1 // SPDX-License-Identifier: GPL-2.0+
3 * Sleepable Read-Copy Update mechanism for mutual exclusion.
5 * Copyright (C) IBM Corporation, 2006
6 * Copyright (C) Fujitsu, 2012
11 * For detailed explanation of Read-Copy Update mechanism see -
12 * Documentation/RCU/ *.txt
16 #define pr_fmt(fmt) "rcu: " fmt
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/srcu.h>
30 #include "rcu_segcblist.h"
32 /* Holdoff in nanoseconds for auto-expediting. */
33 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
34 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
35 module_param(exp_holdoff, ulong, 0444);
37 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */
38 static ulong counter_wrap_check = (ULONG_MAX >> 2);
39 module_param(counter_wrap_check, ulong, 0444);
41 /* Early-boot callback-management, so early that no lock is required! */
42 static LIST_HEAD(srcu_boot_list);
43 static bool __read_mostly srcu_init_done;
45 static void srcu_invoke_callbacks(struct work_struct *work);
46 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
47 static void process_srcu(struct work_struct *work);
48 static void srcu_delay_timer(struct timer_list *t);
50 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
51 #define spin_lock_rcu_node(p) \
53 spin_lock(&ACCESS_PRIVATE(p, lock)); \
54 smp_mb__after_unlock_lock(); \
57 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
59 #define spin_lock_irq_rcu_node(p) \
61 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \
62 smp_mb__after_unlock_lock(); \
65 #define spin_unlock_irq_rcu_node(p) \
66 spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
68 #define spin_lock_irqsave_rcu_node(p, flags) \
70 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
71 smp_mb__after_unlock_lock(); \
74 #define spin_unlock_irqrestore_rcu_node(p, flags) \
75 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \
78 * Initialize SRCU combining tree. Note that statically allocated
79 * srcu_struct structures might already have srcu_read_lock() and
80 * srcu_read_unlock() running against them. So if the is_static parameter
81 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
83 static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static)
88 int levelspread[RCU_NUM_LVLS];
89 struct srcu_data *sdp;
90 struct srcu_node *snp;
91 struct srcu_node *snp_first;
93 /* Work out the overall tree geometry. */
94 ssp->level[0] = &ssp->node[0];
95 for (i = 1; i < rcu_num_lvls; i++)
96 ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
97 rcu_init_levelspread(levelspread, num_rcu_lvl);
99 /* Each pass through this loop initializes one srcu_node structure. */
100 srcu_for_each_node_breadth_first(ssp, snp) {
101 spin_lock_init(&ACCESS_PRIVATE(snp, lock));
102 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
103 ARRAY_SIZE(snp->srcu_data_have_cbs));
104 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
105 snp->srcu_have_cbs[i] = 0;
106 snp->srcu_data_have_cbs[i] = 0;
108 snp->srcu_gp_seq_needed_exp = 0;
111 if (snp == &ssp->node[0]) {
112 /* Root node, special case. */
113 snp->srcu_parent = NULL;
118 if (snp == ssp->level[level + 1])
120 snp->srcu_parent = ssp->level[level - 1] +
121 (snp - ssp->level[level]) /
122 levelspread[level - 1];
126 * Initialize the per-CPU srcu_data array, which feeds into the
127 * leaves of the srcu_node tree.
129 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
130 ARRAY_SIZE(sdp->srcu_unlock_count));
131 level = rcu_num_lvls - 1;
132 snp_first = ssp->level[level];
133 for_each_possible_cpu(cpu) {
134 sdp = per_cpu_ptr(ssp->sda, cpu);
135 spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
136 rcu_segcblist_init(&sdp->srcu_cblist);
137 sdp->srcu_cblist_invoking = false;
138 sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
139 sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
140 sdp->mynode = &snp_first[cpu / levelspread[level]];
141 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
147 INIT_WORK(&sdp->work, srcu_invoke_callbacks);
148 timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
150 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
154 /* Dynamically allocated, better be no srcu_read_locks()! */
155 for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
156 sdp->srcu_lock_count[i] = 0;
157 sdp->srcu_unlock_count[i] = 0;
163 * Initialize non-compile-time initialized fields, including the
164 * associated srcu_node and srcu_data structures. The is_static
165 * parameter is passed through to init_srcu_struct_nodes(), and
166 * also tells us that ->sda has already been wired up to srcu_data.
168 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
170 mutex_init(&ssp->srcu_cb_mutex);
171 mutex_init(&ssp->srcu_gp_mutex);
173 ssp->srcu_gp_seq = 0;
174 ssp->srcu_barrier_seq = 0;
175 mutex_init(&ssp->srcu_barrier_mutex);
176 atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
177 INIT_DELAYED_WORK(&ssp->work, process_srcu);
179 ssp->sda = alloc_percpu(struct srcu_data);
182 init_srcu_struct_nodes(ssp, is_static);
183 ssp->srcu_gp_seq_needed_exp = 0;
184 ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
185 smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
189 #ifdef CONFIG_DEBUG_LOCK_ALLOC
191 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
192 struct lock_class_key *key)
194 /* Don't re-initialize a lock while it is held. */
195 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
196 lockdep_init_map(&ssp->dep_map, name, key, 0);
197 spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
198 return init_srcu_struct_fields(ssp, false);
200 EXPORT_SYMBOL_GPL(__init_srcu_struct);
202 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
205 * init_srcu_struct - initialize a sleep-RCU structure
206 * @ssp: structure to initialize.
208 * Must invoke this on a given srcu_struct before passing that srcu_struct
209 * to any other function. Each srcu_struct represents a separate domain
210 * of SRCU protection.
212 int init_srcu_struct(struct srcu_struct *ssp)
214 spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
215 return init_srcu_struct_fields(ssp, false);
217 EXPORT_SYMBOL_GPL(init_srcu_struct);
219 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
222 * First-use initialization of statically allocated srcu_struct
223 * structure. Wiring up the combining tree is more than can be
224 * done with compile-time initialization, so this check is added
225 * to each update-side SRCU primitive. Use ssp->lock, which -is-
226 * compile-time initialized, to resolve races involving multiple
227 * CPUs trying to garner first-use privileges.
229 static void check_init_srcu_struct(struct srcu_struct *ssp)
233 /* The smp_load_acquire() pairs with the smp_store_release(). */
234 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
235 return; /* Already initialized. */
236 spin_lock_irqsave_rcu_node(ssp, flags);
237 if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
238 spin_unlock_irqrestore_rcu_node(ssp, flags);
241 init_srcu_struct_fields(ssp, true);
242 spin_unlock_irqrestore_rcu_node(ssp, flags);
246 * Returns approximate total of the readers' ->srcu_lock_count[] values
247 * for the rank of per-CPU counters specified by idx.
249 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
252 unsigned long sum = 0;
254 for_each_possible_cpu(cpu) {
255 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
257 sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
263 * Returns approximate total of the readers' ->srcu_unlock_count[] values
264 * for the rank of per-CPU counters specified by idx.
266 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
269 unsigned long sum = 0;
271 for_each_possible_cpu(cpu) {
272 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
274 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
280 * Return true if the number of pre-existing readers is determined to
283 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
285 unsigned long unlocks;
287 unlocks = srcu_readers_unlock_idx(ssp, idx);
290 * Make sure that a lock is always counted if the corresponding
291 * unlock is counted. Needs to be a smp_mb() as the read side may
292 * contain a read from a variable that is written to before the
293 * synchronize_srcu() in the write side. In this case smp_mb()s
294 * A and B act like the store buffering pattern.
296 * This smp_mb() also pairs with smp_mb() C to prevent accesses
297 * after the synchronize_srcu() from being executed before the
303 * If the locks are the same as the unlocks, then there must have
304 * been no readers on this index at some time in between. This does
305 * not mean that there are no more readers, as one could have read
306 * the current index but not have incremented the lock counter yet.
308 * So suppose that the updater is preempted here for so long
309 * that more than ULONG_MAX non-nested readers come and go in
310 * the meantime. It turns out that this cannot result in overflow
311 * because if a reader modifies its unlock count after we read it
312 * above, then that reader's next load of ->srcu_idx is guaranteed
313 * to get the new value, which will cause it to operate on the
314 * other bank of counters, where it cannot contribute to the
315 * overflow of these counters. This means that there is a maximum
316 * of 2*NR_CPUS increments, which cannot overflow given current
317 * systems, especially not on 64-bit systems.
319 * OK, how about nesting? This does impose a limit on nesting
320 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
321 * especially on 64-bit systems.
323 return srcu_readers_lock_idx(ssp, idx) == unlocks;
327 * srcu_readers_active - returns true if there are readers. and false
329 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
331 * Note that this is not an atomic primitive, and can therefore suffer
332 * severe errors when invoked on an active srcu_struct. That said, it
333 * can be useful as an error check at cleanup time.
335 static bool srcu_readers_active(struct srcu_struct *ssp)
338 unsigned long sum = 0;
340 for_each_possible_cpu(cpu) {
341 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
343 sum += READ_ONCE(cpuc->srcu_lock_count[0]);
344 sum += READ_ONCE(cpuc->srcu_lock_count[1]);
345 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
346 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
351 #define SRCU_INTERVAL 1
354 * Return grace-period delay, zero if there are expedited grace
355 * periods pending, SRCU_INTERVAL otherwise.
357 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
359 if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq),
360 READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
362 return SRCU_INTERVAL;
366 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
367 * @ssp: structure to clean up.
369 * Must invoke this after you are finished using a given srcu_struct that
370 * was initialized via init_srcu_struct(), else you leak memory.
372 void cleanup_srcu_struct(struct srcu_struct *ssp)
376 if (WARN_ON(!srcu_get_delay(ssp)))
377 return; /* Just leak it! */
378 if (WARN_ON(srcu_readers_active(ssp)))
379 return; /* Just leak it! */
380 flush_delayed_work(&ssp->work);
381 for_each_possible_cpu(cpu) {
382 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
384 del_timer_sync(&sdp->delay_work);
385 flush_work(&sdp->work);
386 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
387 return; /* Forgot srcu_barrier(), so just leak it! */
389 if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
390 WARN_ON(srcu_readers_active(ssp))) {
391 pr_info("%s: Active srcu_struct %p state: %d\n",
392 __func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)));
393 return; /* Caller forgot to stop doing call_srcu()? */
395 free_percpu(ssp->sda);
398 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
401 * Counts the new reader in the appropriate per-CPU element of the
403 * Returns an index that must be passed to the matching srcu_read_unlock().
405 int __srcu_read_lock(struct srcu_struct *ssp)
409 idx = READ_ONCE(ssp->srcu_idx) & 0x1;
410 this_cpu_inc(ssp->sda->srcu_lock_count[idx]);
411 smp_mb(); /* B */ /* Avoid leaking the critical section. */
414 EXPORT_SYMBOL_GPL(__srcu_read_lock);
417 * Removes the count for the old reader from the appropriate per-CPU
418 * element of the srcu_struct. Note that this may well be a different
419 * CPU than that which was incremented by the corresponding srcu_read_lock().
421 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
423 smp_mb(); /* C */ /* Avoid leaking the critical section. */
424 this_cpu_inc(ssp->sda->srcu_unlock_count[idx]);
426 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
429 * We use an adaptive strategy for synchronize_srcu() and especially for
430 * synchronize_srcu_expedited(). We spin for a fixed time period
431 * (defined below) to allow SRCU readers to exit their read-side critical
432 * sections. If there are still some readers after a few microseconds,
433 * we repeatedly block for 1-millisecond time periods.
435 #define SRCU_RETRY_CHECK_DELAY 5
438 * Start an SRCU grace period.
440 static void srcu_gp_start(struct srcu_struct *ssp)
442 struct srcu_data *sdp = this_cpu_ptr(ssp->sda);
445 lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
446 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
447 spin_lock_rcu_node(sdp); /* Interrupts already disabled. */
448 rcu_segcblist_advance(&sdp->srcu_cblist,
449 rcu_seq_current(&ssp->srcu_gp_seq));
450 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
451 rcu_seq_snap(&ssp->srcu_gp_seq));
452 spin_unlock_rcu_node(sdp); /* Interrupts remain disabled. */
453 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
454 rcu_seq_start(&ssp->srcu_gp_seq);
455 state = rcu_seq_state(ssp->srcu_gp_seq);
456 WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
460 static void srcu_delay_timer(struct timer_list *t)
462 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
464 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
467 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
471 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
475 timer_reduce(&sdp->delay_work, jiffies + delay);
479 * Schedule callback invocation for the specified srcu_data structure,
480 * if possible, on the corresponding CPU.
482 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
484 srcu_queue_delayed_work_on(sdp, delay);
488 * Schedule callback invocation for all srcu_data structures associated
489 * with the specified srcu_node structure that have callbacks for the
490 * just-completed grace period, the one corresponding to idx. If possible,
491 * schedule this invocation on the corresponding CPUs.
493 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
494 unsigned long mask, unsigned long delay)
498 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
499 if (!(mask & (1 << (cpu - snp->grplo))))
501 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
506 * Note the end of an SRCU grace period. Initiates callback invocation
507 * and starts a new grace period if needed.
509 * The ->srcu_cb_mutex acquisition does not protect any data, but
510 * instead prevents more than one grace period from starting while we
511 * are initiating callback invocation. This allows the ->srcu_have_cbs[]
512 * array to have a finite number of elements.
514 static void srcu_gp_end(struct srcu_struct *ssp)
516 unsigned long cbdelay;
524 struct srcu_data *sdp;
525 struct srcu_node *snp;
527 /* Prevent more than one additional grace period. */
528 mutex_lock(&ssp->srcu_cb_mutex);
530 /* End the current grace period. */
531 spin_lock_irq_rcu_node(ssp);
532 idx = rcu_seq_state(ssp->srcu_gp_seq);
533 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
534 cbdelay = srcu_get_delay(ssp);
535 WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns());
536 rcu_seq_end(&ssp->srcu_gp_seq);
537 gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
538 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
539 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq);
540 spin_unlock_irq_rcu_node(ssp);
541 mutex_unlock(&ssp->srcu_gp_mutex);
542 /* A new grace period can start at this point. But only one. */
544 /* Initiate callback invocation as needed. */
545 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
546 srcu_for_each_node_breadth_first(ssp, snp) {
547 spin_lock_irq_rcu_node(snp);
549 last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
551 cbs = snp->srcu_have_cbs[idx] == gpseq;
552 snp->srcu_have_cbs[idx] = gpseq;
553 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
554 if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
555 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
556 mask = snp->srcu_data_have_cbs[idx];
557 snp->srcu_data_have_cbs[idx] = 0;
558 spin_unlock_irq_rcu_node(snp);
560 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
562 /* Occasionally prevent srcu_data counter wrap. */
563 if (!(gpseq & counter_wrap_check) && last_lvl)
564 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
565 sdp = per_cpu_ptr(ssp->sda, cpu);
566 spin_lock_irqsave_rcu_node(sdp, flags);
567 if (ULONG_CMP_GE(gpseq,
568 sdp->srcu_gp_seq_needed + 100))
569 sdp->srcu_gp_seq_needed = gpseq;
570 if (ULONG_CMP_GE(gpseq,
571 sdp->srcu_gp_seq_needed_exp + 100))
572 sdp->srcu_gp_seq_needed_exp = gpseq;
573 spin_unlock_irqrestore_rcu_node(sdp, flags);
577 /* Callback initiation done, allow grace periods after next. */
578 mutex_unlock(&ssp->srcu_cb_mutex);
580 /* Start a new grace period if needed. */
581 spin_lock_irq_rcu_node(ssp);
582 gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
583 if (!rcu_seq_state(gpseq) &&
584 ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
586 spin_unlock_irq_rcu_node(ssp);
587 srcu_reschedule(ssp, 0);
589 spin_unlock_irq_rcu_node(ssp);
594 * Funnel-locking scheme to scalably mediate many concurrent expedited
595 * grace-period requests. This function is invoked for the first known
596 * expedited request for a grace period that has already been requested,
597 * but without expediting. To start a completely new grace period,
598 * whether expedited or not, use srcu_funnel_gp_start() instead.
600 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
605 for (; snp != NULL; snp = snp->srcu_parent) {
606 if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
607 ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
609 spin_lock_irqsave_rcu_node(snp, flags);
610 if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
611 spin_unlock_irqrestore_rcu_node(snp, flags);
614 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
615 spin_unlock_irqrestore_rcu_node(snp, flags);
617 spin_lock_irqsave_rcu_node(ssp, flags);
618 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
619 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
620 spin_unlock_irqrestore_rcu_node(ssp, flags);
624 * Funnel-locking scheme to scalably mediate many concurrent grace-period
625 * requests. The winner has to do the work of actually starting grace
626 * period s. Losers must either ensure that their desired grace-period
627 * number is recorded on at least their leaf srcu_node structure, or they
628 * must take steps to invoke their own callbacks.
630 * Note that this function also does the work of srcu_funnel_exp_start(),
631 * in some cases by directly invoking it.
633 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
634 unsigned long s, bool do_norm)
637 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
638 struct srcu_node *snp = sdp->mynode;
639 unsigned long snp_seq;
641 /* Each pass through the loop does one level of the srcu_node tree. */
642 for (; snp != NULL; snp = snp->srcu_parent) {
643 if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode)
644 return; /* GP already done and CBs recorded. */
645 spin_lock_irqsave_rcu_node(snp, flags);
646 if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
647 snp_seq = snp->srcu_have_cbs[idx];
648 if (snp == sdp->mynode && snp_seq == s)
649 snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
650 spin_unlock_irqrestore_rcu_node(snp, flags);
651 if (snp == sdp->mynode && snp_seq != s) {
652 srcu_schedule_cbs_sdp(sdp, do_norm
658 srcu_funnel_exp_start(ssp, snp, s);
661 snp->srcu_have_cbs[idx] = s;
662 if (snp == sdp->mynode)
663 snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
664 if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
665 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
666 spin_unlock_irqrestore_rcu_node(snp, flags);
669 /* Top of tree, must ensure the grace period will be started. */
670 spin_lock_irqsave_rcu_node(ssp, flags);
671 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
673 * Record need for grace period s. Pair with load
674 * acquire setting up for initialization.
676 smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
678 if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
679 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
681 /* If grace period not already done and none in progress, start it. */
682 if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
683 rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
684 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
686 if (likely(srcu_init_done))
687 queue_delayed_work(rcu_gp_wq, &ssp->work,
688 srcu_get_delay(ssp));
689 else if (list_empty(&ssp->work.work.entry))
690 list_add(&ssp->work.work.entry, &srcu_boot_list);
692 spin_unlock_irqrestore_rcu_node(ssp, flags);
696 * Wait until all readers counted by array index idx complete, but
697 * loop an additional time if there is an expedited grace period pending.
698 * The caller must ensure that ->srcu_idx is not changed while checking.
700 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
703 if (srcu_readers_active_idx_check(ssp, idx))
705 if (--trycount + !srcu_get_delay(ssp) <= 0)
707 udelay(SRCU_RETRY_CHECK_DELAY);
712 * Increment the ->srcu_idx counter so that future SRCU readers will
713 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows
714 * us to wait for pre-existing readers in a starvation-free manner.
716 static void srcu_flip(struct srcu_struct *ssp)
719 * Ensure that if this updater saw a given reader's increment
720 * from __srcu_read_lock(), that reader was using an old value
721 * of ->srcu_idx. Also ensure that if a given reader sees the
722 * new value of ->srcu_idx, this updater's earlier scans cannot
723 * have seen that reader's increments (which is OK, because this
724 * grace period need not wait on that reader).
726 smp_mb(); /* E */ /* Pairs with B and C. */
728 WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
731 * Ensure that if the updater misses an __srcu_read_unlock()
732 * increment, that task's next __srcu_read_lock() will see the
733 * above counter update. Note that both this memory barrier
734 * and the one in srcu_readers_active_idx_check() provide the
735 * guarantee for __srcu_read_lock().
737 smp_mb(); /* D */ /* Pairs with C. */
741 * If SRCU is likely idle, return true, otherwise return false.
743 * Note that it is OK for several current from-idle requests for a new
744 * grace period from idle to specify expediting because they will all end
745 * up requesting the same grace period anyhow. So no loss.
747 * Note also that if any CPU (including the current one) is still invoking
748 * callbacks, this function will nevertheless say "idle". This is not
749 * ideal, but the overhead of checking all CPUs' callback lists is even
750 * less ideal, especially on large systems. Furthermore, the wakeup
751 * can happen before the callback is fully removed, so we have no choice
752 * but to accept this type of error.
754 * This function is also subject to counter-wrap errors, but let's face
755 * it, if this function was preempted for enough time for the counters
756 * to wrap, it really doesn't matter whether or not we expedite the grace
757 * period. The extra overhead of a needlessly expedited grace period is
758 * negligible when amortized over that time period, and the extra latency
759 * of a needlessly non-expedited grace period is similarly negligible.
761 static bool srcu_might_be_idle(struct srcu_struct *ssp)
763 unsigned long curseq;
765 struct srcu_data *sdp;
769 check_init_srcu_struct(ssp);
770 /* If the local srcu_data structure has callbacks, not idle. */
771 sdp = raw_cpu_ptr(ssp->sda);
772 spin_lock_irqsave_rcu_node(sdp, flags);
773 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
774 spin_unlock_irqrestore_rcu_node(sdp, flags);
775 return false; /* Callbacks already present, so not idle. */
777 spin_unlock_irqrestore_rcu_node(sdp, flags);
780 * No local callbacks, so probabalistically probe global state.
781 * Exact information would require acquiring locks, which would
782 * kill scalability, hence the probabalistic nature of the probe.
785 /* First, see if enough time has passed since the last GP. */
786 t = ktime_get_mono_fast_ns();
787 tlast = READ_ONCE(ssp->srcu_last_gp_end);
788 if (exp_holdoff == 0 ||
789 time_in_range_open(t, tlast, tlast + exp_holdoff))
790 return false; /* Too soon after last GP. */
792 /* Next, check for probable idleness. */
793 curseq = rcu_seq_current(&ssp->srcu_gp_seq);
794 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
795 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
796 return false; /* Grace period in progress, so not idle. */
797 smp_mb(); /* Order ->srcu_gp_seq with prior access. */
798 if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
799 return false; /* GP # changed, so not idle. */
800 return true; /* With reasonable probability, idle! */
804 * SRCU callback function to leak a callback.
806 static void srcu_leak_callback(struct rcu_head *rhp)
811 * Start an SRCU grace period, and also queue the callback if non-NULL.
813 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
814 struct rcu_head *rhp, bool do_norm)
818 bool needexp = false;
821 struct srcu_data *sdp;
823 check_init_srcu_struct(ssp);
824 idx = srcu_read_lock(ssp);
825 sdp = raw_cpu_ptr(ssp->sda);
826 spin_lock_irqsave_rcu_node(sdp, flags);
828 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
829 rcu_segcblist_advance(&sdp->srcu_cblist,
830 rcu_seq_current(&ssp->srcu_gp_seq));
831 s = rcu_seq_snap(&ssp->srcu_gp_seq);
832 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
833 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
834 sdp->srcu_gp_seq_needed = s;
837 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
838 sdp->srcu_gp_seq_needed_exp = s;
841 spin_unlock_irqrestore_rcu_node(sdp, flags);
843 srcu_funnel_gp_start(ssp, sdp, s, do_norm);
845 srcu_funnel_exp_start(ssp, sdp->mynode, s);
846 srcu_read_unlock(ssp, idx);
851 * Enqueue an SRCU callback on the srcu_data structure associated with
852 * the current CPU and the specified srcu_struct structure, initiating
853 * grace-period processing if it is not already running.
855 * Note that all CPUs must agree that the grace period extended beyond
856 * all pre-existing SRCU read-side critical section. On systems with
857 * more than one CPU, this means that when "func()" is invoked, each CPU
858 * is guaranteed to have executed a full memory barrier since the end of
859 * its last corresponding SRCU read-side critical section whose beginning
860 * preceded the call to call_srcu(). It also means that each CPU executing
861 * an SRCU read-side critical section that continues beyond the start of
862 * "func()" must have executed a memory barrier after the call_srcu()
863 * but before the beginning of that SRCU read-side critical section.
864 * Note that these guarantees include CPUs that are offline, idle, or
865 * executing in user mode, as well as CPUs that are executing in the kernel.
867 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
868 * resulting SRCU callback function "func()", then both CPU A and CPU
869 * B are guaranteed to execute a full memory barrier during the time
870 * interval between the call to call_srcu() and the invocation of "func()".
871 * This guarantee applies even if CPU A and CPU B are the same CPU (but
872 * again only if the system has more than one CPU).
874 * Of course, these guarantees apply only for invocations of call_srcu(),
875 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
876 * srcu_struct structure.
878 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
879 rcu_callback_t func, bool do_norm)
881 if (debug_rcu_head_queue(rhp)) {
882 /* Probable double call_srcu(), so leak the callback. */
883 WRITE_ONCE(rhp->func, srcu_leak_callback);
884 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
888 (void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
892 * call_srcu() - Queue a callback for invocation after an SRCU grace period
893 * @ssp: srcu_struct in queue the callback
894 * @rhp: structure to be used for queueing the SRCU callback.
895 * @func: function to be invoked after the SRCU grace period
897 * The callback function will be invoked some time after a full SRCU
898 * grace period elapses, in other words after all pre-existing SRCU
899 * read-side critical sections have completed. However, the callback
900 * function might well execute concurrently with other SRCU read-side
901 * critical sections that started after call_srcu() was invoked. SRCU
902 * read-side critical sections are delimited by srcu_read_lock() and
903 * srcu_read_unlock(), and may be nested.
905 * The callback will be invoked from process context, but must nevertheless
906 * be fast and must not block.
908 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
911 __call_srcu(ssp, rhp, func, true);
913 EXPORT_SYMBOL_GPL(call_srcu);
916 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
918 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
920 struct rcu_synchronize rcu;
922 RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
923 lock_is_held(&rcu_bh_lock_map) ||
924 lock_is_held(&rcu_lock_map) ||
925 lock_is_held(&rcu_sched_lock_map),
926 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
928 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
931 check_init_srcu_struct(ssp);
932 init_completion(&rcu.completion);
933 init_rcu_head_on_stack(&rcu.head);
934 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
935 wait_for_completion(&rcu.completion);
936 destroy_rcu_head_on_stack(&rcu.head);
939 * Make sure that later code is ordered after the SRCU grace
940 * period. This pairs with the spin_lock_irq_rcu_node()
941 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed
942 * because the current CPU might have been totally uninvolved with
943 * (and thus unordered against) that grace period.
949 * synchronize_srcu_expedited - Brute-force SRCU grace period
950 * @ssp: srcu_struct with which to synchronize.
952 * Wait for an SRCU grace period to elapse, but be more aggressive about
953 * spinning rather than blocking when waiting.
955 * Note that synchronize_srcu_expedited() has the same deadlock and
956 * memory-ordering properties as does synchronize_srcu().
958 void synchronize_srcu_expedited(struct srcu_struct *ssp)
960 __synchronize_srcu(ssp, rcu_gp_is_normal());
962 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
965 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
966 * @ssp: srcu_struct with which to synchronize.
968 * Wait for the count to drain to zero of both indexes. To avoid the
969 * possible starvation of synchronize_srcu(), it waits for the count of
970 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
971 * and then flip the srcu_idx and wait for the count of the other index.
973 * Can block; must be called from process context.
975 * Note that it is illegal to call synchronize_srcu() from the corresponding
976 * SRCU read-side critical section; doing so will result in deadlock.
977 * However, it is perfectly legal to call synchronize_srcu() on one
978 * srcu_struct from some other srcu_struct's read-side critical section,
979 * as long as the resulting graph of srcu_structs is acyclic.
981 * There are memory-ordering constraints implied by synchronize_srcu().
982 * On systems with more than one CPU, when synchronize_srcu() returns,
983 * each CPU is guaranteed to have executed a full memory barrier since
984 * the end of its last corresponding SRCU read-side critical section
985 * whose beginning preceded the call to synchronize_srcu(). In addition,
986 * each CPU having an SRCU read-side critical section that extends beyond
987 * the return from synchronize_srcu() is guaranteed to have executed a
988 * full memory barrier after the beginning of synchronize_srcu() and before
989 * the beginning of that SRCU read-side critical section. Note that these
990 * guarantees include CPUs that are offline, idle, or executing in user mode,
991 * as well as CPUs that are executing in the kernel.
993 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
994 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
995 * to have executed a full memory barrier during the execution of
996 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B
997 * are the same CPU, but again only if the system has more than one CPU.
999 * Of course, these memory-ordering guarantees apply only when
1000 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1001 * passed the same srcu_struct structure.
1003 * If SRCU is likely idle, expedite the first request. This semantic
1004 * was provided by Classic SRCU, and is relied upon by its users, so TREE
1005 * SRCU must also provide it. Note that detecting idleness is heuristic
1006 * and subject to both false positives and negatives.
1008 void synchronize_srcu(struct srcu_struct *ssp)
1010 if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1011 synchronize_srcu_expedited(ssp);
1013 __synchronize_srcu(ssp, true);
1015 EXPORT_SYMBOL_GPL(synchronize_srcu);
1018 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1019 * @ssp: srcu_struct to provide cookie for.
1021 * This function returns a cookie that can be passed to
1022 * poll_state_synchronize_srcu(), which will return true if a full grace
1023 * period has elapsed in the meantime. It is the caller's responsibility
1024 * to make sure that grace period happens, for example, by invoking
1025 * call_srcu() after return from get_state_synchronize_srcu().
1027 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1029 // Any prior manipulation of SRCU-protected data must happen
1030 // before the load from ->srcu_gp_seq.
1032 return rcu_seq_snap(&ssp->srcu_gp_seq);
1034 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1037 * start_poll_synchronize_srcu - Provide cookie and start grace period
1038 * @ssp: srcu_struct to provide cookie for.
1040 * This function returns a cookie that can be passed to
1041 * poll_state_synchronize_srcu(), which will return true if a full grace
1042 * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(),
1043 * this function also ensures that any needed SRCU grace period will be
1044 * started. This convenience does come at a cost in terms of CPU overhead.
1046 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1048 return srcu_gp_start_if_needed(ssp, NULL, true);
1050 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1053 * poll_state_synchronize_srcu - Has cookie's grace period ended?
1054 * @ssp: srcu_struct to provide cookie for.
1055 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1057 * This function takes the cookie that was returned from either
1058 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1059 * returns @true if an SRCU grace period elapsed since the time that the
1060 * cookie was created.
1062 * Because cookies are finite in size, wrapping/overflow is possible.
1063 * This is more pronounced on 32-bit systems where cookies are 32 bits,
1064 * where in theory wrapping could happen in about 14 hours assuming
1065 * 25-microsecond expedited SRCU grace periods. However, a more likely
1066 * overflow lower bound is on the order of 24 days in the case of
1067 * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit
1068 * system requires geologic timespans, as in more than seven million years
1069 * even for expedited SRCU grace periods.
1071 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1072 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses
1073 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1074 * few minutes. If this proves to be a problem, this counter will be
1075 * expanded to the same size as for Tree SRCU.
1077 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1079 if (!rcu_seq_done(&ssp->srcu_gp_seq, cookie))
1081 // Ensure that the end of the SRCU grace period happens before
1082 // any subsequent code that the caller might execute.
1086 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1089 * Callback function for srcu_barrier() use.
1091 static void srcu_barrier_cb(struct rcu_head *rhp)
1093 struct srcu_data *sdp;
1094 struct srcu_struct *ssp;
1096 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1098 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1099 complete(&ssp->srcu_barrier_completion);
1103 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1104 * @ssp: srcu_struct on which to wait for in-flight callbacks.
1106 void srcu_barrier(struct srcu_struct *ssp)
1109 struct srcu_data *sdp;
1110 unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
1112 check_init_srcu_struct(ssp);
1113 mutex_lock(&ssp->srcu_barrier_mutex);
1114 if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
1115 smp_mb(); /* Force ordering following return. */
1116 mutex_unlock(&ssp->srcu_barrier_mutex);
1117 return; /* Someone else did our work for us. */
1119 rcu_seq_start(&ssp->srcu_barrier_seq);
1120 init_completion(&ssp->srcu_barrier_completion);
1122 /* Initial count prevents reaching zero until all CBs are posted. */
1123 atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
1126 * Each pass through this loop enqueues a callback, but only
1127 * on CPUs already having callbacks enqueued. Note that if
1128 * a CPU already has callbacks enqueue, it must have already
1129 * registered the need for a future grace period, so all we
1130 * need do is enqueue a callback that will use the same
1131 * grace period as the last callback already in the queue.
1133 for_each_possible_cpu(cpu) {
1134 sdp = per_cpu_ptr(ssp->sda, cpu);
1135 spin_lock_irq_rcu_node(sdp);
1136 atomic_inc(&ssp->srcu_barrier_cpu_cnt);
1137 sdp->srcu_barrier_head.func = srcu_barrier_cb;
1138 debug_rcu_head_queue(&sdp->srcu_barrier_head);
1139 if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1140 &sdp->srcu_barrier_head)) {
1141 debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1142 atomic_dec(&ssp->srcu_barrier_cpu_cnt);
1144 spin_unlock_irq_rcu_node(sdp);
1147 /* Remove the initial count, at which point reaching zero can happen. */
1148 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1149 complete(&ssp->srcu_barrier_completion);
1150 wait_for_completion(&ssp->srcu_barrier_completion);
1152 rcu_seq_end(&ssp->srcu_barrier_seq);
1153 mutex_unlock(&ssp->srcu_barrier_mutex);
1155 EXPORT_SYMBOL_GPL(srcu_barrier);
1158 * srcu_batches_completed - return batches completed.
1159 * @ssp: srcu_struct on which to report batch completion.
1161 * Report the number of batches, correlated with, but not necessarily
1162 * precisely the same as, the number of grace periods that have elapsed.
1164 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1166 return READ_ONCE(ssp->srcu_idx);
1168 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1171 * Core SRCU state machine. Push state bits of ->srcu_gp_seq
1172 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1173 * completed in that state.
1175 static void srcu_advance_state(struct srcu_struct *ssp)
1179 mutex_lock(&ssp->srcu_gp_mutex);
1182 * Because readers might be delayed for an extended period after
1183 * fetching ->srcu_idx for their index, at any point in time there
1184 * might well be readers using both idx=0 and idx=1. We therefore
1185 * need to wait for readers to clear from both index values before
1186 * invoking a callback.
1188 * The load-acquire ensures that we see the accesses performed
1189 * by the prior grace period.
1191 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
1192 if (idx == SRCU_STATE_IDLE) {
1193 spin_lock_irq_rcu_node(ssp);
1194 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1195 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1196 spin_unlock_irq_rcu_node(ssp);
1197 mutex_unlock(&ssp->srcu_gp_mutex);
1200 idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
1201 if (idx == SRCU_STATE_IDLE)
1203 spin_unlock_irq_rcu_node(ssp);
1204 if (idx != SRCU_STATE_IDLE) {
1205 mutex_unlock(&ssp->srcu_gp_mutex);
1206 return; /* Someone else started the grace period. */
1210 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1211 idx = 1 ^ (ssp->srcu_idx & 1);
1212 if (!try_check_zero(ssp, idx, 1)) {
1213 mutex_unlock(&ssp->srcu_gp_mutex);
1214 return; /* readers present, retry later. */
1217 spin_lock_irq_rcu_node(ssp);
1218 rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
1219 spin_unlock_irq_rcu_node(ssp);
1222 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1225 * SRCU read-side critical sections are normally short,
1226 * so check at least twice in quick succession after a flip.
1228 idx = 1 ^ (ssp->srcu_idx & 1);
1229 if (!try_check_zero(ssp, idx, 2)) {
1230 mutex_unlock(&ssp->srcu_gp_mutex);
1231 return; /* readers present, retry later. */
1233 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */
1238 * Invoke a limited number of SRCU callbacks that have passed through
1239 * their grace period. If there are more to do, SRCU will reschedule
1240 * the workqueue. Note that needed memory barriers have been executed
1241 * in this task's context by srcu_readers_active_idx_check().
1243 static void srcu_invoke_callbacks(struct work_struct *work)
1247 struct rcu_cblist ready_cbs;
1248 struct rcu_head *rhp;
1249 struct srcu_data *sdp;
1250 struct srcu_struct *ssp;
1252 sdp = container_of(work, struct srcu_data, work);
1255 rcu_cblist_init(&ready_cbs);
1256 spin_lock_irq_rcu_node(sdp);
1257 rcu_segcblist_advance(&sdp->srcu_cblist,
1258 rcu_seq_current(&ssp->srcu_gp_seq));
1259 if (sdp->srcu_cblist_invoking ||
1260 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1261 spin_unlock_irq_rcu_node(sdp);
1262 return; /* Someone else on the job or nothing to do. */
1265 /* We are on the job! Extract and invoke ready callbacks. */
1266 sdp->srcu_cblist_invoking = true;
1267 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1268 len = ready_cbs.len;
1269 spin_unlock_irq_rcu_node(sdp);
1270 rhp = rcu_cblist_dequeue(&ready_cbs);
1271 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1272 debug_rcu_head_unqueue(rhp);
1277 WARN_ON_ONCE(ready_cbs.len);
1280 * Update counts, accelerate new callbacks, and if needed,
1281 * schedule another round of callback invocation.
1283 spin_lock_irq_rcu_node(sdp);
1284 rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1285 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1286 rcu_seq_snap(&ssp->srcu_gp_seq));
1287 sdp->srcu_cblist_invoking = false;
1288 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1289 spin_unlock_irq_rcu_node(sdp);
1291 srcu_schedule_cbs_sdp(sdp, 0);
1295 * Finished one round of SRCU grace period. Start another if there are
1296 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1298 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1302 spin_lock_irq_rcu_node(ssp);
1303 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1304 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
1305 /* All requests fulfilled, time to go idle. */
1308 } else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
1309 /* Outstanding request and no GP. Start one. */
1312 spin_unlock_irq_rcu_node(ssp);
1315 queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
1319 * This is the work-queue function that handles SRCU grace periods.
1321 static void process_srcu(struct work_struct *work)
1323 struct srcu_struct *ssp;
1325 ssp = container_of(work, struct srcu_struct, work.work);
1327 srcu_advance_state(ssp);
1328 srcu_reschedule(ssp, srcu_get_delay(ssp));
1331 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1332 struct srcu_struct *ssp, int *flags,
1333 unsigned long *gp_seq)
1335 if (test_type != SRCU_FLAVOR)
1338 *gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
1340 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1342 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1346 unsigned long s0 = 0, s1 = 0;
1348 idx = ssp->srcu_idx & 0x1;
1349 pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
1350 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx);
1351 for_each_possible_cpu(cpu) {
1352 unsigned long l0, l1;
1353 unsigned long u0, u1;
1355 struct srcu_data *sdp;
1357 sdp = per_cpu_ptr(ssp->sda, cpu);
1358 u0 = data_race(sdp->srcu_unlock_count[!idx]);
1359 u1 = data_race(sdp->srcu_unlock_count[idx]);
1362 * Make sure that a lock is always counted if the corresponding
1363 * unlock is counted.
1367 l0 = data_race(sdp->srcu_lock_count[!idx]);
1368 l1 = data_race(sdp->srcu_lock_count[idx]);
1372 pr_cont(" %d(%ld,%ld %c)",
1374 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1378 pr_cont(" T(%ld,%ld)\n", s0, s1);
1380 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1382 static int __init srcu_bootup_announce(void)
1384 pr_info("Hierarchical SRCU implementation.\n");
1385 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1386 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1389 early_initcall(srcu_bootup_announce);
1391 void __init srcu_init(void)
1393 struct srcu_struct *ssp;
1395 srcu_init_done = true;
1396 while (!list_empty(&srcu_boot_list)) {
1397 ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
1399 check_init_srcu_struct(ssp);
1400 list_del_init(&ssp->work.work.entry);
1401 queue_work(rcu_gp_wq, &ssp->work.work);
1405 #ifdef CONFIG_MODULES
1407 /* Initialize any global-scope srcu_struct structures used by this module. */
1408 static int srcu_module_coming(struct module *mod)
1411 struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1414 for (i = 0; i < mod->num_srcu_structs; i++) {
1415 ret = init_srcu_struct(*(sspp++));
1416 if (WARN_ON_ONCE(ret))
1422 /* Clean up any global-scope srcu_struct structures used by this module. */
1423 static void srcu_module_going(struct module *mod)
1426 struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1428 for (i = 0; i < mod->num_srcu_structs; i++)
1429 cleanup_srcu_struct(*(sspp++));
1432 /* Handle one module, either coming or going. */
1433 static int srcu_module_notify(struct notifier_block *self,
1434 unsigned long val, void *data)
1436 struct module *mod = data;
1440 case MODULE_STATE_COMING:
1441 ret = srcu_module_coming(mod);
1443 case MODULE_STATE_GOING:
1444 srcu_module_going(mod);
1452 static struct notifier_block srcu_module_nb = {
1453 .notifier_call = srcu_module_notify,
1457 static __init int init_srcu_module_notifier(void)
1461 ret = register_module_notifier(&srcu_module_nb);
1463 pr_warn("Failed to register srcu module notifier\n");
1466 late_initcall(init_srcu_module_notifier);
1468 #endif /* #ifdef CONFIG_MODULES */