1 /* SPDX-License-Identifier: GPL-2.0 */
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
10 #include <uapi/linux/sched.h>
12 #include <asm/current.h>
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/resource.h>
25 #include <linux/latencytop.h>
26 #include <linux/sched/prio.h>
27 #include <linux/signal_types.h>
28 #include <linux/mm_types_task.h>
29 #include <linux/task_io_accounting.h>
31 /* task_struct member predeclarations (sorted alphabetically): */
33 struct backing_dev_info;
38 struct futex_pi_state;
43 struct perf_event_context;
45 struct pipe_inode_info;
48 struct robust_list_head;
52 struct sighand_struct;
54 struct task_delay_info;
58 * Task state bitmask. NOTE! These bits are also
59 * encoded in fs/proc/array.c: get_task_state().
61 * We have two separate sets of flags: task->state
62 * is about runnability, while task->exit_state are
63 * about the task exiting. Confusing, but this way
64 * modifying one set can't modify the other one by
68 /* Used in tsk->state: */
69 #define TASK_RUNNING 0x0000
70 #define TASK_INTERRUPTIBLE 0x0001
71 #define TASK_UNINTERRUPTIBLE 0x0002
72 #define __TASK_STOPPED 0x0004
73 #define __TASK_TRACED 0x0008
74 /* Used in tsk->exit_state: */
75 #define EXIT_DEAD 0x0010
76 #define EXIT_ZOMBIE 0x0020
77 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
78 /* Used in tsk->state again: */
79 #define TASK_PARKED 0x0040
80 #define TASK_DEAD 0x0080
81 #define TASK_WAKEKILL 0x0100
82 #define TASK_WAKING 0x0200
83 #define TASK_NOLOAD 0x0400
84 #define TASK_NEW 0x0800
85 #define TASK_STATE_MAX 0x1000
87 /* Convenience macros for the sake of set_current_state: */
88 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
89 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
90 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
92 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
94 /* Convenience macros for the sake of wake_up(): */
95 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
97 /* get_task_state(): */
98 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
99 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
100 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
103 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
110 (task->flags & PF_FROZEN) == 0 && \
111 (task->state & TASK_NOLOAD) == 0)
113 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
116 * Special states are those that do not use the normal wait-loop pattern. See
117 * the comment with set_special_state().
119 #define is_special_task_state(state) \
120 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_DEAD))
122 #define __set_current_state(state_value) \
124 WARN_ON_ONCE(is_special_task_state(state_value));\
125 current->task_state_change = _THIS_IP_; \
126 current->state = (state_value); \
129 #define set_current_state(state_value) \
131 WARN_ON_ONCE(is_special_task_state(state_value));\
132 current->task_state_change = _THIS_IP_; \
133 smp_store_mb(current->state, (state_value)); \
136 #define set_special_state(state_value) \
138 unsigned long flags; /* may shadow */ \
139 WARN_ON_ONCE(!is_special_task_state(state_value)); \
140 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
141 current->task_state_change = _THIS_IP_; \
142 current->state = (state_value); \
143 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
147 * set_current_state() includes a barrier so that the write of current->state
148 * is correctly serialised wrt the caller's subsequent test of whether to
152 * set_current_state(TASK_UNINTERRUPTIBLE);
158 * __set_current_state(TASK_RUNNING);
160 * If the caller does not need such serialisation (because, for instance, the
161 * condition test and condition change and wakeup are under the same lock) then
162 * use __set_current_state().
164 * The above is typically ordered against the wakeup, which does:
166 * need_sleep = false;
167 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
169 * Where wake_up_state() (and all other wakeup primitives) imply enough
170 * barriers to order the store of the variable against wakeup.
172 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
173 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
174 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
176 * However, with slightly different timing the wakeup TASK_RUNNING store can
177 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
178 * a problem either because that will result in one extra go around the loop
179 * and our @cond test will save the day.
181 * Also see the comments of try_to_wake_up().
183 #define __set_current_state(state_value) \
184 current->state = (state_value)
186 #define set_current_state(state_value) \
187 smp_store_mb(current->state, (state_value))
190 * set_special_state() should be used for those states when the blocking task
191 * can not use the regular condition based wait-loop. In that case we must
192 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
193 * will not collide with our state change.
195 #define set_special_state(state_value) \
197 unsigned long flags; /* may shadow */ \
198 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
199 current->state = (state_value); \
200 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
205 /* Task command name length: */
206 #define TASK_COMM_LEN 16
208 extern void scheduler_tick(void);
210 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
212 extern long schedule_timeout(long timeout);
213 extern long schedule_timeout_interruptible(long timeout);
214 extern long schedule_timeout_killable(long timeout);
215 extern long schedule_timeout_uninterruptible(long timeout);
216 extern long schedule_timeout_idle(long timeout);
217 asmlinkage void schedule(void);
218 extern void schedule_preempt_disabled(void);
220 extern int __must_check io_schedule_prepare(void);
221 extern void io_schedule_finish(int token);
222 extern long io_schedule_timeout(long timeout);
223 extern void io_schedule(void);
226 * struct prev_cputime - snapshot of system and user cputime
227 * @utime: time spent in user mode
228 * @stime: time spent in system mode
229 * @lock: protects the above two fields
231 * Stores previous user/system time values such that we can guarantee
234 struct prev_cputime {
235 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
243 * struct task_cputime - collected CPU time counts
244 * @utime: time spent in user mode, in nanoseconds
245 * @stime: time spent in kernel mode, in nanoseconds
246 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
248 * This structure groups together three kinds of CPU time that are tracked for
249 * threads and thread groups. Most things considering CPU time want to group
250 * these counts together and treat all three of them in parallel.
252 struct task_cputime {
255 unsigned long long sum_exec_runtime;
258 /* Alternate field names when used on cache expirations: */
259 #define virt_exp utime
260 #define prof_exp stime
261 #define sched_exp sum_exec_runtime
264 /* Task is sleeping or running in a CPU with VTIME inactive: */
266 /* Task runs in userspace in a CPU with VTIME active: */
268 /* Task runs in kernelspace in a CPU with VTIME active: */
274 unsigned long long starttime;
275 enum vtime_state state;
282 #ifdef CONFIG_SCHED_INFO
283 /* Cumulative counters: */
285 /* # of times we have run on this CPU: */
286 unsigned long pcount;
288 /* Time spent waiting on a runqueue: */
289 unsigned long long run_delay;
293 /* When did we last run on a CPU? */
294 unsigned long long last_arrival;
296 /* When were we last queued to run? */
297 unsigned long long last_queued;
299 #endif /* CONFIG_SCHED_INFO */
303 * Integer metrics need fixed point arithmetic, e.g., sched/fair
304 * has a few: load, load_avg, util_avg, freq, and capacity.
306 * We define a basic fixed point arithmetic range, and then formalize
307 * all these metrics based on that basic range.
309 # define SCHED_FIXEDPOINT_SHIFT 10
310 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
313 unsigned long weight;
318 * struct util_est - Estimation utilization of FAIR tasks
319 * @enqueued: instantaneous estimated utilization of a task/cpu
320 * @ewma: the Exponential Weighted Moving Average (EWMA)
321 * utilization of a task
323 * Support data structure to track an Exponential Weighted Moving Average
324 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
325 * average each time a task completes an activation. Sample's weight is chosen
326 * so that the EWMA will be relatively insensitive to transient changes to the
329 * The enqueued attribute has a slightly different meaning for tasks and cpus:
330 * - task: the task's util_avg at last task dequeue time
331 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
332 * Thus, the util_est.enqueued of a task represents the contribution on the
333 * estimated utilization of the CPU where that task is currently enqueued.
335 * Only for tasks we track a moving average of the past instantaneous
336 * estimated utilization. This allows to absorb sporadic drops in utilization
337 * of an otherwise almost periodic task.
340 unsigned int enqueued;
342 #define UTIL_EST_WEIGHT_SHIFT 2
343 } __attribute__((__aligned__(sizeof(u64))));
346 * The load_avg/util_avg accumulates an infinite geometric series
347 * (see __update_load_avg() in kernel/sched/fair.c).
349 * [load_avg definition]
351 * load_avg = runnable% * scale_load_down(load)
353 * where runnable% is the time ratio that a sched_entity is runnable.
354 * For cfs_rq, it is the aggregated load_avg of all runnable and
355 * blocked sched_entities.
357 * load_avg may also take frequency scaling into account:
359 * load_avg = runnable% * scale_load_down(load) * freq%
361 * where freq% is the CPU frequency normalized to the highest frequency.
363 * [util_avg definition]
365 * util_avg = running% * SCHED_CAPACITY_SCALE
367 * where running% is the time ratio that a sched_entity is running on
368 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
369 * and blocked sched_entities.
371 * util_avg may also factor frequency scaling and CPU capacity scaling:
373 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
375 * where freq% is the same as above, and capacity% is the CPU capacity
376 * normalized to the greatest capacity (due to uarch differences, etc).
378 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
379 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
380 * we therefore scale them to as large a range as necessary. This is for
381 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
385 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
386 * with the highest load (=88761), always runnable on a single cfs_rq,
387 * and should not overflow as the number already hits PID_MAX_LIMIT.
389 * For all other cases (including 32-bit kernels), struct load_weight's
390 * weight will overflow first before we do, because:
392 * Max(load_avg) <= Max(load.weight)
394 * Then it is the load_weight's responsibility to consider overflow
398 u64 last_update_time;
400 u64 runnable_load_sum;
403 unsigned long load_avg;
404 unsigned long runnable_load_avg;
405 unsigned long util_avg;
406 struct util_est util_est;
407 } ____cacheline_aligned;
409 struct sched_statistics {
410 #ifdef CONFIG_SCHEDSTATS
420 s64 sum_sleep_runtime;
427 u64 nr_migrations_cold;
428 u64 nr_failed_migrations_affine;
429 u64 nr_failed_migrations_running;
430 u64 nr_failed_migrations_hot;
431 u64 nr_forced_migrations;
435 u64 nr_wakeups_migrate;
436 u64 nr_wakeups_local;
437 u64 nr_wakeups_remote;
438 u64 nr_wakeups_affine;
439 u64 nr_wakeups_affine_attempts;
440 u64 nr_wakeups_passive;
445 struct sched_entity {
446 /* For load-balancing: */
447 struct load_weight load;
448 unsigned long runnable_weight;
449 struct rb_node run_node;
450 struct list_head group_node;
454 u64 sum_exec_runtime;
456 u64 prev_sum_exec_runtime;
460 struct sched_statistics statistics;
462 #ifdef CONFIG_FAIR_GROUP_SCHED
464 struct sched_entity *parent;
465 /* rq on which this entity is (to be) queued: */
466 struct cfs_rq *cfs_rq;
467 /* rq "owned" by this entity/group: */
473 * Per entity load average tracking.
475 * Put into separate cache line so it does not
476 * collide with read-mostly values above.
478 struct sched_avg avg;
482 struct sched_rt_entity {
483 struct list_head run_list;
484 unsigned long timeout;
485 unsigned long watchdog_stamp;
486 unsigned int time_slice;
487 unsigned short on_rq;
488 unsigned short on_list;
490 struct sched_rt_entity *back;
491 #ifdef CONFIG_RT_GROUP_SCHED
492 struct sched_rt_entity *parent;
493 /* rq on which this entity is (to be) queued: */
495 /* rq "owned" by this entity/group: */
498 } __randomize_layout;
500 struct sched_dl_entity {
501 struct rb_node rb_node;
504 * Original scheduling parameters. Copied here from sched_attr
505 * during sched_setattr(), they will remain the same until
506 * the next sched_setattr().
508 u64 dl_runtime; /* Maximum runtime for each instance */
509 u64 dl_deadline; /* Relative deadline of each instance */
510 u64 dl_period; /* Separation of two instances (period) */
511 u64 dl_bw; /* dl_runtime / dl_period */
512 u64 dl_density; /* dl_runtime / dl_deadline */
515 * Actual scheduling parameters. Initialized with the values above,
516 * they are continously updated during task execution. Note that
517 * the remaining runtime could be < 0 in case we are in overrun.
519 s64 runtime; /* Remaining runtime for this instance */
520 u64 deadline; /* Absolute deadline for this instance */
521 unsigned int flags; /* Specifying the scheduler behaviour */
526 * @dl_throttled tells if we exhausted the runtime. If so, the
527 * task has to wait for a replenishment to be performed at the
528 * next firing of dl_timer.
530 * @dl_boosted tells if we are boosted due to DI. If so we are
531 * outside bandwidth enforcement mechanism (but only until we
532 * exit the critical section);
534 * @dl_yielded tells if task gave up the CPU before consuming
535 * all its available runtime during the last job.
537 * @dl_non_contending tells if the task is inactive while still
538 * contributing to the active utilization. In other words, it
539 * indicates if the inactive timer has been armed and its handler
540 * has not been executed yet. This flag is useful to avoid race
541 * conditions between the inactive timer handler and the wakeup
544 * @dl_overrun tells if the task asked to be informed about runtime
547 unsigned int dl_throttled : 1;
548 unsigned int dl_boosted : 1;
549 unsigned int dl_yielded : 1;
550 unsigned int dl_non_contending : 1;
551 unsigned int dl_overrun : 1;
554 * Bandwidth enforcement timer. Each -deadline task has its
555 * own bandwidth to be enforced, thus we need one timer per task.
557 struct hrtimer dl_timer;
560 * Inactive timer, responsible for decreasing the active utilization
561 * at the "0-lag time". When a -deadline task blocks, it contributes
562 * to GRUB's active utilization until the "0-lag time", hence a
563 * timer is needed to decrease the active utilization at the correct
566 struct hrtimer inactive_timer;
575 /* Otherwise the compiler can store garbage here: */
578 u32 s; /* Set of bits. */
581 enum perf_event_task_context {
582 perf_invalid_context = -1,
585 perf_nr_task_contexts,
589 struct wake_q_node *next;
593 #ifdef CONFIG_THREAD_INFO_IN_TASK
595 * For reasons of header soup (see current_thread_info()), this
596 * must be the first element of task_struct.
598 struct thread_info thread_info;
600 /* -1 unrunnable, 0 runnable, >0 stopped: */
604 * This begins the randomizable portion of task_struct. Only
605 * scheduling-critical items should be added above here.
607 randomized_struct_fields_start
611 /* Per task flags (PF_*), defined further below: */
616 struct llist_node wake_entry;
618 #ifdef CONFIG_THREAD_INFO_IN_TASK
622 unsigned int wakee_flips;
623 unsigned long wakee_flip_decay_ts;
624 struct task_struct *last_wakee;
627 * recent_used_cpu is initially set as the last CPU used by a task
628 * that wakes affine another task. Waker/wakee relationships can
629 * push tasks around a CPU where each wakeup moves to the next one.
630 * Tracking a recently used CPU allows a quick search for a recently
631 * used CPU that may be idle.
641 unsigned int rt_priority;
643 const struct sched_class *sched_class;
644 struct sched_entity se;
645 struct sched_rt_entity rt;
646 #ifdef CONFIG_CGROUP_SCHED
647 struct task_group *sched_task_group;
649 struct sched_dl_entity dl;
651 #ifdef CONFIG_PREEMPT_NOTIFIERS
652 /* List of struct preempt_notifier: */
653 struct hlist_head preempt_notifiers;
656 #ifdef CONFIG_BLK_DEV_IO_TRACE
657 unsigned int btrace_seq;
662 cpumask_t cpus_allowed;
664 #ifdef CONFIG_PREEMPT_RCU
665 int rcu_read_lock_nesting;
666 union rcu_special rcu_read_unlock_special;
667 struct list_head rcu_node_entry;
668 struct rcu_node *rcu_blocked_node;
669 #endif /* #ifdef CONFIG_PREEMPT_RCU */
671 #ifdef CONFIG_TASKS_RCU
672 unsigned long rcu_tasks_nvcsw;
673 u8 rcu_tasks_holdout;
675 int rcu_tasks_idle_cpu;
676 struct list_head rcu_tasks_holdout_list;
677 #endif /* #ifdef CONFIG_TASKS_RCU */
679 struct sched_info sched_info;
681 struct list_head tasks;
683 struct plist_node pushable_tasks;
684 struct rb_node pushable_dl_tasks;
687 struct mm_struct *mm;
688 struct mm_struct *active_mm;
690 /* Per-thread vma caching: */
691 struct vmacache vmacache;
693 #ifdef SPLIT_RSS_COUNTING
694 struct task_rss_stat rss_stat;
699 /* The signal sent when the parent dies: */
701 /* JOBCTL_*, siglock protected: */
702 unsigned long jobctl;
704 /* Used for emulating ABI behavior of previous Linux versions: */
705 unsigned int personality;
707 /* Scheduler bits, serialized by scheduler locks: */
708 unsigned sched_reset_on_fork:1;
709 unsigned sched_contributes_to_load:1;
710 unsigned sched_migrated:1;
711 unsigned sched_remote_wakeup:1;
712 /* Force alignment to the next boundary: */
715 /* Unserialized, strictly 'current' */
717 /* Bit to tell LSMs we're in execve(): */
718 unsigned in_execve:1;
719 unsigned in_iowait:1;
720 #ifndef TIF_RESTORE_SIGMASK
721 unsigned restore_sigmask:1;
724 unsigned memcg_may_oom:1;
726 unsigned memcg_kmem_skip_account:1;
729 #ifdef CONFIG_COMPAT_BRK
730 unsigned brk_randomized:1;
732 #ifdef CONFIG_CGROUPS
733 /* disallow userland-initiated cgroup migration */
734 unsigned no_cgroup_migration:1;
737 unsigned long atomic_flags; /* Flags requiring atomic access. */
739 struct restart_block restart_block;
744 #ifdef CONFIG_CC_STACKPROTECTOR
745 /* Canary value for the -fstack-protector GCC feature: */
746 unsigned long stack_canary;
749 * Pointers to the (original) parent process, youngest child, younger sibling,
750 * older sibling, respectively. (p->father can be replaced with
751 * p->real_parent->pid)
754 /* Real parent process: */
755 struct task_struct __rcu *real_parent;
757 /* Recipient of SIGCHLD, wait4() reports: */
758 struct task_struct __rcu *parent;
761 * Children/sibling form the list of natural children:
763 struct list_head children;
764 struct list_head sibling;
765 struct task_struct *group_leader;
768 * 'ptraced' is the list of tasks this task is using ptrace() on.
770 * This includes both natural children and PTRACE_ATTACH targets.
771 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
773 struct list_head ptraced;
774 struct list_head ptrace_entry;
776 /* PID/PID hash table linkage. */
777 struct pid_link pids[PIDTYPE_MAX];
778 struct list_head thread_group;
779 struct list_head thread_node;
781 struct completion *vfork_done;
783 /* CLONE_CHILD_SETTID: */
784 int __user *set_child_tid;
786 /* CLONE_CHILD_CLEARTID: */
787 int __user *clear_child_tid;
791 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
796 struct prev_cputime prev_cputime;
797 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
801 #ifdef CONFIG_NO_HZ_FULL
802 atomic_t tick_dep_mask;
804 /* Context switch counts: */
806 unsigned long nivcsw;
808 /* Monotonic time in nsecs: */
811 /* Boot based time in nsecs: */
814 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
815 unsigned long min_flt;
816 unsigned long maj_flt;
818 #ifdef CONFIG_POSIX_TIMERS
819 struct task_cputime cputime_expires;
820 struct list_head cpu_timers[3];
823 /* Process credentials: */
825 /* Tracer's credentials at attach: */
826 const struct cred __rcu *ptracer_cred;
828 /* Objective and real subjective task credentials (COW): */
829 const struct cred __rcu *real_cred;
831 /* Effective (overridable) subjective task credentials (COW): */
832 const struct cred __rcu *cred;
835 * executable name, excluding path.
837 * - normally initialized setup_new_exec()
838 * - access it with [gs]et_task_comm()
839 * - lock it with task_lock()
841 char comm[TASK_COMM_LEN];
843 struct nameidata *nameidata;
845 #ifdef CONFIG_SYSVIPC
846 struct sysv_sem sysvsem;
847 struct sysv_shm sysvshm;
849 #ifdef CONFIG_DETECT_HUNG_TASK
850 unsigned long last_switch_count;
852 /* Filesystem information: */
853 struct fs_struct *fs;
855 /* Open file information: */
856 struct files_struct *files;
859 struct nsproxy *nsproxy;
861 /* Signal handlers: */
862 struct signal_struct *signal;
863 struct sighand_struct *sighand;
865 sigset_t real_blocked;
866 /* Restored if set_restore_sigmask() was used: */
867 sigset_t saved_sigmask;
868 struct sigpending pending;
869 unsigned long sas_ss_sp;
871 unsigned int sas_ss_flags;
873 struct callback_head *task_works;
875 struct audit_context *audit_context;
876 #ifdef CONFIG_AUDITSYSCALL
878 unsigned int sessionid;
880 struct seccomp seccomp;
882 /* Thread group tracking: */
886 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
887 spinlock_t alloc_lock;
889 /* Protection of the PI data structures: */
890 raw_spinlock_t pi_lock;
892 struct wake_q_node wake_q;
894 #ifdef CONFIG_RT_MUTEXES
895 /* PI waiters blocked on a rt_mutex held by this task: */
896 struct rb_root_cached pi_waiters;
897 /* Updated under owner's pi_lock and rq lock */
898 struct task_struct *pi_top_task;
899 /* Deadlock detection and priority inheritance handling: */
900 struct rt_mutex_waiter *pi_blocked_on;
903 #ifdef CONFIG_DEBUG_MUTEXES
904 /* Mutex deadlock detection: */
905 struct mutex_waiter *blocked_on;
908 #ifdef CONFIG_TRACE_IRQFLAGS
909 unsigned int irq_events;
910 unsigned long hardirq_enable_ip;
911 unsigned long hardirq_disable_ip;
912 unsigned int hardirq_enable_event;
913 unsigned int hardirq_disable_event;
914 int hardirqs_enabled;
916 unsigned long softirq_disable_ip;
917 unsigned long softirq_enable_ip;
918 unsigned int softirq_disable_event;
919 unsigned int softirq_enable_event;
920 int softirqs_enabled;
924 #ifdef CONFIG_LOCKDEP
925 # define MAX_LOCK_DEPTH 48UL
928 unsigned int lockdep_recursion;
929 struct held_lock held_locks[MAX_LOCK_DEPTH];
933 unsigned int in_ubsan;
936 /* Journalling filesystem info: */
939 /* Stacked block device info: */
940 struct bio_list *bio_list;
943 /* Stack plugging: */
944 struct blk_plug *plug;
948 struct reclaim_state *reclaim_state;
950 struct backing_dev_info *backing_dev_info;
952 struct io_context *io_context;
955 unsigned long ptrace_message;
956 siginfo_t *last_siginfo;
958 struct task_io_accounting ioac;
959 #ifdef CONFIG_TASK_XACCT
960 /* Accumulated RSS usage: */
962 /* Accumulated virtual memory usage: */
964 /* stime + utime since last update: */
967 #ifdef CONFIG_CPUSETS
968 /* Protected by ->alloc_lock: */
969 nodemask_t mems_allowed;
970 /* Seqence number to catch updates: */
971 seqcount_t mems_allowed_seq;
972 int cpuset_mem_spread_rotor;
973 int cpuset_slab_spread_rotor;
975 #ifdef CONFIG_CGROUPS
976 /* Control Group info protected by css_set_lock: */
977 struct css_set __rcu *cgroups;
978 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
979 struct list_head cg_list;
981 #ifdef CONFIG_INTEL_RDT
986 struct robust_list_head __user *robust_list;
988 struct compat_robust_list_head __user *compat_robust_list;
990 struct list_head pi_state_list;
991 struct futex_pi_state *pi_state_cache;
993 #ifdef CONFIG_PERF_EVENTS
994 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
995 struct mutex perf_event_mutex;
996 struct list_head perf_event_list;
998 #ifdef CONFIG_DEBUG_PREEMPT
999 unsigned long preempt_disable_ip;
1002 /* Protected by alloc_lock: */
1003 struct mempolicy *mempolicy;
1005 short pref_node_fork;
1007 #ifdef CONFIG_NUMA_BALANCING
1009 unsigned int numa_scan_period;
1010 unsigned int numa_scan_period_max;
1011 int numa_preferred_nid;
1012 unsigned long numa_migrate_retry;
1013 /* Migration stamp: */
1015 u64 last_task_numa_placement;
1016 u64 last_sum_exec_runtime;
1017 struct callback_head numa_work;
1019 struct list_head numa_entry;
1020 struct numa_group *numa_group;
1023 * numa_faults is an array split into four regions:
1024 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1025 * in this precise order.
1027 * faults_memory: Exponential decaying average of faults on a per-node
1028 * basis. Scheduling placement decisions are made based on these
1029 * counts. The values remain static for the duration of a PTE scan.
1030 * faults_cpu: Track the nodes the process was running on when a NUMA
1031 * hinting fault was incurred.
1032 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1033 * during the current scan window. When the scan completes, the counts
1034 * in faults_memory and faults_cpu decay and these values are copied.
1036 unsigned long *numa_faults;
1037 unsigned long total_numa_faults;
1040 * numa_faults_locality tracks if faults recorded during the last
1041 * scan window were remote/local or failed to migrate. The task scan
1042 * period is adapted based on the locality of the faults with different
1043 * weights depending on whether they were shared or private faults
1045 unsigned long numa_faults_locality[3];
1047 unsigned long numa_pages_migrated;
1048 #endif /* CONFIG_NUMA_BALANCING */
1050 struct tlbflush_unmap_batch tlb_ubc;
1052 struct rcu_head rcu;
1054 /* Cache last used pipe for splice(): */
1055 struct pipe_inode_info *splice_pipe;
1057 struct page_frag task_frag;
1059 #ifdef CONFIG_TASK_DELAY_ACCT
1060 struct task_delay_info *delays;
1063 #ifdef CONFIG_FAULT_INJECTION
1065 unsigned int fail_nth;
1068 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1069 * balance_dirty_pages() for a dirty throttling pause:
1072 int nr_dirtied_pause;
1073 /* Start of a write-and-pause period: */
1074 unsigned long dirty_paused_when;
1076 #ifdef CONFIG_LATENCYTOP
1077 int latency_record_count;
1078 struct latency_record latency_record[LT_SAVECOUNT];
1081 * Time slack values; these are used to round up poll() and
1082 * select() etc timeout values. These are in nanoseconds.
1085 u64 default_timer_slack_ns;
1088 unsigned int kasan_depth;
1091 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1092 /* Index of current stored address in ret_stack: */
1095 /* Stack of return addresses for return function tracing: */
1096 struct ftrace_ret_stack *ret_stack;
1098 /* Timestamp for last schedule: */
1099 unsigned long long ftrace_timestamp;
1102 * Number of functions that haven't been traced
1103 * because of depth overrun:
1105 atomic_t trace_overrun;
1107 /* Pause tracing: */
1108 atomic_t tracing_graph_pause;
1111 #ifdef CONFIG_TRACING
1112 /* State flags for use by tracers: */
1113 unsigned long trace;
1115 /* Bitmask and counter of trace recursion: */
1116 unsigned long trace_recursion;
1117 #endif /* CONFIG_TRACING */
1120 /* Coverage collection mode enabled for this task (0 if disabled): */
1121 enum kcov_mode kcov_mode;
1123 /* Size of the kcov_area: */
1124 unsigned int kcov_size;
1126 /* Buffer for coverage collection: */
1129 /* KCOV descriptor wired with this task or NULL: */
1134 struct mem_cgroup *memcg_in_oom;
1135 gfp_t memcg_oom_gfp_mask;
1136 int memcg_oom_order;
1138 /* Number of pages to reclaim on returning to userland: */
1139 unsigned int memcg_nr_pages_over_high;
1142 #ifdef CONFIG_UPROBES
1143 struct uprobe_task *utask;
1145 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1146 unsigned int sequential_io;
1147 unsigned int sequential_io_avg;
1149 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1150 unsigned long task_state_change;
1152 int pagefault_disabled;
1154 struct task_struct *oom_reaper_list;
1156 #ifdef CONFIG_VMAP_STACK
1157 struct vm_struct *stack_vm_area;
1159 #ifdef CONFIG_THREAD_INFO_IN_TASK
1160 /* A live task holds one reference: */
1161 atomic_t stack_refcount;
1163 #ifdef CONFIG_LIVEPATCH
1166 #ifdef CONFIG_SECURITY
1167 /* Used by LSM modules for access restriction: */
1172 * New fields for task_struct should be added above here, so that
1173 * they are included in the randomized portion of task_struct.
1175 randomized_struct_fields_end
1177 /* CPU-specific state of this task: */
1178 struct thread_struct thread;
1181 * WARNING: on x86, 'thread_struct' contains a variable-sized
1182 * structure. It *MUST* be at the end of 'task_struct'.
1184 * Do not put anything below here!
1188 static inline struct pid *task_pid(struct task_struct *task)
1190 return task->pids[PIDTYPE_PID].pid;
1193 static inline struct pid *task_tgid(struct task_struct *task)
1195 return task->group_leader->pids[PIDTYPE_PID].pid;
1199 * Without tasklist or RCU lock it is not safe to dereference
1200 * the result of task_pgrp/task_session even if task == current,
1201 * we can race with another thread doing sys_setsid/sys_setpgid.
1203 static inline struct pid *task_pgrp(struct task_struct *task)
1205 return task->group_leader->pids[PIDTYPE_PGID].pid;
1208 static inline struct pid *task_session(struct task_struct *task)
1210 return task->group_leader->pids[PIDTYPE_SID].pid;
1214 * the helpers to get the task's different pids as they are seen
1215 * from various namespaces
1217 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1218 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1220 * task_xid_nr_ns() : id seen from the ns specified;
1222 * see also pid_nr() etc in include/linux/pid.h
1224 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1226 static inline pid_t task_pid_nr(struct task_struct *tsk)
1231 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1233 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1236 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1238 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1242 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1248 * pid_alive - check that a task structure is not stale
1249 * @p: Task structure to be checked.
1251 * Test if a process is not yet dead (at most zombie state)
1252 * If pid_alive fails, then pointers within the task structure
1253 * can be stale and must not be dereferenced.
1255 * Return: 1 if the process is alive. 0 otherwise.
1257 static inline int pid_alive(const struct task_struct *p)
1259 return p->pids[PIDTYPE_PID].pid != NULL;
1262 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1264 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1267 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1269 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1273 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1275 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1278 static inline pid_t task_session_vnr(struct task_struct *tsk)
1280 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1283 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1285 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1288 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1290 return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1293 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1299 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1305 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1307 return task_ppid_nr_ns(tsk, &init_pid_ns);
1310 /* Obsolete, do not use: */
1311 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1313 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1316 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1317 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1319 static inline unsigned int task_state_index(struct task_struct *tsk)
1321 unsigned int tsk_state = READ_ONCE(tsk->state);
1322 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1324 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1326 if (tsk_state == TASK_IDLE)
1327 state = TASK_REPORT_IDLE;
1332 static inline char task_index_to_char(unsigned int state)
1334 static const char state_char[] = "RSDTtXZPI";
1336 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1338 return state_char[state];
1341 static inline char task_state_to_char(struct task_struct *tsk)
1343 return task_index_to_char(task_state_index(tsk));
1347 * is_global_init - check if a task structure is init. Since init
1348 * is free to have sub-threads we need to check tgid.
1349 * @tsk: Task structure to be checked.
1351 * Check if a task structure is the first user space task the kernel created.
1353 * Return: 1 if the task structure is init. 0 otherwise.
1355 static inline int is_global_init(struct task_struct *tsk)
1357 return task_tgid_nr(tsk) == 1;
1360 extern struct pid *cad_pid;
1365 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1366 #define PF_EXITING 0x00000004 /* Getting shut down */
1367 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1368 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1369 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1370 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1371 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1372 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1373 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1374 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1375 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1376 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1377 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1378 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1379 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1380 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1381 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1382 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1383 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1384 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1385 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1386 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1387 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1388 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1389 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1390 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1391 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1392 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1395 * Only the _current_ task can read/write to tsk->flags, but other
1396 * tasks can access tsk->flags in readonly mode for example
1397 * with tsk_used_math (like during threaded core dumping).
1398 * There is however an exception to this rule during ptrace
1399 * or during fork: the ptracer task is allowed to write to the
1400 * child->flags of its traced child (same goes for fork, the parent
1401 * can write to the child->flags), because we're guaranteed the
1402 * child is not running and in turn not changing child->flags
1403 * at the same time the parent does it.
1405 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1406 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1407 #define clear_used_math() clear_stopped_child_used_math(current)
1408 #define set_used_math() set_stopped_child_used_math(current)
1410 #define conditional_stopped_child_used_math(condition, child) \
1411 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1413 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1415 #define copy_to_stopped_child_used_math(child) \
1416 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1418 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1419 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1420 #define used_math() tsk_used_math(current)
1422 static inline bool is_percpu_thread(void)
1425 return (current->flags & PF_NO_SETAFFINITY) &&
1426 (current->nr_cpus_allowed == 1);
1432 /* Per-process atomic flags. */
1433 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1434 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1435 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1436 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1437 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1439 #define TASK_PFA_TEST(name, func) \
1440 static inline bool task_##func(struct task_struct *p) \
1441 { return test_bit(PFA_##name, &p->atomic_flags); }
1443 #define TASK_PFA_SET(name, func) \
1444 static inline void task_set_##func(struct task_struct *p) \
1445 { set_bit(PFA_##name, &p->atomic_flags); }
1447 #define TASK_PFA_CLEAR(name, func) \
1448 static inline void task_clear_##func(struct task_struct *p) \
1449 { clear_bit(PFA_##name, &p->atomic_flags); }
1451 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1452 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1454 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1455 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1456 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1458 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1459 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1460 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1462 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1463 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1464 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1466 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1467 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1470 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1472 current->flags &= ~flags;
1473 current->flags |= orig_flags & flags;
1476 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1477 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1479 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1480 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1482 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1485 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1487 if (!cpumask_test_cpu(0, new_mask))
1493 #ifndef cpu_relax_yield
1494 #define cpu_relax_yield() cpu_relax()
1497 extern int yield_to(struct task_struct *p, bool preempt);
1498 extern void set_user_nice(struct task_struct *p, long nice);
1499 extern int task_prio(const struct task_struct *p);
1502 * task_nice - return the nice value of a given task.
1503 * @p: the task in question.
1505 * Return: The nice value [ -20 ... 0 ... 19 ].
1507 static inline int task_nice(const struct task_struct *p)
1509 return PRIO_TO_NICE((p)->static_prio);
1512 extern int can_nice(const struct task_struct *p, const int nice);
1513 extern int task_curr(const struct task_struct *p);
1514 extern int idle_cpu(int cpu);
1515 extern int available_idle_cpu(int cpu);
1516 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1517 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1518 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1519 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1520 extern struct task_struct *idle_task(int cpu);
1523 * is_idle_task - is the specified task an idle task?
1524 * @p: the task in question.
1526 * Return: 1 if @p is an idle task. 0 otherwise.
1528 static inline bool is_idle_task(const struct task_struct *p)
1530 return !!(p->flags & PF_IDLE);
1533 extern struct task_struct *curr_task(int cpu);
1534 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1538 union thread_union {
1539 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1540 struct task_struct task;
1542 #ifndef CONFIG_THREAD_INFO_IN_TASK
1543 struct thread_info thread_info;
1545 unsigned long stack[THREAD_SIZE/sizeof(long)];
1548 #ifndef CONFIG_THREAD_INFO_IN_TASK
1549 extern struct thread_info init_thread_info;
1552 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1554 #ifdef CONFIG_THREAD_INFO_IN_TASK
1555 static inline struct thread_info *task_thread_info(struct task_struct *task)
1557 return &task->thread_info;
1559 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1560 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1564 * find a task by one of its numerical ids
1566 * find_task_by_pid_ns():
1567 * finds a task by its pid in the specified namespace
1568 * find_task_by_vpid():
1569 * finds a task by its virtual pid
1571 * see also find_vpid() etc in include/linux/pid.h
1574 extern struct task_struct *find_task_by_vpid(pid_t nr);
1575 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1578 * find a task by its virtual pid and get the task struct
1580 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1582 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1583 extern int wake_up_process(struct task_struct *tsk);
1584 extern void wake_up_new_task(struct task_struct *tsk);
1587 extern void kick_process(struct task_struct *tsk);
1589 static inline void kick_process(struct task_struct *tsk) { }
1592 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1594 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1596 __set_task_comm(tsk, from, false);
1599 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1600 #define get_task_comm(buf, tsk) ({ \
1601 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1602 __get_task_comm(buf, sizeof(buf), tsk); \
1606 void scheduler_ipi(void);
1607 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1609 static inline void scheduler_ipi(void) { }
1610 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1617 * Set thread flags in other task's structures.
1618 * See asm/thread_info.h for TIF_xxxx flags available:
1620 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1622 set_ti_thread_flag(task_thread_info(tsk), flag);
1625 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1627 clear_ti_thread_flag(task_thread_info(tsk), flag);
1630 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1632 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1635 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1637 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1640 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1642 return test_ti_thread_flag(task_thread_info(tsk), flag);
1645 static inline void set_tsk_need_resched(struct task_struct *tsk)
1647 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1650 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1652 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1655 static inline int test_tsk_need_resched(struct task_struct *tsk)
1657 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1661 * cond_resched() and cond_resched_lock(): latency reduction via
1662 * explicit rescheduling in places that are safe. The return
1663 * value indicates whether a reschedule was done in fact.
1664 * cond_resched_lock() will drop the spinlock before scheduling,
1666 #ifndef CONFIG_PREEMPT
1667 extern int _cond_resched(void);
1669 static inline int _cond_resched(void) { return 0; }
1672 #define cond_resched() ({ \
1673 ___might_sleep(__FILE__, __LINE__, 0); \
1677 extern int __cond_resched_lock(spinlock_t *lock);
1679 #define cond_resched_lock(lock) ({ \
1680 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1681 __cond_resched_lock(lock); \
1684 static inline void cond_resched_rcu(void)
1686 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1694 * Does a critical section need to be broken due to another
1695 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1696 * but a general need for low latency)
1698 static inline int spin_needbreak(spinlock_t *lock)
1700 #ifdef CONFIG_PREEMPT
1701 return spin_is_contended(lock);
1707 static __always_inline bool need_resched(void)
1709 return unlikely(tif_need_resched());
1713 * Wrappers for p->thread_info->cpu access. No-op on UP.
1717 static inline unsigned int task_cpu(const struct task_struct *p)
1719 #ifdef CONFIG_THREAD_INFO_IN_TASK
1722 return task_thread_info(p)->cpu;
1726 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1730 static inline unsigned int task_cpu(const struct task_struct *p)
1735 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1739 #endif /* CONFIG_SMP */
1742 * In order to reduce various lock holder preemption latencies provide an
1743 * interface to see if a vCPU is currently running or not.
1745 * This allows us to terminate optimistic spin loops and block, analogous to
1746 * the native optimistic spin heuristic of testing if the lock owner task is
1749 #ifndef vcpu_is_preempted
1750 # define vcpu_is_preempted(cpu) false
1753 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1754 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1756 #ifndef TASK_SIZE_OF
1757 #define TASK_SIZE_OF(tsk) TASK_SIZE