1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
104 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
152 #include "net-sysfs.h"
154 #define MAX_GRO_SKBS 8
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly; /* Taps */
163 static struct list_head offload_base __read_mostly;
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167 struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169 struct net_device *dev,
170 struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
195 static DEFINE_MUTEX(ifalias_mutex);
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
203 static DECLARE_RWSEM(devnet_rename_sem);
205 static inline void dev_base_seq_inc(struct net *net)
207 while (++net->dev_base_seq == 0)
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 static inline void rps_lock(struct softnet_data *sd)
226 spin_lock(&sd->input_pkt_queue.lock);
230 static inline void rps_unlock(struct softnet_data *sd)
233 spin_unlock(&sd->input_pkt_queue.lock);
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240 struct netdev_name_node *name_node;
242 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245 INIT_HLIST_NODE(&name_node->hlist);
246 name_node->dev = dev;
247 name_node->name = name;
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
254 struct netdev_name_node *name_node;
256 name_node = netdev_name_node_alloc(dev, dev->name);
259 INIT_LIST_HEAD(&name_node->list);
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
268 static void netdev_name_node_add(struct net *net,
269 struct netdev_name_node *name_node)
271 hlist_add_head_rcu(&name_node->hlist,
272 dev_name_hash(net, name_node->name));
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
277 hlist_del_rcu(&name_node->hlist);
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283 struct hlist_head *head = dev_name_hash(net, name);
284 struct netdev_name_node *name_node;
286 hlist_for_each_entry(name_node, head, hlist)
287 if (!strcmp(name_node->name, name))
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295 struct hlist_head *head = dev_name_hash(net, name);
296 struct netdev_name_node *name_node;
298 hlist_for_each_entry_rcu(name_node, head, hlist)
299 if (!strcmp(name_node->name, name))
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
306 struct netdev_name_node *name_node;
307 struct net *net = dev_net(dev);
309 name_node = netdev_name_node_lookup(net, name);
312 name_node = netdev_name_node_alloc(dev, name);
315 netdev_name_node_add(net, name_node);
316 /* The node that holds dev->name acts as a head of per-device list. */
317 list_add_tail(&name_node->list, &dev->name_node->list);
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
325 list_del(&name_node->list);
326 netdev_name_node_del(name_node);
327 kfree(name_node->name);
328 netdev_name_node_free(name_node);
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
333 struct netdev_name_node *name_node;
334 struct net *net = dev_net(dev);
336 name_node = netdev_name_node_lookup(net, name);
339 /* lookup might have found our primary name or a name belonging
342 if (name_node == dev->name_node || name_node->dev != dev)
345 __netdev_name_node_alt_destroy(name_node);
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
351 static void netdev_name_node_alt_flush(struct net_device *dev)
353 struct netdev_name_node *name_node, *tmp;
355 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 __netdev_name_node_alt_destroy(name_node);
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
362 struct net *net = dev_net(dev);
366 write_lock_bh(&dev_base_lock);
367 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 netdev_name_node_add(net, dev->name_node);
369 hlist_add_head_rcu(&dev->index_hlist,
370 dev_index_hash(net, dev->ifindex));
371 write_unlock_bh(&dev_base_lock);
373 dev_base_seq_inc(net);
376 /* Device list removal
377 * caller must respect a RCU grace period before freeing/reusing dev
379 static void unlist_netdevice(struct net_device *dev)
383 /* Unlink dev from the device chain */
384 write_lock_bh(&dev_base_lock);
385 list_del_rcu(&dev->dev_list);
386 netdev_name_node_del(dev->name_node);
387 hlist_del_rcu(&dev->index_hlist);
388 write_unlock_bh(&dev_base_lock);
390 dev_base_seq_inc(dev_net(dev));
397 static RAW_NOTIFIER_HEAD(netdev_chain);
400 * Device drivers call our routines to queue packets here. We empty the
401 * queue in the local softnet handler.
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
407 #ifdef CONFIG_LOCKDEP
409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410 * according to dev->type
412 static const unsigned short netdev_lock_type[] = {
413 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
429 static const char *const netdev_lock_name[] = {
430 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
453 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 if (netdev_lock_type[i] == dev_type)
456 /* the last key is used by default */
457 return ARRAY_SIZE(netdev_lock_type) - 1;
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 unsigned short dev_type)
465 i = netdev_lock_pos(dev_type);
466 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 netdev_lock_name[i]);
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
474 i = netdev_lock_pos(dev->type);
475 lockdep_set_class_and_name(&dev->addr_list_lock,
476 &netdev_addr_lock_key[i],
477 netdev_lock_name[i]);
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 unsigned short dev_type)
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
490 /*******************************************************************************
492 * Protocol management and registration routines
494 *******************************************************************************/
498 * Add a protocol ID to the list. Now that the input handler is
499 * smarter we can dispense with all the messy stuff that used to be
502 * BEWARE!!! Protocol handlers, mangling input packets,
503 * MUST BE last in hash buckets and checking protocol handlers
504 * MUST start from promiscuous ptype_all chain in net_bh.
505 * It is true now, do not change it.
506 * Explanation follows: if protocol handler, mangling packet, will
507 * be the first on list, it is not able to sense, that packet
508 * is cloned and should be copied-on-write, so that it will
509 * change it and subsequent readers will get broken packet.
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
515 if (pt->type == htons(ETH_P_ALL))
516 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
518 return pt->dev ? &pt->dev->ptype_specific :
519 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
523 * dev_add_pack - add packet handler
524 * @pt: packet type declaration
526 * Add a protocol handler to the networking stack. The passed &packet_type
527 * is linked into kernel lists and may not be freed until it has been
528 * removed from the kernel lists.
530 * This call does not sleep therefore it can not
531 * guarantee all CPU's that are in middle of receiving packets
532 * will see the new packet type (until the next received packet).
535 void dev_add_pack(struct packet_type *pt)
537 struct list_head *head = ptype_head(pt);
539 spin_lock(&ptype_lock);
540 list_add_rcu(&pt->list, head);
541 spin_unlock(&ptype_lock);
543 EXPORT_SYMBOL(dev_add_pack);
546 * __dev_remove_pack - remove packet handler
547 * @pt: packet type declaration
549 * Remove a protocol handler that was previously added to the kernel
550 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
551 * from the kernel lists and can be freed or reused once this function
554 * The packet type might still be in use by receivers
555 * and must not be freed until after all the CPU's have gone
556 * through a quiescent state.
558 void __dev_remove_pack(struct packet_type *pt)
560 struct list_head *head = ptype_head(pt);
561 struct packet_type *pt1;
563 spin_lock(&ptype_lock);
565 list_for_each_entry(pt1, head, list) {
567 list_del_rcu(&pt->list);
572 pr_warn("dev_remove_pack: %p not found\n", pt);
574 spin_unlock(&ptype_lock);
576 EXPORT_SYMBOL(__dev_remove_pack);
579 * dev_remove_pack - remove packet handler
580 * @pt: packet type declaration
582 * Remove a protocol handler that was previously added to the kernel
583 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
584 * from the kernel lists and can be freed or reused once this function
587 * This call sleeps to guarantee that no CPU is looking at the packet
590 void dev_remove_pack(struct packet_type *pt)
592 __dev_remove_pack(pt);
596 EXPORT_SYMBOL(dev_remove_pack);
600 * dev_add_offload - register offload handlers
601 * @po: protocol offload declaration
603 * Add protocol offload handlers to the networking stack. The passed
604 * &proto_offload is linked into kernel lists and may not be freed until
605 * it has been removed from the kernel lists.
607 * This call does not sleep therefore it can not
608 * guarantee all CPU's that are in middle of receiving packets
609 * will see the new offload handlers (until the next received packet).
611 void dev_add_offload(struct packet_offload *po)
613 struct packet_offload *elem;
615 spin_lock(&offload_lock);
616 list_for_each_entry(elem, &offload_base, list) {
617 if (po->priority < elem->priority)
620 list_add_rcu(&po->list, elem->list.prev);
621 spin_unlock(&offload_lock);
623 EXPORT_SYMBOL(dev_add_offload);
626 * __dev_remove_offload - remove offload handler
627 * @po: packet offload declaration
629 * Remove a protocol offload handler that was previously added to the
630 * kernel offload handlers by dev_add_offload(). The passed &offload_type
631 * is removed from the kernel lists and can be freed or reused once this
634 * The packet type might still be in use by receivers
635 * and must not be freed until after all the CPU's have gone
636 * through a quiescent state.
638 static void __dev_remove_offload(struct packet_offload *po)
640 struct list_head *head = &offload_base;
641 struct packet_offload *po1;
643 spin_lock(&offload_lock);
645 list_for_each_entry(po1, head, list) {
647 list_del_rcu(&po->list);
652 pr_warn("dev_remove_offload: %p not found\n", po);
654 spin_unlock(&offload_lock);
658 * dev_remove_offload - remove packet offload handler
659 * @po: packet offload declaration
661 * Remove a packet offload handler that was previously added to the kernel
662 * offload handlers by dev_add_offload(). The passed &offload_type is
663 * removed from the kernel lists and can be freed or reused once this
666 * This call sleeps to guarantee that no CPU is looking at the packet
669 void dev_remove_offload(struct packet_offload *po)
671 __dev_remove_offload(po);
675 EXPORT_SYMBOL(dev_remove_offload);
677 /******************************************************************************
679 * Device Boot-time Settings Routines
681 ******************************************************************************/
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
687 * netdev_boot_setup_add - add new setup entry
688 * @name: name of the device
689 * @map: configured settings for the device
691 * Adds new setup entry to the dev_boot_setup list. The function
692 * returns 0 on error and 1 on success. This is a generic routine to
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
697 struct netdev_boot_setup *s;
701 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 memset(s[i].name, 0, sizeof(s[i].name));
704 strlcpy(s[i].name, name, IFNAMSIZ);
705 memcpy(&s[i].map, map, sizeof(s[i].map));
710 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
714 * netdev_boot_setup_check - check boot time settings
715 * @dev: the netdevice
717 * Check boot time settings for the device.
718 * The found settings are set for the device to be used
719 * later in the device probing.
720 * Returns 0 if no settings found, 1 if they are.
722 int netdev_boot_setup_check(struct net_device *dev)
724 struct netdev_boot_setup *s = dev_boot_setup;
727 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 !strcmp(dev->name, s[i].name)) {
730 dev->irq = s[i].map.irq;
731 dev->base_addr = s[i].map.base_addr;
732 dev->mem_start = s[i].map.mem_start;
733 dev->mem_end = s[i].map.mem_end;
739 EXPORT_SYMBOL(netdev_boot_setup_check);
743 * netdev_boot_base - get address from boot time settings
744 * @prefix: prefix for network device
745 * @unit: id for network device
747 * Check boot time settings for the base address of device.
748 * The found settings are set for the device to be used
749 * later in the device probing.
750 * Returns 0 if no settings found.
752 unsigned long netdev_boot_base(const char *prefix, int unit)
754 const struct netdev_boot_setup *s = dev_boot_setup;
758 sprintf(name, "%s%d", prefix, unit);
761 * If device already registered then return base of 1
762 * to indicate not to probe for this interface
764 if (__dev_get_by_name(&init_net, name))
767 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 if (!strcmp(name, s[i].name))
769 return s[i].map.base_addr;
774 * Saves at boot time configured settings for any netdevice.
776 int __init netdev_boot_setup(char *str)
781 str = get_options(str, ARRAY_SIZE(ints), ints);
786 memset(&map, 0, sizeof(map));
790 map.base_addr = ints[2];
792 map.mem_start = ints[3];
794 map.mem_end = ints[4];
796 /* Add new entry to the list */
797 return netdev_boot_setup_add(str, &map);
800 __setup("netdev=", netdev_boot_setup);
802 /*******************************************************************************
804 * Device Interface Subroutines
806 *******************************************************************************/
809 * dev_get_iflink - get 'iflink' value of a interface
810 * @dev: targeted interface
812 * Indicates the ifindex the interface is linked to.
813 * Physical interfaces have the same 'ifindex' and 'iflink' values.
816 int dev_get_iflink(const struct net_device *dev)
818 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 return dev->netdev_ops->ndo_get_iflink(dev);
823 EXPORT_SYMBOL(dev_get_iflink);
826 * dev_fill_metadata_dst - Retrieve tunnel egress information.
827 * @dev: targeted interface
830 * For better visibility of tunnel traffic OVS needs to retrieve
831 * egress tunnel information for a packet. Following API allows
832 * user to get this info.
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
836 struct ip_tunnel_info *info;
838 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
841 info = skb_tunnel_info_unclone(skb);
844 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
847 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
852 * __dev_get_by_name - find a device by its name
853 * @net: the applicable net namespace
854 * @name: name to find
856 * Find an interface by name. Must be called under RTNL semaphore
857 * or @dev_base_lock. If the name is found a pointer to the device
858 * is returned. If the name is not found then %NULL is returned. The
859 * reference counters are not incremented so the caller must be
860 * careful with locks.
863 struct net_device *__dev_get_by_name(struct net *net, const char *name)
865 struct netdev_name_node *node_name;
867 node_name = netdev_name_node_lookup(net, name);
868 return node_name ? node_name->dev : NULL;
870 EXPORT_SYMBOL(__dev_get_by_name);
873 * dev_get_by_name_rcu - find a device by its name
874 * @net: the applicable net namespace
875 * @name: name to find
877 * Find an interface by name.
878 * If the name is found a pointer to the device is returned.
879 * If the name is not found then %NULL is returned.
880 * The reference counters are not incremented so the caller must be
881 * careful with locks. The caller must hold RCU lock.
884 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
886 struct netdev_name_node *node_name;
888 node_name = netdev_name_node_lookup_rcu(net, name);
889 return node_name ? node_name->dev : NULL;
891 EXPORT_SYMBOL(dev_get_by_name_rcu);
894 * dev_get_by_name - find a device by its name
895 * @net: the applicable net namespace
896 * @name: name to find
898 * Find an interface by name. This can be called from any
899 * context and does its own locking. The returned handle has
900 * the usage count incremented and the caller must use dev_put() to
901 * release it when it is no longer needed. %NULL is returned if no
902 * matching device is found.
905 struct net_device *dev_get_by_name(struct net *net, const char *name)
907 struct net_device *dev;
910 dev = dev_get_by_name_rcu(net, name);
916 EXPORT_SYMBOL(dev_get_by_name);
919 * __dev_get_by_index - find a device by its ifindex
920 * @net: the applicable net namespace
921 * @ifindex: index of device
923 * Search for an interface by index. Returns %NULL if the device
924 * is not found or a pointer to the device. The device has not
925 * had its reference counter increased so the caller must be careful
926 * about locking. The caller must hold either the RTNL semaphore
930 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
932 struct net_device *dev;
933 struct hlist_head *head = dev_index_hash(net, ifindex);
935 hlist_for_each_entry(dev, head, index_hlist)
936 if (dev->ifindex == ifindex)
941 EXPORT_SYMBOL(__dev_get_by_index);
944 * dev_get_by_index_rcu - find a device by its ifindex
945 * @net: the applicable net namespace
946 * @ifindex: index of device
948 * Search for an interface by index. Returns %NULL if the device
949 * is not found or a pointer to the device. The device has not
950 * had its reference counter increased so the caller must be careful
951 * about locking. The caller must hold RCU lock.
954 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
956 struct net_device *dev;
957 struct hlist_head *head = dev_index_hash(net, ifindex);
959 hlist_for_each_entry_rcu(dev, head, index_hlist)
960 if (dev->ifindex == ifindex)
965 EXPORT_SYMBOL(dev_get_by_index_rcu);
969 * dev_get_by_index - find a device by its ifindex
970 * @net: the applicable net namespace
971 * @ifindex: index of device
973 * Search for an interface by index. Returns NULL if the device
974 * is not found or a pointer to the device. The device returned has
975 * had a reference added and the pointer is safe until the user calls
976 * dev_put to indicate they have finished with it.
979 struct net_device *dev_get_by_index(struct net *net, int ifindex)
981 struct net_device *dev;
984 dev = dev_get_by_index_rcu(net, ifindex);
990 EXPORT_SYMBOL(dev_get_by_index);
993 * dev_get_by_napi_id - find a device by napi_id
994 * @napi_id: ID of the NAPI struct
996 * Search for an interface by NAPI ID. Returns %NULL if the device
997 * is not found or a pointer to the device. The device has not had
998 * its reference counter increased so the caller must be careful
999 * about locking. The caller must hold RCU lock.
1002 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1004 struct napi_struct *napi;
1006 WARN_ON_ONCE(!rcu_read_lock_held());
1008 if (napi_id < MIN_NAPI_ID)
1011 napi = napi_by_id(napi_id);
1013 return napi ? napi->dev : NULL;
1015 EXPORT_SYMBOL(dev_get_by_napi_id);
1018 * netdev_get_name - get a netdevice name, knowing its ifindex.
1019 * @net: network namespace
1020 * @name: a pointer to the buffer where the name will be stored.
1021 * @ifindex: the ifindex of the interface to get the name from.
1023 int netdev_get_name(struct net *net, char *name, int ifindex)
1025 struct net_device *dev;
1028 down_read(&devnet_rename_sem);
1031 dev = dev_get_by_index_rcu(net, ifindex);
1037 strcpy(name, dev->name);
1042 up_read(&devnet_rename_sem);
1047 * dev_getbyhwaddr_rcu - find a device by its hardware address
1048 * @net: the applicable net namespace
1049 * @type: media type of device
1050 * @ha: hardware address
1052 * Search for an interface by MAC address. Returns NULL if the device
1053 * is not found or a pointer to the device.
1054 * The caller must hold RCU or RTNL.
1055 * The returned device has not had its ref count increased
1056 * and the caller must therefore be careful about locking
1060 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1063 struct net_device *dev;
1065 for_each_netdev_rcu(net, dev)
1066 if (dev->type == type &&
1067 !memcmp(dev->dev_addr, ha, dev->addr_len))
1072 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1074 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1076 struct net_device *dev, *ret = NULL;
1079 for_each_netdev_rcu(net, dev)
1080 if (dev->type == type) {
1088 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1091 * __dev_get_by_flags - find any device with given flags
1092 * @net: the applicable net namespace
1093 * @if_flags: IFF_* values
1094 * @mask: bitmask of bits in if_flags to check
1096 * Search for any interface with the given flags. Returns NULL if a device
1097 * is not found or a pointer to the device. Must be called inside
1098 * rtnl_lock(), and result refcount is unchanged.
1101 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1102 unsigned short mask)
1104 struct net_device *dev, *ret;
1109 for_each_netdev(net, dev) {
1110 if (((dev->flags ^ if_flags) & mask) == 0) {
1117 EXPORT_SYMBOL(__dev_get_by_flags);
1120 * dev_valid_name - check if name is okay for network device
1121 * @name: name string
1123 * Network device names need to be valid file names to
1124 * allow sysfs to work. We also disallow any kind of
1127 bool dev_valid_name(const char *name)
1131 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1133 if (!strcmp(name, ".") || !strcmp(name, ".."))
1137 if (*name == '/' || *name == ':' || isspace(*name))
1143 EXPORT_SYMBOL(dev_valid_name);
1146 * __dev_alloc_name - allocate a name for a device
1147 * @net: network namespace to allocate the device name in
1148 * @name: name format string
1149 * @buf: scratch buffer and result name string
1151 * Passed a format string - eg "lt%d" it will try and find a suitable
1152 * id. It scans list of devices to build up a free map, then chooses
1153 * the first empty slot. The caller must hold the dev_base or rtnl lock
1154 * while allocating the name and adding the device in order to avoid
1156 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157 * Returns the number of the unit assigned or a negative errno code.
1160 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1164 const int max_netdevices = 8*PAGE_SIZE;
1165 unsigned long *inuse;
1166 struct net_device *d;
1168 if (!dev_valid_name(name))
1171 p = strchr(name, '%');
1174 * Verify the string as this thing may have come from
1175 * the user. There must be either one "%d" and no other "%"
1178 if (p[1] != 'd' || strchr(p + 2, '%'))
1181 /* Use one page as a bit array of possible slots */
1182 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1186 for_each_netdev(net, d) {
1187 if (!sscanf(d->name, name, &i))
1189 if (i < 0 || i >= max_netdevices)
1192 /* avoid cases where sscanf is not exact inverse of printf */
1193 snprintf(buf, IFNAMSIZ, name, i);
1194 if (!strncmp(buf, d->name, IFNAMSIZ))
1198 i = find_first_zero_bit(inuse, max_netdevices);
1199 free_page((unsigned long) inuse);
1202 snprintf(buf, IFNAMSIZ, name, i);
1203 if (!__dev_get_by_name(net, buf))
1206 /* It is possible to run out of possible slots
1207 * when the name is long and there isn't enough space left
1208 * for the digits, or if all bits are used.
1213 static int dev_alloc_name_ns(struct net *net,
1214 struct net_device *dev,
1221 ret = __dev_alloc_name(net, name, buf);
1223 strlcpy(dev->name, buf, IFNAMSIZ);
1228 * dev_alloc_name - allocate a name for a device
1230 * @name: name format string
1232 * Passed a format string - eg "lt%d" it will try and find a suitable
1233 * id. It scans list of devices to build up a free map, then chooses
1234 * the first empty slot. The caller must hold the dev_base or rtnl lock
1235 * while allocating the name and adding the device in order to avoid
1237 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1238 * Returns the number of the unit assigned or a negative errno code.
1241 int dev_alloc_name(struct net_device *dev, const char *name)
1243 return dev_alloc_name_ns(dev_net(dev), dev, name);
1245 EXPORT_SYMBOL(dev_alloc_name);
1247 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1252 if (!dev_valid_name(name))
1255 if (strchr(name, '%'))
1256 return dev_alloc_name_ns(net, dev, name);
1257 else if (__dev_get_by_name(net, name))
1259 else if (dev->name != name)
1260 strlcpy(dev->name, name, IFNAMSIZ);
1266 * dev_change_name - change name of a device
1268 * @newname: name (or format string) must be at least IFNAMSIZ
1270 * Change name of a device, can pass format strings "eth%d".
1273 int dev_change_name(struct net_device *dev, const char *newname)
1275 unsigned char old_assign_type;
1276 char oldname[IFNAMSIZ];
1282 BUG_ON(!dev_net(dev));
1286 /* Some auto-enslaved devices e.g. failover slaves are
1287 * special, as userspace might rename the device after
1288 * the interface had been brought up and running since
1289 * the point kernel initiated auto-enslavement. Allow
1290 * live name change even when these slave devices are
1293 * Typically, users of these auto-enslaving devices
1294 * don't actually care about slave name change, as
1295 * they are supposed to operate on master interface
1298 if (dev->flags & IFF_UP &&
1299 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1302 down_write(&devnet_rename_sem);
1304 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1305 up_write(&devnet_rename_sem);
1309 memcpy(oldname, dev->name, IFNAMSIZ);
1311 err = dev_get_valid_name(net, dev, newname);
1313 up_write(&devnet_rename_sem);
1317 if (oldname[0] && !strchr(oldname, '%'))
1318 netdev_info(dev, "renamed from %s\n", oldname);
1320 old_assign_type = dev->name_assign_type;
1321 dev->name_assign_type = NET_NAME_RENAMED;
1324 ret = device_rename(&dev->dev, dev->name);
1326 memcpy(dev->name, oldname, IFNAMSIZ);
1327 dev->name_assign_type = old_assign_type;
1328 up_write(&devnet_rename_sem);
1332 up_write(&devnet_rename_sem);
1334 netdev_adjacent_rename_links(dev, oldname);
1336 write_lock_bh(&dev_base_lock);
1337 netdev_name_node_del(dev->name_node);
1338 write_unlock_bh(&dev_base_lock);
1342 write_lock_bh(&dev_base_lock);
1343 netdev_name_node_add(net, dev->name_node);
1344 write_unlock_bh(&dev_base_lock);
1346 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1347 ret = notifier_to_errno(ret);
1350 /* err >= 0 after dev_alloc_name() or stores the first errno */
1353 down_write(&devnet_rename_sem);
1354 memcpy(dev->name, oldname, IFNAMSIZ);
1355 memcpy(oldname, newname, IFNAMSIZ);
1356 dev->name_assign_type = old_assign_type;
1357 old_assign_type = NET_NAME_RENAMED;
1360 pr_err("%s: name change rollback failed: %d\n",
1369 * dev_set_alias - change ifalias of a device
1371 * @alias: name up to IFALIASZ
1372 * @len: limit of bytes to copy from info
1374 * Set ifalias for a device,
1376 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1378 struct dev_ifalias *new_alias = NULL;
1380 if (len >= IFALIASZ)
1384 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1388 memcpy(new_alias->ifalias, alias, len);
1389 new_alias->ifalias[len] = 0;
1392 mutex_lock(&ifalias_mutex);
1393 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1394 mutex_is_locked(&ifalias_mutex));
1395 mutex_unlock(&ifalias_mutex);
1398 kfree_rcu(new_alias, rcuhead);
1402 EXPORT_SYMBOL(dev_set_alias);
1405 * dev_get_alias - get ifalias of a device
1407 * @name: buffer to store name of ifalias
1408 * @len: size of buffer
1410 * get ifalias for a device. Caller must make sure dev cannot go
1411 * away, e.g. rcu read lock or own a reference count to device.
1413 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1415 const struct dev_ifalias *alias;
1419 alias = rcu_dereference(dev->ifalias);
1421 ret = snprintf(name, len, "%s", alias->ifalias);
1428 * netdev_features_change - device changes features
1429 * @dev: device to cause notification
1431 * Called to indicate a device has changed features.
1433 void netdev_features_change(struct net_device *dev)
1435 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1437 EXPORT_SYMBOL(netdev_features_change);
1440 * netdev_state_change - device changes state
1441 * @dev: device to cause notification
1443 * Called to indicate a device has changed state. This function calls
1444 * the notifier chains for netdev_chain and sends a NEWLINK message
1445 * to the routing socket.
1447 void netdev_state_change(struct net_device *dev)
1449 if (dev->flags & IFF_UP) {
1450 struct netdev_notifier_change_info change_info = {
1454 call_netdevice_notifiers_info(NETDEV_CHANGE,
1456 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1459 EXPORT_SYMBOL(netdev_state_change);
1462 * __netdev_notify_peers - notify network peers about existence of @dev,
1463 * to be called when rtnl lock is already held.
1464 * @dev: network device
1466 * Generate traffic such that interested network peers are aware of
1467 * @dev, such as by generating a gratuitous ARP. This may be used when
1468 * a device wants to inform the rest of the network about some sort of
1469 * reconfiguration such as a failover event or virtual machine
1472 void __netdev_notify_peers(struct net_device *dev)
1475 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1476 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1478 EXPORT_SYMBOL(__netdev_notify_peers);
1481 * netdev_notify_peers - notify network peers about existence of @dev
1482 * @dev: network device
1484 * Generate traffic such that interested network peers are aware of
1485 * @dev, such as by generating a gratuitous ARP. This may be used when
1486 * a device wants to inform the rest of the network about some sort of
1487 * reconfiguration such as a failover event or virtual machine
1490 void netdev_notify_peers(struct net_device *dev)
1493 __netdev_notify_peers(dev);
1496 EXPORT_SYMBOL(netdev_notify_peers);
1498 static int napi_threaded_poll(void *data);
1500 static int napi_kthread_create(struct napi_struct *n)
1504 /* Create and wake up the kthread once to put it in
1505 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1506 * warning and work with loadavg.
1508 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1509 n->dev->name, n->napi_id);
1510 if (IS_ERR(n->thread)) {
1511 err = PTR_ERR(n->thread);
1512 pr_err("kthread_run failed with err %d\n", err);
1519 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1521 const struct net_device_ops *ops = dev->netdev_ops;
1526 if (!netif_device_present(dev)) {
1527 /* may be detached because parent is runtime-suspended */
1528 if (dev->dev.parent)
1529 pm_runtime_resume(dev->dev.parent);
1530 if (!netif_device_present(dev))
1534 /* Block netpoll from trying to do any rx path servicing.
1535 * If we don't do this there is a chance ndo_poll_controller
1536 * or ndo_poll may be running while we open the device
1538 netpoll_poll_disable(dev);
1540 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1541 ret = notifier_to_errno(ret);
1545 set_bit(__LINK_STATE_START, &dev->state);
1547 if (ops->ndo_validate_addr)
1548 ret = ops->ndo_validate_addr(dev);
1550 if (!ret && ops->ndo_open)
1551 ret = ops->ndo_open(dev);
1553 netpoll_poll_enable(dev);
1556 clear_bit(__LINK_STATE_START, &dev->state);
1558 dev->flags |= IFF_UP;
1559 dev_set_rx_mode(dev);
1561 add_device_randomness(dev->dev_addr, dev->addr_len);
1568 * dev_open - prepare an interface for use.
1569 * @dev: device to open
1570 * @extack: netlink extended ack
1572 * Takes a device from down to up state. The device's private open
1573 * function is invoked and then the multicast lists are loaded. Finally
1574 * the device is moved into the up state and a %NETDEV_UP message is
1575 * sent to the netdev notifier chain.
1577 * Calling this function on an active interface is a nop. On a failure
1578 * a negative errno code is returned.
1580 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1584 if (dev->flags & IFF_UP)
1587 ret = __dev_open(dev, extack);
1591 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1592 call_netdevice_notifiers(NETDEV_UP, dev);
1596 EXPORT_SYMBOL(dev_open);
1598 static void __dev_close_many(struct list_head *head)
1600 struct net_device *dev;
1605 list_for_each_entry(dev, head, close_list) {
1606 /* Temporarily disable netpoll until the interface is down */
1607 netpoll_poll_disable(dev);
1609 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1611 clear_bit(__LINK_STATE_START, &dev->state);
1613 /* Synchronize to scheduled poll. We cannot touch poll list, it
1614 * can be even on different cpu. So just clear netif_running().
1616 * dev->stop() will invoke napi_disable() on all of it's
1617 * napi_struct instances on this device.
1619 smp_mb__after_atomic(); /* Commit netif_running(). */
1622 dev_deactivate_many(head);
1624 list_for_each_entry(dev, head, close_list) {
1625 const struct net_device_ops *ops = dev->netdev_ops;
1628 * Call the device specific close. This cannot fail.
1629 * Only if device is UP
1631 * We allow it to be called even after a DETACH hot-plug
1637 dev->flags &= ~IFF_UP;
1638 netpoll_poll_enable(dev);
1642 static void __dev_close(struct net_device *dev)
1646 list_add(&dev->close_list, &single);
1647 __dev_close_many(&single);
1651 void dev_close_many(struct list_head *head, bool unlink)
1653 struct net_device *dev, *tmp;
1655 /* Remove the devices that don't need to be closed */
1656 list_for_each_entry_safe(dev, tmp, head, close_list)
1657 if (!(dev->flags & IFF_UP))
1658 list_del_init(&dev->close_list);
1660 __dev_close_many(head);
1662 list_for_each_entry_safe(dev, tmp, head, close_list) {
1663 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1664 call_netdevice_notifiers(NETDEV_DOWN, dev);
1666 list_del_init(&dev->close_list);
1669 EXPORT_SYMBOL(dev_close_many);
1672 * dev_close - shutdown an interface.
1673 * @dev: device to shutdown
1675 * This function moves an active device into down state. A
1676 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1677 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1680 void dev_close(struct net_device *dev)
1682 if (dev->flags & IFF_UP) {
1685 list_add(&dev->close_list, &single);
1686 dev_close_many(&single, true);
1690 EXPORT_SYMBOL(dev_close);
1694 * dev_disable_lro - disable Large Receive Offload on a device
1697 * Disable Large Receive Offload (LRO) on a net device. Must be
1698 * called under RTNL. This is needed if received packets may be
1699 * forwarded to another interface.
1701 void dev_disable_lro(struct net_device *dev)
1703 struct net_device *lower_dev;
1704 struct list_head *iter;
1706 dev->wanted_features &= ~NETIF_F_LRO;
1707 netdev_update_features(dev);
1709 if (unlikely(dev->features & NETIF_F_LRO))
1710 netdev_WARN(dev, "failed to disable LRO!\n");
1712 netdev_for_each_lower_dev(dev, lower_dev, iter)
1713 dev_disable_lro(lower_dev);
1715 EXPORT_SYMBOL(dev_disable_lro);
1718 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1721 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1722 * called under RTNL. This is needed if Generic XDP is installed on
1725 static void dev_disable_gro_hw(struct net_device *dev)
1727 dev->wanted_features &= ~NETIF_F_GRO_HW;
1728 netdev_update_features(dev);
1730 if (unlikely(dev->features & NETIF_F_GRO_HW))
1731 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1734 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1737 case NETDEV_##val: \
1738 return "NETDEV_" __stringify(val);
1740 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1741 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1742 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1743 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1744 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1745 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1746 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1747 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1748 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1752 return "UNKNOWN_NETDEV_EVENT";
1754 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1756 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1757 struct net_device *dev)
1759 struct netdev_notifier_info info = {
1763 return nb->notifier_call(nb, val, &info);
1766 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1767 struct net_device *dev)
1771 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1772 err = notifier_to_errno(err);
1776 if (!(dev->flags & IFF_UP))
1779 call_netdevice_notifier(nb, NETDEV_UP, dev);
1783 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1784 struct net_device *dev)
1786 if (dev->flags & IFF_UP) {
1787 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1789 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1791 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1794 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1797 struct net_device *dev;
1800 for_each_netdev(net, dev) {
1801 err = call_netdevice_register_notifiers(nb, dev);
1808 for_each_netdev_continue_reverse(net, dev)
1809 call_netdevice_unregister_notifiers(nb, dev);
1813 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1816 struct net_device *dev;
1818 for_each_netdev(net, dev)
1819 call_netdevice_unregister_notifiers(nb, dev);
1822 static int dev_boot_phase = 1;
1825 * register_netdevice_notifier - register a network notifier block
1828 * Register a notifier to be called when network device events occur.
1829 * The notifier passed is linked into the kernel structures and must
1830 * not be reused until it has been unregistered. A negative errno code
1831 * is returned on a failure.
1833 * When registered all registration and up events are replayed
1834 * to the new notifier to allow device to have a race free
1835 * view of the network device list.
1838 int register_netdevice_notifier(struct notifier_block *nb)
1843 /* Close race with setup_net() and cleanup_net() */
1844 down_write(&pernet_ops_rwsem);
1846 err = raw_notifier_chain_register(&netdev_chain, nb);
1852 err = call_netdevice_register_net_notifiers(nb, net);
1859 up_write(&pernet_ops_rwsem);
1863 for_each_net_continue_reverse(net)
1864 call_netdevice_unregister_net_notifiers(nb, net);
1866 raw_notifier_chain_unregister(&netdev_chain, nb);
1869 EXPORT_SYMBOL(register_netdevice_notifier);
1872 * unregister_netdevice_notifier - unregister a network notifier block
1875 * Unregister a notifier previously registered by
1876 * register_netdevice_notifier(). The notifier is unlinked into the
1877 * kernel structures and may then be reused. A negative errno code
1878 * is returned on a failure.
1880 * After unregistering unregister and down device events are synthesized
1881 * for all devices on the device list to the removed notifier to remove
1882 * the need for special case cleanup code.
1885 int unregister_netdevice_notifier(struct notifier_block *nb)
1890 /* Close race with setup_net() and cleanup_net() */
1891 down_write(&pernet_ops_rwsem);
1893 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1898 call_netdevice_unregister_net_notifiers(nb, net);
1902 up_write(&pernet_ops_rwsem);
1905 EXPORT_SYMBOL(unregister_netdevice_notifier);
1907 static int __register_netdevice_notifier_net(struct net *net,
1908 struct notifier_block *nb,
1909 bool ignore_call_fail)
1913 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1919 err = call_netdevice_register_net_notifiers(nb, net);
1920 if (err && !ignore_call_fail)
1921 goto chain_unregister;
1926 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1930 static int __unregister_netdevice_notifier_net(struct net *net,
1931 struct notifier_block *nb)
1935 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1939 call_netdevice_unregister_net_notifiers(nb, net);
1944 * register_netdevice_notifier_net - register a per-netns network notifier block
1945 * @net: network namespace
1948 * Register a notifier to be called when network device events occur.
1949 * The notifier passed is linked into the kernel structures and must
1950 * not be reused until it has been unregistered. A negative errno code
1951 * is returned on a failure.
1953 * When registered all registration and up events are replayed
1954 * to the new notifier to allow device to have a race free
1955 * view of the network device list.
1958 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1963 err = __register_netdevice_notifier_net(net, nb, false);
1967 EXPORT_SYMBOL(register_netdevice_notifier_net);
1970 * unregister_netdevice_notifier_net - unregister a per-netns
1971 * network notifier block
1972 * @net: network namespace
1975 * Unregister a notifier previously registered by
1976 * register_netdevice_notifier(). The notifier is unlinked into the
1977 * kernel structures and may then be reused. A negative errno code
1978 * is returned on a failure.
1980 * After unregistering unregister and down device events are synthesized
1981 * for all devices on the device list to the removed notifier to remove
1982 * the need for special case cleanup code.
1985 int unregister_netdevice_notifier_net(struct net *net,
1986 struct notifier_block *nb)
1991 err = __unregister_netdevice_notifier_net(net, nb);
1995 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1997 int register_netdevice_notifier_dev_net(struct net_device *dev,
1998 struct notifier_block *nb,
1999 struct netdev_net_notifier *nn)
2004 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2007 list_add(&nn->list, &dev->net_notifier_list);
2012 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2014 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2015 struct notifier_block *nb,
2016 struct netdev_net_notifier *nn)
2021 list_del(&nn->list);
2022 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2026 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2028 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2031 struct netdev_net_notifier *nn;
2033 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2034 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2035 __register_netdevice_notifier_net(net, nn->nb, true);
2040 * call_netdevice_notifiers_info - call all network notifier blocks
2041 * @val: value passed unmodified to notifier function
2042 * @info: notifier information data
2044 * Call all network notifier blocks. Parameters and return value
2045 * are as for raw_notifier_call_chain().
2048 static int call_netdevice_notifiers_info(unsigned long val,
2049 struct netdev_notifier_info *info)
2051 struct net *net = dev_net(info->dev);
2056 /* Run per-netns notifier block chain first, then run the global one.
2057 * Hopefully, one day, the global one is going to be removed after
2058 * all notifier block registrators get converted to be per-netns.
2060 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2061 if (ret & NOTIFY_STOP_MASK)
2063 return raw_notifier_call_chain(&netdev_chain, val, info);
2066 static int call_netdevice_notifiers_extack(unsigned long val,
2067 struct net_device *dev,
2068 struct netlink_ext_ack *extack)
2070 struct netdev_notifier_info info = {
2075 return call_netdevice_notifiers_info(val, &info);
2079 * call_netdevice_notifiers - call all network notifier blocks
2080 * @val: value passed unmodified to notifier function
2081 * @dev: net_device pointer passed unmodified to notifier function
2083 * Call all network notifier blocks. Parameters and return value
2084 * are as for raw_notifier_call_chain().
2087 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2089 return call_netdevice_notifiers_extack(val, dev, NULL);
2091 EXPORT_SYMBOL(call_netdevice_notifiers);
2094 * call_netdevice_notifiers_mtu - call all network notifier blocks
2095 * @val: value passed unmodified to notifier function
2096 * @dev: net_device pointer passed unmodified to notifier function
2097 * @arg: additional u32 argument passed to the notifier function
2099 * Call all network notifier blocks. Parameters and return value
2100 * are as for raw_notifier_call_chain().
2102 static int call_netdevice_notifiers_mtu(unsigned long val,
2103 struct net_device *dev, u32 arg)
2105 struct netdev_notifier_info_ext info = {
2110 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2112 return call_netdevice_notifiers_info(val, &info.info);
2115 #ifdef CONFIG_NET_INGRESS
2116 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2118 void net_inc_ingress_queue(void)
2120 static_branch_inc(&ingress_needed_key);
2122 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2124 void net_dec_ingress_queue(void)
2126 static_branch_dec(&ingress_needed_key);
2128 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2131 #ifdef CONFIG_NET_EGRESS
2132 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2134 void net_inc_egress_queue(void)
2136 static_branch_inc(&egress_needed_key);
2138 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2140 void net_dec_egress_queue(void)
2142 static_branch_dec(&egress_needed_key);
2144 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2147 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2148 #ifdef CONFIG_JUMP_LABEL
2149 static atomic_t netstamp_needed_deferred;
2150 static atomic_t netstamp_wanted;
2151 static void netstamp_clear(struct work_struct *work)
2153 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2156 wanted = atomic_add_return(deferred, &netstamp_wanted);
2158 static_branch_enable(&netstamp_needed_key);
2160 static_branch_disable(&netstamp_needed_key);
2162 static DECLARE_WORK(netstamp_work, netstamp_clear);
2165 void net_enable_timestamp(void)
2167 #ifdef CONFIG_JUMP_LABEL
2171 wanted = atomic_read(&netstamp_wanted);
2174 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2177 atomic_inc(&netstamp_needed_deferred);
2178 schedule_work(&netstamp_work);
2180 static_branch_inc(&netstamp_needed_key);
2183 EXPORT_SYMBOL(net_enable_timestamp);
2185 void net_disable_timestamp(void)
2187 #ifdef CONFIG_JUMP_LABEL
2191 wanted = atomic_read(&netstamp_wanted);
2194 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2197 atomic_dec(&netstamp_needed_deferred);
2198 schedule_work(&netstamp_work);
2200 static_branch_dec(&netstamp_needed_key);
2203 EXPORT_SYMBOL(net_disable_timestamp);
2205 static inline void net_timestamp_set(struct sk_buff *skb)
2208 if (static_branch_unlikely(&netstamp_needed_key))
2209 __net_timestamp(skb);
2212 #define net_timestamp_check(COND, SKB) \
2213 if (static_branch_unlikely(&netstamp_needed_key)) { \
2214 if ((COND) && !(SKB)->tstamp) \
2215 __net_timestamp(SKB); \
2218 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2220 return __is_skb_forwardable(dev, skb, true);
2222 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2224 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2227 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2230 skb->protocol = eth_type_trans(skb, dev);
2231 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2237 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2239 return __dev_forward_skb2(dev, skb, true);
2241 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2244 * dev_forward_skb - loopback an skb to another netif
2246 * @dev: destination network device
2247 * @skb: buffer to forward
2250 * NET_RX_SUCCESS (no congestion)
2251 * NET_RX_DROP (packet was dropped, but freed)
2253 * dev_forward_skb can be used for injecting an skb from the
2254 * start_xmit function of one device into the receive queue
2255 * of another device.
2257 * The receiving device may be in another namespace, so
2258 * we have to clear all information in the skb that could
2259 * impact namespace isolation.
2261 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2263 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2265 EXPORT_SYMBOL_GPL(dev_forward_skb);
2267 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2269 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2272 static inline int deliver_skb(struct sk_buff *skb,
2273 struct packet_type *pt_prev,
2274 struct net_device *orig_dev)
2276 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2278 refcount_inc(&skb->users);
2279 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2282 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2283 struct packet_type **pt,
2284 struct net_device *orig_dev,
2286 struct list_head *ptype_list)
2288 struct packet_type *ptype, *pt_prev = *pt;
2290 list_for_each_entry_rcu(ptype, ptype_list, list) {
2291 if (ptype->type != type)
2294 deliver_skb(skb, pt_prev, orig_dev);
2300 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2302 if (!ptype->af_packet_priv || !skb->sk)
2305 if (ptype->id_match)
2306 return ptype->id_match(ptype, skb->sk);
2307 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2314 * dev_nit_active - return true if any network interface taps are in use
2316 * @dev: network device to check for the presence of taps
2318 bool dev_nit_active(struct net_device *dev)
2320 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2322 EXPORT_SYMBOL_GPL(dev_nit_active);
2325 * Support routine. Sends outgoing frames to any network
2326 * taps currently in use.
2329 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2331 struct packet_type *ptype;
2332 struct sk_buff *skb2 = NULL;
2333 struct packet_type *pt_prev = NULL;
2334 struct list_head *ptype_list = &ptype_all;
2338 list_for_each_entry_rcu(ptype, ptype_list, list) {
2339 if (ptype->ignore_outgoing)
2342 /* Never send packets back to the socket
2345 if (skb_loop_sk(ptype, skb))
2349 deliver_skb(skb2, pt_prev, skb->dev);
2354 /* need to clone skb, done only once */
2355 skb2 = skb_clone(skb, GFP_ATOMIC);
2359 net_timestamp_set(skb2);
2361 /* skb->nh should be correctly
2362 * set by sender, so that the second statement is
2363 * just protection against buggy protocols.
2365 skb_reset_mac_header(skb2);
2367 if (skb_network_header(skb2) < skb2->data ||
2368 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2369 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2370 ntohs(skb2->protocol),
2372 skb_reset_network_header(skb2);
2375 skb2->transport_header = skb2->network_header;
2376 skb2->pkt_type = PACKET_OUTGOING;
2380 if (ptype_list == &ptype_all) {
2381 ptype_list = &dev->ptype_all;
2386 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2387 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2393 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2396 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2397 * @dev: Network device
2398 * @txq: number of queues available
2400 * If real_num_tx_queues is changed the tc mappings may no longer be
2401 * valid. To resolve this verify the tc mapping remains valid and if
2402 * not NULL the mapping. With no priorities mapping to this
2403 * offset/count pair it will no longer be used. In the worst case TC0
2404 * is invalid nothing can be done so disable priority mappings. If is
2405 * expected that drivers will fix this mapping if they can before
2406 * calling netif_set_real_num_tx_queues.
2408 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2411 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2413 /* If TC0 is invalidated disable TC mapping */
2414 if (tc->offset + tc->count > txq) {
2415 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2420 /* Invalidated prio to tc mappings set to TC0 */
2421 for (i = 1; i < TC_BITMASK + 1; i++) {
2422 int q = netdev_get_prio_tc_map(dev, i);
2424 tc = &dev->tc_to_txq[q];
2425 if (tc->offset + tc->count > txq) {
2426 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2428 netdev_set_prio_tc_map(dev, i, 0);
2433 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2436 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2439 /* walk through the TCs and see if it falls into any of them */
2440 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2441 if ((txq - tc->offset) < tc->count)
2445 /* didn't find it, just return -1 to indicate no match */
2451 EXPORT_SYMBOL(netdev_txq_to_tc);
2454 struct static_key xps_needed __read_mostly;
2455 EXPORT_SYMBOL(xps_needed);
2456 struct static_key xps_rxqs_needed __read_mostly;
2457 EXPORT_SYMBOL(xps_rxqs_needed);
2458 static DEFINE_MUTEX(xps_map_mutex);
2459 #define xmap_dereference(P) \
2460 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2462 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2465 struct xps_map *map = NULL;
2469 map = xmap_dereference(dev_maps->attr_map[tci]);
2473 for (pos = map->len; pos--;) {
2474 if (map->queues[pos] != index)
2478 map->queues[pos] = map->queues[--map->len];
2482 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2483 kfree_rcu(map, rcu);
2490 static bool remove_xps_queue_cpu(struct net_device *dev,
2491 struct xps_dev_maps *dev_maps,
2492 int cpu, u16 offset, u16 count)
2494 int num_tc = dev->num_tc ? : 1;
2495 bool active = false;
2498 for (tci = cpu * num_tc; num_tc--; tci++) {
2501 for (i = count, j = offset; i--; j++) {
2502 if (!remove_xps_queue(dev_maps, tci, j))
2512 static void reset_xps_maps(struct net_device *dev,
2513 struct xps_dev_maps *dev_maps,
2517 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2518 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2520 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2522 static_key_slow_dec_cpuslocked(&xps_needed);
2523 kfree_rcu(dev_maps, rcu);
2526 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2527 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2528 u16 offset, u16 count, bool is_rxqs_map)
2530 bool active = false;
2533 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2535 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2538 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2541 for (i = offset + (count - 1); count--; i--) {
2542 netdev_queue_numa_node_write(
2543 netdev_get_tx_queue(dev, i),
2549 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2552 const unsigned long *possible_mask = NULL;
2553 struct xps_dev_maps *dev_maps;
2554 unsigned int nr_ids;
2556 if (!static_key_false(&xps_needed))
2560 mutex_lock(&xps_map_mutex);
2562 if (static_key_false(&xps_rxqs_needed)) {
2563 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2565 nr_ids = dev->num_rx_queues;
2566 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2567 offset, count, true);
2571 dev_maps = xmap_dereference(dev->xps_cpus_map);
2575 if (num_possible_cpus() > 1)
2576 possible_mask = cpumask_bits(cpu_possible_mask);
2577 nr_ids = nr_cpu_ids;
2578 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2582 mutex_unlock(&xps_map_mutex);
2586 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2588 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2591 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2592 u16 index, bool is_rxqs_map)
2594 struct xps_map *new_map;
2595 int alloc_len = XPS_MIN_MAP_ALLOC;
2598 for (pos = 0; map && pos < map->len; pos++) {
2599 if (map->queues[pos] != index)
2604 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2606 if (pos < map->alloc_len)
2609 alloc_len = map->alloc_len * 2;
2612 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2616 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2618 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2619 cpu_to_node(attr_index));
2623 for (i = 0; i < pos; i++)
2624 new_map->queues[i] = map->queues[i];
2625 new_map->alloc_len = alloc_len;
2631 /* Must be called under cpus_read_lock */
2632 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2633 u16 index, bool is_rxqs_map)
2635 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2636 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2637 int i, j, tci, numa_node_id = -2;
2638 int maps_sz, num_tc = 1, tc = 0;
2639 struct xps_map *map, *new_map;
2640 bool active = false;
2641 unsigned int nr_ids;
2644 /* Do not allow XPS on subordinate device directly */
2645 num_tc = dev->num_tc;
2649 /* If queue belongs to subordinate dev use its map */
2650 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2652 tc = netdev_txq_to_tc(dev, index);
2657 mutex_lock(&xps_map_mutex);
2659 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2660 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2661 nr_ids = dev->num_rx_queues;
2663 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2664 if (num_possible_cpus() > 1) {
2665 online_mask = cpumask_bits(cpu_online_mask);
2666 possible_mask = cpumask_bits(cpu_possible_mask);
2668 dev_maps = xmap_dereference(dev->xps_cpus_map);
2669 nr_ids = nr_cpu_ids;
2672 if (maps_sz < L1_CACHE_BYTES)
2673 maps_sz = L1_CACHE_BYTES;
2675 /* allocate memory for queue storage */
2676 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2679 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2680 if (!new_dev_maps) {
2681 mutex_unlock(&xps_map_mutex);
2685 tci = j * num_tc + tc;
2686 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2689 map = expand_xps_map(map, j, index, is_rxqs_map);
2693 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2697 goto out_no_new_maps;
2700 /* Increment static keys at most once per type */
2701 static_key_slow_inc_cpuslocked(&xps_needed);
2703 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2706 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2708 /* copy maps belonging to foreign traffic classes */
2709 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2710 /* fill in the new device map from the old device map */
2711 map = xmap_dereference(dev_maps->attr_map[tci]);
2712 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2715 /* We need to explicitly update tci as prevous loop
2716 * could break out early if dev_maps is NULL.
2718 tci = j * num_tc + tc;
2720 if (netif_attr_test_mask(j, mask, nr_ids) &&
2721 netif_attr_test_online(j, online_mask, nr_ids)) {
2722 /* add tx-queue to CPU/rx-queue maps */
2725 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2726 while ((pos < map->len) && (map->queues[pos] != index))
2729 if (pos == map->len)
2730 map->queues[map->len++] = index;
2733 if (numa_node_id == -2)
2734 numa_node_id = cpu_to_node(j);
2735 else if (numa_node_id != cpu_to_node(j))
2739 } else if (dev_maps) {
2740 /* fill in the new device map from the old device map */
2741 map = xmap_dereference(dev_maps->attr_map[tci]);
2742 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2745 /* copy maps belonging to foreign traffic classes */
2746 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2747 /* fill in the new device map from the old device map */
2748 map = xmap_dereference(dev_maps->attr_map[tci]);
2749 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2754 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2756 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2758 /* Cleanup old maps */
2760 goto out_no_old_maps;
2762 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2764 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2765 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2766 map = xmap_dereference(dev_maps->attr_map[tci]);
2767 if (map && map != new_map)
2768 kfree_rcu(map, rcu);
2772 kfree_rcu(dev_maps, rcu);
2775 dev_maps = new_dev_maps;
2780 /* update Tx queue numa node */
2781 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2782 (numa_node_id >= 0) ?
2783 numa_node_id : NUMA_NO_NODE);
2789 /* removes tx-queue from unused CPUs/rx-queues */
2790 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2792 for (i = tc, tci = j * num_tc; i--; tci++)
2793 active |= remove_xps_queue(dev_maps, tci, index);
2794 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2795 !netif_attr_test_online(j, online_mask, nr_ids))
2796 active |= remove_xps_queue(dev_maps, tci, index);
2797 for (i = num_tc - tc, tci++; --i; tci++)
2798 active |= remove_xps_queue(dev_maps, tci, index);
2801 /* free map if not active */
2803 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2806 mutex_unlock(&xps_map_mutex);
2810 /* remove any maps that we added */
2811 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2813 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2814 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2816 xmap_dereference(dev_maps->attr_map[tci]) :
2818 if (new_map && new_map != map)
2823 mutex_unlock(&xps_map_mutex);
2825 kfree(new_dev_maps);
2828 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2830 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2836 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2841 EXPORT_SYMBOL(netif_set_xps_queue);
2844 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2846 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2848 /* Unbind any subordinate channels */
2849 while (txq-- != &dev->_tx[0]) {
2851 netdev_unbind_sb_channel(dev, txq->sb_dev);
2855 void netdev_reset_tc(struct net_device *dev)
2858 netif_reset_xps_queues_gt(dev, 0);
2860 netdev_unbind_all_sb_channels(dev);
2862 /* Reset TC configuration of device */
2864 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2865 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2867 EXPORT_SYMBOL(netdev_reset_tc);
2869 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2871 if (tc >= dev->num_tc)
2875 netif_reset_xps_queues(dev, offset, count);
2877 dev->tc_to_txq[tc].count = count;
2878 dev->tc_to_txq[tc].offset = offset;
2881 EXPORT_SYMBOL(netdev_set_tc_queue);
2883 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2885 if (num_tc > TC_MAX_QUEUE)
2889 netif_reset_xps_queues_gt(dev, 0);
2891 netdev_unbind_all_sb_channels(dev);
2893 dev->num_tc = num_tc;
2896 EXPORT_SYMBOL(netdev_set_num_tc);
2898 void netdev_unbind_sb_channel(struct net_device *dev,
2899 struct net_device *sb_dev)
2901 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2904 netif_reset_xps_queues_gt(sb_dev, 0);
2906 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2907 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2909 while (txq-- != &dev->_tx[0]) {
2910 if (txq->sb_dev == sb_dev)
2914 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2916 int netdev_bind_sb_channel_queue(struct net_device *dev,
2917 struct net_device *sb_dev,
2918 u8 tc, u16 count, u16 offset)
2920 /* Make certain the sb_dev and dev are already configured */
2921 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2924 /* We cannot hand out queues we don't have */
2925 if ((offset + count) > dev->real_num_tx_queues)
2928 /* Record the mapping */
2929 sb_dev->tc_to_txq[tc].count = count;
2930 sb_dev->tc_to_txq[tc].offset = offset;
2932 /* Provide a way for Tx queue to find the tc_to_txq map or
2933 * XPS map for itself.
2936 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2940 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2942 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2944 /* Do not use a multiqueue device to represent a subordinate channel */
2945 if (netif_is_multiqueue(dev))
2948 /* We allow channels 1 - 32767 to be used for subordinate channels.
2949 * Channel 0 is meant to be "native" mode and used only to represent
2950 * the main root device. We allow writing 0 to reset the device back
2951 * to normal mode after being used as a subordinate channel.
2953 if (channel > S16_MAX)
2956 dev->num_tc = -channel;
2960 EXPORT_SYMBOL(netdev_set_sb_channel);
2963 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2964 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2966 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2971 disabling = txq < dev->real_num_tx_queues;
2973 if (txq < 1 || txq > dev->num_tx_queues)
2976 if (dev->reg_state == NETREG_REGISTERED ||
2977 dev->reg_state == NETREG_UNREGISTERING) {
2980 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2986 netif_setup_tc(dev, txq);
2988 dev->real_num_tx_queues = txq;
2992 qdisc_reset_all_tx_gt(dev, txq);
2994 netif_reset_xps_queues_gt(dev, txq);
2998 dev->real_num_tx_queues = txq;
3003 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3007 * netif_set_real_num_rx_queues - set actual number of RX queues used
3008 * @dev: Network device
3009 * @rxq: Actual number of RX queues
3011 * This must be called either with the rtnl_lock held or before
3012 * registration of the net device. Returns 0 on success, or a
3013 * negative error code. If called before registration, it always
3016 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3020 if (rxq < 1 || rxq > dev->num_rx_queues)
3023 if (dev->reg_state == NETREG_REGISTERED) {
3026 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3032 dev->real_num_rx_queues = rxq;
3035 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3039 * netif_get_num_default_rss_queues - default number of RSS queues
3041 * This routine should set an upper limit on the number of RSS queues
3042 * used by default by multiqueue devices.
3044 int netif_get_num_default_rss_queues(void)
3046 return is_kdump_kernel() ?
3047 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3049 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3051 static void __netif_reschedule(struct Qdisc *q)
3053 struct softnet_data *sd;
3054 unsigned long flags;
3056 local_irq_save(flags);
3057 sd = this_cpu_ptr(&softnet_data);
3058 q->next_sched = NULL;
3059 *sd->output_queue_tailp = q;
3060 sd->output_queue_tailp = &q->next_sched;
3061 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3062 local_irq_restore(flags);
3065 void __netif_schedule(struct Qdisc *q)
3067 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3068 __netif_reschedule(q);
3070 EXPORT_SYMBOL(__netif_schedule);
3072 struct dev_kfree_skb_cb {
3073 enum skb_free_reason reason;
3076 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3078 return (struct dev_kfree_skb_cb *)skb->cb;
3081 void netif_schedule_queue(struct netdev_queue *txq)
3084 if (!netif_xmit_stopped(txq)) {
3085 struct Qdisc *q = rcu_dereference(txq->qdisc);
3087 __netif_schedule(q);
3091 EXPORT_SYMBOL(netif_schedule_queue);
3093 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3095 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3099 q = rcu_dereference(dev_queue->qdisc);
3100 __netif_schedule(q);
3104 EXPORT_SYMBOL(netif_tx_wake_queue);
3106 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3108 unsigned long flags;
3113 if (likely(refcount_read(&skb->users) == 1)) {
3115 refcount_set(&skb->users, 0);
3116 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3119 get_kfree_skb_cb(skb)->reason = reason;
3120 local_irq_save(flags);
3121 skb->next = __this_cpu_read(softnet_data.completion_queue);
3122 __this_cpu_write(softnet_data.completion_queue, skb);
3123 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3124 local_irq_restore(flags);
3126 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3128 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3130 if (in_irq() || irqs_disabled())
3131 __dev_kfree_skb_irq(skb, reason);
3135 EXPORT_SYMBOL(__dev_kfree_skb_any);
3139 * netif_device_detach - mark device as removed
3140 * @dev: network device
3142 * Mark device as removed from system and therefore no longer available.
3144 void netif_device_detach(struct net_device *dev)
3146 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3147 netif_running(dev)) {
3148 netif_tx_stop_all_queues(dev);
3151 EXPORT_SYMBOL(netif_device_detach);
3154 * netif_device_attach - mark device as attached
3155 * @dev: network device
3157 * Mark device as attached from system and restart if needed.
3159 void netif_device_attach(struct net_device *dev)
3161 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3162 netif_running(dev)) {
3163 netif_tx_wake_all_queues(dev);
3164 __netdev_watchdog_up(dev);
3167 EXPORT_SYMBOL(netif_device_attach);
3170 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3171 * to be used as a distribution range.
3173 static u16 skb_tx_hash(const struct net_device *dev,
3174 const struct net_device *sb_dev,
3175 struct sk_buff *skb)
3179 u16 qcount = dev->real_num_tx_queues;
3182 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3184 qoffset = sb_dev->tc_to_txq[tc].offset;
3185 qcount = sb_dev->tc_to_txq[tc].count;
3188 if (skb_rx_queue_recorded(skb)) {
3189 hash = skb_get_rx_queue(skb);
3190 if (hash >= qoffset)
3192 while (unlikely(hash >= qcount))
3194 return hash + qoffset;
3197 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3200 static void skb_warn_bad_offload(const struct sk_buff *skb)
3202 static const netdev_features_t null_features;
3203 struct net_device *dev = skb->dev;
3204 const char *name = "";
3206 if (!net_ratelimit())
3210 if (dev->dev.parent)
3211 name = dev_driver_string(dev->dev.parent);
3213 name = netdev_name(dev);
3215 skb_dump(KERN_WARNING, skb, false);
3216 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3217 name, dev ? &dev->features : &null_features,
3218 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3222 * Invalidate hardware checksum when packet is to be mangled, and
3223 * complete checksum manually on outgoing path.
3225 int skb_checksum_help(struct sk_buff *skb)
3228 int ret = 0, offset;
3230 if (skb->ip_summed == CHECKSUM_COMPLETE)
3231 goto out_set_summed;
3233 if (unlikely(skb_is_gso(skb))) {
3234 skb_warn_bad_offload(skb);
3238 /* Before computing a checksum, we should make sure no frag could
3239 * be modified by an external entity : checksum could be wrong.
3241 if (skb_has_shared_frag(skb)) {
3242 ret = __skb_linearize(skb);
3247 offset = skb_checksum_start_offset(skb);
3248 BUG_ON(offset >= skb_headlen(skb));
3249 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3251 offset += skb->csum_offset;
3252 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3254 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3258 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3260 skb->ip_summed = CHECKSUM_NONE;
3264 EXPORT_SYMBOL(skb_checksum_help);
3266 int skb_crc32c_csum_help(struct sk_buff *skb)
3269 int ret = 0, offset, start;
3271 if (skb->ip_summed != CHECKSUM_PARTIAL)
3274 if (unlikely(skb_is_gso(skb)))
3277 /* Before computing a checksum, we should make sure no frag could
3278 * be modified by an external entity : checksum could be wrong.
3280 if (unlikely(skb_has_shared_frag(skb))) {
3281 ret = __skb_linearize(skb);
3285 start = skb_checksum_start_offset(skb);
3286 offset = start + offsetof(struct sctphdr, checksum);
3287 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3292 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3296 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3297 skb->len - start, ~(__u32)0,
3299 *(__le32 *)(skb->data + offset) = crc32c_csum;
3300 skb->ip_summed = CHECKSUM_NONE;
3301 skb->csum_not_inet = 0;
3306 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3308 __be16 type = skb->protocol;
3310 /* Tunnel gso handlers can set protocol to ethernet. */
3311 if (type == htons(ETH_P_TEB)) {
3314 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3317 eth = (struct ethhdr *)skb->data;
3318 type = eth->h_proto;
3321 return __vlan_get_protocol(skb, type, depth);
3325 * skb_mac_gso_segment - mac layer segmentation handler.
3326 * @skb: buffer to segment
3327 * @features: features for the output path (see dev->features)
3329 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3330 netdev_features_t features)
3332 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3333 struct packet_offload *ptype;
3334 int vlan_depth = skb->mac_len;
3335 __be16 type = skb_network_protocol(skb, &vlan_depth);
3337 if (unlikely(!type))
3338 return ERR_PTR(-EINVAL);
3340 __skb_pull(skb, vlan_depth);
3343 list_for_each_entry_rcu(ptype, &offload_base, list) {
3344 if (ptype->type == type && ptype->callbacks.gso_segment) {
3345 segs = ptype->callbacks.gso_segment(skb, features);
3351 __skb_push(skb, skb->data - skb_mac_header(skb));
3355 EXPORT_SYMBOL(skb_mac_gso_segment);
3358 /* openvswitch calls this on rx path, so we need a different check.
3360 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3363 return skb->ip_summed != CHECKSUM_PARTIAL &&
3364 skb->ip_summed != CHECKSUM_UNNECESSARY;
3366 return skb->ip_summed == CHECKSUM_NONE;
3370 * __skb_gso_segment - Perform segmentation on skb.
3371 * @skb: buffer to segment
3372 * @features: features for the output path (see dev->features)
3373 * @tx_path: whether it is called in TX path
3375 * This function segments the given skb and returns a list of segments.
3377 * It may return NULL if the skb requires no segmentation. This is
3378 * only possible when GSO is used for verifying header integrity.
3380 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3382 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3383 netdev_features_t features, bool tx_path)
3385 struct sk_buff *segs;
3387 if (unlikely(skb_needs_check(skb, tx_path))) {
3390 /* We're going to init ->check field in TCP or UDP header */
3391 err = skb_cow_head(skb, 0);
3393 return ERR_PTR(err);
3396 /* Only report GSO partial support if it will enable us to
3397 * support segmentation on this frame without needing additional
3400 if (features & NETIF_F_GSO_PARTIAL) {
3401 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3402 struct net_device *dev = skb->dev;
3404 partial_features |= dev->features & dev->gso_partial_features;
3405 if (!skb_gso_ok(skb, features | partial_features))
3406 features &= ~NETIF_F_GSO_PARTIAL;
3409 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3410 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3412 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3413 SKB_GSO_CB(skb)->encap_level = 0;
3415 skb_reset_mac_header(skb);
3416 skb_reset_mac_len(skb);
3418 segs = skb_mac_gso_segment(skb, features);
3420 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3421 skb_warn_bad_offload(skb);
3425 EXPORT_SYMBOL(__skb_gso_segment);
3427 /* Take action when hardware reception checksum errors are detected. */
3429 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3431 if (net_ratelimit()) {
3432 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3433 skb_dump(KERN_ERR, skb, true);
3437 EXPORT_SYMBOL(netdev_rx_csum_fault);
3440 /* XXX: check that highmem exists at all on the given machine. */
3441 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3443 #ifdef CONFIG_HIGHMEM
3446 if (!(dev->features & NETIF_F_HIGHDMA)) {
3447 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3448 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3450 if (PageHighMem(skb_frag_page(frag)))
3458 /* If MPLS offload request, verify we are testing hardware MPLS features
3459 * instead of standard features for the netdev.
3461 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3462 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3463 netdev_features_t features,
3466 if (eth_p_mpls(type))
3467 features &= skb->dev->mpls_features;
3472 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3473 netdev_features_t features,
3480 static netdev_features_t harmonize_features(struct sk_buff *skb,
3481 netdev_features_t features)
3485 type = skb_network_protocol(skb, NULL);
3486 features = net_mpls_features(skb, features, type);
3488 if (skb->ip_summed != CHECKSUM_NONE &&
3489 !can_checksum_protocol(features, type)) {
3490 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3492 if (illegal_highdma(skb->dev, skb))
3493 features &= ~NETIF_F_SG;
3498 netdev_features_t passthru_features_check(struct sk_buff *skb,
3499 struct net_device *dev,
3500 netdev_features_t features)
3504 EXPORT_SYMBOL(passthru_features_check);
3506 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3507 struct net_device *dev,
3508 netdev_features_t features)
3510 return vlan_features_check(skb, features);
3513 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3514 struct net_device *dev,
3515 netdev_features_t features)
3517 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3519 if (gso_segs > dev->gso_max_segs)
3520 return features & ~NETIF_F_GSO_MASK;
3522 if (!skb_shinfo(skb)->gso_type) {
3523 skb_warn_bad_offload(skb);
3524 return features & ~NETIF_F_GSO_MASK;
3527 /* Support for GSO partial features requires software
3528 * intervention before we can actually process the packets
3529 * so we need to strip support for any partial features now
3530 * and we can pull them back in after we have partially
3531 * segmented the frame.
3533 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3534 features &= ~dev->gso_partial_features;
3536 /* Make sure to clear the IPv4 ID mangling feature if the
3537 * IPv4 header has the potential to be fragmented.
3539 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3540 struct iphdr *iph = skb->encapsulation ?
3541 inner_ip_hdr(skb) : ip_hdr(skb);
3543 if (!(iph->frag_off & htons(IP_DF)))
3544 features &= ~NETIF_F_TSO_MANGLEID;
3550 netdev_features_t netif_skb_features(struct sk_buff *skb)
3552 struct net_device *dev = skb->dev;
3553 netdev_features_t features = dev->features;
3555 if (skb_is_gso(skb))
3556 features = gso_features_check(skb, dev, features);
3558 /* If encapsulation offload request, verify we are testing
3559 * hardware encapsulation features instead of standard
3560 * features for the netdev
3562 if (skb->encapsulation)
3563 features &= dev->hw_enc_features;
3565 if (skb_vlan_tagged(skb))
3566 features = netdev_intersect_features(features,
3567 dev->vlan_features |
3568 NETIF_F_HW_VLAN_CTAG_TX |
3569 NETIF_F_HW_VLAN_STAG_TX);
3571 if (dev->netdev_ops->ndo_features_check)
3572 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3575 features &= dflt_features_check(skb, dev, features);
3577 return harmonize_features(skb, features);
3579 EXPORT_SYMBOL(netif_skb_features);
3581 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3582 struct netdev_queue *txq, bool more)
3587 if (dev_nit_active(dev))
3588 dev_queue_xmit_nit(skb, dev);
3591 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3592 trace_net_dev_start_xmit(skb, dev);
3593 rc = netdev_start_xmit(skb, dev, txq, more);
3594 trace_net_dev_xmit(skb, rc, dev, len);
3599 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3600 struct netdev_queue *txq, int *ret)
3602 struct sk_buff *skb = first;
3603 int rc = NETDEV_TX_OK;
3606 struct sk_buff *next = skb->next;
3608 skb_mark_not_on_list(skb);
3609 rc = xmit_one(skb, dev, txq, next != NULL);
3610 if (unlikely(!dev_xmit_complete(rc))) {
3616 if (netif_tx_queue_stopped(txq) && skb) {
3617 rc = NETDEV_TX_BUSY;
3627 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3628 netdev_features_t features)
3630 if (skb_vlan_tag_present(skb) &&
3631 !vlan_hw_offload_capable(features, skb->vlan_proto))
3632 skb = __vlan_hwaccel_push_inside(skb);
3636 int skb_csum_hwoffload_help(struct sk_buff *skb,
3637 const netdev_features_t features)
3639 if (unlikely(skb_csum_is_sctp(skb)))
3640 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3641 skb_crc32c_csum_help(skb);
3643 if (features & NETIF_F_HW_CSUM)
3646 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3647 switch (skb->csum_offset) {
3648 case offsetof(struct tcphdr, check):
3649 case offsetof(struct udphdr, check):
3654 return skb_checksum_help(skb);
3656 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3658 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3660 netdev_features_t features;
3662 features = netif_skb_features(skb);
3663 skb = validate_xmit_vlan(skb, features);
3667 skb = sk_validate_xmit_skb(skb, dev);
3671 if (netif_needs_gso(skb, features)) {
3672 struct sk_buff *segs;
3674 segs = skb_gso_segment(skb, features);
3682 if (skb_needs_linearize(skb, features) &&
3683 __skb_linearize(skb))
3686 /* If packet is not checksummed and device does not
3687 * support checksumming for this protocol, complete
3688 * checksumming here.
3690 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3691 if (skb->encapsulation)
3692 skb_set_inner_transport_header(skb,
3693 skb_checksum_start_offset(skb));
3695 skb_set_transport_header(skb,
3696 skb_checksum_start_offset(skb));
3697 if (skb_csum_hwoffload_help(skb, features))
3702 skb = validate_xmit_xfrm(skb, features, again);
3709 atomic_long_inc(&dev->tx_dropped);
3713 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3715 struct sk_buff *next, *head = NULL, *tail;
3717 for (; skb != NULL; skb = next) {
3719 skb_mark_not_on_list(skb);
3721 /* in case skb wont be segmented, point to itself */
3724 skb = validate_xmit_skb(skb, dev, again);
3732 /* If skb was segmented, skb->prev points to
3733 * the last segment. If not, it still contains skb.
3739 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3741 static void qdisc_pkt_len_init(struct sk_buff *skb)
3743 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3745 qdisc_skb_cb(skb)->pkt_len = skb->len;
3747 /* To get more precise estimation of bytes sent on wire,
3748 * we add to pkt_len the headers size of all segments
3750 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3751 unsigned int hdr_len;
3752 u16 gso_segs = shinfo->gso_segs;
3754 /* mac layer + network layer */
3755 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3757 /* + transport layer */
3758 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3759 const struct tcphdr *th;
3760 struct tcphdr _tcphdr;
3762 th = skb_header_pointer(skb, skb_transport_offset(skb),
3763 sizeof(_tcphdr), &_tcphdr);
3765 hdr_len += __tcp_hdrlen(th);
3767 struct udphdr _udphdr;
3769 if (skb_header_pointer(skb, skb_transport_offset(skb),
3770 sizeof(_udphdr), &_udphdr))
3771 hdr_len += sizeof(struct udphdr);
3774 if (shinfo->gso_type & SKB_GSO_DODGY)
3775 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3778 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3782 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3783 struct net_device *dev,
3784 struct netdev_queue *txq)
3786 spinlock_t *root_lock = qdisc_lock(q);
3787 struct sk_buff *to_free = NULL;
3791 qdisc_calculate_pkt_len(skb, q);
3793 if (q->flags & TCQ_F_NOLOCK) {
3794 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3797 if (unlikely(to_free))
3798 kfree_skb_list(to_free);
3803 * Heuristic to force contended enqueues to serialize on a
3804 * separate lock before trying to get qdisc main lock.
3805 * This permits qdisc->running owner to get the lock more
3806 * often and dequeue packets faster.
3808 contended = qdisc_is_running(q);
3809 if (unlikely(contended))
3810 spin_lock(&q->busylock);
3812 spin_lock(root_lock);
3813 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3814 __qdisc_drop(skb, &to_free);
3816 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3817 qdisc_run_begin(q)) {
3819 * This is a work-conserving queue; there are no old skbs
3820 * waiting to be sent out; and the qdisc is not running -
3821 * xmit the skb directly.
3824 qdisc_bstats_update(q, skb);
3826 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3827 if (unlikely(contended)) {
3828 spin_unlock(&q->busylock);
3835 rc = NET_XMIT_SUCCESS;
3837 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3838 if (qdisc_run_begin(q)) {
3839 if (unlikely(contended)) {
3840 spin_unlock(&q->busylock);
3847 spin_unlock(root_lock);
3848 if (unlikely(to_free))
3849 kfree_skb_list(to_free);
3850 if (unlikely(contended))
3851 spin_unlock(&q->busylock);
3855 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3856 static void skb_update_prio(struct sk_buff *skb)
3858 const struct netprio_map *map;
3859 const struct sock *sk;
3860 unsigned int prioidx;
3864 map = rcu_dereference_bh(skb->dev->priomap);
3867 sk = skb_to_full_sk(skb);
3871 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3873 if (prioidx < map->priomap_len)
3874 skb->priority = map->priomap[prioidx];
3877 #define skb_update_prio(skb)
3881 * dev_loopback_xmit - loop back @skb
3882 * @net: network namespace this loopback is happening in
3883 * @sk: sk needed to be a netfilter okfn
3884 * @skb: buffer to transmit
3886 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3888 skb_reset_mac_header(skb);
3889 __skb_pull(skb, skb_network_offset(skb));
3890 skb->pkt_type = PACKET_LOOPBACK;
3891 skb->ip_summed = CHECKSUM_UNNECESSARY;
3892 WARN_ON(!skb_dst(skb));
3897 EXPORT_SYMBOL(dev_loopback_xmit);
3899 #ifdef CONFIG_NET_EGRESS
3900 static struct sk_buff *
3901 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3903 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3904 struct tcf_result cl_res;
3909 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3910 qdisc_skb_cb(skb)->mru = 0;
3911 qdisc_skb_cb(skb)->post_ct = false;
3912 mini_qdisc_bstats_cpu_update(miniq, skb);
3914 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3916 case TC_ACT_RECLASSIFY:
3917 skb->tc_index = TC_H_MIN(cl_res.classid);
3920 mini_qdisc_qstats_cpu_drop(miniq);
3921 *ret = NET_XMIT_DROP;
3927 *ret = NET_XMIT_SUCCESS;
3930 case TC_ACT_REDIRECT:
3931 /* No need to push/pop skb's mac_header here on egress! */
3932 skb_do_redirect(skb);
3933 *ret = NET_XMIT_SUCCESS;
3941 #endif /* CONFIG_NET_EGRESS */
3944 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3945 struct xps_dev_maps *dev_maps, unsigned int tci)
3947 struct xps_map *map;
3948 int queue_index = -1;
3952 tci += netdev_get_prio_tc_map(dev, skb->priority);
3955 map = rcu_dereference(dev_maps->attr_map[tci]);
3958 queue_index = map->queues[0];
3960 queue_index = map->queues[reciprocal_scale(
3961 skb_get_hash(skb), map->len)];
3962 if (unlikely(queue_index >= dev->real_num_tx_queues))
3969 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3970 struct sk_buff *skb)
3973 struct xps_dev_maps *dev_maps;
3974 struct sock *sk = skb->sk;
3975 int queue_index = -1;
3977 if (!static_key_false(&xps_needed))
3981 if (!static_key_false(&xps_rxqs_needed))
3984 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3986 int tci = sk_rx_queue_get(sk);
3988 if (tci >= 0 && tci < dev->num_rx_queues)
3989 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3994 if (queue_index < 0) {
3995 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3997 unsigned int tci = skb->sender_cpu - 1;
3999 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4011 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4012 struct net_device *sb_dev)
4016 EXPORT_SYMBOL(dev_pick_tx_zero);
4018 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4019 struct net_device *sb_dev)
4021 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4023 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4025 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4026 struct net_device *sb_dev)
4028 struct sock *sk = skb->sk;
4029 int queue_index = sk_tx_queue_get(sk);
4031 sb_dev = sb_dev ? : dev;
4033 if (queue_index < 0 || skb->ooo_okay ||
4034 queue_index >= dev->real_num_tx_queues) {
4035 int new_index = get_xps_queue(dev, sb_dev, skb);
4038 new_index = skb_tx_hash(dev, sb_dev, skb);
4040 if (queue_index != new_index && sk &&
4042 rcu_access_pointer(sk->sk_dst_cache))
4043 sk_tx_queue_set(sk, new_index);
4045 queue_index = new_index;
4050 EXPORT_SYMBOL(netdev_pick_tx);
4052 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4053 struct sk_buff *skb,
4054 struct net_device *sb_dev)
4056 int queue_index = 0;
4059 u32 sender_cpu = skb->sender_cpu - 1;
4061 if (sender_cpu >= (u32)NR_CPUS)
4062 skb->sender_cpu = raw_smp_processor_id() + 1;
4065 if (dev->real_num_tx_queues != 1) {
4066 const struct net_device_ops *ops = dev->netdev_ops;
4068 if (ops->ndo_select_queue)
4069 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4071 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4073 queue_index = netdev_cap_txqueue(dev, queue_index);
4076 skb_set_queue_mapping(skb, queue_index);
4077 return netdev_get_tx_queue(dev, queue_index);
4081 * __dev_queue_xmit - transmit a buffer
4082 * @skb: buffer to transmit
4083 * @sb_dev: suboordinate device used for L2 forwarding offload
4085 * Queue a buffer for transmission to a network device. The caller must
4086 * have set the device and priority and built the buffer before calling
4087 * this function. The function can be called from an interrupt.
4089 * A negative errno code is returned on a failure. A success does not
4090 * guarantee the frame will be transmitted as it may be dropped due
4091 * to congestion or traffic shaping.
4093 * -----------------------------------------------------------------------------------
4094 * I notice this method can also return errors from the queue disciplines,
4095 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4098 * Regardless of the return value, the skb is consumed, so it is currently
4099 * difficult to retry a send to this method. (You can bump the ref count
4100 * before sending to hold a reference for retry if you are careful.)
4102 * When calling this method, interrupts MUST be enabled. This is because
4103 * the BH enable code must have IRQs enabled so that it will not deadlock.
4106 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4108 struct net_device *dev = skb->dev;
4109 struct netdev_queue *txq;
4114 skb_reset_mac_header(skb);
4116 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4117 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4119 /* Disable soft irqs for various locks below. Also
4120 * stops preemption for RCU.
4124 skb_update_prio(skb);
4126 qdisc_pkt_len_init(skb);
4127 #ifdef CONFIG_NET_CLS_ACT
4128 skb->tc_at_ingress = 0;
4129 # ifdef CONFIG_NET_EGRESS
4130 if (static_branch_unlikely(&egress_needed_key)) {
4131 skb = sch_handle_egress(skb, &rc, dev);
4137 /* If device/qdisc don't need skb->dst, release it right now while
4138 * its hot in this cpu cache.
4140 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4145 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4146 q = rcu_dereference_bh(txq->qdisc);
4148 trace_net_dev_queue(skb);
4150 rc = __dev_xmit_skb(skb, q, dev, txq);
4154 /* The device has no queue. Common case for software devices:
4155 * loopback, all the sorts of tunnels...
4157 * Really, it is unlikely that netif_tx_lock protection is necessary
4158 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4160 * However, it is possible, that they rely on protection
4163 * Check this and shot the lock. It is not prone from deadlocks.
4164 *Either shot noqueue qdisc, it is even simpler 8)
4166 if (dev->flags & IFF_UP) {
4167 int cpu = smp_processor_id(); /* ok because BHs are off */
4169 if (txq->xmit_lock_owner != cpu) {
4170 if (dev_xmit_recursion())
4171 goto recursion_alert;
4173 skb = validate_xmit_skb(skb, dev, &again);
4177 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4178 HARD_TX_LOCK(dev, txq, cpu);
4180 if (!netif_xmit_stopped(txq)) {
4181 dev_xmit_recursion_inc();
4182 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4183 dev_xmit_recursion_dec();
4184 if (dev_xmit_complete(rc)) {
4185 HARD_TX_UNLOCK(dev, txq);
4189 HARD_TX_UNLOCK(dev, txq);
4190 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4193 /* Recursion is detected! It is possible,
4197 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4203 rcu_read_unlock_bh();
4205 atomic_long_inc(&dev->tx_dropped);
4206 kfree_skb_list(skb);
4209 rcu_read_unlock_bh();
4213 int dev_queue_xmit(struct sk_buff *skb)
4215 return __dev_queue_xmit(skb, NULL);
4217 EXPORT_SYMBOL(dev_queue_xmit);
4219 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4221 return __dev_queue_xmit(skb, sb_dev);
4223 EXPORT_SYMBOL(dev_queue_xmit_accel);
4225 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4227 struct net_device *dev = skb->dev;
4228 struct sk_buff *orig_skb = skb;
4229 struct netdev_queue *txq;
4230 int ret = NETDEV_TX_BUSY;
4233 if (unlikely(!netif_running(dev) ||
4234 !netif_carrier_ok(dev)))
4237 skb = validate_xmit_skb_list(skb, dev, &again);
4238 if (skb != orig_skb)
4241 skb_set_queue_mapping(skb, queue_id);
4242 txq = skb_get_tx_queue(dev, skb);
4243 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4247 dev_xmit_recursion_inc();
4248 HARD_TX_LOCK(dev, txq, smp_processor_id());
4249 if (!netif_xmit_frozen_or_drv_stopped(txq))
4250 ret = netdev_start_xmit(skb, dev, txq, false);
4251 HARD_TX_UNLOCK(dev, txq);
4252 dev_xmit_recursion_dec();
4257 atomic_long_inc(&dev->tx_dropped);
4258 kfree_skb_list(skb);
4259 return NET_XMIT_DROP;
4261 EXPORT_SYMBOL(__dev_direct_xmit);
4263 /*************************************************************************
4265 *************************************************************************/
4267 int netdev_max_backlog __read_mostly = 1000;
4268 EXPORT_SYMBOL(netdev_max_backlog);
4270 int netdev_tstamp_prequeue __read_mostly = 1;
4271 int netdev_budget __read_mostly = 300;
4272 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4273 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4274 int weight_p __read_mostly = 64; /* old backlog weight */
4275 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4276 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4277 int dev_rx_weight __read_mostly = 64;
4278 int dev_tx_weight __read_mostly = 64;
4279 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4280 int gro_normal_batch __read_mostly = 8;
4282 /* Called with irq disabled */
4283 static inline void ____napi_schedule(struct softnet_data *sd,
4284 struct napi_struct *napi)
4286 struct task_struct *thread;
4288 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4289 /* Paired with smp_mb__before_atomic() in
4290 * napi_enable()/dev_set_threaded().
4291 * Use READ_ONCE() to guarantee a complete
4292 * read on napi->thread. Only call
4293 * wake_up_process() when it's not NULL.
4295 thread = READ_ONCE(napi->thread);
4297 wake_up_process(thread);
4302 list_add_tail(&napi->poll_list, &sd->poll_list);
4303 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4308 /* One global table that all flow-based protocols share. */
4309 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4310 EXPORT_SYMBOL(rps_sock_flow_table);
4311 u32 rps_cpu_mask __read_mostly;
4312 EXPORT_SYMBOL(rps_cpu_mask);
4314 struct static_key_false rps_needed __read_mostly;
4315 EXPORT_SYMBOL(rps_needed);
4316 struct static_key_false rfs_needed __read_mostly;
4317 EXPORT_SYMBOL(rfs_needed);
4319 static struct rps_dev_flow *
4320 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4321 struct rps_dev_flow *rflow, u16 next_cpu)
4323 if (next_cpu < nr_cpu_ids) {
4324 #ifdef CONFIG_RFS_ACCEL
4325 struct netdev_rx_queue *rxqueue;
4326 struct rps_dev_flow_table *flow_table;
4327 struct rps_dev_flow *old_rflow;
4332 /* Should we steer this flow to a different hardware queue? */
4333 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4334 !(dev->features & NETIF_F_NTUPLE))
4336 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4337 if (rxq_index == skb_get_rx_queue(skb))
4340 rxqueue = dev->_rx + rxq_index;
4341 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4344 flow_id = skb_get_hash(skb) & flow_table->mask;
4345 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4346 rxq_index, flow_id);
4350 rflow = &flow_table->flows[flow_id];
4352 if (old_rflow->filter == rflow->filter)
4353 old_rflow->filter = RPS_NO_FILTER;
4357 per_cpu(softnet_data, next_cpu).input_queue_head;
4360 rflow->cpu = next_cpu;
4365 * get_rps_cpu is called from netif_receive_skb and returns the target
4366 * CPU from the RPS map of the receiving queue for a given skb.
4367 * rcu_read_lock must be held on entry.
4369 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4370 struct rps_dev_flow **rflowp)
4372 const struct rps_sock_flow_table *sock_flow_table;
4373 struct netdev_rx_queue *rxqueue = dev->_rx;
4374 struct rps_dev_flow_table *flow_table;
4375 struct rps_map *map;
4380 if (skb_rx_queue_recorded(skb)) {
4381 u16 index = skb_get_rx_queue(skb);
4383 if (unlikely(index >= dev->real_num_rx_queues)) {
4384 WARN_ONCE(dev->real_num_rx_queues > 1,
4385 "%s received packet on queue %u, but number "
4386 "of RX queues is %u\n",
4387 dev->name, index, dev->real_num_rx_queues);
4393 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4395 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4396 map = rcu_dereference(rxqueue->rps_map);
4397 if (!flow_table && !map)
4400 skb_reset_network_header(skb);
4401 hash = skb_get_hash(skb);
4405 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4406 if (flow_table && sock_flow_table) {
4407 struct rps_dev_flow *rflow;
4411 /* First check into global flow table if there is a match */
4412 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4413 if ((ident ^ hash) & ~rps_cpu_mask)
4416 next_cpu = ident & rps_cpu_mask;
4418 /* OK, now we know there is a match,
4419 * we can look at the local (per receive queue) flow table
4421 rflow = &flow_table->flows[hash & flow_table->mask];
4425 * If the desired CPU (where last recvmsg was done) is
4426 * different from current CPU (one in the rx-queue flow
4427 * table entry), switch if one of the following holds:
4428 * - Current CPU is unset (>= nr_cpu_ids).
4429 * - Current CPU is offline.
4430 * - The current CPU's queue tail has advanced beyond the
4431 * last packet that was enqueued using this table entry.
4432 * This guarantees that all previous packets for the flow
4433 * have been dequeued, thus preserving in order delivery.
4435 if (unlikely(tcpu != next_cpu) &&
4436 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4437 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4438 rflow->last_qtail)) >= 0)) {
4440 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4443 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4453 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4454 if (cpu_online(tcpu)) {
4464 #ifdef CONFIG_RFS_ACCEL
4467 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4468 * @dev: Device on which the filter was set
4469 * @rxq_index: RX queue index
4470 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4471 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4473 * Drivers that implement ndo_rx_flow_steer() should periodically call
4474 * this function for each installed filter and remove the filters for
4475 * which it returns %true.
4477 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4478 u32 flow_id, u16 filter_id)
4480 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4481 struct rps_dev_flow_table *flow_table;
4482 struct rps_dev_flow *rflow;
4487 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4488 if (flow_table && flow_id <= flow_table->mask) {
4489 rflow = &flow_table->flows[flow_id];
4490 cpu = READ_ONCE(rflow->cpu);
4491 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4492 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4493 rflow->last_qtail) <
4494 (int)(10 * flow_table->mask)))
4500 EXPORT_SYMBOL(rps_may_expire_flow);
4502 #endif /* CONFIG_RFS_ACCEL */
4504 /* Called from hardirq (IPI) context */
4505 static void rps_trigger_softirq(void *data)
4507 struct softnet_data *sd = data;
4509 ____napi_schedule(sd, &sd->backlog);
4513 #endif /* CONFIG_RPS */
4516 * Check if this softnet_data structure is another cpu one
4517 * If yes, queue it to our IPI list and return 1
4520 static int rps_ipi_queued(struct softnet_data *sd)
4523 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4526 sd->rps_ipi_next = mysd->rps_ipi_list;
4527 mysd->rps_ipi_list = sd;
4529 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4532 #endif /* CONFIG_RPS */
4536 #ifdef CONFIG_NET_FLOW_LIMIT
4537 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4540 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4542 #ifdef CONFIG_NET_FLOW_LIMIT
4543 struct sd_flow_limit *fl;
4544 struct softnet_data *sd;
4545 unsigned int old_flow, new_flow;
4547 if (qlen < (netdev_max_backlog >> 1))
4550 sd = this_cpu_ptr(&softnet_data);
4553 fl = rcu_dereference(sd->flow_limit);
4555 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4556 old_flow = fl->history[fl->history_head];
4557 fl->history[fl->history_head] = new_flow;
4560 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4562 if (likely(fl->buckets[old_flow]))
4563 fl->buckets[old_flow]--;
4565 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4577 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4578 * queue (may be a remote CPU queue).
4580 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4581 unsigned int *qtail)
4583 struct softnet_data *sd;
4584 unsigned long flags;
4587 sd = &per_cpu(softnet_data, cpu);
4589 local_irq_save(flags);
4592 if (!netif_running(skb->dev))
4594 qlen = skb_queue_len(&sd->input_pkt_queue);
4595 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4598 __skb_queue_tail(&sd->input_pkt_queue, skb);
4599 input_queue_tail_incr_save(sd, qtail);
4601 local_irq_restore(flags);
4602 return NET_RX_SUCCESS;
4605 /* Schedule NAPI for backlog device
4606 * We can use non atomic operation since we own the queue lock
4608 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4609 if (!rps_ipi_queued(sd))
4610 ____napi_schedule(sd, &sd->backlog);
4619 local_irq_restore(flags);
4621 atomic_long_inc(&skb->dev->rx_dropped);
4626 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4628 struct net_device *dev = skb->dev;
4629 struct netdev_rx_queue *rxqueue;
4633 if (skb_rx_queue_recorded(skb)) {
4634 u16 index = skb_get_rx_queue(skb);
4636 if (unlikely(index >= dev->real_num_rx_queues)) {
4637 WARN_ONCE(dev->real_num_rx_queues > 1,
4638 "%s received packet on queue %u, but number "
4639 "of RX queues is %u\n",
4640 dev->name, index, dev->real_num_rx_queues);
4642 return rxqueue; /* Return first rxqueue */
4649 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4650 struct xdp_buff *xdp,
4651 struct bpf_prog *xdp_prog)
4653 void *orig_data, *orig_data_end, *hard_start;
4654 struct netdev_rx_queue *rxqueue;
4655 u32 metalen, act = XDP_DROP;
4656 u32 mac_len, frame_sz;
4657 __be16 orig_eth_type;
4662 /* Reinjected packets coming from act_mirred or similar should
4663 * not get XDP generic processing.
4665 if (skb_is_redirected(skb))
4668 /* XDP packets must be linear and must have sufficient headroom
4669 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4670 * native XDP provides, thus we need to do it here as well.
4672 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4673 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4674 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4675 int troom = skb->tail + skb->data_len - skb->end;
4677 /* In case we have to go down the path and also linearize,
4678 * then lets do the pskb_expand_head() work just once here.
4680 if (pskb_expand_head(skb,
4681 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4682 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4684 if (skb_linearize(skb))
4688 /* The XDP program wants to see the packet starting at the MAC
4691 mac_len = skb->data - skb_mac_header(skb);
4692 hard_start = skb->data - skb_headroom(skb);
4694 /* SKB "head" area always have tailroom for skb_shared_info */
4695 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4696 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4698 rxqueue = netif_get_rxqueue(skb);
4699 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4700 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4701 skb_headlen(skb) + mac_len, true);
4703 orig_data_end = xdp->data_end;
4704 orig_data = xdp->data;
4705 eth = (struct ethhdr *)xdp->data;
4706 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4707 orig_eth_type = eth->h_proto;
4709 act = bpf_prog_run_xdp(xdp_prog, xdp);
4711 /* check if bpf_xdp_adjust_head was used */
4712 off = xdp->data - orig_data;
4715 __skb_pull(skb, off);
4717 __skb_push(skb, -off);
4719 skb->mac_header += off;
4720 skb_reset_network_header(skb);
4723 /* check if bpf_xdp_adjust_tail was used */
4724 off = xdp->data_end - orig_data_end;
4726 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4727 skb->len += off; /* positive on grow, negative on shrink */
4730 /* check if XDP changed eth hdr such SKB needs update */
4731 eth = (struct ethhdr *)xdp->data;
4732 if ((orig_eth_type != eth->h_proto) ||
4733 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4734 __skb_push(skb, ETH_HLEN);
4735 skb->protocol = eth_type_trans(skb, skb->dev);
4741 __skb_push(skb, mac_len);
4744 metalen = xdp->data - xdp->data_meta;
4746 skb_metadata_set(skb, metalen);
4749 bpf_warn_invalid_xdp_action(act);
4752 trace_xdp_exception(skb->dev, xdp_prog, act);
4763 /* When doing generic XDP we have to bypass the qdisc layer and the
4764 * network taps in order to match in-driver-XDP behavior.
4766 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4768 struct net_device *dev = skb->dev;
4769 struct netdev_queue *txq;
4770 bool free_skb = true;
4773 txq = netdev_core_pick_tx(dev, skb, NULL);
4774 cpu = smp_processor_id();
4775 HARD_TX_LOCK(dev, txq, cpu);
4776 if (!netif_xmit_stopped(txq)) {
4777 rc = netdev_start_xmit(skb, dev, txq, 0);
4778 if (dev_xmit_complete(rc))
4781 HARD_TX_UNLOCK(dev, txq);
4783 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4788 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4790 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4793 struct xdp_buff xdp;
4797 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4798 if (act != XDP_PASS) {
4801 err = xdp_do_generic_redirect(skb->dev, skb,
4807 generic_xdp_tx(skb, xdp_prog);
4818 EXPORT_SYMBOL_GPL(do_xdp_generic);
4820 static int netif_rx_internal(struct sk_buff *skb)
4824 net_timestamp_check(netdev_tstamp_prequeue, skb);
4826 trace_netif_rx(skb);
4829 if (static_branch_unlikely(&rps_needed)) {
4830 struct rps_dev_flow voidflow, *rflow = &voidflow;
4836 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4838 cpu = smp_processor_id();
4840 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4849 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4856 * netif_rx - post buffer to the network code
4857 * @skb: buffer to post
4859 * This function receives a packet from a device driver and queues it for
4860 * the upper (protocol) levels to process. It always succeeds. The buffer
4861 * may be dropped during processing for congestion control or by the
4865 * NET_RX_SUCCESS (no congestion)
4866 * NET_RX_DROP (packet was dropped)
4870 int netif_rx(struct sk_buff *skb)
4874 trace_netif_rx_entry(skb);
4876 ret = netif_rx_internal(skb);
4877 trace_netif_rx_exit(ret);
4881 EXPORT_SYMBOL(netif_rx);
4883 int netif_rx_ni(struct sk_buff *skb)
4887 trace_netif_rx_ni_entry(skb);
4890 err = netif_rx_internal(skb);
4891 if (local_softirq_pending())
4894 trace_netif_rx_ni_exit(err);
4898 EXPORT_SYMBOL(netif_rx_ni);
4900 int netif_rx_any_context(struct sk_buff *skb)
4903 * If invoked from contexts which do not invoke bottom half
4904 * processing either at return from interrupt or when softrqs are
4905 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4909 return netif_rx(skb);
4911 return netif_rx_ni(skb);
4913 EXPORT_SYMBOL(netif_rx_any_context);
4915 static __latent_entropy void net_tx_action(struct softirq_action *h)
4917 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4919 if (sd->completion_queue) {
4920 struct sk_buff *clist;
4922 local_irq_disable();
4923 clist = sd->completion_queue;
4924 sd->completion_queue = NULL;
4928 struct sk_buff *skb = clist;
4930 clist = clist->next;
4932 WARN_ON(refcount_read(&skb->users));
4933 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4934 trace_consume_skb(skb);
4936 trace_kfree_skb(skb, net_tx_action);
4938 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4941 __kfree_skb_defer(skb);
4945 if (sd->output_queue) {
4948 local_irq_disable();
4949 head = sd->output_queue;
4950 sd->output_queue = NULL;
4951 sd->output_queue_tailp = &sd->output_queue;
4955 struct Qdisc *q = head;
4956 spinlock_t *root_lock = NULL;
4958 head = head->next_sched;
4960 if (!(q->flags & TCQ_F_NOLOCK)) {
4961 root_lock = qdisc_lock(q);
4962 spin_lock(root_lock);
4964 /* We need to make sure head->next_sched is read
4965 * before clearing __QDISC_STATE_SCHED
4967 smp_mb__before_atomic();
4968 clear_bit(__QDISC_STATE_SCHED, &q->state);
4971 spin_unlock(root_lock);
4975 xfrm_dev_backlog(sd);
4978 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4979 /* This hook is defined here for ATM LANE */
4980 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4981 unsigned char *addr) __read_mostly;
4982 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4985 static inline struct sk_buff *
4986 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4987 struct net_device *orig_dev, bool *another)
4989 #ifdef CONFIG_NET_CLS_ACT
4990 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4991 struct tcf_result cl_res;
4993 /* If there's at least one ingress present somewhere (so
4994 * we get here via enabled static key), remaining devices
4995 * that are not configured with an ingress qdisc will bail
5002 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5006 qdisc_skb_cb(skb)->pkt_len = skb->len;
5007 qdisc_skb_cb(skb)->mru = 0;
5008 qdisc_skb_cb(skb)->post_ct = false;
5009 skb->tc_at_ingress = 1;
5010 mini_qdisc_bstats_cpu_update(miniq, skb);
5012 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5015 case TC_ACT_RECLASSIFY:
5016 skb->tc_index = TC_H_MIN(cl_res.classid);
5019 mini_qdisc_qstats_cpu_drop(miniq);
5027 case TC_ACT_REDIRECT:
5028 /* skb_mac_header check was done by cls/act_bpf, so
5029 * we can safely push the L2 header back before
5030 * redirecting to another netdev
5032 __skb_push(skb, skb->mac_len);
5033 if (skb_do_redirect(skb) == -EAGAIN) {
5034 __skb_pull(skb, skb->mac_len);
5039 case TC_ACT_CONSUMED:
5044 #endif /* CONFIG_NET_CLS_ACT */
5049 * netdev_is_rx_handler_busy - check if receive handler is registered
5050 * @dev: device to check
5052 * Check if a receive handler is already registered for a given device.
5053 * Return true if there one.
5055 * The caller must hold the rtnl_mutex.
5057 bool netdev_is_rx_handler_busy(struct net_device *dev)
5060 return dev && rtnl_dereference(dev->rx_handler);
5062 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5065 * netdev_rx_handler_register - register receive handler
5066 * @dev: device to register a handler for
5067 * @rx_handler: receive handler to register
5068 * @rx_handler_data: data pointer that is used by rx handler
5070 * Register a receive handler for a device. This handler will then be
5071 * called from __netif_receive_skb. A negative errno code is returned
5074 * The caller must hold the rtnl_mutex.
5076 * For a general description of rx_handler, see enum rx_handler_result.
5078 int netdev_rx_handler_register(struct net_device *dev,
5079 rx_handler_func_t *rx_handler,
5080 void *rx_handler_data)
5082 if (netdev_is_rx_handler_busy(dev))
5085 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5088 /* Note: rx_handler_data must be set before rx_handler */
5089 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5090 rcu_assign_pointer(dev->rx_handler, rx_handler);
5094 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5097 * netdev_rx_handler_unregister - unregister receive handler
5098 * @dev: device to unregister a handler from
5100 * Unregister a receive handler from a device.
5102 * The caller must hold the rtnl_mutex.
5104 void netdev_rx_handler_unregister(struct net_device *dev)
5108 RCU_INIT_POINTER(dev->rx_handler, NULL);
5109 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5110 * section has a guarantee to see a non NULL rx_handler_data
5114 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5116 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5119 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5120 * the special handling of PFMEMALLOC skbs.
5122 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5124 switch (skb->protocol) {
5125 case htons(ETH_P_ARP):
5126 case htons(ETH_P_IP):
5127 case htons(ETH_P_IPV6):
5128 case htons(ETH_P_8021Q):
5129 case htons(ETH_P_8021AD):
5136 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5137 int *ret, struct net_device *orig_dev)
5139 if (nf_hook_ingress_active(skb)) {
5143 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5148 ingress_retval = nf_hook_ingress(skb);
5150 return ingress_retval;
5155 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5156 struct packet_type **ppt_prev)
5158 struct packet_type *ptype, *pt_prev;
5159 rx_handler_func_t *rx_handler;
5160 struct sk_buff *skb = *pskb;
5161 struct net_device *orig_dev;
5162 bool deliver_exact = false;
5163 int ret = NET_RX_DROP;
5166 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5168 trace_netif_receive_skb(skb);
5170 orig_dev = skb->dev;
5172 skb_reset_network_header(skb);
5173 if (!skb_transport_header_was_set(skb))
5174 skb_reset_transport_header(skb);
5175 skb_reset_mac_len(skb);
5180 skb->skb_iif = skb->dev->ifindex;
5182 __this_cpu_inc(softnet_data.processed);
5184 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5188 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5191 if (ret2 != XDP_PASS) {
5195 skb_reset_mac_len(skb);
5198 if (eth_type_vlan(skb->protocol)) {
5199 skb = skb_vlan_untag(skb);
5204 if (skb_skip_tc_classify(skb))
5210 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5212 ret = deliver_skb(skb, pt_prev, orig_dev);
5216 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5218 ret = deliver_skb(skb, pt_prev, orig_dev);
5223 #ifdef CONFIG_NET_INGRESS
5224 if (static_branch_unlikely(&ingress_needed_key)) {
5225 bool another = false;
5227 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5234 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5238 skb_reset_redirect(skb);
5240 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5243 if (skb_vlan_tag_present(skb)) {
5245 ret = deliver_skb(skb, pt_prev, orig_dev);
5248 if (vlan_do_receive(&skb))
5250 else if (unlikely(!skb))
5254 rx_handler = rcu_dereference(skb->dev->rx_handler);
5257 ret = deliver_skb(skb, pt_prev, orig_dev);
5260 switch (rx_handler(&skb)) {
5261 case RX_HANDLER_CONSUMED:
5262 ret = NET_RX_SUCCESS;
5264 case RX_HANDLER_ANOTHER:
5266 case RX_HANDLER_EXACT:
5267 deliver_exact = true;
5268 case RX_HANDLER_PASS:
5275 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5277 if (skb_vlan_tag_get_id(skb)) {
5278 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5281 skb->pkt_type = PACKET_OTHERHOST;
5282 } else if (eth_type_vlan(skb->protocol)) {
5283 /* Outer header is 802.1P with vlan 0, inner header is
5284 * 802.1Q or 802.1AD and vlan_do_receive() above could
5285 * not find vlan dev for vlan id 0.
5287 __vlan_hwaccel_clear_tag(skb);
5288 skb = skb_vlan_untag(skb);
5291 if (vlan_do_receive(&skb))
5292 /* After stripping off 802.1P header with vlan 0
5293 * vlan dev is found for inner header.
5296 else if (unlikely(!skb))
5299 /* We have stripped outer 802.1P vlan 0 header.
5300 * But could not find vlan dev.
5301 * check again for vlan id to set OTHERHOST.
5305 /* Note: we might in the future use prio bits
5306 * and set skb->priority like in vlan_do_receive()
5307 * For the time being, just ignore Priority Code Point
5309 __vlan_hwaccel_clear_tag(skb);
5312 type = skb->protocol;
5314 /* deliver only exact match when indicated */
5315 if (likely(!deliver_exact)) {
5316 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5317 &ptype_base[ntohs(type) &
5321 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5322 &orig_dev->ptype_specific);
5324 if (unlikely(skb->dev != orig_dev)) {
5325 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5326 &skb->dev->ptype_specific);
5330 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5332 *ppt_prev = pt_prev;
5336 atomic_long_inc(&skb->dev->rx_dropped);
5338 atomic_long_inc(&skb->dev->rx_nohandler);
5340 /* Jamal, now you will not able to escape explaining
5341 * me how you were going to use this. :-)
5347 /* The invariant here is that if *ppt_prev is not NULL
5348 * then skb should also be non-NULL.
5350 * Apparently *ppt_prev assignment above holds this invariant due to
5351 * skb dereferencing near it.
5357 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5359 struct net_device *orig_dev = skb->dev;
5360 struct packet_type *pt_prev = NULL;
5363 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5365 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5366 skb->dev, pt_prev, orig_dev);
5371 * netif_receive_skb_core - special purpose version of netif_receive_skb
5372 * @skb: buffer to process
5374 * More direct receive version of netif_receive_skb(). It should
5375 * only be used by callers that have a need to skip RPS and Generic XDP.
5376 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5378 * This function may only be called from softirq context and interrupts
5379 * should be enabled.
5381 * Return values (usually ignored):
5382 * NET_RX_SUCCESS: no congestion
5383 * NET_RX_DROP: packet was dropped
5385 int netif_receive_skb_core(struct sk_buff *skb)
5390 ret = __netif_receive_skb_one_core(skb, false);
5395 EXPORT_SYMBOL(netif_receive_skb_core);
5397 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5398 struct packet_type *pt_prev,
5399 struct net_device *orig_dev)
5401 struct sk_buff *skb, *next;
5405 if (list_empty(head))
5407 if (pt_prev->list_func != NULL)
5408 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5409 ip_list_rcv, head, pt_prev, orig_dev);
5411 list_for_each_entry_safe(skb, next, head, list) {
5412 skb_list_del_init(skb);
5413 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5417 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5419 /* Fast-path assumptions:
5420 * - There is no RX handler.
5421 * - Only one packet_type matches.
5422 * If either of these fails, we will end up doing some per-packet
5423 * processing in-line, then handling the 'last ptype' for the whole
5424 * sublist. This can't cause out-of-order delivery to any single ptype,
5425 * because the 'last ptype' must be constant across the sublist, and all
5426 * other ptypes are handled per-packet.
5428 /* Current (common) ptype of sublist */
5429 struct packet_type *pt_curr = NULL;
5430 /* Current (common) orig_dev of sublist */
5431 struct net_device *od_curr = NULL;
5432 struct list_head sublist;
5433 struct sk_buff *skb, *next;
5435 INIT_LIST_HEAD(&sublist);
5436 list_for_each_entry_safe(skb, next, head, list) {
5437 struct net_device *orig_dev = skb->dev;
5438 struct packet_type *pt_prev = NULL;
5440 skb_list_del_init(skb);
5441 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5444 if (pt_curr != pt_prev || od_curr != orig_dev) {
5445 /* dispatch old sublist */
5446 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5447 /* start new sublist */
5448 INIT_LIST_HEAD(&sublist);
5452 list_add_tail(&skb->list, &sublist);
5455 /* dispatch final sublist */
5456 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5459 static int __netif_receive_skb(struct sk_buff *skb)
5463 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5464 unsigned int noreclaim_flag;
5467 * PFMEMALLOC skbs are special, they should
5468 * - be delivered to SOCK_MEMALLOC sockets only
5469 * - stay away from userspace
5470 * - have bounded memory usage
5472 * Use PF_MEMALLOC as this saves us from propagating the allocation
5473 * context down to all allocation sites.
5475 noreclaim_flag = memalloc_noreclaim_save();
5476 ret = __netif_receive_skb_one_core(skb, true);
5477 memalloc_noreclaim_restore(noreclaim_flag);
5479 ret = __netif_receive_skb_one_core(skb, false);
5484 static void __netif_receive_skb_list(struct list_head *head)
5486 unsigned long noreclaim_flag = 0;
5487 struct sk_buff *skb, *next;
5488 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5490 list_for_each_entry_safe(skb, next, head, list) {
5491 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5492 struct list_head sublist;
5494 /* Handle the previous sublist */
5495 list_cut_before(&sublist, head, &skb->list);
5496 if (!list_empty(&sublist))
5497 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5498 pfmemalloc = !pfmemalloc;
5499 /* See comments in __netif_receive_skb */
5501 noreclaim_flag = memalloc_noreclaim_save();
5503 memalloc_noreclaim_restore(noreclaim_flag);
5506 /* Handle the remaining sublist */
5507 if (!list_empty(head))
5508 __netif_receive_skb_list_core(head, pfmemalloc);
5509 /* Restore pflags */
5511 memalloc_noreclaim_restore(noreclaim_flag);
5514 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5516 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5517 struct bpf_prog *new = xdp->prog;
5523 mutex_lock(&new->aux->used_maps_mutex);
5525 /* generic XDP does not work with DEVMAPs that can
5526 * have a bpf_prog installed on an entry
5528 for (i = 0; i < new->aux->used_map_cnt; i++) {
5529 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5530 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5531 mutex_unlock(&new->aux->used_maps_mutex);
5536 mutex_unlock(&new->aux->used_maps_mutex);
5539 switch (xdp->command) {
5540 case XDP_SETUP_PROG:
5541 rcu_assign_pointer(dev->xdp_prog, new);
5546 static_branch_dec(&generic_xdp_needed_key);
5547 } else if (new && !old) {
5548 static_branch_inc(&generic_xdp_needed_key);
5549 dev_disable_lro(dev);
5550 dev_disable_gro_hw(dev);
5562 static int netif_receive_skb_internal(struct sk_buff *skb)
5566 net_timestamp_check(netdev_tstamp_prequeue, skb);
5568 if (skb_defer_rx_timestamp(skb))
5569 return NET_RX_SUCCESS;
5573 if (static_branch_unlikely(&rps_needed)) {
5574 struct rps_dev_flow voidflow, *rflow = &voidflow;
5575 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5578 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5584 ret = __netif_receive_skb(skb);
5589 static void netif_receive_skb_list_internal(struct list_head *head)
5591 struct sk_buff *skb, *next;
5592 struct list_head sublist;
5594 INIT_LIST_HEAD(&sublist);
5595 list_for_each_entry_safe(skb, next, head, list) {
5596 net_timestamp_check(netdev_tstamp_prequeue, skb);
5597 skb_list_del_init(skb);
5598 if (!skb_defer_rx_timestamp(skb))
5599 list_add_tail(&skb->list, &sublist);
5601 list_splice_init(&sublist, head);
5605 if (static_branch_unlikely(&rps_needed)) {
5606 list_for_each_entry_safe(skb, next, head, list) {
5607 struct rps_dev_flow voidflow, *rflow = &voidflow;
5608 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5611 /* Will be handled, remove from list */
5612 skb_list_del_init(skb);
5613 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5618 __netif_receive_skb_list(head);
5623 * netif_receive_skb - process receive buffer from network
5624 * @skb: buffer to process
5626 * netif_receive_skb() is the main receive data processing function.
5627 * It always succeeds. The buffer may be dropped during processing
5628 * for congestion control or by the protocol layers.
5630 * This function may only be called from softirq context and interrupts
5631 * should be enabled.
5633 * Return values (usually ignored):
5634 * NET_RX_SUCCESS: no congestion
5635 * NET_RX_DROP: packet was dropped
5637 int netif_receive_skb(struct sk_buff *skb)
5641 trace_netif_receive_skb_entry(skb);
5643 ret = netif_receive_skb_internal(skb);
5644 trace_netif_receive_skb_exit(ret);
5648 EXPORT_SYMBOL(netif_receive_skb);
5651 * netif_receive_skb_list - process many receive buffers from network
5652 * @head: list of skbs to process.
5654 * Since return value of netif_receive_skb() is normally ignored, and
5655 * wouldn't be meaningful for a list, this function returns void.
5657 * This function may only be called from softirq context and interrupts
5658 * should be enabled.
5660 void netif_receive_skb_list(struct list_head *head)
5662 struct sk_buff *skb;
5664 if (list_empty(head))
5666 if (trace_netif_receive_skb_list_entry_enabled()) {
5667 list_for_each_entry(skb, head, list)
5668 trace_netif_receive_skb_list_entry(skb);
5670 netif_receive_skb_list_internal(head);
5671 trace_netif_receive_skb_list_exit(0);
5673 EXPORT_SYMBOL(netif_receive_skb_list);
5675 static DEFINE_PER_CPU(struct work_struct, flush_works);
5677 /* Network device is going away, flush any packets still pending */
5678 static void flush_backlog(struct work_struct *work)
5680 struct sk_buff *skb, *tmp;
5681 struct softnet_data *sd;
5684 sd = this_cpu_ptr(&softnet_data);
5686 local_irq_disable();
5688 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5689 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5690 __skb_unlink(skb, &sd->input_pkt_queue);
5691 dev_kfree_skb_irq(skb);
5692 input_queue_head_incr(sd);
5698 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5699 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5700 __skb_unlink(skb, &sd->process_queue);
5702 input_queue_head_incr(sd);
5708 static bool flush_required(int cpu)
5710 #if IS_ENABLED(CONFIG_RPS)
5711 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5714 local_irq_disable();
5717 /* as insertion into process_queue happens with the rps lock held,
5718 * process_queue access may race only with dequeue
5720 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5721 !skb_queue_empty_lockless(&sd->process_queue);
5727 /* without RPS we can't safely check input_pkt_queue: during a
5728 * concurrent remote skb_queue_splice() we can detect as empty both
5729 * input_pkt_queue and process_queue even if the latter could end-up
5730 * containing a lot of packets.
5735 static void flush_all_backlogs(void)
5737 static cpumask_t flush_cpus;
5740 /* since we are under rtnl lock protection we can use static data
5741 * for the cpumask and avoid allocating on stack the possibly
5748 cpumask_clear(&flush_cpus);
5749 for_each_online_cpu(cpu) {
5750 if (flush_required(cpu)) {
5751 queue_work_on(cpu, system_highpri_wq,
5752 per_cpu_ptr(&flush_works, cpu));
5753 cpumask_set_cpu(cpu, &flush_cpus);
5757 /* we can have in flight packet[s] on the cpus we are not flushing,
5758 * synchronize_net() in unregister_netdevice_many() will take care of
5761 for_each_cpu(cpu, &flush_cpus)
5762 flush_work(per_cpu_ptr(&flush_works, cpu));
5767 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5768 static void gro_normal_list(struct napi_struct *napi)
5770 if (!napi->rx_count)
5772 netif_receive_skb_list_internal(&napi->rx_list);
5773 INIT_LIST_HEAD(&napi->rx_list);
5777 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5778 * pass the whole batch up to the stack.
5780 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5782 list_add_tail(&skb->list, &napi->rx_list);
5783 napi->rx_count += segs;
5784 if (napi->rx_count >= gro_normal_batch)
5785 gro_normal_list(napi);
5788 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5790 struct packet_offload *ptype;
5791 __be16 type = skb->protocol;
5792 struct list_head *head = &offload_base;
5795 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5797 if (NAPI_GRO_CB(skb)->count == 1) {
5798 skb_shinfo(skb)->gso_size = 0;
5803 list_for_each_entry_rcu(ptype, head, list) {
5804 if (ptype->type != type || !ptype->callbacks.gro_complete)
5807 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5808 ipv6_gro_complete, inet_gro_complete,
5815 WARN_ON(&ptype->list == head);
5817 return NET_RX_SUCCESS;
5821 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5822 return NET_RX_SUCCESS;
5825 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5828 struct list_head *head = &napi->gro_hash[index].list;
5829 struct sk_buff *skb, *p;
5831 list_for_each_entry_safe_reverse(skb, p, head, list) {
5832 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5834 skb_list_del_init(skb);
5835 napi_gro_complete(napi, skb);
5836 napi->gro_hash[index].count--;
5839 if (!napi->gro_hash[index].count)
5840 __clear_bit(index, &napi->gro_bitmask);
5843 /* napi->gro_hash[].list contains packets ordered by age.
5844 * youngest packets at the head of it.
5845 * Complete skbs in reverse order to reduce latencies.
5847 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5849 unsigned long bitmask = napi->gro_bitmask;
5850 unsigned int i, base = ~0U;
5852 while ((i = ffs(bitmask)) != 0) {
5855 __napi_gro_flush_chain(napi, base, flush_old);
5858 EXPORT_SYMBOL(napi_gro_flush);
5860 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5861 struct sk_buff *skb)
5863 unsigned int maclen = skb->dev->hard_header_len;
5864 u32 hash = skb_get_hash_raw(skb);
5865 struct list_head *head;
5868 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5869 list_for_each_entry(p, head, list) {
5870 unsigned long diffs;
5872 NAPI_GRO_CB(p)->flush = 0;
5874 if (hash != skb_get_hash_raw(p)) {
5875 NAPI_GRO_CB(p)->same_flow = 0;
5879 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5880 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5881 if (skb_vlan_tag_present(p))
5882 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5883 diffs |= skb_metadata_dst_cmp(p, skb);
5884 diffs |= skb_metadata_differs(p, skb);
5885 if (maclen == ETH_HLEN)
5886 diffs |= compare_ether_header(skb_mac_header(p),
5887 skb_mac_header(skb));
5889 diffs = memcmp(skb_mac_header(p),
5890 skb_mac_header(skb),
5892 NAPI_GRO_CB(p)->same_flow = !diffs;
5898 static void skb_gro_reset_offset(struct sk_buff *skb)
5900 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5901 const skb_frag_t *frag0 = &pinfo->frags[0];
5903 NAPI_GRO_CB(skb)->data_offset = 0;
5904 NAPI_GRO_CB(skb)->frag0 = NULL;
5905 NAPI_GRO_CB(skb)->frag0_len = 0;
5907 if (!skb_headlen(skb) && pinfo->nr_frags &&
5908 !PageHighMem(skb_frag_page(frag0))) {
5909 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5910 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5911 skb_frag_size(frag0),
5912 skb->end - skb->tail);
5916 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5918 struct skb_shared_info *pinfo = skb_shinfo(skb);
5920 BUG_ON(skb->end - skb->tail < grow);
5922 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5924 skb->data_len -= grow;
5927 skb_frag_off_add(&pinfo->frags[0], grow);
5928 skb_frag_size_sub(&pinfo->frags[0], grow);
5930 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5931 skb_frag_unref(skb, 0);
5932 memmove(pinfo->frags, pinfo->frags + 1,
5933 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5937 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5939 struct sk_buff *oldest;
5941 oldest = list_last_entry(head, struct sk_buff, list);
5943 /* We are called with head length >= MAX_GRO_SKBS, so this is
5946 if (WARN_ON_ONCE(!oldest))
5949 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5952 skb_list_del_init(oldest);
5953 napi_gro_complete(napi, oldest);
5956 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5958 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5959 struct list_head *head = &offload_base;
5960 struct packet_offload *ptype;
5961 __be16 type = skb->protocol;
5962 struct list_head *gro_head;
5963 struct sk_buff *pp = NULL;
5964 enum gro_result ret;
5968 if (netif_elide_gro(skb->dev))
5971 gro_head = gro_list_prepare(napi, skb);
5974 list_for_each_entry_rcu(ptype, head, list) {
5975 if (ptype->type != type || !ptype->callbacks.gro_receive)
5978 skb_set_network_header(skb, skb_gro_offset(skb));
5979 skb_reset_mac_len(skb);
5980 NAPI_GRO_CB(skb)->same_flow = 0;
5981 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5982 NAPI_GRO_CB(skb)->free = 0;
5983 NAPI_GRO_CB(skb)->encap_mark = 0;
5984 NAPI_GRO_CB(skb)->recursion_counter = 0;
5985 NAPI_GRO_CB(skb)->is_fou = 0;
5986 NAPI_GRO_CB(skb)->is_atomic = 1;
5987 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5989 /* Setup for GRO checksum validation */
5990 switch (skb->ip_summed) {
5991 case CHECKSUM_COMPLETE:
5992 NAPI_GRO_CB(skb)->csum = skb->csum;
5993 NAPI_GRO_CB(skb)->csum_valid = 1;
5994 NAPI_GRO_CB(skb)->csum_cnt = 0;
5996 case CHECKSUM_UNNECESSARY:
5997 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5998 NAPI_GRO_CB(skb)->csum_valid = 0;
6001 NAPI_GRO_CB(skb)->csum_cnt = 0;
6002 NAPI_GRO_CB(skb)->csum_valid = 0;
6005 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6006 ipv6_gro_receive, inet_gro_receive,
6012 if (&ptype->list == head)
6015 if (PTR_ERR(pp) == -EINPROGRESS) {
6020 same_flow = NAPI_GRO_CB(skb)->same_flow;
6021 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6024 skb_list_del_init(pp);
6025 napi_gro_complete(napi, pp);
6026 napi->gro_hash[hash].count--;
6032 if (NAPI_GRO_CB(skb)->flush)
6035 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6036 gro_flush_oldest(napi, gro_head);
6038 napi->gro_hash[hash].count++;
6040 NAPI_GRO_CB(skb)->count = 1;
6041 NAPI_GRO_CB(skb)->age = jiffies;
6042 NAPI_GRO_CB(skb)->last = skb;
6043 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6044 list_add(&skb->list, gro_head);
6048 grow = skb_gro_offset(skb) - skb_headlen(skb);
6050 gro_pull_from_frag0(skb, grow);
6052 if (napi->gro_hash[hash].count) {
6053 if (!test_bit(hash, &napi->gro_bitmask))
6054 __set_bit(hash, &napi->gro_bitmask);
6055 } else if (test_bit(hash, &napi->gro_bitmask)) {
6056 __clear_bit(hash, &napi->gro_bitmask);
6066 struct packet_offload *gro_find_receive_by_type(__be16 type)
6068 struct list_head *offload_head = &offload_base;
6069 struct packet_offload *ptype;
6071 list_for_each_entry_rcu(ptype, offload_head, list) {
6072 if (ptype->type != type || !ptype->callbacks.gro_receive)
6078 EXPORT_SYMBOL(gro_find_receive_by_type);
6080 struct packet_offload *gro_find_complete_by_type(__be16 type)
6082 struct list_head *offload_head = &offload_base;
6083 struct packet_offload *ptype;
6085 list_for_each_entry_rcu(ptype, offload_head, list) {
6086 if (ptype->type != type || !ptype->callbacks.gro_complete)
6092 EXPORT_SYMBOL(gro_find_complete_by_type);
6094 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6095 struct sk_buff *skb,
6100 gro_normal_one(napi, skb, 1);
6103 case GRO_MERGED_FREE:
6104 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6105 napi_skb_free_stolen_head(skb);
6107 __kfree_skb_defer(skb);
6119 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6123 skb_mark_napi_id(skb, napi);
6124 trace_napi_gro_receive_entry(skb);
6126 skb_gro_reset_offset(skb);
6128 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6129 trace_napi_gro_receive_exit(ret);
6133 EXPORT_SYMBOL(napi_gro_receive);
6135 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6137 if (unlikely(skb->pfmemalloc)) {
6141 __skb_pull(skb, skb_headlen(skb));
6142 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6143 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6144 __vlan_hwaccel_clear_tag(skb);
6145 skb->dev = napi->dev;
6148 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6149 skb->pkt_type = PACKET_HOST;
6151 skb->encapsulation = 0;
6152 skb_shinfo(skb)->gso_type = 0;
6153 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6159 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6161 struct sk_buff *skb = napi->skb;
6164 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6167 skb_mark_napi_id(skb, napi);
6172 EXPORT_SYMBOL(napi_get_frags);
6174 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6175 struct sk_buff *skb,
6181 __skb_push(skb, ETH_HLEN);
6182 skb->protocol = eth_type_trans(skb, skb->dev);
6183 if (ret == GRO_NORMAL)
6184 gro_normal_one(napi, skb, 1);
6187 case GRO_MERGED_FREE:
6188 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6189 napi_skb_free_stolen_head(skb);
6191 napi_reuse_skb(napi, skb);
6202 /* Upper GRO stack assumes network header starts at gro_offset=0
6203 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6204 * We copy ethernet header into skb->data to have a common layout.
6206 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6208 struct sk_buff *skb = napi->skb;
6209 const struct ethhdr *eth;
6210 unsigned int hlen = sizeof(*eth);
6214 skb_reset_mac_header(skb);
6215 skb_gro_reset_offset(skb);
6217 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6218 eth = skb_gro_header_slow(skb, hlen, 0);
6219 if (unlikely(!eth)) {
6220 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6221 __func__, napi->dev->name);
6222 napi_reuse_skb(napi, skb);
6226 eth = (const struct ethhdr *)skb->data;
6227 gro_pull_from_frag0(skb, hlen);
6228 NAPI_GRO_CB(skb)->frag0 += hlen;
6229 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6231 __skb_pull(skb, hlen);
6234 * This works because the only protocols we care about don't require
6236 * We'll fix it up properly in napi_frags_finish()
6238 skb->protocol = eth->h_proto;
6243 gro_result_t napi_gro_frags(struct napi_struct *napi)
6246 struct sk_buff *skb = napi_frags_skb(napi);
6248 trace_napi_gro_frags_entry(skb);
6250 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6251 trace_napi_gro_frags_exit(ret);
6255 EXPORT_SYMBOL(napi_gro_frags);
6257 /* Compute the checksum from gro_offset and return the folded value
6258 * after adding in any pseudo checksum.
6260 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6265 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6267 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6268 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6269 /* See comments in __skb_checksum_complete(). */
6271 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6272 !skb->csum_complete_sw)
6273 netdev_rx_csum_fault(skb->dev, skb);
6276 NAPI_GRO_CB(skb)->csum = wsum;
6277 NAPI_GRO_CB(skb)->csum_valid = 1;
6281 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6283 static void net_rps_send_ipi(struct softnet_data *remsd)
6287 struct softnet_data *next = remsd->rps_ipi_next;
6289 if (cpu_online(remsd->cpu))
6290 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6297 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6298 * Note: called with local irq disabled, but exits with local irq enabled.
6300 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6303 struct softnet_data *remsd = sd->rps_ipi_list;
6306 sd->rps_ipi_list = NULL;
6310 /* Send pending IPI's to kick RPS processing on remote cpus. */
6311 net_rps_send_ipi(remsd);
6317 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6320 return sd->rps_ipi_list != NULL;
6326 static int process_backlog(struct napi_struct *napi, int quota)
6328 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6332 /* Check if we have pending ipi, its better to send them now,
6333 * not waiting net_rx_action() end.
6335 if (sd_has_rps_ipi_waiting(sd)) {
6336 local_irq_disable();
6337 net_rps_action_and_irq_enable(sd);
6340 napi->weight = dev_rx_weight;
6342 struct sk_buff *skb;
6344 while ((skb = __skb_dequeue(&sd->process_queue))) {
6346 __netif_receive_skb(skb);
6348 input_queue_head_incr(sd);
6349 if (++work >= quota)
6354 local_irq_disable();
6356 if (skb_queue_empty(&sd->input_pkt_queue)) {
6358 * Inline a custom version of __napi_complete().
6359 * only current cpu owns and manipulates this napi,
6360 * and NAPI_STATE_SCHED is the only possible flag set
6362 * We can use a plain write instead of clear_bit(),
6363 * and we dont need an smp_mb() memory barrier.
6368 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6369 &sd->process_queue);
6379 * __napi_schedule - schedule for receive
6380 * @n: entry to schedule
6382 * The entry's receive function will be scheduled to run.
6383 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6385 void __napi_schedule(struct napi_struct *n)
6387 unsigned long flags;
6389 local_irq_save(flags);
6390 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6391 local_irq_restore(flags);
6393 EXPORT_SYMBOL(__napi_schedule);
6396 * napi_schedule_prep - check if napi can be scheduled
6399 * Test if NAPI routine is already running, and if not mark
6400 * it as running. This is used as a condition variable to
6401 * insure only one NAPI poll instance runs. We also make
6402 * sure there is no pending NAPI disable.
6404 bool napi_schedule_prep(struct napi_struct *n)
6406 unsigned long val, new;
6409 val = READ_ONCE(n->state);
6410 if (unlikely(val & NAPIF_STATE_DISABLE))
6412 new = val | NAPIF_STATE_SCHED;
6414 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6415 * This was suggested by Alexander Duyck, as compiler
6416 * emits better code than :
6417 * if (val & NAPIF_STATE_SCHED)
6418 * new |= NAPIF_STATE_MISSED;
6420 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6422 } while (cmpxchg(&n->state, val, new) != val);
6424 return !(val & NAPIF_STATE_SCHED);
6426 EXPORT_SYMBOL(napi_schedule_prep);
6429 * __napi_schedule_irqoff - schedule for receive
6430 * @n: entry to schedule
6432 * Variant of __napi_schedule() assuming hard irqs are masked
6434 void __napi_schedule_irqoff(struct napi_struct *n)
6436 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6438 EXPORT_SYMBOL(__napi_schedule_irqoff);
6440 bool napi_complete_done(struct napi_struct *n, int work_done)
6442 unsigned long flags, val, new, timeout = 0;
6446 * 1) Don't let napi dequeue from the cpu poll list
6447 * just in case its running on a different cpu.
6448 * 2) If we are busy polling, do nothing here, we have
6449 * the guarantee we will be called later.
6451 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6452 NAPIF_STATE_IN_BUSY_POLL)))
6457 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6458 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6460 if (n->defer_hard_irqs_count > 0) {
6461 n->defer_hard_irqs_count--;
6462 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6466 if (n->gro_bitmask) {
6467 /* When the NAPI instance uses a timeout and keeps postponing
6468 * it, we need to bound somehow the time packets are kept in
6471 napi_gro_flush(n, !!timeout);
6476 if (unlikely(!list_empty(&n->poll_list))) {
6477 /* If n->poll_list is not empty, we need to mask irqs */
6478 local_irq_save(flags);
6479 list_del_init(&n->poll_list);
6480 local_irq_restore(flags);
6484 val = READ_ONCE(n->state);
6486 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6488 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6489 NAPIF_STATE_PREFER_BUSY_POLL);
6491 /* If STATE_MISSED was set, leave STATE_SCHED set,
6492 * because we will call napi->poll() one more time.
6493 * This C code was suggested by Alexander Duyck to help gcc.
6495 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6497 } while (cmpxchg(&n->state, val, new) != val);
6499 if (unlikely(val & NAPIF_STATE_MISSED)) {
6505 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6506 HRTIMER_MODE_REL_PINNED);
6509 EXPORT_SYMBOL(napi_complete_done);
6511 /* must be called under rcu_read_lock(), as we dont take a reference */
6512 static struct napi_struct *napi_by_id(unsigned int napi_id)
6514 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6515 struct napi_struct *napi;
6517 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6518 if (napi->napi_id == napi_id)
6524 #if defined(CONFIG_NET_RX_BUSY_POLL)
6526 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6528 if (!skip_schedule) {
6529 gro_normal_list(napi);
6530 __napi_schedule(napi);
6534 if (napi->gro_bitmask) {
6535 /* flush too old packets
6536 * If HZ < 1000, flush all packets.
6538 napi_gro_flush(napi, HZ >= 1000);
6541 gro_normal_list(napi);
6542 clear_bit(NAPI_STATE_SCHED, &napi->state);
6545 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6548 bool skip_schedule = false;
6549 unsigned long timeout;
6552 /* Busy polling means there is a high chance device driver hard irq
6553 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6554 * set in napi_schedule_prep().
6555 * Since we are about to call napi->poll() once more, we can safely
6556 * clear NAPI_STATE_MISSED.
6558 * Note: x86 could use a single "lock and ..." instruction
6559 * to perform these two clear_bit()
6561 clear_bit(NAPI_STATE_MISSED, &napi->state);
6562 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6566 if (prefer_busy_poll) {
6567 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6568 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6569 if (napi->defer_hard_irqs_count && timeout) {
6570 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6571 skip_schedule = true;
6575 /* All we really want here is to re-enable device interrupts.
6576 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6578 rc = napi->poll(napi, budget);
6579 /* We can't gro_normal_list() here, because napi->poll() might have
6580 * rearmed the napi (napi_complete_done()) in which case it could
6581 * already be running on another CPU.
6583 trace_napi_poll(napi, rc, budget);
6584 netpoll_poll_unlock(have_poll_lock);
6586 __busy_poll_stop(napi, skip_schedule);
6590 void napi_busy_loop(unsigned int napi_id,
6591 bool (*loop_end)(void *, unsigned long),
6592 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6594 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6595 int (*napi_poll)(struct napi_struct *napi, int budget);
6596 void *have_poll_lock = NULL;
6597 struct napi_struct *napi;
6604 napi = napi_by_id(napi_id);
6614 unsigned long val = READ_ONCE(napi->state);
6616 /* If multiple threads are competing for this napi,
6617 * we avoid dirtying napi->state as much as we can.
6619 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6620 NAPIF_STATE_IN_BUSY_POLL)) {
6621 if (prefer_busy_poll)
6622 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6625 if (cmpxchg(&napi->state, val,
6626 val | NAPIF_STATE_IN_BUSY_POLL |
6627 NAPIF_STATE_SCHED) != val) {
6628 if (prefer_busy_poll)
6629 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6632 have_poll_lock = netpoll_poll_lock(napi);
6633 napi_poll = napi->poll;
6635 work = napi_poll(napi, budget);
6636 trace_napi_poll(napi, work, budget);
6637 gro_normal_list(napi);
6640 __NET_ADD_STATS(dev_net(napi->dev),
6641 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6644 if (!loop_end || loop_end(loop_end_arg, start_time))
6647 if (unlikely(need_resched())) {
6649 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6653 if (loop_end(loop_end_arg, start_time))
6660 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6665 EXPORT_SYMBOL(napi_busy_loop);
6667 #endif /* CONFIG_NET_RX_BUSY_POLL */
6669 static void napi_hash_add(struct napi_struct *napi)
6671 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6674 spin_lock(&napi_hash_lock);
6676 /* 0..NR_CPUS range is reserved for sender_cpu use */
6678 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6679 napi_gen_id = MIN_NAPI_ID;
6680 } while (napi_by_id(napi_gen_id));
6681 napi->napi_id = napi_gen_id;
6683 hlist_add_head_rcu(&napi->napi_hash_node,
6684 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6686 spin_unlock(&napi_hash_lock);
6689 /* Warning : caller is responsible to make sure rcu grace period
6690 * is respected before freeing memory containing @napi
6692 static void napi_hash_del(struct napi_struct *napi)
6694 spin_lock(&napi_hash_lock);
6696 hlist_del_init_rcu(&napi->napi_hash_node);
6698 spin_unlock(&napi_hash_lock);
6701 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6703 struct napi_struct *napi;
6705 napi = container_of(timer, struct napi_struct, timer);
6707 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6708 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6710 if (!napi_disable_pending(napi) &&
6711 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6712 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6713 __napi_schedule_irqoff(napi);
6716 return HRTIMER_NORESTART;
6719 static void init_gro_hash(struct napi_struct *napi)
6723 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6724 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6725 napi->gro_hash[i].count = 0;
6727 napi->gro_bitmask = 0;
6730 int dev_set_threaded(struct net_device *dev, bool threaded)
6732 struct napi_struct *napi;
6735 if (dev->threaded == threaded)
6739 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6740 if (!napi->thread) {
6741 err = napi_kthread_create(napi);
6750 dev->threaded = threaded;
6752 /* Make sure kthread is created before THREADED bit
6755 smp_mb__before_atomic();
6757 /* Setting/unsetting threaded mode on a napi might not immediately
6758 * take effect, if the current napi instance is actively being
6759 * polled. In this case, the switch between threaded mode and
6760 * softirq mode will happen in the next round of napi_schedule().
6761 * This should not cause hiccups/stalls to the live traffic.
6763 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6765 set_bit(NAPI_STATE_THREADED, &napi->state);
6767 clear_bit(NAPI_STATE_THREADED, &napi->state);
6773 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6774 int (*poll)(struct napi_struct *, int), int weight)
6776 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6779 INIT_LIST_HEAD(&napi->poll_list);
6780 INIT_HLIST_NODE(&napi->napi_hash_node);
6781 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6782 napi->timer.function = napi_watchdog;
6783 init_gro_hash(napi);
6785 INIT_LIST_HEAD(&napi->rx_list);
6788 if (weight > NAPI_POLL_WEIGHT)
6789 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6791 napi->weight = weight;
6793 #ifdef CONFIG_NETPOLL
6794 napi->poll_owner = -1;
6796 set_bit(NAPI_STATE_SCHED, &napi->state);
6797 set_bit(NAPI_STATE_NPSVC, &napi->state);
6798 list_add_rcu(&napi->dev_list, &dev->napi_list);
6799 napi_hash_add(napi);
6800 /* Create kthread for this napi if dev->threaded is set.
6801 * Clear dev->threaded if kthread creation failed so that
6802 * threaded mode will not be enabled in napi_enable().
6804 if (dev->threaded && napi_kthread_create(napi))
6807 EXPORT_SYMBOL(netif_napi_add);
6809 void napi_disable(struct napi_struct *n)
6812 set_bit(NAPI_STATE_DISABLE, &n->state);
6814 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6816 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6819 hrtimer_cancel(&n->timer);
6821 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6822 clear_bit(NAPI_STATE_DISABLE, &n->state);
6823 clear_bit(NAPI_STATE_THREADED, &n->state);
6825 EXPORT_SYMBOL(napi_disable);
6828 * napi_enable - enable NAPI scheduling
6831 * Resume NAPI from being scheduled on this context.
6832 * Must be paired with napi_disable.
6834 void napi_enable(struct napi_struct *n)
6836 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6837 smp_mb__before_atomic();
6838 clear_bit(NAPI_STATE_SCHED, &n->state);
6839 clear_bit(NAPI_STATE_NPSVC, &n->state);
6840 if (n->dev->threaded && n->thread)
6841 set_bit(NAPI_STATE_THREADED, &n->state);
6843 EXPORT_SYMBOL(napi_enable);
6845 static void flush_gro_hash(struct napi_struct *napi)
6849 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6850 struct sk_buff *skb, *n;
6852 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6854 napi->gro_hash[i].count = 0;
6858 /* Must be called in process context */
6859 void __netif_napi_del(struct napi_struct *napi)
6861 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6864 napi_hash_del(napi);
6865 list_del_rcu(&napi->dev_list);
6866 napi_free_frags(napi);
6868 flush_gro_hash(napi);
6869 napi->gro_bitmask = 0;
6872 kthread_stop(napi->thread);
6873 napi->thread = NULL;
6876 EXPORT_SYMBOL(__netif_napi_del);
6878 static int __napi_poll(struct napi_struct *n, bool *repoll)
6884 /* This NAPI_STATE_SCHED test is for avoiding a race
6885 * with netpoll's poll_napi(). Only the entity which
6886 * obtains the lock and sees NAPI_STATE_SCHED set will
6887 * actually make the ->poll() call. Therefore we avoid
6888 * accidentally calling ->poll() when NAPI is not scheduled.
6891 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6892 work = n->poll(n, weight);
6893 trace_napi_poll(n, work, weight);
6896 if (unlikely(work > weight))
6897 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6898 n->poll, work, weight);
6900 if (likely(work < weight))
6903 /* Drivers must not modify the NAPI state if they
6904 * consume the entire weight. In such cases this code
6905 * still "owns" the NAPI instance and therefore can
6906 * move the instance around on the list at-will.
6908 if (unlikely(napi_disable_pending(n))) {
6913 /* The NAPI context has more processing work, but busy-polling
6914 * is preferred. Exit early.
6916 if (napi_prefer_busy_poll(n)) {
6917 if (napi_complete_done(n, work)) {
6918 /* If timeout is not set, we need to make sure
6919 * that the NAPI is re-scheduled.
6926 if (n->gro_bitmask) {
6927 /* flush too old packets
6928 * If HZ < 1000, flush all packets.
6930 napi_gro_flush(n, HZ >= 1000);
6935 /* Some drivers may have called napi_schedule
6936 * prior to exhausting their budget.
6938 if (unlikely(!list_empty(&n->poll_list))) {
6939 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6940 n->dev ? n->dev->name : "backlog");
6949 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6951 bool do_repoll = false;
6955 list_del_init(&n->poll_list);
6957 have = netpoll_poll_lock(n);
6959 work = __napi_poll(n, &do_repoll);
6962 list_add_tail(&n->poll_list, repoll);
6964 netpoll_poll_unlock(have);
6969 static int napi_thread_wait(struct napi_struct *napi)
6971 set_current_state(TASK_INTERRUPTIBLE);
6973 while (!kthread_should_stop() && !napi_disable_pending(napi)) {
6974 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
6975 WARN_ON(!list_empty(&napi->poll_list));
6976 __set_current_state(TASK_RUNNING);
6981 set_current_state(TASK_INTERRUPTIBLE);
6983 __set_current_state(TASK_RUNNING);
6987 static int napi_threaded_poll(void *data)
6989 struct napi_struct *napi = data;
6992 while (!napi_thread_wait(napi)) {
6994 bool repoll = false;
6998 have = netpoll_poll_lock(napi);
6999 __napi_poll(napi, &repoll);
7000 netpoll_poll_unlock(have);
7013 static __latent_entropy void net_rx_action(struct softirq_action *h)
7015 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7016 unsigned long time_limit = jiffies +
7017 usecs_to_jiffies(netdev_budget_usecs);
7018 int budget = netdev_budget;
7022 local_irq_disable();
7023 list_splice_init(&sd->poll_list, &list);
7027 struct napi_struct *n;
7029 if (list_empty(&list)) {
7030 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7035 n = list_first_entry(&list, struct napi_struct, poll_list);
7036 budget -= napi_poll(n, &repoll);
7038 /* If softirq window is exhausted then punt.
7039 * Allow this to run for 2 jiffies since which will allow
7040 * an average latency of 1.5/HZ.
7042 if (unlikely(budget <= 0 ||
7043 time_after_eq(jiffies, time_limit))) {
7049 local_irq_disable();
7051 list_splice_tail_init(&sd->poll_list, &list);
7052 list_splice_tail(&repoll, &list);
7053 list_splice(&list, &sd->poll_list);
7054 if (!list_empty(&sd->poll_list))
7055 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7057 net_rps_action_and_irq_enable(sd);
7060 struct netdev_adjacent {
7061 struct net_device *dev;
7063 /* upper master flag, there can only be one master device per list */
7066 /* lookup ignore flag */
7069 /* counter for the number of times this device was added to us */
7072 /* private field for the users */
7075 struct list_head list;
7076 struct rcu_head rcu;
7079 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7080 struct list_head *adj_list)
7082 struct netdev_adjacent *adj;
7084 list_for_each_entry(adj, adj_list, list) {
7085 if (adj->dev == adj_dev)
7091 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7092 struct netdev_nested_priv *priv)
7094 struct net_device *dev = (struct net_device *)priv->data;
7096 return upper_dev == dev;
7100 * netdev_has_upper_dev - Check if device is linked to an upper device
7102 * @upper_dev: upper device to check
7104 * Find out if a device is linked to specified upper device and return true
7105 * in case it is. Note that this checks only immediate upper device,
7106 * not through a complete stack of devices. The caller must hold the RTNL lock.
7108 bool netdev_has_upper_dev(struct net_device *dev,
7109 struct net_device *upper_dev)
7111 struct netdev_nested_priv priv = {
7112 .data = (void *)upper_dev,
7117 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7120 EXPORT_SYMBOL(netdev_has_upper_dev);
7123 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7125 * @upper_dev: upper device to check
7127 * Find out if a device is linked to specified upper device and return true
7128 * in case it is. Note that this checks the entire upper device chain.
7129 * The caller must hold rcu lock.
7132 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7133 struct net_device *upper_dev)
7135 struct netdev_nested_priv priv = {
7136 .data = (void *)upper_dev,
7139 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7142 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7145 * netdev_has_any_upper_dev - Check if device is linked to some device
7148 * Find out if a device is linked to an upper device and return true in case
7149 * it is. The caller must hold the RTNL lock.
7151 bool netdev_has_any_upper_dev(struct net_device *dev)
7155 return !list_empty(&dev->adj_list.upper);
7157 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7160 * netdev_master_upper_dev_get - Get master upper device
7163 * Find a master upper device and return pointer to it or NULL in case
7164 * it's not there. The caller must hold the RTNL lock.
7166 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7168 struct netdev_adjacent *upper;
7172 if (list_empty(&dev->adj_list.upper))
7175 upper = list_first_entry(&dev->adj_list.upper,
7176 struct netdev_adjacent, list);
7177 if (likely(upper->master))
7181 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7183 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7185 struct netdev_adjacent *upper;
7189 if (list_empty(&dev->adj_list.upper))
7192 upper = list_first_entry(&dev->adj_list.upper,
7193 struct netdev_adjacent, list);
7194 if (likely(upper->master) && !upper->ignore)
7200 * netdev_has_any_lower_dev - Check if device is linked to some device
7203 * Find out if a device is linked to a lower device and return true in case
7204 * it is. The caller must hold the RTNL lock.
7206 static bool netdev_has_any_lower_dev(struct net_device *dev)
7210 return !list_empty(&dev->adj_list.lower);
7213 void *netdev_adjacent_get_private(struct list_head *adj_list)
7215 struct netdev_adjacent *adj;
7217 adj = list_entry(adj_list, struct netdev_adjacent, list);
7219 return adj->private;
7221 EXPORT_SYMBOL(netdev_adjacent_get_private);
7224 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7226 * @iter: list_head ** of the current position
7228 * Gets the next device from the dev's upper list, starting from iter
7229 * position. The caller must hold RCU read lock.
7231 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7232 struct list_head **iter)
7234 struct netdev_adjacent *upper;
7236 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7238 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7240 if (&upper->list == &dev->adj_list.upper)
7243 *iter = &upper->list;
7247 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7249 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7250 struct list_head **iter,
7253 struct netdev_adjacent *upper;
7255 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7257 if (&upper->list == &dev->adj_list.upper)
7260 *iter = &upper->list;
7261 *ignore = upper->ignore;
7266 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7267 struct list_head **iter)
7269 struct netdev_adjacent *upper;
7271 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7273 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7275 if (&upper->list == &dev->adj_list.upper)
7278 *iter = &upper->list;
7283 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7284 int (*fn)(struct net_device *dev,
7285 struct netdev_nested_priv *priv),
7286 struct netdev_nested_priv *priv)
7288 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7289 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7294 iter = &dev->adj_list.upper;
7298 ret = fn(now, priv);
7305 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7312 niter = &udev->adj_list.upper;
7313 dev_stack[cur] = now;
7314 iter_stack[cur++] = iter;
7321 next = dev_stack[--cur];
7322 niter = iter_stack[cur];
7332 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7333 int (*fn)(struct net_device *dev,
7334 struct netdev_nested_priv *priv),
7335 struct netdev_nested_priv *priv)
7337 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7338 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7342 iter = &dev->adj_list.upper;
7346 ret = fn(now, priv);
7353 udev = netdev_next_upper_dev_rcu(now, &iter);
7358 niter = &udev->adj_list.upper;
7359 dev_stack[cur] = now;
7360 iter_stack[cur++] = iter;
7367 next = dev_stack[--cur];
7368 niter = iter_stack[cur];
7377 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7379 static bool __netdev_has_upper_dev(struct net_device *dev,
7380 struct net_device *upper_dev)
7382 struct netdev_nested_priv priv = {
7384 .data = (void *)upper_dev,
7389 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7394 * netdev_lower_get_next_private - Get the next ->private from the
7395 * lower neighbour list
7397 * @iter: list_head ** of the current position
7399 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7400 * list, starting from iter position. The caller must hold either hold the
7401 * RTNL lock or its own locking that guarantees that the neighbour lower
7402 * list will remain unchanged.
7404 void *netdev_lower_get_next_private(struct net_device *dev,
7405 struct list_head **iter)
7407 struct netdev_adjacent *lower;
7409 lower = list_entry(*iter, struct netdev_adjacent, list);
7411 if (&lower->list == &dev->adj_list.lower)
7414 *iter = lower->list.next;
7416 return lower->private;
7418 EXPORT_SYMBOL(netdev_lower_get_next_private);
7421 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7422 * lower neighbour list, RCU
7425 * @iter: list_head ** of the current position
7427 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7428 * list, starting from iter position. The caller must hold RCU read lock.
7430 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7431 struct list_head **iter)
7433 struct netdev_adjacent *lower;
7435 WARN_ON_ONCE(!rcu_read_lock_held());
7437 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7439 if (&lower->list == &dev->adj_list.lower)
7442 *iter = &lower->list;
7444 return lower->private;
7446 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7449 * netdev_lower_get_next - Get the next device from the lower neighbour
7452 * @iter: list_head ** of the current position
7454 * Gets the next netdev_adjacent from the dev's lower neighbour
7455 * list, starting from iter position. The caller must hold RTNL lock or
7456 * its own locking that guarantees that the neighbour lower
7457 * list will remain unchanged.
7459 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7461 struct netdev_adjacent *lower;
7463 lower = list_entry(*iter, struct netdev_adjacent, list);
7465 if (&lower->list == &dev->adj_list.lower)
7468 *iter = lower->list.next;
7472 EXPORT_SYMBOL(netdev_lower_get_next);
7474 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7475 struct list_head **iter)
7477 struct netdev_adjacent *lower;
7479 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7481 if (&lower->list == &dev->adj_list.lower)
7484 *iter = &lower->list;
7489 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7490 struct list_head **iter,
7493 struct netdev_adjacent *lower;
7495 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7497 if (&lower->list == &dev->adj_list.lower)
7500 *iter = &lower->list;
7501 *ignore = lower->ignore;
7506 int netdev_walk_all_lower_dev(struct net_device *dev,
7507 int (*fn)(struct net_device *dev,
7508 struct netdev_nested_priv *priv),
7509 struct netdev_nested_priv *priv)
7511 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7512 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7516 iter = &dev->adj_list.lower;
7520 ret = fn(now, priv);
7527 ldev = netdev_next_lower_dev(now, &iter);
7532 niter = &ldev->adj_list.lower;
7533 dev_stack[cur] = now;
7534 iter_stack[cur++] = iter;
7541 next = dev_stack[--cur];
7542 niter = iter_stack[cur];
7551 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7553 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7554 int (*fn)(struct net_device *dev,
7555 struct netdev_nested_priv *priv),
7556 struct netdev_nested_priv *priv)
7558 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7559 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7564 iter = &dev->adj_list.lower;
7568 ret = fn(now, priv);
7575 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7582 niter = &ldev->adj_list.lower;
7583 dev_stack[cur] = now;
7584 iter_stack[cur++] = iter;
7591 next = dev_stack[--cur];
7592 niter = iter_stack[cur];
7602 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7603 struct list_head **iter)
7605 struct netdev_adjacent *lower;
7607 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7608 if (&lower->list == &dev->adj_list.lower)
7611 *iter = &lower->list;
7615 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7617 static u8 __netdev_upper_depth(struct net_device *dev)
7619 struct net_device *udev;
7620 struct list_head *iter;
7624 for (iter = &dev->adj_list.upper,
7625 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7627 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7630 if (max_depth < udev->upper_level)
7631 max_depth = udev->upper_level;
7637 static u8 __netdev_lower_depth(struct net_device *dev)
7639 struct net_device *ldev;
7640 struct list_head *iter;
7644 for (iter = &dev->adj_list.lower,
7645 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7647 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7650 if (max_depth < ldev->lower_level)
7651 max_depth = ldev->lower_level;
7657 static int __netdev_update_upper_level(struct net_device *dev,
7658 struct netdev_nested_priv *__unused)
7660 dev->upper_level = __netdev_upper_depth(dev) + 1;
7664 static int __netdev_update_lower_level(struct net_device *dev,
7665 struct netdev_nested_priv *priv)
7667 dev->lower_level = __netdev_lower_depth(dev) + 1;
7669 #ifdef CONFIG_LOCKDEP
7673 if (priv->flags & NESTED_SYNC_IMM)
7674 dev->nested_level = dev->lower_level - 1;
7675 if (priv->flags & NESTED_SYNC_TODO)
7676 net_unlink_todo(dev);
7681 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7682 int (*fn)(struct net_device *dev,
7683 struct netdev_nested_priv *priv),
7684 struct netdev_nested_priv *priv)
7686 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7687 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7691 iter = &dev->adj_list.lower;
7695 ret = fn(now, priv);
7702 ldev = netdev_next_lower_dev_rcu(now, &iter);
7707 niter = &ldev->adj_list.lower;
7708 dev_stack[cur] = now;
7709 iter_stack[cur++] = iter;
7716 next = dev_stack[--cur];
7717 niter = iter_stack[cur];
7726 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7729 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7730 * lower neighbour list, RCU
7734 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7735 * list. The caller must hold RCU read lock.
7737 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7739 struct netdev_adjacent *lower;
7741 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7742 struct netdev_adjacent, list);
7744 return lower->private;
7747 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7750 * netdev_master_upper_dev_get_rcu - Get master upper device
7753 * Find a master upper device and return pointer to it or NULL in case
7754 * it's not there. The caller must hold the RCU read lock.
7756 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7758 struct netdev_adjacent *upper;
7760 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7761 struct netdev_adjacent, list);
7762 if (upper && likely(upper->master))
7766 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7768 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7769 struct net_device *adj_dev,
7770 struct list_head *dev_list)
7772 char linkname[IFNAMSIZ+7];
7774 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7775 "upper_%s" : "lower_%s", adj_dev->name);
7776 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7779 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7781 struct list_head *dev_list)
7783 char linkname[IFNAMSIZ+7];
7785 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7786 "upper_%s" : "lower_%s", name);
7787 sysfs_remove_link(&(dev->dev.kobj), linkname);
7790 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7791 struct net_device *adj_dev,
7792 struct list_head *dev_list)
7794 return (dev_list == &dev->adj_list.upper ||
7795 dev_list == &dev->adj_list.lower) &&
7796 net_eq(dev_net(dev), dev_net(adj_dev));
7799 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7800 struct net_device *adj_dev,
7801 struct list_head *dev_list,
7802 void *private, bool master)
7804 struct netdev_adjacent *adj;
7807 adj = __netdev_find_adj(adj_dev, dev_list);
7811 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7812 dev->name, adj_dev->name, adj->ref_nr);
7817 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7822 adj->master = master;
7824 adj->private = private;
7825 adj->ignore = false;
7828 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7829 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7831 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7832 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7837 /* Ensure that master link is always the first item in list. */
7839 ret = sysfs_create_link(&(dev->dev.kobj),
7840 &(adj_dev->dev.kobj), "master");
7842 goto remove_symlinks;
7844 list_add_rcu(&adj->list, dev_list);
7846 list_add_tail_rcu(&adj->list, dev_list);
7852 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7853 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7861 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7862 struct net_device *adj_dev,
7864 struct list_head *dev_list)
7866 struct netdev_adjacent *adj;
7868 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7869 dev->name, adj_dev->name, ref_nr);
7871 adj = __netdev_find_adj(adj_dev, dev_list);
7874 pr_err("Adjacency does not exist for device %s from %s\n",
7875 dev->name, adj_dev->name);
7880 if (adj->ref_nr > ref_nr) {
7881 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7882 dev->name, adj_dev->name, ref_nr,
7883 adj->ref_nr - ref_nr);
7884 adj->ref_nr -= ref_nr;
7889 sysfs_remove_link(&(dev->dev.kobj), "master");
7891 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7892 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7894 list_del_rcu(&adj->list);
7895 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7896 adj_dev->name, dev->name, adj_dev->name);
7898 kfree_rcu(adj, rcu);
7901 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7902 struct net_device *upper_dev,
7903 struct list_head *up_list,
7904 struct list_head *down_list,
7905 void *private, bool master)
7909 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7914 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7917 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7924 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7925 struct net_device *upper_dev,
7927 struct list_head *up_list,
7928 struct list_head *down_list)
7930 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7931 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7934 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7935 struct net_device *upper_dev,
7936 void *private, bool master)
7938 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7939 &dev->adj_list.upper,
7940 &upper_dev->adj_list.lower,
7944 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7945 struct net_device *upper_dev)
7947 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7948 &dev->adj_list.upper,
7949 &upper_dev->adj_list.lower);
7952 static int __netdev_upper_dev_link(struct net_device *dev,
7953 struct net_device *upper_dev, bool master,
7954 void *upper_priv, void *upper_info,
7955 struct netdev_nested_priv *priv,
7956 struct netlink_ext_ack *extack)
7958 struct netdev_notifier_changeupper_info changeupper_info = {
7963 .upper_dev = upper_dev,
7966 .upper_info = upper_info,
7968 struct net_device *master_dev;
7973 if (dev == upper_dev)
7976 /* To prevent loops, check if dev is not upper device to upper_dev. */
7977 if (__netdev_has_upper_dev(upper_dev, dev))
7980 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7984 if (__netdev_has_upper_dev(dev, upper_dev))
7987 master_dev = __netdev_master_upper_dev_get(dev);
7989 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7992 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7993 &changeupper_info.info);
7994 ret = notifier_to_errno(ret);
7998 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8003 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8004 &changeupper_info.info);
8005 ret = notifier_to_errno(ret);
8009 __netdev_update_upper_level(dev, NULL);
8010 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8012 __netdev_update_lower_level(upper_dev, priv);
8013 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8019 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8025 * netdev_upper_dev_link - Add a link to the upper device
8027 * @upper_dev: new upper device
8028 * @extack: netlink extended ack
8030 * Adds a link to device which is upper to this one. The caller must hold
8031 * the RTNL lock. On a failure a negative errno code is returned.
8032 * On success the reference counts are adjusted and the function
8035 int netdev_upper_dev_link(struct net_device *dev,
8036 struct net_device *upper_dev,
8037 struct netlink_ext_ack *extack)
8039 struct netdev_nested_priv priv = {
8040 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8044 return __netdev_upper_dev_link(dev, upper_dev, false,
8045 NULL, NULL, &priv, extack);
8047 EXPORT_SYMBOL(netdev_upper_dev_link);
8050 * netdev_master_upper_dev_link - Add a master link to the upper device
8052 * @upper_dev: new upper device
8053 * @upper_priv: upper device private
8054 * @upper_info: upper info to be passed down via notifier
8055 * @extack: netlink extended ack
8057 * Adds a link to device which is upper to this one. In this case, only
8058 * one master upper device can be linked, although other non-master devices
8059 * might be linked as well. The caller must hold the RTNL lock.
8060 * On a failure a negative errno code is returned. On success the reference
8061 * counts are adjusted and the function returns zero.
8063 int netdev_master_upper_dev_link(struct net_device *dev,
8064 struct net_device *upper_dev,
8065 void *upper_priv, void *upper_info,
8066 struct netlink_ext_ack *extack)
8068 struct netdev_nested_priv priv = {
8069 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8073 return __netdev_upper_dev_link(dev, upper_dev, true,
8074 upper_priv, upper_info, &priv, extack);
8076 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8078 static void __netdev_upper_dev_unlink(struct net_device *dev,
8079 struct net_device *upper_dev,
8080 struct netdev_nested_priv *priv)
8082 struct netdev_notifier_changeupper_info changeupper_info = {
8086 .upper_dev = upper_dev,
8092 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8094 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8095 &changeupper_info.info);
8097 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8099 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8100 &changeupper_info.info);
8102 __netdev_update_upper_level(dev, NULL);
8103 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8105 __netdev_update_lower_level(upper_dev, priv);
8106 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8111 * netdev_upper_dev_unlink - Removes a link to upper device
8113 * @upper_dev: new upper device
8115 * Removes a link to device which is upper to this one. The caller must hold
8118 void netdev_upper_dev_unlink(struct net_device *dev,
8119 struct net_device *upper_dev)
8121 struct netdev_nested_priv priv = {
8122 .flags = NESTED_SYNC_TODO,
8126 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8128 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8130 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8131 struct net_device *lower_dev,
8134 struct netdev_adjacent *adj;
8136 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8140 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8145 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8146 struct net_device *lower_dev)
8148 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8151 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8152 struct net_device *lower_dev)
8154 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8157 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8158 struct net_device *new_dev,
8159 struct net_device *dev,
8160 struct netlink_ext_ack *extack)
8162 struct netdev_nested_priv priv = {
8171 if (old_dev && new_dev != old_dev)
8172 netdev_adjacent_dev_disable(dev, old_dev);
8173 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8176 if (old_dev && new_dev != old_dev)
8177 netdev_adjacent_dev_enable(dev, old_dev);
8183 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8185 void netdev_adjacent_change_commit(struct net_device *old_dev,
8186 struct net_device *new_dev,
8187 struct net_device *dev)
8189 struct netdev_nested_priv priv = {
8190 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8194 if (!new_dev || !old_dev)
8197 if (new_dev == old_dev)
8200 netdev_adjacent_dev_enable(dev, old_dev);
8201 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8203 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8205 void netdev_adjacent_change_abort(struct net_device *old_dev,
8206 struct net_device *new_dev,
8207 struct net_device *dev)
8209 struct netdev_nested_priv priv = {
8217 if (old_dev && new_dev != old_dev)
8218 netdev_adjacent_dev_enable(dev, old_dev);
8220 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8222 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8225 * netdev_bonding_info_change - Dispatch event about slave change
8227 * @bonding_info: info to dispatch
8229 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8230 * The caller must hold the RTNL lock.
8232 void netdev_bonding_info_change(struct net_device *dev,
8233 struct netdev_bonding_info *bonding_info)
8235 struct netdev_notifier_bonding_info info = {
8239 memcpy(&info.bonding_info, bonding_info,
8240 sizeof(struct netdev_bonding_info));
8241 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8244 EXPORT_SYMBOL(netdev_bonding_info_change);
8247 * netdev_get_xmit_slave - Get the xmit slave of master device
8250 * @all_slaves: assume all the slaves are active
8252 * The reference counters are not incremented so the caller must be
8253 * careful with locks. The caller must hold RCU lock.
8254 * %NULL is returned if no slave is found.
8257 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8258 struct sk_buff *skb,
8261 const struct net_device_ops *ops = dev->netdev_ops;
8263 if (!ops->ndo_get_xmit_slave)
8265 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8267 EXPORT_SYMBOL(netdev_get_xmit_slave);
8269 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8272 const struct net_device_ops *ops = dev->netdev_ops;
8274 if (!ops->ndo_sk_get_lower_dev)
8276 return ops->ndo_sk_get_lower_dev(dev, sk);
8280 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8284 * %NULL is returned if no lower device is found.
8287 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8290 struct net_device *lower;
8292 lower = netdev_sk_get_lower_dev(dev, sk);
8295 lower = netdev_sk_get_lower_dev(dev, sk);
8300 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8302 static void netdev_adjacent_add_links(struct net_device *dev)
8304 struct netdev_adjacent *iter;
8306 struct net *net = dev_net(dev);
8308 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8309 if (!net_eq(net, dev_net(iter->dev)))
8311 netdev_adjacent_sysfs_add(iter->dev, dev,
8312 &iter->dev->adj_list.lower);
8313 netdev_adjacent_sysfs_add(dev, iter->dev,
8314 &dev->adj_list.upper);
8317 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8318 if (!net_eq(net, dev_net(iter->dev)))
8320 netdev_adjacent_sysfs_add(iter->dev, dev,
8321 &iter->dev->adj_list.upper);
8322 netdev_adjacent_sysfs_add(dev, iter->dev,
8323 &dev->adj_list.lower);
8327 static void netdev_adjacent_del_links(struct net_device *dev)
8329 struct netdev_adjacent *iter;
8331 struct net *net = dev_net(dev);
8333 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8334 if (!net_eq(net, dev_net(iter->dev)))
8336 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8337 &iter->dev->adj_list.lower);
8338 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8339 &dev->adj_list.upper);
8342 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8343 if (!net_eq(net, dev_net(iter->dev)))
8345 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8346 &iter->dev->adj_list.upper);
8347 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8348 &dev->adj_list.lower);
8352 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8354 struct netdev_adjacent *iter;
8356 struct net *net = dev_net(dev);
8358 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8359 if (!net_eq(net, dev_net(iter->dev)))
8361 netdev_adjacent_sysfs_del(iter->dev, oldname,
8362 &iter->dev->adj_list.lower);
8363 netdev_adjacent_sysfs_add(iter->dev, dev,
8364 &iter->dev->adj_list.lower);
8367 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8368 if (!net_eq(net, dev_net(iter->dev)))
8370 netdev_adjacent_sysfs_del(iter->dev, oldname,
8371 &iter->dev->adj_list.upper);
8372 netdev_adjacent_sysfs_add(iter->dev, dev,
8373 &iter->dev->adj_list.upper);
8377 void *netdev_lower_dev_get_private(struct net_device *dev,
8378 struct net_device *lower_dev)
8380 struct netdev_adjacent *lower;
8384 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8388 return lower->private;
8390 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8394 * netdev_lower_state_changed - Dispatch event about lower device state change
8395 * @lower_dev: device
8396 * @lower_state_info: state to dispatch
8398 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8399 * The caller must hold the RTNL lock.
8401 void netdev_lower_state_changed(struct net_device *lower_dev,
8402 void *lower_state_info)
8404 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8405 .info.dev = lower_dev,
8409 changelowerstate_info.lower_state_info = lower_state_info;
8410 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8411 &changelowerstate_info.info);
8413 EXPORT_SYMBOL(netdev_lower_state_changed);
8415 static void dev_change_rx_flags(struct net_device *dev, int flags)
8417 const struct net_device_ops *ops = dev->netdev_ops;
8419 if (ops->ndo_change_rx_flags)
8420 ops->ndo_change_rx_flags(dev, flags);
8423 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8425 unsigned int old_flags = dev->flags;
8431 dev->flags |= IFF_PROMISC;
8432 dev->promiscuity += inc;
8433 if (dev->promiscuity == 0) {
8436 * If inc causes overflow, untouch promisc and return error.
8439 dev->flags &= ~IFF_PROMISC;
8441 dev->promiscuity -= inc;
8442 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8447 if (dev->flags != old_flags) {
8448 pr_info("device %s %s promiscuous mode\n",
8450 dev->flags & IFF_PROMISC ? "entered" : "left");
8451 if (audit_enabled) {
8452 current_uid_gid(&uid, &gid);
8453 audit_log(audit_context(), GFP_ATOMIC,
8454 AUDIT_ANOM_PROMISCUOUS,
8455 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8456 dev->name, (dev->flags & IFF_PROMISC),
8457 (old_flags & IFF_PROMISC),
8458 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8459 from_kuid(&init_user_ns, uid),
8460 from_kgid(&init_user_ns, gid),
8461 audit_get_sessionid(current));
8464 dev_change_rx_flags(dev, IFF_PROMISC);
8467 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8472 * dev_set_promiscuity - update promiscuity count on a device
8476 * Add or remove promiscuity from a device. While the count in the device
8477 * remains above zero the interface remains promiscuous. Once it hits zero
8478 * the device reverts back to normal filtering operation. A negative inc
8479 * value is used to drop promiscuity on the device.
8480 * Return 0 if successful or a negative errno code on error.
8482 int dev_set_promiscuity(struct net_device *dev, int inc)
8484 unsigned int old_flags = dev->flags;
8487 err = __dev_set_promiscuity(dev, inc, true);
8490 if (dev->flags != old_flags)
8491 dev_set_rx_mode(dev);
8494 EXPORT_SYMBOL(dev_set_promiscuity);
8496 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8498 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8502 dev->flags |= IFF_ALLMULTI;
8503 dev->allmulti += inc;
8504 if (dev->allmulti == 0) {
8507 * If inc causes overflow, untouch allmulti and return error.
8510 dev->flags &= ~IFF_ALLMULTI;
8512 dev->allmulti -= inc;
8513 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8518 if (dev->flags ^ old_flags) {
8519 dev_change_rx_flags(dev, IFF_ALLMULTI);
8520 dev_set_rx_mode(dev);
8522 __dev_notify_flags(dev, old_flags,
8523 dev->gflags ^ old_gflags);
8529 * dev_set_allmulti - update allmulti count on a device
8533 * Add or remove reception of all multicast frames to a device. While the
8534 * count in the device remains above zero the interface remains listening
8535 * to all interfaces. Once it hits zero the device reverts back to normal
8536 * filtering operation. A negative @inc value is used to drop the counter
8537 * when releasing a resource needing all multicasts.
8538 * Return 0 if successful or a negative errno code on error.
8541 int dev_set_allmulti(struct net_device *dev, int inc)
8543 return __dev_set_allmulti(dev, inc, true);
8545 EXPORT_SYMBOL(dev_set_allmulti);
8548 * Upload unicast and multicast address lists to device and
8549 * configure RX filtering. When the device doesn't support unicast
8550 * filtering it is put in promiscuous mode while unicast addresses
8553 void __dev_set_rx_mode(struct net_device *dev)
8555 const struct net_device_ops *ops = dev->netdev_ops;
8557 /* dev_open will call this function so the list will stay sane. */
8558 if (!(dev->flags&IFF_UP))
8561 if (!netif_device_present(dev))
8564 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8565 /* Unicast addresses changes may only happen under the rtnl,
8566 * therefore calling __dev_set_promiscuity here is safe.
8568 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8569 __dev_set_promiscuity(dev, 1, false);
8570 dev->uc_promisc = true;
8571 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8572 __dev_set_promiscuity(dev, -1, false);
8573 dev->uc_promisc = false;
8577 if (ops->ndo_set_rx_mode)
8578 ops->ndo_set_rx_mode(dev);
8581 void dev_set_rx_mode(struct net_device *dev)
8583 netif_addr_lock_bh(dev);
8584 __dev_set_rx_mode(dev);
8585 netif_addr_unlock_bh(dev);
8589 * dev_get_flags - get flags reported to userspace
8592 * Get the combination of flag bits exported through APIs to userspace.
8594 unsigned int dev_get_flags(const struct net_device *dev)
8598 flags = (dev->flags & ~(IFF_PROMISC |
8603 (dev->gflags & (IFF_PROMISC |
8606 if (netif_running(dev)) {
8607 if (netif_oper_up(dev))
8608 flags |= IFF_RUNNING;
8609 if (netif_carrier_ok(dev))
8610 flags |= IFF_LOWER_UP;
8611 if (netif_dormant(dev))
8612 flags |= IFF_DORMANT;
8617 EXPORT_SYMBOL(dev_get_flags);
8619 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8620 struct netlink_ext_ack *extack)
8622 unsigned int old_flags = dev->flags;
8628 * Set the flags on our device.
8631 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8632 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8634 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8638 * Load in the correct multicast list now the flags have changed.
8641 if ((old_flags ^ flags) & IFF_MULTICAST)
8642 dev_change_rx_flags(dev, IFF_MULTICAST);
8644 dev_set_rx_mode(dev);
8647 * Have we downed the interface. We handle IFF_UP ourselves
8648 * according to user attempts to set it, rather than blindly
8653 if ((old_flags ^ flags) & IFF_UP) {
8654 if (old_flags & IFF_UP)
8657 ret = __dev_open(dev, extack);
8660 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8661 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8662 unsigned int old_flags = dev->flags;
8664 dev->gflags ^= IFF_PROMISC;
8666 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8667 if (dev->flags != old_flags)
8668 dev_set_rx_mode(dev);
8671 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8672 * is important. Some (broken) drivers set IFF_PROMISC, when
8673 * IFF_ALLMULTI is requested not asking us and not reporting.
8675 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8676 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8678 dev->gflags ^= IFF_ALLMULTI;
8679 __dev_set_allmulti(dev, inc, false);
8685 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8686 unsigned int gchanges)
8688 unsigned int changes = dev->flags ^ old_flags;
8691 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8693 if (changes & IFF_UP) {
8694 if (dev->flags & IFF_UP)
8695 call_netdevice_notifiers(NETDEV_UP, dev);
8697 call_netdevice_notifiers(NETDEV_DOWN, dev);
8700 if (dev->flags & IFF_UP &&
8701 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8702 struct netdev_notifier_change_info change_info = {
8706 .flags_changed = changes,
8709 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8714 * dev_change_flags - change device settings
8716 * @flags: device state flags
8717 * @extack: netlink extended ack
8719 * Change settings on device based state flags. The flags are
8720 * in the userspace exported format.
8722 int dev_change_flags(struct net_device *dev, unsigned int flags,
8723 struct netlink_ext_ack *extack)
8726 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8728 ret = __dev_change_flags(dev, flags, extack);
8732 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8733 __dev_notify_flags(dev, old_flags, changes);
8736 EXPORT_SYMBOL(dev_change_flags);
8738 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8740 const struct net_device_ops *ops = dev->netdev_ops;
8742 if (ops->ndo_change_mtu)
8743 return ops->ndo_change_mtu(dev, new_mtu);
8745 /* Pairs with all the lockless reads of dev->mtu in the stack */
8746 WRITE_ONCE(dev->mtu, new_mtu);
8749 EXPORT_SYMBOL(__dev_set_mtu);
8751 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8752 struct netlink_ext_ack *extack)
8754 /* MTU must be positive, and in range */
8755 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8756 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8760 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8761 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8768 * dev_set_mtu_ext - Change maximum transfer unit
8770 * @new_mtu: new transfer unit
8771 * @extack: netlink extended ack
8773 * Change the maximum transfer size of the network device.
8775 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8776 struct netlink_ext_ack *extack)
8780 if (new_mtu == dev->mtu)
8783 err = dev_validate_mtu(dev, new_mtu, extack);
8787 if (!netif_device_present(dev))
8790 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8791 err = notifier_to_errno(err);
8795 orig_mtu = dev->mtu;
8796 err = __dev_set_mtu(dev, new_mtu);
8799 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8801 err = notifier_to_errno(err);
8803 /* setting mtu back and notifying everyone again,
8804 * so that they have a chance to revert changes.
8806 __dev_set_mtu(dev, orig_mtu);
8807 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8814 int dev_set_mtu(struct net_device *dev, int new_mtu)
8816 struct netlink_ext_ack extack;
8819 memset(&extack, 0, sizeof(extack));
8820 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8821 if (err && extack._msg)
8822 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8825 EXPORT_SYMBOL(dev_set_mtu);
8828 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8830 * @new_len: new tx queue length
8832 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8834 unsigned int orig_len = dev->tx_queue_len;
8837 if (new_len != (unsigned int)new_len)
8840 if (new_len != orig_len) {
8841 dev->tx_queue_len = new_len;
8842 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8843 res = notifier_to_errno(res);
8846 res = dev_qdisc_change_tx_queue_len(dev);
8854 netdev_err(dev, "refused to change device tx_queue_len\n");
8855 dev->tx_queue_len = orig_len;
8860 * dev_set_group - Change group this device belongs to
8862 * @new_group: group this device should belong to
8864 void dev_set_group(struct net_device *dev, int new_group)
8866 dev->group = new_group;
8868 EXPORT_SYMBOL(dev_set_group);
8871 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8873 * @addr: new address
8874 * @extack: netlink extended ack
8876 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8877 struct netlink_ext_ack *extack)
8879 struct netdev_notifier_pre_changeaddr_info info = {
8881 .info.extack = extack,
8886 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8887 return notifier_to_errno(rc);
8889 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8892 * dev_set_mac_address - Change Media Access Control Address
8895 * @extack: netlink extended ack
8897 * Change the hardware (MAC) address of the device
8899 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8900 struct netlink_ext_ack *extack)
8902 const struct net_device_ops *ops = dev->netdev_ops;
8905 if (!ops->ndo_set_mac_address)
8907 if (sa->sa_family != dev->type)
8909 if (!netif_device_present(dev))
8911 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8914 err = ops->ndo_set_mac_address(dev, sa);
8917 dev->addr_assign_type = NET_ADDR_SET;
8918 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8919 add_device_randomness(dev->dev_addr, dev->addr_len);
8922 EXPORT_SYMBOL(dev_set_mac_address);
8924 static DECLARE_RWSEM(dev_addr_sem);
8926 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8927 struct netlink_ext_ack *extack)
8931 down_write(&dev_addr_sem);
8932 ret = dev_set_mac_address(dev, sa, extack);
8933 up_write(&dev_addr_sem);
8936 EXPORT_SYMBOL(dev_set_mac_address_user);
8938 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8940 size_t size = sizeof(sa->sa_data);
8941 struct net_device *dev;
8944 down_read(&dev_addr_sem);
8947 dev = dev_get_by_name_rcu(net, dev_name);
8953 memset(sa->sa_data, 0, size);
8955 memcpy(sa->sa_data, dev->dev_addr,
8956 min_t(size_t, size, dev->addr_len));
8957 sa->sa_family = dev->type;
8961 up_read(&dev_addr_sem);
8964 EXPORT_SYMBOL(dev_get_mac_address);
8967 * dev_change_carrier - Change device carrier
8969 * @new_carrier: new value
8971 * Change device carrier
8973 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8975 const struct net_device_ops *ops = dev->netdev_ops;
8977 if (!ops->ndo_change_carrier)
8979 if (!netif_device_present(dev))
8981 return ops->ndo_change_carrier(dev, new_carrier);
8983 EXPORT_SYMBOL(dev_change_carrier);
8986 * dev_get_phys_port_id - Get device physical port ID
8990 * Get device physical port ID
8992 int dev_get_phys_port_id(struct net_device *dev,
8993 struct netdev_phys_item_id *ppid)
8995 const struct net_device_ops *ops = dev->netdev_ops;
8997 if (!ops->ndo_get_phys_port_id)
8999 return ops->ndo_get_phys_port_id(dev, ppid);
9001 EXPORT_SYMBOL(dev_get_phys_port_id);
9004 * dev_get_phys_port_name - Get device physical port name
9007 * @len: limit of bytes to copy to name
9009 * Get device physical port name
9011 int dev_get_phys_port_name(struct net_device *dev,
9012 char *name, size_t len)
9014 const struct net_device_ops *ops = dev->netdev_ops;
9017 if (ops->ndo_get_phys_port_name) {
9018 err = ops->ndo_get_phys_port_name(dev, name, len);
9019 if (err != -EOPNOTSUPP)
9022 return devlink_compat_phys_port_name_get(dev, name, len);
9024 EXPORT_SYMBOL(dev_get_phys_port_name);
9027 * dev_get_port_parent_id - Get the device's port parent identifier
9028 * @dev: network device
9029 * @ppid: pointer to a storage for the port's parent identifier
9030 * @recurse: allow/disallow recursion to lower devices
9032 * Get the devices's port parent identifier
9034 int dev_get_port_parent_id(struct net_device *dev,
9035 struct netdev_phys_item_id *ppid,
9038 const struct net_device_ops *ops = dev->netdev_ops;
9039 struct netdev_phys_item_id first = { };
9040 struct net_device *lower_dev;
9041 struct list_head *iter;
9044 if (ops->ndo_get_port_parent_id) {
9045 err = ops->ndo_get_port_parent_id(dev, ppid);
9046 if (err != -EOPNOTSUPP)
9050 err = devlink_compat_switch_id_get(dev, ppid);
9051 if (!err || err != -EOPNOTSUPP)
9057 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9058 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9063 else if (memcmp(&first, ppid, sizeof(*ppid)))
9069 EXPORT_SYMBOL(dev_get_port_parent_id);
9072 * netdev_port_same_parent_id - Indicate if two network devices have
9073 * the same port parent identifier
9074 * @a: first network device
9075 * @b: second network device
9077 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9079 struct netdev_phys_item_id a_id = { };
9080 struct netdev_phys_item_id b_id = { };
9082 if (dev_get_port_parent_id(a, &a_id, true) ||
9083 dev_get_port_parent_id(b, &b_id, true))
9086 return netdev_phys_item_id_same(&a_id, &b_id);
9088 EXPORT_SYMBOL(netdev_port_same_parent_id);
9091 * dev_change_proto_down - update protocol port state information
9093 * @proto_down: new value
9095 * This info can be used by switch drivers to set the phys state of the
9098 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9100 const struct net_device_ops *ops = dev->netdev_ops;
9102 if (!ops->ndo_change_proto_down)
9104 if (!netif_device_present(dev))
9106 return ops->ndo_change_proto_down(dev, proto_down);
9108 EXPORT_SYMBOL(dev_change_proto_down);
9111 * dev_change_proto_down_generic - generic implementation for
9112 * ndo_change_proto_down that sets carrier according to
9116 * @proto_down: new value
9118 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9121 netif_carrier_off(dev);
9123 netif_carrier_on(dev);
9124 dev->proto_down = proto_down;
9127 EXPORT_SYMBOL(dev_change_proto_down_generic);
9130 * dev_change_proto_down_reason - proto down reason
9133 * @mask: proto down mask
9134 * @value: proto down value
9136 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9142 dev->proto_down_reason = value;
9144 for_each_set_bit(b, &mask, 32) {
9145 if (value & (1 << b))
9146 dev->proto_down_reason |= BIT(b);
9148 dev->proto_down_reason &= ~BIT(b);
9152 EXPORT_SYMBOL(dev_change_proto_down_reason);
9154 struct bpf_xdp_link {
9155 struct bpf_link link;
9156 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9160 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9162 if (flags & XDP_FLAGS_HW_MODE)
9164 if (flags & XDP_FLAGS_DRV_MODE)
9165 return XDP_MODE_DRV;
9166 if (flags & XDP_FLAGS_SKB_MODE)
9167 return XDP_MODE_SKB;
9168 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9171 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9175 return generic_xdp_install;
9178 return dev->netdev_ops->ndo_bpf;
9184 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9185 enum bpf_xdp_mode mode)
9187 return dev->xdp_state[mode].link;
9190 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9191 enum bpf_xdp_mode mode)
9193 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9196 return link->link.prog;
9197 return dev->xdp_state[mode].prog;
9200 static u8 dev_xdp_prog_count(struct net_device *dev)
9205 for (i = 0; i < __MAX_XDP_MODE; i++)
9206 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9211 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9213 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9215 return prog ? prog->aux->id : 0;
9218 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9219 struct bpf_xdp_link *link)
9221 dev->xdp_state[mode].link = link;
9222 dev->xdp_state[mode].prog = NULL;
9225 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9226 struct bpf_prog *prog)
9228 dev->xdp_state[mode].link = NULL;
9229 dev->xdp_state[mode].prog = prog;
9232 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9233 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9234 u32 flags, struct bpf_prog *prog)
9236 struct netdev_bpf xdp;
9239 memset(&xdp, 0, sizeof(xdp));
9240 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9241 xdp.extack = extack;
9245 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9246 * "moved" into driver), so they don't increment it on their own, but
9247 * they do decrement refcnt when program is detached or replaced.
9248 * Given net_device also owns link/prog, we need to bump refcnt here
9249 * to prevent drivers from underflowing it.
9253 err = bpf_op(dev, &xdp);
9260 if (mode != XDP_MODE_HW)
9261 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9266 static void dev_xdp_uninstall(struct net_device *dev)
9268 struct bpf_xdp_link *link;
9269 struct bpf_prog *prog;
9270 enum bpf_xdp_mode mode;
9275 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9276 prog = dev_xdp_prog(dev, mode);
9280 bpf_op = dev_xdp_bpf_op(dev, mode);
9284 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9286 /* auto-detach link from net device */
9287 link = dev_xdp_link(dev, mode);
9293 dev_xdp_set_link(dev, mode, NULL);
9297 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9298 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9299 struct bpf_prog *old_prog, u32 flags)
9301 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9302 struct bpf_prog *cur_prog;
9303 enum bpf_xdp_mode mode;
9309 /* either link or prog attachment, never both */
9310 if (link && (new_prog || old_prog))
9312 /* link supports only XDP mode flags */
9313 if (link && (flags & ~XDP_FLAGS_MODES)) {
9314 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9317 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9318 if (num_modes > 1) {
9319 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9322 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9323 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9324 NL_SET_ERR_MSG(extack,
9325 "More than one program loaded, unset mode is ambiguous");
9328 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9329 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9330 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9334 mode = dev_xdp_mode(dev, flags);
9335 /* can't replace attached link */
9336 if (dev_xdp_link(dev, mode)) {
9337 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9341 cur_prog = dev_xdp_prog(dev, mode);
9342 /* can't replace attached prog with link */
9343 if (link && cur_prog) {
9344 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9347 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9348 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9352 /* put effective new program into new_prog */
9354 new_prog = link->link.prog;
9357 bool offload = mode == XDP_MODE_HW;
9358 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9359 ? XDP_MODE_DRV : XDP_MODE_SKB;
9361 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9362 NL_SET_ERR_MSG(extack, "XDP program already attached");
9365 if (!offload && dev_xdp_prog(dev, other_mode)) {
9366 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9369 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9370 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9373 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9374 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9377 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9378 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9383 /* don't call drivers if the effective program didn't change */
9384 if (new_prog != cur_prog) {
9385 bpf_op = dev_xdp_bpf_op(dev, mode);
9387 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9391 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9397 dev_xdp_set_link(dev, mode, link);
9399 dev_xdp_set_prog(dev, mode, new_prog);
9401 bpf_prog_put(cur_prog);
9406 static int dev_xdp_attach_link(struct net_device *dev,
9407 struct netlink_ext_ack *extack,
9408 struct bpf_xdp_link *link)
9410 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9413 static int dev_xdp_detach_link(struct net_device *dev,
9414 struct netlink_ext_ack *extack,
9415 struct bpf_xdp_link *link)
9417 enum bpf_xdp_mode mode;
9422 mode = dev_xdp_mode(dev, link->flags);
9423 if (dev_xdp_link(dev, mode) != link)
9426 bpf_op = dev_xdp_bpf_op(dev, mode);
9427 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9428 dev_xdp_set_link(dev, mode, NULL);
9432 static void bpf_xdp_link_release(struct bpf_link *link)
9434 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9438 /* if racing with net_device's tear down, xdp_link->dev might be
9439 * already NULL, in which case link was already auto-detached
9441 if (xdp_link->dev) {
9442 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9443 xdp_link->dev = NULL;
9449 static int bpf_xdp_link_detach(struct bpf_link *link)
9451 bpf_xdp_link_release(link);
9455 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9457 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9462 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9463 struct seq_file *seq)
9465 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9470 ifindex = xdp_link->dev->ifindex;
9473 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9476 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9477 struct bpf_link_info *info)
9479 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9484 ifindex = xdp_link->dev->ifindex;
9487 info->xdp.ifindex = ifindex;
9491 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9492 struct bpf_prog *old_prog)
9494 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9495 enum bpf_xdp_mode mode;
9501 /* link might have been auto-released already, so fail */
9502 if (!xdp_link->dev) {
9507 if (old_prog && link->prog != old_prog) {
9511 old_prog = link->prog;
9512 if (old_prog == new_prog) {
9513 /* no-op, don't disturb drivers */
9514 bpf_prog_put(new_prog);
9518 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9519 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9520 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9521 xdp_link->flags, new_prog);
9525 old_prog = xchg(&link->prog, new_prog);
9526 bpf_prog_put(old_prog);
9533 static const struct bpf_link_ops bpf_xdp_link_lops = {
9534 .release = bpf_xdp_link_release,
9535 .dealloc = bpf_xdp_link_dealloc,
9536 .detach = bpf_xdp_link_detach,
9537 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9538 .fill_link_info = bpf_xdp_link_fill_link_info,
9539 .update_prog = bpf_xdp_link_update,
9542 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9544 struct net *net = current->nsproxy->net_ns;
9545 struct bpf_link_primer link_primer;
9546 struct bpf_xdp_link *link;
9547 struct net_device *dev;
9550 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9554 link = kzalloc(sizeof(*link), GFP_USER);
9560 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9562 link->flags = attr->link_create.flags;
9564 err = bpf_link_prime(&link->link, &link_primer);
9571 err = dev_xdp_attach_link(dev, NULL, link);
9575 bpf_link_cleanup(&link_primer);
9579 fd = bpf_link_settle(&link_primer);
9580 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9590 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9592 * @extack: netlink extended ack
9593 * @fd: new program fd or negative value to clear
9594 * @expected_fd: old program fd that userspace expects to replace or clear
9595 * @flags: xdp-related flags
9597 * Set or clear a bpf program for a device
9599 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9600 int fd, int expected_fd, u32 flags)
9602 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9603 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9609 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9610 mode != XDP_MODE_SKB);
9611 if (IS_ERR(new_prog))
9612 return PTR_ERR(new_prog);
9615 if (expected_fd >= 0) {
9616 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9617 mode != XDP_MODE_SKB);
9618 if (IS_ERR(old_prog)) {
9619 err = PTR_ERR(old_prog);
9625 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9628 if (err && new_prog)
9629 bpf_prog_put(new_prog);
9631 bpf_prog_put(old_prog);
9636 * dev_new_index - allocate an ifindex
9637 * @net: the applicable net namespace
9639 * Returns a suitable unique value for a new device interface
9640 * number. The caller must hold the rtnl semaphore or the
9641 * dev_base_lock to be sure it remains unique.
9643 static int dev_new_index(struct net *net)
9645 int ifindex = net->ifindex;
9650 if (!__dev_get_by_index(net, ifindex))
9651 return net->ifindex = ifindex;
9655 /* Delayed registration/unregisteration */
9656 static LIST_HEAD(net_todo_list);
9657 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9659 static void net_set_todo(struct net_device *dev)
9661 list_add_tail(&dev->todo_list, &net_todo_list);
9662 dev_net(dev)->dev_unreg_count++;
9665 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9666 struct net_device *upper, netdev_features_t features)
9668 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9669 netdev_features_t feature;
9672 for_each_netdev_feature(upper_disables, feature_bit) {
9673 feature = __NETIF_F_BIT(feature_bit);
9674 if (!(upper->wanted_features & feature)
9675 && (features & feature)) {
9676 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9677 &feature, upper->name);
9678 features &= ~feature;
9685 static void netdev_sync_lower_features(struct net_device *upper,
9686 struct net_device *lower, netdev_features_t features)
9688 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9689 netdev_features_t feature;
9692 for_each_netdev_feature(upper_disables, feature_bit) {
9693 feature = __NETIF_F_BIT(feature_bit);
9694 if (!(features & feature) && (lower->features & feature)) {
9695 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9696 &feature, lower->name);
9697 lower->wanted_features &= ~feature;
9698 __netdev_update_features(lower);
9700 if (unlikely(lower->features & feature))
9701 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9702 &feature, lower->name);
9704 netdev_features_change(lower);
9709 static netdev_features_t netdev_fix_features(struct net_device *dev,
9710 netdev_features_t features)
9712 /* Fix illegal checksum combinations */
9713 if ((features & NETIF_F_HW_CSUM) &&
9714 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9715 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9716 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9719 /* TSO requires that SG is present as well. */
9720 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9721 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9722 features &= ~NETIF_F_ALL_TSO;
9725 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9726 !(features & NETIF_F_IP_CSUM)) {
9727 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9728 features &= ~NETIF_F_TSO;
9729 features &= ~NETIF_F_TSO_ECN;
9732 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9733 !(features & NETIF_F_IPV6_CSUM)) {
9734 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9735 features &= ~NETIF_F_TSO6;
9738 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9739 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9740 features &= ~NETIF_F_TSO_MANGLEID;
9742 /* TSO ECN requires that TSO is present as well. */
9743 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9744 features &= ~NETIF_F_TSO_ECN;
9746 /* Software GSO depends on SG. */
9747 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9748 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9749 features &= ~NETIF_F_GSO;
9752 /* GSO partial features require GSO partial be set */
9753 if ((features & dev->gso_partial_features) &&
9754 !(features & NETIF_F_GSO_PARTIAL)) {
9756 "Dropping partially supported GSO features since no GSO partial.\n");
9757 features &= ~dev->gso_partial_features;
9760 if (!(features & NETIF_F_RXCSUM)) {
9761 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9762 * successfully merged by hardware must also have the
9763 * checksum verified by hardware. If the user does not
9764 * want to enable RXCSUM, logically, we should disable GRO_HW.
9766 if (features & NETIF_F_GRO_HW) {
9767 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9768 features &= ~NETIF_F_GRO_HW;
9772 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9773 if (features & NETIF_F_RXFCS) {
9774 if (features & NETIF_F_LRO) {
9775 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9776 features &= ~NETIF_F_LRO;
9779 if (features & NETIF_F_GRO_HW) {
9780 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9781 features &= ~NETIF_F_GRO_HW;
9785 if (features & NETIF_F_HW_TLS_TX) {
9786 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9787 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9788 bool hw_csum = features & NETIF_F_HW_CSUM;
9790 if (!ip_csum && !hw_csum) {
9791 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9792 features &= ~NETIF_F_HW_TLS_TX;
9796 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9797 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9798 features &= ~NETIF_F_HW_TLS_RX;
9804 int __netdev_update_features(struct net_device *dev)
9806 struct net_device *upper, *lower;
9807 netdev_features_t features;
9808 struct list_head *iter;
9813 features = netdev_get_wanted_features(dev);
9815 if (dev->netdev_ops->ndo_fix_features)
9816 features = dev->netdev_ops->ndo_fix_features(dev, features);
9818 /* driver might be less strict about feature dependencies */
9819 features = netdev_fix_features(dev, features);
9821 /* some features can't be enabled if they're off on an upper device */
9822 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9823 features = netdev_sync_upper_features(dev, upper, features);
9825 if (dev->features == features)
9828 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9829 &dev->features, &features);
9831 if (dev->netdev_ops->ndo_set_features)
9832 err = dev->netdev_ops->ndo_set_features(dev, features);
9836 if (unlikely(err < 0)) {
9838 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9839 err, &features, &dev->features);
9840 /* return non-0 since some features might have changed and
9841 * it's better to fire a spurious notification than miss it
9847 /* some features must be disabled on lower devices when disabled
9848 * on an upper device (think: bonding master or bridge)
9850 netdev_for_each_lower_dev(dev, lower, iter)
9851 netdev_sync_lower_features(dev, lower, features);
9854 netdev_features_t diff = features ^ dev->features;
9856 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9857 /* udp_tunnel_{get,drop}_rx_info both need
9858 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9859 * device, or they won't do anything.
9860 * Thus we need to update dev->features
9861 * *before* calling udp_tunnel_get_rx_info,
9862 * but *after* calling udp_tunnel_drop_rx_info.
9864 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9865 dev->features = features;
9866 udp_tunnel_get_rx_info(dev);
9868 udp_tunnel_drop_rx_info(dev);
9872 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9873 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9874 dev->features = features;
9875 err |= vlan_get_rx_ctag_filter_info(dev);
9877 vlan_drop_rx_ctag_filter_info(dev);
9881 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9882 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9883 dev->features = features;
9884 err |= vlan_get_rx_stag_filter_info(dev);
9886 vlan_drop_rx_stag_filter_info(dev);
9890 dev->features = features;
9893 return err < 0 ? 0 : 1;
9897 * netdev_update_features - recalculate device features
9898 * @dev: the device to check
9900 * Recalculate dev->features set and send notifications if it
9901 * has changed. Should be called after driver or hardware dependent
9902 * conditions might have changed that influence the features.
9904 void netdev_update_features(struct net_device *dev)
9906 if (__netdev_update_features(dev))
9907 netdev_features_change(dev);
9909 EXPORT_SYMBOL(netdev_update_features);
9912 * netdev_change_features - recalculate device features
9913 * @dev: the device to check
9915 * Recalculate dev->features set and send notifications even
9916 * if they have not changed. Should be called instead of
9917 * netdev_update_features() if also dev->vlan_features might
9918 * have changed to allow the changes to be propagated to stacked
9921 void netdev_change_features(struct net_device *dev)
9923 __netdev_update_features(dev);
9924 netdev_features_change(dev);
9926 EXPORT_SYMBOL(netdev_change_features);
9929 * netif_stacked_transfer_operstate - transfer operstate
9930 * @rootdev: the root or lower level device to transfer state from
9931 * @dev: the device to transfer operstate to
9933 * Transfer operational state from root to device. This is normally
9934 * called when a stacking relationship exists between the root
9935 * device and the device(a leaf device).
9937 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9938 struct net_device *dev)
9940 if (rootdev->operstate == IF_OPER_DORMANT)
9941 netif_dormant_on(dev);
9943 netif_dormant_off(dev);
9945 if (rootdev->operstate == IF_OPER_TESTING)
9946 netif_testing_on(dev);
9948 netif_testing_off(dev);
9950 if (netif_carrier_ok(rootdev))
9951 netif_carrier_on(dev);
9953 netif_carrier_off(dev);
9955 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9957 static int netif_alloc_rx_queues(struct net_device *dev)
9959 unsigned int i, count = dev->num_rx_queues;
9960 struct netdev_rx_queue *rx;
9961 size_t sz = count * sizeof(*rx);
9966 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9972 for (i = 0; i < count; i++) {
9975 /* XDP RX-queue setup */
9976 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9983 /* Rollback successful reg's and free other resources */
9985 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9991 static void netif_free_rx_queues(struct net_device *dev)
9993 unsigned int i, count = dev->num_rx_queues;
9995 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9999 for (i = 0; i < count; i++)
10000 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10005 static void netdev_init_one_queue(struct net_device *dev,
10006 struct netdev_queue *queue, void *_unused)
10008 /* Initialize queue lock */
10009 spin_lock_init(&queue->_xmit_lock);
10010 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10011 queue->xmit_lock_owner = -1;
10012 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10015 dql_init(&queue->dql, HZ);
10019 static void netif_free_tx_queues(struct net_device *dev)
10024 static int netif_alloc_netdev_queues(struct net_device *dev)
10026 unsigned int count = dev->num_tx_queues;
10027 struct netdev_queue *tx;
10028 size_t sz = count * sizeof(*tx);
10030 if (count < 1 || count > 0xffff)
10033 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10039 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10040 spin_lock_init(&dev->tx_global_lock);
10045 void netif_tx_stop_all_queues(struct net_device *dev)
10049 for (i = 0; i < dev->num_tx_queues; i++) {
10050 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10052 netif_tx_stop_queue(txq);
10055 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10058 * register_netdevice - register a network device
10059 * @dev: device to register
10061 * Take a completed network device structure and add it to the kernel
10062 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10063 * chain. 0 is returned on success. A negative errno code is returned
10064 * on a failure to set up the device, or if the name is a duplicate.
10066 * Callers must hold the rtnl semaphore. You may want
10067 * register_netdev() instead of this.
10070 * The locking appears insufficient to guarantee two parallel registers
10071 * will not get the same name.
10074 int register_netdevice(struct net_device *dev)
10077 struct net *net = dev_net(dev);
10079 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10080 NETDEV_FEATURE_COUNT);
10081 BUG_ON(dev_boot_phase);
10086 /* When net_device's are persistent, this will be fatal. */
10087 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10090 ret = ethtool_check_ops(dev->ethtool_ops);
10094 spin_lock_init(&dev->addr_list_lock);
10095 netdev_set_addr_lockdep_class(dev);
10097 ret = dev_get_valid_name(net, dev, dev->name);
10102 dev->name_node = netdev_name_node_head_alloc(dev);
10103 if (!dev->name_node)
10106 /* Init, if this function is available */
10107 if (dev->netdev_ops->ndo_init) {
10108 ret = dev->netdev_ops->ndo_init(dev);
10112 goto err_free_name;
10116 if (((dev->hw_features | dev->features) &
10117 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10118 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10119 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10120 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10127 dev->ifindex = dev_new_index(net);
10128 else if (__dev_get_by_index(net, dev->ifindex))
10131 /* Transfer changeable features to wanted_features and enable
10132 * software offloads (GSO and GRO).
10134 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10135 dev->features |= NETIF_F_SOFT_FEATURES;
10137 if (dev->udp_tunnel_nic_info) {
10138 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10139 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10142 dev->wanted_features = dev->features & dev->hw_features;
10144 if (!(dev->flags & IFF_LOOPBACK))
10145 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10147 /* If IPv4 TCP segmentation offload is supported we should also
10148 * allow the device to enable segmenting the frame with the option
10149 * of ignoring a static IP ID value. This doesn't enable the
10150 * feature itself but allows the user to enable it later.
10152 if (dev->hw_features & NETIF_F_TSO)
10153 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10154 if (dev->vlan_features & NETIF_F_TSO)
10155 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10156 if (dev->mpls_features & NETIF_F_TSO)
10157 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10158 if (dev->hw_enc_features & NETIF_F_TSO)
10159 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10161 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10163 dev->vlan_features |= NETIF_F_HIGHDMA;
10165 /* Make NETIF_F_SG inheritable to tunnel devices.
10167 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10169 /* Make NETIF_F_SG inheritable to MPLS.
10171 dev->mpls_features |= NETIF_F_SG;
10173 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10174 ret = notifier_to_errno(ret);
10178 ret = netdev_register_kobject(dev);
10180 dev->reg_state = NETREG_UNREGISTERED;
10183 dev->reg_state = NETREG_REGISTERED;
10185 __netdev_update_features(dev);
10188 * Default initial state at registry is that the
10189 * device is present.
10192 set_bit(__LINK_STATE_PRESENT, &dev->state);
10194 linkwatch_init_dev(dev);
10196 dev_init_scheduler(dev);
10198 list_netdevice(dev);
10199 add_device_randomness(dev->dev_addr, dev->addr_len);
10201 /* If the device has permanent device address, driver should
10202 * set dev_addr and also addr_assign_type should be set to
10203 * NET_ADDR_PERM (default value).
10205 if (dev->addr_assign_type == NET_ADDR_PERM)
10206 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10208 /* Notify protocols, that a new device appeared. */
10209 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10210 ret = notifier_to_errno(ret);
10212 /* Expect explicit free_netdev() on failure */
10213 dev->needs_free_netdev = false;
10214 unregister_netdevice_queue(dev, NULL);
10218 * Prevent userspace races by waiting until the network
10219 * device is fully setup before sending notifications.
10221 if (!dev->rtnl_link_ops ||
10222 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10223 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10229 if (dev->netdev_ops->ndo_uninit)
10230 dev->netdev_ops->ndo_uninit(dev);
10231 if (dev->priv_destructor)
10232 dev->priv_destructor(dev);
10234 netdev_name_node_free(dev->name_node);
10237 EXPORT_SYMBOL(register_netdevice);
10240 * init_dummy_netdev - init a dummy network device for NAPI
10241 * @dev: device to init
10243 * This takes a network device structure and initialize the minimum
10244 * amount of fields so it can be used to schedule NAPI polls without
10245 * registering a full blown interface. This is to be used by drivers
10246 * that need to tie several hardware interfaces to a single NAPI
10247 * poll scheduler due to HW limitations.
10249 int init_dummy_netdev(struct net_device *dev)
10251 /* Clear everything. Note we don't initialize spinlocks
10252 * are they aren't supposed to be taken by any of the
10253 * NAPI code and this dummy netdev is supposed to be
10254 * only ever used for NAPI polls
10256 memset(dev, 0, sizeof(struct net_device));
10258 /* make sure we BUG if trying to hit standard
10259 * register/unregister code path
10261 dev->reg_state = NETREG_DUMMY;
10263 /* NAPI wants this */
10264 INIT_LIST_HEAD(&dev->napi_list);
10266 /* a dummy interface is started by default */
10267 set_bit(__LINK_STATE_PRESENT, &dev->state);
10268 set_bit(__LINK_STATE_START, &dev->state);
10270 /* napi_busy_loop stats accounting wants this */
10271 dev_net_set(dev, &init_net);
10273 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10274 * because users of this 'device' dont need to change
10280 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10284 * register_netdev - register a network device
10285 * @dev: device to register
10287 * Take a completed network device structure and add it to the kernel
10288 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10289 * chain. 0 is returned on success. A negative errno code is returned
10290 * on a failure to set up the device, or if the name is a duplicate.
10292 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10293 * and expands the device name if you passed a format string to
10296 int register_netdev(struct net_device *dev)
10300 if (rtnl_lock_killable())
10302 err = register_netdevice(dev);
10306 EXPORT_SYMBOL(register_netdev);
10308 int netdev_refcnt_read(const struct net_device *dev)
10312 for_each_possible_cpu(i)
10313 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10316 EXPORT_SYMBOL(netdev_refcnt_read);
10318 #define WAIT_REFS_MIN_MSECS 1
10319 #define WAIT_REFS_MAX_MSECS 250
10321 * netdev_wait_allrefs - wait until all references are gone.
10322 * @dev: target net_device
10324 * This is called when unregistering network devices.
10326 * Any protocol or device that holds a reference should register
10327 * for netdevice notification, and cleanup and put back the
10328 * reference if they receive an UNREGISTER event.
10329 * We can get stuck here if buggy protocols don't correctly
10332 static void netdev_wait_allrefs(struct net_device *dev)
10334 unsigned long rebroadcast_time, warning_time;
10335 int wait = 0, refcnt;
10337 linkwatch_forget_dev(dev);
10339 rebroadcast_time = warning_time = jiffies;
10340 refcnt = netdev_refcnt_read(dev);
10342 while (refcnt != 0) {
10343 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10346 /* Rebroadcast unregister notification */
10347 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10353 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10355 /* We must not have linkwatch events
10356 * pending on unregister. If this
10357 * happens, we simply run the queue
10358 * unscheduled, resulting in a noop
10361 linkwatch_run_queue();
10366 rebroadcast_time = jiffies;
10371 wait = WAIT_REFS_MIN_MSECS;
10374 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10377 refcnt = netdev_refcnt_read(dev);
10379 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10380 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10381 dev->name, refcnt);
10382 warning_time = jiffies;
10387 /* The sequence is:
10391 * register_netdevice(x1);
10392 * register_netdevice(x2);
10394 * unregister_netdevice(y1);
10395 * unregister_netdevice(y2);
10401 * We are invoked by rtnl_unlock().
10402 * This allows us to deal with problems:
10403 * 1) We can delete sysfs objects which invoke hotplug
10404 * without deadlocking with linkwatch via keventd.
10405 * 2) Since we run with the RTNL semaphore not held, we can sleep
10406 * safely in order to wait for the netdev refcnt to drop to zero.
10408 * We must not return until all unregister events added during
10409 * the interval the lock was held have been completed.
10411 void netdev_run_todo(void)
10413 struct list_head list;
10414 #ifdef CONFIG_LOCKDEP
10415 struct list_head unlink_list;
10417 list_replace_init(&net_unlink_list, &unlink_list);
10419 while (!list_empty(&unlink_list)) {
10420 struct net_device *dev = list_first_entry(&unlink_list,
10423 list_del_init(&dev->unlink_list);
10424 dev->nested_level = dev->lower_level - 1;
10428 /* Snapshot list, allow later requests */
10429 list_replace_init(&net_todo_list, &list);
10434 /* Wait for rcu callbacks to finish before next phase */
10435 if (!list_empty(&list))
10438 while (!list_empty(&list)) {
10439 struct net_device *dev
10440 = list_first_entry(&list, struct net_device, todo_list);
10441 list_del(&dev->todo_list);
10443 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10444 pr_err("network todo '%s' but state %d\n",
10445 dev->name, dev->reg_state);
10450 dev->reg_state = NETREG_UNREGISTERED;
10452 netdev_wait_allrefs(dev);
10455 BUG_ON(netdev_refcnt_read(dev));
10456 BUG_ON(!list_empty(&dev->ptype_all));
10457 BUG_ON(!list_empty(&dev->ptype_specific));
10458 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10459 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10460 #if IS_ENABLED(CONFIG_DECNET)
10461 WARN_ON(dev->dn_ptr);
10463 if (dev->priv_destructor)
10464 dev->priv_destructor(dev);
10465 if (dev->needs_free_netdev)
10468 /* Report a network device has been unregistered */
10470 dev_net(dev)->dev_unreg_count--;
10472 wake_up(&netdev_unregistering_wq);
10474 /* Free network device */
10475 kobject_put(&dev->dev.kobj);
10479 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10480 * all the same fields in the same order as net_device_stats, with only
10481 * the type differing, but rtnl_link_stats64 may have additional fields
10482 * at the end for newer counters.
10484 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10485 const struct net_device_stats *netdev_stats)
10487 #if BITS_PER_LONG == 64
10488 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10489 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10490 /* zero out counters that only exist in rtnl_link_stats64 */
10491 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10492 sizeof(*stats64) - sizeof(*netdev_stats));
10494 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10495 const unsigned long *src = (const unsigned long *)netdev_stats;
10496 u64 *dst = (u64 *)stats64;
10498 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10499 for (i = 0; i < n; i++)
10501 /* zero out counters that only exist in rtnl_link_stats64 */
10502 memset((char *)stats64 + n * sizeof(u64), 0,
10503 sizeof(*stats64) - n * sizeof(u64));
10506 EXPORT_SYMBOL(netdev_stats_to_stats64);
10509 * dev_get_stats - get network device statistics
10510 * @dev: device to get statistics from
10511 * @storage: place to store stats
10513 * Get network statistics from device. Return @storage.
10514 * The device driver may provide its own method by setting
10515 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10516 * otherwise the internal statistics structure is used.
10518 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10519 struct rtnl_link_stats64 *storage)
10521 const struct net_device_ops *ops = dev->netdev_ops;
10523 if (ops->ndo_get_stats64) {
10524 memset(storage, 0, sizeof(*storage));
10525 ops->ndo_get_stats64(dev, storage);
10526 } else if (ops->ndo_get_stats) {
10527 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10529 netdev_stats_to_stats64(storage, &dev->stats);
10531 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10532 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10533 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10536 EXPORT_SYMBOL(dev_get_stats);
10539 * dev_fetch_sw_netstats - get per-cpu network device statistics
10540 * @s: place to store stats
10541 * @netstats: per-cpu network stats to read from
10543 * Read per-cpu network statistics and populate the related fields in @s.
10545 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10546 const struct pcpu_sw_netstats __percpu *netstats)
10550 for_each_possible_cpu(cpu) {
10551 const struct pcpu_sw_netstats *stats;
10552 struct pcpu_sw_netstats tmp;
10553 unsigned int start;
10555 stats = per_cpu_ptr(netstats, cpu);
10557 start = u64_stats_fetch_begin_irq(&stats->syncp);
10558 tmp.rx_packets = stats->rx_packets;
10559 tmp.rx_bytes = stats->rx_bytes;
10560 tmp.tx_packets = stats->tx_packets;
10561 tmp.tx_bytes = stats->tx_bytes;
10562 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10564 s->rx_packets += tmp.rx_packets;
10565 s->rx_bytes += tmp.rx_bytes;
10566 s->tx_packets += tmp.tx_packets;
10567 s->tx_bytes += tmp.tx_bytes;
10570 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10573 * dev_get_tstats64 - ndo_get_stats64 implementation
10574 * @dev: device to get statistics from
10575 * @s: place to store stats
10577 * Populate @s from dev->stats and dev->tstats. Can be used as
10578 * ndo_get_stats64() callback.
10580 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10582 netdev_stats_to_stats64(s, &dev->stats);
10583 dev_fetch_sw_netstats(s, dev->tstats);
10585 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10587 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10589 struct netdev_queue *queue = dev_ingress_queue(dev);
10591 #ifdef CONFIG_NET_CLS_ACT
10594 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10597 netdev_init_one_queue(dev, queue, NULL);
10598 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10599 queue->qdisc_sleeping = &noop_qdisc;
10600 rcu_assign_pointer(dev->ingress_queue, queue);
10605 static const struct ethtool_ops default_ethtool_ops;
10607 void netdev_set_default_ethtool_ops(struct net_device *dev,
10608 const struct ethtool_ops *ops)
10610 if (dev->ethtool_ops == &default_ethtool_ops)
10611 dev->ethtool_ops = ops;
10613 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10615 void netdev_freemem(struct net_device *dev)
10617 char *addr = (char *)dev - dev->padded;
10623 * alloc_netdev_mqs - allocate network device
10624 * @sizeof_priv: size of private data to allocate space for
10625 * @name: device name format string
10626 * @name_assign_type: origin of device name
10627 * @setup: callback to initialize device
10628 * @txqs: the number of TX subqueues to allocate
10629 * @rxqs: the number of RX subqueues to allocate
10631 * Allocates a struct net_device with private data area for driver use
10632 * and performs basic initialization. Also allocates subqueue structs
10633 * for each queue on the device.
10635 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10636 unsigned char name_assign_type,
10637 void (*setup)(struct net_device *),
10638 unsigned int txqs, unsigned int rxqs)
10640 struct net_device *dev;
10641 unsigned int alloc_size;
10642 struct net_device *p;
10644 BUG_ON(strlen(name) >= sizeof(dev->name));
10647 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10652 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10656 alloc_size = sizeof(struct net_device);
10658 /* ensure 32-byte alignment of private area */
10659 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10660 alloc_size += sizeof_priv;
10662 /* ensure 32-byte alignment of whole construct */
10663 alloc_size += NETDEV_ALIGN - 1;
10665 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10669 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10670 dev->padded = (char *)dev - (char *)p;
10672 dev->pcpu_refcnt = alloc_percpu(int);
10673 if (!dev->pcpu_refcnt)
10676 if (dev_addr_init(dev))
10682 dev_net_set(dev, &init_net);
10684 dev->gso_max_size = GSO_MAX_SIZE;
10685 dev->gso_max_segs = GSO_MAX_SEGS;
10686 dev->upper_level = 1;
10687 dev->lower_level = 1;
10688 #ifdef CONFIG_LOCKDEP
10689 dev->nested_level = 0;
10690 INIT_LIST_HEAD(&dev->unlink_list);
10693 INIT_LIST_HEAD(&dev->napi_list);
10694 INIT_LIST_HEAD(&dev->unreg_list);
10695 INIT_LIST_HEAD(&dev->close_list);
10696 INIT_LIST_HEAD(&dev->link_watch_list);
10697 INIT_LIST_HEAD(&dev->adj_list.upper);
10698 INIT_LIST_HEAD(&dev->adj_list.lower);
10699 INIT_LIST_HEAD(&dev->ptype_all);
10700 INIT_LIST_HEAD(&dev->ptype_specific);
10701 INIT_LIST_HEAD(&dev->net_notifier_list);
10702 #ifdef CONFIG_NET_SCHED
10703 hash_init(dev->qdisc_hash);
10705 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10708 if (!dev->tx_queue_len) {
10709 dev->priv_flags |= IFF_NO_QUEUE;
10710 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10713 dev->num_tx_queues = txqs;
10714 dev->real_num_tx_queues = txqs;
10715 if (netif_alloc_netdev_queues(dev))
10718 dev->num_rx_queues = rxqs;
10719 dev->real_num_rx_queues = rxqs;
10720 if (netif_alloc_rx_queues(dev))
10723 strcpy(dev->name, name);
10724 dev->name_assign_type = name_assign_type;
10725 dev->group = INIT_NETDEV_GROUP;
10726 if (!dev->ethtool_ops)
10727 dev->ethtool_ops = &default_ethtool_ops;
10729 nf_hook_ingress_init(dev);
10738 free_percpu(dev->pcpu_refcnt);
10740 netdev_freemem(dev);
10743 EXPORT_SYMBOL(alloc_netdev_mqs);
10746 * free_netdev - free network device
10749 * This function does the last stage of destroying an allocated device
10750 * interface. The reference to the device object is released. If this
10751 * is the last reference then it will be freed.Must be called in process
10754 void free_netdev(struct net_device *dev)
10756 struct napi_struct *p, *n;
10760 /* When called immediately after register_netdevice() failed the unwind
10761 * handling may still be dismantling the device. Handle that case by
10762 * deferring the free.
10764 if (dev->reg_state == NETREG_UNREGISTERING) {
10766 dev->needs_free_netdev = true;
10770 netif_free_tx_queues(dev);
10771 netif_free_rx_queues(dev);
10773 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10775 /* Flush device addresses */
10776 dev_addr_flush(dev);
10778 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10781 free_percpu(dev->pcpu_refcnt);
10782 dev->pcpu_refcnt = NULL;
10783 free_percpu(dev->xdp_bulkq);
10784 dev->xdp_bulkq = NULL;
10786 /* Compatibility with error handling in drivers */
10787 if (dev->reg_state == NETREG_UNINITIALIZED) {
10788 netdev_freemem(dev);
10792 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10793 dev->reg_state = NETREG_RELEASED;
10795 /* will free via device release */
10796 put_device(&dev->dev);
10798 EXPORT_SYMBOL(free_netdev);
10801 * synchronize_net - Synchronize with packet receive processing
10803 * Wait for packets currently being received to be done.
10804 * Does not block later packets from starting.
10806 void synchronize_net(void)
10809 if (rtnl_is_locked())
10810 synchronize_rcu_expedited();
10814 EXPORT_SYMBOL(synchronize_net);
10817 * unregister_netdevice_queue - remove device from the kernel
10821 * This function shuts down a device interface and removes it
10822 * from the kernel tables.
10823 * If head not NULL, device is queued to be unregistered later.
10825 * Callers must hold the rtnl semaphore. You may want
10826 * unregister_netdev() instead of this.
10829 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10834 list_move_tail(&dev->unreg_list, head);
10838 list_add(&dev->unreg_list, &single);
10839 unregister_netdevice_many(&single);
10842 EXPORT_SYMBOL(unregister_netdevice_queue);
10845 * unregister_netdevice_many - unregister many devices
10846 * @head: list of devices
10848 * Note: As most callers use a stack allocated list_head,
10849 * we force a list_del() to make sure stack wont be corrupted later.
10851 void unregister_netdevice_many(struct list_head *head)
10853 struct net_device *dev, *tmp;
10854 LIST_HEAD(close_head);
10856 BUG_ON(dev_boot_phase);
10859 if (list_empty(head))
10862 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10863 /* Some devices call without registering
10864 * for initialization unwind. Remove those
10865 * devices and proceed with the remaining.
10867 if (dev->reg_state == NETREG_UNINITIALIZED) {
10868 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10872 list_del(&dev->unreg_list);
10875 dev->dismantle = true;
10876 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10879 /* If device is running, close it first. */
10880 list_for_each_entry(dev, head, unreg_list)
10881 list_add_tail(&dev->close_list, &close_head);
10882 dev_close_many(&close_head, true);
10884 list_for_each_entry(dev, head, unreg_list) {
10885 /* And unlink it from device chain. */
10886 unlist_netdevice(dev);
10888 dev->reg_state = NETREG_UNREGISTERING;
10890 flush_all_backlogs();
10894 list_for_each_entry(dev, head, unreg_list) {
10895 struct sk_buff *skb = NULL;
10897 /* Shutdown queueing discipline. */
10900 dev_xdp_uninstall(dev);
10902 /* Notify protocols, that we are about to destroy
10903 * this device. They should clean all the things.
10905 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10907 if (!dev->rtnl_link_ops ||
10908 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10909 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10910 GFP_KERNEL, NULL, 0);
10913 * Flush the unicast and multicast chains
10918 netdev_name_node_alt_flush(dev);
10919 netdev_name_node_free(dev->name_node);
10921 if (dev->netdev_ops->ndo_uninit)
10922 dev->netdev_ops->ndo_uninit(dev);
10925 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10927 /* Notifier chain MUST detach us all upper devices. */
10928 WARN_ON(netdev_has_any_upper_dev(dev));
10929 WARN_ON(netdev_has_any_lower_dev(dev));
10931 /* Remove entries from kobject tree */
10932 netdev_unregister_kobject(dev);
10934 /* Remove XPS queueing entries */
10935 netif_reset_xps_queues_gt(dev, 0);
10941 list_for_each_entry(dev, head, unreg_list) {
10948 EXPORT_SYMBOL(unregister_netdevice_many);
10951 * unregister_netdev - remove device from the kernel
10954 * This function shuts down a device interface and removes it
10955 * from the kernel tables.
10957 * This is just a wrapper for unregister_netdevice that takes
10958 * the rtnl semaphore. In general you want to use this and not
10959 * unregister_netdevice.
10961 void unregister_netdev(struct net_device *dev)
10964 unregister_netdevice(dev);
10967 EXPORT_SYMBOL(unregister_netdev);
10970 * dev_change_net_namespace - move device to different nethost namespace
10972 * @net: network namespace
10973 * @pat: If not NULL name pattern to try if the current device name
10974 * is already taken in the destination network namespace.
10976 * This function shuts down a device interface and moves it
10977 * to a new network namespace. On success 0 is returned, on
10978 * a failure a netagive errno code is returned.
10980 * Callers must hold the rtnl semaphore.
10983 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10985 struct net *net_old = dev_net(dev);
10986 int err, new_nsid, new_ifindex;
10990 /* Don't allow namespace local devices to be moved. */
10992 if (dev->features & NETIF_F_NETNS_LOCAL)
10995 /* Ensure the device has been registrered */
10996 if (dev->reg_state != NETREG_REGISTERED)
10999 /* Get out if there is nothing todo */
11001 if (net_eq(net_old, net))
11004 /* Pick the destination device name, and ensure
11005 * we can use it in the destination network namespace.
11008 if (__dev_get_by_name(net, dev->name)) {
11009 /* We get here if we can't use the current device name */
11012 err = dev_get_valid_name(net, dev, pat);
11018 * And now a mini version of register_netdevice unregister_netdevice.
11021 /* If device is running close it first. */
11024 /* And unlink it from device chain */
11025 unlist_netdevice(dev);
11029 /* Shutdown queueing discipline. */
11032 /* Notify protocols, that we are about to destroy
11033 * this device. They should clean all the things.
11035 * Note that dev->reg_state stays at NETREG_REGISTERED.
11036 * This is wanted because this way 8021q and macvlan know
11037 * the device is just moving and can keep their slaves up.
11039 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11042 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11043 /* If there is an ifindex conflict assign a new one */
11044 if (__dev_get_by_index(net, dev->ifindex))
11045 new_ifindex = dev_new_index(net);
11047 new_ifindex = dev->ifindex;
11049 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11053 * Flush the unicast and multicast chains
11058 /* Send a netdev-removed uevent to the old namespace */
11059 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11060 netdev_adjacent_del_links(dev);
11062 /* Move per-net netdevice notifiers that are following the netdevice */
11063 move_netdevice_notifiers_dev_net(dev, net);
11065 /* Actually switch the network namespace */
11066 dev_net_set(dev, net);
11067 dev->ifindex = new_ifindex;
11069 /* Send a netdev-add uevent to the new namespace */
11070 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11071 netdev_adjacent_add_links(dev);
11073 /* Fixup kobjects */
11074 err = device_rename(&dev->dev, dev->name);
11077 /* Adapt owner in case owning user namespace of target network
11078 * namespace is different from the original one.
11080 err = netdev_change_owner(dev, net_old, net);
11083 /* Add the device back in the hashes */
11084 list_netdevice(dev);
11086 /* Notify protocols, that a new device appeared. */
11087 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11090 * Prevent userspace races by waiting until the network
11091 * device is fully setup before sending notifications.
11093 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11100 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
11102 static int dev_cpu_dead(unsigned int oldcpu)
11104 struct sk_buff **list_skb;
11105 struct sk_buff *skb;
11107 struct softnet_data *sd, *oldsd, *remsd = NULL;
11109 local_irq_disable();
11110 cpu = smp_processor_id();
11111 sd = &per_cpu(softnet_data, cpu);
11112 oldsd = &per_cpu(softnet_data, oldcpu);
11114 /* Find end of our completion_queue. */
11115 list_skb = &sd->completion_queue;
11117 list_skb = &(*list_skb)->next;
11118 /* Append completion queue from offline CPU. */
11119 *list_skb = oldsd->completion_queue;
11120 oldsd->completion_queue = NULL;
11122 /* Append output queue from offline CPU. */
11123 if (oldsd->output_queue) {
11124 *sd->output_queue_tailp = oldsd->output_queue;
11125 sd->output_queue_tailp = oldsd->output_queue_tailp;
11126 oldsd->output_queue = NULL;
11127 oldsd->output_queue_tailp = &oldsd->output_queue;
11129 /* Append NAPI poll list from offline CPU, with one exception :
11130 * process_backlog() must be called by cpu owning percpu backlog.
11131 * We properly handle process_queue & input_pkt_queue later.
11133 while (!list_empty(&oldsd->poll_list)) {
11134 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11135 struct napi_struct,
11138 list_del_init(&napi->poll_list);
11139 if (napi->poll == process_backlog)
11142 ____napi_schedule(sd, napi);
11145 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11146 local_irq_enable();
11149 remsd = oldsd->rps_ipi_list;
11150 oldsd->rps_ipi_list = NULL;
11152 /* send out pending IPI's on offline CPU */
11153 net_rps_send_ipi(remsd);
11155 /* Process offline CPU's input_pkt_queue */
11156 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11158 input_queue_head_incr(oldsd);
11160 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11162 input_queue_head_incr(oldsd);
11169 * netdev_increment_features - increment feature set by one
11170 * @all: current feature set
11171 * @one: new feature set
11172 * @mask: mask feature set
11174 * Computes a new feature set after adding a device with feature set
11175 * @one to the master device with current feature set @all. Will not
11176 * enable anything that is off in @mask. Returns the new feature set.
11178 netdev_features_t netdev_increment_features(netdev_features_t all,
11179 netdev_features_t one, netdev_features_t mask)
11181 if (mask & NETIF_F_HW_CSUM)
11182 mask |= NETIF_F_CSUM_MASK;
11183 mask |= NETIF_F_VLAN_CHALLENGED;
11185 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11186 all &= one | ~NETIF_F_ALL_FOR_ALL;
11188 /* If one device supports hw checksumming, set for all. */
11189 if (all & NETIF_F_HW_CSUM)
11190 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11194 EXPORT_SYMBOL(netdev_increment_features);
11196 static struct hlist_head * __net_init netdev_create_hash(void)
11199 struct hlist_head *hash;
11201 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11203 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11204 INIT_HLIST_HEAD(&hash[i]);
11209 /* Initialize per network namespace state */
11210 static int __net_init netdev_init(struct net *net)
11212 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11213 8 * sizeof_field(struct napi_struct, gro_bitmask));
11215 if (net != &init_net)
11216 INIT_LIST_HEAD(&net->dev_base_head);
11218 net->dev_name_head = netdev_create_hash();
11219 if (net->dev_name_head == NULL)
11222 net->dev_index_head = netdev_create_hash();
11223 if (net->dev_index_head == NULL)
11226 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11231 kfree(net->dev_name_head);
11237 * netdev_drivername - network driver for the device
11238 * @dev: network device
11240 * Determine network driver for device.
11242 const char *netdev_drivername(const struct net_device *dev)
11244 const struct device_driver *driver;
11245 const struct device *parent;
11246 const char *empty = "";
11248 parent = dev->dev.parent;
11252 driver = parent->driver;
11253 if (driver && driver->name)
11254 return driver->name;
11258 static void __netdev_printk(const char *level, const struct net_device *dev,
11259 struct va_format *vaf)
11261 if (dev && dev->dev.parent) {
11262 dev_printk_emit(level[1] - '0',
11265 dev_driver_string(dev->dev.parent),
11266 dev_name(dev->dev.parent),
11267 netdev_name(dev), netdev_reg_state(dev),
11270 printk("%s%s%s: %pV",
11271 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11273 printk("%s(NULL net_device): %pV", level, vaf);
11277 void netdev_printk(const char *level, const struct net_device *dev,
11278 const char *format, ...)
11280 struct va_format vaf;
11283 va_start(args, format);
11288 __netdev_printk(level, dev, &vaf);
11292 EXPORT_SYMBOL(netdev_printk);
11294 #define define_netdev_printk_level(func, level) \
11295 void func(const struct net_device *dev, const char *fmt, ...) \
11297 struct va_format vaf; \
11300 va_start(args, fmt); \
11305 __netdev_printk(level, dev, &vaf); \
11309 EXPORT_SYMBOL(func);
11311 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11312 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11313 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11314 define_netdev_printk_level(netdev_err, KERN_ERR);
11315 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11316 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11317 define_netdev_printk_level(netdev_info, KERN_INFO);
11319 static void __net_exit netdev_exit(struct net *net)
11321 kfree(net->dev_name_head);
11322 kfree(net->dev_index_head);
11323 if (net != &init_net)
11324 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11327 static struct pernet_operations __net_initdata netdev_net_ops = {
11328 .init = netdev_init,
11329 .exit = netdev_exit,
11332 static void __net_exit default_device_exit(struct net *net)
11334 struct net_device *dev, *aux;
11336 * Push all migratable network devices back to the
11337 * initial network namespace
11340 for_each_netdev_safe(net, dev, aux) {
11342 char fb_name[IFNAMSIZ];
11344 /* Ignore unmoveable devices (i.e. loopback) */
11345 if (dev->features & NETIF_F_NETNS_LOCAL)
11348 /* Leave virtual devices for the generic cleanup */
11349 if (dev->rtnl_link_ops)
11352 /* Push remaining network devices to init_net */
11353 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11354 if (__dev_get_by_name(&init_net, fb_name))
11355 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11356 err = dev_change_net_namespace(dev, &init_net, fb_name);
11358 pr_emerg("%s: failed to move %s to init_net: %d\n",
11359 __func__, dev->name, err);
11366 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11368 /* Return with the rtnl_lock held when there are no network
11369 * devices unregistering in any network namespace in net_list.
11372 bool unregistering;
11373 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11375 add_wait_queue(&netdev_unregistering_wq, &wait);
11377 unregistering = false;
11379 list_for_each_entry(net, net_list, exit_list) {
11380 if (net->dev_unreg_count > 0) {
11381 unregistering = true;
11385 if (!unregistering)
11389 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11391 remove_wait_queue(&netdev_unregistering_wq, &wait);
11394 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11396 /* At exit all network devices most be removed from a network
11397 * namespace. Do this in the reverse order of registration.
11398 * Do this across as many network namespaces as possible to
11399 * improve batching efficiency.
11401 struct net_device *dev;
11403 LIST_HEAD(dev_kill_list);
11405 /* To prevent network device cleanup code from dereferencing
11406 * loopback devices or network devices that have been freed
11407 * wait here for all pending unregistrations to complete,
11408 * before unregistring the loopback device and allowing the
11409 * network namespace be freed.
11411 * The netdev todo list containing all network devices
11412 * unregistrations that happen in default_device_exit_batch
11413 * will run in the rtnl_unlock() at the end of
11414 * default_device_exit_batch.
11416 rtnl_lock_unregistering(net_list);
11417 list_for_each_entry(net, net_list, exit_list) {
11418 for_each_netdev_reverse(net, dev) {
11419 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11420 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11422 unregister_netdevice_queue(dev, &dev_kill_list);
11425 unregister_netdevice_many(&dev_kill_list);
11429 static struct pernet_operations __net_initdata default_device_ops = {
11430 .exit = default_device_exit,
11431 .exit_batch = default_device_exit_batch,
11435 * Initialize the DEV module. At boot time this walks the device list and
11436 * unhooks any devices that fail to initialise (normally hardware not
11437 * present) and leaves us with a valid list of present and active devices.
11442 * This is called single threaded during boot, so no need
11443 * to take the rtnl semaphore.
11445 static int __init net_dev_init(void)
11447 int i, rc = -ENOMEM;
11449 BUG_ON(!dev_boot_phase);
11451 if (dev_proc_init())
11454 if (netdev_kobject_init())
11457 INIT_LIST_HEAD(&ptype_all);
11458 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11459 INIT_LIST_HEAD(&ptype_base[i]);
11461 INIT_LIST_HEAD(&offload_base);
11463 if (register_pernet_subsys(&netdev_net_ops))
11467 * Initialise the packet receive queues.
11470 for_each_possible_cpu(i) {
11471 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11472 struct softnet_data *sd = &per_cpu(softnet_data, i);
11474 INIT_WORK(flush, flush_backlog);
11476 skb_queue_head_init(&sd->input_pkt_queue);
11477 skb_queue_head_init(&sd->process_queue);
11478 #ifdef CONFIG_XFRM_OFFLOAD
11479 skb_queue_head_init(&sd->xfrm_backlog);
11481 INIT_LIST_HEAD(&sd->poll_list);
11482 sd->output_queue_tailp = &sd->output_queue;
11484 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11488 init_gro_hash(&sd->backlog);
11489 sd->backlog.poll = process_backlog;
11490 sd->backlog.weight = weight_p;
11493 dev_boot_phase = 0;
11495 /* The loopback device is special if any other network devices
11496 * is present in a network namespace the loopback device must
11497 * be present. Since we now dynamically allocate and free the
11498 * loopback device ensure this invariant is maintained by
11499 * keeping the loopback device as the first device on the
11500 * list of network devices. Ensuring the loopback devices
11501 * is the first device that appears and the last network device
11504 if (register_pernet_device(&loopback_net_ops))
11507 if (register_pernet_device(&default_device_ops))
11510 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11511 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11513 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11514 NULL, dev_cpu_dead);
11521 subsys_initcall(net_dev_init);