1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
20 #include <linux/module.h>
21 #include <linux/string.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
50 #include "ext4_extents.h" /* Needed for trace points definition */
51 #include "ext4_jbd2.h"
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ext4.h>
60 static struct ext4_lazy_init *ext4_li_info;
61 static struct mutex ext4_li_mtx;
62 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96 * page lock -> i_data_sem (rw)
98 * buffered write path:
99 * sb_start_write -> i_mutex -> mmap_sem
100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
109 * sb_start_write -> i_mutex -> mmap_sem
110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113 * transaction start -> page lock(s) -> i_data_sem (rw)
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #define IS_EXT2_SB(sb) (0)
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143 static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
146 if (!ext4_has_feature_metadata_csum(sb))
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
161 return cpu_to_le32(csum);
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
167 if (!ext4_has_metadata_csum(sb))
170 return es->s_checksum == ext4_superblock_csum(sb, es);
173 void ext4_superblock_csum_set(struct super_block *sb)
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
177 if (!ext4_has_metadata_csum(sb))
180 es->s_checksum = ext4_superblock_csum(sb, es);
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
187 ret = kmalloc(size, flags | __GFP_NOWARN);
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
197 ret = kzalloc(size, flags | __GFP_NOWARN);
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
259 void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
275 void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
291 void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
299 void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
307 void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
316 static void __save_error_info(struct super_block *sb, const char *func,
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 if (bdev_read_only(sb->s_bdev))
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
337 * Start the daily error reporting function if it hasn't been
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 le32_add_cpu(&es->s_error_count, 1);
345 static void save_error_info(struct super_block *sb, const char *func,
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
353 * The del_gendisk() function uninitializes the disk-specific data
354 * structures, including the bdi structure, without telling anyone
355 * else. Once this happens, any attempt to call mark_buffer_dirty()
356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
357 * This is a kludge to prevent these oops until we can put in a proper
358 * hook in del_gendisk() to inform the VFS and file system layers.
360 static int block_device_ejected(struct super_block *sb)
362 struct inode *bd_inode = sb->s_bdev->bd_inode;
363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
365 return bdi->dev == NULL;
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
370 struct super_block *sb = journal->j_private;
371 struct ext4_sb_info *sbi = EXT4_SB(sb);
372 int error = is_journal_aborted(journal);
373 struct ext4_journal_cb_entry *jce;
375 BUG_ON(txn->t_state == T_FINISHED);
377 ext4_process_freed_data(sb, txn->t_tid);
379 spin_lock(&sbi->s_md_lock);
380 while (!list_empty(&txn->t_private_list)) {
381 jce = list_entry(txn->t_private_list.next,
382 struct ext4_journal_cb_entry, jce_list);
383 list_del_init(&jce->jce_list);
384 spin_unlock(&sbi->s_md_lock);
385 jce->jce_func(sb, jce, error);
386 spin_lock(&sbi->s_md_lock);
388 spin_unlock(&sbi->s_md_lock);
391 /* Deal with the reporting of failure conditions on a filesystem such as
392 * inconsistencies detected or read IO failures.
394 * On ext2, we can store the error state of the filesystem in the
395 * superblock. That is not possible on ext4, because we may have other
396 * write ordering constraints on the superblock which prevent us from
397 * writing it out straight away; and given that the journal is about to
398 * be aborted, we can't rely on the current, or future, transactions to
399 * write out the superblock safely.
401 * We'll just use the jbd2_journal_abort() error code to record an error in
402 * the journal instead. On recovery, the journal will complain about
403 * that error until we've noted it down and cleared it.
406 static void ext4_handle_error(struct super_block *sb)
411 if (!test_opt(sb, ERRORS_CONT)) {
412 journal_t *journal = EXT4_SB(sb)->s_journal;
414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
416 jbd2_journal_abort(journal, -EIO);
418 if (test_opt(sb, ERRORS_RO)) {
419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
421 * Make sure updated value of ->s_mount_flags will be visible
422 * before ->s_flags update
425 sb->s_flags |= SB_RDONLY;
427 if (test_opt(sb, ERRORS_PANIC)) {
428 if (EXT4_SB(sb)->s_journal &&
429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
431 panic("EXT4-fs (device %s): panic forced after error\n",
436 #define ext4_error_ratelimit(sb) \
437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
440 void __ext4_error(struct super_block *sb, const char *function,
441 unsigned int line, const char *fmt, ...)
443 struct va_format vaf;
446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
449 trace_ext4_error(sb, function, line);
450 if (ext4_error_ratelimit(sb)) {
455 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
456 sb->s_id, function, line, current->comm, &vaf);
459 save_error_info(sb, function, line);
460 ext4_handle_error(sb);
463 void __ext4_error_inode(struct inode *inode, const char *function,
464 unsigned int line, ext4_fsblk_t block,
465 const char *fmt, ...)
468 struct va_format vaf;
469 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
471 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
474 trace_ext4_error(inode->i_sb, function, line);
475 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
476 es->s_last_error_block = cpu_to_le64(block);
477 if (ext4_error_ratelimit(inode->i_sb)) {
482 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
483 "inode #%lu: block %llu: comm %s: %pV\n",
484 inode->i_sb->s_id, function, line, inode->i_ino,
485 block, current->comm, &vaf);
487 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
488 "inode #%lu: comm %s: %pV\n",
489 inode->i_sb->s_id, function, line, inode->i_ino,
490 current->comm, &vaf);
493 save_error_info(inode->i_sb, function, line);
494 ext4_handle_error(inode->i_sb);
497 void __ext4_error_file(struct file *file, const char *function,
498 unsigned int line, ext4_fsblk_t block,
499 const char *fmt, ...)
502 struct va_format vaf;
503 struct ext4_super_block *es;
504 struct inode *inode = file_inode(file);
505 char pathname[80], *path;
507 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
510 trace_ext4_error(inode->i_sb, function, line);
511 es = EXT4_SB(inode->i_sb)->s_es;
512 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
513 if (ext4_error_ratelimit(inode->i_sb)) {
514 path = file_path(file, pathname, sizeof(pathname));
522 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
523 "block %llu: comm %s: path %s: %pV\n",
524 inode->i_sb->s_id, function, line, inode->i_ino,
525 block, current->comm, path, &vaf);
528 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
529 "comm %s: path %s: %pV\n",
530 inode->i_sb->s_id, function, line, inode->i_ino,
531 current->comm, path, &vaf);
534 save_error_info(inode->i_sb, function, line);
535 ext4_handle_error(inode->i_sb);
538 const char *ext4_decode_error(struct super_block *sb, int errno,
545 errstr = "Corrupt filesystem";
548 errstr = "Filesystem failed CRC";
551 errstr = "IO failure";
554 errstr = "Out of memory";
557 if (!sb || (EXT4_SB(sb)->s_journal &&
558 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
559 errstr = "Journal has aborted";
561 errstr = "Readonly filesystem";
564 /* If the caller passed in an extra buffer for unknown
565 * errors, textualise them now. Else we just return
568 /* Check for truncated error codes... */
569 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
578 /* __ext4_std_error decodes expected errors from journaling functions
579 * automatically and invokes the appropriate error response. */
581 void __ext4_std_error(struct super_block *sb, const char *function,
582 unsigned int line, int errno)
587 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
590 /* Special case: if the error is EROFS, and we're not already
591 * inside a transaction, then there's really no point in logging
593 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
596 if (ext4_error_ratelimit(sb)) {
597 errstr = ext4_decode_error(sb, errno, nbuf);
598 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
599 sb->s_id, function, line, errstr);
602 save_error_info(sb, function, line);
603 ext4_handle_error(sb);
607 * ext4_abort is a much stronger failure handler than ext4_error. The
608 * abort function may be used to deal with unrecoverable failures such
609 * as journal IO errors or ENOMEM at a critical moment in log management.
611 * We unconditionally force the filesystem into an ABORT|READONLY state,
612 * unless the error response on the fs has been set to panic in which
613 * case we take the easy way out and panic immediately.
616 void __ext4_abort(struct super_block *sb, const char *function,
617 unsigned int line, const char *fmt, ...)
619 struct va_format vaf;
622 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
625 save_error_info(sb, function, line);
629 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
630 sb->s_id, function, line, &vaf);
633 if (sb_rdonly(sb) == 0) {
634 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
635 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
637 * Make sure updated value of ->s_mount_flags will be visible
638 * before ->s_flags update
641 sb->s_flags |= SB_RDONLY;
642 if (EXT4_SB(sb)->s_journal)
643 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
644 save_error_info(sb, function, line);
646 if (test_opt(sb, ERRORS_PANIC)) {
647 if (EXT4_SB(sb)->s_journal &&
648 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
650 panic("EXT4-fs panic from previous error\n");
654 void __ext4_msg(struct super_block *sb,
655 const char *prefix, const char *fmt, ...)
657 struct va_format vaf;
660 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
666 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
670 #define ext4_warning_ratelimit(sb) \
671 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
674 void __ext4_warning(struct super_block *sb, const char *function,
675 unsigned int line, const char *fmt, ...)
677 struct va_format vaf;
680 if (!ext4_warning_ratelimit(sb))
686 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
687 sb->s_id, function, line, &vaf);
691 void __ext4_warning_inode(const struct inode *inode, const char *function,
692 unsigned int line, const char *fmt, ...)
694 struct va_format vaf;
697 if (!ext4_warning_ratelimit(inode->i_sb))
703 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
704 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
705 function, line, inode->i_ino, current->comm, &vaf);
709 void __ext4_grp_locked_error(const char *function, unsigned int line,
710 struct super_block *sb, ext4_group_t grp,
711 unsigned long ino, ext4_fsblk_t block,
712 const char *fmt, ...)
716 struct va_format vaf;
718 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
720 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
723 trace_ext4_error(sb, function, line);
724 es->s_last_error_ino = cpu_to_le32(ino);
725 es->s_last_error_block = cpu_to_le64(block);
726 __save_error_info(sb, function, line);
728 if (ext4_error_ratelimit(sb)) {
732 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
733 sb->s_id, function, line, grp);
735 printk(KERN_CONT "inode %lu: ", ino);
737 printk(KERN_CONT "block %llu:",
738 (unsigned long long) block);
739 printk(KERN_CONT "%pV\n", &vaf);
743 if (test_opt(sb, ERRORS_CONT)) {
744 ext4_commit_super(sb, 0);
748 ext4_unlock_group(sb, grp);
749 ext4_commit_super(sb, 1);
750 ext4_handle_error(sb);
752 * We only get here in the ERRORS_RO case; relocking the group
753 * may be dangerous, but nothing bad will happen since the
754 * filesystem will have already been marked read/only and the
755 * journal has been aborted. We return 1 as a hint to callers
756 * who might what to use the return value from
757 * ext4_grp_locked_error() to distinguish between the
758 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
759 * aggressively from the ext4 function in question, with a
760 * more appropriate error code.
762 ext4_lock_group(sb, grp);
766 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
770 struct ext4_sb_info *sbi = EXT4_SB(sb);
771 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
772 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
774 if ((flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) &&
775 !EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) {
776 percpu_counter_sub(&sbi->s_freeclusters_counter,
778 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
782 if ((flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) &&
783 !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
787 count = ext4_free_inodes_count(sb, gdp);
788 percpu_counter_sub(&sbi->s_freeinodes_counter,
791 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
796 void ext4_update_dynamic_rev(struct super_block *sb)
798 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
800 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
804 "updating to rev %d because of new feature flag, "
805 "running e2fsck is recommended",
808 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
809 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
810 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
811 /* leave es->s_feature_*compat flags alone */
812 /* es->s_uuid will be set by e2fsck if empty */
815 * The rest of the superblock fields should be zero, and if not it
816 * means they are likely already in use, so leave them alone. We
817 * can leave it up to e2fsck to clean up any inconsistencies there.
822 * Open the external journal device
824 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
826 struct block_device *bdev;
827 char b[BDEVNAME_SIZE];
829 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
835 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
836 __bdevname(dev, b), PTR_ERR(bdev));
841 * Release the journal device
843 static void ext4_blkdev_put(struct block_device *bdev)
845 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
848 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
850 struct block_device *bdev;
851 bdev = sbi->journal_bdev;
853 ext4_blkdev_put(bdev);
854 sbi->journal_bdev = NULL;
858 static inline struct inode *orphan_list_entry(struct list_head *l)
860 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
863 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
867 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
868 le32_to_cpu(sbi->s_es->s_last_orphan));
870 printk(KERN_ERR "sb_info orphan list:\n");
871 list_for_each(l, &sbi->s_orphan) {
872 struct inode *inode = orphan_list_entry(l);
874 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
875 inode->i_sb->s_id, inode->i_ino, inode,
876 inode->i_mode, inode->i_nlink,
882 static int ext4_quota_off(struct super_block *sb, int type);
884 static inline void ext4_quota_off_umount(struct super_block *sb)
888 /* Use our quota_off function to clear inode flags etc. */
889 for (type = 0; type < EXT4_MAXQUOTAS; type++)
890 ext4_quota_off(sb, type);
893 static inline void ext4_quota_off_umount(struct super_block *sb)
898 static void ext4_put_super(struct super_block *sb)
900 struct ext4_sb_info *sbi = EXT4_SB(sb);
901 struct ext4_super_block *es = sbi->s_es;
905 ext4_unregister_li_request(sb);
906 ext4_quota_off_umount(sb);
908 destroy_workqueue(sbi->rsv_conversion_wq);
910 if (sbi->s_journal) {
911 aborted = is_journal_aborted(sbi->s_journal);
912 err = jbd2_journal_destroy(sbi->s_journal);
913 sbi->s_journal = NULL;
914 if ((err < 0) && !aborted)
915 ext4_abort(sb, "Couldn't clean up the journal");
918 ext4_unregister_sysfs(sb);
919 ext4_es_unregister_shrinker(sbi);
920 del_timer_sync(&sbi->s_err_report);
921 ext4_release_system_zone(sb);
923 ext4_ext_release(sb);
925 if (!sb_rdonly(sb) && !aborted) {
926 ext4_clear_feature_journal_needs_recovery(sb);
927 es->s_state = cpu_to_le16(sbi->s_mount_state);
930 ext4_commit_super(sb, 1);
932 for (i = 0; i < sbi->s_gdb_count; i++)
933 brelse(sbi->s_group_desc[i]);
934 kvfree(sbi->s_group_desc);
935 kvfree(sbi->s_flex_groups);
936 percpu_counter_destroy(&sbi->s_freeclusters_counter);
937 percpu_counter_destroy(&sbi->s_freeinodes_counter);
938 percpu_counter_destroy(&sbi->s_dirs_counter);
939 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
940 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
942 for (i = 0; i < EXT4_MAXQUOTAS; i++)
943 kfree(sbi->s_qf_names[i]);
946 /* Debugging code just in case the in-memory inode orphan list
947 * isn't empty. The on-disk one can be non-empty if we've
948 * detected an error and taken the fs readonly, but the
949 * in-memory list had better be clean by this point. */
950 if (!list_empty(&sbi->s_orphan))
951 dump_orphan_list(sb, sbi);
952 J_ASSERT(list_empty(&sbi->s_orphan));
954 sync_blockdev(sb->s_bdev);
955 invalidate_bdev(sb->s_bdev);
956 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
958 * Invalidate the journal device's buffers. We don't want them
959 * floating about in memory - the physical journal device may
960 * hotswapped, and it breaks the `ro-after' testing code.
962 sync_blockdev(sbi->journal_bdev);
963 invalidate_bdev(sbi->journal_bdev);
964 ext4_blkdev_remove(sbi);
966 if (sbi->s_ea_inode_cache) {
967 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
968 sbi->s_ea_inode_cache = NULL;
970 if (sbi->s_ea_block_cache) {
971 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
972 sbi->s_ea_block_cache = NULL;
975 kthread_stop(sbi->s_mmp_tsk);
977 sb->s_fs_info = NULL;
979 * Now that we are completely done shutting down the
980 * superblock, we need to actually destroy the kobject.
982 kobject_put(&sbi->s_kobj);
983 wait_for_completion(&sbi->s_kobj_unregister);
984 if (sbi->s_chksum_driver)
985 crypto_free_shash(sbi->s_chksum_driver);
986 kfree(sbi->s_blockgroup_lock);
987 fs_put_dax(sbi->s_daxdev);
991 static struct kmem_cache *ext4_inode_cachep;
994 * Called inside transaction, so use GFP_NOFS
996 static struct inode *ext4_alloc_inode(struct super_block *sb)
998 struct ext4_inode_info *ei;
1000 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1004 inode_set_iversion(&ei->vfs_inode, 1);
1005 spin_lock_init(&ei->i_raw_lock);
1006 INIT_LIST_HEAD(&ei->i_prealloc_list);
1007 spin_lock_init(&ei->i_prealloc_lock);
1008 ext4_es_init_tree(&ei->i_es_tree);
1009 rwlock_init(&ei->i_es_lock);
1010 INIT_LIST_HEAD(&ei->i_es_list);
1011 ei->i_es_all_nr = 0;
1012 ei->i_es_shk_nr = 0;
1013 ei->i_es_shrink_lblk = 0;
1014 ei->i_reserved_data_blocks = 0;
1015 ei->i_da_metadata_calc_len = 0;
1016 ei->i_da_metadata_calc_last_lblock = 0;
1017 spin_lock_init(&(ei->i_block_reservation_lock));
1019 ei->i_reserved_quota = 0;
1020 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1023 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1024 spin_lock_init(&ei->i_completed_io_lock);
1026 ei->i_datasync_tid = 0;
1027 atomic_set(&ei->i_unwritten, 0);
1028 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1029 return &ei->vfs_inode;
1032 static int ext4_drop_inode(struct inode *inode)
1034 int drop = generic_drop_inode(inode);
1036 trace_ext4_drop_inode(inode, drop);
1040 static void ext4_i_callback(struct rcu_head *head)
1042 struct inode *inode = container_of(head, struct inode, i_rcu);
1043 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1046 static void ext4_destroy_inode(struct inode *inode)
1048 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1049 ext4_msg(inode->i_sb, KERN_ERR,
1050 "Inode %lu (%p): orphan list check failed!",
1051 inode->i_ino, EXT4_I(inode));
1052 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1053 EXT4_I(inode), sizeof(struct ext4_inode_info),
1057 call_rcu(&inode->i_rcu, ext4_i_callback);
1060 static void init_once(void *foo)
1062 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1064 INIT_LIST_HEAD(&ei->i_orphan);
1065 init_rwsem(&ei->xattr_sem);
1066 init_rwsem(&ei->i_data_sem);
1067 init_rwsem(&ei->i_mmap_sem);
1068 inode_init_once(&ei->vfs_inode);
1071 static int __init init_inodecache(void)
1073 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1074 sizeof(struct ext4_inode_info), 0,
1075 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1077 offsetof(struct ext4_inode_info, i_data),
1078 sizeof_field(struct ext4_inode_info, i_data),
1080 if (ext4_inode_cachep == NULL)
1085 static void destroy_inodecache(void)
1088 * Make sure all delayed rcu free inodes are flushed before we
1092 kmem_cache_destroy(ext4_inode_cachep);
1095 void ext4_clear_inode(struct inode *inode)
1097 invalidate_inode_buffers(inode);
1100 ext4_discard_preallocations(inode);
1101 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1102 if (EXT4_I(inode)->jinode) {
1103 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1104 EXT4_I(inode)->jinode);
1105 jbd2_free_inode(EXT4_I(inode)->jinode);
1106 EXT4_I(inode)->jinode = NULL;
1108 fscrypt_put_encryption_info(inode);
1111 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1112 u64 ino, u32 generation)
1114 struct inode *inode;
1116 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1117 return ERR_PTR(-ESTALE);
1118 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1119 return ERR_PTR(-ESTALE);
1121 /* iget isn't really right if the inode is currently unallocated!!
1123 * ext4_read_inode will return a bad_inode if the inode had been
1124 * deleted, so we should be safe.
1126 * Currently we don't know the generation for parent directory, so
1127 * a generation of 0 means "accept any"
1129 inode = ext4_iget_normal(sb, ino);
1131 return ERR_CAST(inode);
1132 if (generation && inode->i_generation != generation) {
1134 return ERR_PTR(-ESTALE);
1140 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1141 int fh_len, int fh_type)
1143 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1144 ext4_nfs_get_inode);
1147 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1148 int fh_len, int fh_type)
1150 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1151 ext4_nfs_get_inode);
1155 * Try to release metadata pages (indirect blocks, directories) which are
1156 * mapped via the block device. Since these pages could have journal heads
1157 * which would prevent try_to_free_buffers() from freeing them, we must use
1158 * jbd2 layer's try_to_free_buffers() function to release them.
1160 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1163 journal_t *journal = EXT4_SB(sb)->s_journal;
1165 WARN_ON(PageChecked(page));
1166 if (!page_has_buffers(page))
1169 return jbd2_journal_try_to_free_buffers(journal, page,
1170 wait & ~__GFP_DIRECT_RECLAIM);
1171 return try_to_free_buffers(page);
1174 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1175 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1177 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1178 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1181 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1184 handle_t *handle = fs_data;
1185 int res, res2, credits, retries = 0;
1188 * Encrypting the root directory is not allowed because e2fsck expects
1189 * lost+found to exist and be unencrypted, and encrypting the root
1190 * directory would imply encrypting the lost+found directory as well as
1191 * the filename "lost+found" itself.
1193 if (inode->i_ino == EXT4_ROOT_INO)
1196 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1199 res = ext4_convert_inline_data(inode);
1204 * If a journal handle was specified, then the encryption context is
1205 * being set on a new inode via inheritance and is part of a larger
1206 * transaction to create the inode. Otherwise the encryption context is
1207 * being set on an existing inode in its own transaction. Only in the
1208 * latter case should the "retry on ENOSPC" logic be used.
1212 res = ext4_xattr_set_handle(handle, inode,
1213 EXT4_XATTR_INDEX_ENCRYPTION,
1214 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1217 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1218 ext4_clear_inode_state(inode,
1219 EXT4_STATE_MAY_INLINE_DATA);
1221 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1222 * S_DAX may be disabled
1224 ext4_set_inode_flags(inode);
1229 res = dquot_initialize(inode);
1233 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1238 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1240 return PTR_ERR(handle);
1242 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1243 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1246 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1248 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1249 * S_DAX may be disabled
1251 ext4_set_inode_flags(inode);
1252 res = ext4_mark_inode_dirty(handle, inode);
1254 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1256 res2 = ext4_journal_stop(handle);
1258 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1265 static bool ext4_dummy_context(struct inode *inode)
1267 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1270 static const struct fscrypt_operations ext4_cryptops = {
1271 .key_prefix = "ext4:",
1272 .get_context = ext4_get_context,
1273 .set_context = ext4_set_context,
1274 .dummy_context = ext4_dummy_context,
1275 .empty_dir = ext4_empty_dir,
1276 .max_namelen = EXT4_NAME_LEN,
1281 static const char * const quotatypes[] = INITQFNAMES;
1282 #define QTYPE2NAME(t) (quotatypes[t])
1284 static int ext4_write_dquot(struct dquot *dquot);
1285 static int ext4_acquire_dquot(struct dquot *dquot);
1286 static int ext4_release_dquot(struct dquot *dquot);
1287 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1288 static int ext4_write_info(struct super_block *sb, int type);
1289 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1290 const struct path *path);
1291 static int ext4_quota_on_mount(struct super_block *sb, int type);
1292 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1293 size_t len, loff_t off);
1294 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1295 const char *data, size_t len, loff_t off);
1296 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1297 unsigned int flags);
1298 static int ext4_enable_quotas(struct super_block *sb);
1299 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1301 static struct dquot **ext4_get_dquots(struct inode *inode)
1303 return EXT4_I(inode)->i_dquot;
1306 static const struct dquot_operations ext4_quota_operations = {
1307 .get_reserved_space = ext4_get_reserved_space,
1308 .write_dquot = ext4_write_dquot,
1309 .acquire_dquot = ext4_acquire_dquot,
1310 .release_dquot = ext4_release_dquot,
1311 .mark_dirty = ext4_mark_dquot_dirty,
1312 .write_info = ext4_write_info,
1313 .alloc_dquot = dquot_alloc,
1314 .destroy_dquot = dquot_destroy,
1315 .get_projid = ext4_get_projid,
1316 .get_inode_usage = ext4_get_inode_usage,
1317 .get_next_id = ext4_get_next_id,
1320 static const struct quotactl_ops ext4_qctl_operations = {
1321 .quota_on = ext4_quota_on,
1322 .quota_off = ext4_quota_off,
1323 .quota_sync = dquot_quota_sync,
1324 .get_state = dquot_get_state,
1325 .set_info = dquot_set_dqinfo,
1326 .get_dqblk = dquot_get_dqblk,
1327 .set_dqblk = dquot_set_dqblk,
1328 .get_nextdqblk = dquot_get_next_dqblk,
1332 static const struct super_operations ext4_sops = {
1333 .alloc_inode = ext4_alloc_inode,
1334 .destroy_inode = ext4_destroy_inode,
1335 .write_inode = ext4_write_inode,
1336 .dirty_inode = ext4_dirty_inode,
1337 .drop_inode = ext4_drop_inode,
1338 .evict_inode = ext4_evict_inode,
1339 .put_super = ext4_put_super,
1340 .sync_fs = ext4_sync_fs,
1341 .freeze_fs = ext4_freeze,
1342 .unfreeze_fs = ext4_unfreeze,
1343 .statfs = ext4_statfs,
1344 .remount_fs = ext4_remount,
1345 .show_options = ext4_show_options,
1347 .quota_read = ext4_quota_read,
1348 .quota_write = ext4_quota_write,
1349 .get_dquots = ext4_get_dquots,
1351 .bdev_try_to_free_page = bdev_try_to_free_page,
1354 static const struct export_operations ext4_export_ops = {
1355 .fh_to_dentry = ext4_fh_to_dentry,
1356 .fh_to_parent = ext4_fh_to_parent,
1357 .get_parent = ext4_get_parent,
1361 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1362 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1363 Opt_nouid32, Opt_debug, Opt_removed,
1364 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1365 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1366 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1367 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1368 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1369 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1370 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1371 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1372 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1373 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1374 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1375 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1376 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1377 Opt_inode_readahead_blks, Opt_journal_ioprio,
1378 Opt_dioread_nolock, Opt_dioread_lock,
1379 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1380 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1383 static const match_table_t tokens = {
1384 {Opt_bsd_df, "bsddf"},
1385 {Opt_minix_df, "minixdf"},
1386 {Opt_grpid, "grpid"},
1387 {Opt_grpid, "bsdgroups"},
1388 {Opt_nogrpid, "nogrpid"},
1389 {Opt_nogrpid, "sysvgroups"},
1390 {Opt_resgid, "resgid=%u"},
1391 {Opt_resuid, "resuid=%u"},
1393 {Opt_err_cont, "errors=continue"},
1394 {Opt_err_panic, "errors=panic"},
1395 {Opt_err_ro, "errors=remount-ro"},
1396 {Opt_nouid32, "nouid32"},
1397 {Opt_debug, "debug"},
1398 {Opt_removed, "oldalloc"},
1399 {Opt_removed, "orlov"},
1400 {Opt_user_xattr, "user_xattr"},
1401 {Opt_nouser_xattr, "nouser_xattr"},
1403 {Opt_noacl, "noacl"},
1404 {Opt_noload, "norecovery"},
1405 {Opt_noload, "noload"},
1406 {Opt_removed, "nobh"},
1407 {Opt_removed, "bh"},
1408 {Opt_commit, "commit=%u"},
1409 {Opt_min_batch_time, "min_batch_time=%u"},
1410 {Opt_max_batch_time, "max_batch_time=%u"},
1411 {Opt_journal_dev, "journal_dev=%u"},
1412 {Opt_journal_path, "journal_path=%s"},
1413 {Opt_journal_checksum, "journal_checksum"},
1414 {Opt_nojournal_checksum, "nojournal_checksum"},
1415 {Opt_journal_async_commit, "journal_async_commit"},
1416 {Opt_abort, "abort"},
1417 {Opt_data_journal, "data=journal"},
1418 {Opt_data_ordered, "data=ordered"},
1419 {Opt_data_writeback, "data=writeback"},
1420 {Opt_data_err_abort, "data_err=abort"},
1421 {Opt_data_err_ignore, "data_err=ignore"},
1422 {Opt_offusrjquota, "usrjquota="},
1423 {Opt_usrjquota, "usrjquota=%s"},
1424 {Opt_offgrpjquota, "grpjquota="},
1425 {Opt_grpjquota, "grpjquota=%s"},
1426 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1427 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1428 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1429 {Opt_grpquota, "grpquota"},
1430 {Opt_noquota, "noquota"},
1431 {Opt_quota, "quota"},
1432 {Opt_usrquota, "usrquota"},
1433 {Opt_prjquota, "prjquota"},
1434 {Opt_barrier, "barrier=%u"},
1435 {Opt_barrier, "barrier"},
1436 {Opt_nobarrier, "nobarrier"},
1437 {Opt_i_version, "i_version"},
1439 {Opt_stripe, "stripe=%u"},
1440 {Opt_delalloc, "delalloc"},
1441 {Opt_lazytime, "lazytime"},
1442 {Opt_nolazytime, "nolazytime"},
1443 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1444 {Opt_nodelalloc, "nodelalloc"},
1445 {Opt_removed, "mblk_io_submit"},
1446 {Opt_removed, "nomblk_io_submit"},
1447 {Opt_block_validity, "block_validity"},
1448 {Opt_noblock_validity, "noblock_validity"},
1449 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1450 {Opt_journal_ioprio, "journal_ioprio=%u"},
1451 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1452 {Opt_auto_da_alloc, "auto_da_alloc"},
1453 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1454 {Opt_dioread_nolock, "dioread_nolock"},
1455 {Opt_dioread_lock, "dioread_lock"},
1456 {Opt_discard, "discard"},
1457 {Opt_nodiscard, "nodiscard"},
1458 {Opt_init_itable, "init_itable=%u"},
1459 {Opt_init_itable, "init_itable"},
1460 {Opt_noinit_itable, "noinit_itable"},
1461 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1462 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1463 {Opt_nombcache, "nombcache"},
1464 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1465 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1466 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1467 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1468 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1469 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1473 static ext4_fsblk_t get_sb_block(void **data)
1475 ext4_fsblk_t sb_block;
1476 char *options = (char *) *data;
1478 if (!options || strncmp(options, "sb=", 3) != 0)
1479 return 1; /* Default location */
1482 /* TODO: use simple_strtoll with >32bit ext4 */
1483 sb_block = simple_strtoul(options, &options, 0);
1484 if (*options && *options != ',') {
1485 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1489 if (*options == ',')
1491 *data = (void *) options;
1496 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1497 static const char deprecated_msg[] =
1498 "Mount option \"%s\" will be removed by %s\n"
1502 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1504 struct ext4_sb_info *sbi = EXT4_SB(sb);
1508 if (sb_any_quota_loaded(sb) &&
1509 !sbi->s_qf_names[qtype]) {
1510 ext4_msg(sb, KERN_ERR,
1511 "Cannot change journaled "
1512 "quota options when quota turned on");
1515 if (ext4_has_feature_quota(sb)) {
1516 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1517 "ignored when QUOTA feature is enabled");
1520 qname = match_strdup(args);
1522 ext4_msg(sb, KERN_ERR,
1523 "Not enough memory for storing quotafile name");
1526 if (sbi->s_qf_names[qtype]) {
1527 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1530 ext4_msg(sb, KERN_ERR,
1531 "%s quota file already specified",
1535 if (strchr(qname, '/')) {
1536 ext4_msg(sb, KERN_ERR,
1537 "quotafile must be on filesystem root");
1540 sbi->s_qf_names[qtype] = qname;
1548 static int clear_qf_name(struct super_block *sb, int qtype)
1551 struct ext4_sb_info *sbi = EXT4_SB(sb);
1553 if (sb_any_quota_loaded(sb) &&
1554 sbi->s_qf_names[qtype]) {
1555 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1556 " when quota turned on");
1559 kfree(sbi->s_qf_names[qtype]);
1560 sbi->s_qf_names[qtype] = NULL;
1565 #define MOPT_SET 0x0001
1566 #define MOPT_CLEAR 0x0002
1567 #define MOPT_NOSUPPORT 0x0004
1568 #define MOPT_EXPLICIT 0x0008
1569 #define MOPT_CLEAR_ERR 0x0010
1570 #define MOPT_GTE0 0x0020
1573 #define MOPT_QFMT 0x0040
1575 #define MOPT_Q MOPT_NOSUPPORT
1576 #define MOPT_QFMT MOPT_NOSUPPORT
1578 #define MOPT_DATAJ 0x0080
1579 #define MOPT_NO_EXT2 0x0100
1580 #define MOPT_NO_EXT3 0x0200
1581 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1582 #define MOPT_STRING 0x0400
1584 static const struct mount_opts {
1588 } ext4_mount_opts[] = {
1589 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1590 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1591 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1592 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1593 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1594 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1595 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1596 MOPT_EXT4_ONLY | MOPT_SET},
1597 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1598 MOPT_EXT4_ONLY | MOPT_CLEAR},
1599 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1600 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1601 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1602 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1603 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1604 MOPT_EXT4_ONLY | MOPT_CLEAR},
1605 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1606 MOPT_EXT4_ONLY | MOPT_CLEAR},
1607 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1608 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1609 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1610 EXT4_MOUNT_JOURNAL_CHECKSUM),
1611 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1612 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1613 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1614 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1615 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1616 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1618 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1620 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1621 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1622 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1623 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1624 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1625 {Opt_commit, 0, MOPT_GTE0},
1626 {Opt_max_batch_time, 0, MOPT_GTE0},
1627 {Opt_min_batch_time, 0, MOPT_GTE0},
1628 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1629 {Opt_init_itable, 0, MOPT_GTE0},
1630 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1631 {Opt_stripe, 0, MOPT_GTE0},
1632 {Opt_resuid, 0, MOPT_GTE0},
1633 {Opt_resgid, 0, MOPT_GTE0},
1634 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1635 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1636 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1637 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1638 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1639 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1640 MOPT_NO_EXT2 | MOPT_DATAJ},
1641 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1642 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1643 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1644 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1645 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1647 {Opt_acl, 0, MOPT_NOSUPPORT},
1648 {Opt_noacl, 0, MOPT_NOSUPPORT},
1650 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1651 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1652 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1653 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1654 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1656 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1658 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1660 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1661 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1662 MOPT_CLEAR | MOPT_Q},
1663 {Opt_usrjquota, 0, MOPT_Q},
1664 {Opt_grpjquota, 0, MOPT_Q},
1665 {Opt_offusrjquota, 0, MOPT_Q},
1666 {Opt_offgrpjquota, 0, MOPT_Q},
1667 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1668 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1669 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1670 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1671 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1672 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1676 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1677 substring_t *args, unsigned long *journal_devnum,
1678 unsigned int *journal_ioprio, int is_remount)
1680 struct ext4_sb_info *sbi = EXT4_SB(sb);
1681 const struct mount_opts *m;
1687 if (token == Opt_usrjquota)
1688 return set_qf_name(sb, USRQUOTA, &args[0]);
1689 else if (token == Opt_grpjquota)
1690 return set_qf_name(sb, GRPQUOTA, &args[0]);
1691 else if (token == Opt_offusrjquota)
1692 return clear_qf_name(sb, USRQUOTA);
1693 else if (token == Opt_offgrpjquota)
1694 return clear_qf_name(sb, GRPQUOTA);
1698 case Opt_nouser_xattr:
1699 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1702 return 1; /* handled by get_sb_block() */
1704 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1707 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1710 sb->s_flags |= SB_I_VERSION;
1713 sb->s_flags |= SB_LAZYTIME;
1715 case Opt_nolazytime:
1716 sb->s_flags &= ~SB_LAZYTIME;
1720 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1721 if (token == m->token)
1724 if (m->token == Opt_err) {
1725 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1726 "or missing value", opt);
1730 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1731 ext4_msg(sb, KERN_ERR,
1732 "Mount option \"%s\" incompatible with ext2", opt);
1735 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1736 ext4_msg(sb, KERN_ERR,
1737 "Mount option \"%s\" incompatible with ext3", opt);
1741 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1743 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1745 if (m->flags & MOPT_EXPLICIT) {
1746 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1747 set_opt2(sb, EXPLICIT_DELALLOC);
1748 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1749 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1753 if (m->flags & MOPT_CLEAR_ERR)
1754 clear_opt(sb, ERRORS_MASK);
1755 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1756 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1757 "options when quota turned on");
1761 if (m->flags & MOPT_NOSUPPORT) {
1762 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1763 } else if (token == Opt_commit) {
1765 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1766 sbi->s_commit_interval = HZ * arg;
1767 } else if (token == Opt_debug_want_extra_isize) {
1768 sbi->s_want_extra_isize = arg;
1769 } else if (token == Opt_max_batch_time) {
1770 sbi->s_max_batch_time = arg;
1771 } else if (token == Opt_min_batch_time) {
1772 sbi->s_min_batch_time = arg;
1773 } else if (token == Opt_inode_readahead_blks) {
1774 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1775 ext4_msg(sb, KERN_ERR,
1776 "EXT4-fs: inode_readahead_blks must be "
1777 "0 or a power of 2 smaller than 2^31");
1780 sbi->s_inode_readahead_blks = arg;
1781 } else if (token == Opt_init_itable) {
1782 set_opt(sb, INIT_INODE_TABLE);
1784 arg = EXT4_DEF_LI_WAIT_MULT;
1785 sbi->s_li_wait_mult = arg;
1786 } else if (token == Opt_max_dir_size_kb) {
1787 sbi->s_max_dir_size_kb = arg;
1788 } else if (token == Opt_stripe) {
1789 sbi->s_stripe = arg;
1790 } else if (token == Opt_resuid) {
1791 uid = make_kuid(current_user_ns(), arg);
1792 if (!uid_valid(uid)) {
1793 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1796 sbi->s_resuid = uid;
1797 } else if (token == Opt_resgid) {
1798 gid = make_kgid(current_user_ns(), arg);
1799 if (!gid_valid(gid)) {
1800 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1803 sbi->s_resgid = gid;
1804 } else if (token == Opt_journal_dev) {
1806 ext4_msg(sb, KERN_ERR,
1807 "Cannot specify journal on remount");
1810 *journal_devnum = arg;
1811 } else if (token == Opt_journal_path) {
1813 struct inode *journal_inode;
1818 ext4_msg(sb, KERN_ERR,
1819 "Cannot specify journal on remount");
1822 journal_path = match_strdup(&args[0]);
1823 if (!journal_path) {
1824 ext4_msg(sb, KERN_ERR, "error: could not dup "
1825 "journal device string");
1829 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1831 ext4_msg(sb, KERN_ERR, "error: could not find "
1832 "journal device path: error %d", error);
1833 kfree(journal_path);
1837 journal_inode = d_inode(path.dentry);
1838 if (!S_ISBLK(journal_inode->i_mode)) {
1839 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1840 "is not a block device", journal_path);
1842 kfree(journal_path);
1846 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1848 kfree(journal_path);
1849 } else if (token == Opt_journal_ioprio) {
1851 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1856 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1857 } else if (token == Opt_test_dummy_encryption) {
1858 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1859 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1860 ext4_msg(sb, KERN_WARNING,
1861 "Test dummy encryption mode enabled");
1863 ext4_msg(sb, KERN_WARNING,
1864 "Test dummy encryption mount option ignored");
1866 } else if (m->flags & MOPT_DATAJ) {
1868 if (!sbi->s_journal)
1869 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1870 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1871 ext4_msg(sb, KERN_ERR,
1872 "Cannot change data mode on remount");
1876 clear_opt(sb, DATA_FLAGS);
1877 sbi->s_mount_opt |= m->mount_opt;
1880 } else if (m->flags & MOPT_QFMT) {
1881 if (sb_any_quota_loaded(sb) &&
1882 sbi->s_jquota_fmt != m->mount_opt) {
1883 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1884 "quota options when quota turned on");
1887 if (ext4_has_feature_quota(sb)) {
1888 ext4_msg(sb, KERN_INFO,
1889 "Quota format mount options ignored "
1890 "when QUOTA feature is enabled");
1893 sbi->s_jquota_fmt = m->mount_opt;
1895 } else if (token == Opt_dax) {
1896 #ifdef CONFIG_FS_DAX
1897 ext4_msg(sb, KERN_WARNING,
1898 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1899 sbi->s_mount_opt |= m->mount_opt;
1901 ext4_msg(sb, KERN_INFO, "dax option not supported");
1904 } else if (token == Opt_data_err_abort) {
1905 sbi->s_mount_opt |= m->mount_opt;
1906 } else if (token == Opt_data_err_ignore) {
1907 sbi->s_mount_opt &= ~m->mount_opt;
1911 if (m->flags & MOPT_CLEAR)
1913 else if (unlikely(!(m->flags & MOPT_SET))) {
1914 ext4_msg(sb, KERN_WARNING,
1915 "buggy handling of option %s", opt);
1920 sbi->s_mount_opt |= m->mount_opt;
1922 sbi->s_mount_opt &= ~m->mount_opt;
1927 static int parse_options(char *options, struct super_block *sb,
1928 unsigned long *journal_devnum,
1929 unsigned int *journal_ioprio,
1932 struct ext4_sb_info *sbi = EXT4_SB(sb);
1934 substring_t args[MAX_OPT_ARGS];
1940 while ((p = strsep(&options, ",")) != NULL) {
1944 * Initialize args struct so we know whether arg was
1945 * found; some options take optional arguments.
1947 args[0].to = args[0].from = NULL;
1948 token = match_token(p, tokens, args);
1949 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1950 journal_ioprio, is_remount) < 0)
1955 * We do the test below only for project quotas. 'usrquota' and
1956 * 'grpquota' mount options are allowed even without quota feature
1957 * to support legacy quotas in quota files.
1959 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1960 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1961 "Cannot enable project quota enforcement.");
1964 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1965 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1966 clear_opt(sb, USRQUOTA);
1968 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1969 clear_opt(sb, GRPQUOTA);
1971 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1972 ext4_msg(sb, KERN_ERR, "old and new quota "
1977 if (!sbi->s_jquota_fmt) {
1978 ext4_msg(sb, KERN_ERR, "journaled quota format "
1984 if (test_opt(sb, DIOREAD_NOLOCK)) {
1986 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1988 if (blocksize < PAGE_SIZE) {
1989 ext4_msg(sb, KERN_ERR, "can't mount with "
1990 "dioread_nolock if block size != PAGE_SIZE");
1997 static inline void ext4_show_quota_options(struct seq_file *seq,
1998 struct super_block *sb)
2000 #if defined(CONFIG_QUOTA)
2001 struct ext4_sb_info *sbi = EXT4_SB(sb);
2003 if (sbi->s_jquota_fmt) {
2006 switch (sbi->s_jquota_fmt) {
2017 seq_printf(seq, ",jqfmt=%s", fmtname);
2020 if (sbi->s_qf_names[USRQUOTA])
2021 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
2023 if (sbi->s_qf_names[GRPQUOTA])
2024 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
2028 static const char *token2str(int token)
2030 const struct match_token *t;
2032 for (t = tokens; t->token != Opt_err; t++)
2033 if (t->token == token && !strchr(t->pattern, '='))
2040 * - it's set to a non-default value OR
2041 * - if the per-sb default is different from the global default
2043 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2046 struct ext4_sb_info *sbi = EXT4_SB(sb);
2047 struct ext4_super_block *es = sbi->s_es;
2048 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2049 const struct mount_opts *m;
2050 char sep = nodefs ? '\n' : ',';
2052 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2053 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2055 if (sbi->s_sb_block != 1)
2056 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2058 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2059 int want_set = m->flags & MOPT_SET;
2060 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2061 (m->flags & MOPT_CLEAR_ERR))
2063 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2064 continue; /* skip if same as the default */
2066 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2067 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2068 continue; /* select Opt_noFoo vs Opt_Foo */
2069 SEQ_OPTS_PRINT("%s", token2str(m->token));
2072 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2073 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2074 SEQ_OPTS_PRINT("resuid=%u",
2075 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2076 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2077 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2078 SEQ_OPTS_PRINT("resgid=%u",
2079 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2080 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2081 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2082 SEQ_OPTS_PUTS("errors=remount-ro");
2083 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2084 SEQ_OPTS_PUTS("errors=continue");
2085 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2086 SEQ_OPTS_PUTS("errors=panic");
2087 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2088 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2089 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2090 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2091 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2092 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2093 if (sb->s_flags & SB_I_VERSION)
2094 SEQ_OPTS_PUTS("i_version");
2095 if (nodefs || sbi->s_stripe)
2096 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2097 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2098 (sbi->s_mount_opt ^ def_mount_opt)) {
2099 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2100 SEQ_OPTS_PUTS("data=journal");
2101 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2102 SEQ_OPTS_PUTS("data=ordered");
2103 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2104 SEQ_OPTS_PUTS("data=writeback");
2107 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2108 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2109 sbi->s_inode_readahead_blks);
2111 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2112 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2113 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2114 if (nodefs || sbi->s_max_dir_size_kb)
2115 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2116 if (test_opt(sb, DATA_ERR_ABORT))
2117 SEQ_OPTS_PUTS("data_err=abort");
2119 ext4_show_quota_options(seq, sb);
2123 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2125 return _ext4_show_options(seq, root->d_sb, 0);
2128 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2130 struct super_block *sb = seq->private;
2133 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2134 rc = _ext4_show_options(seq, sb, 1);
2135 seq_puts(seq, "\n");
2139 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2142 struct ext4_sb_info *sbi = EXT4_SB(sb);
2145 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2146 ext4_msg(sb, KERN_ERR, "revision level too high, "
2147 "forcing read-only mode");
2152 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2153 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2154 "running e2fsck is recommended");
2155 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2156 ext4_msg(sb, KERN_WARNING,
2157 "warning: mounting fs with errors, "
2158 "running e2fsck is recommended");
2159 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2160 le16_to_cpu(es->s_mnt_count) >=
2161 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2162 ext4_msg(sb, KERN_WARNING,
2163 "warning: maximal mount count reached, "
2164 "running e2fsck is recommended");
2165 else if (le32_to_cpu(es->s_checkinterval) &&
2166 (le32_to_cpu(es->s_lastcheck) +
2167 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2168 ext4_msg(sb, KERN_WARNING,
2169 "warning: checktime reached, "
2170 "running e2fsck is recommended");
2171 if (!sbi->s_journal)
2172 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2173 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2174 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2175 le16_add_cpu(&es->s_mnt_count, 1);
2176 es->s_mtime = cpu_to_le32(get_seconds());
2177 ext4_update_dynamic_rev(sb);
2179 ext4_set_feature_journal_needs_recovery(sb);
2181 err = ext4_commit_super(sb, 1);
2183 if (test_opt(sb, DEBUG))
2184 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2185 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2187 sbi->s_groups_count,
2188 EXT4_BLOCKS_PER_GROUP(sb),
2189 EXT4_INODES_PER_GROUP(sb),
2190 sbi->s_mount_opt, sbi->s_mount_opt2);
2192 cleancache_init_fs(sb);
2196 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2198 struct ext4_sb_info *sbi = EXT4_SB(sb);
2199 struct flex_groups *new_groups;
2202 if (!sbi->s_log_groups_per_flex)
2205 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2206 if (size <= sbi->s_flex_groups_allocated)
2209 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2210 new_groups = kvzalloc(size, GFP_KERNEL);
2212 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2213 size / (int) sizeof(struct flex_groups));
2217 if (sbi->s_flex_groups) {
2218 memcpy(new_groups, sbi->s_flex_groups,
2219 (sbi->s_flex_groups_allocated *
2220 sizeof(struct flex_groups)));
2221 kvfree(sbi->s_flex_groups);
2223 sbi->s_flex_groups = new_groups;
2224 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2228 static int ext4_fill_flex_info(struct super_block *sb)
2230 struct ext4_sb_info *sbi = EXT4_SB(sb);
2231 struct ext4_group_desc *gdp = NULL;
2232 ext4_group_t flex_group;
2235 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2236 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2237 sbi->s_log_groups_per_flex = 0;
2241 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2245 for (i = 0; i < sbi->s_groups_count; i++) {
2246 gdp = ext4_get_group_desc(sb, i, NULL);
2248 flex_group = ext4_flex_group(sbi, i);
2249 atomic_add(ext4_free_inodes_count(sb, gdp),
2250 &sbi->s_flex_groups[flex_group].free_inodes);
2251 atomic64_add(ext4_free_group_clusters(sb, gdp),
2252 &sbi->s_flex_groups[flex_group].free_clusters);
2253 atomic_add(ext4_used_dirs_count(sb, gdp),
2254 &sbi->s_flex_groups[flex_group].used_dirs);
2262 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2263 struct ext4_group_desc *gdp)
2265 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2267 __le32 le_group = cpu_to_le32(block_group);
2268 struct ext4_sb_info *sbi = EXT4_SB(sb);
2270 if (ext4_has_metadata_csum(sbi->s_sb)) {
2271 /* Use new metadata_csum algorithm */
2273 __u16 dummy_csum = 0;
2275 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2277 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2278 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2279 sizeof(dummy_csum));
2280 offset += sizeof(dummy_csum);
2281 if (offset < sbi->s_desc_size)
2282 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2283 sbi->s_desc_size - offset);
2285 crc = csum32 & 0xFFFF;
2289 /* old crc16 code */
2290 if (!ext4_has_feature_gdt_csum(sb))
2293 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2294 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2295 crc = crc16(crc, (__u8 *)gdp, offset);
2296 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2297 /* for checksum of struct ext4_group_desc do the rest...*/
2298 if (ext4_has_feature_64bit(sb) &&
2299 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2300 crc = crc16(crc, (__u8 *)gdp + offset,
2301 le16_to_cpu(sbi->s_es->s_desc_size) -
2305 return cpu_to_le16(crc);
2308 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2309 struct ext4_group_desc *gdp)
2311 if (ext4_has_group_desc_csum(sb) &&
2312 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2318 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2319 struct ext4_group_desc *gdp)
2321 if (!ext4_has_group_desc_csum(sb))
2323 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2326 /* Called at mount-time, super-block is locked */
2327 static int ext4_check_descriptors(struct super_block *sb,
2328 ext4_fsblk_t sb_block,
2329 ext4_group_t *first_not_zeroed)
2331 struct ext4_sb_info *sbi = EXT4_SB(sb);
2332 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2333 ext4_fsblk_t last_block;
2334 ext4_fsblk_t block_bitmap;
2335 ext4_fsblk_t inode_bitmap;
2336 ext4_fsblk_t inode_table;
2337 int flexbg_flag = 0;
2338 ext4_group_t i, grp = sbi->s_groups_count;
2340 if (ext4_has_feature_flex_bg(sb))
2343 ext4_debug("Checking group descriptors");
2345 for (i = 0; i < sbi->s_groups_count; i++) {
2346 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2348 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2349 last_block = ext4_blocks_count(sbi->s_es) - 1;
2351 last_block = first_block +
2352 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2354 if ((grp == sbi->s_groups_count) &&
2355 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2358 block_bitmap = ext4_block_bitmap(sb, gdp);
2359 if (block_bitmap == sb_block) {
2360 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2361 "Block bitmap for group %u overlaps "
2366 if (block_bitmap < first_block || block_bitmap > last_block) {
2367 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2368 "Block bitmap for group %u not in group "
2369 "(block %llu)!", i, block_bitmap);
2372 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2373 if (inode_bitmap == sb_block) {
2374 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2375 "Inode bitmap for group %u overlaps "
2380 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2381 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2382 "Inode bitmap for group %u not in group "
2383 "(block %llu)!", i, inode_bitmap);
2386 inode_table = ext4_inode_table(sb, gdp);
2387 if (inode_table == sb_block) {
2388 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2389 "Inode table for group %u overlaps "
2394 if (inode_table < first_block ||
2395 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2396 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2397 "Inode table for group %u not in group "
2398 "(block %llu)!", i, inode_table);
2401 ext4_lock_group(sb, i);
2402 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2403 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2404 "Checksum for group %u failed (%u!=%u)",
2405 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2406 gdp)), le16_to_cpu(gdp->bg_checksum));
2407 if (!sb_rdonly(sb)) {
2408 ext4_unlock_group(sb, i);
2412 ext4_unlock_group(sb, i);
2414 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2416 if (NULL != first_not_zeroed)
2417 *first_not_zeroed = grp;
2421 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2422 * the superblock) which were deleted from all directories, but held open by
2423 * a process at the time of a crash. We walk the list and try to delete these
2424 * inodes at recovery time (only with a read-write filesystem).
2426 * In order to keep the orphan inode chain consistent during traversal (in
2427 * case of crash during recovery), we link each inode into the superblock
2428 * orphan list_head and handle it the same way as an inode deletion during
2429 * normal operation (which journals the operations for us).
2431 * We only do an iget() and an iput() on each inode, which is very safe if we
2432 * accidentally point at an in-use or already deleted inode. The worst that
2433 * can happen in this case is that we get a "bit already cleared" message from
2434 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2435 * e2fsck was run on this filesystem, and it must have already done the orphan
2436 * inode cleanup for us, so we can safely abort without any further action.
2438 static void ext4_orphan_cleanup(struct super_block *sb,
2439 struct ext4_super_block *es)
2441 unsigned int s_flags = sb->s_flags;
2442 int ret, nr_orphans = 0, nr_truncates = 0;
2444 int quota_update = 0;
2447 if (!es->s_last_orphan) {
2448 jbd_debug(4, "no orphan inodes to clean up\n");
2452 if (bdev_read_only(sb->s_bdev)) {
2453 ext4_msg(sb, KERN_ERR, "write access "
2454 "unavailable, skipping orphan cleanup");
2458 /* Check if feature set would not allow a r/w mount */
2459 if (!ext4_feature_set_ok(sb, 0)) {
2460 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2461 "unknown ROCOMPAT features");
2465 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2466 /* don't clear list on RO mount w/ errors */
2467 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2468 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2469 "clearing orphan list.\n");
2470 es->s_last_orphan = 0;
2472 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2476 if (s_flags & SB_RDONLY) {
2477 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2478 sb->s_flags &= ~SB_RDONLY;
2481 /* Needed for iput() to work correctly and not trash data */
2482 sb->s_flags |= SB_ACTIVE;
2485 * Turn on quotas which were not enabled for read-only mounts if
2486 * filesystem has quota feature, so that they are updated correctly.
2488 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2489 int ret = ext4_enable_quotas(sb);
2494 ext4_msg(sb, KERN_ERR,
2495 "Cannot turn on quotas: error %d", ret);
2498 /* Turn on journaled quotas used for old sytle */
2499 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2500 if (EXT4_SB(sb)->s_qf_names[i]) {
2501 int ret = ext4_quota_on_mount(sb, i);
2506 ext4_msg(sb, KERN_ERR,
2507 "Cannot turn on journaled "
2508 "quota: type %d: error %d", i, ret);
2513 while (es->s_last_orphan) {
2514 struct inode *inode;
2517 * We may have encountered an error during cleanup; if
2518 * so, skip the rest.
2520 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2521 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2522 es->s_last_orphan = 0;
2526 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2527 if (IS_ERR(inode)) {
2528 es->s_last_orphan = 0;
2532 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2533 dquot_initialize(inode);
2534 if (inode->i_nlink) {
2535 if (test_opt(sb, DEBUG))
2536 ext4_msg(sb, KERN_DEBUG,
2537 "%s: truncating inode %lu to %lld bytes",
2538 __func__, inode->i_ino, inode->i_size);
2539 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2540 inode->i_ino, inode->i_size);
2542 truncate_inode_pages(inode->i_mapping, inode->i_size);
2543 ret = ext4_truncate(inode);
2545 ext4_std_error(inode->i_sb, ret);
2546 inode_unlock(inode);
2549 if (test_opt(sb, DEBUG))
2550 ext4_msg(sb, KERN_DEBUG,
2551 "%s: deleting unreferenced inode %lu",
2552 __func__, inode->i_ino);
2553 jbd_debug(2, "deleting unreferenced inode %lu\n",
2557 iput(inode); /* The delete magic happens here! */
2560 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2563 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2564 PLURAL(nr_orphans));
2566 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2567 PLURAL(nr_truncates));
2569 /* Turn off quotas if they were enabled for orphan cleanup */
2571 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2572 if (sb_dqopt(sb)->files[i])
2573 dquot_quota_off(sb, i);
2577 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2581 * Maximal extent format file size.
2582 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2583 * extent format containers, within a sector_t, and within i_blocks
2584 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2585 * so that won't be a limiting factor.
2587 * However there is other limiting factor. We do store extents in the form
2588 * of starting block and length, hence the resulting length of the extent
2589 * covering maximum file size must fit into on-disk format containers as
2590 * well. Given that length is always by 1 unit bigger than max unit (because
2591 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2593 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2595 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2598 loff_t upper_limit = MAX_LFS_FILESIZE;
2600 /* small i_blocks in vfs inode? */
2601 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2603 * CONFIG_LBDAF is not enabled implies the inode
2604 * i_block represent total blocks in 512 bytes
2605 * 32 == size of vfs inode i_blocks * 8
2607 upper_limit = (1LL << 32) - 1;
2609 /* total blocks in file system block size */
2610 upper_limit >>= (blkbits - 9);
2611 upper_limit <<= blkbits;
2615 * 32-bit extent-start container, ee_block. We lower the maxbytes
2616 * by one fs block, so ee_len can cover the extent of maximum file
2619 res = (1LL << 32) - 1;
2622 /* Sanity check against vm- & vfs- imposed limits */
2623 if (res > upper_limit)
2630 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2631 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2632 * We need to be 1 filesystem block less than the 2^48 sector limit.
2634 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2636 loff_t res = EXT4_NDIR_BLOCKS;
2639 /* This is calculated to be the largest file size for a dense, block
2640 * mapped file such that the file's total number of 512-byte sectors,
2641 * including data and all indirect blocks, does not exceed (2^48 - 1).
2643 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2644 * number of 512-byte sectors of the file.
2647 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2649 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2650 * the inode i_block field represents total file blocks in
2651 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2653 upper_limit = (1LL << 32) - 1;
2655 /* total blocks in file system block size */
2656 upper_limit >>= (bits - 9);
2660 * We use 48 bit ext4_inode i_blocks
2661 * With EXT4_HUGE_FILE_FL set the i_blocks
2662 * represent total number of blocks in
2663 * file system block size
2665 upper_limit = (1LL << 48) - 1;
2669 /* indirect blocks */
2671 /* double indirect blocks */
2672 meta_blocks += 1 + (1LL << (bits-2));
2673 /* tripple indirect blocks */
2674 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2676 upper_limit -= meta_blocks;
2677 upper_limit <<= bits;
2679 res += 1LL << (bits-2);
2680 res += 1LL << (2*(bits-2));
2681 res += 1LL << (3*(bits-2));
2683 if (res > upper_limit)
2686 if (res > MAX_LFS_FILESIZE)
2687 res = MAX_LFS_FILESIZE;
2692 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2693 ext4_fsblk_t logical_sb_block, int nr)
2695 struct ext4_sb_info *sbi = EXT4_SB(sb);
2696 ext4_group_t bg, first_meta_bg;
2699 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2701 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2702 return logical_sb_block + nr + 1;
2703 bg = sbi->s_desc_per_block * nr;
2704 if (ext4_bg_has_super(sb, bg))
2708 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2709 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2710 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2713 if (sb->s_blocksize == 1024 && nr == 0 &&
2714 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2717 return (has_super + ext4_group_first_block_no(sb, bg));
2721 * ext4_get_stripe_size: Get the stripe size.
2722 * @sbi: In memory super block info
2724 * If we have specified it via mount option, then
2725 * use the mount option value. If the value specified at mount time is
2726 * greater than the blocks per group use the super block value.
2727 * If the super block value is greater than blocks per group return 0.
2728 * Allocator needs it be less than blocks per group.
2731 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2733 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2734 unsigned long stripe_width =
2735 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2738 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2739 ret = sbi->s_stripe;
2740 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2742 else if (stride && stride <= sbi->s_blocks_per_group)
2748 * If the stripe width is 1, this makes no sense and
2749 * we set it to 0 to turn off stripe handling code.
2758 * Check whether this filesystem can be mounted based on
2759 * the features present and the RDONLY/RDWR mount requested.
2760 * Returns 1 if this filesystem can be mounted as requested,
2761 * 0 if it cannot be.
2763 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2765 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2766 ext4_msg(sb, KERN_ERR,
2767 "Couldn't mount because of "
2768 "unsupported optional features (%x)",
2769 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2770 ~EXT4_FEATURE_INCOMPAT_SUPP));
2777 if (ext4_has_feature_readonly(sb)) {
2778 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2779 sb->s_flags |= SB_RDONLY;
2783 /* Check that feature set is OK for a read-write mount */
2784 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2785 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2786 "unsupported optional features (%x)",
2787 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2788 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2792 * Large file size enabled file system can only be mounted
2793 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2795 if (ext4_has_feature_huge_file(sb)) {
2796 if (sizeof(blkcnt_t) < sizeof(u64)) {
2797 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2798 "cannot be mounted RDWR without "
2803 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2804 ext4_msg(sb, KERN_ERR,
2805 "Can't support bigalloc feature without "
2806 "extents feature\n");
2810 #ifndef CONFIG_QUOTA
2811 if (ext4_has_feature_quota(sb) && !readonly) {
2812 ext4_msg(sb, KERN_ERR,
2813 "Filesystem with quota feature cannot be mounted RDWR "
2814 "without CONFIG_QUOTA");
2817 if (ext4_has_feature_project(sb) && !readonly) {
2818 ext4_msg(sb, KERN_ERR,
2819 "Filesystem with project quota feature cannot be mounted RDWR "
2820 "without CONFIG_QUOTA");
2823 #endif /* CONFIG_QUOTA */
2828 * This function is called once a day if we have errors logged
2829 * on the file system
2831 static void print_daily_error_info(struct timer_list *t)
2833 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2834 struct super_block *sb = sbi->s_sb;
2835 struct ext4_super_block *es = sbi->s_es;
2837 if (es->s_error_count)
2838 /* fsck newer than v1.41.13 is needed to clean this condition. */
2839 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2840 le32_to_cpu(es->s_error_count));
2841 if (es->s_first_error_time) {
2842 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2843 sb->s_id, le32_to_cpu(es->s_first_error_time),
2844 (int) sizeof(es->s_first_error_func),
2845 es->s_first_error_func,
2846 le32_to_cpu(es->s_first_error_line));
2847 if (es->s_first_error_ino)
2848 printk(KERN_CONT ": inode %u",
2849 le32_to_cpu(es->s_first_error_ino));
2850 if (es->s_first_error_block)
2851 printk(KERN_CONT ": block %llu", (unsigned long long)
2852 le64_to_cpu(es->s_first_error_block));
2853 printk(KERN_CONT "\n");
2855 if (es->s_last_error_time) {
2856 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2857 sb->s_id, le32_to_cpu(es->s_last_error_time),
2858 (int) sizeof(es->s_last_error_func),
2859 es->s_last_error_func,
2860 le32_to_cpu(es->s_last_error_line));
2861 if (es->s_last_error_ino)
2862 printk(KERN_CONT ": inode %u",
2863 le32_to_cpu(es->s_last_error_ino));
2864 if (es->s_last_error_block)
2865 printk(KERN_CONT ": block %llu", (unsigned long long)
2866 le64_to_cpu(es->s_last_error_block));
2867 printk(KERN_CONT "\n");
2869 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2872 /* Find next suitable group and run ext4_init_inode_table */
2873 static int ext4_run_li_request(struct ext4_li_request *elr)
2875 struct ext4_group_desc *gdp = NULL;
2876 ext4_group_t group, ngroups;
2877 struct super_block *sb;
2878 unsigned long timeout = 0;
2882 ngroups = EXT4_SB(sb)->s_groups_count;
2884 for (group = elr->lr_next_group; group < ngroups; group++) {
2885 gdp = ext4_get_group_desc(sb, group, NULL);
2891 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2895 if (group >= ngroups)
2900 ret = ext4_init_inode_table(sb, group,
2901 elr->lr_timeout ? 0 : 1);
2902 if (elr->lr_timeout == 0) {
2903 timeout = (jiffies - timeout) *
2904 elr->lr_sbi->s_li_wait_mult;
2905 elr->lr_timeout = timeout;
2907 elr->lr_next_sched = jiffies + elr->lr_timeout;
2908 elr->lr_next_group = group + 1;
2914 * Remove lr_request from the list_request and free the
2915 * request structure. Should be called with li_list_mtx held
2917 static void ext4_remove_li_request(struct ext4_li_request *elr)
2919 struct ext4_sb_info *sbi;
2926 list_del(&elr->lr_request);
2927 sbi->s_li_request = NULL;
2931 static void ext4_unregister_li_request(struct super_block *sb)
2933 mutex_lock(&ext4_li_mtx);
2934 if (!ext4_li_info) {
2935 mutex_unlock(&ext4_li_mtx);
2939 mutex_lock(&ext4_li_info->li_list_mtx);
2940 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2941 mutex_unlock(&ext4_li_info->li_list_mtx);
2942 mutex_unlock(&ext4_li_mtx);
2945 static struct task_struct *ext4_lazyinit_task;
2948 * This is the function where ext4lazyinit thread lives. It walks
2949 * through the request list searching for next scheduled filesystem.
2950 * When such a fs is found, run the lazy initialization request
2951 * (ext4_rn_li_request) and keep track of the time spend in this
2952 * function. Based on that time we compute next schedule time of
2953 * the request. When walking through the list is complete, compute
2954 * next waking time and put itself into sleep.
2956 static int ext4_lazyinit_thread(void *arg)
2958 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2959 struct list_head *pos, *n;
2960 struct ext4_li_request *elr;
2961 unsigned long next_wakeup, cur;
2963 BUG_ON(NULL == eli);
2967 next_wakeup = MAX_JIFFY_OFFSET;
2969 mutex_lock(&eli->li_list_mtx);
2970 if (list_empty(&eli->li_request_list)) {
2971 mutex_unlock(&eli->li_list_mtx);
2974 list_for_each_safe(pos, n, &eli->li_request_list) {
2977 elr = list_entry(pos, struct ext4_li_request,
2980 if (time_before(jiffies, elr->lr_next_sched)) {
2981 if (time_before(elr->lr_next_sched, next_wakeup))
2982 next_wakeup = elr->lr_next_sched;
2985 if (down_read_trylock(&elr->lr_super->s_umount)) {
2986 if (sb_start_write_trylock(elr->lr_super)) {
2989 * We hold sb->s_umount, sb can not
2990 * be removed from the list, it is
2991 * now safe to drop li_list_mtx
2993 mutex_unlock(&eli->li_list_mtx);
2994 err = ext4_run_li_request(elr);
2995 sb_end_write(elr->lr_super);
2996 mutex_lock(&eli->li_list_mtx);
2999 up_read((&elr->lr_super->s_umount));
3001 /* error, remove the lazy_init job */
3003 ext4_remove_li_request(elr);
3007 elr->lr_next_sched = jiffies +
3009 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3011 if (time_before(elr->lr_next_sched, next_wakeup))
3012 next_wakeup = elr->lr_next_sched;
3014 mutex_unlock(&eli->li_list_mtx);
3019 if ((time_after_eq(cur, next_wakeup)) ||
3020 (MAX_JIFFY_OFFSET == next_wakeup)) {
3025 schedule_timeout_interruptible(next_wakeup - cur);
3027 if (kthread_should_stop()) {
3028 ext4_clear_request_list();
3035 * It looks like the request list is empty, but we need
3036 * to check it under the li_list_mtx lock, to prevent any
3037 * additions into it, and of course we should lock ext4_li_mtx
3038 * to atomically free the list and ext4_li_info, because at
3039 * this point another ext4 filesystem could be registering
3042 mutex_lock(&ext4_li_mtx);
3043 mutex_lock(&eli->li_list_mtx);
3044 if (!list_empty(&eli->li_request_list)) {
3045 mutex_unlock(&eli->li_list_mtx);
3046 mutex_unlock(&ext4_li_mtx);
3049 mutex_unlock(&eli->li_list_mtx);
3050 kfree(ext4_li_info);
3051 ext4_li_info = NULL;
3052 mutex_unlock(&ext4_li_mtx);
3057 static void ext4_clear_request_list(void)
3059 struct list_head *pos, *n;
3060 struct ext4_li_request *elr;
3062 mutex_lock(&ext4_li_info->li_list_mtx);
3063 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3064 elr = list_entry(pos, struct ext4_li_request,
3066 ext4_remove_li_request(elr);
3068 mutex_unlock(&ext4_li_info->li_list_mtx);
3071 static int ext4_run_lazyinit_thread(void)
3073 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3074 ext4_li_info, "ext4lazyinit");
3075 if (IS_ERR(ext4_lazyinit_task)) {
3076 int err = PTR_ERR(ext4_lazyinit_task);
3077 ext4_clear_request_list();
3078 kfree(ext4_li_info);
3079 ext4_li_info = NULL;
3080 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3081 "initialization thread\n",
3085 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3090 * Check whether it make sense to run itable init. thread or not.
3091 * If there is at least one uninitialized inode table, return
3092 * corresponding group number, else the loop goes through all
3093 * groups and return total number of groups.
3095 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3097 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3098 struct ext4_group_desc *gdp = NULL;
3100 for (group = 0; group < ngroups; group++) {
3101 gdp = ext4_get_group_desc(sb, group, NULL);
3105 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3112 static int ext4_li_info_new(void)
3114 struct ext4_lazy_init *eli = NULL;
3116 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3120 INIT_LIST_HEAD(&eli->li_request_list);
3121 mutex_init(&eli->li_list_mtx);
3123 eli->li_state |= EXT4_LAZYINIT_QUIT;
3130 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3133 struct ext4_sb_info *sbi = EXT4_SB(sb);
3134 struct ext4_li_request *elr;
3136 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3142 elr->lr_next_group = start;
3145 * Randomize first schedule time of the request to
3146 * spread the inode table initialization requests
3149 elr->lr_next_sched = jiffies + (prandom_u32() %
3150 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3154 int ext4_register_li_request(struct super_block *sb,
3155 ext4_group_t first_not_zeroed)
3157 struct ext4_sb_info *sbi = EXT4_SB(sb);
3158 struct ext4_li_request *elr = NULL;
3159 ext4_group_t ngroups = sbi->s_groups_count;
3162 mutex_lock(&ext4_li_mtx);
3163 if (sbi->s_li_request != NULL) {
3165 * Reset timeout so it can be computed again, because
3166 * s_li_wait_mult might have changed.
3168 sbi->s_li_request->lr_timeout = 0;
3172 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3173 !test_opt(sb, INIT_INODE_TABLE))
3176 elr = ext4_li_request_new(sb, first_not_zeroed);
3182 if (NULL == ext4_li_info) {
3183 ret = ext4_li_info_new();
3188 mutex_lock(&ext4_li_info->li_list_mtx);
3189 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3190 mutex_unlock(&ext4_li_info->li_list_mtx);
3192 sbi->s_li_request = elr;
3194 * set elr to NULL here since it has been inserted to
3195 * the request_list and the removal and free of it is
3196 * handled by ext4_clear_request_list from now on.
3200 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3201 ret = ext4_run_lazyinit_thread();
3206 mutex_unlock(&ext4_li_mtx);
3213 * We do not need to lock anything since this is called on
3216 static void ext4_destroy_lazyinit_thread(void)
3219 * If thread exited earlier
3220 * there's nothing to be done.
3222 if (!ext4_li_info || !ext4_lazyinit_task)
3225 kthread_stop(ext4_lazyinit_task);
3228 static int set_journal_csum_feature_set(struct super_block *sb)
3231 int compat, incompat;
3232 struct ext4_sb_info *sbi = EXT4_SB(sb);
3234 if (ext4_has_metadata_csum(sb)) {
3235 /* journal checksum v3 */
3237 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3239 /* journal checksum v1 */
3240 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3244 jbd2_journal_clear_features(sbi->s_journal,
3245 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3246 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3247 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3248 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3249 ret = jbd2_journal_set_features(sbi->s_journal,
3251 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3253 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3254 ret = jbd2_journal_set_features(sbi->s_journal,
3257 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3258 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3260 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3261 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3268 * Note: calculating the overhead so we can be compatible with
3269 * historical BSD practice is quite difficult in the face of
3270 * clusters/bigalloc. This is because multiple metadata blocks from
3271 * different block group can end up in the same allocation cluster.
3272 * Calculating the exact overhead in the face of clustered allocation
3273 * requires either O(all block bitmaps) in memory or O(number of block
3274 * groups**2) in time. We will still calculate the superblock for
3275 * older file systems --- and if we come across with a bigalloc file
3276 * system with zero in s_overhead_clusters the estimate will be close to
3277 * correct especially for very large cluster sizes --- but for newer
3278 * file systems, it's better to calculate this figure once at mkfs
3279 * time, and store it in the superblock. If the superblock value is
3280 * present (even for non-bigalloc file systems), we will use it.
3282 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3285 struct ext4_sb_info *sbi = EXT4_SB(sb);
3286 struct ext4_group_desc *gdp;
3287 ext4_fsblk_t first_block, last_block, b;
3288 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3289 int s, j, count = 0;
3291 if (!ext4_has_feature_bigalloc(sb))
3292 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3293 sbi->s_itb_per_group + 2);
3295 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3296 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3297 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3298 for (i = 0; i < ngroups; i++) {
3299 gdp = ext4_get_group_desc(sb, i, NULL);
3300 b = ext4_block_bitmap(sb, gdp);
3301 if (b >= first_block && b <= last_block) {
3302 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3305 b = ext4_inode_bitmap(sb, gdp);
3306 if (b >= first_block && b <= last_block) {
3307 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3310 b = ext4_inode_table(sb, gdp);
3311 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3312 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3313 int c = EXT4_B2C(sbi, b - first_block);
3314 ext4_set_bit(c, buf);
3320 if (ext4_bg_has_super(sb, grp)) {
3321 ext4_set_bit(s++, buf);
3324 j = ext4_bg_num_gdb(sb, grp);
3325 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3326 ext4_error(sb, "Invalid number of block group "
3327 "descriptor blocks: %d", j);
3328 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3332 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3336 return EXT4_CLUSTERS_PER_GROUP(sb) -
3337 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3341 * Compute the overhead and stash it in sbi->s_overhead
3343 int ext4_calculate_overhead(struct super_block *sb)
3345 struct ext4_sb_info *sbi = EXT4_SB(sb);
3346 struct ext4_super_block *es = sbi->s_es;
3347 struct inode *j_inode;
3348 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3349 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3350 ext4_fsblk_t overhead = 0;
3351 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3357 * Compute the overhead (FS structures). This is constant
3358 * for a given filesystem unless the number of block groups
3359 * changes so we cache the previous value until it does.
3363 * All of the blocks before first_data_block are overhead
3365 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3368 * Add the overhead found in each block group
3370 for (i = 0; i < ngroups; i++) {
3373 blks = count_overhead(sb, i, buf);
3376 memset(buf, 0, PAGE_SIZE);
3381 * Add the internal journal blocks whether the journal has been
3384 if (sbi->s_journal && !sbi->journal_bdev)
3385 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3386 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3387 j_inode = ext4_get_journal_inode(sb, j_inum);
3389 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3390 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3393 ext4_msg(sb, KERN_ERR, "can't get journal size");
3396 sbi->s_overhead = overhead;
3398 free_page((unsigned long) buf);
3402 static void ext4_set_resv_clusters(struct super_block *sb)
3404 ext4_fsblk_t resv_clusters;
3405 struct ext4_sb_info *sbi = EXT4_SB(sb);
3408 * There's no need to reserve anything when we aren't using extents.
3409 * The space estimates are exact, there are no unwritten extents,
3410 * hole punching doesn't need new metadata... This is needed especially
3411 * to keep ext2/3 backward compatibility.
3413 if (!ext4_has_feature_extents(sb))
3416 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3417 * This should cover the situations where we can not afford to run
3418 * out of space like for example punch hole, or converting
3419 * unwritten extents in delalloc path. In most cases such
3420 * allocation would require 1, or 2 blocks, higher numbers are
3423 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3424 sbi->s_cluster_bits);
3426 do_div(resv_clusters, 50);
3427 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3429 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3432 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3434 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3435 char *orig_data = kstrdup(data, GFP_KERNEL);
3436 struct buffer_head *bh;
3437 struct ext4_super_block *es = NULL;
3438 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3440 ext4_fsblk_t sb_block = get_sb_block(&data);
3441 ext4_fsblk_t logical_sb_block;
3442 unsigned long offset = 0;
3443 unsigned long journal_devnum = 0;
3444 unsigned long def_mount_opts;
3448 int blocksize, clustersize;
3449 unsigned int db_count;
3451 int needs_recovery, has_huge_files, has_bigalloc;
3454 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3455 ext4_group_t first_not_zeroed;
3457 if ((data && !orig_data) || !sbi)
3460 sbi->s_daxdev = dax_dev;
3461 sbi->s_blockgroup_lock =
3462 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3463 if (!sbi->s_blockgroup_lock)
3466 sb->s_fs_info = sbi;
3468 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3469 sbi->s_sb_block = sb_block;
3470 if (sb->s_bdev->bd_part)
3471 sbi->s_sectors_written_start =
3472 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3474 /* Cleanup superblock name */
3475 strreplace(sb->s_id, '/', '!');
3477 /* -EINVAL is default */
3479 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3481 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3486 * The ext4 superblock will not be buffer aligned for other than 1kB
3487 * block sizes. We need to calculate the offset from buffer start.
3489 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3490 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3491 offset = do_div(logical_sb_block, blocksize);
3493 logical_sb_block = sb_block;
3496 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3497 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3501 * Note: s_es must be initialized as soon as possible because
3502 * some ext4 macro-instructions depend on its value
3504 es = (struct ext4_super_block *) (bh->b_data + offset);
3506 sb->s_magic = le16_to_cpu(es->s_magic);
3507 if (sb->s_magic != EXT4_SUPER_MAGIC)
3509 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3511 /* Warn if metadata_csum and gdt_csum are both set. */
3512 if (ext4_has_feature_metadata_csum(sb) &&
3513 ext4_has_feature_gdt_csum(sb))
3514 ext4_warning(sb, "metadata_csum and uninit_bg are "
3515 "redundant flags; please run fsck.");
3517 /* Check for a known checksum algorithm */
3518 if (!ext4_verify_csum_type(sb, es)) {
3519 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3520 "unknown checksum algorithm.");
3525 /* Load the checksum driver */
3526 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3527 if (IS_ERR(sbi->s_chksum_driver)) {
3528 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3529 ret = PTR_ERR(sbi->s_chksum_driver);
3530 sbi->s_chksum_driver = NULL;
3534 /* Check superblock checksum */
3535 if (!ext4_superblock_csum_verify(sb, es)) {
3536 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3537 "invalid superblock checksum. Run e2fsck?");
3543 /* Precompute checksum seed for all metadata */
3544 if (ext4_has_feature_csum_seed(sb))
3545 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3546 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3547 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3548 sizeof(es->s_uuid));
3550 /* Set defaults before we parse the mount options */
3551 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3552 set_opt(sb, INIT_INODE_TABLE);
3553 if (def_mount_opts & EXT4_DEFM_DEBUG)
3555 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3557 if (def_mount_opts & EXT4_DEFM_UID16)
3558 set_opt(sb, NO_UID32);
3559 /* xattr user namespace & acls are now defaulted on */
3560 set_opt(sb, XATTR_USER);
3561 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3562 set_opt(sb, POSIX_ACL);
3564 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3565 if (ext4_has_metadata_csum(sb))
3566 set_opt(sb, JOURNAL_CHECKSUM);
3568 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3569 set_opt(sb, JOURNAL_DATA);
3570 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3571 set_opt(sb, ORDERED_DATA);
3572 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3573 set_opt(sb, WRITEBACK_DATA);
3575 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3576 set_opt(sb, ERRORS_PANIC);
3577 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3578 set_opt(sb, ERRORS_CONT);
3580 set_opt(sb, ERRORS_RO);
3581 /* block_validity enabled by default; disable with noblock_validity */
3582 set_opt(sb, BLOCK_VALIDITY);
3583 if (def_mount_opts & EXT4_DEFM_DISCARD)
3584 set_opt(sb, DISCARD);
3586 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3587 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3588 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3589 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3590 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3592 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3593 set_opt(sb, BARRIER);
3596 * enable delayed allocation by default
3597 * Use -o nodelalloc to turn it off
3599 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3600 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3601 set_opt(sb, DELALLOC);
3604 * set default s_li_wait_mult for lazyinit, for the case there is
3605 * no mount option specified.
3607 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3609 if (sbi->s_es->s_mount_opts[0]) {
3610 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3611 sizeof(sbi->s_es->s_mount_opts),
3615 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3616 &journal_ioprio, 0)) {
3617 ext4_msg(sb, KERN_WARNING,
3618 "failed to parse options in superblock: %s",
3621 kfree(s_mount_opts);
3623 sbi->s_def_mount_opt = sbi->s_mount_opt;
3624 if (!parse_options((char *) data, sb, &journal_devnum,
3625 &journal_ioprio, 0))
3628 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3629 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3630 "with data=journal disables delayed "
3631 "allocation and O_DIRECT support!\n");
3632 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3633 ext4_msg(sb, KERN_ERR, "can't mount with "
3634 "both data=journal and delalloc");
3637 if (test_opt(sb, DIOREAD_NOLOCK)) {
3638 ext4_msg(sb, KERN_ERR, "can't mount with "
3639 "both data=journal and dioread_nolock");
3642 if (test_opt(sb, DAX)) {
3643 ext4_msg(sb, KERN_ERR, "can't mount with "
3644 "both data=journal and dax");
3647 if (ext4_has_feature_encrypt(sb)) {
3648 ext4_msg(sb, KERN_WARNING,
3649 "encrypted files will use data=ordered "
3650 "instead of data journaling mode");
3652 if (test_opt(sb, DELALLOC))
3653 clear_opt(sb, DELALLOC);
3655 sb->s_iflags |= SB_I_CGROUPWB;
3658 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3659 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3661 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3662 (ext4_has_compat_features(sb) ||
3663 ext4_has_ro_compat_features(sb) ||
3664 ext4_has_incompat_features(sb)))
3665 ext4_msg(sb, KERN_WARNING,
3666 "feature flags set on rev 0 fs, "
3667 "running e2fsck is recommended");
3669 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3670 set_opt2(sb, HURD_COMPAT);
3671 if (ext4_has_feature_64bit(sb)) {
3672 ext4_msg(sb, KERN_ERR,
3673 "The Hurd can't support 64-bit file systems");
3678 * ea_inode feature uses l_i_version field which is not
3679 * available in HURD_COMPAT mode.
3681 if (ext4_has_feature_ea_inode(sb)) {
3682 ext4_msg(sb, KERN_ERR,
3683 "ea_inode feature is not supported for Hurd");
3688 if (IS_EXT2_SB(sb)) {
3689 if (ext2_feature_set_ok(sb))
3690 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3691 "using the ext4 subsystem");
3694 * If we're probing be silent, if this looks like
3695 * it's actually an ext[34] filesystem.
3697 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3699 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3700 "to feature incompatibilities");
3705 if (IS_EXT3_SB(sb)) {
3706 if (ext3_feature_set_ok(sb))
3707 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3708 "using the ext4 subsystem");
3711 * If we're probing be silent, if this looks like
3712 * it's actually an ext4 filesystem.
3714 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3716 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3717 "to feature incompatibilities");
3723 * Check feature flags regardless of the revision level, since we
3724 * previously didn't change the revision level when setting the flags,
3725 * so there is a chance incompat flags are set on a rev 0 filesystem.
3727 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3730 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3731 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3732 blocksize > EXT4_MAX_BLOCK_SIZE) {
3733 ext4_msg(sb, KERN_ERR,
3734 "Unsupported filesystem blocksize %d (%d log_block_size)",
3735 blocksize, le32_to_cpu(es->s_log_block_size));
3738 if (le32_to_cpu(es->s_log_block_size) >
3739 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3740 ext4_msg(sb, KERN_ERR,
3741 "Invalid log block size: %u",
3742 le32_to_cpu(es->s_log_block_size));
3746 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3747 ext4_msg(sb, KERN_ERR,
3748 "Number of reserved GDT blocks insanely large: %d",
3749 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3753 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3754 if (ext4_has_feature_inline_data(sb)) {
3755 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3756 " that may contain inline data");
3757 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3759 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3760 ext4_msg(sb, KERN_ERR,
3761 "DAX unsupported by block device. Turning off DAX.");
3762 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3766 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3767 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3768 es->s_encryption_level);
3772 if (sb->s_blocksize != blocksize) {
3773 /* Validate the filesystem blocksize */
3774 if (!sb_set_blocksize(sb, blocksize)) {
3775 ext4_msg(sb, KERN_ERR, "bad block size %d",
3781 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3782 offset = do_div(logical_sb_block, blocksize);
3783 bh = sb_bread_unmovable(sb, logical_sb_block);
3785 ext4_msg(sb, KERN_ERR,
3786 "Can't read superblock on 2nd try");
3789 es = (struct ext4_super_block *)(bh->b_data + offset);
3791 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3792 ext4_msg(sb, KERN_ERR,
3793 "Magic mismatch, very weird!");
3798 has_huge_files = ext4_has_feature_huge_file(sb);
3799 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3801 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3803 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3804 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3805 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3807 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3808 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3809 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3810 (!is_power_of_2(sbi->s_inode_size)) ||
3811 (sbi->s_inode_size > blocksize)) {
3812 ext4_msg(sb, KERN_ERR,
3813 "unsupported inode size: %d",
3817 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3818 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3821 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3822 if (ext4_has_feature_64bit(sb)) {
3823 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3824 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3825 !is_power_of_2(sbi->s_desc_size)) {
3826 ext4_msg(sb, KERN_ERR,
3827 "unsupported descriptor size %lu",
3832 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3834 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3835 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3837 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3838 if (sbi->s_inodes_per_block == 0)
3840 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3841 sbi->s_inodes_per_group > blocksize * 8) {
3842 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3843 sbi->s_blocks_per_group);
3846 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3847 sbi->s_inodes_per_block;
3848 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3850 sbi->s_mount_state = le16_to_cpu(es->s_state);
3851 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3852 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3854 for (i = 0; i < 4; i++)
3855 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3856 sbi->s_def_hash_version = es->s_def_hash_version;
3857 if (ext4_has_feature_dir_index(sb)) {
3858 i = le32_to_cpu(es->s_flags);
3859 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3860 sbi->s_hash_unsigned = 3;
3861 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3862 #ifdef __CHAR_UNSIGNED__
3865 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3866 sbi->s_hash_unsigned = 3;
3870 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3875 /* Handle clustersize */
3876 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3877 has_bigalloc = ext4_has_feature_bigalloc(sb);
3879 if (clustersize < blocksize) {
3880 ext4_msg(sb, KERN_ERR,
3881 "cluster size (%d) smaller than "
3882 "block size (%d)", clustersize, blocksize);
3885 if (le32_to_cpu(es->s_log_cluster_size) >
3886 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3887 ext4_msg(sb, KERN_ERR,
3888 "Invalid log cluster size: %u",
3889 le32_to_cpu(es->s_log_cluster_size));
3892 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3893 le32_to_cpu(es->s_log_block_size);
3894 sbi->s_clusters_per_group =
3895 le32_to_cpu(es->s_clusters_per_group);
3896 if (sbi->s_clusters_per_group > blocksize * 8) {
3897 ext4_msg(sb, KERN_ERR,
3898 "#clusters per group too big: %lu",
3899 sbi->s_clusters_per_group);
3902 if (sbi->s_blocks_per_group !=
3903 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3904 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3905 "clusters per group (%lu) inconsistent",
3906 sbi->s_blocks_per_group,
3907 sbi->s_clusters_per_group);
3911 if (clustersize != blocksize) {
3912 ext4_warning(sb, "fragment/cluster size (%d) != "
3913 "block size (%d)", clustersize,
3915 clustersize = blocksize;
3917 if (sbi->s_blocks_per_group > blocksize * 8) {
3918 ext4_msg(sb, KERN_ERR,
3919 "#blocks per group too big: %lu",
3920 sbi->s_blocks_per_group);
3923 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3924 sbi->s_cluster_bits = 0;
3926 sbi->s_cluster_ratio = clustersize / blocksize;
3928 /* Do we have standard group size of clustersize * 8 blocks ? */
3929 if (sbi->s_blocks_per_group == clustersize << 3)
3930 set_opt2(sb, STD_GROUP_SIZE);
3933 * Test whether we have more sectors than will fit in sector_t,
3934 * and whether the max offset is addressable by the page cache.
3936 err = generic_check_addressable(sb->s_blocksize_bits,
3937 ext4_blocks_count(es));
3939 ext4_msg(sb, KERN_ERR, "filesystem"
3940 " too large to mount safely on this system");
3941 if (sizeof(sector_t) < 8)
3942 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3946 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3949 /* check blocks count against device size */
3950 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3951 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3952 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3953 "exceeds size of device (%llu blocks)",
3954 ext4_blocks_count(es), blocks_count);
3959 * It makes no sense for the first data block to be beyond the end
3960 * of the filesystem.
3962 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3963 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3964 "block %u is beyond end of filesystem (%llu)",
3965 le32_to_cpu(es->s_first_data_block),
3966 ext4_blocks_count(es));
3969 blocks_count = (ext4_blocks_count(es) -
3970 le32_to_cpu(es->s_first_data_block) +
3971 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3972 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3973 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3974 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3975 "(block count %llu, first data block %u, "
3976 "blocks per group %lu)", sbi->s_groups_count,
3977 ext4_blocks_count(es),
3978 le32_to_cpu(es->s_first_data_block),
3979 EXT4_BLOCKS_PER_GROUP(sb));
3982 sbi->s_groups_count = blocks_count;
3983 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3984 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3985 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3986 EXT4_DESC_PER_BLOCK(sb);
3987 if (ext4_has_feature_meta_bg(sb)) {
3988 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3989 ext4_msg(sb, KERN_WARNING,
3990 "first meta block group too large: %u "
3991 "(group descriptor block count %u)",
3992 le32_to_cpu(es->s_first_meta_bg), db_count);
3996 sbi->s_group_desc = kvmalloc(db_count *
3997 sizeof(struct buffer_head *),
3999 if (sbi->s_group_desc == NULL) {
4000 ext4_msg(sb, KERN_ERR, "not enough memory");
4005 bgl_lock_init(sbi->s_blockgroup_lock);
4007 /* Pre-read the descriptors into the buffer cache */
4008 for (i = 0; i < db_count; i++) {
4009 block = descriptor_loc(sb, logical_sb_block, i);
4010 sb_breadahead(sb, block);
4013 for (i = 0; i < db_count; i++) {
4014 block = descriptor_loc(sb, logical_sb_block, i);
4015 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4016 if (!sbi->s_group_desc[i]) {
4017 ext4_msg(sb, KERN_ERR,
4018 "can't read group descriptor %d", i);
4023 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4024 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4025 ret = -EFSCORRUPTED;
4029 sbi->s_gdb_count = db_count;
4031 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4033 /* Register extent status tree shrinker */
4034 if (ext4_es_register_shrinker(sbi))
4037 sbi->s_stripe = ext4_get_stripe_size(sbi);
4038 sbi->s_extent_max_zeroout_kb = 32;
4041 * set up enough so that it can read an inode
4043 sb->s_op = &ext4_sops;
4044 sb->s_export_op = &ext4_export_ops;
4045 sb->s_xattr = ext4_xattr_handlers;
4046 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4047 sb->s_cop = &ext4_cryptops;
4050 sb->dq_op = &ext4_quota_operations;
4051 if (ext4_has_feature_quota(sb))
4052 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4054 sb->s_qcop = &ext4_qctl_operations;
4055 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4057 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4059 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4060 mutex_init(&sbi->s_orphan_lock);
4064 needs_recovery = (es->s_last_orphan != 0 ||
4065 ext4_has_feature_journal_needs_recovery(sb));
4067 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4068 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4069 goto failed_mount3a;
4072 * The first inode we look at is the journal inode. Don't try
4073 * root first: it may be modified in the journal!
4075 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4076 err = ext4_load_journal(sb, es, journal_devnum);
4078 goto failed_mount3a;
4079 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4080 ext4_has_feature_journal_needs_recovery(sb)) {
4081 ext4_msg(sb, KERN_ERR, "required journal recovery "
4082 "suppressed and not mounted read-only");
4083 goto failed_mount_wq;
4085 /* Nojournal mode, all journal mount options are illegal */
4086 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4087 ext4_msg(sb, KERN_ERR, "can't mount with "
4088 "journal_checksum, fs mounted w/o journal");
4089 goto failed_mount_wq;
4091 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4092 ext4_msg(sb, KERN_ERR, "can't mount with "
4093 "journal_async_commit, fs mounted w/o journal");
4094 goto failed_mount_wq;
4096 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4097 ext4_msg(sb, KERN_ERR, "can't mount with "
4098 "commit=%lu, fs mounted w/o journal",
4099 sbi->s_commit_interval / HZ);
4100 goto failed_mount_wq;
4102 if (EXT4_MOUNT_DATA_FLAGS &
4103 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4104 ext4_msg(sb, KERN_ERR, "can't mount with "
4105 "data=, fs mounted w/o journal");
4106 goto failed_mount_wq;
4108 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4109 clear_opt(sb, JOURNAL_CHECKSUM);
4110 clear_opt(sb, DATA_FLAGS);
4111 sbi->s_journal = NULL;
4116 if (ext4_has_feature_64bit(sb) &&
4117 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4118 JBD2_FEATURE_INCOMPAT_64BIT)) {
4119 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4120 goto failed_mount_wq;
4123 if (!set_journal_csum_feature_set(sb)) {
4124 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4126 goto failed_mount_wq;
4129 /* We have now updated the journal if required, so we can
4130 * validate the data journaling mode. */
4131 switch (test_opt(sb, DATA_FLAGS)) {
4133 /* No mode set, assume a default based on the journal
4134 * capabilities: ORDERED_DATA if the journal can
4135 * cope, else JOURNAL_DATA
4137 if (jbd2_journal_check_available_features
4138 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4139 set_opt(sb, ORDERED_DATA);
4140 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4142 set_opt(sb, JOURNAL_DATA);
4143 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4147 case EXT4_MOUNT_ORDERED_DATA:
4148 case EXT4_MOUNT_WRITEBACK_DATA:
4149 if (!jbd2_journal_check_available_features
4150 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4151 ext4_msg(sb, KERN_ERR, "Journal does not support "
4152 "requested data journaling mode");
4153 goto failed_mount_wq;
4159 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4160 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4161 ext4_msg(sb, KERN_ERR, "can't mount with "
4162 "journal_async_commit in data=ordered mode");
4163 goto failed_mount_wq;
4166 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4168 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4171 if (!test_opt(sb, NO_MBCACHE)) {
4172 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4173 if (!sbi->s_ea_block_cache) {
4174 ext4_msg(sb, KERN_ERR,
4175 "Failed to create ea_block_cache");
4176 goto failed_mount_wq;
4179 if (ext4_has_feature_ea_inode(sb)) {
4180 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4181 if (!sbi->s_ea_inode_cache) {
4182 ext4_msg(sb, KERN_ERR,
4183 "Failed to create ea_inode_cache");
4184 goto failed_mount_wq;
4189 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4190 (blocksize != PAGE_SIZE)) {
4191 ext4_msg(sb, KERN_ERR,
4192 "Unsupported blocksize for fs encryption");
4193 goto failed_mount_wq;
4196 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4197 !ext4_has_feature_encrypt(sb)) {
4198 ext4_set_feature_encrypt(sb);
4199 ext4_commit_super(sb, 1);
4203 * Get the # of file system overhead blocks from the
4204 * superblock if present.
4206 if (es->s_overhead_clusters)
4207 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4209 err = ext4_calculate_overhead(sb);
4211 goto failed_mount_wq;
4215 * The maximum number of concurrent works can be high and
4216 * concurrency isn't really necessary. Limit it to 1.
4218 EXT4_SB(sb)->rsv_conversion_wq =
4219 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4220 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4221 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4227 * The jbd2_journal_load will have done any necessary log recovery,
4228 * so we can safely mount the rest of the filesystem now.
4231 root = ext4_iget(sb, EXT4_ROOT_INO);
4233 ext4_msg(sb, KERN_ERR, "get root inode failed");
4234 ret = PTR_ERR(root);
4238 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4239 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4243 sb->s_root = d_make_root(root);
4245 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4250 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4251 if (ret == -EROFS) {
4252 sb->s_flags |= SB_RDONLY;
4255 goto failed_mount4a;
4257 /* determine the minimum size of new large inodes, if present */
4258 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4259 sbi->s_want_extra_isize == 0) {
4260 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4261 EXT4_GOOD_OLD_INODE_SIZE;
4262 if (ext4_has_feature_extra_isize(sb)) {
4263 if (sbi->s_want_extra_isize <
4264 le16_to_cpu(es->s_want_extra_isize))
4265 sbi->s_want_extra_isize =
4266 le16_to_cpu(es->s_want_extra_isize);
4267 if (sbi->s_want_extra_isize <
4268 le16_to_cpu(es->s_min_extra_isize))
4269 sbi->s_want_extra_isize =
4270 le16_to_cpu(es->s_min_extra_isize);
4273 /* Check if enough inode space is available */
4274 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4275 sbi->s_inode_size) {
4276 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4277 EXT4_GOOD_OLD_INODE_SIZE;
4278 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4282 ext4_set_resv_clusters(sb);
4284 err = ext4_setup_system_zone(sb);
4286 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4288 goto failed_mount4a;
4292 err = ext4_mb_init(sb);
4294 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4299 block = ext4_count_free_clusters(sb);
4300 ext4_free_blocks_count_set(sbi->s_es,
4301 EXT4_C2B(sbi, block));
4302 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4305 unsigned long freei = ext4_count_free_inodes(sb);
4306 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4307 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4311 err = percpu_counter_init(&sbi->s_dirs_counter,
4312 ext4_count_dirs(sb), GFP_KERNEL);
4314 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4317 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4320 ext4_msg(sb, KERN_ERR, "insufficient memory");
4324 if (ext4_has_feature_flex_bg(sb))
4325 if (!ext4_fill_flex_info(sb)) {
4326 ext4_msg(sb, KERN_ERR,
4327 "unable to initialize "
4328 "flex_bg meta info!");
4332 err = ext4_register_li_request(sb, first_not_zeroed);
4336 err = ext4_register_sysfs(sb);
4341 /* Enable quota usage during mount. */
4342 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4343 err = ext4_enable_quotas(sb);
4347 #endif /* CONFIG_QUOTA */
4349 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4350 ext4_orphan_cleanup(sb, es);
4351 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4352 if (needs_recovery) {
4353 ext4_msg(sb, KERN_INFO, "recovery complete");
4354 ext4_mark_recovery_complete(sb, es);
4356 if (EXT4_SB(sb)->s_journal) {
4357 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4358 descr = " journalled data mode";
4359 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4360 descr = " ordered data mode";
4362 descr = " writeback data mode";
4364 descr = "out journal";
4366 if (test_opt(sb, DISCARD)) {
4367 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4368 if (!blk_queue_discard(q))
4369 ext4_msg(sb, KERN_WARNING,
4370 "mounting with \"discard\" option, but "
4371 "the device does not support discard");
4374 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4375 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4376 "Opts: %.*s%s%s", descr,
4377 (int) sizeof(sbi->s_es->s_mount_opts),
4378 sbi->s_es->s_mount_opts,
4379 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4381 if (es->s_error_count)
4382 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4384 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4385 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4386 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4387 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4394 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4399 ext4_unregister_sysfs(sb);
4402 ext4_unregister_li_request(sb);
4404 ext4_mb_release(sb);
4405 if (sbi->s_flex_groups)
4406 kvfree(sbi->s_flex_groups);
4407 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4408 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4409 percpu_counter_destroy(&sbi->s_dirs_counter);
4410 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4412 ext4_ext_release(sb);
4413 ext4_release_system_zone(sb);
4418 ext4_msg(sb, KERN_ERR, "mount failed");
4419 if (EXT4_SB(sb)->rsv_conversion_wq)
4420 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4422 if (sbi->s_ea_inode_cache) {
4423 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4424 sbi->s_ea_inode_cache = NULL;
4426 if (sbi->s_ea_block_cache) {
4427 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4428 sbi->s_ea_block_cache = NULL;
4430 if (sbi->s_journal) {
4431 jbd2_journal_destroy(sbi->s_journal);
4432 sbi->s_journal = NULL;
4435 ext4_es_unregister_shrinker(sbi);
4437 del_timer_sync(&sbi->s_err_report);
4439 kthread_stop(sbi->s_mmp_tsk);
4441 for (i = 0; i < db_count; i++)
4442 brelse(sbi->s_group_desc[i]);
4443 kvfree(sbi->s_group_desc);
4445 if (sbi->s_chksum_driver)
4446 crypto_free_shash(sbi->s_chksum_driver);
4448 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4449 kfree(sbi->s_qf_names[i]);
4451 ext4_blkdev_remove(sbi);
4454 sb->s_fs_info = NULL;
4455 kfree(sbi->s_blockgroup_lock);
4459 fs_put_dax(dax_dev);
4460 return err ? err : ret;
4464 * Setup any per-fs journal parameters now. We'll do this both on
4465 * initial mount, once the journal has been initialised but before we've
4466 * done any recovery; and again on any subsequent remount.
4468 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4470 struct ext4_sb_info *sbi = EXT4_SB(sb);
4472 journal->j_commit_interval = sbi->s_commit_interval;
4473 journal->j_min_batch_time = sbi->s_min_batch_time;
4474 journal->j_max_batch_time = sbi->s_max_batch_time;
4476 write_lock(&journal->j_state_lock);
4477 if (test_opt(sb, BARRIER))
4478 journal->j_flags |= JBD2_BARRIER;
4480 journal->j_flags &= ~JBD2_BARRIER;
4481 if (test_opt(sb, DATA_ERR_ABORT))
4482 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4484 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4485 write_unlock(&journal->j_state_lock);
4488 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4489 unsigned int journal_inum)
4491 struct inode *journal_inode;
4494 * Test for the existence of a valid inode on disk. Bad things
4495 * happen if we iget() an unused inode, as the subsequent iput()
4496 * will try to delete it.
4498 journal_inode = ext4_iget(sb, journal_inum);
4499 if (IS_ERR(journal_inode)) {
4500 ext4_msg(sb, KERN_ERR, "no journal found");
4503 if (!journal_inode->i_nlink) {
4504 make_bad_inode(journal_inode);
4505 iput(journal_inode);
4506 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4510 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4511 journal_inode, journal_inode->i_size);
4512 if (!S_ISREG(journal_inode->i_mode)) {
4513 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4514 iput(journal_inode);
4517 return journal_inode;
4520 static journal_t *ext4_get_journal(struct super_block *sb,
4521 unsigned int journal_inum)
4523 struct inode *journal_inode;
4526 BUG_ON(!ext4_has_feature_journal(sb));
4528 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4532 journal = jbd2_journal_init_inode(journal_inode);
4534 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4535 iput(journal_inode);
4538 journal->j_private = sb;
4539 ext4_init_journal_params(sb, journal);
4543 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4546 struct buffer_head *bh;
4550 int hblock, blocksize;
4551 ext4_fsblk_t sb_block;
4552 unsigned long offset;
4553 struct ext4_super_block *es;
4554 struct block_device *bdev;
4556 BUG_ON(!ext4_has_feature_journal(sb));
4558 bdev = ext4_blkdev_get(j_dev, sb);
4562 blocksize = sb->s_blocksize;
4563 hblock = bdev_logical_block_size(bdev);
4564 if (blocksize < hblock) {
4565 ext4_msg(sb, KERN_ERR,
4566 "blocksize too small for journal device");
4570 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4571 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4572 set_blocksize(bdev, blocksize);
4573 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4574 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4575 "external journal");
4579 es = (struct ext4_super_block *) (bh->b_data + offset);
4580 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4581 !(le32_to_cpu(es->s_feature_incompat) &
4582 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4583 ext4_msg(sb, KERN_ERR, "external journal has "
4589 if ((le32_to_cpu(es->s_feature_ro_compat) &
4590 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4591 es->s_checksum != ext4_superblock_csum(sb, es)) {
4592 ext4_msg(sb, KERN_ERR, "external journal has "
4593 "corrupt superblock");
4598 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4599 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4604 len = ext4_blocks_count(es);
4605 start = sb_block + 1;
4606 brelse(bh); /* we're done with the superblock */
4608 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4609 start, len, blocksize);
4611 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4614 journal->j_private = sb;
4615 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4616 wait_on_buffer(journal->j_sb_buffer);
4617 if (!buffer_uptodate(journal->j_sb_buffer)) {
4618 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4621 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4622 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4623 "user (unsupported) - %d",
4624 be32_to_cpu(journal->j_superblock->s_nr_users));
4627 EXT4_SB(sb)->journal_bdev = bdev;
4628 ext4_init_journal_params(sb, journal);
4632 jbd2_journal_destroy(journal);
4634 ext4_blkdev_put(bdev);
4638 static int ext4_load_journal(struct super_block *sb,
4639 struct ext4_super_block *es,
4640 unsigned long journal_devnum)
4643 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4646 int really_read_only;
4648 BUG_ON(!ext4_has_feature_journal(sb));
4650 if (journal_devnum &&
4651 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4652 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4653 "numbers have changed");
4654 journal_dev = new_decode_dev(journal_devnum);
4656 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4658 really_read_only = bdev_read_only(sb->s_bdev);
4661 * Are we loading a blank journal or performing recovery after a
4662 * crash? For recovery, we need to check in advance whether we
4663 * can get read-write access to the device.
4665 if (ext4_has_feature_journal_needs_recovery(sb)) {
4666 if (sb_rdonly(sb)) {
4667 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4668 "required on readonly filesystem");
4669 if (really_read_only) {
4670 ext4_msg(sb, KERN_ERR, "write access "
4671 "unavailable, cannot proceed "
4672 "(try mounting with noload)");
4675 ext4_msg(sb, KERN_INFO, "write access will "
4676 "be enabled during recovery");
4680 if (journal_inum && journal_dev) {
4681 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4682 "and inode journals!");
4687 if (!(journal = ext4_get_journal(sb, journal_inum)))
4690 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4694 if (!(journal->j_flags & JBD2_BARRIER))
4695 ext4_msg(sb, KERN_INFO, "barriers disabled");
4697 if (!ext4_has_feature_journal_needs_recovery(sb))
4698 err = jbd2_journal_wipe(journal, !really_read_only);
4700 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4702 memcpy(save, ((char *) es) +
4703 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4704 err = jbd2_journal_load(journal);
4706 memcpy(((char *) es) + EXT4_S_ERR_START,
4707 save, EXT4_S_ERR_LEN);
4712 ext4_msg(sb, KERN_ERR, "error loading journal");
4713 jbd2_journal_destroy(journal);
4717 EXT4_SB(sb)->s_journal = journal;
4718 ext4_clear_journal_err(sb, es);
4720 if (!really_read_only && journal_devnum &&
4721 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4722 es->s_journal_dev = cpu_to_le32(journal_devnum);
4724 /* Make sure we flush the recovery flag to disk. */
4725 ext4_commit_super(sb, 1);
4731 static int ext4_commit_super(struct super_block *sb, int sync)
4733 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4734 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4737 if (!sbh || block_device_ejected(sb))
4740 * If the file system is mounted read-only, don't update the
4741 * superblock write time. This avoids updating the superblock
4742 * write time when we are mounting the root file system
4743 * read/only but we need to replay the journal; at that point,
4744 * for people who are east of GMT and who make their clock
4745 * tick in localtime for Windows bug-for-bug compatibility,
4746 * the clock is set in the future, and this will cause e2fsck
4747 * to complain and force a full file system check.
4749 if (!(sb->s_flags & SB_RDONLY))
4750 es->s_wtime = cpu_to_le32(get_seconds());
4751 if (sb->s_bdev->bd_part)
4752 es->s_kbytes_written =
4753 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4754 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4755 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4757 es->s_kbytes_written =
4758 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4759 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4760 ext4_free_blocks_count_set(es,
4761 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4762 &EXT4_SB(sb)->s_freeclusters_counter)));
4763 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4764 es->s_free_inodes_count =
4765 cpu_to_le32(percpu_counter_sum_positive(
4766 &EXT4_SB(sb)->s_freeinodes_counter));
4767 BUFFER_TRACE(sbh, "marking dirty");
4768 ext4_superblock_csum_set(sb);
4771 if (buffer_write_io_error(sbh)) {
4773 * Oh, dear. A previous attempt to write the
4774 * superblock failed. This could happen because the
4775 * USB device was yanked out. Or it could happen to
4776 * be a transient write error and maybe the block will
4777 * be remapped. Nothing we can do but to retry the
4778 * write and hope for the best.
4780 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4781 "superblock detected");
4782 clear_buffer_write_io_error(sbh);
4783 set_buffer_uptodate(sbh);
4785 mark_buffer_dirty(sbh);
4788 error = __sync_dirty_buffer(sbh,
4789 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4790 if (buffer_write_io_error(sbh)) {
4791 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4793 clear_buffer_write_io_error(sbh);
4794 set_buffer_uptodate(sbh);
4801 * Have we just finished recovery? If so, and if we are mounting (or
4802 * remounting) the filesystem readonly, then we will end up with a
4803 * consistent fs on disk. Record that fact.
4805 static void ext4_mark_recovery_complete(struct super_block *sb,
4806 struct ext4_super_block *es)
4808 journal_t *journal = EXT4_SB(sb)->s_journal;
4810 if (!ext4_has_feature_journal(sb)) {
4811 BUG_ON(journal != NULL);
4814 jbd2_journal_lock_updates(journal);
4815 if (jbd2_journal_flush(journal) < 0)
4818 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4819 ext4_clear_feature_journal_needs_recovery(sb);
4820 ext4_commit_super(sb, 1);
4824 jbd2_journal_unlock_updates(journal);
4828 * If we are mounting (or read-write remounting) a filesystem whose journal
4829 * has recorded an error from a previous lifetime, move that error to the
4830 * main filesystem now.
4832 static void ext4_clear_journal_err(struct super_block *sb,
4833 struct ext4_super_block *es)
4839 BUG_ON(!ext4_has_feature_journal(sb));
4841 journal = EXT4_SB(sb)->s_journal;
4844 * Now check for any error status which may have been recorded in the
4845 * journal by a prior ext4_error() or ext4_abort()
4848 j_errno = jbd2_journal_errno(journal);
4852 errstr = ext4_decode_error(sb, j_errno, nbuf);
4853 ext4_warning(sb, "Filesystem error recorded "
4854 "from previous mount: %s", errstr);
4855 ext4_warning(sb, "Marking fs in need of filesystem check.");
4857 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4858 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4859 ext4_commit_super(sb, 1);
4861 jbd2_journal_clear_err(journal);
4862 jbd2_journal_update_sb_errno(journal);
4867 * Force the running and committing transactions to commit,
4868 * and wait on the commit.
4870 int ext4_force_commit(struct super_block *sb)
4877 journal = EXT4_SB(sb)->s_journal;
4878 return ext4_journal_force_commit(journal);
4881 static int ext4_sync_fs(struct super_block *sb, int wait)
4885 bool needs_barrier = false;
4886 struct ext4_sb_info *sbi = EXT4_SB(sb);
4888 if (unlikely(ext4_forced_shutdown(sbi)))
4891 trace_ext4_sync_fs(sb, wait);
4892 flush_workqueue(sbi->rsv_conversion_wq);
4894 * Writeback quota in non-journalled quota case - journalled quota has
4897 dquot_writeback_dquots(sb, -1);
4899 * Data writeback is possible w/o journal transaction, so barrier must
4900 * being sent at the end of the function. But we can skip it if
4901 * transaction_commit will do it for us.
4903 if (sbi->s_journal) {
4904 target = jbd2_get_latest_transaction(sbi->s_journal);
4905 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4906 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4907 needs_barrier = true;
4909 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4911 ret = jbd2_log_wait_commit(sbi->s_journal,
4914 } else if (wait && test_opt(sb, BARRIER))
4915 needs_barrier = true;
4916 if (needs_barrier) {
4918 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4927 * LVM calls this function before a (read-only) snapshot is created. This
4928 * gives us a chance to flush the journal completely and mark the fs clean.
4930 * Note that only this function cannot bring a filesystem to be in a clean
4931 * state independently. It relies on upper layer to stop all data & metadata
4934 static int ext4_freeze(struct super_block *sb)
4942 journal = EXT4_SB(sb)->s_journal;
4945 /* Now we set up the journal barrier. */
4946 jbd2_journal_lock_updates(journal);
4949 * Don't clear the needs_recovery flag if we failed to
4950 * flush the journal.
4952 error = jbd2_journal_flush(journal);
4956 /* Journal blocked and flushed, clear needs_recovery flag. */
4957 ext4_clear_feature_journal_needs_recovery(sb);
4960 error = ext4_commit_super(sb, 1);
4963 /* we rely on upper layer to stop further updates */
4964 jbd2_journal_unlock_updates(journal);
4969 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4970 * flag here, even though the filesystem is not technically dirty yet.
4972 static int ext4_unfreeze(struct super_block *sb)
4974 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
4977 if (EXT4_SB(sb)->s_journal) {
4978 /* Reset the needs_recovery flag before the fs is unlocked. */
4979 ext4_set_feature_journal_needs_recovery(sb);
4982 ext4_commit_super(sb, 1);
4987 * Structure to save mount options for ext4_remount's benefit
4989 struct ext4_mount_options {
4990 unsigned long s_mount_opt;
4991 unsigned long s_mount_opt2;
4994 unsigned long s_commit_interval;
4995 u32 s_min_batch_time, s_max_batch_time;
4998 char *s_qf_names[EXT4_MAXQUOTAS];
5002 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5004 struct ext4_super_block *es;
5005 struct ext4_sb_info *sbi = EXT4_SB(sb);
5006 unsigned long old_sb_flags;
5007 struct ext4_mount_options old_opts;
5008 int enable_quota = 0;
5010 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5015 char *orig_data = kstrdup(data, GFP_KERNEL);
5017 /* Store the original options */
5018 old_sb_flags = sb->s_flags;
5019 old_opts.s_mount_opt = sbi->s_mount_opt;
5020 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5021 old_opts.s_resuid = sbi->s_resuid;
5022 old_opts.s_resgid = sbi->s_resgid;
5023 old_opts.s_commit_interval = sbi->s_commit_interval;
5024 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5025 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5027 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5028 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5029 if (sbi->s_qf_names[i]) {
5030 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
5032 if (!old_opts.s_qf_names[i]) {
5033 for (j = 0; j < i; j++)
5034 kfree(old_opts.s_qf_names[j]);
5039 old_opts.s_qf_names[i] = NULL;
5041 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5042 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5044 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5049 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5050 test_opt(sb, JOURNAL_CHECKSUM)) {
5051 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5052 "during remount not supported; ignoring");
5053 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5056 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5057 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5058 ext4_msg(sb, KERN_ERR, "can't mount with "
5059 "both data=journal and delalloc");
5063 if (test_opt(sb, DIOREAD_NOLOCK)) {
5064 ext4_msg(sb, KERN_ERR, "can't mount with "
5065 "both data=journal and dioread_nolock");
5069 if (test_opt(sb, DAX)) {
5070 ext4_msg(sb, KERN_ERR, "can't mount with "
5071 "both data=journal and dax");
5075 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5076 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5077 ext4_msg(sb, KERN_ERR, "can't mount with "
5078 "journal_async_commit in data=ordered mode");
5084 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5085 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5090 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5091 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5092 "dax flag with busy inodes while remounting");
5093 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5096 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5097 ext4_abort(sb, "Abort forced by user");
5099 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5100 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5104 if (sbi->s_journal) {
5105 ext4_init_journal_params(sb, sbi->s_journal);
5106 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5109 if (*flags & SB_LAZYTIME)
5110 sb->s_flags |= SB_LAZYTIME;
5112 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5113 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5118 if (*flags & SB_RDONLY) {
5119 err = sync_filesystem(sb);
5122 err = dquot_suspend(sb, -1);
5127 * First of all, the unconditional stuff we have to do
5128 * to disable replay of the journal when we next remount
5130 sb->s_flags |= SB_RDONLY;
5133 * OK, test if we are remounting a valid rw partition
5134 * readonly, and if so set the rdonly flag and then
5135 * mark the partition as valid again.
5137 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5138 (sbi->s_mount_state & EXT4_VALID_FS))
5139 es->s_state = cpu_to_le16(sbi->s_mount_state);
5142 ext4_mark_recovery_complete(sb, es);
5144 /* Make sure we can mount this feature set readwrite */
5145 if (ext4_has_feature_readonly(sb) ||
5146 !ext4_feature_set_ok(sb, 0)) {
5151 * Make sure the group descriptor checksums
5152 * are sane. If they aren't, refuse to remount r/w.
5154 for (g = 0; g < sbi->s_groups_count; g++) {
5155 struct ext4_group_desc *gdp =
5156 ext4_get_group_desc(sb, g, NULL);
5158 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5159 ext4_msg(sb, KERN_ERR,
5160 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5161 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5162 le16_to_cpu(gdp->bg_checksum));
5169 * If we have an unprocessed orphan list hanging
5170 * around from a previously readonly bdev mount,
5171 * require a full umount/remount for now.
5173 if (es->s_last_orphan) {
5174 ext4_msg(sb, KERN_WARNING, "Couldn't "
5175 "remount RDWR because of unprocessed "
5176 "orphan inode list. Please "
5177 "umount/remount instead");
5183 * Mounting a RDONLY partition read-write, so reread
5184 * and store the current valid flag. (It may have
5185 * been changed by e2fsck since we originally mounted
5189 ext4_clear_journal_err(sb, es);
5190 sbi->s_mount_state = le16_to_cpu(es->s_state);
5192 err = ext4_setup_super(sb, es, 0);
5196 sb->s_flags &= ~SB_RDONLY;
5197 if (ext4_has_feature_mmp(sb))
5198 if (ext4_multi_mount_protect(sb,
5199 le64_to_cpu(es->s_mmp_block))) {
5208 * Reinitialize lazy itable initialization thread based on
5211 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5212 ext4_unregister_li_request(sb);
5214 ext4_group_t first_not_zeroed;
5215 first_not_zeroed = ext4_has_uninit_itable(sb);
5216 ext4_register_li_request(sb, first_not_zeroed);
5219 ext4_setup_system_zone(sb);
5220 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5221 err = ext4_commit_super(sb, 1);
5227 /* Release old quota file names */
5228 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5229 kfree(old_opts.s_qf_names[i]);
5231 if (sb_any_quota_suspended(sb))
5232 dquot_resume(sb, -1);
5233 else if (ext4_has_feature_quota(sb)) {
5234 err = ext4_enable_quotas(sb);
5241 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5242 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5247 sb->s_flags = old_sb_flags;
5248 sbi->s_mount_opt = old_opts.s_mount_opt;
5249 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5250 sbi->s_resuid = old_opts.s_resuid;
5251 sbi->s_resgid = old_opts.s_resgid;
5252 sbi->s_commit_interval = old_opts.s_commit_interval;
5253 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5254 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5256 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5257 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5258 kfree(sbi->s_qf_names[i]);
5259 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5267 static int ext4_statfs_project(struct super_block *sb,
5268 kprojid_t projid, struct kstatfs *buf)
5271 struct dquot *dquot;
5275 qid = make_kqid_projid(projid);
5276 dquot = dqget(sb, qid);
5278 return PTR_ERR(dquot);
5279 spin_lock(&dquot->dq_dqb_lock);
5281 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5282 dquot->dq_dqb.dqb_bsoftlimit :
5283 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5284 if (limit && buf->f_blocks > limit) {
5285 curblock = (dquot->dq_dqb.dqb_curspace +
5286 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5287 buf->f_blocks = limit;
5288 buf->f_bfree = buf->f_bavail =
5289 (buf->f_blocks > curblock) ?
5290 (buf->f_blocks - curblock) : 0;
5293 limit = dquot->dq_dqb.dqb_isoftlimit ?
5294 dquot->dq_dqb.dqb_isoftlimit :
5295 dquot->dq_dqb.dqb_ihardlimit;
5296 if (limit && buf->f_files > limit) {
5297 buf->f_files = limit;
5299 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5300 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5303 spin_unlock(&dquot->dq_dqb_lock);
5309 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5311 struct super_block *sb = dentry->d_sb;
5312 struct ext4_sb_info *sbi = EXT4_SB(sb);
5313 struct ext4_super_block *es = sbi->s_es;
5314 ext4_fsblk_t overhead = 0, resv_blocks;
5317 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5319 if (!test_opt(sb, MINIX_DF))
5320 overhead = sbi->s_overhead;
5322 buf->f_type = EXT4_SUPER_MAGIC;
5323 buf->f_bsize = sb->s_blocksize;
5324 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5325 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5326 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5327 /* prevent underflow in case that few free space is available */
5328 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5329 buf->f_bavail = buf->f_bfree -
5330 (ext4_r_blocks_count(es) + resv_blocks);
5331 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5333 buf->f_files = le32_to_cpu(es->s_inodes_count);
5334 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5335 buf->f_namelen = EXT4_NAME_LEN;
5336 fsid = le64_to_cpup((void *)es->s_uuid) ^
5337 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5338 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5339 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5342 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5343 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5344 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5353 * Helper functions so that transaction is started before we acquire dqio_sem
5354 * to keep correct lock ordering of transaction > dqio_sem
5356 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5358 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5361 static int ext4_write_dquot(struct dquot *dquot)
5365 struct inode *inode;
5367 inode = dquot_to_inode(dquot);
5368 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5369 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5371 return PTR_ERR(handle);
5372 ret = dquot_commit(dquot);
5373 err = ext4_journal_stop(handle);
5379 static int ext4_acquire_dquot(struct dquot *dquot)
5384 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5385 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5387 return PTR_ERR(handle);
5388 ret = dquot_acquire(dquot);
5389 err = ext4_journal_stop(handle);
5395 static int ext4_release_dquot(struct dquot *dquot)
5400 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5401 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5402 if (IS_ERR(handle)) {
5403 /* Release dquot anyway to avoid endless cycle in dqput() */
5404 dquot_release(dquot);
5405 return PTR_ERR(handle);
5407 ret = dquot_release(dquot);
5408 err = ext4_journal_stop(handle);
5414 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5416 struct super_block *sb = dquot->dq_sb;
5417 struct ext4_sb_info *sbi = EXT4_SB(sb);
5419 /* Are we journaling quotas? */
5420 if (ext4_has_feature_quota(sb) ||
5421 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5422 dquot_mark_dquot_dirty(dquot);
5423 return ext4_write_dquot(dquot);
5425 return dquot_mark_dquot_dirty(dquot);
5429 static int ext4_write_info(struct super_block *sb, int type)
5434 /* Data block + inode block */
5435 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5437 return PTR_ERR(handle);
5438 ret = dquot_commit_info(sb, type);
5439 err = ext4_journal_stop(handle);
5446 * Turn on quotas during mount time - we need to find
5447 * the quota file and such...
5449 static int ext4_quota_on_mount(struct super_block *sb, int type)
5451 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5452 EXT4_SB(sb)->s_jquota_fmt, type);
5455 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5457 struct ext4_inode_info *ei = EXT4_I(inode);
5459 /* The first argument of lockdep_set_subclass has to be
5460 * *exactly* the same as the argument to init_rwsem() --- in
5461 * this case, in init_once() --- or lockdep gets unhappy
5462 * because the name of the lock is set using the
5463 * stringification of the argument to init_rwsem().
5465 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5466 lockdep_set_subclass(&ei->i_data_sem, subclass);
5470 * Standard function to be called on quota_on
5472 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5473 const struct path *path)
5477 if (!test_opt(sb, QUOTA))
5480 /* Quotafile not on the same filesystem? */
5481 if (path->dentry->d_sb != sb)
5483 /* Journaling quota? */
5484 if (EXT4_SB(sb)->s_qf_names[type]) {
5485 /* Quotafile not in fs root? */
5486 if (path->dentry->d_parent != sb->s_root)
5487 ext4_msg(sb, KERN_WARNING,
5488 "Quota file not on filesystem root. "
5489 "Journaled quota will not work");
5490 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5493 * Clear the flag just in case mount options changed since
5496 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5500 * When we journal data on quota file, we have to flush journal to see
5501 * all updates to the file when we bypass pagecache...
5503 if (EXT4_SB(sb)->s_journal &&
5504 ext4_should_journal_data(d_inode(path->dentry))) {
5506 * We don't need to lock updates but journal_flush() could
5507 * otherwise be livelocked...
5509 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5510 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5511 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5516 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5517 err = dquot_quota_on(sb, type, format_id, path);
5519 lockdep_set_quota_inode(path->dentry->d_inode,
5522 struct inode *inode = d_inode(path->dentry);
5526 * Set inode flags to prevent userspace from messing with quota
5527 * files. If this fails, we return success anyway since quotas
5528 * are already enabled and this is not a hard failure.
5531 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5534 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5535 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5536 S_NOATIME | S_IMMUTABLE);
5537 ext4_mark_inode_dirty(handle, inode);
5538 ext4_journal_stop(handle);
5540 inode_unlock(inode);
5545 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5549 struct inode *qf_inode;
5550 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5551 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5552 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5553 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5556 BUG_ON(!ext4_has_feature_quota(sb));
5558 if (!qf_inums[type])
5561 qf_inode = ext4_iget(sb, qf_inums[type]);
5562 if (IS_ERR(qf_inode)) {
5563 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5564 return PTR_ERR(qf_inode);
5567 /* Don't account quota for quota files to avoid recursion */
5568 qf_inode->i_flags |= S_NOQUOTA;
5569 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5570 err = dquot_enable(qf_inode, type, format_id, flags);
5573 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5578 /* Enable usage tracking for all quota types. */
5579 static int ext4_enable_quotas(struct super_block *sb)
5582 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5583 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5584 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5585 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5587 bool quota_mopt[EXT4_MAXQUOTAS] = {
5588 test_opt(sb, USRQUOTA),
5589 test_opt(sb, GRPQUOTA),
5590 test_opt(sb, PRJQUOTA),
5593 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5594 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5595 if (qf_inums[type]) {
5596 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5597 DQUOT_USAGE_ENABLED |
5598 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5600 for (type--; type >= 0; type--)
5601 dquot_quota_off(sb, type);
5604 "Failed to enable quota tracking "
5605 "(type=%d, err=%d). Please run "
5606 "e2fsck to fix.", type, err);
5614 static int ext4_quota_off(struct super_block *sb, int type)
5616 struct inode *inode = sb_dqopt(sb)->files[type];
5620 /* Force all delayed allocation blocks to be allocated.
5621 * Caller already holds s_umount sem */
5622 if (test_opt(sb, DELALLOC))
5623 sync_filesystem(sb);
5625 if (!inode || !igrab(inode))
5628 err = dquot_quota_off(sb, type);
5629 if (err || ext4_has_feature_quota(sb))
5634 * Update modification times of quota files when userspace can
5635 * start looking at them. If we fail, we return success anyway since
5636 * this is not a hard failure and quotas are already disabled.
5638 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5641 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5642 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5643 inode->i_mtime = inode->i_ctime = current_time(inode);
5644 ext4_mark_inode_dirty(handle, inode);
5645 ext4_journal_stop(handle);
5647 inode_unlock(inode);
5649 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5653 return dquot_quota_off(sb, type);
5656 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5657 * acquiring the locks... As quota files are never truncated and quota code
5658 * itself serializes the operations (and no one else should touch the files)
5659 * we don't have to be afraid of races */
5660 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5661 size_t len, loff_t off)
5663 struct inode *inode = sb_dqopt(sb)->files[type];
5664 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5665 int offset = off & (sb->s_blocksize - 1);
5668 struct buffer_head *bh;
5669 loff_t i_size = i_size_read(inode);
5673 if (off+len > i_size)
5676 while (toread > 0) {
5677 tocopy = sb->s_blocksize - offset < toread ?
5678 sb->s_blocksize - offset : toread;
5679 bh = ext4_bread(NULL, inode, blk, 0);
5682 if (!bh) /* A hole? */
5683 memset(data, 0, tocopy);
5685 memcpy(data, bh->b_data+offset, tocopy);
5695 /* Write to quotafile (we know the transaction is already started and has
5696 * enough credits) */
5697 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5698 const char *data, size_t len, loff_t off)
5700 struct inode *inode = sb_dqopt(sb)->files[type];
5701 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5702 int err, offset = off & (sb->s_blocksize - 1);
5704 struct buffer_head *bh;
5705 handle_t *handle = journal_current_handle();
5707 if (EXT4_SB(sb)->s_journal && !handle) {
5708 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5709 " cancelled because transaction is not started",
5710 (unsigned long long)off, (unsigned long long)len);
5714 * Since we account only one data block in transaction credits,
5715 * then it is impossible to cross a block boundary.
5717 if (sb->s_blocksize - offset < len) {
5718 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5719 " cancelled because not block aligned",
5720 (unsigned long long)off, (unsigned long long)len);
5725 bh = ext4_bread(handle, inode, blk,
5726 EXT4_GET_BLOCKS_CREATE |
5727 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5728 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5729 ext4_should_retry_alloc(inode->i_sb, &retries));
5734 BUFFER_TRACE(bh, "get write access");
5735 err = ext4_journal_get_write_access(handle, bh);
5741 memcpy(bh->b_data+offset, data, len);
5742 flush_dcache_page(bh->b_page);
5744 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5747 if (inode->i_size < off + len) {
5748 i_size_write(inode, off + len);
5749 EXT4_I(inode)->i_disksize = inode->i_size;
5750 ext4_mark_inode_dirty(handle, inode);
5755 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5757 const struct quota_format_ops *ops;
5759 if (!sb_has_quota_loaded(sb, qid->type))
5761 ops = sb_dqopt(sb)->ops[qid->type];
5762 if (!ops || !ops->get_next_id)
5764 return dquot_get_next_id(sb, qid);
5768 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5769 const char *dev_name, void *data)
5771 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5774 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5775 static inline void register_as_ext2(void)
5777 int err = register_filesystem(&ext2_fs_type);
5780 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5783 static inline void unregister_as_ext2(void)
5785 unregister_filesystem(&ext2_fs_type);
5788 static inline int ext2_feature_set_ok(struct super_block *sb)
5790 if (ext4_has_unknown_ext2_incompat_features(sb))
5794 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5799 static inline void register_as_ext2(void) { }
5800 static inline void unregister_as_ext2(void) { }
5801 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5804 static inline void register_as_ext3(void)
5806 int err = register_filesystem(&ext3_fs_type);
5809 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5812 static inline void unregister_as_ext3(void)
5814 unregister_filesystem(&ext3_fs_type);
5817 static inline int ext3_feature_set_ok(struct super_block *sb)
5819 if (ext4_has_unknown_ext3_incompat_features(sb))
5821 if (!ext4_has_feature_journal(sb))
5825 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5830 static struct file_system_type ext4_fs_type = {
5831 .owner = THIS_MODULE,
5833 .mount = ext4_mount,
5834 .kill_sb = kill_block_super,
5835 .fs_flags = FS_REQUIRES_DEV,
5837 MODULE_ALIAS_FS("ext4");
5839 /* Shared across all ext4 file systems */
5840 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5842 static int __init ext4_init_fs(void)
5846 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5847 ext4_li_info = NULL;
5848 mutex_init(&ext4_li_mtx);
5850 /* Build-time check for flags consistency */
5851 ext4_check_flag_values();
5853 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5854 init_waitqueue_head(&ext4__ioend_wq[i]);
5856 err = ext4_init_es();
5860 err = ext4_init_pageio();
5864 err = ext4_init_system_zone();
5868 err = ext4_init_sysfs();
5872 err = ext4_init_mballoc();
5875 err = init_inodecache();
5880 err = register_filesystem(&ext4_fs_type);
5886 unregister_as_ext2();
5887 unregister_as_ext3();
5888 destroy_inodecache();
5890 ext4_exit_mballoc();
5894 ext4_exit_system_zone();
5903 static void __exit ext4_exit_fs(void)
5905 ext4_destroy_lazyinit_thread();
5906 unregister_as_ext2();
5907 unregister_as_ext3();
5908 unregister_filesystem(&ext4_fs_type);
5909 destroy_inodecache();
5910 ext4_exit_mballoc();
5912 ext4_exit_system_zone();
5917 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5918 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5919 MODULE_LICENSE("GPL");
5920 MODULE_SOFTDEP("pre: crc32c");
5921 module_init(ext4_init_fs)
5922 module_exit(ext4_exit_fs)