]> Git Repo - linux.git/blob - drivers/acpi/processor_idle.c
Merge tag 'i2c-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[linux.git] / drivers / acpi / processor_idle.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * processor_idle - idle state submodule to the ACPI processor driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <[email protected]>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <[email protected]>
7  *  Copyright (C) 2004, 2005 Dominik Brodowski <[email protected]>
8  *  Copyright (C) 2004  Anil S Keshavamurthy <[email protected]>
9  *                      - Added processor hotplug support
10  *  Copyright (C) 2005  Venkatesh Pallipadi <[email protected]>
11  *                      - Added support for C3 on SMP
12  */
13 #define pr_fmt(fmt) "ACPI: " fmt
14
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h>       /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <linux/minmax.h>
23 #include <linux/perf_event.h>
24 #include <acpi/processor.h>
25 #include <linux/context_tracking.h>
26
27 /*
28  * Include the apic definitions for x86 to have the APIC timer related defines
29  * available also for UP (on SMP it gets magically included via linux/smp.h).
30  * asm/acpi.h is not an option, as it would require more include magic. Also
31  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
32  */
33 #ifdef CONFIG_X86
34 #include <asm/apic.h>
35 #include <asm/cpu.h>
36 #endif
37
38 #define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0400);
42 static bool nocst __read_mostly;
43 module_param(nocst, bool, 0400);
44 static bool bm_check_disable __read_mostly;
45 module_param(bm_check_disable, bool, 0400);
46
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
49
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51
52 struct cpuidle_driver acpi_idle_driver = {
53         .name =         "acpi_idle",
54         .owner =        THIS_MODULE,
55 };
56
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60
61 static int disabled_by_idle_boot_param(void)
62 {
63         return boot_option_idle_override == IDLE_POLL ||
64                 boot_option_idle_override == IDLE_HALT;
65 }
66
67 /*
68  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69  * For now disable this. Probably a bug somewhere else.
70  *
71  * To skip this limit, boot/load with a large max_cstate limit.
72  */
73 static int set_max_cstate(const struct dmi_system_id *id)
74 {
75         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76                 return 0;
77
78         pr_notice("%s detected - limiting to C%ld max_cstate."
79                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
80                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81
82         max_cstate = (long)id->driver_data;
83
84         return 0;
85 }
86
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88         { set_max_cstate, "Clevo 5600D", {
89           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91          (void *)2},
92         { set_max_cstate, "Pavilion zv5000", {
93           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95          (void *)1},
96         { set_max_cstate, "Asus L8400B", {
97           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99          (void *)1},
100         {},
101 };
102
103
104 /*
105  * Callers should disable interrupts before the call and enable
106  * interrupts after return.
107  */
108 static void __cpuidle acpi_safe_halt(void)
109 {
110         if (!tif_need_resched()) {
111                 raw_safe_halt();
112                 raw_local_irq_disable();
113         }
114 }
115
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
117
118 /*
119  * Some BIOS implementations switch to C3 in the published C2 state.
120  * This seems to be a common problem on AMD boxen, but other vendors
121  * are affected too. We pick the most conservative approach: we assume
122  * that the local APIC stops in both C2 and C3.
123  */
124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125                                    struct acpi_processor_cx *cx)
126 {
127         struct acpi_processor_power *pwr = &pr->power;
128         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129
130         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131                 return;
132
133         if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134                 type = ACPI_STATE_C1;
135
136         /*
137          * Check, if one of the previous states already marked the lapic
138          * unstable
139          */
140         if (pwr->timer_broadcast_on_state < state)
141                 return;
142
143         if (cx->type >= type)
144                 pr->power.timer_broadcast_on_state = state;
145 }
146
147 static void __lapic_timer_propagate_broadcast(void *arg)
148 {
149         struct acpi_processor *pr = arg;
150
151         if (pr->power.timer_broadcast_on_state < INT_MAX)
152                 tick_broadcast_enable();
153         else
154                 tick_broadcast_disable();
155 }
156
157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158 {
159         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160                                  (void *)pr, 1);
161 }
162
163 /* Power(C) State timer broadcast control */
164 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
165                                         struct acpi_processor_cx *cx)
166 {
167         return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
168 }
169
170 #else
171
172 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
173                                    struct acpi_processor_cx *cstate) { }
174 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
175
176 static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
177                                         struct acpi_processor_cx *cx)
178 {
179         return false;
180 }
181
182 #endif
183
184 #if defined(CONFIG_X86)
185 static void tsc_check_state(int state)
186 {
187         switch (boot_cpu_data.x86_vendor) {
188         case X86_VENDOR_HYGON:
189         case X86_VENDOR_AMD:
190         case X86_VENDOR_INTEL:
191         case X86_VENDOR_CENTAUR:
192         case X86_VENDOR_ZHAOXIN:
193                 /*
194                  * AMD Fam10h TSC will tick in all
195                  * C/P/S0/S1 states when this bit is set.
196                  */
197                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
198                         return;
199                 fallthrough;
200         default:
201                 /* TSC could halt in idle, so notify users */
202                 if (state > ACPI_STATE_C1)
203                         mark_tsc_unstable("TSC halts in idle");
204         }
205 }
206 #else
207 static void tsc_check_state(int state) { return; }
208 #endif
209
210 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
211 {
212
213         if (!pr->pblk)
214                 return -ENODEV;
215
216         /* if info is obtained from pblk/fadt, type equals state */
217         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
218         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
219
220 #ifndef CONFIG_HOTPLUG_CPU
221         /*
222          * Check for P_LVL2_UP flag before entering C2 and above on
223          * an SMP system.
224          */
225         if ((num_online_cpus() > 1) &&
226             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
227                 return -ENODEV;
228 #endif
229
230         /* determine C2 and C3 address from pblk */
231         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
232         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
233
234         /* determine latencies from FADT */
235         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
236         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
237
238         /*
239          * FADT specified C2 latency must be less than or equal to
240          * 100 microseconds.
241          */
242         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
243                 acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
244                                   acpi_gbl_FADT.c2_latency);
245                 /* invalidate C2 */
246                 pr->power.states[ACPI_STATE_C2].address = 0;
247         }
248
249         /*
250          * FADT supplied C3 latency must be less than or equal to
251          * 1000 microseconds.
252          */
253         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
254                 acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
255                                   acpi_gbl_FADT.c3_latency);
256                 /* invalidate C3 */
257                 pr->power.states[ACPI_STATE_C3].address = 0;
258         }
259
260         acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
261                           pr->power.states[ACPI_STATE_C2].address,
262                           pr->power.states[ACPI_STATE_C3].address);
263
264         snprintf(pr->power.states[ACPI_STATE_C2].desc,
265                          ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
266                          pr->power.states[ACPI_STATE_C2].address);
267         snprintf(pr->power.states[ACPI_STATE_C3].desc,
268                          ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
269                          pr->power.states[ACPI_STATE_C3].address);
270
271         return 0;
272 }
273
274 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
275 {
276         if (!pr->power.states[ACPI_STATE_C1].valid) {
277                 /* set the first C-State to C1 */
278                 /* all processors need to support C1 */
279                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
280                 pr->power.states[ACPI_STATE_C1].valid = 1;
281                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
282
283                 snprintf(pr->power.states[ACPI_STATE_C1].desc,
284                          ACPI_CX_DESC_LEN, "ACPI HLT");
285         }
286         /* the C0 state only exists as a filler in our array */
287         pr->power.states[ACPI_STATE_C0].valid = 1;
288         return 0;
289 }
290
291 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
292 {
293         int ret;
294
295         if (nocst)
296                 return -ENODEV;
297
298         ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
299         if (ret)
300                 return ret;
301
302         if (!pr->power.count)
303                 return -EFAULT;
304
305         pr->flags.has_cst = 1;
306         return 0;
307 }
308
309 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
310                                            struct acpi_processor_cx *cx)
311 {
312         static int bm_check_flag = -1;
313         static int bm_control_flag = -1;
314
315
316         if (!cx->address)
317                 return;
318
319         /*
320          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
321          * DMA transfers are used by any ISA device to avoid livelock.
322          * Note that we could disable Type-F DMA (as recommended by
323          * the erratum), but this is known to disrupt certain ISA
324          * devices thus we take the conservative approach.
325          */
326         if (errata.piix4.fdma) {
327                 acpi_handle_debug(pr->handle,
328                                   "C3 not supported on PIIX4 with Type-F DMA\n");
329                 return;
330         }
331
332         /* All the logic here assumes flags.bm_check is same across all CPUs */
333         if (bm_check_flag == -1) {
334                 /* Determine whether bm_check is needed based on CPU  */
335                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
336                 bm_check_flag = pr->flags.bm_check;
337                 bm_control_flag = pr->flags.bm_control;
338         } else {
339                 pr->flags.bm_check = bm_check_flag;
340                 pr->flags.bm_control = bm_control_flag;
341         }
342
343         if (pr->flags.bm_check) {
344                 if (!pr->flags.bm_control) {
345                         if (pr->flags.has_cst != 1) {
346                                 /* bus mastering control is necessary */
347                                 acpi_handle_debug(pr->handle,
348                                                   "C3 support requires BM control\n");
349                                 return;
350                         } else {
351                                 /* Here we enter C3 without bus mastering */
352                                 acpi_handle_debug(pr->handle,
353                                                   "C3 support without BM control\n");
354                         }
355                 }
356         } else {
357                 /*
358                  * WBINVD should be set in fadt, for C3 state to be
359                  * supported on when bm_check is not required.
360                  */
361                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
362                         acpi_handle_debug(pr->handle,
363                                           "Cache invalidation should work properly"
364                                           " for C3 to be enabled on SMP systems\n");
365                         return;
366                 }
367         }
368
369         /*
370          * Otherwise we've met all of our C3 requirements.
371          * Normalize the C3 latency to expidite policy.  Enable
372          * checking of bus mastering status (bm_check) so we can
373          * use this in our C3 policy
374          */
375         cx->valid = 1;
376
377         /*
378          * On older chipsets, BM_RLD needs to be set
379          * in order for Bus Master activity to wake the
380          * system from C3.  Newer chipsets handle DMA
381          * during C3 automatically and BM_RLD is a NOP.
382          * In either case, the proper way to
383          * handle BM_RLD is to set it and leave it set.
384          */
385         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
386 }
387
388 static void acpi_cst_latency_sort(struct acpi_processor_cx *states, size_t length)
389 {
390         int i, j, k;
391
392         for (i = 1; i < length; i++) {
393                 if (!states[i].valid)
394                         continue;
395
396                 for (j = i - 1, k = i; j >= 0; j--) {
397                         if (!states[j].valid)
398                                 continue;
399
400                         if (states[j].latency > states[k].latency)
401                                 swap(states[j].latency, states[k].latency);
402
403                         k = j;
404                 }
405         }
406 }
407
408 static int acpi_processor_power_verify(struct acpi_processor *pr)
409 {
410         unsigned int i;
411         unsigned int working = 0;
412         unsigned int last_latency = 0;
413         unsigned int last_type = 0;
414         bool buggy_latency = false;
415
416         pr->power.timer_broadcast_on_state = INT_MAX;
417
418         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
419                 struct acpi_processor_cx *cx = &pr->power.states[i];
420
421                 switch (cx->type) {
422                 case ACPI_STATE_C1:
423                         cx->valid = 1;
424                         break;
425
426                 case ACPI_STATE_C2:
427                         if (!cx->address)
428                                 break;
429                         cx->valid = 1;
430                         break;
431
432                 case ACPI_STATE_C3:
433                         acpi_processor_power_verify_c3(pr, cx);
434                         break;
435                 }
436                 if (!cx->valid)
437                         continue;
438                 if (cx->type >= last_type && cx->latency < last_latency)
439                         buggy_latency = true;
440                 last_latency = cx->latency;
441                 last_type = cx->type;
442
443                 lapic_timer_check_state(i, pr, cx);
444                 tsc_check_state(cx->type);
445                 working++;
446         }
447
448         if (buggy_latency) {
449                 pr_notice("FW issue: working around C-state latencies out of order\n");
450                 acpi_cst_latency_sort(&pr->power.states[1], max_cstate);
451         }
452
453         lapic_timer_propagate_broadcast(pr);
454
455         return working;
456 }
457
458 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
459 {
460         unsigned int i;
461         int result;
462
463
464         /* NOTE: the idle thread may not be running while calling
465          * this function */
466
467         /* Zero initialize all the C-states info. */
468         memset(pr->power.states, 0, sizeof(pr->power.states));
469
470         result = acpi_processor_get_power_info_cst(pr);
471         if (result == -ENODEV)
472                 result = acpi_processor_get_power_info_fadt(pr);
473
474         if (result)
475                 return result;
476
477         acpi_processor_get_power_info_default(pr);
478
479         pr->power.count = acpi_processor_power_verify(pr);
480
481         /*
482          * if one state of type C2 or C3 is available, mark this
483          * CPU as being "idle manageable"
484          */
485         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
486                 if (pr->power.states[i].valid) {
487                         pr->power.count = i;
488                         pr->flags.power = 1;
489                 }
490         }
491
492         return 0;
493 }
494
495 /**
496  * acpi_idle_bm_check - checks if bus master activity was detected
497  */
498 static int acpi_idle_bm_check(void)
499 {
500         u32 bm_status = 0;
501
502         if (bm_check_disable)
503                 return 0;
504
505         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
506         if (bm_status)
507                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
508         /*
509          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
510          * the true state of bus mastering activity; forcing us to
511          * manually check the BMIDEA bit of each IDE channel.
512          */
513         else if (errata.piix4.bmisx) {
514                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
515                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
516                         bm_status = 1;
517         }
518         return bm_status;
519 }
520
521 static __cpuidle void io_idle(unsigned long addr)
522 {
523         /* IO port based C-state */
524         inb(addr);
525
526 #ifdef  CONFIG_X86
527         /* No delay is needed if we are in guest */
528         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
529                 return;
530         /*
531          * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
532          * not this code.  Assume that any Intel systems using this
533          * are ancient and may need the dummy wait.  This also assumes
534          * that the motivating chipset issue was Intel-only.
535          */
536         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
537                 return;
538 #endif
539         /*
540          * Dummy wait op - must do something useless after P_LVL2 read
541          * because chipsets cannot guarantee that STPCLK# signal gets
542          * asserted in time to freeze execution properly
543          *
544          * This workaround has been in place since the original ACPI
545          * implementation was merged, circa 2002.
546          *
547          * If a profile is pointing to this instruction, please first
548          * consider moving your system to a more modern idle
549          * mechanism.
550          */
551         inl(acpi_gbl_FADT.xpm_timer_block.address);
552 }
553
554 /**
555  * acpi_idle_do_entry - enter idle state using the appropriate method
556  * @cx: cstate data
557  *
558  * Caller disables interrupt before call and enables interrupt after return.
559  */
560 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
561 {
562         perf_lopwr_cb(true);
563
564         if (cx->entry_method == ACPI_CSTATE_FFH) {
565                 /* Call into architectural FFH based C-state */
566                 acpi_processor_ffh_cstate_enter(cx);
567         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
568                 acpi_safe_halt();
569         } else {
570                 io_idle(cx->address);
571         }
572
573         perf_lopwr_cb(false);
574 }
575
576 /**
577  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
578  * @dev: the target CPU
579  * @index: the index of suggested state
580  */
581 static void acpi_idle_play_dead(struct cpuidle_device *dev, int index)
582 {
583         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
584
585         ACPI_FLUSH_CPU_CACHE();
586
587         while (1) {
588
589                 if (cx->entry_method == ACPI_CSTATE_HALT)
590                         raw_safe_halt();
591                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
592                         io_idle(cx->address);
593                 } else
594                         return;
595         }
596 }
597
598 static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
599 {
600         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
601                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
602 }
603
604 static int c3_cpu_count;
605 static DEFINE_RAW_SPINLOCK(c3_lock);
606
607 /**
608  * acpi_idle_enter_bm - enters C3 with proper BM handling
609  * @drv: cpuidle driver
610  * @pr: Target processor
611  * @cx: Target state context
612  * @index: index of target state
613  */
614 static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
615                                struct acpi_processor *pr,
616                                struct acpi_processor_cx *cx,
617                                int index)
618 {
619         static struct acpi_processor_cx safe_cx = {
620                 .entry_method = ACPI_CSTATE_HALT,
621         };
622
623         /*
624          * disable bus master
625          * bm_check implies we need ARB_DIS
626          * bm_control implies whether we can do ARB_DIS
627          *
628          * That leaves a case where bm_check is set and bm_control is not set.
629          * In that case we cannot do much, we enter C3 without doing anything.
630          */
631         bool dis_bm = pr->flags.bm_control;
632
633         instrumentation_begin();
634
635         /* If we can skip BM, demote to a safe state. */
636         if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
637                 dis_bm = false;
638                 index = drv->safe_state_index;
639                 if (index >= 0) {
640                         cx = this_cpu_read(acpi_cstate[index]);
641                 } else {
642                         cx = &safe_cx;
643                         index = -EBUSY;
644                 }
645         }
646
647         if (dis_bm) {
648                 raw_spin_lock(&c3_lock);
649                 c3_cpu_count++;
650                 /* Disable bus master arbitration when all CPUs are in C3 */
651                 if (c3_cpu_count == num_online_cpus())
652                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
653                 raw_spin_unlock(&c3_lock);
654         }
655
656         ct_cpuidle_enter();
657
658         acpi_idle_do_entry(cx);
659
660         ct_cpuidle_exit();
661
662         /* Re-enable bus master arbitration */
663         if (dis_bm) {
664                 raw_spin_lock(&c3_lock);
665                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
666                 c3_cpu_count--;
667                 raw_spin_unlock(&c3_lock);
668         }
669
670         instrumentation_end();
671
672         return index;
673 }
674
675 static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
676                            struct cpuidle_driver *drv, int index)
677 {
678         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
679         struct acpi_processor *pr;
680
681         pr = __this_cpu_read(processors);
682         if (unlikely(!pr))
683                 return -EINVAL;
684
685         if (cx->type != ACPI_STATE_C1) {
686                 if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
687                         return acpi_idle_enter_bm(drv, pr, cx, index);
688
689                 /* C2 to C1 demotion. */
690                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
691                         index = ACPI_IDLE_STATE_START;
692                         cx = per_cpu(acpi_cstate[index], dev->cpu);
693                 }
694         }
695
696         if (cx->type == ACPI_STATE_C3)
697                 ACPI_FLUSH_CPU_CACHE();
698
699         acpi_idle_do_entry(cx);
700
701         return index;
702 }
703
704 static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
705                                   struct cpuidle_driver *drv, int index)
706 {
707         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
708
709         if (cx->type == ACPI_STATE_C3) {
710                 struct acpi_processor *pr = __this_cpu_read(processors);
711
712                 if (unlikely(!pr))
713                         return 0;
714
715                 if (pr->flags.bm_check) {
716                         u8 bm_sts_skip = cx->bm_sts_skip;
717
718                         /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
719                         cx->bm_sts_skip = 1;
720                         acpi_idle_enter_bm(drv, pr, cx, index);
721                         cx->bm_sts_skip = bm_sts_skip;
722
723                         return 0;
724                 } else {
725                         ACPI_FLUSH_CPU_CACHE();
726                 }
727         }
728         acpi_idle_do_entry(cx);
729
730         return 0;
731 }
732
733 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
734                                            struct cpuidle_device *dev)
735 {
736         int i, count = ACPI_IDLE_STATE_START;
737         struct acpi_processor_cx *cx;
738         struct cpuidle_state *state;
739
740         if (max_cstate == 0)
741                 max_cstate = 1;
742
743         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
744                 state = &acpi_idle_driver.states[count];
745                 cx = &pr->power.states[i];
746
747                 if (!cx->valid)
748                         continue;
749
750                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
751
752                 if (lapic_timer_needs_broadcast(pr, cx))
753                         state->flags |= CPUIDLE_FLAG_TIMER_STOP;
754
755                 if (cx->type == ACPI_STATE_C3) {
756                         state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
757                         if (pr->flags.bm_check)
758                                 state->flags |= CPUIDLE_FLAG_RCU_IDLE;
759                 }
760
761                 count++;
762                 if (count == CPUIDLE_STATE_MAX)
763                         break;
764         }
765
766         if (!count)
767                 return -EINVAL;
768
769         return 0;
770 }
771
772 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
773 {
774         int i, count;
775         struct acpi_processor_cx *cx;
776         struct cpuidle_state *state;
777         struct cpuidle_driver *drv = &acpi_idle_driver;
778
779         if (max_cstate == 0)
780                 max_cstate = 1;
781
782         if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
783                 cpuidle_poll_state_init(drv);
784                 count = 1;
785         } else {
786                 count = 0;
787         }
788
789         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
790                 cx = &pr->power.states[i];
791
792                 if (!cx->valid)
793                         continue;
794
795                 state = &drv->states[count];
796                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
797                 strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
798                 state->exit_latency = cx->latency;
799                 state->target_residency = cx->latency * latency_factor;
800                 state->enter = acpi_idle_enter;
801
802                 state->flags = 0;
803
804                 state->enter_dead = acpi_idle_play_dead;
805
806                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2)
807                         drv->safe_state_index = count;
808
809                 /*
810                  * Halt-induced C1 is not good for ->enter_s2idle, because it
811                  * re-enables interrupts on exit.  Moreover, C1 is generally not
812                  * particularly interesting from the suspend-to-idle angle, so
813                  * avoid C1 and the situations in which we may need to fall back
814                  * to it altogether.
815                  */
816                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
817                         state->enter_s2idle = acpi_idle_enter_s2idle;
818
819                 count++;
820                 if (count == CPUIDLE_STATE_MAX)
821                         break;
822         }
823
824         drv->state_count = count;
825
826         if (!count)
827                 return -EINVAL;
828
829         return 0;
830 }
831
832 static inline void acpi_processor_cstate_first_run_checks(void)
833 {
834         static int first_run;
835
836         if (first_run)
837                 return;
838         dmi_check_system(processor_power_dmi_table);
839         max_cstate = acpi_processor_cstate_check(max_cstate);
840         if (max_cstate < ACPI_C_STATES_MAX)
841                 pr_notice("processor limited to max C-state %d\n", max_cstate);
842
843         first_run++;
844
845         if (nocst)
846                 return;
847
848         acpi_processor_claim_cst_control();
849 }
850 #else
851
852 static inline int disabled_by_idle_boot_param(void) { return 0; }
853 static inline void acpi_processor_cstate_first_run_checks(void) { }
854 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
855 {
856         return -ENODEV;
857 }
858
859 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
860                                            struct cpuidle_device *dev)
861 {
862         return -EINVAL;
863 }
864
865 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
866 {
867         return -EINVAL;
868 }
869
870 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
871
872 struct acpi_lpi_states_array {
873         unsigned int size;
874         unsigned int composite_states_size;
875         struct acpi_lpi_state *entries;
876         struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
877 };
878
879 static int obj_get_integer(union acpi_object *obj, u32 *value)
880 {
881         if (obj->type != ACPI_TYPE_INTEGER)
882                 return -EINVAL;
883
884         *value = obj->integer.value;
885         return 0;
886 }
887
888 static int acpi_processor_evaluate_lpi(acpi_handle handle,
889                                        struct acpi_lpi_states_array *info)
890 {
891         acpi_status status;
892         int ret = 0;
893         int pkg_count, state_idx = 1, loop;
894         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
895         union acpi_object *lpi_data;
896         struct acpi_lpi_state *lpi_state;
897
898         status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
899         if (ACPI_FAILURE(status)) {
900                 acpi_handle_debug(handle, "No _LPI, giving up\n");
901                 return -ENODEV;
902         }
903
904         lpi_data = buffer.pointer;
905
906         /* There must be at least 4 elements = 3 elements + 1 package */
907         if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
908             lpi_data->package.count < 4) {
909                 pr_debug("not enough elements in _LPI\n");
910                 ret = -ENODATA;
911                 goto end;
912         }
913
914         pkg_count = lpi_data->package.elements[2].integer.value;
915
916         /* Validate number of power states. */
917         if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
918                 pr_debug("count given by _LPI is not valid\n");
919                 ret = -ENODATA;
920                 goto end;
921         }
922
923         lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
924         if (!lpi_state) {
925                 ret = -ENOMEM;
926                 goto end;
927         }
928
929         info->size = pkg_count;
930         info->entries = lpi_state;
931
932         /* LPI States start at index 3 */
933         for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
934                 union acpi_object *element, *pkg_elem, *obj;
935
936                 element = &lpi_data->package.elements[loop];
937                 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
938                         continue;
939
940                 pkg_elem = element->package.elements;
941
942                 obj = pkg_elem + 6;
943                 if (obj->type == ACPI_TYPE_BUFFER) {
944                         struct acpi_power_register *reg;
945
946                         reg = (struct acpi_power_register *)obj->buffer.pointer;
947                         if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
948                             reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
949                                 continue;
950
951                         lpi_state->address = reg->address;
952                         lpi_state->entry_method =
953                                 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
954                                 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
955                 } else if (obj->type == ACPI_TYPE_INTEGER) {
956                         lpi_state->entry_method = ACPI_CSTATE_INTEGER;
957                         lpi_state->address = obj->integer.value;
958                 } else {
959                         continue;
960                 }
961
962                 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
963
964                 obj = pkg_elem + 9;
965                 if (obj->type == ACPI_TYPE_STRING)
966                         strscpy(lpi_state->desc, obj->string.pointer,
967                                 ACPI_CX_DESC_LEN);
968
969                 lpi_state->index = state_idx;
970                 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
971                         pr_debug("No min. residency found, assuming 10 us\n");
972                         lpi_state->min_residency = 10;
973                 }
974
975                 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
976                         pr_debug("No wakeup residency found, assuming 10 us\n");
977                         lpi_state->wake_latency = 10;
978                 }
979
980                 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
981                         lpi_state->flags = 0;
982
983                 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
984                         lpi_state->arch_flags = 0;
985
986                 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
987                         lpi_state->res_cnt_freq = 1;
988
989                 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
990                         lpi_state->enable_parent_state = 0;
991         }
992
993         acpi_handle_debug(handle, "Found %d power states\n", state_idx);
994 end:
995         kfree(buffer.pointer);
996         return ret;
997 }
998
999 /*
1000  * flat_state_cnt - the number of composite LPI states after the process of flattening
1001  */
1002 static int flat_state_cnt;
1003
1004 /**
1005  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1006  *
1007  * @local: local LPI state
1008  * @parent: parent LPI state
1009  * @result: composite LPI state
1010  */
1011 static bool combine_lpi_states(struct acpi_lpi_state *local,
1012                                struct acpi_lpi_state *parent,
1013                                struct acpi_lpi_state *result)
1014 {
1015         if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1016                 if (!parent->address) /* 0 means autopromotable */
1017                         return false;
1018                 result->address = local->address + parent->address;
1019         } else {
1020                 result->address = parent->address;
1021         }
1022
1023         result->min_residency = max(local->min_residency, parent->min_residency);
1024         result->wake_latency = local->wake_latency + parent->wake_latency;
1025         result->enable_parent_state = parent->enable_parent_state;
1026         result->entry_method = local->entry_method;
1027
1028         result->flags = parent->flags;
1029         result->arch_flags = parent->arch_flags;
1030         result->index = parent->index;
1031
1032         strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1033         strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1034         strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1035         return true;
1036 }
1037
1038 #define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1039
1040 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1041                                   struct acpi_lpi_state *t)
1042 {
1043         curr_level->composite_states[curr_level->composite_states_size++] = t;
1044 }
1045
1046 static int flatten_lpi_states(struct acpi_processor *pr,
1047                               struct acpi_lpi_states_array *curr_level,
1048                               struct acpi_lpi_states_array *prev_level)
1049 {
1050         int i, j, state_count = curr_level->size;
1051         struct acpi_lpi_state *p, *t = curr_level->entries;
1052
1053         curr_level->composite_states_size = 0;
1054         for (j = 0; j < state_count; j++, t++) {
1055                 struct acpi_lpi_state *flpi;
1056
1057                 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1058                         continue;
1059
1060                 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1061                         pr_warn("Limiting number of LPI states to max (%d)\n",
1062                                 ACPI_PROCESSOR_MAX_POWER);
1063                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1064                         break;
1065                 }
1066
1067                 flpi = &pr->power.lpi_states[flat_state_cnt];
1068
1069                 if (!prev_level) { /* leaf/processor node */
1070                         memcpy(flpi, t, sizeof(*t));
1071                         stash_composite_state(curr_level, flpi);
1072                         flat_state_cnt++;
1073                         continue;
1074                 }
1075
1076                 for (i = 0; i < prev_level->composite_states_size; i++) {
1077                         p = prev_level->composite_states[i];
1078                         if (t->index <= p->enable_parent_state &&
1079                             combine_lpi_states(p, t, flpi)) {
1080                                 stash_composite_state(curr_level, flpi);
1081                                 flat_state_cnt++;
1082                                 flpi++;
1083                         }
1084                 }
1085         }
1086
1087         kfree(curr_level->entries);
1088         return 0;
1089 }
1090
1091 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1092 {
1093         return -EOPNOTSUPP;
1094 }
1095
1096 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1097 {
1098         int ret, i;
1099         acpi_status status;
1100         acpi_handle handle = pr->handle, pr_ahandle;
1101         struct acpi_device *d = NULL;
1102         struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1103
1104         /* make sure our architecture has support */
1105         ret = acpi_processor_ffh_lpi_probe(pr->id);
1106         if (ret == -EOPNOTSUPP)
1107                 return ret;
1108
1109         if (!osc_pc_lpi_support_confirmed)
1110                 return -EOPNOTSUPP;
1111
1112         if (!acpi_has_method(handle, "_LPI"))
1113                 return -EINVAL;
1114
1115         flat_state_cnt = 0;
1116         prev = &info[0];
1117         curr = &info[1];
1118         handle = pr->handle;
1119         ret = acpi_processor_evaluate_lpi(handle, prev);
1120         if (ret)
1121                 return ret;
1122         flatten_lpi_states(pr, prev, NULL);
1123
1124         status = acpi_get_parent(handle, &pr_ahandle);
1125         while (ACPI_SUCCESS(status)) {
1126                 d = acpi_fetch_acpi_dev(pr_ahandle);
1127                 if (!d)
1128                         break;
1129
1130                 handle = pr_ahandle;
1131
1132                 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1133                         break;
1134
1135                 /* can be optional ? */
1136                 if (!acpi_has_method(handle, "_LPI"))
1137                         break;
1138
1139                 ret = acpi_processor_evaluate_lpi(handle, curr);
1140                 if (ret)
1141                         break;
1142
1143                 /* flatten all the LPI states in this level of hierarchy */
1144                 flatten_lpi_states(pr, curr, prev);
1145
1146                 tmp = prev, prev = curr, curr = tmp;
1147
1148                 status = acpi_get_parent(handle, &pr_ahandle);
1149         }
1150
1151         pr->power.count = flat_state_cnt;
1152         /* reset the index after flattening */
1153         for (i = 0; i < pr->power.count; i++)
1154                 pr->power.lpi_states[i].index = i;
1155
1156         /* Tell driver that _LPI is supported. */
1157         pr->flags.has_lpi = 1;
1158         pr->flags.power = 1;
1159
1160         return 0;
1161 }
1162
1163 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1164 {
1165         return -ENODEV;
1166 }
1167
1168 /**
1169  * acpi_idle_lpi_enter - enters an ACPI any LPI state
1170  * @dev: the target CPU
1171  * @drv: cpuidle driver containing cpuidle state info
1172  * @index: index of target state
1173  *
1174  * Return: 0 for success or negative value for error
1175  */
1176 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1177                                struct cpuidle_driver *drv, int index)
1178 {
1179         struct acpi_processor *pr;
1180         struct acpi_lpi_state *lpi;
1181
1182         pr = __this_cpu_read(processors);
1183
1184         if (unlikely(!pr))
1185                 return -EINVAL;
1186
1187         lpi = &pr->power.lpi_states[index];
1188         if (lpi->entry_method == ACPI_CSTATE_FFH)
1189                 return acpi_processor_ffh_lpi_enter(lpi);
1190
1191         return -EINVAL;
1192 }
1193
1194 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1195 {
1196         int i;
1197         struct acpi_lpi_state *lpi;
1198         struct cpuidle_state *state;
1199         struct cpuidle_driver *drv = &acpi_idle_driver;
1200
1201         if (!pr->flags.has_lpi)
1202                 return -EOPNOTSUPP;
1203
1204         for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1205                 lpi = &pr->power.lpi_states[i];
1206
1207                 state = &drv->states[i];
1208                 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1209                 strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1210                 state->exit_latency = lpi->wake_latency;
1211                 state->target_residency = lpi->min_residency;
1212                 state->flags |= arch_get_idle_state_flags(lpi->arch_flags);
1213                 if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH)
1214                         state->flags |= CPUIDLE_FLAG_RCU_IDLE;
1215                 state->enter = acpi_idle_lpi_enter;
1216                 drv->safe_state_index = i;
1217         }
1218
1219         drv->state_count = i;
1220
1221         return 0;
1222 }
1223
1224 /**
1225  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1226  * global state data i.e. idle routines
1227  *
1228  * @pr: the ACPI processor
1229  */
1230 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1231 {
1232         int i;
1233         struct cpuidle_driver *drv = &acpi_idle_driver;
1234
1235         if (!pr->flags.power_setup_done || !pr->flags.power)
1236                 return -EINVAL;
1237
1238         drv->safe_state_index = -1;
1239         for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1240                 drv->states[i].name[0] = '\0';
1241                 drv->states[i].desc[0] = '\0';
1242         }
1243
1244         if (pr->flags.has_lpi)
1245                 return acpi_processor_setup_lpi_states(pr);
1246
1247         return acpi_processor_setup_cstates(pr);
1248 }
1249
1250 /**
1251  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1252  * device i.e. per-cpu data
1253  *
1254  * @pr: the ACPI processor
1255  * @dev : the cpuidle device
1256  */
1257 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1258                                             struct cpuidle_device *dev)
1259 {
1260         if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1261                 return -EINVAL;
1262
1263         dev->cpu = pr->id;
1264         if (pr->flags.has_lpi)
1265                 return acpi_processor_ffh_lpi_probe(pr->id);
1266
1267         return acpi_processor_setup_cpuidle_cx(pr, dev);
1268 }
1269
1270 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1271 {
1272         int ret;
1273
1274         ret = acpi_processor_get_lpi_info(pr);
1275         if (ret)
1276                 ret = acpi_processor_get_cstate_info(pr);
1277
1278         return ret;
1279 }
1280
1281 int acpi_processor_hotplug(struct acpi_processor *pr)
1282 {
1283         int ret = 0;
1284         struct cpuidle_device *dev;
1285
1286         if (disabled_by_idle_boot_param())
1287                 return 0;
1288
1289         if (!pr->flags.power_setup_done)
1290                 return -ENODEV;
1291
1292         dev = per_cpu(acpi_cpuidle_device, pr->id);
1293         cpuidle_pause_and_lock();
1294         cpuidle_disable_device(dev);
1295         ret = acpi_processor_get_power_info(pr);
1296         if (!ret && pr->flags.power) {
1297                 acpi_processor_setup_cpuidle_dev(pr, dev);
1298                 ret = cpuidle_enable_device(dev);
1299         }
1300         cpuidle_resume_and_unlock();
1301
1302         return ret;
1303 }
1304
1305 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1306 {
1307         int cpu;
1308         struct acpi_processor *_pr;
1309         struct cpuidle_device *dev;
1310
1311         if (disabled_by_idle_boot_param())
1312                 return 0;
1313
1314         if (!pr->flags.power_setup_done)
1315                 return -ENODEV;
1316
1317         /*
1318          * FIXME:  Design the ACPI notification to make it once per
1319          * system instead of once per-cpu.  This condition is a hack
1320          * to make the code that updates C-States be called once.
1321          */
1322
1323         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1324
1325                 /* Protect against cpu-hotplug */
1326                 cpus_read_lock();
1327                 cpuidle_pause_and_lock();
1328
1329                 /* Disable all cpuidle devices */
1330                 for_each_online_cpu(cpu) {
1331                         _pr = per_cpu(processors, cpu);
1332                         if (!_pr || !_pr->flags.power_setup_done)
1333                                 continue;
1334                         dev = per_cpu(acpi_cpuidle_device, cpu);
1335                         cpuidle_disable_device(dev);
1336                 }
1337
1338                 /* Populate Updated C-state information */
1339                 acpi_processor_get_power_info(pr);
1340                 acpi_processor_setup_cpuidle_states(pr);
1341
1342                 /* Enable all cpuidle devices */
1343                 for_each_online_cpu(cpu) {
1344                         _pr = per_cpu(processors, cpu);
1345                         if (!_pr || !_pr->flags.power_setup_done)
1346                                 continue;
1347                         acpi_processor_get_power_info(_pr);
1348                         if (_pr->flags.power) {
1349                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1350                                 acpi_processor_setup_cpuidle_dev(_pr, dev);
1351                                 cpuidle_enable_device(dev);
1352                         }
1353                 }
1354                 cpuidle_resume_and_unlock();
1355                 cpus_read_unlock();
1356         }
1357
1358         return 0;
1359 }
1360
1361 static int acpi_processor_registered;
1362
1363 int acpi_processor_power_init(struct acpi_processor *pr)
1364 {
1365         int retval;
1366         struct cpuidle_device *dev;
1367
1368         if (disabled_by_idle_boot_param())
1369                 return 0;
1370
1371         acpi_processor_cstate_first_run_checks();
1372
1373         if (!acpi_processor_get_power_info(pr))
1374                 pr->flags.power_setup_done = 1;
1375
1376         /*
1377          * Install the idle handler if processor power management is supported.
1378          * Note that we use previously set idle handler will be used on
1379          * platforms that only support C1.
1380          */
1381         if (pr->flags.power) {
1382                 /* Register acpi_idle_driver if not already registered */
1383                 if (!acpi_processor_registered) {
1384                         acpi_processor_setup_cpuidle_states(pr);
1385                         retval = cpuidle_register_driver(&acpi_idle_driver);
1386                         if (retval)
1387                                 return retval;
1388                         pr_debug("%s registered with cpuidle\n",
1389                                  acpi_idle_driver.name);
1390                 }
1391
1392                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1393                 if (!dev)
1394                         return -ENOMEM;
1395                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1396
1397                 acpi_processor_setup_cpuidle_dev(pr, dev);
1398
1399                 /* Register per-cpu cpuidle_device. Cpuidle driver
1400                  * must already be registered before registering device
1401                  */
1402                 retval = cpuidle_register_device(dev);
1403                 if (retval) {
1404                         if (acpi_processor_registered == 0)
1405                                 cpuidle_unregister_driver(&acpi_idle_driver);
1406                         return retval;
1407                 }
1408                 acpi_processor_registered++;
1409         }
1410         return 0;
1411 }
1412
1413 int acpi_processor_power_exit(struct acpi_processor *pr)
1414 {
1415         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1416
1417         if (disabled_by_idle_boot_param())
1418                 return 0;
1419
1420         if (pr->flags.power) {
1421                 cpuidle_unregister_device(dev);
1422                 acpi_processor_registered--;
1423                 if (acpi_processor_registered == 0)
1424                         cpuidle_unregister_driver(&acpi_idle_driver);
1425
1426                 kfree(dev);
1427         }
1428
1429         pr->flags.power_setup_done = 0;
1430         return 0;
1431 }
This page took 0.123874 seconds and 4 git commands to generate.