1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
39 #include <linux/of_platform.h>
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
61 static inline int cmos_use_acpi_alarm(void)
63 return use_acpi_alarm;
65 #else /* !CONFIG_ACPI */
67 static inline int cmos_use_acpi_alarm(void)
74 struct rtc_device *rtc;
77 struct resource *iomem;
78 time64_t alarm_expires;
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
86 /* newer hardware extends the original register set */
91 struct rtc_wkalrm saved_wkalrm;
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n) ((n) > 0)
97 static const char driver_name[] = "rtc_cmos";
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
103 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
105 static inline int is_intr(u8 rtc_intr)
107 if (!(rtc_intr & RTC_IRQF))
109 return rtc_intr & RTC_IRQMASK;
112 /*----------------------------------------------------------------*/
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
128 static inline int is_hpet_enabled(void)
133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
149 static inline int hpet_set_periodic_freq(unsigned long freq)
154 static inline int hpet_rtc_dropped_irq(void)
159 static inline int hpet_rtc_timer_init(void)
164 extern irq_handler_t hpet_rtc_interrupt;
166 static inline int hpet_register_irq_handler(irq_handler_t handler)
171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179 static inline int use_hpet_alarm(void)
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
184 /*----------------------------------------------------------------*/
188 /* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM. Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
192 #define can_bank2 true
194 static inline unsigned char cmos_read_bank2(unsigned char addr)
196 outb(addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
202 outb(addr, RTC_PORT(2));
203 outb(val, RTC_PORT(3));
208 #define can_bank2 false
210 static inline unsigned char cmos_read_bank2(unsigned char addr)
215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
221 /*----------------------------------------------------------------*/
223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
228 * If pm_trace abused the RTC for storage, set the timespec to 0,
229 * which tells the caller that this RTC value is unusable.
231 if (!pm_trace_rtc_valid())
234 ret = mc146818_get_time(t, 1000);
236 dev_err_ratelimited(dev, "unable to read current time\n");
243 static int cmos_set_time(struct device *dev, struct rtc_time *t)
245 /* NOTE: this ignores the issue whereby updating the seconds
246 * takes effect exactly 500ms after we write the register.
247 * (Also queueing and other delays before we get this far.)
249 return mc146818_set_time(t);
252 struct cmos_read_alarm_callback_param {
253 struct cmos_rtc *cmos;
254 struct rtc_time *time;
255 unsigned char rtc_control;
258 static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
261 struct cmos_read_alarm_callback_param *p =
262 (struct cmos_read_alarm_callback_param *)param_in;
263 struct rtc_time *time = p->time;
265 time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
266 time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
267 time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
269 if (p->cmos->day_alrm) {
270 /* ignore upper bits on readback per ACPI spec */
271 time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
275 if (p->cmos->mon_alrm) {
276 time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
282 p->rtc_control = CMOS_READ(RTC_CONTROL);
285 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
287 struct cmos_rtc *cmos = dev_get_drvdata(dev);
288 struct cmos_read_alarm_callback_param p = {
293 /* This not only a rtc_op, but also called directly */
294 if (!is_valid_irq(cmos->irq))
297 /* Basic alarms only support hour, minute, and seconds fields.
298 * Some also support day and month, for alarms up to a year in
302 /* Some Intel chipsets disconnect the alarm registers when the clock
303 * update is in progress - during this time reads return bogus values
304 * and writes may fail silently. See for example "7th Generation Intel®
305 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
308 * Use the mc146818_avoid_UIP() function to avoid this.
310 if (!mc146818_avoid_UIP(cmos_read_alarm_callback, 10, &p))
313 if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
314 if (((unsigned)t->time.tm_sec) < 0x60)
315 t->time.tm_sec = bcd2bin(t->time.tm_sec);
318 if (((unsigned)t->time.tm_min) < 0x60)
319 t->time.tm_min = bcd2bin(t->time.tm_min);
322 if (((unsigned)t->time.tm_hour) < 0x24)
323 t->time.tm_hour = bcd2bin(t->time.tm_hour);
325 t->time.tm_hour = -1;
327 if (cmos->day_alrm) {
328 if (((unsigned)t->time.tm_mday) <= 0x31)
329 t->time.tm_mday = bcd2bin(t->time.tm_mday);
331 t->time.tm_mday = -1;
333 if (cmos->mon_alrm) {
334 if (((unsigned)t->time.tm_mon) <= 0x12)
335 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
342 t->enabled = !!(p.rtc_control & RTC_AIE);
348 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
350 unsigned char rtc_intr;
352 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
353 * allegedly some older rtcs need that to handle irqs properly
355 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
357 if (use_hpet_alarm())
360 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
361 if (is_intr(rtc_intr))
362 rtc_update_irq(cmos->rtc, 1, rtc_intr);
365 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
367 unsigned char rtc_control;
369 /* flush any pending IRQ status, notably for update irqs,
370 * before we enable new IRQs
372 rtc_control = CMOS_READ(RTC_CONTROL);
373 cmos_checkintr(cmos, rtc_control);
376 CMOS_WRITE(rtc_control, RTC_CONTROL);
377 if (use_hpet_alarm())
378 hpet_set_rtc_irq_bit(mask);
380 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
382 cmos->wake_on(cmos->dev);
385 cmos_checkintr(cmos, rtc_control);
388 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
390 unsigned char rtc_control;
392 rtc_control = CMOS_READ(RTC_CONTROL);
393 rtc_control &= ~mask;
394 CMOS_WRITE(rtc_control, RTC_CONTROL);
395 if (use_hpet_alarm())
396 hpet_mask_rtc_irq_bit(mask);
398 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
400 cmos->wake_off(cmos->dev);
403 cmos_checkintr(cmos, rtc_control);
406 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
408 struct cmos_rtc *cmos = dev_get_drvdata(dev);
411 cmos_read_time(dev, &now);
413 if (!cmos->day_alrm) {
417 t_max_date = rtc_tm_to_time64(&now);
418 t_max_date += 24 * 60 * 60 - 1;
419 t_alrm = rtc_tm_to_time64(&t->time);
420 if (t_alrm > t_max_date) {
422 "Alarms can be up to one day in the future\n");
425 } else if (!cmos->mon_alrm) {
426 struct rtc_time max_date = now;
431 if (max_date.tm_mon == 11) {
433 max_date.tm_year += 1;
435 max_date.tm_mon += 1;
437 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
438 if (max_date.tm_mday > max_mday)
439 max_date.tm_mday = max_mday;
441 t_max_date = rtc_tm_to_time64(&max_date);
443 t_alrm = rtc_tm_to_time64(&t->time);
444 if (t_alrm > t_max_date) {
446 "Alarms can be up to one month in the future\n");
450 struct rtc_time max_date = now;
455 max_date.tm_year += 1;
456 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
457 if (max_date.tm_mday > max_mday)
458 max_date.tm_mday = max_mday;
460 t_max_date = rtc_tm_to_time64(&max_date);
462 t_alrm = rtc_tm_to_time64(&t->time);
463 if (t_alrm > t_max_date) {
465 "Alarms can be up to one year in the future\n");
473 struct cmos_set_alarm_callback_param {
474 struct cmos_rtc *cmos;
475 unsigned char mon, mday, hrs, min, sec;
476 struct rtc_wkalrm *t;
479 /* Note: this function may be executed by mc146818_avoid_UIP() more then
482 static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
485 struct cmos_set_alarm_callback_param *p =
486 (struct cmos_set_alarm_callback_param *)param_in;
488 /* next rtc irq must not be from previous alarm setting */
489 cmos_irq_disable(p->cmos, RTC_AIE);
492 CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
493 CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
494 CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
496 /* the system may support an "enhanced" alarm */
497 if (p->cmos->day_alrm) {
498 CMOS_WRITE(p->mday, p->cmos->day_alrm);
499 if (p->cmos->mon_alrm)
500 CMOS_WRITE(p->mon, p->cmos->mon_alrm);
503 if (use_hpet_alarm()) {
505 * FIXME the HPET alarm glue currently ignores day_alrm
508 hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
513 cmos_irq_enable(p->cmos, RTC_AIE);
516 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
518 struct cmos_rtc *cmos = dev_get_drvdata(dev);
519 struct cmos_set_alarm_callback_param p = {
523 unsigned char rtc_control;
526 /* This not only a rtc_op, but also called directly */
527 if (!is_valid_irq(cmos->irq))
530 ret = cmos_validate_alarm(dev, t);
534 p.mon = t->time.tm_mon + 1;
535 p.mday = t->time.tm_mday;
536 p.hrs = t->time.tm_hour;
537 p.min = t->time.tm_min;
538 p.sec = t->time.tm_sec;
540 spin_lock_irq(&rtc_lock);
541 rtc_control = CMOS_READ(RTC_CONTROL);
542 spin_unlock_irq(&rtc_lock);
544 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
545 /* Writing 0xff means "don't care" or "match all". */
546 p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
547 p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
548 p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
549 p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
550 p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
554 * Some Intel chipsets disconnect the alarm registers when the clock
555 * update is in progress - during this time writes fail silently.
557 * Use mc146818_avoid_UIP() to avoid this.
559 if (!mc146818_avoid_UIP(cmos_set_alarm_callback, 10, &p))
562 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
567 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
569 struct cmos_rtc *cmos = dev_get_drvdata(dev);
572 spin_lock_irqsave(&rtc_lock, flags);
575 cmos_irq_enable(cmos, RTC_AIE);
577 cmos_irq_disable(cmos, RTC_AIE);
579 spin_unlock_irqrestore(&rtc_lock, flags);
583 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
585 static int cmos_procfs(struct device *dev, struct seq_file *seq)
587 struct cmos_rtc *cmos = dev_get_drvdata(dev);
588 unsigned char rtc_control, valid;
590 spin_lock_irq(&rtc_lock);
591 rtc_control = CMOS_READ(RTC_CONTROL);
592 valid = CMOS_READ(RTC_VALID);
593 spin_unlock_irq(&rtc_lock);
595 /* NOTE: at least ICH6 reports battery status using a different
596 * (non-RTC) bit; and SQWE is ignored on many current systems.
599 "periodic_IRQ\t: %s\n"
601 "HPET_emulated\t: %s\n"
602 // "square_wave\t: %s\n"
605 "periodic_freq\t: %d\n"
606 "batt_status\t: %s\n",
607 (rtc_control & RTC_PIE) ? "yes" : "no",
608 (rtc_control & RTC_UIE) ? "yes" : "no",
609 use_hpet_alarm() ? "yes" : "no",
610 // (rtc_control & RTC_SQWE) ? "yes" : "no",
611 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
612 (rtc_control & RTC_DST_EN) ? "yes" : "no",
614 (valid & RTC_VRT) ? "okay" : "dead");
620 #define cmos_procfs NULL
623 static const struct rtc_class_ops cmos_rtc_ops = {
624 .read_time = cmos_read_time,
625 .set_time = cmos_set_time,
626 .read_alarm = cmos_read_alarm,
627 .set_alarm = cmos_set_alarm,
629 .alarm_irq_enable = cmos_alarm_irq_enable,
632 /*----------------------------------------------------------------*/
635 * All these chips have at least 64 bytes of address space, shared by
636 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
637 * by boot firmware. Modern chips have 128 or 256 bytes.
640 #define NVRAM_OFFSET (RTC_REG_D + 1)
642 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
645 unsigned char *buf = val;
648 for (; count; count--, off++, buf++) {
649 guard(spinlock_irq)(&rtc_lock);
651 *buf = CMOS_READ(off);
653 *buf = cmos_read_bank2(off);
661 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
664 struct cmos_rtc *cmos = priv;
665 unsigned char *buf = val;
667 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
668 * checksum on part of the NVRAM data. That's currently ignored
669 * here. If userspace is smart enough to know what fields of
670 * NVRAM to update, updating checksums is also part of its job.
673 for (; count; count--, off++, buf++) {
674 /* don't trash RTC registers */
675 if (off == cmos->day_alrm
676 || off == cmos->mon_alrm
677 || off == cmos->century)
680 guard(spinlock_irq)(&rtc_lock);
682 CMOS_WRITE(*buf, off);
684 cmos_write_bank2(*buf, off);
692 /*----------------------------------------------------------------*/
694 static struct cmos_rtc cmos_rtc;
696 static irqreturn_t cmos_interrupt(int irq, void *p)
701 spin_lock(&rtc_lock);
703 /* When the HPET interrupt handler calls us, the interrupt
704 * status is passed as arg1 instead of the irq number. But
705 * always clear irq status, even when HPET is in the way.
707 * Note that HPET and RTC are almost certainly out of phase,
708 * giving different IRQ status ...
710 irqstat = CMOS_READ(RTC_INTR_FLAGS);
711 rtc_control = CMOS_READ(RTC_CONTROL);
712 if (use_hpet_alarm())
713 irqstat = (unsigned long)irq & 0xF0;
715 /* If we were suspended, RTC_CONTROL may not be accurate since the
716 * bios may have cleared it.
718 if (!cmos_rtc.suspend_ctrl)
719 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
721 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
723 /* All Linux RTC alarms should be treated as if they were oneshot.
724 * Similar code may be needed in system wakeup paths, in case the
725 * alarm woke the system.
727 if (irqstat & RTC_AIE) {
728 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
729 rtc_control &= ~RTC_AIE;
730 CMOS_WRITE(rtc_control, RTC_CONTROL);
731 if (use_hpet_alarm())
732 hpet_mask_rtc_irq_bit(RTC_AIE);
733 CMOS_READ(RTC_INTR_FLAGS);
735 spin_unlock(&rtc_lock);
737 if (is_intr(irqstat)) {
738 rtc_update_irq(p, 1, irqstat);
746 #include <linux/acpi.h>
748 static u32 rtc_handler(void *context)
750 struct device *dev = context;
751 struct cmos_rtc *cmos = dev_get_drvdata(dev);
752 unsigned char rtc_control = 0;
753 unsigned char rtc_intr;
758 * Always update rtc irq when ACPI is used as RTC Alarm.
759 * Or else, ACPI SCI is enabled during suspend/resume only,
760 * update rtc irq in that case.
762 if (cmos_use_acpi_alarm())
763 cmos_interrupt(0, (void *)cmos->rtc);
765 /* Fix me: can we use cmos_interrupt() here as well? */
766 spin_lock_irqsave(&rtc_lock, flags);
767 if (cmos_rtc.suspend_ctrl)
768 rtc_control = CMOS_READ(RTC_CONTROL);
769 if (rtc_control & RTC_AIE) {
770 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
771 CMOS_WRITE(rtc_control, RTC_CONTROL);
772 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
773 rtc_update_irq(cmos->rtc, 1, rtc_intr);
775 spin_unlock_irqrestore(&rtc_lock, flags);
778 pm_wakeup_hard_event(dev);
779 acpi_clear_event(ACPI_EVENT_RTC);
780 acpi_disable_event(ACPI_EVENT_RTC, 0);
781 return ACPI_INTERRUPT_HANDLED;
784 static void acpi_rtc_event_setup(struct device *dev)
789 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
791 * After the RTC handler is installed, the Fixed_RTC event should
792 * be disabled. Only when the RTC alarm is set will it be enabled.
794 acpi_clear_event(ACPI_EVENT_RTC);
795 acpi_disable_event(ACPI_EVENT_RTC, 0);
798 static void acpi_rtc_event_cleanup(void)
803 acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
806 static void rtc_wake_on(struct device *dev)
808 acpi_clear_event(ACPI_EVENT_RTC);
809 acpi_enable_event(ACPI_EVENT_RTC, 0);
812 static void rtc_wake_off(struct device *dev)
814 acpi_disable_event(ACPI_EVENT_RTC, 0);
818 static void use_acpi_alarm_quirks(void)
820 switch (boot_cpu_data.x86_vendor) {
821 case X86_VENDOR_INTEL:
822 if (dmi_get_bios_year() < 2015)
826 case X86_VENDOR_HYGON:
827 if (dmi_get_bios_year() < 2021)
833 if (!is_hpet_enabled())
836 use_acpi_alarm = true;
839 static inline void use_acpi_alarm_quirks(void) { }
842 static void acpi_cmos_wake_setup(struct device *dev)
847 use_acpi_alarm_quirks();
849 cmos_rtc.wake_on = rtc_wake_on;
850 cmos_rtc.wake_off = rtc_wake_off;
852 /* ACPI tables bug workaround. */
853 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
854 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
855 acpi_gbl_FADT.month_alarm);
856 acpi_gbl_FADT.month_alarm = 0;
859 cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
860 cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
861 cmos_rtc.century = acpi_gbl_FADT.century;
863 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
864 dev_info(dev, "RTC can wake from S4\n");
866 /* RTC always wakes from S1/S2/S3, and often S4/STD */
867 device_init_wakeup(dev, 1);
870 static void cmos_check_acpi_rtc_status(struct device *dev,
871 unsigned char *rtc_control)
873 struct cmos_rtc *cmos = dev_get_drvdata(dev);
874 acpi_event_status rtc_status;
877 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
880 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
881 if (ACPI_FAILURE(status)) {
882 dev_err(dev, "Could not get RTC status\n");
883 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
885 *rtc_control &= ~RTC_AIE;
886 CMOS_WRITE(*rtc_control, RTC_CONTROL);
887 mask = CMOS_READ(RTC_INTR_FLAGS);
888 rtc_update_irq(cmos->rtc, 1, mask);
892 #else /* !CONFIG_ACPI */
894 static inline void acpi_rtc_event_setup(struct device *dev)
898 static inline void acpi_rtc_event_cleanup(void)
902 static inline void acpi_cmos_wake_setup(struct device *dev)
906 static inline void cmos_check_acpi_rtc_status(struct device *dev,
907 unsigned char *rtc_control)
910 #endif /* CONFIG_ACPI */
916 #define INITSECTION __init
919 #define SECS_PER_DAY (24 * 60 * 60)
920 #define SECS_PER_MONTH (28 * SECS_PER_DAY)
921 #define SECS_PER_YEAR (365 * SECS_PER_DAY)
923 static int INITSECTION
924 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
926 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
928 unsigned char rtc_control;
929 unsigned address_space;
931 struct nvmem_config nvmem_cfg = {
932 .name = "cmos_nvram",
935 .reg_read = cmos_nvram_read,
936 .reg_write = cmos_nvram_write,
940 /* there can be only one ... */
947 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
949 * REVISIT non-x86 systems may instead use memory space resources
950 * (needing ioremap etc), not i/o space resources like this ...
953 ports = request_region(ports->start, resource_size(ports),
956 ports = request_mem_region(ports->start, resource_size(ports),
959 dev_dbg(dev, "i/o registers already in use\n");
963 cmos_rtc.irq = rtc_irq;
964 cmos_rtc.iomem = ports;
966 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
967 * driver did, but don't reject unknown configs. Old hardware
968 * won't address 128 bytes. Newer chips have multiple banks,
969 * though they may not be listed in one I/O resource.
971 #if defined(CONFIG_ATARI)
973 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
974 || defined(__sparc__) || defined(__mips__) \
975 || defined(__powerpc__)
978 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
981 if (can_bank2 && ports->end > (ports->start + 1))
984 /* For ACPI systems extension info comes from the FADT. On others,
985 * board specific setup provides it as appropriate. Systems where
986 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
987 * some almost-clones) can provide hooks to make that behave.
989 * Note that ACPI doesn't preclude putting these registers into
990 * "extended" areas of the chip, including some that we won't yet
991 * expect CMOS_READ and friends to handle.
996 if (info->address_space)
997 address_space = info->address_space;
999 cmos_rtc.day_alrm = info->rtc_day_alarm;
1000 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
1001 cmos_rtc.century = info->rtc_century;
1003 if (info->wake_on && info->wake_off) {
1004 cmos_rtc.wake_on = info->wake_on;
1005 cmos_rtc.wake_off = info->wake_off;
1008 acpi_cmos_wake_setup(dev);
1011 if (cmos_rtc.day_alrm >= 128)
1012 cmos_rtc.day_alrm = 0;
1014 if (cmos_rtc.mon_alrm >= 128)
1015 cmos_rtc.mon_alrm = 0;
1017 if (cmos_rtc.century >= 128)
1018 cmos_rtc.century = 0;
1021 dev_set_drvdata(dev, &cmos_rtc);
1023 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
1024 if (IS_ERR(cmos_rtc.rtc)) {
1025 retval = PTR_ERR(cmos_rtc.rtc);
1029 if (cmos_rtc.mon_alrm)
1030 cmos_rtc.rtc->alarm_offset_max = SECS_PER_YEAR - 1;
1031 else if (cmos_rtc.day_alrm)
1032 cmos_rtc.rtc->alarm_offset_max = SECS_PER_MONTH - 1;
1034 cmos_rtc.rtc->alarm_offset_max = SECS_PER_DAY - 1;
1036 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1038 if (!mc146818_does_rtc_work()) {
1039 dev_warn(dev, "broken or not accessible\n");
1044 spin_lock_irq(&rtc_lock);
1046 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1047 /* force periodic irq to CMOS reset default of 1024Hz;
1049 * REVISIT it's been reported that at least one x86_64 ALI
1050 * mobo doesn't use 32KHz here ... for portability we might
1051 * need to do something about other clock frequencies.
1053 cmos_rtc.rtc->irq_freq = 1024;
1054 if (use_hpet_alarm())
1055 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
1056 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1060 if (is_valid_irq(rtc_irq))
1061 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1063 rtc_control = CMOS_READ(RTC_CONTROL);
1065 spin_unlock_irq(&rtc_lock);
1067 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1068 dev_warn(dev, "only 24-hr supported\n");
1073 if (use_hpet_alarm())
1074 hpet_rtc_timer_init();
1076 if (is_valid_irq(rtc_irq)) {
1077 irq_handler_t rtc_cmos_int_handler;
1079 if (use_hpet_alarm()) {
1080 rtc_cmos_int_handler = hpet_rtc_interrupt;
1081 retval = hpet_register_irq_handler(cmos_interrupt);
1083 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1084 dev_warn(dev, "hpet_register_irq_handler "
1085 " failed in rtc_init().");
1089 rtc_cmos_int_handler = cmos_interrupt;
1091 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
1092 0, dev_name(&cmos_rtc.rtc->dev),
1095 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1099 clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
1102 cmos_rtc.rtc->ops = &cmos_rtc_ops;
1104 retval = devm_rtc_register_device(cmos_rtc.rtc);
1108 /* Set the sync offset for the periodic 11min update correct */
1109 cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
1111 /* export at least the first block of NVRAM */
1112 nvmem_cfg.size = address_space - NVRAM_OFFSET;
1113 devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
1116 * Everything has gone well so far, so by default register a handler for
1117 * the ACPI RTC fixed event.
1120 acpi_rtc_event_setup(dev);
1122 dev_info(dev, "%s%s, %d bytes nvram%s\n",
1123 !is_valid_irq(rtc_irq) ? "no alarms" :
1124 cmos_rtc.mon_alrm ? "alarms up to one year" :
1125 cmos_rtc.day_alrm ? "alarms up to one month" :
1126 "alarms up to one day",
1127 cmos_rtc.century ? ", y3k" : "",
1129 use_hpet_alarm() ? ", hpet irqs" : "");
1134 if (is_valid_irq(rtc_irq))
1135 free_irq(rtc_irq, cmos_rtc.rtc);
1137 cmos_rtc.dev = NULL;
1140 release_region(ports->start, resource_size(ports));
1142 release_mem_region(ports->start, resource_size(ports));
1146 static void cmos_do_shutdown(int rtc_irq)
1148 spin_lock_irq(&rtc_lock);
1149 if (is_valid_irq(rtc_irq))
1150 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
1151 spin_unlock_irq(&rtc_lock);
1154 static void cmos_do_remove(struct device *dev)
1156 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1157 struct resource *ports;
1159 cmos_do_shutdown(cmos->irq);
1161 if (is_valid_irq(cmos->irq)) {
1162 free_irq(cmos->irq, cmos->rtc);
1163 if (use_hpet_alarm())
1164 hpet_unregister_irq_handler(cmos_interrupt);
1167 if (!dev_get_platdata(dev))
1168 acpi_rtc_event_cleanup();
1172 ports = cmos->iomem;
1174 release_region(ports->start, resource_size(ports));
1176 release_mem_region(ports->start, resource_size(ports));
1182 static int cmos_aie_poweroff(struct device *dev)
1184 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1185 struct rtc_time now;
1188 unsigned char rtc_control;
1190 if (!cmos->alarm_expires)
1193 spin_lock_irq(&rtc_lock);
1194 rtc_control = CMOS_READ(RTC_CONTROL);
1195 spin_unlock_irq(&rtc_lock);
1197 /* We only care about the situation where AIE is disabled. */
1198 if (rtc_control & RTC_AIE)
1201 cmos_read_time(dev, &now);
1202 t_now = rtc_tm_to_time64(&now);
1205 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1206 * automatically right after shutdown on some buggy boxes.
1207 * This automatic rebooting issue won't happen when the alarm
1208 * time is larger than now+1 seconds.
1210 * If the alarm time is equal to now+1 seconds, the issue can be
1211 * prevented by cancelling the alarm.
1213 if (cmos->alarm_expires == t_now + 1) {
1214 struct rtc_wkalrm alarm;
1216 /* Cancel the AIE timer by configuring the past time. */
1217 rtc_time64_to_tm(t_now - 1, &alarm.time);
1219 retval = cmos_set_alarm(dev, &alarm);
1220 } else if (cmos->alarm_expires > t_now + 1) {
1227 static int cmos_suspend(struct device *dev)
1229 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1232 /* only the alarm might be a wakeup event source */
1233 spin_lock_irq(&rtc_lock);
1234 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1235 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1238 if (device_may_wakeup(dev))
1239 mask = RTC_IRQMASK & ~RTC_AIE;
1243 CMOS_WRITE(tmp, RTC_CONTROL);
1244 if (use_hpet_alarm())
1245 hpet_mask_rtc_irq_bit(mask);
1246 cmos_checkintr(cmos, tmp);
1248 spin_unlock_irq(&rtc_lock);
1250 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1251 cmos->enabled_wake = 1;
1255 enable_irq_wake(cmos->irq);
1258 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1259 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1261 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1262 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1268 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1269 * after a detour through G3 "mechanical off", although the ACPI spec
1270 * says wakeup should only work from G1/S4 "hibernate". To most users,
1271 * distinctions between S4 and S5 are pointless. So when the hardware
1272 * allows, don't draw that distinction.
1274 static inline int cmos_poweroff(struct device *dev)
1276 if (!IS_ENABLED(CONFIG_PM))
1279 return cmos_suspend(dev);
1282 static void cmos_check_wkalrm(struct device *dev)
1284 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1285 struct rtc_wkalrm current_alarm;
1287 time64_t t_current_expires;
1288 time64_t t_saved_expires;
1289 struct rtc_time now;
1291 /* Check if we have RTC Alarm armed */
1292 if (!(cmos->suspend_ctrl & RTC_AIE))
1295 cmos_read_time(dev, &now);
1296 t_now = rtc_tm_to_time64(&now);
1299 * ACPI RTC wake event is cleared after resume from STR,
1300 * ACK the rtc irq here
1302 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1303 local_irq_disable();
1304 cmos_interrupt(0, (void *)cmos->rtc);
1309 memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm));
1310 cmos_read_alarm(dev, ¤t_alarm);
1311 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
1312 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1313 if (t_current_expires != t_saved_expires ||
1314 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1315 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1319 static int __maybe_unused cmos_resume(struct device *dev)
1321 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1324 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1326 cmos->wake_off(dev);
1328 disable_irq_wake(cmos->irq);
1329 cmos->enabled_wake = 0;
1332 /* The BIOS might have changed the alarm, restore it */
1333 cmos_check_wkalrm(dev);
1335 spin_lock_irq(&rtc_lock);
1336 tmp = cmos->suspend_ctrl;
1337 cmos->suspend_ctrl = 0;
1338 /* re-enable any irqs previously active */
1339 if (tmp & RTC_IRQMASK) {
1342 if (device_may_wakeup(dev) && use_hpet_alarm())
1343 hpet_rtc_timer_init();
1346 CMOS_WRITE(tmp, RTC_CONTROL);
1347 if (use_hpet_alarm())
1348 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1350 mask = CMOS_READ(RTC_INTR_FLAGS);
1351 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1352 if (!use_hpet_alarm() || !is_intr(mask))
1355 /* force one-shot behavior if HPET blocked
1356 * the wake alarm's irq
1358 rtc_update_irq(cmos->rtc, 1, mask);
1360 hpet_mask_rtc_irq_bit(RTC_AIE);
1361 } while (mask & RTC_AIE);
1364 cmos_check_acpi_rtc_status(dev, &tmp);
1366 spin_unlock_irq(&rtc_lock);
1368 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1373 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1375 /*----------------------------------------------------------------*/
1377 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1378 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1379 * probably list them in similar PNPBIOS tables; so PNP is more common.
1381 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1382 * predate even PNPBIOS should set up platform_bus devices.
1387 #include <linux/pnp.h>
1389 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1393 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1396 /* Some machines contain a PNP entry for the RTC, but
1397 * don't define the IRQ. It should always be safe to
1398 * hardcode it on systems with a legacy PIC.
1400 if (nr_legacy_irqs())
1404 irq = pnp_irq(pnp, 0);
1407 return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1410 static void cmos_pnp_remove(struct pnp_dev *pnp)
1412 cmos_do_remove(&pnp->dev);
1415 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1417 struct device *dev = &pnp->dev;
1418 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1420 if (system_state == SYSTEM_POWER_OFF) {
1421 int retval = cmos_poweroff(dev);
1423 if (cmos_aie_poweroff(dev) < 0 && !retval)
1427 cmos_do_shutdown(cmos->irq);
1430 static const struct pnp_device_id rtc_ids[] = {
1431 { .id = "PNP0b00", },
1432 { .id = "PNP0b01", },
1433 { .id = "PNP0b02", },
1436 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1438 static struct pnp_driver cmos_pnp_driver = {
1439 .name = driver_name,
1440 .id_table = rtc_ids,
1441 .probe = cmos_pnp_probe,
1442 .remove = cmos_pnp_remove,
1443 .shutdown = cmos_pnp_shutdown,
1445 /* flag ensures resume() gets called, and stops syslog spam */
1446 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1452 #endif /* CONFIG_PNP */
1455 static const struct of_device_id of_cmos_match[] = {
1457 .compatible = "motorola,mc146818",
1461 MODULE_DEVICE_TABLE(of, of_cmos_match);
1463 static __init void cmos_of_init(struct platform_device *pdev)
1465 struct device_node *node = pdev->dev.of_node;
1471 val = of_get_property(node, "ctrl-reg", NULL);
1473 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1475 val = of_get_property(node, "freq-reg", NULL);
1477 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1480 static inline void cmos_of_init(struct platform_device *pdev) {}
1482 /*----------------------------------------------------------------*/
1484 /* Platform setup should have set up an RTC device, when PNP is
1485 * unavailable ... this could happen even on (older) PCs.
1488 static int __init cmos_platform_probe(struct platform_device *pdev)
1490 struct resource *resource;
1496 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1498 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1499 irq = platform_get_irq(pdev, 0);
1503 return cmos_do_probe(&pdev->dev, resource, irq);
1506 static void cmos_platform_remove(struct platform_device *pdev)
1508 cmos_do_remove(&pdev->dev);
1511 static void cmos_platform_shutdown(struct platform_device *pdev)
1513 struct device *dev = &pdev->dev;
1514 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1516 if (system_state == SYSTEM_POWER_OFF) {
1517 int retval = cmos_poweroff(dev);
1519 if (cmos_aie_poweroff(dev) < 0 && !retval)
1523 cmos_do_shutdown(cmos->irq);
1526 /* work with hotplug and coldplug */
1527 MODULE_ALIAS("platform:rtc_cmos");
1529 static struct platform_driver cmos_platform_driver = {
1530 .remove = cmos_platform_remove,
1531 .shutdown = cmos_platform_shutdown,
1533 .name = driver_name,
1535 .of_match_table = of_match_ptr(of_cmos_match),
1540 static bool pnp_driver_registered;
1542 static bool platform_driver_registered;
1544 static int __init cmos_init(void)
1549 retval = pnp_register_driver(&cmos_pnp_driver);
1551 pnp_driver_registered = true;
1554 if (!cmos_rtc.dev) {
1555 retval = platform_driver_probe(&cmos_platform_driver,
1556 cmos_platform_probe);
1558 platform_driver_registered = true;
1565 if (pnp_driver_registered)
1566 pnp_unregister_driver(&cmos_pnp_driver);
1570 module_init(cmos_init);
1572 static void __exit cmos_exit(void)
1575 if (pnp_driver_registered)
1576 pnp_unregister_driver(&cmos_pnp_driver);
1578 if (platform_driver_registered)
1579 platform_driver_unregister(&cmos_platform_driver);
1581 module_exit(cmos_exit);
1584 MODULE_AUTHOR("David Brownell");
1585 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1586 MODULE_LICENSE("GPL");