1 // SPDX-License-Identifier: GPL-2.0
6 #include <linux/swap.h>
8 #include <linux/blkdev.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
24 #include <trace/events/block.h>
26 #include "blk-rq-qos.h"
28 struct bio_alloc_cache {
29 struct bio *free_list;
33 static struct biovec_slab {
36 struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
47 /* smaller bios use inline vecs */
49 return &bvec_slabs[0];
51 return &bvec_slabs[1];
53 return &bvec_slabs[2];
54 case 129 ... BIO_MAX_VECS:
55 return &bvec_slabs[3];
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
70 * Our slab pool management
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
81 static struct bio_slab *create_bio_slab(unsigned int size)
83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
90 ARCH_KMALLOC_MINALIGN,
91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 bslab->slab_size = size;
98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
101 kmem_cache_destroy(bslab->slab);
108 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
110 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
113 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
115 unsigned int size = bs_bio_slab_size(bs);
116 struct bio_slab *bslab;
118 mutex_lock(&bio_slab_lock);
119 bslab = xa_load(&bio_slabs, size);
123 bslab = create_bio_slab(size);
124 mutex_unlock(&bio_slab_lock);
131 static void bio_put_slab(struct bio_set *bs)
133 struct bio_slab *bslab = NULL;
134 unsigned int slab_size = bs_bio_slab_size(bs);
136 mutex_lock(&bio_slab_lock);
138 bslab = xa_load(&bio_slabs, slab_size);
139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
144 WARN_ON(!bslab->slab_ref);
146 if (--bslab->slab_ref)
149 xa_erase(&bio_slabs, slab_size);
151 kmem_cache_destroy(bslab->slab);
155 mutex_unlock(&bio_slab_lock);
158 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
160 BUG_ON(nr_vecs > BIO_MAX_VECS);
162 if (nr_vecs == BIO_MAX_VECS)
163 mempool_free(bv, pool);
164 else if (nr_vecs > BIO_INLINE_VECS)
165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
169 * Make the first allocation restricted and don't dump info on allocation
170 * failures, since we'll fall back to the mempool in case of failure.
172 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
178 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
181 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
183 if (WARN_ON_ONCE(!bvs))
187 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 * We also rely on this in the bvec_free path.
190 *nr_vecs = bvs->nr_vecs;
193 * Try a slab allocation first for all smaller allocations. If that
194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
195 * The mempool is sized to handle up to BIO_MAX_VECS entries.
197 if (*nr_vecs < BIO_MAX_VECS) {
200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
203 *nr_vecs = BIO_MAX_VECS;
206 return mempool_alloc(pool, gfp_mask);
209 void bio_uninit(struct bio *bio)
211 #ifdef CONFIG_BLK_CGROUP
213 blkg_put(bio->bi_blkg);
217 if (bio_integrity(bio))
218 bio_integrity_free(bio);
220 bio_crypt_free_ctx(bio);
222 EXPORT_SYMBOL(bio_uninit);
224 static void bio_free(struct bio *bio)
226 struct bio_set *bs = bio->bi_pool;
232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
235 * If we have front padding, adjust the bio pointer before freeing
240 mempool_free(p, &bs->bio_pool);
242 /* Bio was allocated by bio_kmalloc() */
248 * Users of this function have their own bio allocation. Subsequently,
249 * they must remember to pair any call to bio_init() with bio_uninit()
250 * when IO has completed, or when the bio is released.
252 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
253 unsigned short max_vecs, unsigned int opf)
260 bio->bi_write_hint = 0;
262 bio->bi_iter.bi_sector = 0;
263 bio->bi_iter.bi_size = 0;
264 bio->bi_iter.bi_idx = 0;
265 bio->bi_iter.bi_bvec_done = 0;
266 bio->bi_end_io = NULL;
267 bio->bi_private = NULL;
268 #ifdef CONFIG_BLK_CGROUP
270 bio->bi_issue.value = 0;
272 bio_associate_blkg(bio);
273 #ifdef CONFIG_BLK_CGROUP_IOCOST
274 bio->bi_iocost_cost = 0;
277 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
278 bio->bi_crypt_context = NULL;
280 #ifdef CONFIG_BLK_DEV_INTEGRITY
281 bio->bi_integrity = NULL;
285 atomic_set(&bio->__bi_remaining, 1);
286 atomic_set(&bio->__bi_cnt, 1);
287 bio->bi_cookie = BLK_QC_T_NONE;
289 bio->bi_max_vecs = max_vecs;
290 bio->bi_io_vec = table;
293 EXPORT_SYMBOL(bio_init);
296 * bio_reset - reinitialize a bio
298 * @bdev: block device to use the bio for
299 * @opf: operation and flags for bio
302 * After calling bio_reset(), @bio will be in the same state as a freshly
303 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
304 * preserved are the ones that are initialized by bio_alloc_bioset(). See
305 * comment in struct bio.
307 void bio_reset(struct bio *bio, struct block_device *bdev, unsigned int opf)
310 memset(bio, 0, BIO_RESET_BYTES);
311 atomic_set(&bio->__bi_remaining, 1);
314 bio_associate_blkg(bio);
317 EXPORT_SYMBOL(bio_reset);
319 static struct bio *__bio_chain_endio(struct bio *bio)
321 struct bio *parent = bio->bi_private;
323 if (bio->bi_status && !parent->bi_status)
324 parent->bi_status = bio->bi_status;
329 static void bio_chain_endio(struct bio *bio)
331 bio_endio(__bio_chain_endio(bio));
335 * bio_chain - chain bio completions
336 * @bio: the target bio
337 * @parent: the parent bio of @bio
339 * The caller won't have a bi_end_io called when @bio completes - instead,
340 * @parent's bi_end_io won't be called until both @parent and @bio have
341 * completed; the chained bio will also be freed when it completes.
343 * The caller must not set bi_private or bi_end_io in @bio.
345 void bio_chain(struct bio *bio, struct bio *parent)
347 BUG_ON(bio->bi_private || bio->bi_end_io);
349 bio->bi_private = parent;
350 bio->bi_end_io = bio_chain_endio;
351 bio_inc_remaining(parent);
353 EXPORT_SYMBOL(bio_chain);
355 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
356 unsigned int nr_pages, unsigned int opf, gfp_t gfp)
358 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
367 EXPORT_SYMBOL_GPL(blk_next_bio);
369 static void bio_alloc_rescue(struct work_struct *work)
371 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
375 spin_lock(&bs->rescue_lock);
376 bio = bio_list_pop(&bs->rescue_list);
377 spin_unlock(&bs->rescue_lock);
382 submit_bio_noacct(bio);
386 static void punt_bios_to_rescuer(struct bio_set *bs)
388 struct bio_list punt, nopunt;
391 if (WARN_ON_ONCE(!bs->rescue_workqueue))
394 * In order to guarantee forward progress we must punt only bios that
395 * were allocated from this bio_set; otherwise, if there was a bio on
396 * there for a stacking driver higher up in the stack, processing it
397 * could require allocating bios from this bio_set, and doing that from
398 * our own rescuer would be bad.
400 * Since bio lists are singly linked, pop them all instead of trying to
401 * remove from the middle of the list:
404 bio_list_init(&punt);
405 bio_list_init(&nopunt);
407 while ((bio = bio_list_pop(¤t->bio_list[0])))
408 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
409 current->bio_list[0] = nopunt;
411 bio_list_init(&nopunt);
412 while ((bio = bio_list_pop(¤t->bio_list[1])))
413 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
414 current->bio_list[1] = nopunt;
416 spin_lock(&bs->rescue_lock);
417 bio_list_merge(&bs->rescue_list, &punt);
418 spin_unlock(&bs->rescue_lock);
420 queue_work(bs->rescue_workqueue, &bs->rescue_work);
424 * bio_alloc_bioset - allocate a bio for I/O
425 * @bdev: block device to allocate the bio for (can be %NULL)
426 * @nr_vecs: number of bvecs to pre-allocate
427 * @opf: operation and flags for bio
428 * @gfp_mask: the GFP_* mask given to the slab allocator
429 * @bs: the bio_set to allocate from.
431 * Allocate a bio from the mempools in @bs.
433 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
434 * allocate a bio. This is due to the mempool guarantees. To make this work,
435 * callers must never allocate more than 1 bio at a time from the general pool.
436 * Callers that need to allocate more than 1 bio must always submit the
437 * previously allocated bio for IO before attempting to allocate a new one.
438 * Failure to do so can cause deadlocks under memory pressure.
440 * Note that when running under submit_bio_noacct() (i.e. any block driver),
441 * bios are not submitted until after you return - see the code in
442 * submit_bio_noacct() that converts recursion into iteration, to prevent
445 * This would normally mean allocating multiple bios under submit_bio_noacct()
446 * would be susceptible to deadlocks, but we have
447 * deadlock avoidance code that resubmits any blocked bios from a rescuer
450 * However, we do not guarantee forward progress for allocations from other
451 * mempools. Doing multiple allocations from the same mempool under
452 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
453 * for per bio allocations.
455 * Returns: Pointer to new bio on success, NULL on failure.
457 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
458 unsigned int opf, gfp_t gfp_mask,
461 gfp_t saved_gfp = gfp_mask;
465 /* should not use nobvec bioset for nr_vecs > 0 */
466 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
470 * submit_bio_noacct() converts recursion to iteration; this means if
471 * we're running beneath it, any bios we allocate and submit will not be
472 * submitted (and thus freed) until after we return.
474 * This exposes us to a potential deadlock if we allocate multiple bios
475 * from the same bio_set() while running underneath submit_bio_noacct().
476 * If we were to allocate multiple bios (say a stacking block driver
477 * that was splitting bios), we would deadlock if we exhausted the
480 * We solve this, and guarantee forward progress, with a rescuer
481 * workqueue per bio_set. If we go to allocate and there are bios on
482 * current->bio_list, we first try the allocation without
483 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
484 * blocking to the rescuer workqueue before we retry with the original
487 if (current->bio_list &&
488 (!bio_list_empty(¤t->bio_list[0]) ||
489 !bio_list_empty(¤t->bio_list[1])) &&
490 bs->rescue_workqueue)
491 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
494 if (!p && gfp_mask != saved_gfp) {
495 punt_bios_to_rescuer(bs);
496 gfp_mask = saved_gfp;
497 p = mempool_alloc(&bs->bio_pool, gfp_mask);
502 bio = p + bs->front_pad;
503 if (nr_vecs > BIO_INLINE_VECS) {
504 struct bio_vec *bvl = NULL;
506 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
510 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
515 bio_init(bio, bdev, bvl, nr_vecs, opf);
516 } else if (nr_vecs) {
517 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
519 bio_init(bio, bdev, NULL, 0, opf);
526 mempool_free(p, &bs->bio_pool);
529 EXPORT_SYMBOL(bio_alloc_bioset);
532 * bio_kmalloc - kmalloc a bio for I/O
533 * @gfp_mask: the GFP_* mask given to the slab allocator
534 * @nr_iovecs: number of iovecs to pre-allocate
536 * Use kmalloc to allocate and initialize a bio.
538 * Returns: Pointer to new bio on success, NULL on failure.
540 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
544 if (nr_iovecs > UIO_MAXIOV)
547 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
550 bio_init(bio, NULL, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs,
555 EXPORT_SYMBOL(bio_kmalloc);
557 void zero_fill_bio(struct bio *bio)
560 struct bvec_iter iter;
562 bio_for_each_segment(bv, bio, iter)
565 EXPORT_SYMBOL(zero_fill_bio);
568 * bio_truncate - truncate the bio to small size of @new_size
569 * @bio: the bio to be truncated
570 * @new_size: new size for truncating the bio
573 * Truncate the bio to new size of @new_size. If bio_op(bio) is
574 * REQ_OP_READ, zero the truncated part. This function should only
575 * be used for handling corner cases, such as bio eod.
577 static void bio_truncate(struct bio *bio, unsigned new_size)
580 struct bvec_iter iter;
581 unsigned int done = 0;
582 bool truncated = false;
584 if (new_size >= bio->bi_iter.bi_size)
587 if (bio_op(bio) != REQ_OP_READ)
590 bio_for_each_segment(bv, bio, iter) {
591 if (done + bv.bv_len > new_size) {
595 offset = new_size - done;
598 zero_user(bv.bv_page, bv.bv_offset + offset,
607 * Don't touch bvec table here and make it really immutable, since
608 * fs bio user has to retrieve all pages via bio_for_each_segment_all
609 * in its .end_bio() callback.
611 * It is enough to truncate bio by updating .bi_size since we can make
612 * correct bvec with the updated .bi_size for drivers.
614 bio->bi_iter.bi_size = new_size;
618 * guard_bio_eod - truncate a BIO to fit the block device
619 * @bio: bio to truncate
621 * This allows us to do IO even on the odd last sectors of a device, even if the
622 * block size is some multiple of the physical sector size.
624 * We'll just truncate the bio to the size of the device, and clear the end of
625 * the buffer head manually. Truly out-of-range accesses will turn into actual
626 * I/O errors, this only handles the "we need to be able to do I/O at the final
629 void guard_bio_eod(struct bio *bio)
631 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
637 * If the *whole* IO is past the end of the device,
638 * let it through, and the IO layer will turn it into
641 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
644 maxsector -= bio->bi_iter.bi_sector;
645 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
648 bio_truncate(bio, maxsector << 9);
651 #define ALLOC_CACHE_MAX 512
652 #define ALLOC_CACHE_SLACK 64
654 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
660 while ((bio = cache->free_list) != NULL) {
661 cache->free_list = bio->bi_next;
669 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
673 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
675 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
677 bio_alloc_cache_prune(cache, -1U);
682 static void bio_alloc_cache_destroy(struct bio_set *bs)
689 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
690 for_each_possible_cpu(cpu) {
691 struct bio_alloc_cache *cache;
693 cache = per_cpu_ptr(bs->cache, cpu);
694 bio_alloc_cache_prune(cache, -1U);
696 free_percpu(bs->cache);
700 * bio_put - release a reference to a bio
701 * @bio: bio to release reference to
704 * Put a reference to a &struct bio, either one you have gotten with
705 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
707 void bio_put(struct bio *bio)
709 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
710 BUG_ON(!atomic_read(&bio->__bi_cnt));
711 if (!atomic_dec_and_test(&bio->__bi_cnt))
715 if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
716 struct bio_alloc_cache *cache;
719 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
720 bio->bi_next = cache->free_list;
721 cache->free_list = bio;
722 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
723 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
729 EXPORT_SYMBOL(bio_put);
731 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
733 bio_set_flag(bio, BIO_CLONED);
734 if (bio_flagged(bio_src, BIO_THROTTLED))
735 bio_set_flag(bio, BIO_THROTTLED);
736 if (bio->bi_bdev == bio_src->bi_bdev &&
737 bio_flagged(bio_src, BIO_REMAPPED))
738 bio_set_flag(bio, BIO_REMAPPED);
739 bio->bi_ioprio = bio_src->bi_ioprio;
740 bio->bi_write_hint = bio_src->bi_write_hint;
741 bio->bi_iter = bio_src->bi_iter;
743 bio_clone_blkg_association(bio, bio_src);
744 blkcg_bio_issue_init(bio);
746 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
748 if (bio_integrity(bio_src) &&
749 bio_integrity_clone(bio, bio_src, gfp) < 0)
755 * bio_alloc_clone - clone a bio that shares the original bio's biovec
756 * @bdev: block_device to clone onto
757 * @bio_src: bio to clone from
758 * @gfp: allocation priority
759 * @bs: bio_set to allocate from
761 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
762 * bio, but not the actual data it points to.
764 * The caller must ensure that the return bio is not freed before @bio_src.
766 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
767 gfp_t gfp, struct bio_set *bs)
771 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
775 if (__bio_clone(bio, bio_src, gfp) < 0) {
779 bio->bi_io_vec = bio_src->bi_io_vec;
783 EXPORT_SYMBOL(bio_alloc_clone);
786 * bio_init_clone - clone a bio that shares the original bio's biovec
787 * @bdev: block_device to clone onto
788 * @bio: bio to clone into
789 * @bio_src: bio to clone from
790 * @gfp: allocation priority
792 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
793 * The caller owns the returned bio, but not the actual data it points to.
795 * The caller must ensure that @bio_src is not freed before @bio.
797 int bio_init_clone(struct block_device *bdev, struct bio *bio,
798 struct bio *bio_src, gfp_t gfp)
802 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
803 ret = __bio_clone(bio, bio_src, gfp);
808 EXPORT_SYMBOL(bio_init_clone);
810 const char *bio_devname(struct bio *bio, char *buf)
812 return bdevname(bio->bi_bdev, buf);
814 EXPORT_SYMBOL(bio_devname);
817 * bio_full - check if the bio is full
819 * @len: length of one segment to be added
821 * Return true if @bio is full and one segment with @len bytes can't be
822 * added to the bio, otherwise return false
824 static inline bool bio_full(struct bio *bio, unsigned len)
826 if (bio->bi_vcnt >= bio->bi_max_vecs)
828 if (bio->bi_iter.bi_size > UINT_MAX - len)
833 static inline bool page_is_mergeable(const struct bio_vec *bv,
834 struct page *page, unsigned int len, unsigned int off,
837 size_t bv_end = bv->bv_offset + bv->bv_len;
838 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
839 phys_addr_t page_addr = page_to_phys(page);
841 if (vec_end_addr + 1 != page_addr + off)
843 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
846 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
849 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
853 * __bio_try_merge_page - try appending data to an existing bvec.
854 * @bio: destination bio
855 * @page: start page to add
856 * @len: length of the data to add
857 * @off: offset of the data relative to @page
858 * @same_page: return if the segment has been merged inside the same page
860 * Try to add the data at @page + @off to the last bvec of @bio. This is a
861 * useful optimisation for file systems with a block size smaller than the
864 * Warn if (@len, @off) crosses pages in case that @same_page is true.
866 * Return %true on success or %false on failure.
868 static bool __bio_try_merge_page(struct bio *bio, struct page *page,
869 unsigned int len, unsigned int off, bool *same_page)
871 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
874 if (bio->bi_vcnt > 0) {
875 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
877 if (page_is_mergeable(bv, page, len, off, same_page)) {
878 if (bio->bi_iter.bi_size > UINT_MAX - len) {
883 bio->bi_iter.bi_size += len;
891 * Try to merge a page into a segment, while obeying the hardware segment
892 * size limit. This is not for normal read/write bios, but for passthrough
893 * or Zone Append operations that we can't split.
895 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
896 struct page *page, unsigned len,
897 unsigned offset, bool *same_page)
899 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
900 unsigned long mask = queue_segment_boundary(q);
901 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
902 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
904 if ((addr1 | mask) != (addr2 | mask))
906 if (bv->bv_len + len > queue_max_segment_size(q))
908 return __bio_try_merge_page(bio, page, len, offset, same_page);
912 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
913 * @q: the target queue
914 * @bio: destination bio
916 * @len: vec entry length
917 * @offset: vec entry offset
918 * @max_sectors: maximum number of sectors that can be added
919 * @same_page: return if the segment has been merged inside the same page
921 * Add a page to a bio while respecting the hardware max_sectors, max_segment
922 * and gap limitations.
924 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
925 struct page *page, unsigned int len, unsigned int offset,
926 unsigned int max_sectors, bool *same_page)
928 struct bio_vec *bvec;
930 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
933 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
936 if (bio->bi_vcnt > 0) {
937 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
941 * If the queue doesn't support SG gaps and adding this segment
942 * would create a gap, disallow it.
944 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
945 if (bvec_gap_to_prev(q, bvec, offset))
949 if (bio_full(bio, len))
952 if (bio->bi_vcnt >= queue_max_segments(q))
955 bvec = &bio->bi_io_vec[bio->bi_vcnt];
956 bvec->bv_page = page;
958 bvec->bv_offset = offset;
960 bio->bi_iter.bi_size += len;
965 * bio_add_pc_page - attempt to add page to passthrough bio
966 * @q: the target queue
967 * @bio: destination bio
969 * @len: vec entry length
970 * @offset: vec entry offset
972 * Attempt to add a page to the bio_vec maplist. This can fail for a
973 * number of reasons, such as the bio being full or target block device
974 * limitations. The target block device must allow bio's up to PAGE_SIZE,
975 * so it is always possible to add a single page to an empty bio.
977 * This should only be used by passthrough bios.
979 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
980 struct page *page, unsigned int len, unsigned int offset)
982 bool same_page = false;
983 return bio_add_hw_page(q, bio, page, len, offset,
984 queue_max_hw_sectors(q), &same_page);
986 EXPORT_SYMBOL(bio_add_pc_page);
989 * bio_add_zone_append_page - attempt to add page to zone-append bio
990 * @bio: destination bio
992 * @len: vec entry length
993 * @offset: vec entry offset
995 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
996 * for a zone-append request. This can fail for a number of reasons, such as the
997 * bio being full or the target block device is not a zoned block device or
998 * other limitations of the target block device. The target block device must
999 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1002 * Returns: number of bytes added to the bio, or 0 in case of a failure.
1004 int bio_add_zone_append_page(struct bio *bio, struct page *page,
1005 unsigned int len, unsigned int offset)
1007 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1008 bool same_page = false;
1010 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1013 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
1016 return bio_add_hw_page(q, bio, page, len, offset,
1017 queue_max_zone_append_sectors(q), &same_page);
1019 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1022 * __bio_add_page - add page(s) to a bio in a new segment
1023 * @bio: destination bio
1024 * @page: start page to add
1025 * @len: length of the data to add, may cross pages
1026 * @off: offset of the data relative to @page, may cross pages
1028 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1029 * that @bio has space for another bvec.
1031 void __bio_add_page(struct bio *bio, struct page *page,
1032 unsigned int len, unsigned int off)
1034 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
1036 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1037 WARN_ON_ONCE(bio_full(bio, len));
1040 bv->bv_offset = off;
1043 bio->bi_iter.bi_size += len;
1046 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1047 bio_set_flag(bio, BIO_WORKINGSET);
1049 EXPORT_SYMBOL_GPL(__bio_add_page);
1052 * bio_add_page - attempt to add page(s) to bio
1053 * @bio: destination bio
1054 * @page: start page to add
1055 * @len: vec entry length, may cross pages
1056 * @offset: vec entry offset relative to @page, may cross pages
1058 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1059 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1061 int bio_add_page(struct bio *bio, struct page *page,
1062 unsigned int len, unsigned int offset)
1064 bool same_page = false;
1066 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1067 if (bio_full(bio, len))
1069 __bio_add_page(bio, page, len, offset);
1073 EXPORT_SYMBOL(bio_add_page);
1076 * bio_add_folio - Attempt to add part of a folio to a bio.
1077 * @bio: BIO to add to.
1078 * @folio: Folio to add.
1079 * @len: How many bytes from the folio to add.
1080 * @off: First byte in this folio to add.
1082 * Filesystems that use folios can call this function instead of calling
1083 * bio_add_page() for each page in the folio. If @off is bigger than
1084 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1085 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1087 * Return: Whether the addition was successful.
1089 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1092 if (len > UINT_MAX || off > UINT_MAX)
1094 return bio_add_page(bio, &folio->page, len, off) > 0;
1097 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1099 struct bvec_iter_all iter_all;
1100 struct bio_vec *bvec;
1102 bio_for_each_segment_all(bvec, bio, iter_all) {
1103 if (mark_dirty && !PageCompound(bvec->bv_page))
1104 set_page_dirty_lock(bvec->bv_page);
1105 put_page(bvec->bv_page);
1108 EXPORT_SYMBOL_GPL(__bio_release_pages);
1110 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1112 size_t size = iov_iter_count(iter);
1114 WARN_ON_ONCE(bio->bi_max_vecs);
1116 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1117 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1118 size_t max_sectors = queue_max_zone_append_sectors(q);
1120 size = min(size, max_sectors << SECTOR_SHIFT);
1123 bio->bi_vcnt = iter->nr_segs;
1124 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1125 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1126 bio->bi_iter.bi_size = size;
1127 bio_set_flag(bio, BIO_NO_PAGE_REF);
1128 bio_set_flag(bio, BIO_CLONED);
1131 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1133 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1135 for (i = 0; i < nr; i++)
1139 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1142 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1143 * @bio: bio to add pages to
1144 * @iter: iov iterator describing the region to be mapped
1146 * Pins pages from *iter and appends them to @bio's bvec array. The
1147 * pages will have to be released using put_page() when done.
1148 * For multi-segment *iter, this function only adds pages from the
1149 * next non-empty segment of the iov iterator.
1151 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1153 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1154 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1155 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1156 struct page **pages = (struct page **)bv;
1157 bool same_page = false;
1163 * Move page array up in the allocated memory for the bio vecs as far as
1164 * possible so that we can start filling biovecs from the beginning
1165 * without overwriting the temporary page array.
1167 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1168 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1170 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1171 if (unlikely(size <= 0))
1172 return size ? size : -EFAULT;
1174 for (left = size, i = 0; left > 0; left -= len, i++) {
1175 struct page *page = pages[i];
1177 len = min_t(size_t, PAGE_SIZE - offset, left);
1179 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1183 if (WARN_ON_ONCE(bio_full(bio, len))) {
1184 bio_put_pages(pages + i, left, offset);
1187 __bio_add_page(bio, page, len, offset);
1192 iov_iter_advance(iter, size);
1196 static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1198 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1199 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1200 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1201 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1202 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1203 struct page **pages = (struct page **)bv;
1209 if (WARN_ON_ONCE(!max_append_sectors))
1213 * Move page array up in the allocated memory for the bio vecs as far as
1214 * possible so that we can start filling biovecs from the beginning
1215 * without overwriting the temporary page array.
1217 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1218 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1220 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1221 if (unlikely(size <= 0))
1222 return size ? size : -EFAULT;
1224 for (left = size, i = 0; left > 0; left -= len, i++) {
1225 struct page *page = pages[i];
1226 bool same_page = false;
1228 len = min_t(size_t, PAGE_SIZE - offset, left);
1229 if (bio_add_hw_page(q, bio, page, len, offset,
1230 max_append_sectors, &same_page) != len) {
1231 bio_put_pages(pages + i, left, offset);
1240 iov_iter_advance(iter, size - left);
1245 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1246 * @bio: bio to add pages to
1247 * @iter: iov iterator describing the region to be added
1249 * This takes either an iterator pointing to user memory, or one pointing to
1250 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1251 * map them into the kernel. On IO completion, the caller should put those
1252 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1253 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1254 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1255 * completed by a call to ->ki_complete() or returns with an error other than
1256 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1257 * on IO completion. If it isn't, then pages should be released.
1259 * The function tries, but does not guarantee, to pin as many pages as
1260 * fit into the bio, or are requested in @iter, whatever is smaller. If
1261 * MM encounters an error pinning the requested pages, it stops. Error
1262 * is returned only if 0 pages could be pinned.
1264 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1265 * responsible for setting BIO_WORKINGSET if necessary.
1267 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1271 if (iov_iter_is_bvec(iter)) {
1272 bio_iov_bvec_set(bio, iter);
1273 iov_iter_advance(iter, bio->bi_iter.bi_size);
1278 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1279 ret = __bio_iov_append_get_pages(bio, iter);
1281 ret = __bio_iov_iter_get_pages(bio, iter);
1282 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1284 /* don't account direct I/O as memory stall */
1285 bio_clear_flag(bio, BIO_WORKINGSET);
1286 return bio->bi_vcnt ? 0 : ret;
1288 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1290 static void submit_bio_wait_endio(struct bio *bio)
1292 complete(bio->bi_private);
1296 * submit_bio_wait - submit a bio, and wait until it completes
1297 * @bio: The &struct bio which describes the I/O
1299 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1300 * bio_endio() on failure.
1302 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1303 * result in bio reference to be consumed. The caller must drop the reference
1306 int submit_bio_wait(struct bio *bio)
1308 DECLARE_COMPLETION_ONSTACK_MAP(done,
1309 bio->bi_bdev->bd_disk->lockdep_map);
1310 unsigned long hang_check;
1312 bio->bi_private = &done;
1313 bio->bi_end_io = submit_bio_wait_endio;
1314 bio->bi_opf |= REQ_SYNC;
1317 /* Prevent hang_check timer from firing at us during very long I/O */
1318 hang_check = sysctl_hung_task_timeout_secs;
1320 while (!wait_for_completion_io_timeout(&done,
1321 hang_check * (HZ/2)))
1324 wait_for_completion_io(&done);
1326 return blk_status_to_errno(bio->bi_status);
1328 EXPORT_SYMBOL(submit_bio_wait);
1330 void __bio_advance(struct bio *bio, unsigned bytes)
1332 if (bio_integrity(bio))
1333 bio_integrity_advance(bio, bytes);
1335 bio_crypt_advance(bio, bytes);
1336 bio_advance_iter(bio, &bio->bi_iter, bytes);
1338 EXPORT_SYMBOL(__bio_advance);
1340 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1341 struct bio *src, struct bvec_iter *src_iter)
1343 while (src_iter->bi_size && dst_iter->bi_size) {
1344 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1345 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1346 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1349 src_buf = bvec_kmap_local(&src_bv);
1350 memcpy_to_bvec(&dst_bv, src_buf);
1351 kunmap_local(src_buf);
1353 bio_advance_iter_single(src, src_iter, bytes);
1354 bio_advance_iter_single(dst, dst_iter, bytes);
1357 EXPORT_SYMBOL(bio_copy_data_iter);
1360 * bio_copy_data - copy contents of data buffers from one bio to another
1362 * @dst: destination bio
1364 * Stops when it reaches the end of either @src or @dst - that is, copies
1365 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1367 void bio_copy_data(struct bio *dst, struct bio *src)
1369 struct bvec_iter src_iter = src->bi_iter;
1370 struct bvec_iter dst_iter = dst->bi_iter;
1372 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1374 EXPORT_SYMBOL(bio_copy_data);
1376 void bio_free_pages(struct bio *bio)
1378 struct bio_vec *bvec;
1379 struct bvec_iter_all iter_all;
1381 bio_for_each_segment_all(bvec, bio, iter_all)
1382 __free_page(bvec->bv_page);
1384 EXPORT_SYMBOL(bio_free_pages);
1387 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1388 * for performing direct-IO in BIOs.
1390 * The problem is that we cannot run set_page_dirty() from interrupt context
1391 * because the required locks are not interrupt-safe. So what we can do is to
1392 * mark the pages dirty _before_ performing IO. And in interrupt context,
1393 * check that the pages are still dirty. If so, fine. If not, redirty them
1394 * in process context.
1396 * We special-case compound pages here: normally this means reads into hugetlb
1397 * pages. The logic in here doesn't really work right for compound pages
1398 * because the VM does not uniformly chase down the head page in all cases.
1399 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1400 * handle them at all. So we skip compound pages here at an early stage.
1402 * Note that this code is very hard to test under normal circumstances because
1403 * direct-io pins the pages with get_user_pages(). This makes
1404 * is_page_cache_freeable return false, and the VM will not clean the pages.
1405 * But other code (eg, flusher threads) could clean the pages if they are mapped
1408 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1409 * deferred bio dirtying paths.
1413 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1415 void bio_set_pages_dirty(struct bio *bio)
1417 struct bio_vec *bvec;
1418 struct bvec_iter_all iter_all;
1420 bio_for_each_segment_all(bvec, bio, iter_all) {
1421 if (!PageCompound(bvec->bv_page))
1422 set_page_dirty_lock(bvec->bv_page);
1427 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1428 * If they are, then fine. If, however, some pages are clean then they must
1429 * have been written out during the direct-IO read. So we take another ref on
1430 * the BIO and re-dirty the pages in process context.
1432 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1433 * here on. It will run one put_page() against each page and will run one
1434 * bio_put() against the BIO.
1437 static void bio_dirty_fn(struct work_struct *work);
1439 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1440 static DEFINE_SPINLOCK(bio_dirty_lock);
1441 static struct bio *bio_dirty_list;
1444 * This runs in process context
1446 static void bio_dirty_fn(struct work_struct *work)
1448 struct bio *bio, *next;
1450 spin_lock_irq(&bio_dirty_lock);
1451 next = bio_dirty_list;
1452 bio_dirty_list = NULL;
1453 spin_unlock_irq(&bio_dirty_lock);
1455 while ((bio = next) != NULL) {
1456 next = bio->bi_private;
1458 bio_release_pages(bio, true);
1463 void bio_check_pages_dirty(struct bio *bio)
1465 struct bio_vec *bvec;
1466 unsigned long flags;
1467 struct bvec_iter_all iter_all;
1469 bio_for_each_segment_all(bvec, bio, iter_all) {
1470 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1474 bio_release_pages(bio, false);
1478 spin_lock_irqsave(&bio_dirty_lock, flags);
1479 bio->bi_private = bio_dirty_list;
1480 bio_dirty_list = bio;
1481 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1482 schedule_work(&bio_dirty_work);
1485 static inline bool bio_remaining_done(struct bio *bio)
1488 * If we're not chaining, then ->__bi_remaining is always 1 and
1489 * we always end io on the first invocation.
1491 if (!bio_flagged(bio, BIO_CHAIN))
1494 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1496 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1497 bio_clear_flag(bio, BIO_CHAIN);
1505 * bio_endio - end I/O on a bio
1509 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1510 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1511 * bio unless they own it and thus know that it has an end_io function.
1513 * bio_endio() can be called several times on a bio that has been chained
1514 * using bio_chain(). The ->bi_end_io() function will only be called the
1517 void bio_endio(struct bio *bio)
1520 if (!bio_remaining_done(bio))
1522 if (!bio_integrity_endio(bio))
1525 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
1526 rq_qos_done_bio(bdev_get_queue(bio->bi_bdev), bio);
1528 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1529 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1530 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1534 * Need to have a real endio function for chained bios, otherwise
1535 * various corner cases will break (like stacking block devices that
1536 * save/restore bi_end_io) - however, we want to avoid unbounded
1537 * recursion and blowing the stack. Tail call optimization would
1538 * handle this, but compiling with frame pointers also disables
1539 * gcc's sibling call optimization.
1541 if (bio->bi_end_io == bio_chain_endio) {
1542 bio = __bio_chain_endio(bio);
1546 blk_throtl_bio_endio(bio);
1547 /* release cgroup info */
1550 bio->bi_end_io(bio);
1552 EXPORT_SYMBOL(bio_endio);
1555 * bio_split - split a bio
1556 * @bio: bio to split
1557 * @sectors: number of sectors to split from the front of @bio
1559 * @bs: bio set to allocate from
1561 * Allocates and returns a new bio which represents @sectors from the start of
1562 * @bio, and updates @bio to represent the remaining sectors.
1564 * Unless this is a discard request the newly allocated bio will point
1565 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1566 * neither @bio nor @bs are freed before the split bio.
1568 struct bio *bio_split(struct bio *bio, int sectors,
1569 gfp_t gfp, struct bio_set *bs)
1573 BUG_ON(sectors <= 0);
1574 BUG_ON(sectors >= bio_sectors(bio));
1576 /* Zone append commands cannot be split */
1577 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1580 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1584 split->bi_iter.bi_size = sectors << 9;
1586 if (bio_integrity(split))
1587 bio_integrity_trim(split);
1589 bio_advance(bio, split->bi_iter.bi_size);
1591 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1592 bio_set_flag(split, BIO_TRACE_COMPLETION);
1596 EXPORT_SYMBOL(bio_split);
1599 * bio_trim - trim a bio
1601 * @offset: number of sectors to trim from the front of @bio
1602 * @size: size we want to trim @bio to, in sectors
1604 * This function is typically used for bios that are cloned and submitted
1605 * to the underlying device in parts.
1607 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1609 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1610 offset + size > bio->bi_iter.bi_size))
1614 if (offset == 0 && size == bio->bi_iter.bi_size)
1617 bio_advance(bio, offset << 9);
1618 bio->bi_iter.bi_size = size;
1620 if (bio_integrity(bio))
1621 bio_integrity_trim(bio);
1623 EXPORT_SYMBOL_GPL(bio_trim);
1626 * create memory pools for biovec's in a bio_set.
1627 * use the global biovec slabs created for general use.
1629 int biovec_init_pool(mempool_t *pool, int pool_entries)
1631 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1633 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1637 * bioset_exit - exit a bioset initialized with bioset_init()
1639 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1642 void bioset_exit(struct bio_set *bs)
1644 bio_alloc_cache_destroy(bs);
1645 if (bs->rescue_workqueue)
1646 destroy_workqueue(bs->rescue_workqueue);
1647 bs->rescue_workqueue = NULL;
1649 mempool_exit(&bs->bio_pool);
1650 mempool_exit(&bs->bvec_pool);
1652 bioset_integrity_free(bs);
1655 bs->bio_slab = NULL;
1657 EXPORT_SYMBOL(bioset_exit);
1660 * bioset_init - Initialize a bio_set
1661 * @bs: pool to initialize
1662 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1663 * @front_pad: Number of bytes to allocate in front of the returned bio
1664 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1665 * and %BIOSET_NEED_RESCUER
1668 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1669 * to ask for a number of bytes to be allocated in front of the bio.
1670 * Front pad allocation is useful for embedding the bio inside
1671 * another structure, to avoid allocating extra data to go with the bio.
1672 * Note that the bio must be embedded at the END of that structure always,
1673 * or things will break badly.
1674 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1675 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1676 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1677 * to dispatch queued requests when the mempool runs out of space.
1680 int bioset_init(struct bio_set *bs,
1681 unsigned int pool_size,
1682 unsigned int front_pad,
1685 bs->front_pad = front_pad;
1686 if (flags & BIOSET_NEED_BVECS)
1687 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1691 spin_lock_init(&bs->rescue_lock);
1692 bio_list_init(&bs->rescue_list);
1693 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1695 bs->bio_slab = bio_find_or_create_slab(bs);
1699 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1702 if ((flags & BIOSET_NEED_BVECS) &&
1703 biovec_init_pool(&bs->bvec_pool, pool_size))
1706 if (flags & BIOSET_NEED_RESCUER) {
1707 bs->rescue_workqueue = alloc_workqueue("bioset",
1709 if (!bs->rescue_workqueue)
1712 if (flags & BIOSET_PERCPU_CACHE) {
1713 bs->cache = alloc_percpu(struct bio_alloc_cache);
1716 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1724 EXPORT_SYMBOL(bioset_init);
1727 * Initialize and setup a new bio_set, based on the settings from
1730 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1735 if (src->bvec_pool.min_nr)
1736 flags |= BIOSET_NEED_BVECS;
1737 if (src->rescue_workqueue)
1738 flags |= BIOSET_NEED_RESCUER;
1740 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1742 EXPORT_SYMBOL(bioset_init_from_src);
1745 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1746 * @kiocb: kiocb describing the IO
1747 * @bdev: block device to allocate the bio for (can be %NULL)
1748 * @nr_vecs: number of iovecs to pre-allocate
1749 * @opf: operation and flags for bio
1750 * @bs: bio_set to allocate from
1753 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1754 * used to check if we should dip into the per-cpu bio_set allocation
1755 * cache. The allocation uses GFP_KERNEL internally. On return, the
1756 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1757 * MUST be done from process context, not hard/soft IRQ.
1760 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, struct block_device *bdev,
1761 unsigned short nr_vecs, unsigned int opf, struct bio_set *bs)
1763 struct bio_alloc_cache *cache;
1766 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1767 return bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
1769 cache = per_cpu_ptr(bs->cache, get_cpu());
1770 if (cache->free_list) {
1771 bio = cache->free_list;
1772 cache->free_list = bio->bi_next;
1775 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL,
1778 bio_set_flag(bio, BIO_PERCPU_CACHE);
1782 bio = bio_alloc_bioset(bdev, nr_vecs, opf, GFP_KERNEL, bs);
1783 bio_set_flag(bio, BIO_PERCPU_CACHE);
1786 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1788 static int __init init_bio(void)
1792 bio_integrity_init();
1794 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1795 struct biovec_slab *bvs = bvec_slabs + i;
1797 bvs->slab = kmem_cache_create(bvs->name,
1798 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1799 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1802 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1805 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1806 panic("bio: can't allocate bios\n");
1808 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1809 panic("bio: can't create integrity pool\n");
1813 subsys_initcall(init_bio);