get the superblock for
637 * Scans the superblock list and finds the superblock of the file system
638 * mounted on the device given. Returns the superblock with an active
639 * reference or %NULL if none was found.
641 struct super_block *get_active_super(struct block_device *bdev)
643 struct super_block *sb;
650 list_for_each_entry(sb, &super_blocks, s_list) {
651 if (hlist_unhashed(&sb->s_instances))
653 if (sb->s_bdev == bdev) {
656 up_write(&sb->s_umount);
660 spin_unlock(&sb_lock);
664 struct super_block *user_get_super(dev_t dev)
666 struct super_block *sb;
670 list_for_each_entry(sb, &super_blocks, s_list) {
671 if (hlist_unhashed(&sb->s_instances))
673 if (sb->s_dev == dev) {
675 spin_unlock(&sb_lock);
676 down_read(&sb->s_umount);
678 if (sb->s_root && (sb->s_flags & MS_BORN))
680 up_read(&sb->s_umount);
681 /* nope, got unmounted */
687 spin_unlock(&sb_lock);
692 * do_remount_sb - asks filesystem to change mount options.
693 * @sb: superblock in question
694 * @flags: numeric part of options
695 * @data: the rest of options
696 * @force: whether or not to force the change
698 * Alters the mount options of a mounted file system.
700 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
705 if (sb->s_writers.frozen != SB_UNFROZEN)
709 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
713 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
716 if (!hlist_empty(&sb->s_pins)) {
717 up_write(&sb->s_umount);
718 group_pin_kill(&sb->s_pins);
719 down_write(&sb->s_umount);
722 if (sb->s_writers.frozen != SB_UNFROZEN)
724 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
727 shrink_dcache_sb(sb);
729 /* If we are remounting RDONLY and current sb is read/write,
730 make sure there are no rw files opened */
733 sb->s_readonly_remount = 1;
736 retval = sb_prepare_remount_readonly(sb);
742 if (sb->s_op->remount_fs) {
743 retval = sb->s_op->remount_fs(sb, &flags, data);
746 goto cancel_readonly;
747 /* If forced remount, go ahead despite any errors */
748 WARN(1, "forced remount of a %s fs returned %i\n",
749 sb->s_type->name, retval);
752 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
753 /* Needs to be ordered wrt mnt_is_readonly() */
755 sb->s_readonly_remount = 0;
758 * Some filesystems modify their metadata via some other path than the
759 * bdev buffer cache (eg. use a private mapping, or directories in
760 * pagecache, etc). Also file data modifications go via their own
761 * mappings. So If we try to mount readonly then copy the filesystem
762 * from bdev, we could get stale data, so invalidate it to give a best
763 * effort at coherency.
765 if (remount_ro && sb->s_bdev)
766 invalidate_bdev(sb->s_bdev);
770 sb->s_readonly_remount = 0;
774 static void do_emergency_remount(struct work_struct *work)
776 struct super_block *sb, *p = NULL;
779 list_for_each_entry(sb, &super_blocks, s_list) {
780 if (hlist_unhashed(&sb->s_instances))
783 spin_unlock(&sb_lock);
784 down_write(&sb->s_umount);
785 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
786 !(sb->s_flags & MS_RDONLY)) {
788 * What lock protects sb->s_flags??
790 do_remount_sb(sb, MS_RDONLY, NULL, 1);
792 up_write(&sb->s_umount);
800 spin_unlock(&sb_lock);
802 printk("Emergency Remount complete\n");
805 void emergency_remount(void)
807 struct work_struct *work;
809 work = kmalloc(sizeof(*work), GFP_ATOMIC);
811 INIT_WORK(work, do_emergency_remount);
817 * Unnamed block devices are dummy devices used by virtual
818 * filesystems which don't use real block-devices. -- jrs
821 static DEFINE_IDA(unnamed_dev_ida);
822 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
823 /* Many userspace utilities consider an FSID of 0 invalid.
824 * Always return at least 1 from get_anon_bdev.
826 static int unnamed_dev_start = 1;
828 int get_anon_bdev(dev_t *p)
834 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
836 spin_lock(&unnamed_dev_lock);
837 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
839 unnamed_dev_start = dev + 1;
840 spin_unlock(&unnamed_dev_lock);
841 if (error == -EAGAIN)
842 /* We raced and lost with another CPU. */
847 if (dev >= (1 << MINORBITS)) {
848 spin_lock(&unnamed_dev_lock);
849 ida_remove(&unnamed_dev_ida, dev);
850 if (unnamed_dev_start > dev)
851 unnamed_dev_start = dev;
852 spin_unlock(&unnamed_dev_lock);
855 *p = MKDEV(0, dev & MINORMASK);
858 EXPORT_SYMBOL(get_anon_bdev);
860 void free_anon_bdev(dev_t dev)
862 int slot = MINOR(dev);
863 spin_lock(&unnamed_dev_lock);
864 ida_remove(&unnamed_dev_ida, slot);
865 if (slot < unnamed_dev_start)
866 unnamed_dev_start = slot;
867 spin_unlock(&unnamed_dev_lock);
869 EXPORT_SYMBOL(free_anon_bdev);
871 int set_anon_super(struct super_block *s, void *data)
873 return get_anon_bdev(&s->s_dev);
876 EXPORT_SYMBOL(set_anon_super);
878 void kill_anon_super(struct super_block *sb)
880 dev_t dev = sb->s_dev;
881 generic_shutdown_super(sb);
885 EXPORT_SYMBOL(kill_anon_super);
887 void kill_litter_super(struct super_block *sb)
890 d_genocide(sb->s_root);
894 EXPORT_SYMBOL(kill_litter_super);
896 static int ns_test_super(struct super_block *sb, void *data)
898 return sb->s_fs_info == data;
901 static int ns_set_super(struct super_block *sb, void *data)
903 sb->s_fs_info = data;
904 return set_anon_super(sb, NULL);
907 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
908 void *data, int (*fill_super)(struct super_block *, void *, int))
910 struct super_block *sb;
912 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
918 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
920 deactivate_locked_super(sb);
924 sb->s_flags |= MS_ACTIVE;
927 return dget(sb->s_root);
930 EXPORT_SYMBOL(mount_ns);
933 static int set_bdev_super(struct super_block *s, void *data)
936 s->s_dev = s->s_bdev->bd_dev;
939 * We set the bdi here to the queue backing, file systems can
940 * overwrite this in ->fill_super()
942 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
946 static int test_bdev_super(struct super_block *s, void *data)
948 return (void *)s->s_bdev == data;
951 struct dentry *mount_bdev(struct file_system_type *fs_type,
952 int flags, const char *dev_name, void *data,
953 int (*fill_super)(struct super_block *, void *, int))
955 struct block_device *bdev;
956 struct super_block *s;
957 fmode_t mode = FMODE_READ | FMODE_EXCL;
960 if (!(flags & MS_RDONLY))
963 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
965 return ERR_CAST(bdev);
968 * once the super is inserted into the list by sget, s_umount
969 * will protect the lockfs code from trying to start a snapshot
970 * while we are mounting
972 mutex_lock(&bdev->bd_fsfreeze_mutex);
973 if (bdev->bd_fsfreeze_count > 0) {
974 mutex_unlock(&bdev->bd_fsfreeze_mutex);
978 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
980 mutex_unlock(&bdev->bd_fsfreeze_mutex);
985 if ((flags ^ s->s_flags) & MS_RDONLY) {
986 deactivate_locked_super(s);
992 * s_umount nests inside bd_mutex during
993 * __invalidate_device(). blkdev_put() acquires
994 * bd_mutex and can't be called under s_umount. Drop
995 * s_umount temporarily. This is safe as we're
996 * holding an active reference.
998 up_write(&s->s_umount);
999 blkdev_put(bdev, mode);
1000 down_write(&s->s_umount);
1002 char b[BDEVNAME_SIZE];
1005 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1006 sb_set_blocksize(s, block_size(bdev));
1007 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1009 deactivate_locked_super(s);
1013 s->s_flags |= MS_ACTIVE;
1017 return dget(s->s_root);
1022 blkdev_put(bdev, mode);
1024 return ERR_PTR(error);
1026 EXPORT_SYMBOL(mount_bdev);
1028 void kill_block_super(struct super_block *sb)
1030 struct block_device *bdev = sb->s_bdev;
1031 fmode_t mode = sb->s_mode;
1033 bdev->bd_super = NULL;
1034 generic_shutdown_super(sb);
1035 sync_blockdev(bdev);
1036 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1037 blkdev_put(bdev, mode | FMODE_EXCL);
1040 EXPORT_SYMBOL(kill_block_super);
1043 struct dentry *mount_nodev(struct file_system_type *fs_type,
1044 int flags, void *data,
1045 int (*fill_super)(struct super_block *, void *, int))
1048 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1053 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1055 deactivate_locked_super(s);
1056 return ERR_PTR(error);
1058 s->s_flags |= MS_ACTIVE;
1059 return dget(s->s_root);
1061 EXPORT_SYMBOL(mount_nodev);
1063 static int compare_single(struct super_block *s, void *p)
1068 struct dentry *mount_single(struct file_system_type *fs_type,
1069 int flags, void *data,
1070 int (*fill_super)(struct super_block *, void *, int))
1072 struct super_block *s;
1075 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1079 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1081 deactivate_locked_super(s);
1082 return ERR_PTR(error);
1084 s->s_flags |= MS_ACTIVE;
1086 do_remount_sb(s, flags, data, 0);
1088 return dget(s->s_root);
1090 EXPORT_SYMBOL(mount_single);
1093 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1095 struct dentry *root;
1096 struct super_block *sb;
1097 char *secdata = NULL;
1098 int error = -ENOMEM;
1100 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1101 secdata = alloc_secdata();
1105 error = security_sb_copy_data(data, secdata);
1107 goto out_free_secdata;
1110 root = type->mount(type, flags, name, data);
1112 error = PTR_ERR(root);
1113 goto out_free_secdata;
1117 WARN_ON(!sb->s_bdi);
1118 sb->s_flags |= MS_BORN;
1120 error = security_sb_kern_mount(sb, flags, secdata);
1125 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1126 * but s_maxbytes was an unsigned long long for many releases. Throw
1127 * this warning for a little while to try and catch filesystems that
1128 * violate this rule.
1130 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1131 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1133 up_write(&sb->s_umount);
1134 free_secdata(secdata);
1138 deactivate_locked_super(sb);
1140 free_secdata(secdata);
1142 return ERR_PTR(error);
1146 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1149 void __sb_end_write(struct super_block *sb, int level)
1151 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1153 * Make sure s_writers are updated before we wake up waiters in
1157 if (waitqueue_active(&sb->s_writers.wait))
1158 wake_up(&sb->s_writers.wait);
1159 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1161 EXPORT_SYMBOL(__sb_end_write);
1163 #ifdef CONFIG_LOCKDEP
1165 * We want lockdep to tell us about possible deadlocks with freezing but
1166 * it's it bit tricky to properly instrument it. Getting a freeze protection
1167 * works as getting a read lock but there are subtle problems. XFS for example
1168 * gets freeze protection on internal level twice in some cases, which is OK
1169 * only because we already hold a freeze protection also on higher level. Due
1170 * to these cases we have to tell lockdep we are doing trylock when we
1171 * already hold a freeze protection for a higher freeze level.
1173 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1179 for (i = 0; i < level - 1; i++)
1180 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1185 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1190 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1193 int __sb_start_write(struct super_block *sb, int level, bool wait)
1196 if (unlikely(sb->s_writers.frozen >= level)) {
1199 wait_event(sb->s_writers.wait_unfrozen,
1200 sb->s_writers.frozen < level);
1203 #ifdef CONFIG_LOCKDEP
1204 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1206 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1208 * Make sure counter is updated before we check for frozen.
1209 * freeze_super() first sets frozen and then checks the counter.
1212 if (unlikely(sb->s_writers.frozen >= level)) {
1213 __sb_end_write(sb, level);
1218 EXPORT_SYMBOL(__sb_start_write);
1221 * sb_wait_write - wait until all writers to given file system finish
1222 * @sb: the super for which we wait
1223 * @level: type of writers we wait for (normal vs page fault)
1225 * This function waits until there are no writers of given type to given file
1226 * system. Caller of this function should make sure there can be no new writers
1227 * of type @level before calling this function. Otherwise this function can
1230 static void sb_wait_write(struct super_block *sb, int level)
1235 * We just cycle-through lockdep here so that it does not complain
1236 * about returning with lock to userspace
1238 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1239 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1245 * We use a barrier in prepare_to_wait() to separate setting
1246 * of frozen and checking of the counter
1248 prepare_to_wait(&sb->s_writers.wait, &wait,
1249 TASK_UNINTERRUPTIBLE);
1251 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1255 finish_wait(&sb->s_writers.wait, &wait);
1260 * freeze_super - lock the filesystem and force it into a consistent state
1261 * @sb: the super to lock
1263 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1264 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1267 * During this function, sb->s_writers.frozen goes through these values:
1269 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1271 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1272 * writes should be blocked, though page faults are still allowed. We wait for
1273 * all writes to complete and then proceed to the next stage.
1275 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1276 * but internal fs threads can still modify the filesystem (although they
1277 * should not dirty new pages or inodes), writeback can run etc. After waiting
1278 * for all running page faults we sync the filesystem which will clean all
1279 * dirty pages and inodes (no new dirty pages or inodes can be created when
1282 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1283 * modification are blocked (e.g. XFS preallocation truncation on inode
1284 * reclaim). This is usually implemented by blocking new transactions for
1285 * filesystems that have them and need this additional guard. After all
1286 * internal writers are finished we call ->freeze_fs() to finish filesystem
1287 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1288 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1290 * sb->s_writers.frozen is protected by sb->s_umount.
1292 int freeze_super(struct super_block *sb)
1296 atomic_inc(&sb->s_active);
1297 down_write(&sb->s_umount);
1298 if (sb->s_writers.frozen != SB_UNFROZEN) {
1299 deactivate_locked_super(sb);
1303 if (!(sb->s_flags & MS_BORN)) {
1304 up_write(&sb->s_umount);
1305 return 0; /* sic - it's "nothing to do" */
1308 if (sb->s_flags & MS_RDONLY) {
1309 /* Nothing to do really... */
1310 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1311 up_write(&sb->s_umount);
1315 /* From now on, no new normal writers can start */
1316 sb->s_writers.frozen = SB_FREEZE_WRITE;
1319 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1320 up_write(&sb->s_umount);
1322 sb_wait_write(sb, SB_FREEZE_WRITE);
1324 /* Now we go and block page faults... */
1325 down_write(&sb->s_umount);
1326 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1329 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1331 /* All writers are done so after syncing there won't be dirty data */
1332 sync_filesystem(sb);
1334 /* Now wait for internal filesystem counter */
1335 sb->s_writers.frozen = SB_FREEZE_FS;
1337 sb_wait_write(sb, SB_FREEZE_FS);
1339 if (sb->s_op->freeze_fs) {
1340 ret = sb->s_op->freeze_fs(sb);
1343 "VFS:Filesystem freeze failed\n");
1344 sb->s_writers.frozen = SB_UNFROZEN;
1346 wake_up(&sb->s_writers.wait_unfrozen);
1347 deactivate_locked_super(sb);
1352 * This is just for debugging purposes so that fs can warn if it
1353 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1355 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1356 up_write(&sb->s_umount);
1359 EXPORT_SYMBOL(freeze_super);
1362 * thaw_super -- unlock filesystem
1363 * @sb: the super to thaw
1365 * Unlocks the filesystem and marks it writeable again after freeze_super().
1367 int thaw_super(struct super_block *sb)
1371 down_write(&sb->s_umount);
1372 if (sb->s_writers.frozen == SB_UNFROZEN) {
1373 up_write(&sb->s_umount);
1377 if (sb->s_flags & MS_RDONLY)
1380 if (sb->s_op->unfreeze_fs) {
1381 error = sb->s_op->unfreeze_fs(sb);
1384 "VFS:Filesystem thaw failed\n");
1385 up_write(&sb->s_umount);
1391 sb->s_writers.frozen = SB_UNFROZEN;
1393 wake_up(&sb->s_writers.wait_unfrozen);
1394 deactivate_locked_super(sb);
1398 EXPORT_SYMBOL(thaw_super);