1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
146 #include "net-sysfs.h"
148 #define MAX_GRO_SKBS 8
149 #define MAX_NEST_DEV 8
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly; /* Taps */
158 static struct list_head offload_base __read_mostly;
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162 struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164 struct net_device *dev,
165 struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 * Writers must hold the rtnl semaphore while they loop through the
175 * dev_base_head list, and hold dev_base_lock for writing when they do the
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
190 static DEFINE_MUTEX(ifalias_mutex);
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 static seqcount_t devnet_rename_seq;
200 static inline void dev_base_seq_inc(struct net *net)
202 while (++net->dev_base_seq == 0)
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 static inline void rps_lock(struct softnet_data *sd)
221 spin_lock(&sd->input_pkt_queue.lock);
225 static inline void rps_unlock(struct softnet_data *sd)
228 spin_unlock(&sd->input_pkt_queue.lock);
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
235 struct net *net = dev_net(dev);
239 write_lock_bh(&dev_base_lock);
240 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242 hlist_add_head_rcu(&dev->index_hlist,
243 dev_index_hash(net, dev->ifindex));
244 write_unlock_bh(&dev_base_lock);
246 dev_base_seq_inc(net);
249 /* Device list removal
250 * caller must respect a RCU grace period before freeing/reusing dev
252 static void unlist_netdevice(struct net_device *dev)
256 /* Unlink dev from the device chain */
257 write_lock_bh(&dev_base_lock);
258 list_del_rcu(&dev->dev_list);
259 hlist_del_rcu(&dev->name_hlist);
260 hlist_del_rcu(&dev->index_hlist);
261 write_unlock_bh(&dev_base_lock);
263 dev_base_seq_inc(dev_net(dev));
270 static RAW_NOTIFIER_HEAD(netdev_chain);
273 * Device drivers call our routines to queue packets here. We empty the
274 * queue in the local softnet handler.
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 /*******************************************************************************
282 * Protocol management and registration routines
284 *******************************************************************************/
288 * Add a protocol ID to the list. Now that the input handler is
289 * smarter we can dispense with all the messy stuff that used to be
292 * BEWARE!!! Protocol handlers, mangling input packets,
293 * MUST BE last in hash buckets and checking protocol handlers
294 * MUST start from promiscuous ptype_all chain in net_bh.
295 * It is true now, do not change it.
296 * Explanation follows: if protocol handler, mangling packet, will
297 * be the first on list, it is not able to sense, that packet
298 * is cloned and should be copied-on-write, so that it will
299 * change it and subsequent readers will get broken packet.
303 static inline struct list_head *ptype_head(const struct packet_type *pt)
305 if (pt->type == htons(ETH_P_ALL))
306 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
308 return pt->dev ? &pt->dev->ptype_specific :
309 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
313 * dev_add_pack - add packet handler
314 * @pt: packet type declaration
316 * Add a protocol handler to the networking stack. The passed &packet_type
317 * is linked into kernel lists and may not be freed until it has been
318 * removed from the kernel lists.
320 * This call does not sleep therefore it can not
321 * guarantee all CPU's that are in middle of receiving packets
322 * will see the new packet type (until the next received packet).
325 void dev_add_pack(struct packet_type *pt)
327 struct list_head *head = ptype_head(pt);
329 spin_lock(&ptype_lock);
330 list_add_rcu(&pt->list, head);
331 spin_unlock(&ptype_lock);
333 EXPORT_SYMBOL(dev_add_pack);
336 * __dev_remove_pack - remove packet handler
337 * @pt: packet type declaration
339 * Remove a protocol handler that was previously added to the kernel
340 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
341 * from the kernel lists and can be freed or reused once this function
344 * The packet type might still be in use by receivers
345 * and must not be freed until after all the CPU's have gone
346 * through a quiescent state.
348 void __dev_remove_pack(struct packet_type *pt)
350 struct list_head *head = ptype_head(pt);
351 struct packet_type *pt1;
353 spin_lock(&ptype_lock);
355 list_for_each_entry(pt1, head, list) {
357 list_del_rcu(&pt->list);
362 pr_warn("dev_remove_pack: %p not found\n", pt);
364 spin_unlock(&ptype_lock);
366 EXPORT_SYMBOL(__dev_remove_pack);
369 * dev_remove_pack - remove packet handler
370 * @pt: packet type declaration
372 * Remove a protocol handler that was previously added to the kernel
373 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
374 * from the kernel lists and can be freed or reused once this function
377 * This call sleeps to guarantee that no CPU is looking at the packet
380 void dev_remove_pack(struct packet_type *pt)
382 __dev_remove_pack(pt);
386 EXPORT_SYMBOL(dev_remove_pack);
390 * dev_add_offload - register offload handlers
391 * @po: protocol offload declaration
393 * Add protocol offload handlers to the networking stack. The passed
394 * &proto_offload is linked into kernel lists and may not be freed until
395 * it has been removed from the kernel lists.
397 * This call does not sleep therefore it can not
398 * guarantee all CPU's that are in middle of receiving packets
399 * will see the new offload handlers (until the next received packet).
401 void dev_add_offload(struct packet_offload *po)
403 struct packet_offload *elem;
405 spin_lock(&offload_lock);
406 list_for_each_entry(elem, &offload_base, list) {
407 if (po->priority < elem->priority)
410 list_add_rcu(&po->list, elem->list.prev);
411 spin_unlock(&offload_lock);
413 EXPORT_SYMBOL(dev_add_offload);
416 * __dev_remove_offload - remove offload handler
417 * @po: packet offload declaration
419 * Remove a protocol offload handler that was previously added to the
420 * kernel offload handlers by dev_add_offload(). The passed &offload_type
421 * is removed from the kernel lists and can be freed or reused once this
424 * The packet type might still be in use by receivers
425 * and must not be freed until after all the CPU's have gone
426 * through a quiescent state.
428 static void __dev_remove_offload(struct packet_offload *po)
430 struct list_head *head = &offload_base;
431 struct packet_offload *po1;
433 spin_lock(&offload_lock);
435 list_for_each_entry(po1, head, list) {
437 list_del_rcu(&po->list);
442 pr_warn("dev_remove_offload: %p not found\n", po);
444 spin_unlock(&offload_lock);
448 * dev_remove_offload - remove packet offload handler
449 * @po: packet offload declaration
451 * Remove a packet offload handler that was previously added to the kernel
452 * offload handlers by dev_add_offload(). The passed &offload_type is
453 * removed from the kernel lists and can be freed or reused once this
456 * This call sleeps to guarantee that no CPU is looking at the packet
459 void dev_remove_offload(struct packet_offload *po)
461 __dev_remove_offload(po);
465 EXPORT_SYMBOL(dev_remove_offload);
467 /******************************************************************************
469 * Device Boot-time Settings Routines
471 ******************************************************************************/
473 /* Boot time configuration table */
474 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
477 * netdev_boot_setup_add - add new setup entry
478 * @name: name of the device
479 * @map: configured settings for the device
481 * Adds new setup entry to the dev_boot_setup list. The function
482 * returns 0 on error and 1 on success. This is a generic routine to
485 static int netdev_boot_setup_add(char *name, struct ifmap *map)
487 struct netdev_boot_setup *s;
491 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
492 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
493 memset(s[i].name, 0, sizeof(s[i].name));
494 strlcpy(s[i].name, name, IFNAMSIZ);
495 memcpy(&s[i].map, map, sizeof(s[i].map));
500 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
504 * netdev_boot_setup_check - check boot time settings
505 * @dev: the netdevice
507 * Check boot time settings for the device.
508 * The found settings are set for the device to be used
509 * later in the device probing.
510 * Returns 0 if no settings found, 1 if they are.
512 int netdev_boot_setup_check(struct net_device *dev)
514 struct netdev_boot_setup *s = dev_boot_setup;
517 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
518 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
519 !strcmp(dev->name, s[i].name)) {
520 dev->irq = s[i].map.irq;
521 dev->base_addr = s[i].map.base_addr;
522 dev->mem_start = s[i].map.mem_start;
523 dev->mem_end = s[i].map.mem_end;
529 EXPORT_SYMBOL(netdev_boot_setup_check);
533 * netdev_boot_base - get address from boot time settings
534 * @prefix: prefix for network device
535 * @unit: id for network device
537 * Check boot time settings for the base address of device.
538 * The found settings are set for the device to be used
539 * later in the device probing.
540 * Returns 0 if no settings found.
542 unsigned long netdev_boot_base(const char *prefix, int unit)
544 const struct netdev_boot_setup *s = dev_boot_setup;
548 sprintf(name, "%s%d", prefix, unit);
551 * If device already registered then return base of 1
552 * to indicate not to probe for this interface
554 if (__dev_get_by_name(&init_net, name))
557 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
558 if (!strcmp(name, s[i].name))
559 return s[i].map.base_addr;
564 * Saves at boot time configured settings for any netdevice.
566 int __init netdev_boot_setup(char *str)
571 str = get_options(str, ARRAY_SIZE(ints), ints);
576 memset(&map, 0, sizeof(map));
580 map.base_addr = ints[2];
582 map.mem_start = ints[3];
584 map.mem_end = ints[4];
586 /* Add new entry to the list */
587 return netdev_boot_setup_add(str, &map);
590 __setup("netdev=", netdev_boot_setup);
592 /*******************************************************************************
594 * Device Interface Subroutines
596 *******************************************************************************/
599 * dev_get_iflink - get 'iflink' value of a interface
600 * @dev: targeted interface
602 * Indicates the ifindex the interface is linked to.
603 * Physical interfaces have the same 'ifindex' and 'iflink' values.
606 int dev_get_iflink(const struct net_device *dev)
608 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
609 return dev->netdev_ops->ndo_get_iflink(dev);
613 EXPORT_SYMBOL(dev_get_iflink);
616 * dev_fill_metadata_dst - Retrieve tunnel egress information.
617 * @dev: targeted interface
620 * For better visibility of tunnel traffic OVS needs to retrieve
621 * egress tunnel information for a packet. Following API allows
622 * user to get this info.
624 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
626 struct ip_tunnel_info *info;
628 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
631 info = skb_tunnel_info_unclone(skb);
634 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
637 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
639 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
642 * __dev_get_by_name - find a device by its name
643 * @net: the applicable net namespace
644 * @name: name to find
646 * Find an interface by name. Must be called under RTNL semaphore
647 * or @dev_base_lock. If the name is found a pointer to the device
648 * is returned. If the name is not found then %NULL is returned. The
649 * reference counters are not incremented so the caller must be
650 * careful with locks.
653 struct net_device *__dev_get_by_name(struct net *net, const char *name)
655 struct net_device *dev;
656 struct hlist_head *head = dev_name_hash(net, name);
658 hlist_for_each_entry(dev, head, name_hlist)
659 if (!strncmp(dev->name, name, IFNAMSIZ))
664 EXPORT_SYMBOL(__dev_get_by_name);
667 * dev_get_by_name_rcu - find a device by its name
668 * @net: the applicable net namespace
669 * @name: name to find
671 * Find an interface by name.
672 * If the name is found a pointer to the device is returned.
673 * If the name is not found then %NULL is returned.
674 * The reference counters are not incremented so the caller must be
675 * careful with locks. The caller must hold RCU lock.
678 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
680 struct net_device *dev;
681 struct hlist_head *head = dev_name_hash(net, name);
683 hlist_for_each_entry_rcu(dev, head, name_hlist)
684 if (!strncmp(dev->name, name, IFNAMSIZ))
689 EXPORT_SYMBOL(dev_get_by_name_rcu);
692 * dev_get_by_name - find a device by its name
693 * @net: the applicable net namespace
694 * @name: name to find
696 * Find an interface by name. This can be called from any
697 * context and does its own locking. The returned handle has
698 * the usage count incremented and the caller must use dev_put() to
699 * release it when it is no longer needed. %NULL is returned if no
700 * matching device is found.
703 struct net_device *dev_get_by_name(struct net *net, const char *name)
705 struct net_device *dev;
708 dev = dev_get_by_name_rcu(net, name);
714 EXPORT_SYMBOL(dev_get_by_name);
717 * __dev_get_by_index - find a device by its ifindex
718 * @net: the applicable net namespace
719 * @ifindex: index of device
721 * Search for an interface by index. Returns %NULL if the device
722 * is not found or a pointer to the device. The device has not
723 * had its reference counter increased so the caller must be careful
724 * about locking. The caller must hold either the RTNL semaphore
728 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
730 struct net_device *dev;
731 struct hlist_head *head = dev_index_hash(net, ifindex);
733 hlist_for_each_entry(dev, head, index_hlist)
734 if (dev->ifindex == ifindex)
739 EXPORT_SYMBOL(__dev_get_by_index);
742 * dev_get_by_index_rcu - find a device by its ifindex
743 * @net: the applicable net namespace
744 * @ifindex: index of device
746 * Search for an interface by index. Returns %NULL if the device
747 * is not found or a pointer to the device. The device has not
748 * had its reference counter increased so the caller must be careful
749 * about locking. The caller must hold RCU lock.
752 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
754 struct net_device *dev;
755 struct hlist_head *head = dev_index_hash(net, ifindex);
757 hlist_for_each_entry_rcu(dev, head, index_hlist)
758 if (dev->ifindex == ifindex)
763 EXPORT_SYMBOL(dev_get_by_index_rcu);
767 * dev_get_by_index - find a device by its ifindex
768 * @net: the applicable net namespace
769 * @ifindex: index of device
771 * Search for an interface by index. Returns NULL if the device
772 * is not found or a pointer to the device. The device returned has
773 * had a reference added and the pointer is safe until the user calls
774 * dev_put to indicate they have finished with it.
777 struct net_device *dev_get_by_index(struct net *net, int ifindex)
779 struct net_device *dev;
782 dev = dev_get_by_index_rcu(net, ifindex);
788 EXPORT_SYMBOL(dev_get_by_index);
791 * dev_get_by_napi_id - find a device by napi_id
792 * @napi_id: ID of the NAPI struct
794 * Search for an interface by NAPI ID. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not had
796 * its reference counter increased so the caller must be careful
797 * about locking. The caller must hold RCU lock.
800 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
802 struct napi_struct *napi;
804 WARN_ON_ONCE(!rcu_read_lock_held());
806 if (napi_id < MIN_NAPI_ID)
809 napi = napi_by_id(napi_id);
811 return napi ? napi->dev : NULL;
813 EXPORT_SYMBOL(dev_get_by_napi_id);
816 * netdev_get_name - get a netdevice name, knowing its ifindex.
817 * @net: network namespace
818 * @name: a pointer to the buffer where the name will be stored.
819 * @ifindex: the ifindex of the interface to get the name from.
821 * The use of raw_seqcount_begin() and cond_resched() before
822 * retrying is required as we want to give the writers a chance
823 * to complete when CONFIG_PREEMPT is not set.
825 int netdev_get_name(struct net *net, char *name, int ifindex)
827 struct net_device *dev;
831 seq = raw_seqcount_begin(&devnet_rename_seq);
833 dev = dev_get_by_index_rcu(net, ifindex);
839 strcpy(name, dev->name);
841 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
850 * dev_getbyhwaddr_rcu - find a device by its hardware address
851 * @net: the applicable net namespace
852 * @type: media type of device
853 * @ha: hardware address
855 * Search for an interface by MAC address. Returns NULL if the device
856 * is not found or a pointer to the device.
857 * The caller must hold RCU or RTNL.
858 * The returned device has not had its ref count increased
859 * and the caller must therefore be careful about locking
863 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
866 struct net_device *dev;
868 for_each_netdev_rcu(net, dev)
869 if (dev->type == type &&
870 !memcmp(dev->dev_addr, ha, dev->addr_len))
875 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
877 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
879 struct net_device *dev;
882 for_each_netdev(net, dev)
883 if (dev->type == type)
888 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
890 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
892 struct net_device *dev, *ret = NULL;
895 for_each_netdev_rcu(net, dev)
896 if (dev->type == type) {
904 EXPORT_SYMBOL(dev_getfirstbyhwtype);
907 * __dev_get_by_flags - find any device with given flags
908 * @net: the applicable net namespace
909 * @if_flags: IFF_* values
910 * @mask: bitmask of bits in if_flags to check
912 * Search for any interface with the given flags. Returns NULL if a device
913 * is not found or a pointer to the device. Must be called inside
914 * rtnl_lock(), and result refcount is unchanged.
917 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
920 struct net_device *dev, *ret;
925 for_each_netdev(net, dev) {
926 if (((dev->flags ^ if_flags) & mask) == 0) {
933 EXPORT_SYMBOL(__dev_get_by_flags);
936 * dev_valid_name - check if name is okay for network device
939 * Network device names need to be valid file names to
940 * to allow sysfs to work. We also disallow any kind of
943 bool dev_valid_name(const char *name)
947 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
949 if (!strcmp(name, ".") || !strcmp(name, ".."))
953 if (*name == '/' || *name == ':' || isspace(*name))
959 EXPORT_SYMBOL(dev_valid_name);
962 * __dev_alloc_name - allocate a name for a device
963 * @net: network namespace to allocate the device name in
964 * @name: name format string
965 * @buf: scratch buffer and result name string
967 * Passed a format string - eg "lt%d" it will try and find a suitable
968 * id. It scans list of devices to build up a free map, then chooses
969 * the first empty slot. The caller must hold the dev_base or rtnl lock
970 * while allocating the name and adding the device in order to avoid
972 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
973 * Returns the number of the unit assigned or a negative errno code.
976 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
980 const int max_netdevices = 8*PAGE_SIZE;
981 unsigned long *inuse;
982 struct net_device *d;
984 if (!dev_valid_name(name))
987 p = strchr(name, '%');
990 * Verify the string as this thing may have come from
991 * the user. There must be either one "%d" and no other "%"
994 if (p[1] != 'd' || strchr(p + 2, '%'))
997 /* Use one page as a bit array of possible slots */
998 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1002 for_each_netdev(net, d) {
1003 if (!sscanf(d->name, name, &i))
1005 if (i < 0 || i >= max_netdevices)
1008 /* avoid cases where sscanf is not exact inverse of printf */
1009 snprintf(buf, IFNAMSIZ, name, i);
1010 if (!strncmp(buf, d->name, IFNAMSIZ))
1014 i = find_first_zero_bit(inuse, max_netdevices);
1015 free_page((unsigned long) inuse);
1018 snprintf(buf, IFNAMSIZ, name, i);
1019 if (!__dev_get_by_name(net, buf))
1022 /* It is possible to run out of possible slots
1023 * when the name is long and there isn't enough space left
1024 * for the digits, or if all bits are used.
1029 static int dev_alloc_name_ns(struct net *net,
1030 struct net_device *dev,
1037 ret = __dev_alloc_name(net, name, buf);
1039 strlcpy(dev->name, buf, IFNAMSIZ);
1044 * dev_alloc_name - allocate a name for a device
1046 * @name: name format string
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1057 int dev_alloc_name(struct net_device *dev, const char *name)
1059 return dev_alloc_name_ns(dev_net(dev), dev, name);
1061 EXPORT_SYMBOL(dev_alloc_name);
1063 int dev_get_valid_name(struct net *net, struct net_device *dev,
1068 if (!dev_valid_name(name))
1071 if (strchr(name, '%'))
1072 return dev_alloc_name_ns(net, dev, name);
1073 else if (__dev_get_by_name(net, name))
1075 else if (dev->name != name)
1076 strlcpy(dev->name, name, IFNAMSIZ);
1080 EXPORT_SYMBOL(dev_get_valid_name);
1083 * dev_change_name - change name of a device
1085 * @newname: name (or format string) must be at least IFNAMSIZ
1087 * Change name of a device, can pass format strings "eth%d".
1090 int dev_change_name(struct net_device *dev, const char *newname)
1092 unsigned char old_assign_type;
1093 char oldname[IFNAMSIZ];
1099 BUG_ON(!dev_net(dev));
1103 /* Some auto-enslaved devices e.g. failover slaves are
1104 * special, as userspace might rename the device after
1105 * the interface had been brought up and running since
1106 * the point kernel initiated auto-enslavement. Allow
1107 * live name change even when these slave devices are
1110 * Typically, users of these auto-enslaving devices
1111 * don't actually care about slave name change, as
1112 * they are supposed to operate on master interface
1115 if (dev->flags & IFF_UP &&
1116 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1119 write_seqcount_begin(&devnet_rename_seq);
1121 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1122 write_seqcount_end(&devnet_rename_seq);
1126 memcpy(oldname, dev->name, IFNAMSIZ);
1128 err = dev_get_valid_name(net, dev, newname);
1130 write_seqcount_end(&devnet_rename_seq);
1134 if (oldname[0] && !strchr(oldname, '%'))
1135 netdev_info(dev, "renamed from %s\n", oldname);
1137 old_assign_type = dev->name_assign_type;
1138 dev->name_assign_type = NET_NAME_RENAMED;
1141 ret = device_rename(&dev->dev, dev->name);
1143 memcpy(dev->name, oldname, IFNAMSIZ);
1144 dev->name_assign_type = old_assign_type;
1145 write_seqcount_end(&devnet_rename_seq);
1149 write_seqcount_end(&devnet_rename_seq);
1151 netdev_adjacent_rename_links(dev, oldname);
1153 write_lock_bh(&dev_base_lock);
1154 hlist_del_rcu(&dev->name_hlist);
1155 write_unlock_bh(&dev_base_lock);
1159 write_lock_bh(&dev_base_lock);
1160 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1161 write_unlock_bh(&dev_base_lock);
1163 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1164 ret = notifier_to_errno(ret);
1167 /* err >= 0 after dev_alloc_name() or stores the first errno */
1170 write_seqcount_begin(&devnet_rename_seq);
1171 memcpy(dev->name, oldname, IFNAMSIZ);
1172 memcpy(oldname, newname, IFNAMSIZ);
1173 dev->name_assign_type = old_assign_type;
1174 old_assign_type = NET_NAME_RENAMED;
1177 pr_err("%s: name change rollback failed: %d\n",
1186 * dev_set_alias - change ifalias of a device
1188 * @alias: name up to IFALIASZ
1189 * @len: limit of bytes to copy from info
1191 * Set ifalias for a device,
1193 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1195 struct dev_ifalias *new_alias = NULL;
1197 if (len >= IFALIASZ)
1201 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1205 memcpy(new_alias->ifalias, alias, len);
1206 new_alias->ifalias[len] = 0;
1209 mutex_lock(&ifalias_mutex);
1210 rcu_swap_protected(dev->ifalias, new_alias,
1211 mutex_is_locked(&ifalias_mutex));
1212 mutex_unlock(&ifalias_mutex);
1215 kfree_rcu(new_alias, rcuhead);
1219 EXPORT_SYMBOL(dev_set_alias);
1222 * dev_get_alias - get ifalias of a device
1224 * @name: buffer to store name of ifalias
1225 * @len: size of buffer
1227 * get ifalias for a device. Caller must make sure dev cannot go
1228 * away, e.g. rcu read lock or own a reference count to device.
1230 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1232 const struct dev_ifalias *alias;
1236 alias = rcu_dereference(dev->ifalias);
1238 ret = snprintf(name, len, "%s", alias->ifalias);
1245 * netdev_features_change - device changes features
1246 * @dev: device to cause notification
1248 * Called to indicate a device has changed features.
1250 void netdev_features_change(struct net_device *dev)
1252 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1254 EXPORT_SYMBOL(netdev_features_change);
1257 * netdev_state_change - device changes state
1258 * @dev: device to cause notification
1260 * Called to indicate a device has changed state. This function calls
1261 * the notifier chains for netdev_chain and sends a NEWLINK message
1262 * to the routing socket.
1264 void netdev_state_change(struct net_device *dev)
1266 if (dev->flags & IFF_UP) {
1267 struct netdev_notifier_change_info change_info = {
1271 call_netdevice_notifiers_info(NETDEV_CHANGE,
1273 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1276 EXPORT_SYMBOL(netdev_state_change);
1279 * netdev_notify_peers - notify network peers about existence of @dev
1280 * @dev: network device
1282 * Generate traffic such that interested network peers are aware of
1283 * @dev, such as by generating a gratuitous ARP. This may be used when
1284 * a device wants to inform the rest of the network about some sort of
1285 * reconfiguration such as a failover event or virtual machine
1288 void netdev_notify_peers(struct net_device *dev)
1291 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1292 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1295 EXPORT_SYMBOL(netdev_notify_peers);
1297 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1299 const struct net_device_ops *ops = dev->netdev_ops;
1304 if (!netif_device_present(dev))
1307 /* Block netpoll from trying to do any rx path servicing.
1308 * If we don't do this there is a chance ndo_poll_controller
1309 * or ndo_poll may be running while we open the device
1311 netpoll_poll_disable(dev);
1313 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1314 ret = notifier_to_errno(ret);
1318 set_bit(__LINK_STATE_START, &dev->state);
1320 if (ops->ndo_validate_addr)
1321 ret = ops->ndo_validate_addr(dev);
1323 if (!ret && ops->ndo_open)
1324 ret = ops->ndo_open(dev);
1326 netpoll_poll_enable(dev);
1329 clear_bit(__LINK_STATE_START, &dev->state);
1331 dev->flags |= IFF_UP;
1332 dev_set_rx_mode(dev);
1334 add_device_randomness(dev->dev_addr, dev->addr_len);
1341 * dev_open - prepare an interface for use.
1342 * @dev: device to open
1343 * @extack: netlink extended ack
1345 * Takes a device from down to up state. The device's private open
1346 * function is invoked and then the multicast lists are loaded. Finally
1347 * the device is moved into the up state and a %NETDEV_UP message is
1348 * sent to the netdev notifier chain.
1350 * Calling this function on an active interface is a nop. On a failure
1351 * a negative errno code is returned.
1353 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1357 if (dev->flags & IFF_UP)
1360 ret = __dev_open(dev, extack);
1364 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1365 call_netdevice_notifiers(NETDEV_UP, dev);
1369 EXPORT_SYMBOL(dev_open);
1371 static void __dev_close_many(struct list_head *head)
1373 struct net_device *dev;
1378 list_for_each_entry(dev, head, close_list) {
1379 /* Temporarily disable netpoll until the interface is down */
1380 netpoll_poll_disable(dev);
1382 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1384 clear_bit(__LINK_STATE_START, &dev->state);
1386 /* Synchronize to scheduled poll. We cannot touch poll list, it
1387 * can be even on different cpu. So just clear netif_running().
1389 * dev->stop() will invoke napi_disable() on all of it's
1390 * napi_struct instances on this device.
1392 smp_mb__after_atomic(); /* Commit netif_running(). */
1395 dev_deactivate_many(head);
1397 list_for_each_entry(dev, head, close_list) {
1398 const struct net_device_ops *ops = dev->netdev_ops;
1401 * Call the device specific close. This cannot fail.
1402 * Only if device is UP
1404 * We allow it to be called even after a DETACH hot-plug
1410 dev->flags &= ~IFF_UP;
1411 netpoll_poll_enable(dev);
1415 static void __dev_close(struct net_device *dev)
1419 list_add(&dev->close_list, &single);
1420 __dev_close_many(&single);
1424 void dev_close_many(struct list_head *head, bool unlink)
1426 struct net_device *dev, *tmp;
1428 /* Remove the devices that don't need to be closed */
1429 list_for_each_entry_safe(dev, tmp, head, close_list)
1430 if (!(dev->flags & IFF_UP))
1431 list_del_init(&dev->close_list);
1433 __dev_close_many(head);
1435 list_for_each_entry_safe(dev, tmp, head, close_list) {
1436 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1437 call_netdevice_notifiers(NETDEV_DOWN, dev);
1439 list_del_init(&dev->close_list);
1442 EXPORT_SYMBOL(dev_close_many);
1445 * dev_close - shutdown an interface.
1446 * @dev: device to shutdown
1448 * This function moves an active device into down state. A
1449 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1450 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1453 void dev_close(struct net_device *dev)
1455 if (dev->flags & IFF_UP) {
1458 list_add(&dev->close_list, &single);
1459 dev_close_many(&single, true);
1463 EXPORT_SYMBOL(dev_close);
1467 * dev_disable_lro - disable Large Receive Offload on a device
1470 * Disable Large Receive Offload (LRO) on a net device. Must be
1471 * called under RTNL. This is needed if received packets may be
1472 * forwarded to another interface.
1474 void dev_disable_lro(struct net_device *dev)
1476 struct net_device *lower_dev;
1477 struct list_head *iter;
1479 dev->wanted_features &= ~NETIF_F_LRO;
1480 netdev_update_features(dev);
1482 if (unlikely(dev->features & NETIF_F_LRO))
1483 netdev_WARN(dev, "failed to disable LRO!\n");
1485 netdev_for_each_lower_dev(dev, lower_dev, iter)
1486 dev_disable_lro(lower_dev);
1488 EXPORT_SYMBOL(dev_disable_lro);
1491 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1494 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1495 * called under RTNL. This is needed if Generic XDP is installed on
1498 static void dev_disable_gro_hw(struct net_device *dev)
1500 dev->wanted_features &= ~NETIF_F_GRO_HW;
1501 netdev_update_features(dev);
1503 if (unlikely(dev->features & NETIF_F_GRO_HW))
1504 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1507 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1510 case NETDEV_##val: \
1511 return "NETDEV_" __stringify(val);
1513 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1514 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1515 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1516 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1517 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1518 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1519 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1520 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1521 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1525 return "UNKNOWN_NETDEV_EVENT";
1527 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1529 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1530 struct net_device *dev)
1532 struct netdev_notifier_info info = {
1536 return nb->notifier_call(nb, val, &info);
1539 static int dev_boot_phase = 1;
1542 * register_netdevice_notifier - register a network notifier block
1545 * Register a notifier to be called when network device events occur.
1546 * The notifier passed is linked into the kernel structures and must
1547 * not be reused until it has been unregistered. A negative errno code
1548 * is returned on a failure.
1550 * When registered all registration and up events are replayed
1551 * to the new notifier to allow device to have a race free
1552 * view of the network device list.
1555 int register_netdevice_notifier(struct notifier_block *nb)
1557 struct net_device *dev;
1558 struct net_device *last;
1562 /* Close race with setup_net() and cleanup_net() */
1563 down_write(&pernet_ops_rwsem);
1565 err = raw_notifier_chain_register(&netdev_chain, nb);
1571 for_each_netdev(net, dev) {
1572 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1573 err = notifier_to_errno(err);
1577 if (!(dev->flags & IFF_UP))
1580 call_netdevice_notifier(nb, NETDEV_UP, dev);
1586 up_write(&pernet_ops_rwsem);
1592 for_each_netdev(net, dev) {
1596 if (dev->flags & IFF_UP) {
1597 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1599 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1601 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1606 raw_notifier_chain_unregister(&netdev_chain, nb);
1609 EXPORT_SYMBOL(register_netdevice_notifier);
1612 * unregister_netdevice_notifier - unregister a network notifier block
1615 * Unregister a notifier previously registered by
1616 * register_netdevice_notifier(). The notifier is unlinked into the
1617 * kernel structures and may then be reused. A negative errno code
1618 * is returned on a failure.
1620 * After unregistering unregister and down device events are synthesized
1621 * for all devices on the device list to the removed notifier to remove
1622 * the need for special case cleanup code.
1625 int unregister_netdevice_notifier(struct notifier_block *nb)
1627 struct net_device *dev;
1631 /* Close race with setup_net() and cleanup_net() */
1632 down_write(&pernet_ops_rwsem);
1634 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1639 for_each_netdev(net, dev) {
1640 if (dev->flags & IFF_UP) {
1641 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1643 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1645 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1650 up_write(&pernet_ops_rwsem);
1653 EXPORT_SYMBOL(unregister_netdevice_notifier);
1656 * call_netdevice_notifiers_info - call all network notifier blocks
1657 * @val: value passed unmodified to notifier function
1658 * @info: notifier information data
1660 * Call all network notifier blocks. Parameters and return value
1661 * are as for raw_notifier_call_chain().
1664 static int call_netdevice_notifiers_info(unsigned long val,
1665 struct netdev_notifier_info *info)
1668 return raw_notifier_call_chain(&netdev_chain, val, info);
1671 static int call_netdevice_notifiers_extack(unsigned long val,
1672 struct net_device *dev,
1673 struct netlink_ext_ack *extack)
1675 struct netdev_notifier_info info = {
1680 return call_netdevice_notifiers_info(val, &info);
1684 * call_netdevice_notifiers - call all network notifier blocks
1685 * @val: value passed unmodified to notifier function
1686 * @dev: net_device pointer passed unmodified to notifier function
1688 * Call all network notifier blocks. Parameters and return value
1689 * are as for raw_notifier_call_chain().
1692 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1694 return call_netdevice_notifiers_extack(val, dev, NULL);
1696 EXPORT_SYMBOL(call_netdevice_notifiers);
1699 * call_netdevice_notifiers_mtu - call all network notifier blocks
1700 * @val: value passed unmodified to notifier function
1701 * @dev: net_device pointer passed unmodified to notifier function
1702 * @arg: additional u32 argument passed to the notifier function
1704 * Call all network notifier blocks. Parameters and return value
1705 * are as for raw_notifier_call_chain().
1707 static int call_netdevice_notifiers_mtu(unsigned long val,
1708 struct net_device *dev, u32 arg)
1710 struct netdev_notifier_info_ext info = {
1715 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1717 return call_netdevice_notifiers_info(val, &info.info);
1720 #ifdef CONFIG_NET_INGRESS
1721 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1723 void net_inc_ingress_queue(void)
1725 static_branch_inc(&ingress_needed_key);
1727 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1729 void net_dec_ingress_queue(void)
1731 static_branch_dec(&ingress_needed_key);
1733 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1736 #ifdef CONFIG_NET_EGRESS
1737 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1739 void net_inc_egress_queue(void)
1741 static_branch_inc(&egress_needed_key);
1743 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1745 void net_dec_egress_queue(void)
1747 static_branch_dec(&egress_needed_key);
1749 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1752 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1753 #ifdef CONFIG_JUMP_LABEL
1754 static atomic_t netstamp_needed_deferred;
1755 static atomic_t netstamp_wanted;
1756 static void netstamp_clear(struct work_struct *work)
1758 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1761 wanted = atomic_add_return(deferred, &netstamp_wanted);
1763 static_branch_enable(&netstamp_needed_key);
1765 static_branch_disable(&netstamp_needed_key);
1767 static DECLARE_WORK(netstamp_work, netstamp_clear);
1770 void net_enable_timestamp(void)
1772 #ifdef CONFIG_JUMP_LABEL
1776 wanted = atomic_read(&netstamp_wanted);
1779 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1782 atomic_inc(&netstamp_needed_deferred);
1783 schedule_work(&netstamp_work);
1785 static_branch_inc(&netstamp_needed_key);
1788 EXPORT_SYMBOL(net_enable_timestamp);
1790 void net_disable_timestamp(void)
1792 #ifdef CONFIG_JUMP_LABEL
1796 wanted = atomic_read(&netstamp_wanted);
1799 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1802 atomic_dec(&netstamp_needed_deferred);
1803 schedule_work(&netstamp_work);
1805 static_branch_dec(&netstamp_needed_key);
1808 EXPORT_SYMBOL(net_disable_timestamp);
1810 static inline void net_timestamp_set(struct sk_buff *skb)
1813 if (static_branch_unlikely(&netstamp_needed_key))
1814 __net_timestamp(skb);
1817 #define net_timestamp_check(COND, SKB) \
1818 if (static_branch_unlikely(&netstamp_needed_key)) { \
1819 if ((COND) && !(SKB)->tstamp) \
1820 __net_timestamp(SKB); \
1823 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1827 if (!(dev->flags & IFF_UP))
1830 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1831 if (skb->len <= len)
1834 /* if TSO is enabled, we don't care about the length as the packet
1835 * could be forwarded without being segmented before
1837 if (skb_is_gso(skb))
1842 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1844 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1846 int ret = ____dev_forward_skb(dev, skb);
1849 skb->protocol = eth_type_trans(skb, dev);
1850 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1855 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1858 * dev_forward_skb - loopback an skb to another netif
1860 * @dev: destination network device
1861 * @skb: buffer to forward
1864 * NET_RX_SUCCESS (no congestion)
1865 * NET_RX_DROP (packet was dropped, but freed)
1867 * dev_forward_skb can be used for injecting an skb from the
1868 * start_xmit function of one device into the receive queue
1869 * of another device.
1871 * The receiving device may be in another namespace, so
1872 * we have to clear all information in the skb that could
1873 * impact namespace isolation.
1875 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1877 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1879 EXPORT_SYMBOL_GPL(dev_forward_skb);
1881 static inline int deliver_skb(struct sk_buff *skb,
1882 struct packet_type *pt_prev,
1883 struct net_device *orig_dev)
1885 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1887 refcount_inc(&skb->users);
1888 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1891 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1892 struct packet_type **pt,
1893 struct net_device *orig_dev,
1895 struct list_head *ptype_list)
1897 struct packet_type *ptype, *pt_prev = *pt;
1899 list_for_each_entry_rcu(ptype, ptype_list, list) {
1900 if (ptype->type != type)
1903 deliver_skb(skb, pt_prev, orig_dev);
1909 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1911 if (!ptype->af_packet_priv || !skb->sk)
1914 if (ptype->id_match)
1915 return ptype->id_match(ptype, skb->sk);
1916 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1923 * dev_nit_active - return true if any network interface taps are in use
1925 * @dev: network device to check for the presence of taps
1927 bool dev_nit_active(struct net_device *dev)
1929 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1931 EXPORT_SYMBOL_GPL(dev_nit_active);
1934 * Support routine. Sends outgoing frames to any network
1935 * taps currently in use.
1938 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1940 struct packet_type *ptype;
1941 struct sk_buff *skb2 = NULL;
1942 struct packet_type *pt_prev = NULL;
1943 struct list_head *ptype_list = &ptype_all;
1947 list_for_each_entry_rcu(ptype, ptype_list, list) {
1948 if (ptype->ignore_outgoing)
1951 /* Never send packets back to the socket
1954 if (skb_loop_sk(ptype, skb))
1958 deliver_skb(skb2, pt_prev, skb->dev);
1963 /* need to clone skb, done only once */
1964 skb2 = skb_clone(skb, GFP_ATOMIC);
1968 net_timestamp_set(skb2);
1970 /* skb->nh should be correctly
1971 * set by sender, so that the second statement is
1972 * just protection against buggy protocols.
1974 skb_reset_mac_header(skb2);
1976 if (skb_network_header(skb2) < skb2->data ||
1977 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1978 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1979 ntohs(skb2->protocol),
1981 skb_reset_network_header(skb2);
1984 skb2->transport_header = skb2->network_header;
1985 skb2->pkt_type = PACKET_OUTGOING;
1989 if (ptype_list == &ptype_all) {
1990 ptype_list = &dev->ptype_all;
1995 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1996 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2002 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2005 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2006 * @dev: Network device
2007 * @txq: number of queues available
2009 * If real_num_tx_queues is changed the tc mappings may no longer be
2010 * valid. To resolve this verify the tc mapping remains valid and if
2011 * not NULL the mapping. With no priorities mapping to this
2012 * offset/count pair it will no longer be used. In the worst case TC0
2013 * is invalid nothing can be done so disable priority mappings. If is
2014 * expected that drivers will fix this mapping if they can before
2015 * calling netif_set_real_num_tx_queues.
2017 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2020 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2022 /* If TC0 is invalidated disable TC mapping */
2023 if (tc->offset + tc->count > txq) {
2024 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2029 /* Invalidated prio to tc mappings set to TC0 */
2030 for (i = 1; i < TC_BITMASK + 1; i++) {
2031 int q = netdev_get_prio_tc_map(dev, i);
2033 tc = &dev->tc_to_txq[q];
2034 if (tc->offset + tc->count > txq) {
2035 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2037 netdev_set_prio_tc_map(dev, i, 0);
2042 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2045 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2048 /* walk through the TCs and see if it falls into any of them */
2049 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2050 if ((txq - tc->offset) < tc->count)
2054 /* didn't find it, just return -1 to indicate no match */
2060 EXPORT_SYMBOL(netdev_txq_to_tc);
2063 struct static_key xps_needed __read_mostly;
2064 EXPORT_SYMBOL(xps_needed);
2065 struct static_key xps_rxqs_needed __read_mostly;
2066 EXPORT_SYMBOL(xps_rxqs_needed);
2067 static DEFINE_MUTEX(xps_map_mutex);
2068 #define xmap_dereference(P) \
2069 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2071 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2074 struct xps_map *map = NULL;
2078 map = xmap_dereference(dev_maps->attr_map[tci]);
2082 for (pos = map->len; pos--;) {
2083 if (map->queues[pos] != index)
2087 map->queues[pos] = map->queues[--map->len];
2091 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2092 kfree_rcu(map, rcu);
2099 static bool remove_xps_queue_cpu(struct net_device *dev,
2100 struct xps_dev_maps *dev_maps,
2101 int cpu, u16 offset, u16 count)
2103 int num_tc = dev->num_tc ? : 1;
2104 bool active = false;
2107 for (tci = cpu * num_tc; num_tc--; tci++) {
2110 for (i = count, j = offset; i--; j++) {
2111 if (!remove_xps_queue(dev_maps, tci, j))
2121 static void reset_xps_maps(struct net_device *dev,
2122 struct xps_dev_maps *dev_maps,
2126 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2127 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2129 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2131 static_key_slow_dec_cpuslocked(&xps_needed);
2132 kfree_rcu(dev_maps, rcu);
2135 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2136 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2137 u16 offset, u16 count, bool is_rxqs_map)
2139 bool active = false;
2142 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2144 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2147 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2150 for (i = offset + (count - 1); count--; i--) {
2151 netdev_queue_numa_node_write(
2152 netdev_get_tx_queue(dev, i),
2158 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2161 const unsigned long *possible_mask = NULL;
2162 struct xps_dev_maps *dev_maps;
2163 unsigned int nr_ids;
2165 if (!static_key_false(&xps_needed))
2169 mutex_lock(&xps_map_mutex);
2171 if (static_key_false(&xps_rxqs_needed)) {
2172 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2174 nr_ids = dev->num_rx_queues;
2175 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2176 offset, count, true);
2180 dev_maps = xmap_dereference(dev->xps_cpus_map);
2184 if (num_possible_cpus() > 1)
2185 possible_mask = cpumask_bits(cpu_possible_mask);
2186 nr_ids = nr_cpu_ids;
2187 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2191 mutex_unlock(&xps_map_mutex);
2195 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2197 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2200 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2201 u16 index, bool is_rxqs_map)
2203 struct xps_map *new_map;
2204 int alloc_len = XPS_MIN_MAP_ALLOC;
2207 for (pos = 0; map && pos < map->len; pos++) {
2208 if (map->queues[pos] != index)
2213 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2215 if (pos < map->alloc_len)
2218 alloc_len = map->alloc_len * 2;
2221 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2225 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2227 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2228 cpu_to_node(attr_index));
2232 for (i = 0; i < pos; i++)
2233 new_map->queues[i] = map->queues[i];
2234 new_map->alloc_len = alloc_len;
2240 /* Must be called under cpus_read_lock */
2241 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2242 u16 index, bool is_rxqs_map)
2244 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2245 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2246 int i, j, tci, numa_node_id = -2;
2247 int maps_sz, num_tc = 1, tc = 0;
2248 struct xps_map *map, *new_map;
2249 bool active = false;
2250 unsigned int nr_ids;
2253 /* Do not allow XPS on subordinate device directly */
2254 num_tc = dev->num_tc;
2258 /* If queue belongs to subordinate dev use its map */
2259 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2261 tc = netdev_txq_to_tc(dev, index);
2266 mutex_lock(&xps_map_mutex);
2268 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2269 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2270 nr_ids = dev->num_rx_queues;
2272 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2273 if (num_possible_cpus() > 1) {
2274 online_mask = cpumask_bits(cpu_online_mask);
2275 possible_mask = cpumask_bits(cpu_possible_mask);
2277 dev_maps = xmap_dereference(dev->xps_cpus_map);
2278 nr_ids = nr_cpu_ids;
2281 if (maps_sz < L1_CACHE_BYTES)
2282 maps_sz = L1_CACHE_BYTES;
2284 /* allocate memory for queue storage */
2285 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2288 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2289 if (!new_dev_maps) {
2290 mutex_unlock(&xps_map_mutex);
2294 tci = j * num_tc + tc;
2295 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2298 map = expand_xps_map(map, j, index, is_rxqs_map);
2302 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2306 goto out_no_new_maps;
2309 /* Increment static keys at most once per type */
2310 static_key_slow_inc_cpuslocked(&xps_needed);
2312 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2315 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2317 /* copy maps belonging to foreign traffic classes */
2318 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2319 /* fill in the new device map from the old device map */
2320 map = xmap_dereference(dev_maps->attr_map[tci]);
2321 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2324 /* We need to explicitly update tci as prevous loop
2325 * could break out early if dev_maps is NULL.
2327 tci = j * num_tc + tc;
2329 if (netif_attr_test_mask(j, mask, nr_ids) &&
2330 netif_attr_test_online(j, online_mask, nr_ids)) {
2331 /* add tx-queue to CPU/rx-queue maps */
2334 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2335 while ((pos < map->len) && (map->queues[pos] != index))
2338 if (pos == map->len)
2339 map->queues[map->len++] = index;
2342 if (numa_node_id == -2)
2343 numa_node_id = cpu_to_node(j);
2344 else if (numa_node_id != cpu_to_node(j))
2348 } else if (dev_maps) {
2349 /* fill in the new device map from the old device map */
2350 map = xmap_dereference(dev_maps->attr_map[tci]);
2351 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2354 /* copy maps belonging to foreign traffic classes */
2355 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2356 /* fill in the new device map from the old device map */
2357 map = xmap_dereference(dev_maps->attr_map[tci]);
2358 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2363 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2365 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2367 /* Cleanup old maps */
2369 goto out_no_old_maps;
2371 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2373 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2374 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2375 map = xmap_dereference(dev_maps->attr_map[tci]);
2376 if (map && map != new_map)
2377 kfree_rcu(map, rcu);
2381 kfree_rcu(dev_maps, rcu);
2384 dev_maps = new_dev_maps;
2389 /* update Tx queue numa node */
2390 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2391 (numa_node_id >= 0) ?
2392 numa_node_id : NUMA_NO_NODE);
2398 /* removes tx-queue from unused CPUs/rx-queues */
2399 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2401 for (i = tc, tci = j * num_tc; i--; tci++)
2402 active |= remove_xps_queue(dev_maps, tci, index);
2403 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2404 !netif_attr_test_online(j, online_mask, nr_ids))
2405 active |= remove_xps_queue(dev_maps, tci, index);
2406 for (i = num_tc - tc, tci++; --i; tci++)
2407 active |= remove_xps_queue(dev_maps, tci, index);
2410 /* free map if not active */
2412 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2415 mutex_unlock(&xps_map_mutex);
2419 /* remove any maps that we added */
2420 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2422 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2423 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2425 xmap_dereference(dev_maps->attr_map[tci]) :
2427 if (new_map && new_map != map)
2432 mutex_unlock(&xps_map_mutex);
2434 kfree(new_dev_maps);
2437 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2439 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2445 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2450 EXPORT_SYMBOL(netif_set_xps_queue);
2453 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2455 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2457 /* Unbind any subordinate channels */
2458 while (txq-- != &dev->_tx[0]) {
2460 netdev_unbind_sb_channel(dev, txq->sb_dev);
2464 void netdev_reset_tc(struct net_device *dev)
2467 netif_reset_xps_queues_gt(dev, 0);
2469 netdev_unbind_all_sb_channels(dev);
2471 /* Reset TC configuration of device */
2473 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2474 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2476 EXPORT_SYMBOL(netdev_reset_tc);
2478 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2480 if (tc >= dev->num_tc)
2484 netif_reset_xps_queues(dev, offset, count);
2486 dev->tc_to_txq[tc].count = count;
2487 dev->tc_to_txq[tc].offset = offset;
2490 EXPORT_SYMBOL(netdev_set_tc_queue);
2492 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2494 if (num_tc > TC_MAX_QUEUE)
2498 netif_reset_xps_queues_gt(dev, 0);
2500 netdev_unbind_all_sb_channels(dev);
2502 dev->num_tc = num_tc;
2505 EXPORT_SYMBOL(netdev_set_num_tc);
2507 void netdev_unbind_sb_channel(struct net_device *dev,
2508 struct net_device *sb_dev)
2510 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2513 netif_reset_xps_queues_gt(sb_dev, 0);
2515 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2516 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2518 while (txq-- != &dev->_tx[0]) {
2519 if (txq->sb_dev == sb_dev)
2523 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2525 int netdev_bind_sb_channel_queue(struct net_device *dev,
2526 struct net_device *sb_dev,
2527 u8 tc, u16 count, u16 offset)
2529 /* Make certain the sb_dev and dev are already configured */
2530 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2533 /* We cannot hand out queues we don't have */
2534 if ((offset + count) > dev->real_num_tx_queues)
2537 /* Record the mapping */
2538 sb_dev->tc_to_txq[tc].count = count;
2539 sb_dev->tc_to_txq[tc].offset = offset;
2541 /* Provide a way for Tx queue to find the tc_to_txq map or
2542 * XPS map for itself.
2545 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2549 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2551 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2553 /* Do not use a multiqueue device to represent a subordinate channel */
2554 if (netif_is_multiqueue(dev))
2557 /* We allow channels 1 - 32767 to be used for subordinate channels.
2558 * Channel 0 is meant to be "native" mode and used only to represent
2559 * the main root device. We allow writing 0 to reset the device back
2560 * to normal mode after being used as a subordinate channel.
2562 if (channel > S16_MAX)
2565 dev->num_tc = -channel;
2569 EXPORT_SYMBOL(netdev_set_sb_channel);
2572 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2573 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2575 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2580 disabling = txq < dev->real_num_tx_queues;
2582 if (txq < 1 || txq > dev->num_tx_queues)
2585 if (dev->reg_state == NETREG_REGISTERED ||
2586 dev->reg_state == NETREG_UNREGISTERING) {
2589 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2595 netif_setup_tc(dev, txq);
2597 dev->real_num_tx_queues = txq;
2601 qdisc_reset_all_tx_gt(dev, txq);
2603 netif_reset_xps_queues_gt(dev, txq);
2607 dev->real_num_tx_queues = txq;
2612 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2616 * netif_set_real_num_rx_queues - set actual number of RX queues used
2617 * @dev: Network device
2618 * @rxq: Actual number of RX queues
2620 * This must be called either with the rtnl_lock held or before
2621 * registration of the net device. Returns 0 on success, or a
2622 * negative error code. If called before registration, it always
2625 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2629 if (rxq < 1 || rxq > dev->num_rx_queues)
2632 if (dev->reg_state == NETREG_REGISTERED) {
2635 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2641 dev->real_num_rx_queues = rxq;
2644 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2648 * netif_get_num_default_rss_queues - default number of RSS queues
2650 * This routine should set an upper limit on the number of RSS queues
2651 * used by default by multiqueue devices.
2653 int netif_get_num_default_rss_queues(void)
2655 return is_kdump_kernel() ?
2656 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2658 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2660 static void __netif_reschedule(struct Qdisc *q)
2662 struct softnet_data *sd;
2663 unsigned long flags;
2665 local_irq_save(flags);
2666 sd = this_cpu_ptr(&softnet_data);
2667 q->next_sched = NULL;
2668 *sd->output_queue_tailp = q;
2669 sd->output_queue_tailp = &q->next_sched;
2670 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2671 local_irq_restore(flags);
2674 void __netif_schedule(struct Qdisc *q)
2676 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2677 __netif_reschedule(q);
2679 EXPORT_SYMBOL(__netif_schedule);
2681 struct dev_kfree_skb_cb {
2682 enum skb_free_reason reason;
2685 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2687 return (struct dev_kfree_skb_cb *)skb->cb;
2690 void netif_schedule_queue(struct netdev_queue *txq)
2693 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2694 struct Qdisc *q = rcu_dereference(txq->qdisc);
2696 __netif_schedule(q);
2700 EXPORT_SYMBOL(netif_schedule_queue);
2702 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2704 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2708 q = rcu_dereference(dev_queue->qdisc);
2709 __netif_schedule(q);
2713 EXPORT_SYMBOL(netif_tx_wake_queue);
2715 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2717 unsigned long flags;
2722 if (likely(refcount_read(&skb->users) == 1)) {
2724 refcount_set(&skb->users, 0);
2725 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2728 get_kfree_skb_cb(skb)->reason = reason;
2729 local_irq_save(flags);
2730 skb->next = __this_cpu_read(softnet_data.completion_queue);
2731 __this_cpu_write(softnet_data.completion_queue, skb);
2732 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2733 local_irq_restore(flags);
2735 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2737 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2739 if (in_irq() || irqs_disabled())
2740 __dev_kfree_skb_irq(skb, reason);
2744 EXPORT_SYMBOL(__dev_kfree_skb_any);
2748 * netif_device_detach - mark device as removed
2749 * @dev: network device
2751 * Mark device as removed from system and therefore no longer available.
2753 void netif_device_detach(struct net_device *dev)
2755 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2756 netif_running(dev)) {
2757 netif_tx_stop_all_queues(dev);
2760 EXPORT_SYMBOL(netif_device_detach);
2763 * netif_device_attach - mark device as attached
2764 * @dev: network device
2766 * Mark device as attached from system and restart if needed.
2768 void netif_device_attach(struct net_device *dev)
2770 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2771 netif_running(dev)) {
2772 netif_tx_wake_all_queues(dev);
2773 __netdev_watchdog_up(dev);
2776 EXPORT_SYMBOL(netif_device_attach);
2779 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2780 * to be used as a distribution range.
2782 static u16 skb_tx_hash(const struct net_device *dev,
2783 const struct net_device *sb_dev,
2784 struct sk_buff *skb)
2788 u16 qcount = dev->real_num_tx_queues;
2791 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2793 qoffset = sb_dev->tc_to_txq[tc].offset;
2794 qcount = sb_dev->tc_to_txq[tc].count;
2797 if (skb_rx_queue_recorded(skb)) {
2798 hash = skb_get_rx_queue(skb);
2799 while (unlikely(hash >= qcount))
2801 return hash + qoffset;
2804 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2807 static void skb_warn_bad_offload(const struct sk_buff *skb)
2809 static const netdev_features_t null_features;
2810 struct net_device *dev = skb->dev;
2811 const char *name = "";
2813 if (!net_ratelimit())
2817 if (dev->dev.parent)
2818 name = dev_driver_string(dev->dev.parent);
2820 name = netdev_name(dev);
2822 skb_dump(KERN_WARNING, skb, false);
2823 WARN(1, "%s: caps=(%pNF, %pNF)\n",
2824 name, dev ? &dev->features : &null_features,
2825 skb->sk ? &skb->sk->sk_route_caps : &null_features);
2829 * Invalidate hardware checksum when packet is to be mangled, and
2830 * complete checksum manually on outgoing path.
2832 int skb_checksum_help(struct sk_buff *skb)
2835 int ret = 0, offset;
2837 if (skb->ip_summed == CHECKSUM_COMPLETE)
2838 goto out_set_summed;
2840 if (unlikely(skb_shinfo(skb)->gso_size)) {
2841 skb_warn_bad_offload(skb);
2845 /* Before computing a checksum, we should make sure no frag could
2846 * be modified by an external entity : checksum could be wrong.
2848 if (skb_has_shared_frag(skb)) {
2849 ret = __skb_linearize(skb);
2854 offset = skb_checksum_start_offset(skb);
2855 BUG_ON(offset >= skb_headlen(skb));
2856 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2858 offset += skb->csum_offset;
2859 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2861 if (skb_cloned(skb) &&
2862 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2863 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2868 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2870 skb->ip_summed = CHECKSUM_NONE;
2874 EXPORT_SYMBOL(skb_checksum_help);
2876 int skb_crc32c_csum_help(struct sk_buff *skb)
2879 int ret = 0, offset, start;
2881 if (skb->ip_summed != CHECKSUM_PARTIAL)
2884 if (unlikely(skb_is_gso(skb)))
2887 /* Before computing a checksum, we should make sure no frag could
2888 * be modified by an external entity : checksum could be wrong.
2890 if (unlikely(skb_has_shared_frag(skb))) {
2891 ret = __skb_linearize(skb);
2895 start = skb_checksum_start_offset(skb);
2896 offset = start + offsetof(struct sctphdr, checksum);
2897 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2901 if (skb_cloned(skb) &&
2902 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2903 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2907 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2908 skb->len - start, ~(__u32)0,
2910 *(__le32 *)(skb->data + offset) = crc32c_csum;
2911 skb->ip_summed = CHECKSUM_NONE;
2912 skb->csum_not_inet = 0;
2917 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2919 __be16 type = skb->protocol;
2921 /* Tunnel gso handlers can set protocol to ethernet. */
2922 if (type == htons(ETH_P_TEB)) {
2925 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2928 eth = (struct ethhdr *)skb->data;
2929 type = eth->h_proto;
2932 return __vlan_get_protocol(skb, type, depth);
2936 * skb_mac_gso_segment - mac layer segmentation handler.
2937 * @skb: buffer to segment
2938 * @features: features for the output path (see dev->features)
2940 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2941 netdev_features_t features)
2943 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2944 struct packet_offload *ptype;
2945 int vlan_depth = skb->mac_len;
2946 __be16 type = skb_network_protocol(skb, &vlan_depth);
2948 if (unlikely(!type))
2949 return ERR_PTR(-EINVAL);
2951 __skb_pull(skb, vlan_depth);
2954 list_for_each_entry_rcu(ptype, &offload_base, list) {
2955 if (ptype->type == type && ptype->callbacks.gso_segment) {
2956 segs = ptype->callbacks.gso_segment(skb, features);
2962 __skb_push(skb, skb->data - skb_mac_header(skb));
2966 EXPORT_SYMBOL(skb_mac_gso_segment);
2969 /* openvswitch calls this on rx path, so we need a different check.
2971 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2974 return skb->ip_summed != CHECKSUM_PARTIAL &&
2975 skb->ip_summed != CHECKSUM_UNNECESSARY;
2977 return skb->ip_summed == CHECKSUM_NONE;
2981 * __skb_gso_segment - Perform segmentation on skb.
2982 * @skb: buffer to segment
2983 * @features: features for the output path (see dev->features)
2984 * @tx_path: whether it is called in TX path
2986 * This function segments the given skb and returns a list of segments.
2988 * It may return NULL if the skb requires no segmentation. This is
2989 * only possible when GSO is used for verifying header integrity.
2991 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2993 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2994 netdev_features_t features, bool tx_path)
2996 struct sk_buff *segs;
2998 if (unlikely(skb_needs_check(skb, tx_path))) {
3001 /* We're going to init ->check field in TCP or UDP header */
3002 err = skb_cow_head(skb, 0);
3004 return ERR_PTR(err);
3007 /* Only report GSO partial support if it will enable us to
3008 * support segmentation on this frame without needing additional
3011 if (features & NETIF_F_GSO_PARTIAL) {
3012 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3013 struct net_device *dev = skb->dev;
3015 partial_features |= dev->features & dev->gso_partial_features;
3016 if (!skb_gso_ok(skb, features | partial_features))
3017 features &= ~NETIF_F_GSO_PARTIAL;
3020 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3021 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3023 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3024 SKB_GSO_CB(skb)->encap_level = 0;
3026 skb_reset_mac_header(skb);
3027 skb_reset_mac_len(skb);
3029 segs = skb_mac_gso_segment(skb, features);
3031 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3032 skb_warn_bad_offload(skb);
3036 EXPORT_SYMBOL(__skb_gso_segment);
3038 /* Take action when hardware reception checksum errors are detected. */
3040 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3042 if (net_ratelimit()) {
3043 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3044 skb_dump(KERN_ERR, skb, true);
3048 EXPORT_SYMBOL(netdev_rx_csum_fault);
3051 /* XXX: check that highmem exists at all on the given machine. */
3052 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3054 #ifdef CONFIG_HIGHMEM
3057 if (!(dev->features & NETIF_F_HIGHDMA)) {
3058 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3059 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3061 if (PageHighMem(skb_frag_page(frag)))
3069 /* If MPLS offload request, verify we are testing hardware MPLS features
3070 * instead of standard features for the netdev.
3072 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3073 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3074 netdev_features_t features,
3077 if (eth_p_mpls(type))
3078 features &= skb->dev->mpls_features;
3083 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3084 netdev_features_t features,
3091 static netdev_features_t harmonize_features(struct sk_buff *skb,
3092 netdev_features_t features)
3097 type = skb_network_protocol(skb, &tmp);
3098 features = net_mpls_features(skb, features, type);
3100 if (skb->ip_summed != CHECKSUM_NONE &&
3101 !can_checksum_protocol(features, type)) {
3102 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3104 if (illegal_highdma(skb->dev, skb))
3105 features &= ~NETIF_F_SG;
3110 netdev_features_t passthru_features_check(struct sk_buff *skb,
3111 struct net_device *dev,
3112 netdev_features_t features)
3116 EXPORT_SYMBOL(passthru_features_check);
3118 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3119 struct net_device *dev,
3120 netdev_features_t features)
3122 return vlan_features_check(skb, features);
3125 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3126 struct net_device *dev,
3127 netdev_features_t features)
3129 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3131 if (gso_segs > dev->gso_max_segs)
3132 return features & ~NETIF_F_GSO_MASK;
3134 /* Support for GSO partial features requires software
3135 * intervention before we can actually process the packets
3136 * so we need to strip support for any partial features now
3137 * and we can pull them back in after we have partially
3138 * segmented the frame.
3140 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3141 features &= ~dev->gso_partial_features;
3143 /* Make sure to clear the IPv4 ID mangling feature if the
3144 * IPv4 header has the potential to be fragmented.
3146 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3147 struct iphdr *iph = skb->encapsulation ?
3148 inner_ip_hdr(skb) : ip_hdr(skb);
3150 if (!(iph->frag_off & htons(IP_DF)))
3151 features &= ~NETIF_F_TSO_MANGLEID;
3157 netdev_features_t netif_skb_features(struct sk_buff *skb)
3159 struct net_device *dev = skb->dev;
3160 netdev_features_t features = dev->features;
3162 if (skb_is_gso(skb))
3163 features = gso_features_check(skb, dev, features);
3165 /* If encapsulation offload request, verify we are testing
3166 * hardware encapsulation features instead of standard
3167 * features for the netdev
3169 if (skb->encapsulation)
3170 features &= dev->hw_enc_features;
3172 if (skb_vlan_tagged(skb))
3173 features = netdev_intersect_features(features,
3174 dev->vlan_features |
3175 NETIF_F_HW_VLAN_CTAG_TX |
3176 NETIF_F_HW_VLAN_STAG_TX);
3178 if (dev->netdev_ops->ndo_features_check)
3179 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3182 features &= dflt_features_check(skb, dev, features);
3184 return harmonize_features(skb, features);
3186 EXPORT_SYMBOL(netif_skb_features);
3188 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3189 struct netdev_queue *txq, bool more)
3194 if (dev_nit_active(dev))
3195 dev_queue_xmit_nit(skb, dev);
3198 trace_net_dev_start_xmit(skb, dev);
3199 rc = netdev_start_xmit(skb, dev, txq, more);
3200 trace_net_dev_xmit(skb, rc, dev, len);
3205 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3206 struct netdev_queue *txq, int *ret)
3208 struct sk_buff *skb = first;
3209 int rc = NETDEV_TX_OK;
3212 struct sk_buff *next = skb->next;
3214 skb_mark_not_on_list(skb);
3215 rc = xmit_one(skb, dev, txq, next != NULL);
3216 if (unlikely(!dev_xmit_complete(rc))) {
3222 if (netif_tx_queue_stopped(txq) && skb) {
3223 rc = NETDEV_TX_BUSY;
3233 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3234 netdev_features_t features)
3236 if (skb_vlan_tag_present(skb) &&
3237 !vlan_hw_offload_capable(features, skb->vlan_proto))
3238 skb = __vlan_hwaccel_push_inside(skb);
3242 int skb_csum_hwoffload_help(struct sk_buff *skb,
3243 const netdev_features_t features)
3245 if (unlikely(skb->csum_not_inet))
3246 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3247 skb_crc32c_csum_help(skb);
3249 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3251 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3253 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3255 netdev_features_t features;
3257 features = netif_skb_features(skb);
3258 skb = validate_xmit_vlan(skb, features);
3262 skb = sk_validate_xmit_skb(skb, dev);
3266 if (netif_needs_gso(skb, features)) {
3267 struct sk_buff *segs;
3269 segs = skb_gso_segment(skb, features);
3277 if (skb_needs_linearize(skb, features) &&
3278 __skb_linearize(skb))
3281 /* If packet is not checksummed and device does not
3282 * support checksumming for this protocol, complete
3283 * checksumming here.
3285 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3286 if (skb->encapsulation)
3287 skb_set_inner_transport_header(skb,
3288 skb_checksum_start_offset(skb));
3290 skb_set_transport_header(skb,
3291 skb_checksum_start_offset(skb));
3292 if (skb_csum_hwoffload_help(skb, features))
3297 skb = validate_xmit_xfrm(skb, features, again);
3304 atomic_long_inc(&dev->tx_dropped);
3308 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3310 struct sk_buff *next, *head = NULL, *tail;
3312 for (; skb != NULL; skb = next) {
3314 skb_mark_not_on_list(skb);
3316 /* in case skb wont be segmented, point to itself */
3319 skb = validate_xmit_skb(skb, dev, again);
3327 /* If skb was segmented, skb->prev points to
3328 * the last segment. If not, it still contains skb.
3334 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3336 static void qdisc_pkt_len_init(struct sk_buff *skb)
3338 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3340 qdisc_skb_cb(skb)->pkt_len = skb->len;
3342 /* To get more precise estimation of bytes sent on wire,
3343 * we add to pkt_len the headers size of all segments
3345 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3346 unsigned int hdr_len;
3347 u16 gso_segs = shinfo->gso_segs;
3349 /* mac layer + network layer */
3350 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3352 /* + transport layer */
3353 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3354 const struct tcphdr *th;
3355 struct tcphdr _tcphdr;
3357 th = skb_header_pointer(skb, skb_transport_offset(skb),
3358 sizeof(_tcphdr), &_tcphdr);
3360 hdr_len += __tcp_hdrlen(th);
3362 struct udphdr _udphdr;
3364 if (skb_header_pointer(skb, skb_transport_offset(skb),
3365 sizeof(_udphdr), &_udphdr))
3366 hdr_len += sizeof(struct udphdr);
3369 if (shinfo->gso_type & SKB_GSO_DODGY)
3370 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3373 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3377 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3378 struct net_device *dev,
3379 struct netdev_queue *txq)
3381 spinlock_t *root_lock = qdisc_lock(q);
3382 struct sk_buff *to_free = NULL;
3386 qdisc_calculate_pkt_len(skb, q);
3388 if (q->flags & TCQ_F_NOLOCK) {
3389 if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3390 qdisc_run_begin(q)) {
3391 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3393 __qdisc_drop(skb, &to_free);
3397 qdisc_bstats_cpu_update(q, skb);
3399 rc = NET_XMIT_SUCCESS;
3400 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3406 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3410 if (unlikely(to_free))
3411 kfree_skb_list(to_free);
3416 * Heuristic to force contended enqueues to serialize on a
3417 * separate lock before trying to get qdisc main lock.
3418 * This permits qdisc->running owner to get the lock more
3419 * often and dequeue packets faster.
3421 contended = qdisc_is_running(q);
3422 if (unlikely(contended))
3423 spin_lock(&q->busylock);
3425 spin_lock(root_lock);
3426 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3427 __qdisc_drop(skb, &to_free);
3429 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3430 qdisc_run_begin(q)) {
3432 * This is a work-conserving queue; there are no old skbs
3433 * waiting to be sent out; and the qdisc is not running -
3434 * xmit the skb directly.
3437 qdisc_bstats_update(q, skb);
3439 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3440 if (unlikely(contended)) {
3441 spin_unlock(&q->busylock);
3448 rc = NET_XMIT_SUCCESS;
3450 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3451 if (qdisc_run_begin(q)) {
3452 if (unlikely(contended)) {
3453 spin_unlock(&q->busylock);
3460 spin_unlock(root_lock);
3461 if (unlikely(to_free))
3462 kfree_skb_list(to_free);
3463 if (unlikely(contended))
3464 spin_unlock(&q->busylock);
3468 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3469 static void skb_update_prio(struct sk_buff *skb)
3471 const struct netprio_map *map;
3472 const struct sock *sk;
3473 unsigned int prioidx;
3477 map = rcu_dereference_bh(skb->dev->priomap);
3480 sk = skb_to_full_sk(skb);
3484 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3486 if (prioidx < map->priomap_len)
3487 skb->priority = map->priomap[prioidx];
3490 #define skb_update_prio(skb)
3494 * dev_loopback_xmit - loop back @skb
3495 * @net: network namespace this loopback is happening in
3496 * @sk: sk needed to be a netfilter okfn
3497 * @skb: buffer to transmit
3499 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3501 skb_reset_mac_header(skb);
3502 __skb_pull(skb, skb_network_offset(skb));
3503 skb->pkt_type = PACKET_LOOPBACK;
3504 skb->ip_summed = CHECKSUM_UNNECESSARY;
3505 WARN_ON(!skb_dst(skb));
3510 EXPORT_SYMBOL(dev_loopback_xmit);
3512 #ifdef CONFIG_NET_EGRESS
3513 static struct sk_buff *
3514 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3516 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3517 struct tcf_result cl_res;
3522 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3523 mini_qdisc_bstats_cpu_update(miniq, skb);
3525 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3527 case TC_ACT_RECLASSIFY:
3528 skb->tc_index = TC_H_MIN(cl_res.classid);
3531 mini_qdisc_qstats_cpu_drop(miniq);
3532 *ret = NET_XMIT_DROP;
3538 *ret = NET_XMIT_SUCCESS;
3541 case TC_ACT_REDIRECT:
3542 /* No need to push/pop skb's mac_header here on egress! */
3543 skb_do_redirect(skb);
3544 *ret = NET_XMIT_SUCCESS;
3552 #endif /* CONFIG_NET_EGRESS */
3555 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3556 struct xps_dev_maps *dev_maps, unsigned int tci)
3558 struct xps_map *map;
3559 int queue_index = -1;
3563 tci += netdev_get_prio_tc_map(dev, skb->priority);
3566 map = rcu_dereference(dev_maps->attr_map[tci]);
3569 queue_index = map->queues[0];
3571 queue_index = map->queues[reciprocal_scale(
3572 skb_get_hash(skb), map->len)];
3573 if (unlikely(queue_index >= dev->real_num_tx_queues))
3580 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3581 struct sk_buff *skb)
3584 struct xps_dev_maps *dev_maps;
3585 struct sock *sk = skb->sk;
3586 int queue_index = -1;
3588 if (!static_key_false(&xps_needed))
3592 if (!static_key_false(&xps_rxqs_needed))
3595 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3597 int tci = sk_rx_queue_get(sk);
3599 if (tci >= 0 && tci < dev->num_rx_queues)
3600 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3605 if (queue_index < 0) {
3606 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3608 unsigned int tci = skb->sender_cpu - 1;
3610 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3622 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3623 struct net_device *sb_dev)
3627 EXPORT_SYMBOL(dev_pick_tx_zero);
3629 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3630 struct net_device *sb_dev)
3632 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3634 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3636 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3637 struct net_device *sb_dev)
3639 struct sock *sk = skb->sk;
3640 int queue_index = sk_tx_queue_get(sk);
3642 sb_dev = sb_dev ? : dev;
3644 if (queue_index < 0 || skb->ooo_okay ||
3645 queue_index >= dev->real_num_tx_queues) {
3646 int new_index = get_xps_queue(dev, sb_dev, skb);
3649 new_index = skb_tx_hash(dev, sb_dev, skb);
3651 if (queue_index != new_index && sk &&
3653 rcu_access_pointer(sk->sk_dst_cache))
3654 sk_tx_queue_set(sk, new_index);
3656 queue_index = new_index;
3661 EXPORT_SYMBOL(netdev_pick_tx);
3663 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3664 struct sk_buff *skb,
3665 struct net_device *sb_dev)
3667 int queue_index = 0;
3670 u32 sender_cpu = skb->sender_cpu - 1;
3672 if (sender_cpu >= (u32)NR_CPUS)
3673 skb->sender_cpu = raw_smp_processor_id() + 1;
3676 if (dev->real_num_tx_queues != 1) {
3677 const struct net_device_ops *ops = dev->netdev_ops;
3679 if (ops->ndo_select_queue)
3680 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3682 queue_index = netdev_pick_tx(dev, skb, sb_dev);
3684 queue_index = netdev_cap_txqueue(dev, queue_index);
3687 skb_set_queue_mapping(skb, queue_index);
3688 return netdev_get_tx_queue(dev, queue_index);
3692 * __dev_queue_xmit - transmit a buffer
3693 * @skb: buffer to transmit
3694 * @sb_dev: suboordinate device used for L2 forwarding offload
3696 * Queue a buffer for transmission to a network device. The caller must
3697 * have set the device and priority and built the buffer before calling
3698 * this function. The function can be called from an interrupt.
3700 * A negative errno code is returned on a failure. A success does not
3701 * guarantee the frame will be transmitted as it may be dropped due
3702 * to congestion or traffic shaping.
3704 * -----------------------------------------------------------------------------------
3705 * I notice this method can also return errors from the queue disciplines,
3706 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3709 * Regardless of the return value, the skb is consumed, so it is currently
3710 * difficult to retry a send to this method. (You can bump the ref count
3711 * before sending to hold a reference for retry if you are careful.)
3713 * When calling this method, interrupts MUST be enabled. This is because
3714 * the BH enable code must have IRQs enabled so that it will not deadlock.
3717 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3719 struct net_device *dev = skb->dev;
3720 struct netdev_queue *txq;
3725 skb_reset_mac_header(skb);
3727 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3728 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3730 /* Disable soft irqs for various locks below. Also
3731 * stops preemption for RCU.
3735 skb_update_prio(skb);
3737 qdisc_pkt_len_init(skb);
3738 #ifdef CONFIG_NET_CLS_ACT
3739 skb->tc_at_ingress = 0;
3740 # ifdef CONFIG_NET_EGRESS
3741 if (static_branch_unlikely(&egress_needed_key)) {
3742 skb = sch_handle_egress(skb, &rc, dev);
3748 /* If device/qdisc don't need skb->dst, release it right now while
3749 * its hot in this cpu cache.
3751 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3756 txq = netdev_core_pick_tx(dev, skb, sb_dev);
3757 q = rcu_dereference_bh(txq->qdisc);
3759 trace_net_dev_queue(skb);
3761 rc = __dev_xmit_skb(skb, q, dev, txq);
3765 /* The device has no queue. Common case for software devices:
3766 * loopback, all the sorts of tunnels...
3768 * Really, it is unlikely that netif_tx_lock protection is necessary
3769 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3771 * However, it is possible, that they rely on protection
3774 * Check this and shot the lock. It is not prone from deadlocks.
3775 *Either shot noqueue qdisc, it is even simpler 8)
3777 if (dev->flags & IFF_UP) {
3778 int cpu = smp_processor_id(); /* ok because BHs are off */
3780 if (txq->xmit_lock_owner != cpu) {
3781 if (dev_xmit_recursion())
3782 goto recursion_alert;
3784 skb = validate_xmit_skb(skb, dev, &again);
3788 HARD_TX_LOCK(dev, txq, cpu);
3790 if (!netif_xmit_stopped(txq)) {
3791 dev_xmit_recursion_inc();
3792 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3793 dev_xmit_recursion_dec();
3794 if (dev_xmit_complete(rc)) {
3795 HARD_TX_UNLOCK(dev, txq);
3799 HARD_TX_UNLOCK(dev, txq);
3800 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3803 /* Recursion is detected! It is possible,
3807 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3813 rcu_read_unlock_bh();
3815 atomic_long_inc(&dev->tx_dropped);
3816 kfree_skb_list(skb);
3819 rcu_read_unlock_bh();
3823 int dev_queue_xmit(struct sk_buff *skb)
3825 return __dev_queue_xmit(skb, NULL);
3827 EXPORT_SYMBOL(dev_queue_xmit);
3829 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3831 return __dev_queue_xmit(skb, sb_dev);
3833 EXPORT_SYMBOL(dev_queue_xmit_accel);
3835 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3837 struct net_device *dev = skb->dev;
3838 struct sk_buff *orig_skb = skb;
3839 struct netdev_queue *txq;
3840 int ret = NETDEV_TX_BUSY;
3843 if (unlikely(!netif_running(dev) ||
3844 !netif_carrier_ok(dev)))
3847 skb = validate_xmit_skb_list(skb, dev, &again);
3848 if (skb != orig_skb)
3851 skb_set_queue_mapping(skb, queue_id);
3852 txq = skb_get_tx_queue(dev, skb);
3856 HARD_TX_LOCK(dev, txq, smp_processor_id());
3857 if (!netif_xmit_frozen_or_drv_stopped(txq))
3858 ret = netdev_start_xmit(skb, dev, txq, false);
3859 HARD_TX_UNLOCK(dev, txq);
3863 if (!dev_xmit_complete(ret))
3868 atomic_long_inc(&dev->tx_dropped);
3869 kfree_skb_list(skb);
3870 return NET_XMIT_DROP;
3872 EXPORT_SYMBOL(dev_direct_xmit);
3874 /*************************************************************************
3876 *************************************************************************/
3878 int netdev_max_backlog __read_mostly = 1000;
3879 EXPORT_SYMBOL(netdev_max_backlog);
3881 int netdev_tstamp_prequeue __read_mostly = 1;
3882 int netdev_budget __read_mostly = 300;
3883 unsigned int __read_mostly netdev_budget_usecs = 2000;
3884 int weight_p __read_mostly = 64; /* old backlog weight */
3885 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3886 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3887 int dev_rx_weight __read_mostly = 64;
3888 int dev_tx_weight __read_mostly = 64;
3889 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3890 int gro_normal_batch __read_mostly = 8;
3892 /* Called with irq disabled */
3893 static inline void ____napi_schedule(struct softnet_data *sd,
3894 struct napi_struct *napi)
3896 list_add_tail(&napi->poll_list, &sd->poll_list);
3897 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3902 /* One global table that all flow-based protocols share. */
3903 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3904 EXPORT_SYMBOL(rps_sock_flow_table);
3905 u32 rps_cpu_mask __read_mostly;
3906 EXPORT_SYMBOL(rps_cpu_mask);
3908 struct static_key_false rps_needed __read_mostly;
3909 EXPORT_SYMBOL(rps_needed);
3910 struct static_key_false rfs_needed __read_mostly;
3911 EXPORT_SYMBOL(rfs_needed);
3913 static struct rps_dev_flow *
3914 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3915 struct rps_dev_flow *rflow, u16 next_cpu)
3917 if (next_cpu < nr_cpu_ids) {
3918 #ifdef CONFIG_RFS_ACCEL
3919 struct netdev_rx_queue *rxqueue;
3920 struct rps_dev_flow_table *flow_table;
3921 struct rps_dev_flow *old_rflow;
3926 /* Should we steer this flow to a different hardware queue? */
3927 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3928 !(dev->features & NETIF_F_NTUPLE))
3930 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3931 if (rxq_index == skb_get_rx_queue(skb))
3934 rxqueue = dev->_rx + rxq_index;
3935 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3938 flow_id = skb_get_hash(skb) & flow_table->mask;
3939 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3940 rxq_index, flow_id);
3944 rflow = &flow_table->flows[flow_id];
3946 if (old_rflow->filter == rflow->filter)
3947 old_rflow->filter = RPS_NO_FILTER;
3951 per_cpu(softnet_data, next_cpu).input_queue_head;
3954 rflow->cpu = next_cpu;
3959 * get_rps_cpu is called from netif_receive_skb and returns the target
3960 * CPU from the RPS map of the receiving queue for a given skb.
3961 * rcu_read_lock must be held on entry.
3963 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3964 struct rps_dev_flow **rflowp)
3966 const struct rps_sock_flow_table *sock_flow_table;
3967 struct netdev_rx_queue *rxqueue = dev->_rx;
3968 struct rps_dev_flow_table *flow_table;
3969 struct rps_map *map;
3974 if (skb_rx_queue_recorded(skb)) {
3975 u16 index = skb_get_rx_queue(skb);
3977 if (unlikely(index >= dev->real_num_rx_queues)) {
3978 WARN_ONCE(dev->real_num_rx_queues > 1,
3979 "%s received packet on queue %u, but number "
3980 "of RX queues is %u\n",
3981 dev->name, index, dev->real_num_rx_queues);
3987 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3989 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3990 map = rcu_dereference(rxqueue->rps_map);
3991 if (!flow_table && !map)
3994 skb_reset_network_header(skb);
3995 hash = skb_get_hash(skb);
3999 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4000 if (flow_table && sock_flow_table) {
4001 struct rps_dev_flow *rflow;
4005 /* First check into global flow table if there is a match */
4006 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4007 if ((ident ^ hash) & ~rps_cpu_mask)
4010 next_cpu = ident & rps_cpu_mask;
4012 /* OK, now we know there is a match,
4013 * we can look at the local (per receive queue) flow table
4015 rflow = &flow_table->flows[hash & flow_table->mask];
4019 * If the desired CPU (where last recvmsg was done) is
4020 * different from current CPU (one in the rx-queue flow
4021 * table entry), switch if one of the following holds:
4022 * - Current CPU is unset (>= nr_cpu_ids).
4023 * - Current CPU is offline.
4024 * - The current CPU's queue tail has advanced beyond the
4025 * last packet that was enqueued using this table entry.
4026 * This guarantees that all previous packets for the flow
4027 * have been dequeued, thus preserving in order delivery.
4029 if (unlikely(tcpu != next_cpu) &&
4030 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4031 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4032 rflow->last_qtail)) >= 0)) {
4034 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4037 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4047 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4048 if (cpu_online(tcpu)) {
4058 #ifdef CONFIG_RFS_ACCEL
4061 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4062 * @dev: Device on which the filter was set
4063 * @rxq_index: RX queue index
4064 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4065 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4067 * Drivers that implement ndo_rx_flow_steer() should periodically call
4068 * this function for each installed filter and remove the filters for
4069 * which it returns %true.
4071 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4072 u32 flow_id, u16 filter_id)
4074 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4075 struct rps_dev_flow_table *flow_table;
4076 struct rps_dev_flow *rflow;
4081 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4082 if (flow_table && flow_id <= flow_table->mask) {
4083 rflow = &flow_table->flows[flow_id];
4084 cpu = READ_ONCE(rflow->cpu);
4085 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4086 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4087 rflow->last_qtail) <
4088 (int)(10 * flow_table->mask)))
4094 EXPORT_SYMBOL(rps_may_expire_flow);
4096 #endif /* CONFIG_RFS_ACCEL */
4098 /* Called from hardirq (IPI) context */
4099 static void rps_trigger_softirq(void *data)
4101 struct softnet_data *sd = data;
4103 ____napi_schedule(sd, &sd->backlog);
4107 #endif /* CONFIG_RPS */
4110 * Check if this softnet_data structure is another cpu one
4111 * If yes, queue it to our IPI list and return 1
4114 static int rps_ipi_queued(struct softnet_data *sd)
4117 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4120 sd->rps_ipi_next = mysd->rps_ipi_list;
4121 mysd->rps_ipi_list = sd;
4123 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4126 #endif /* CONFIG_RPS */
4130 #ifdef CONFIG_NET_FLOW_LIMIT
4131 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4134 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4136 #ifdef CONFIG_NET_FLOW_LIMIT
4137 struct sd_flow_limit *fl;
4138 struct softnet_data *sd;
4139 unsigned int old_flow, new_flow;
4141 if (qlen < (netdev_max_backlog >> 1))
4144 sd = this_cpu_ptr(&softnet_data);
4147 fl = rcu_dereference(sd->flow_limit);
4149 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4150 old_flow = fl->history[fl->history_head];
4151 fl->history[fl->history_head] = new_flow;
4154 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4156 if (likely(fl->buckets[old_flow]))
4157 fl->buckets[old_flow]--;
4159 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4171 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4172 * queue (may be a remote CPU queue).
4174 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4175 unsigned int *qtail)
4177 struct softnet_data *sd;
4178 unsigned long flags;
4181 sd = &per_cpu(softnet_data, cpu);
4183 local_irq_save(flags);
4186 if (!netif_running(skb->dev))
4188 qlen = skb_queue_len(&sd->input_pkt_queue);
4189 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4192 __skb_queue_tail(&sd->input_pkt_queue, skb);
4193 input_queue_tail_incr_save(sd, qtail);
4195 local_irq_restore(flags);
4196 return NET_RX_SUCCESS;
4199 /* Schedule NAPI for backlog device
4200 * We can use non atomic operation since we own the queue lock
4202 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4203 if (!rps_ipi_queued(sd))
4204 ____napi_schedule(sd, &sd->backlog);
4213 local_irq_restore(flags);
4215 atomic_long_inc(&skb->dev->rx_dropped);
4220 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4222 struct net_device *dev = skb->dev;
4223 struct netdev_rx_queue *rxqueue;
4227 if (skb_rx_queue_recorded(skb)) {
4228 u16 index = skb_get_rx_queue(skb);
4230 if (unlikely(index >= dev->real_num_rx_queues)) {
4231 WARN_ONCE(dev->real_num_rx_queues > 1,
4232 "%s received packet on queue %u, but number "
4233 "of RX queues is %u\n",
4234 dev->name, index, dev->real_num_rx_queues);
4236 return rxqueue; /* Return first rxqueue */
4243 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4244 struct xdp_buff *xdp,
4245 struct bpf_prog *xdp_prog)
4247 struct netdev_rx_queue *rxqueue;
4248 void *orig_data, *orig_data_end;
4249 u32 metalen, act = XDP_DROP;
4250 __be16 orig_eth_type;
4256 /* Reinjected packets coming from act_mirred or similar should
4257 * not get XDP generic processing.
4259 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4262 /* XDP packets must be linear and must have sufficient headroom
4263 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4264 * native XDP provides, thus we need to do it here as well.
4266 if (skb_is_nonlinear(skb) ||
4267 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4268 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4269 int troom = skb->tail + skb->data_len - skb->end;
4271 /* In case we have to go down the path and also linearize,
4272 * then lets do the pskb_expand_head() work just once here.
4274 if (pskb_expand_head(skb,
4275 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4276 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4278 if (skb_linearize(skb))
4282 /* The XDP program wants to see the packet starting at the MAC
4285 mac_len = skb->data - skb_mac_header(skb);
4286 hlen = skb_headlen(skb) + mac_len;
4287 xdp->data = skb->data - mac_len;
4288 xdp->data_meta = xdp->data;
4289 xdp->data_end = xdp->data + hlen;
4290 xdp->data_hard_start = skb->data - skb_headroom(skb);
4291 orig_data_end = xdp->data_end;
4292 orig_data = xdp->data;
4293 eth = (struct ethhdr *)xdp->data;
4294 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4295 orig_eth_type = eth->h_proto;
4297 rxqueue = netif_get_rxqueue(skb);
4298 xdp->rxq = &rxqueue->xdp_rxq;
4300 act = bpf_prog_run_xdp(xdp_prog, xdp);
4302 /* check if bpf_xdp_adjust_head was used */
4303 off = xdp->data - orig_data;
4306 __skb_pull(skb, off);
4308 __skb_push(skb, -off);
4310 skb->mac_header += off;
4311 skb_reset_network_header(skb);
4314 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4317 off = orig_data_end - xdp->data_end;
4319 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4324 /* check if XDP changed eth hdr such SKB needs update */
4325 eth = (struct ethhdr *)xdp->data;
4326 if ((orig_eth_type != eth->h_proto) ||
4327 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4328 __skb_push(skb, ETH_HLEN);
4329 skb->protocol = eth_type_trans(skb, skb->dev);
4335 __skb_push(skb, mac_len);
4338 metalen = xdp->data - xdp->data_meta;
4340 skb_metadata_set(skb, metalen);
4343 bpf_warn_invalid_xdp_action(act);
4346 trace_xdp_exception(skb->dev, xdp_prog, act);
4357 /* When doing generic XDP we have to bypass the qdisc layer and the
4358 * network taps in order to match in-driver-XDP behavior.
4360 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4362 struct net_device *dev = skb->dev;
4363 struct netdev_queue *txq;
4364 bool free_skb = true;
4367 txq = netdev_core_pick_tx(dev, skb, NULL);
4368 cpu = smp_processor_id();
4369 HARD_TX_LOCK(dev, txq, cpu);
4370 if (!netif_xmit_stopped(txq)) {
4371 rc = netdev_start_xmit(skb, dev, txq, 0);
4372 if (dev_xmit_complete(rc))
4375 HARD_TX_UNLOCK(dev, txq);
4377 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4381 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4383 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4385 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4388 struct xdp_buff xdp;
4392 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4393 if (act != XDP_PASS) {
4396 err = xdp_do_generic_redirect(skb->dev, skb,
4402 generic_xdp_tx(skb, xdp_prog);
4413 EXPORT_SYMBOL_GPL(do_xdp_generic);
4415 static int netif_rx_internal(struct sk_buff *skb)
4419 net_timestamp_check(netdev_tstamp_prequeue, skb);
4421 trace_netif_rx(skb);
4424 if (static_branch_unlikely(&rps_needed)) {
4425 struct rps_dev_flow voidflow, *rflow = &voidflow;
4431 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4433 cpu = smp_processor_id();
4435 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4444 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4451 * netif_rx - post buffer to the network code
4452 * @skb: buffer to post
4454 * This function receives a packet from a device driver and queues it for
4455 * the upper (protocol) levels to process. It always succeeds. The buffer
4456 * may be dropped during processing for congestion control or by the
4460 * NET_RX_SUCCESS (no congestion)
4461 * NET_RX_DROP (packet was dropped)
4465 int netif_rx(struct sk_buff *skb)
4469 trace_netif_rx_entry(skb);
4471 ret = netif_rx_internal(skb);
4472 trace_netif_rx_exit(ret);
4476 EXPORT_SYMBOL(netif_rx);
4478 int netif_rx_ni(struct sk_buff *skb)
4482 trace_netif_rx_ni_entry(skb);
4485 err = netif_rx_internal(skb);
4486 if (local_softirq_pending())
4489 trace_netif_rx_ni_exit(err);
4493 EXPORT_SYMBOL(netif_rx_ni);
4495 static __latent_entropy void net_tx_action(struct softirq_action *h)
4497 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4499 if (sd->completion_queue) {
4500 struct sk_buff *clist;
4502 local_irq_disable();
4503 clist = sd->completion_queue;
4504 sd->completion_queue = NULL;
4508 struct sk_buff *skb = clist;
4510 clist = clist->next;
4512 WARN_ON(refcount_read(&skb->users));
4513 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4514 trace_consume_skb(skb);
4516 trace_kfree_skb(skb, net_tx_action);
4518 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4521 __kfree_skb_defer(skb);
4524 __kfree_skb_flush();
4527 if (sd->output_queue) {
4530 local_irq_disable();
4531 head = sd->output_queue;
4532 sd->output_queue = NULL;
4533 sd->output_queue_tailp = &sd->output_queue;
4537 struct Qdisc *q = head;
4538 spinlock_t *root_lock = NULL;
4540 head = head->next_sched;
4542 if (!(q->flags & TCQ_F_NOLOCK)) {
4543 root_lock = qdisc_lock(q);
4544 spin_lock(root_lock);
4546 /* We need to make sure head->next_sched is read
4547 * before clearing __QDISC_STATE_SCHED
4549 smp_mb__before_atomic();
4550 clear_bit(__QDISC_STATE_SCHED, &q->state);
4553 spin_unlock(root_lock);
4557 xfrm_dev_backlog(sd);
4560 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4561 /* This hook is defined here for ATM LANE */
4562 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4563 unsigned char *addr) __read_mostly;
4564 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4567 static inline struct sk_buff *
4568 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4569 struct net_device *orig_dev)
4571 #ifdef CONFIG_NET_CLS_ACT
4572 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4573 struct tcf_result cl_res;
4575 /* If there's at least one ingress present somewhere (so
4576 * we get here via enabled static key), remaining devices
4577 * that are not configured with an ingress qdisc will bail
4584 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4588 qdisc_skb_cb(skb)->pkt_len = skb->len;
4589 skb->tc_at_ingress = 1;
4590 mini_qdisc_bstats_cpu_update(miniq, skb);
4592 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4594 case TC_ACT_RECLASSIFY:
4595 skb->tc_index = TC_H_MIN(cl_res.classid);
4598 mini_qdisc_qstats_cpu_drop(miniq);
4606 case TC_ACT_REDIRECT:
4607 /* skb_mac_header check was done by cls/act_bpf, so
4608 * we can safely push the L2 header back before
4609 * redirecting to another netdev
4611 __skb_push(skb, skb->mac_len);
4612 skb_do_redirect(skb);
4614 case TC_ACT_CONSUMED:
4619 #endif /* CONFIG_NET_CLS_ACT */
4624 * netdev_is_rx_handler_busy - check if receive handler is registered
4625 * @dev: device to check
4627 * Check if a receive handler is already registered for a given device.
4628 * Return true if there one.
4630 * The caller must hold the rtnl_mutex.
4632 bool netdev_is_rx_handler_busy(struct net_device *dev)
4635 return dev && rtnl_dereference(dev->rx_handler);
4637 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4640 * netdev_rx_handler_register - register receive handler
4641 * @dev: device to register a handler for
4642 * @rx_handler: receive handler to register
4643 * @rx_handler_data: data pointer that is used by rx handler
4645 * Register a receive handler for a device. This handler will then be
4646 * called from __netif_receive_skb. A negative errno code is returned
4649 * The caller must hold the rtnl_mutex.
4651 * For a general description of rx_handler, see enum rx_handler_result.
4653 int netdev_rx_handler_register(struct net_device *dev,
4654 rx_handler_func_t *rx_handler,
4655 void *rx_handler_data)
4657 if (netdev_is_rx_handler_busy(dev))
4660 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4663 /* Note: rx_handler_data must be set before rx_handler */
4664 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4665 rcu_assign_pointer(dev->rx_handler, rx_handler);
4669 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4672 * netdev_rx_handler_unregister - unregister receive handler
4673 * @dev: device to unregister a handler from
4675 * Unregister a receive handler from a device.
4677 * The caller must hold the rtnl_mutex.
4679 void netdev_rx_handler_unregister(struct net_device *dev)
4683 RCU_INIT_POINTER(dev->rx_handler, NULL);
4684 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4685 * section has a guarantee to see a non NULL rx_handler_data
4689 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4691 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4694 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4695 * the special handling of PFMEMALLOC skbs.
4697 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4699 switch (skb->protocol) {
4700 case htons(ETH_P_ARP):
4701 case htons(ETH_P_IP):
4702 case htons(ETH_P_IPV6):
4703 case htons(ETH_P_8021Q):
4704 case htons(ETH_P_8021AD):
4711 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4712 int *ret, struct net_device *orig_dev)
4714 #ifdef CONFIG_NETFILTER_INGRESS
4715 if (nf_hook_ingress_active(skb)) {
4719 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4724 ingress_retval = nf_hook_ingress(skb);
4726 return ingress_retval;
4728 #endif /* CONFIG_NETFILTER_INGRESS */
4732 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4733 struct packet_type **ppt_prev)
4735 struct packet_type *ptype, *pt_prev;
4736 rx_handler_func_t *rx_handler;
4737 struct net_device *orig_dev;
4738 bool deliver_exact = false;
4739 int ret = NET_RX_DROP;
4742 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4744 trace_netif_receive_skb(skb);
4746 orig_dev = skb->dev;
4748 skb_reset_network_header(skb);
4749 if (!skb_transport_header_was_set(skb))
4750 skb_reset_transport_header(skb);
4751 skb_reset_mac_len(skb);
4756 skb->skb_iif = skb->dev->ifindex;
4758 __this_cpu_inc(softnet_data.processed);
4760 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4764 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4767 if (ret2 != XDP_PASS)
4769 skb_reset_mac_len(skb);
4772 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4773 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4774 skb = skb_vlan_untag(skb);
4779 if (skb_skip_tc_classify(skb))
4785 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4787 ret = deliver_skb(skb, pt_prev, orig_dev);
4791 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4793 ret = deliver_skb(skb, pt_prev, orig_dev);
4798 #ifdef CONFIG_NET_INGRESS
4799 if (static_branch_unlikely(&ingress_needed_key)) {
4800 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4804 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4810 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4813 if (skb_vlan_tag_present(skb)) {
4815 ret = deliver_skb(skb, pt_prev, orig_dev);
4818 if (vlan_do_receive(&skb))
4820 else if (unlikely(!skb))
4824 rx_handler = rcu_dereference(skb->dev->rx_handler);
4827 ret = deliver_skb(skb, pt_prev, orig_dev);
4830 switch (rx_handler(&skb)) {
4831 case RX_HANDLER_CONSUMED:
4832 ret = NET_RX_SUCCESS;
4834 case RX_HANDLER_ANOTHER:
4836 case RX_HANDLER_EXACT:
4837 deliver_exact = true;
4838 case RX_HANDLER_PASS:
4845 if (unlikely(skb_vlan_tag_present(skb))) {
4847 if (skb_vlan_tag_get_id(skb)) {
4848 /* Vlan id is non 0 and vlan_do_receive() above couldn't
4851 skb->pkt_type = PACKET_OTHERHOST;
4852 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4853 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4854 /* Outer header is 802.1P with vlan 0, inner header is
4855 * 802.1Q or 802.1AD and vlan_do_receive() above could
4856 * not find vlan dev for vlan id 0.
4858 __vlan_hwaccel_clear_tag(skb);
4859 skb = skb_vlan_untag(skb);
4862 if (vlan_do_receive(&skb))
4863 /* After stripping off 802.1P header with vlan 0
4864 * vlan dev is found for inner header.
4867 else if (unlikely(!skb))
4870 /* We have stripped outer 802.1P vlan 0 header.
4871 * But could not find vlan dev.
4872 * check again for vlan id to set OTHERHOST.
4876 /* Note: we might in the future use prio bits
4877 * and set skb->priority like in vlan_do_receive()
4878 * For the time being, just ignore Priority Code Point
4880 __vlan_hwaccel_clear_tag(skb);
4883 type = skb->protocol;
4885 /* deliver only exact match when indicated */
4886 if (likely(!deliver_exact)) {
4887 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4888 &ptype_base[ntohs(type) &
4892 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4893 &orig_dev->ptype_specific);
4895 if (unlikely(skb->dev != orig_dev)) {
4896 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4897 &skb->dev->ptype_specific);
4901 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4903 *ppt_prev = pt_prev;
4907 atomic_long_inc(&skb->dev->rx_dropped);
4909 atomic_long_inc(&skb->dev->rx_nohandler);
4911 /* Jamal, now you will not able to escape explaining
4912 * me how you were going to use this. :-)
4921 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4923 struct net_device *orig_dev = skb->dev;
4924 struct packet_type *pt_prev = NULL;
4927 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4929 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4930 skb->dev, pt_prev, orig_dev);
4935 * netif_receive_skb_core - special purpose version of netif_receive_skb
4936 * @skb: buffer to process
4938 * More direct receive version of netif_receive_skb(). It should
4939 * only be used by callers that have a need to skip RPS and Generic XDP.
4940 * Caller must also take care of handling if (page_is_)pfmemalloc.
4942 * This function may only be called from softirq context and interrupts
4943 * should be enabled.
4945 * Return values (usually ignored):
4946 * NET_RX_SUCCESS: no congestion
4947 * NET_RX_DROP: packet was dropped
4949 int netif_receive_skb_core(struct sk_buff *skb)
4954 ret = __netif_receive_skb_one_core(skb, false);
4959 EXPORT_SYMBOL(netif_receive_skb_core);
4961 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4962 struct packet_type *pt_prev,
4963 struct net_device *orig_dev)
4965 struct sk_buff *skb, *next;
4969 if (list_empty(head))
4971 if (pt_prev->list_func != NULL)
4972 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
4973 ip_list_rcv, head, pt_prev, orig_dev);
4975 list_for_each_entry_safe(skb, next, head, list) {
4976 skb_list_del_init(skb);
4977 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4981 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4983 /* Fast-path assumptions:
4984 * - There is no RX handler.
4985 * - Only one packet_type matches.
4986 * If either of these fails, we will end up doing some per-packet
4987 * processing in-line, then handling the 'last ptype' for the whole
4988 * sublist. This can't cause out-of-order delivery to any single ptype,
4989 * because the 'last ptype' must be constant across the sublist, and all
4990 * other ptypes are handled per-packet.
4992 /* Current (common) ptype of sublist */
4993 struct packet_type *pt_curr = NULL;
4994 /* Current (common) orig_dev of sublist */
4995 struct net_device *od_curr = NULL;
4996 struct list_head sublist;
4997 struct sk_buff *skb, *next;
4999 INIT_LIST_HEAD(&sublist);
5000 list_for_each_entry_safe(skb, next, head, list) {
5001 struct net_device *orig_dev = skb->dev;
5002 struct packet_type *pt_prev = NULL;
5004 skb_list_del_init(skb);
5005 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5008 if (pt_curr != pt_prev || od_curr != orig_dev) {
5009 /* dispatch old sublist */
5010 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5011 /* start new sublist */
5012 INIT_LIST_HEAD(&sublist);
5016 list_add_tail(&skb->list, &sublist);
5019 /* dispatch final sublist */
5020 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5023 static int __netif_receive_skb(struct sk_buff *skb)
5027 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5028 unsigned int noreclaim_flag;
5031 * PFMEMALLOC skbs are special, they should
5032 * - be delivered to SOCK_MEMALLOC sockets only
5033 * - stay away from userspace
5034 * - have bounded memory usage
5036 * Use PF_MEMALLOC as this saves us from propagating the allocation
5037 * context down to all allocation sites.
5039 noreclaim_flag = memalloc_noreclaim_save();
5040 ret = __netif_receive_skb_one_core(skb, true);
5041 memalloc_noreclaim_restore(noreclaim_flag);
5043 ret = __netif_receive_skb_one_core(skb, false);
5048 static void __netif_receive_skb_list(struct list_head *head)
5050 unsigned long noreclaim_flag = 0;
5051 struct sk_buff *skb, *next;
5052 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5054 list_for_each_entry_safe(skb, next, head, list) {
5055 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5056 struct list_head sublist;
5058 /* Handle the previous sublist */
5059 list_cut_before(&sublist, head, &skb->list);
5060 if (!list_empty(&sublist))
5061 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5062 pfmemalloc = !pfmemalloc;
5063 /* See comments in __netif_receive_skb */
5065 noreclaim_flag = memalloc_noreclaim_save();
5067 memalloc_noreclaim_restore(noreclaim_flag);
5070 /* Handle the remaining sublist */
5071 if (!list_empty(head))
5072 __netif_receive_skb_list_core(head, pfmemalloc);
5073 /* Restore pflags */
5075 memalloc_noreclaim_restore(noreclaim_flag);
5078 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5080 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5081 struct bpf_prog *new = xdp->prog;
5084 switch (xdp->command) {
5085 case XDP_SETUP_PROG:
5086 rcu_assign_pointer(dev->xdp_prog, new);
5091 static_branch_dec(&generic_xdp_needed_key);
5092 } else if (new && !old) {
5093 static_branch_inc(&generic_xdp_needed_key);
5094 dev_disable_lro(dev);
5095 dev_disable_gro_hw(dev);
5099 case XDP_QUERY_PROG:
5100 xdp->prog_id = old ? old->aux->id : 0;
5111 static int netif_receive_skb_internal(struct sk_buff *skb)
5115 net_timestamp_check(netdev_tstamp_prequeue, skb);
5117 if (skb_defer_rx_timestamp(skb))
5118 return NET_RX_SUCCESS;
5122 if (static_branch_unlikely(&rps_needed)) {
5123 struct rps_dev_flow voidflow, *rflow = &voidflow;
5124 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5127 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5133 ret = __netif_receive_skb(skb);
5138 static void netif_receive_skb_list_internal(struct list_head *head)
5140 struct sk_buff *skb, *next;
5141 struct list_head sublist;
5143 INIT_LIST_HEAD(&sublist);
5144 list_for_each_entry_safe(skb, next, head, list) {
5145 net_timestamp_check(netdev_tstamp_prequeue, skb);
5146 skb_list_del_init(skb);
5147 if (!skb_defer_rx_timestamp(skb))
5148 list_add_tail(&skb->list, &sublist);
5150 list_splice_init(&sublist, head);
5154 if (static_branch_unlikely(&rps_needed)) {
5155 list_for_each_entry_safe(skb, next, head, list) {
5156 struct rps_dev_flow voidflow, *rflow = &voidflow;
5157 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5160 /* Will be handled, remove from list */
5161 skb_list_del_init(skb);
5162 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5167 __netif_receive_skb_list(head);
5172 * netif_receive_skb - process receive buffer from network
5173 * @skb: buffer to process
5175 * netif_receive_skb() is the main receive data processing function.
5176 * It always succeeds. The buffer may be dropped during processing
5177 * for congestion control or by the protocol layers.
5179 * This function may only be called from softirq context and interrupts
5180 * should be enabled.
5182 * Return values (usually ignored):
5183 * NET_RX_SUCCESS: no congestion
5184 * NET_RX_DROP: packet was dropped
5186 int netif_receive_skb(struct sk_buff *skb)
5190 trace_netif_receive_skb_entry(skb);
5192 ret = netif_receive_skb_internal(skb);
5193 trace_netif_receive_skb_exit(ret);
5197 EXPORT_SYMBOL(netif_receive_skb);
5200 * netif_receive_skb_list - process many receive buffers from network
5201 * @head: list of skbs to process.
5203 * Since return value of netif_receive_skb() is normally ignored, and
5204 * wouldn't be meaningful for a list, this function returns void.
5206 * This function may only be called from softirq context and interrupts
5207 * should be enabled.
5209 void netif_receive_skb_list(struct list_head *head)
5211 struct sk_buff *skb;
5213 if (list_empty(head))
5215 if (trace_netif_receive_skb_list_entry_enabled()) {
5216 list_for_each_entry(skb, head, list)
5217 trace_netif_receive_skb_list_entry(skb);
5219 netif_receive_skb_list_internal(head);
5220 trace_netif_receive_skb_list_exit(0);
5222 EXPORT_SYMBOL(netif_receive_skb_list);
5224 DEFINE_PER_CPU(struct work_struct, flush_works);
5226 /* Network device is going away, flush any packets still pending */
5227 static void flush_backlog(struct work_struct *work)
5229 struct sk_buff *skb, *tmp;
5230 struct softnet_data *sd;
5233 sd = this_cpu_ptr(&softnet_data);
5235 local_irq_disable();
5237 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5238 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5239 __skb_unlink(skb, &sd->input_pkt_queue);
5241 input_queue_head_incr(sd);
5247 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5248 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5249 __skb_unlink(skb, &sd->process_queue);
5251 input_queue_head_incr(sd);
5257 static void flush_all_backlogs(void)
5263 for_each_online_cpu(cpu)
5264 queue_work_on(cpu, system_highpri_wq,
5265 per_cpu_ptr(&flush_works, cpu));
5267 for_each_online_cpu(cpu)
5268 flush_work(per_cpu_ptr(&flush_works, cpu));
5273 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5274 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5275 static int napi_gro_complete(struct sk_buff *skb)
5277 struct packet_offload *ptype;
5278 __be16 type = skb->protocol;
5279 struct list_head *head = &offload_base;
5282 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5284 if (NAPI_GRO_CB(skb)->count == 1) {
5285 skb_shinfo(skb)->gso_size = 0;
5290 list_for_each_entry_rcu(ptype, head, list) {
5291 if (ptype->type != type || !ptype->callbacks.gro_complete)
5294 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5295 ipv6_gro_complete, inet_gro_complete,
5302 WARN_ON(&ptype->list == head);
5304 return NET_RX_SUCCESS;
5308 return netif_receive_skb_internal(skb);
5311 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5314 struct list_head *head = &napi->gro_hash[index].list;
5315 struct sk_buff *skb, *p;
5317 list_for_each_entry_safe_reverse(skb, p, head, list) {
5318 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5320 skb_list_del_init(skb);
5321 napi_gro_complete(skb);
5322 napi->gro_hash[index].count--;
5325 if (!napi->gro_hash[index].count)
5326 __clear_bit(index, &napi->gro_bitmask);
5329 /* napi->gro_hash[].list contains packets ordered by age.
5330 * youngest packets at the head of it.
5331 * Complete skbs in reverse order to reduce latencies.
5333 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5335 unsigned long bitmask = napi->gro_bitmask;
5336 unsigned int i, base = ~0U;
5338 while ((i = ffs(bitmask)) != 0) {
5341 __napi_gro_flush_chain(napi, base, flush_old);
5344 EXPORT_SYMBOL(napi_gro_flush);
5346 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5347 struct sk_buff *skb)
5349 unsigned int maclen = skb->dev->hard_header_len;
5350 u32 hash = skb_get_hash_raw(skb);
5351 struct list_head *head;
5354 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5355 list_for_each_entry(p, head, list) {
5356 unsigned long diffs;
5358 NAPI_GRO_CB(p)->flush = 0;
5360 if (hash != skb_get_hash_raw(p)) {
5361 NAPI_GRO_CB(p)->same_flow = 0;
5365 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5366 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5367 if (skb_vlan_tag_present(p))
5368 diffs |= p->vlan_tci ^ skb->vlan_tci;
5369 diffs |= skb_metadata_dst_cmp(p, skb);
5370 diffs |= skb_metadata_differs(p, skb);
5371 if (maclen == ETH_HLEN)
5372 diffs |= compare_ether_header(skb_mac_header(p),
5373 skb_mac_header(skb));
5375 diffs = memcmp(skb_mac_header(p),
5376 skb_mac_header(skb),
5378 NAPI_GRO_CB(p)->same_flow = !diffs;
5384 static void skb_gro_reset_offset(struct sk_buff *skb)
5386 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5387 const skb_frag_t *frag0 = &pinfo->frags[0];
5389 NAPI_GRO_CB(skb)->data_offset = 0;
5390 NAPI_GRO_CB(skb)->frag0 = NULL;
5391 NAPI_GRO_CB(skb)->frag0_len = 0;
5393 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5395 !PageHighMem(skb_frag_page(frag0))) {
5396 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5397 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5398 skb_frag_size(frag0),
5399 skb->end - skb->tail);
5403 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5405 struct skb_shared_info *pinfo = skb_shinfo(skb);
5407 BUG_ON(skb->end - skb->tail < grow);
5409 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5411 skb->data_len -= grow;
5414 skb_frag_off_add(&pinfo->frags[0], grow);
5415 skb_frag_size_sub(&pinfo->frags[0], grow);
5417 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5418 skb_frag_unref(skb, 0);
5419 memmove(pinfo->frags, pinfo->frags + 1,
5420 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5424 static void gro_flush_oldest(struct list_head *head)
5426 struct sk_buff *oldest;
5428 oldest = list_last_entry(head, struct sk_buff, list);
5430 /* We are called with head length >= MAX_GRO_SKBS, so this is
5433 if (WARN_ON_ONCE(!oldest))
5436 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5439 skb_list_del_init(oldest);
5440 napi_gro_complete(oldest);
5443 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5445 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5447 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5449 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5450 struct list_head *head = &offload_base;
5451 struct packet_offload *ptype;
5452 __be16 type = skb->protocol;
5453 struct list_head *gro_head;
5454 struct sk_buff *pp = NULL;
5455 enum gro_result ret;
5459 if (netif_elide_gro(skb->dev))
5462 gro_head = gro_list_prepare(napi, skb);
5465 list_for_each_entry_rcu(ptype, head, list) {
5466 if (ptype->type != type || !ptype->callbacks.gro_receive)
5469 skb_set_network_header(skb, skb_gro_offset(skb));
5470 skb_reset_mac_len(skb);
5471 NAPI_GRO_CB(skb)->same_flow = 0;
5472 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5473 NAPI_GRO_CB(skb)->free = 0;
5474 NAPI_GRO_CB(skb)->encap_mark = 0;
5475 NAPI_GRO_CB(skb)->recursion_counter = 0;
5476 NAPI_GRO_CB(skb)->is_fou = 0;
5477 NAPI_GRO_CB(skb)->is_atomic = 1;
5478 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5480 /* Setup for GRO checksum validation */
5481 switch (skb->ip_summed) {
5482 case CHECKSUM_COMPLETE:
5483 NAPI_GRO_CB(skb)->csum = skb->csum;
5484 NAPI_GRO_CB(skb)->csum_valid = 1;
5485 NAPI_GRO_CB(skb)->csum_cnt = 0;
5487 case CHECKSUM_UNNECESSARY:
5488 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5489 NAPI_GRO_CB(skb)->csum_valid = 0;
5492 NAPI_GRO_CB(skb)->csum_cnt = 0;
5493 NAPI_GRO_CB(skb)->csum_valid = 0;
5496 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5497 ipv6_gro_receive, inet_gro_receive,
5503 if (&ptype->list == head)
5506 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5511 same_flow = NAPI_GRO_CB(skb)->same_flow;
5512 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5515 skb_list_del_init(pp);
5516 napi_gro_complete(pp);
5517 napi->gro_hash[hash].count--;
5523 if (NAPI_GRO_CB(skb)->flush)
5526 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5527 gro_flush_oldest(gro_head);
5529 napi->gro_hash[hash].count++;
5531 NAPI_GRO_CB(skb)->count = 1;
5532 NAPI_GRO_CB(skb)->age = jiffies;
5533 NAPI_GRO_CB(skb)->last = skb;
5534 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5535 list_add(&skb->list, gro_head);
5539 grow = skb_gro_offset(skb) - skb_headlen(skb);
5541 gro_pull_from_frag0(skb, grow);
5543 if (napi->gro_hash[hash].count) {
5544 if (!test_bit(hash, &napi->gro_bitmask))
5545 __set_bit(hash, &napi->gro_bitmask);
5546 } else if (test_bit(hash, &napi->gro_bitmask)) {
5547 __clear_bit(hash, &napi->gro_bitmask);
5557 struct packet_offload *gro_find_receive_by_type(__be16 type)
5559 struct list_head *offload_head = &offload_base;
5560 struct packet_offload *ptype;
5562 list_for_each_entry_rcu(ptype, offload_head, list) {
5563 if (ptype->type != type || !ptype->callbacks.gro_receive)
5569 EXPORT_SYMBOL(gro_find_receive_by_type);
5571 struct packet_offload *gro_find_complete_by_type(__be16 type)
5573 struct list_head *offload_head = &offload_base;
5574 struct packet_offload *ptype;
5576 list_for_each_entry_rcu(ptype, offload_head, list) {
5577 if (ptype->type != type || !ptype->callbacks.gro_complete)
5583 EXPORT_SYMBOL(gro_find_complete_by_type);
5585 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5589 kmem_cache_free(skbuff_head_cache, skb);
5592 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5596 if (netif_receive_skb_internal(skb))
5604 case GRO_MERGED_FREE:
5605 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5606 napi_skb_free_stolen_head(skb);
5620 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5624 skb_mark_napi_id(skb, napi);
5625 trace_napi_gro_receive_entry(skb);
5627 skb_gro_reset_offset(skb);
5629 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5630 trace_napi_gro_receive_exit(ret);
5634 EXPORT_SYMBOL(napi_gro_receive);
5636 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5638 if (unlikely(skb->pfmemalloc)) {
5642 __skb_pull(skb, skb_headlen(skb));
5643 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5644 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5645 __vlan_hwaccel_clear_tag(skb);
5646 skb->dev = napi->dev;
5649 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5650 skb->pkt_type = PACKET_HOST;
5652 skb->encapsulation = 0;
5653 skb_shinfo(skb)->gso_type = 0;
5654 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5660 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5662 struct sk_buff *skb = napi->skb;
5665 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5668 skb_mark_napi_id(skb, napi);
5673 EXPORT_SYMBOL(napi_get_frags);
5675 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5676 static void gro_normal_list(struct napi_struct *napi)
5678 if (!napi->rx_count)
5680 netif_receive_skb_list_internal(&napi->rx_list);
5681 INIT_LIST_HEAD(&napi->rx_list);
5685 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5686 * pass the whole batch up to the stack.
5688 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5690 list_add_tail(&skb->list, &napi->rx_list);
5691 if (++napi->rx_count >= gro_normal_batch)
5692 gro_normal_list(napi);
5695 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5696 struct sk_buff *skb,
5702 __skb_push(skb, ETH_HLEN);
5703 skb->protocol = eth_type_trans(skb, skb->dev);
5704 if (ret == GRO_NORMAL)
5705 gro_normal_one(napi, skb);
5709 napi_reuse_skb(napi, skb);
5712 case GRO_MERGED_FREE:
5713 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5714 napi_skb_free_stolen_head(skb);
5716 napi_reuse_skb(napi, skb);
5727 /* Upper GRO stack assumes network header starts at gro_offset=0
5728 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5729 * We copy ethernet header into skb->data to have a common layout.
5731 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5733 struct sk_buff *skb = napi->skb;
5734 const struct ethhdr *eth;
5735 unsigned int hlen = sizeof(*eth);
5739 skb_reset_mac_header(skb);
5740 skb_gro_reset_offset(skb);
5742 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5743 eth = skb_gro_header_slow(skb, hlen, 0);
5744 if (unlikely(!eth)) {
5745 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5746 __func__, napi->dev->name);
5747 napi_reuse_skb(napi, skb);
5751 eth = (const struct ethhdr *)skb->data;
5752 gro_pull_from_frag0(skb, hlen);
5753 NAPI_GRO_CB(skb)->frag0 += hlen;
5754 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5756 __skb_pull(skb, hlen);
5759 * This works because the only protocols we care about don't require
5761 * We'll fix it up properly in napi_frags_finish()
5763 skb->protocol = eth->h_proto;
5768 gro_result_t napi_gro_frags(struct napi_struct *napi)
5771 struct sk_buff *skb = napi_frags_skb(napi);
5776 trace_napi_gro_frags_entry(skb);
5778 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5779 trace_napi_gro_frags_exit(ret);
5783 EXPORT_SYMBOL(napi_gro_frags);
5785 /* Compute the checksum from gro_offset and return the folded value
5786 * after adding in any pseudo checksum.
5788 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5793 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5795 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5796 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5797 /* See comments in __skb_checksum_complete(). */
5799 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5800 !skb->csum_complete_sw)
5801 netdev_rx_csum_fault(skb->dev, skb);
5804 NAPI_GRO_CB(skb)->csum = wsum;
5805 NAPI_GRO_CB(skb)->csum_valid = 1;
5809 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5811 static void net_rps_send_ipi(struct softnet_data *remsd)
5815 struct softnet_data *next = remsd->rps_ipi_next;
5817 if (cpu_online(remsd->cpu))
5818 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5825 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5826 * Note: called with local irq disabled, but exits with local irq enabled.
5828 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5831 struct softnet_data *remsd = sd->rps_ipi_list;
5834 sd->rps_ipi_list = NULL;
5838 /* Send pending IPI's to kick RPS processing on remote cpus. */
5839 net_rps_send_ipi(remsd);
5845 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5848 return sd->rps_ipi_list != NULL;
5854 static int process_backlog(struct napi_struct *napi, int quota)
5856 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5860 /* Check if we have pending ipi, its better to send them now,
5861 * not waiting net_rx_action() end.
5863 if (sd_has_rps_ipi_waiting(sd)) {
5864 local_irq_disable();
5865 net_rps_action_and_irq_enable(sd);
5868 napi->weight = dev_rx_weight;
5870 struct sk_buff *skb;
5872 while ((skb = __skb_dequeue(&sd->process_queue))) {
5874 __netif_receive_skb(skb);
5876 input_queue_head_incr(sd);
5877 if (++work >= quota)
5882 local_irq_disable();
5884 if (skb_queue_empty(&sd->input_pkt_queue)) {
5886 * Inline a custom version of __napi_complete().
5887 * only current cpu owns and manipulates this napi,
5888 * and NAPI_STATE_SCHED is the only possible flag set
5890 * We can use a plain write instead of clear_bit(),
5891 * and we dont need an smp_mb() memory barrier.
5896 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5897 &sd->process_queue);
5907 * __napi_schedule - schedule for receive
5908 * @n: entry to schedule
5910 * The entry's receive function will be scheduled to run.
5911 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5913 void __napi_schedule(struct napi_struct *n)
5915 unsigned long flags;
5917 local_irq_save(flags);
5918 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5919 local_irq_restore(flags);
5921 EXPORT_SYMBOL(__napi_schedule);
5924 * napi_schedule_prep - check if napi can be scheduled
5927 * Test if NAPI routine is already running, and if not mark
5928 * it as running. This is used as a condition variable
5929 * insure only one NAPI poll instance runs. We also make
5930 * sure there is no pending NAPI disable.
5932 bool napi_schedule_prep(struct napi_struct *n)
5934 unsigned long val, new;
5937 val = READ_ONCE(n->state);
5938 if (unlikely(val & NAPIF_STATE_DISABLE))
5940 new = val | NAPIF_STATE_SCHED;
5942 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5943 * This was suggested by Alexander Duyck, as compiler
5944 * emits better code than :
5945 * if (val & NAPIF_STATE_SCHED)
5946 * new |= NAPIF_STATE_MISSED;
5948 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5950 } while (cmpxchg(&n->state, val, new) != val);
5952 return !(val & NAPIF_STATE_SCHED);
5954 EXPORT_SYMBOL(napi_schedule_prep);
5957 * __napi_schedule_irqoff - schedule for receive
5958 * @n: entry to schedule
5960 * Variant of __napi_schedule() assuming hard irqs are masked
5962 void __napi_schedule_irqoff(struct napi_struct *n)
5964 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5966 EXPORT_SYMBOL(__napi_schedule_irqoff);
5968 bool napi_complete_done(struct napi_struct *n, int work_done)
5970 unsigned long flags, val, new;
5973 * 1) Don't let napi dequeue from the cpu poll list
5974 * just in case its running on a different cpu.
5975 * 2) If we are busy polling, do nothing here, we have
5976 * the guarantee we will be called later.
5978 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5979 NAPIF_STATE_IN_BUSY_POLL)))
5984 if (n->gro_bitmask) {
5985 unsigned long timeout = 0;
5988 timeout = n->dev->gro_flush_timeout;
5990 /* When the NAPI instance uses a timeout and keeps postponing
5991 * it, we need to bound somehow the time packets are kept in
5994 napi_gro_flush(n, !!timeout);
5996 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5997 HRTIMER_MODE_REL_PINNED);
5999 if (unlikely(!list_empty(&n->poll_list))) {
6000 /* If n->poll_list is not empty, we need to mask irqs */
6001 local_irq_save(flags);
6002 list_del_init(&n->poll_list);
6003 local_irq_restore(flags);
6007 val = READ_ONCE(n->state);
6009 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6011 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6013 /* If STATE_MISSED was set, leave STATE_SCHED set,
6014 * because we will call napi->poll() one more time.
6015 * This C code was suggested by Alexander Duyck to help gcc.
6017 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6019 } while (cmpxchg(&n->state, val, new) != val);
6021 if (unlikely(val & NAPIF_STATE_MISSED)) {
6028 EXPORT_SYMBOL(napi_complete_done);
6030 /* must be called under rcu_read_lock(), as we dont take a reference */
6031 static struct napi_struct *napi_by_id(unsigned int napi_id)
6033 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6034 struct napi_struct *napi;
6036 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6037 if (napi->napi_id == napi_id)
6043 #if defined(CONFIG_NET_RX_BUSY_POLL)
6045 #define BUSY_POLL_BUDGET 8
6047 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6051 /* Busy polling means there is a high chance device driver hard irq
6052 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6053 * set in napi_schedule_prep().
6054 * Since we are about to call napi->poll() once more, we can safely
6055 * clear NAPI_STATE_MISSED.
6057 * Note: x86 could use a single "lock and ..." instruction
6058 * to perform these two clear_bit()
6060 clear_bit(NAPI_STATE_MISSED, &napi->state);
6061 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6065 /* All we really want here is to re-enable device interrupts.
6066 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6068 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6069 /* We can't gro_normal_list() here, because napi->poll() might have
6070 * rearmed the napi (napi_complete_done()) in which case it could
6071 * already be running on another CPU.
6073 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6074 netpoll_poll_unlock(have_poll_lock);
6075 if (rc == BUSY_POLL_BUDGET) {
6076 /* As the whole budget was spent, we still own the napi so can
6077 * safely handle the rx_list.
6079 gro_normal_list(napi);
6080 __napi_schedule(napi);
6085 void napi_busy_loop(unsigned int napi_id,
6086 bool (*loop_end)(void *, unsigned long),
6089 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6090 int (*napi_poll)(struct napi_struct *napi, int budget);
6091 void *have_poll_lock = NULL;
6092 struct napi_struct *napi;
6099 napi = napi_by_id(napi_id);
6109 unsigned long val = READ_ONCE(napi->state);
6111 /* If multiple threads are competing for this napi,
6112 * we avoid dirtying napi->state as much as we can.
6114 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6115 NAPIF_STATE_IN_BUSY_POLL))
6117 if (cmpxchg(&napi->state, val,
6118 val | NAPIF_STATE_IN_BUSY_POLL |
6119 NAPIF_STATE_SCHED) != val)
6121 have_poll_lock = netpoll_poll_lock(napi);
6122 napi_poll = napi->poll;
6124 work = napi_poll(napi, BUSY_POLL_BUDGET);
6125 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6126 gro_normal_list(napi);
6129 __NET_ADD_STATS(dev_net(napi->dev),
6130 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6133 if (!loop_end || loop_end(loop_end_arg, start_time))
6136 if (unlikely(need_resched())) {
6138 busy_poll_stop(napi, have_poll_lock);
6142 if (loop_end(loop_end_arg, start_time))
6149 busy_poll_stop(napi, have_poll_lock);
6154 EXPORT_SYMBOL(napi_busy_loop);
6156 #endif /* CONFIG_NET_RX_BUSY_POLL */
6158 static void napi_hash_add(struct napi_struct *napi)
6160 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6161 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6164 spin_lock(&napi_hash_lock);
6166 /* 0..NR_CPUS range is reserved for sender_cpu use */
6168 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6169 napi_gen_id = MIN_NAPI_ID;
6170 } while (napi_by_id(napi_gen_id));
6171 napi->napi_id = napi_gen_id;
6173 hlist_add_head_rcu(&napi->napi_hash_node,
6174 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6176 spin_unlock(&napi_hash_lock);
6179 /* Warning : caller is responsible to make sure rcu grace period
6180 * is respected before freeing memory containing @napi
6182 bool napi_hash_del(struct napi_struct *napi)
6184 bool rcu_sync_needed = false;
6186 spin_lock(&napi_hash_lock);
6188 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6189 rcu_sync_needed = true;
6190 hlist_del_rcu(&napi->napi_hash_node);
6192 spin_unlock(&napi_hash_lock);
6193 return rcu_sync_needed;
6195 EXPORT_SYMBOL_GPL(napi_hash_del);
6197 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6199 struct napi_struct *napi;
6201 napi = container_of(timer, struct napi_struct, timer);
6203 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6204 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6206 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6207 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6208 __napi_schedule_irqoff(napi);
6210 return HRTIMER_NORESTART;
6213 static void init_gro_hash(struct napi_struct *napi)
6217 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6218 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6219 napi->gro_hash[i].count = 0;
6221 napi->gro_bitmask = 0;
6224 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6225 int (*poll)(struct napi_struct *, int), int weight)
6227 INIT_LIST_HEAD(&napi->poll_list);
6228 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6229 napi->timer.function = napi_watchdog;
6230 init_gro_hash(napi);
6232 INIT_LIST_HEAD(&napi->rx_list);
6235 if (weight > NAPI_POLL_WEIGHT)
6236 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6238 napi->weight = weight;
6239 list_add(&napi->dev_list, &dev->napi_list);
6241 #ifdef CONFIG_NETPOLL
6242 napi->poll_owner = -1;
6244 set_bit(NAPI_STATE_SCHED, &napi->state);
6245 napi_hash_add(napi);
6247 EXPORT_SYMBOL(netif_napi_add);
6249 void napi_disable(struct napi_struct *n)
6252 set_bit(NAPI_STATE_DISABLE, &n->state);
6254 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6256 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6259 hrtimer_cancel(&n->timer);
6261 clear_bit(NAPI_STATE_DISABLE, &n->state);
6263 EXPORT_SYMBOL(napi_disable);
6265 static void flush_gro_hash(struct napi_struct *napi)
6269 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6270 struct sk_buff *skb, *n;
6272 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6274 napi->gro_hash[i].count = 0;
6278 /* Must be called in process context */
6279 void netif_napi_del(struct napi_struct *napi)
6282 if (napi_hash_del(napi))
6284 list_del_init(&napi->dev_list);
6285 napi_free_frags(napi);
6287 flush_gro_hash(napi);
6288 napi->gro_bitmask = 0;
6290 EXPORT_SYMBOL(netif_napi_del);
6292 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6297 list_del_init(&n->poll_list);
6299 have = netpoll_poll_lock(n);
6303 /* This NAPI_STATE_SCHED test is for avoiding a race
6304 * with netpoll's poll_napi(). Only the entity which
6305 * obtains the lock and sees NAPI_STATE_SCHED set will
6306 * actually make the ->poll() call. Therefore we avoid
6307 * accidentally calling ->poll() when NAPI is not scheduled.
6310 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6311 work = n->poll(n, weight);
6312 trace_napi_poll(n, work, weight);
6315 WARN_ON_ONCE(work > weight);
6317 if (likely(work < weight))
6320 /* Drivers must not modify the NAPI state if they
6321 * consume the entire weight. In such cases this code
6322 * still "owns" the NAPI instance and therefore can
6323 * move the instance around on the list at-will.
6325 if (unlikely(napi_disable_pending(n))) {
6332 if (n->gro_bitmask) {
6333 /* flush too old packets
6334 * If HZ < 1000, flush all packets.
6336 napi_gro_flush(n, HZ >= 1000);
6339 /* Some drivers may have called napi_schedule
6340 * prior to exhausting their budget.
6342 if (unlikely(!list_empty(&n->poll_list))) {
6343 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6344 n->dev ? n->dev->name : "backlog");
6348 list_add_tail(&n->poll_list, repoll);
6351 netpoll_poll_unlock(have);
6356 static __latent_entropy void net_rx_action(struct softirq_action *h)
6358 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6359 unsigned long time_limit = jiffies +
6360 usecs_to_jiffies(netdev_budget_usecs);
6361 int budget = netdev_budget;
6365 local_irq_disable();
6366 list_splice_init(&sd->poll_list, &list);
6370 struct napi_struct *n;
6372 if (list_empty(&list)) {
6373 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6378 n = list_first_entry(&list, struct napi_struct, poll_list);
6379 budget -= napi_poll(n, &repoll);
6381 /* If softirq window is exhausted then punt.
6382 * Allow this to run for 2 jiffies since which will allow
6383 * an average latency of 1.5/HZ.
6385 if (unlikely(budget <= 0 ||
6386 time_after_eq(jiffies, time_limit))) {
6392 local_irq_disable();
6394 list_splice_tail_init(&sd->poll_list, &list);
6395 list_splice_tail(&repoll, &list);
6396 list_splice(&list, &sd->poll_list);
6397 if (!list_empty(&sd->poll_list))
6398 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6400 net_rps_action_and_irq_enable(sd);
6402 __kfree_skb_flush();
6405 struct netdev_adjacent {
6406 struct net_device *dev;
6408 /* upper master flag, there can only be one master device per list */
6411 /* counter for the number of times this device was added to us */
6414 /* private field for the users */
6417 struct list_head list;
6418 struct rcu_head rcu;
6421 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6422 struct list_head *adj_list)
6424 struct netdev_adjacent *adj;
6426 list_for_each_entry(adj, adj_list, list) {
6427 if (adj->dev == adj_dev)
6433 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6435 struct net_device *dev = data;
6437 return upper_dev == dev;
6441 * netdev_has_upper_dev - Check if device is linked to an upper device
6443 * @upper_dev: upper device to check
6445 * Find out if a device is linked to specified upper device and return true
6446 * in case it is. Note that this checks only immediate upper device,
6447 * not through a complete stack of devices. The caller must hold the RTNL lock.
6449 bool netdev_has_upper_dev(struct net_device *dev,
6450 struct net_device *upper_dev)
6454 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6457 EXPORT_SYMBOL(netdev_has_upper_dev);
6460 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6462 * @upper_dev: upper device to check
6464 * Find out if a device is linked to specified upper device and return true
6465 * in case it is. Note that this checks the entire upper device chain.
6466 * The caller must hold rcu lock.
6469 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6470 struct net_device *upper_dev)
6472 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6475 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6478 * netdev_has_any_upper_dev - Check if device is linked to some device
6481 * Find out if a device is linked to an upper device and return true in case
6482 * it is. The caller must hold the RTNL lock.
6484 bool netdev_has_any_upper_dev(struct net_device *dev)
6488 return !list_empty(&dev->adj_list.upper);
6490 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6493 * netdev_master_upper_dev_get - Get master upper device
6496 * Find a master upper device and return pointer to it or NULL in case
6497 * it's not there. The caller must hold the RTNL lock.
6499 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6501 struct netdev_adjacent *upper;
6505 if (list_empty(&dev->adj_list.upper))
6508 upper = list_first_entry(&dev->adj_list.upper,
6509 struct netdev_adjacent, list);
6510 if (likely(upper->master))
6514 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6517 * netdev_has_any_lower_dev - Check if device is linked to some device
6520 * Find out if a device is linked to a lower device and return true in case
6521 * it is. The caller must hold the RTNL lock.
6523 static bool netdev_has_any_lower_dev(struct net_device *dev)
6527 return !list_empty(&dev->adj_list.lower);
6530 void *netdev_adjacent_get_private(struct list_head *adj_list)
6532 struct netdev_adjacent *adj;
6534 adj = list_entry(adj_list, struct netdev_adjacent, list);
6536 return adj->private;
6538 EXPORT_SYMBOL(netdev_adjacent_get_private);
6541 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6543 * @iter: list_head ** of the current position
6545 * Gets the next device from the dev's upper list, starting from iter
6546 * position. The caller must hold RCU read lock.
6548 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6549 struct list_head **iter)
6551 struct netdev_adjacent *upper;
6553 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6555 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6557 if (&upper->list == &dev->adj_list.upper)
6560 *iter = &upper->list;
6564 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6566 static struct net_device *netdev_next_upper_dev(struct net_device *dev,
6567 struct list_head **iter)
6569 struct netdev_adjacent *upper;
6571 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6573 if (&upper->list == &dev->adj_list.upper)
6576 *iter = &upper->list;
6581 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6582 struct list_head **iter)
6584 struct netdev_adjacent *upper;
6586 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6588 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6590 if (&upper->list == &dev->adj_list.upper)
6593 *iter = &upper->list;
6598 static int netdev_walk_all_upper_dev(struct net_device *dev,
6599 int (*fn)(struct net_device *dev,
6603 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6604 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6608 iter = &dev->adj_list.upper;
6612 ret = fn(now, data);
6619 udev = netdev_next_upper_dev(now, &iter);
6624 niter = &udev->adj_list.upper;
6625 dev_stack[cur] = now;
6626 iter_stack[cur++] = iter;
6633 next = dev_stack[--cur];
6634 niter = iter_stack[cur];
6644 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6645 int (*fn)(struct net_device *dev,
6649 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6650 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6654 iter = &dev->adj_list.upper;
6658 ret = fn(now, data);
6665 udev = netdev_next_upper_dev_rcu(now, &iter);
6670 niter = &udev->adj_list.upper;
6671 dev_stack[cur] = now;
6672 iter_stack[cur++] = iter;
6679 next = dev_stack[--cur];
6680 niter = iter_stack[cur];
6689 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6692 * netdev_lower_get_next_private - Get the next ->private from the
6693 * lower neighbour list
6695 * @iter: list_head ** of the current position
6697 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6698 * list, starting from iter position. The caller must hold either hold the
6699 * RTNL lock or its own locking that guarantees that the neighbour lower
6700 * list will remain unchanged.
6702 void *netdev_lower_get_next_private(struct net_device *dev,
6703 struct list_head **iter)
6705 struct netdev_adjacent *lower;
6707 lower = list_entry(*iter, struct netdev_adjacent, list);
6709 if (&lower->list == &dev->adj_list.lower)
6712 *iter = lower->list.next;
6714 return lower->private;
6716 EXPORT_SYMBOL(netdev_lower_get_next_private);
6719 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6720 * lower neighbour list, RCU
6723 * @iter: list_head ** of the current position
6725 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6726 * list, starting from iter position. The caller must hold RCU read lock.
6728 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6729 struct list_head **iter)
6731 struct netdev_adjacent *lower;
6733 WARN_ON_ONCE(!rcu_read_lock_held());
6735 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6737 if (&lower->list == &dev->adj_list.lower)
6740 *iter = &lower->list;
6742 return lower->private;
6744 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6747 * netdev_lower_get_next - Get the next device from the lower neighbour
6750 * @iter: list_head ** of the current position
6752 * Gets the next netdev_adjacent from the dev's lower neighbour
6753 * list, starting from iter position. The caller must hold RTNL lock or
6754 * its own locking that guarantees that the neighbour lower
6755 * list will remain unchanged.
6757 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6759 struct netdev_adjacent *lower;
6761 lower = list_entry(*iter, struct netdev_adjacent, list);
6763 if (&lower->list == &dev->adj_list.lower)
6766 *iter = lower->list.next;
6770 EXPORT_SYMBOL(netdev_lower_get_next);
6772 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6773 struct list_head **iter)
6775 struct netdev_adjacent *lower;
6777 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6779 if (&lower->list == &dev->adj_list.lower)
6782 *iter = &lower->list;
6787 int netdev_walk_all_lower_dev(struct net_device *dev,
6788 int (*fn)(struct net_device *dev,
6792 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6793 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6797 iter = &dev->adj_list.lower;
6801 ret = fn(now, data);
6808 ldev = netdev_next_lower_dev(now, &iter);
6813 niter = &ldev->adj_list.lower;
6814 dev_stack[cur] = now;
6815 iter_stack[cur++] = iter;
6822 next = dev_stack[--cur];
6823 niter = iter_stack[cur];
6832 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6834 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6835 struct list_head **iter)
6837 struct netdev_adjacent *lower;
6839 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6840 if (&lower->list == &dev->adj_list.lower)
6843 *iter = &lower->list;
6848 static u8 __netdev_upper_depth(struct net_device *dev)
6850 struct net_device *udev;
6851 struct list_head *iter;
6854 for (iter = &dev->adj_list.upper,
6855 udev = netdev_next_upper_dev(dev, &iter);
6857 udev = netdev_next_upper_dev(dev, &iter)) {
6858 if (max_depth < udev->upper_level)
6859 max_depth = udev->upper_level;
6865 static u8 __netdev_lower_depth(struct net_device *dev)
6867 struct net_device *ldev;
6868 struct list_head *iter;
6871 for (iter = &dev->adj_list.lower,
6872 ldev = netdev_next_lower_dev(dev, &iter);
6874 ldev = netdev_next_lower_dev(dev, &iter)) {
6875 if (max_depth < ldev->lower_level)
6876 max_depth = ldev->lower_level;
6882 static int __netdev_update_upper_level(struct net_device *dev, void *data)
6884 dev->upper_level = __netdev_upper_depth(dev) + 1;
6888 static int __netdev_update_lower_level(struct net_device *dev, void *data)
6890 dev->lower_level = __netdev_lower_depth(dev) + 1;
6894 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6895 int (*fn)(struct net_device *dev,
6899 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6900 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6904 iter = &dev->adj_list.lower;
6908 ret = fn(now, data);
6915 ldev = netdev_next_lower_dev_rcu(now, &iter);
6920 niter = &ldev->adj_list.lower;
6921 dev_stack[cur] = now;
6922 iter_stack[cur++] = iter;
6929 next = dev_stack[--cur];
6930 niter = iter_stack[cur];
6939 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6942 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6943 * lower neighbour list, RCU
6947 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6948 * list. The caller must hold RCU read lock.
6950 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6952 struct netdev_adjacent *lower;
6954 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6955 struct netdev_adjacent, list);
6957 return lower->private;
6960 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6963 * netdev_master_upper_dev_get_rcu - Get master upper device
6966 * Find a master upper device and return pointer to it or NULL in case
6967 * it's not there. The caller must hold the RCU read lock.
6969 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6971 struct netdev_adjacent *upper;
6973 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6974 struct netdev_adjacent, list);
6975 if (upper && likely(upper->master))
6979 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6981 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6982 struct net_device *adj_dev,
6983 struct list_head *dev_list)
6985 char linkname[IFNAMSIZ+7];
6987 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6988 "upper_%s" : "lower_%s", adj_dev->name);
6989 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6992 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6994 struct list_head *dev_list)
6996 char linkname[IFNAMSIZ+7];
6998 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6999 "upper_%s" : "lower_%s", name);
7000 sysfs_remove_link(&(dev->dev.kobj), linkname);
7003 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7004 struct net_device *adj_dev,
7005 struct list_head *dev_list)
7007 return (dev_list == &dev->adj_list.upper ||
7008 dev_list == &dev->adj_list.lower) &&
7009 net_eq(dev_net(dev), dev_net(adj_dev));
7012 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7013 struct net_device *adj_dev,
7014 struct list_head *dev_list,
7015 void *private, bool master)
7017 struct netdev_adjacent *adj;
7020 adj = __netdev_find_adj(adj_dev, dev_list);
7024 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7025 dev->name, adj_dev->name, adj->ref_nr);
7030 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7035 adj->master = master;
7037 adj->private = private;
7040 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7041 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7043 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7044 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7049 /* Ensure that master link is always the first item in list. */
7051 ret = sysfs_create_link(&(dev->dev.kobj),
7052 &(adj_dev->dev.kobj), "master");
7054 goto remove_symlinks;
7056 list_add_rcu(&adj->list, dev_list);
7058 list_add_tail_rcu(&adj->list, dev_list);
7064 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7065 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7073 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7074 struct net_device *adj_dev,
7076 struct list_head *dev_list)
7078 struct netdev_adjacent *adj;
7080 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7081 dev->name, adj_dev->name, ref_nr);
7083 adj = __netdev_find_adj(adj_dev, dev_list);
7086 pr_err("Adjacency does not exist for device %s from %s\n",
7087 dev->name, adj_dev->name);
7092 if (adj->ref_nr > ref_nr) {
7093 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7094 dev->name, adj_dev->name, ref_nr,
7095 adj->ref_nr - ref_nr);
7096 adj->ref_nr -= ref_nr;
7101 sysfs_remove_link(&(dev->dev.kobj), "master");
7103 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7104 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7106 list_del_rcu(&adj->list);
7107 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7108 adj_dev->name, dev->name, adj_dev->name);
7110 kfree_rcu(adj, rcu);
7113 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7114 struct net_device *upper_dev,
7115 struct list_head *up_list,
7116 struct list_head *down_list,
7117 void *private, bool master)
7121 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7126 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7129 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7136 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7137 struct net_device *upper_dev,
7139 struct list_head *up_list,
7140 struct list_head *down_list)
7142 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7143 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7146 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7147 struct net_device *upper_dev,
7148 void *private, bool master)
7150 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7151 &dev->adj_list.upper,
7152 &upper_dev->adj_list.lower,
7156 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7157 struct net_device *upper_dev)
7159 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7160 &dev->adj_list.upper,
7161 &upper_dev->adj_list.lower);
7164 static int __netdev_upper_dev_link(struct net_device *dev,
7165 struct net_device *upper_dev, bool master,
7166 void *upper_priv, void *upper_info,
7167 struct netlink_ext_ack *extack)
7169 struct netdev_notifier_changeupper_info changeupper_info = {
7174 .upper_dev = upper_dev,
7177 .upper_info = upper_info,
7179 struct net_device *master_dev;
7184 if (dev == upper_dev)
7187 /* To prevent loops, check if dev is not upper device to upper_dev. */
7188 if (netdev_has_upper_dev(upper_dev, dev))
7191 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7195 if (netdev_has_upper_dev(dev, upper_dev))
7198 master_dev = netdev_master_upper_dev_get(dev);
7200 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7203 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7204 &changeupper_info.info);
7205 ret = notifier_to_errno(ret);
7209 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7214 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7215 &changeupper_info.info);
7216 ret = notifier_to_errno(ret);
7220 __netdev_update_upper_level(dev, NULL);
7221 netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7223 __netdev_update_lower_level(upper_dev, NULL);
7224 netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL);
7229 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7235 * netdev_upper_dev_link - Add a link to the upper device
7237 * @upper_dev: new upper device
7238 * @extack: netlink extended ack
7240 * Adds a link to device which is upper to this one. The caller must hold
7241 * the RTNL lock. On a failure a negative errno code is returned.
7242 * On success the reference counts are adjusted and the function
7245 int netdev_upper_dev_link(struct net_device *dev,
7246 struct net_device *upper_dev,
7247 struct netlink_ext_ack *extack)
7249 return __netdev_upper_dev_link(dev, upper_dev, false,
7250 NULL, NULL, extack);
7252 EXPORT_SYMBOL(netdev_upper_dev_link);
7255 * netdev_master_upper_dev_link - Add a master link to the upper device
7257 * @upper_dev: new upper device
7258 * @upper_priv: upper device private
7259 * @upper_info: upper info to be passed down via notifier
7260 * @extack: netlink extended ack
7262 * Adds a link to device which is upper to this one. In this case, only
7263 * one master upper device can be linked, although other non-master devices
7264 * might be linked as well. The caller must hold the RTNL lock.
7265 * On a failure a negative errno code is returned. On success the reference
7266 * counts are adjusted and the function returns zero.
7268 int netdev_master_upper_dev_link(struct net_device *dev,
7269 struct net_device *upper_dev,
7270 void *upper_priv, void *upper_info,
7271 struct netlink_ext_ack *extack)
7273 return __netdev_upper_dev_link(dev, upper_dev, true,
7274 upper_priv, upper_info, extack);
7276 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7279 * netdev_upper_dev_unlink - Removes a link to upper device
7281 * @upper_dev: new upper device
7283 * Removes a link to device which is upper to this one. The caller must hold
7286 void netdev_upper_dev_unlink(struct net_device *dev,
7287 struct net_device *upper_dev)
7289 struct netdev_notifier_changeupper_info changeupper_info = {
7293 .upper_dev = upper_dev,
7299 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7301 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7302 &changeupper_info.info);
7304 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7306 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7307 &changeupper_info.info);
7309 __netdev_update_upper_level(dev, NULL);
7310 netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7312 __netdev_update_lower_level(upper_dev, NULL);
7313 netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL);
7315 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7318 * netdev_bonding_info_change - Dispatch event about slave change
7320 * @bonding_info: info to dispatch
7322 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7323 * The caller must hold the RTNL lock.
7325 void netdev_bonding_info_change(struct net_device *dev,
7326 struct netdev_bonding_info *bonding_info)
7328 struct netdev_notifier_bonding_info info = {
7332 memcpy(&info.bonding_info, bonding_info,
7333 sizeof(struct netdev_bonding_info));
7334 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7337 EXPORT_SYMBOL(netdev_bonding_info_change);
7339 static void netdev_adjacent_add_links(struct net_device *dev)
7341 struct netdev_adjacent *iter;
7343 struct net *net = dev_net(dev);
7345 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7346 if (!net_eq(net, dev_net(iter->dev)))
7348 netdev_adjacent_sysfs_add(iter->dev, dev,
7349 &iter->dev->adj_list.lower);
7350 netdev_adjacent_sysfs_add(dev, iter->dev,
7351 &dev->adj_list.upper);
7354 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7355 if (!net_eq(net, dev_net(iter->dev)))
7357 netdev_adjacent_sysfs_add(iter->dev, dev,
7358 &iter->dev->adj_list.upper);
7359 netdev_adjacent_sysfs_add(dev, iter->dev,
7360 &dev->adj_list.lower);
7364 static void netdev_adjacent_del_links(struct net_device *dev)
7366 struct netdev_adjacent *iter;
7368 struct net *net = dev_net(dev);
7370 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7371 if (!net_eq(net, dev_net(iter->dev)))
7373 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7374 &iter->dev->adj_list.lower);
7375 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7376 &dev->adj_list.upper);
7379 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7380 if (!net_eq(net, dev_net(iter->dev)))
7382 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7383 &iter->dev->adj_list.upper);
7384 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7385 &dev->adj_list.lower);
7389 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7391 struct netdev_adjacent *iter;
7393 struct net *net = dev_net(dev);
7395 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7396 if (!net_eq(net, dev_net(iter->dev)))
7398 netdev_adjacent_sysfs_del(iter->dev, oldname,
7399 &iter->dev->adj_list.lower);
7400 netdev_adjacent_sysfs_add(iter->dev, dev,
7401 &iter->dev->adj_list.lower);
7404 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7405 if (!net_eq(net, dev_net(iter->dev)))
7407 netdev_adjacent_sysfs_del(iter->dev, oldname,
7408 &iter->dev->adj_list.upper);
7409 netdev_adjacent_sysfs_add(iter->dev, dev,
7410 &iter->dev->adj_list.upper);
7414 void *netdev_lower_dev_get_private(struct net_device *dev,
7415 struct net_device *lower_dev)
7417 struct netdev_adjacent *lower;
7421 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7425 return lower->private;
7427 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7430 int dev_get_nest_level(struct net_device *dev)
7432 struct net_device *lower = NULL;
7433 struct list_head *iter;
7439 netdev_for_each_lower_dev(dev, lower, iter) {
7440 nest = dev_get_nest_level(lower);
7441 if (max_nest < nest)
7445 return max_nest + 1;
7447 EXPORT_SYMBOL(dev_get_nest_level);
7450 * netdev_lower_change - Dispatch event about lower device state change
7451 * @lower_dev: device
7452 * @lower_state_info: state to dispatch
7454 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7455 * The caller must hold the RTNL lock.
7457 void netdev_lower_state_changed(struct net_device *lower_dev,
7458 void *lower_state_info)
7460 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7461 .info.dev = lower_dev,
7465 changelowerstate_info.lower_state_info = lower_state_info;
7466 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7467 &changelowerstate_info.info);
7469 EXPORT_SYMBOL(netdev_lower_state_changed);
7471 static void dev_change_rx_flags(struct net_device *dev, int flags)
7473 const struct net_device_ops *ops = dev->netdev_ops;
7475 if (ops->ndo_change_rx_flags)
7476 ops->ndo_change_rx_flags(dev, flags);
7479 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7481 unsigned int old_flags = dev->flags;
7487 dev->flags |= IFF_PROMISC;
7488 dev->promiscuity += inc;
7489 if (dev->promiscuity == 0) {
7492 * If inc causes overflow, untouch promisc and return error.
7495 dev->flags &= ~IFF_PROMISC;
7497 dev->promiscuity -= inc;
7498 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7503 if (dev->flags != old_flags) {
7504 pr_info("device %s %s promiscuous mode\n",
7506 dev->flags & IFF_PROMISC ? "entered" : "left");
7507 if (audit_enabled) {
7508 current_uid_gid(&uid, &gid);
7509 audit_log(audit_context(), GFP_ATOMIC,
7510 AUDIT_ANOM_PROMISCUOUS,
7511 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7512 dev->name, (dev->flags & IFF_PROMISC),
7513 (old_flags & IFF_PROMISC),
7514 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7515 from_kuid(&init_user_ns, uid),
7516 from_kgid(&init_user_ns, gid),
7517 audit_get_sessionid(current));
7520 dev_change_rx_flags(dev, IFF_PROMISC);
7523 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7528 * dev_set_promiscuity - update promiscuity count on a device
7532 * Add or remove promiscuity from a device. While the count in the device
7533 * remains above zero the interface remains promiscuous. Once it hits zero
7534 * the device reverts back to normal filtering operation. A negative inc
7535 * value is used to drop promiscuity on the device.
7536 * Return 0 if successful or a negative errno code on error.
7538 int dev_set_promiscuity(struct net_device *dev, int inc)
7540 unsigned int old_flags = dev->flags;
7543 err = __dev_set_promiscuity(dev, inc, true);
7546 if (dev->flags != old_flags)
7547 dev_set_rx_mode(dev);
7550 EXPORT_SYMBOL(dev_set_promiscuity);
7552 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7554 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7558 dev->flags |= IFF_ALLMULTI;
7559 dev->allmulti += inc;
7560 if (dev->allmulti == 0) {
7563 * If inc causes overflow, untouch allmulti and return error.
7566 dev->flags &= ~IFF_ALLMULTI;
7568 dev->allmulti -= inc;
7569 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7574 if (dev->flags ^ old_flags) {
7575 dev_change_rx_flags(dev, IFF_ALLMULTI);
7576 dev_set_rx_mode(dev);
7578 __dev_notify_flags(dev, old_flags,
7579 dev->gflags ^ old_gflags);
7585 * dev_set_allmulti - update allmulti count on a device
7589 * Add or remove reception of all multicast frames to a device. While the
7590 * count in the device remains above zero the interface remains listening
7591 * to all interfaces. Once it hits zero the device reverts back to normal
7592 * filtering operation. A negative @inc value is used to drop the counter
7593 * when releasing a resource needing all multicasts.
7594 * Return 0 if successful or a negative errno code on error.
7597 int dev_set_allmulti(struct net_device *dev, int inc)
7599 return __dev_set_allmulti(dev, inc, true);
7601 EXPORT_SYMBOL(dev_set_allmulti);
7604 * Upload unicast and multicast address lists to device and
7605 * configure RX filtering. When the device doesn't support unicast
7606 * filtering it is put in promiscuous mode while unicast addresses
7609 void __dev_set_rx_mode(struct net_device *dev)
7611 const struct net_device_ops *ops = dev->netdev_ops;
7613 /* dev_open will call this function so the list will stay sane. */
7614 if (!(dev->flags&IFF_UP))
7617 if (!netif_device_present(dev))
7620 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7621 /* Unicast addresses changes may only happen under the rtnl,
7622 * therefore calling __dev_set_promiscuity here is safe.
7624 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7625 __dev_set_promiscuity(dev, 1, false);
7626 dev->uc_promisc = true;
7627 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7628 __dev_set_promiscuity(dev, -1, false);
7629 dev->uc_promisc = false;
7633 if (ops->ndo_set_rx_mode)
7634 ops->ndo_set_rx_mode(dev);
7637 void dev_set_rx_mode(struct net_device *dev)
7639 netif_addr_lock_bh(dev);
7640 __dev_set_rx_mode(dev);
7641 netif_addr_unlock_bh(dev);
7645 * dev_get_flags - get flags reported to userspace
7648 * Get the combination of flag bits exported through APIs to userspace.
7650 unsigned int dev_get_flags(const struct net_device *dev)
7654 flags = (dev->flags & ~(IFF_PROMISC |
7659 (dev->gflags & (IFF_PROMISC |
7662 if (netif_running(dev)) {
7663 if (netif_oper_up(dev))
7664 flags |= IFF_RUNNING;
7665 if (netif_carrier_ok(dev))
7666 flags |= IFF_LOWER_UP;
7667 if (netif_dormant(dev))
7668 flags |= IFF_DORMANT;
7673 EXPORT_SYMBOL(dev_get_flags);
7675 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7676 struct netlink_ext_ack *extack)
7678 unsigned int old_flags = dev->flags;
7684 * Set the flags on our device.
7687 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7688 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7690 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7694 * Load in the correct multicast list now the flags have changed.
7697 if ((old_flags ^ flags) & IFF_MULTICAST)
7698 dev_change_rx_flags(dev, IFF_MULTICAST);
7700 dev_set_rx_mode(dev);
7703 * Have we downed the interface. We handle IFF_UP ourselves
7704 * according to user attempts to set it, rather than blindly
7709 if ((old_flags ^ flags) & IFF_UP) {
7710 if (old_flags & IFF_UP)
7713 ret = __dev_open(dev, extack);
7716 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7717 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7718 unsigned int old_flags = dev->flags;
7720 dev->gflags ^= IFF_PROMISC;
7722 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7723 if (dev->flags != old_flags)
7724 dev_set_rx_mode(dev);
7727 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7728 * is important. Some (broken) drivers set IFF_PROMISC, when
7729 * IFF_ALLMULTI is requested not asking us and not reporting.
7731 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7732 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7734 dev->gflags ^= IFF_ALLMULTI;
7735 __dev_set_allmulti(dev, inc, false);
7741 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7742 unsigned int gchanges)
7744 unsigned int changes = dev->flags ^ old_flags;
7747 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7749 if (changes & IFF_UP) {
7750 if (dev->flags & IFF_UP)
7751 call_netdevice_notifiers(NETDEV_UP, dev);
7753 call_netdevice_notifiers(NETDEV_DOWN, dev);
7756 if (dev->flags & IFF_UP &&
7757 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7758 struct netdev_notifier_change_info change_info = {
7762 .flags_changed = changes,
7765 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7770 * dev_change_flags - change device settings
7772 * @flags: device state flags
7773 * @extack: netlink extended ack
7775 * Change settings on device based state flags. The flags are
7776 * in the userspace exported format.
7778 int dev_change_flags(struct net_device *dev, unsigned int flags,
7779 struct netlink_ext_ack *extack)
7782 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7784 ret = __dev_change_flags(dev, flags, extack);
7788 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7789 __dev_notify_flags(dev, old_flags, changes);
7792 EXPORT_SYMBOL(dev_change_flags);
7794 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7796 const struct net_device_ops *ops = dev->netdev_ops;
7798 if (ops->ndo_change_mtu)
7799 return ops->ndo_change_mtu(dev, new_mtu);
7804 EXPORT_SYMBOL(__dev_set_mtu);
7807 * dev_set_mtu_ext - Change maximum transfer unit
7809 * @new_mtu: new transfer unit
7810 * @extack: netlink extended ack
7812 * Change the maximum transfer size of the network device.
7814 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7815 struct netlink_ext_ack *extack)
7819 if (new_mtu == dev->mtu)
7822 /* MTU must be positive, and in range */
7823 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7824 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7828 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7829 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7833 if (!netif_device_present(dev))
7836 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7837 err = notifier_to_errno(err);
7841 orig_mtu = dev->mtu;
7842 err = __dev_set_mtu(dev, new_mtu);
7845 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7847 err = notifier_to_errno(err);
7849 /* setting mtu back and notifying everyone again,
7850 * so that they have a chance to revert changes.
7852 __dev_set_mtu(dev, orig_mtu);
7853 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7860 int dev_set_mtu(struct net_device *dev, int new_mtu)
7862 struct netlink_ext_ack extack;
7865 memset(&extack, 0, sizeof(extack));
7866 err = dev_set_mtu_ext(dev, new_mtu, &extack);
7867 if (err && extack._msg)
7868 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7871 EXPORT_SYMBOL(dev_set_mtu);
7874 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7876 * @new_len: new tx queue length
7878 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7880 unsigned int orig_len = dev->tx_queue_len;
7883 if (new_len != (unsigned int)new_len)
7886 if (new_len != orig_len) {
7887 dev->tx_queue_len = new_len;
7888 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7889 res = notifier_to_errno(res);
7892 res = dev_qdisc_change_tx_queue_len(dev);
7900 netdev_err(dev, "refused to change device tx_queue_len\n");
7901 dev->tx_queue_len = orig_len;
7906 * dev_set_group - Change group this device belongs to
7908 * @new_group: group this device should belong to
7910 void dev_set_group(struct net_device *dev, int new_group)
7912 dev->group = new_group;
7914 EXPORT_SYMBOL(dev_set_group);
7917 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7919 * @addr: new address
7920 * @extack: netlink extended ack
7922 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7923 struct netlink_ext_ack *extack)
7925 struct netdev_notifier_pre_changeaddr_info info = {
7927 .info.extack = extack,
7932 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7933 return notifier_to_errno(rc);
7935 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7938 * dev_set_mac_address - Change Media Access Control Address
7941 * @extack: netlink extended ack
7943 * Change the hardware (MAC) address of the device
7945 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7946 struct netlink_ext_ack *extack)
7948 const struct net_device_ops *ops = dev->netdev_ops;
7951 if (!ops->ndo_set_mac_address)
7953 if (sa->sa_family != dev->type)
7955 if (!netif_device_present(dev))
7957 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7960 err = ops->ndo_set_mac_address(dev, sa);
7963 dev->addr_assign_type = NET_ADDR_SET;
7964 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7965 add_device_randomness(dev->dev_addr, dev->addr_len);
7968 EXPORT_SYMBOL(dev_set_mac_address);
7971 * dev_change_carrier - Change device carrier
7973 * @new_carrier: new value
7975 * Change device carrier
7977 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7979 const struct net_device_ops *ops = dev->netdev_ops;
7981 if (!ops->ndo_change_carrier)
7983 if (!netif_device_present(dev))
7985 return ops->ndo_change_carrier(dev, new_carrier);
7987 EXPORT_SYMBOL(dev_change_carrier);
7990 * dev_get_phys_port_id - Get device physical port ID
7994 * Get device physical port ID
7996 int dev_get_phys_port_id(struct net_device *dev,
7997 struct netdev_phys_item_id *ppid)
7999 const struct net_device_ops *ops = dev->netdev_ops;
8001 if (!ops->ndo_get_phys_port_id)
8003 return ops->ndo_get_phys_port_id(dev, ppid);
8005 EXPORT_SYMBOL(dev_get_phys_port_id);
8008 * dev_get_phys_port_name - Get device physical port name
8011 * @len: limit of bytes to copy to name
8013 * Get device physical port name
8015 int dev_get_phys_port_name(struct net_device *dev,
8016 char *name, size_t len)
8018 const struct net_device_ops *ops = dev->netdev_ops;
8021 if (ops->ndo_get_phys_port_name) {
8022 err = ops->ndo_get_phys_port_name(dev, name, len);
8023 if (err != -EOPNOTSUPP)
8026 return devlink_compat_phys_port_name_get(dev, name, len);
8028 EXPORT_SYMBOL(dev_get_phys_port_name);
8031 * dev_get_port_parent_id - Get the device's port parent identifier
8032 * @dev: network device
8033 * @ppid: pointer to a storage for the port's parent identifier
8034 * @recurse: allow/disallow recursion to lower devices
8036 * Get the devices's port parent identifier
8038 int dev_get_port_parent_id(struct net_device *dev,
8039 struct netdev_phys_item_id *ppid,
8042 const struct net_device_ops *ops = dev->netdev_ops;
8043 struct netdev_phys_item_id first = { };
8044 struct net_device *lower_dev;
8045 struct list_head *iter;
8048 if (ops->ndo_get_port_parent_id) {
8049 err = ops->ndo_get_port_parent_id(dev, ppid);
8050 if (err != -EOPNOTSUPP)
8054 err = devlink_compat_switch_id_get(dev, ppid);
8055 if (!err || err != -EOPNOTSUPP)
8061 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8062 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8067 else if (memcmp(&first, ppid, sizeof(*ppid)))
8073 EXPORT_SYMBOL(dev_get_port_parent_id);
8076 * netdev_port_same_parent_id - Indicate if two network devices have
8077 * the same port parent identifier
8078 * @a: first network device
8079 * @b: second network device
8081 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8083 struct netdev_phys_item_id a_id = { };
8084 struct netdev_phys_item_id b_id = { };
8086 if (dev_get_port_parent_id(a, &a_id, true) ||
8087 dev_get_port_parent_id(b, &b_id, true))
8090 return netdev_phys_item_id_same(&a_id, &b_id);
8092 EXPORT_SYMBOL(netdev_port_same_parent_id);
8095 * dev_change_proto_down - update protocol port state information
8097 * @proto_down: new value
8099 * This info can be used by switch drivers to set the phys state of the
8102 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8104 const struct net_device_ops *ops = dev->netdev_ops;
8106 if (!ops->ndo_change_proto_down)
8108 if (!netif_device_present(dev))
8110 return ops->ndo_change_proto_down(dev, proto_down);
8112 EXPORT_SYMBOL(dev_change_proto_down);
8115 * dev_change_proto_down_generic - generic implementation for
8116 * ndo_change_proto_down that sets carrier according to
8120 * @proto_down: new value
8122 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8125 netif_carrier_off(dev);
8127 netif_carrier_on(dev);
8128 dev->proto_down = proto_down;
8131 EXPORT_SYMBOL(dev_change_proto_down_generic);
8133 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8134 enum bpf_netdev_command cmd)
8136 struct netdev_bpf xdp;
8141 memset(&xdp, 0, sizeof(xdp));
8144 /* Query must always succeed. */
8145 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8150 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8151 struct netlink_ext_ack *extack, u32 flags,
8152 struct bpf_prog *prog)
8154 struct netdev_bpf xdp;
8156 memset(&xdp, 0, sizeof(xdp));
8157 if (flags & XDP_FLAGS_HW_MODE)
8158 xdp.command = XDP_SETUP_PROG_HW;
8160 xdp.command = XDP_SETUP_PROG;
8161 xdp.extack = extack;
8165 return bpf_op(dev, &xdp);
8168 static void dev_xdp_uninstall(struct net_device *dev)
8170 struct netdev_bpf xdp;
8173 /* Remove generic XDP */
8174 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8176 /* Remove from the driver */
8177 ndo_bpf = dev->netdev_ops->ndo_bpf;
8181 memset(&xdp, 0, sizeof(xdp));
8182 xdp.command = XDP_QUERY_PROG;
8183 WARN_ON(ndo_bpf(dev, &xdp));
8185 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8188 /* Remove HW offload */
8189 memset(&xdp, 0, sizeof(xdp));
8190 xdp.command = XDP_QUERY_PROG_HW;
8191 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8192 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8197 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8199 * @extack: netlink extended ack
8200 * @fd: new program fd or negative value to clear
8201 * @flags: xdp-related flags
8203 * Set or clear a bpf program for a device
8205 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8208 const struct net_device_ops *ops = dev->netdev_ops;
8209 enum bpf_netdev_command query;
8210 struct bpf_prog *prog = NULL;
8211 bpf_op_t bpf_op, bpf_chk;
8217 offload = flags & XDP_FLAGS_HW_MODE;
8218 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8220 bpf_op = bpf_chk = ops->ndo_bpf;
8221 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8222 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8225 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8226 bpf_op = generic_xdp_install;
8227 if (bpf_op == bpf_chk)
8228 bpf_chk = generic_xdp_install;
8233 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8234 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8238 prog_id = __dev_xdp_query(dev, bpf_op, query);
8239 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8240 NL_SET_ERR_MSG(extack, "XDP program already attached");
8244 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8245 bpf_op == ops->ndo_bpf);
8247 return PTR_ERR(prog);
8249 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8250 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8255 if (prog->aux->id == prog_id) {
8260 if (!__dev_xdp_query(dev, bpf_op, query))
8264 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8265 if (err < 0 && prog)
8272 * dev_new_index - allocate an ifindex
8273 * @net: the applicable net namespace
8275 * Returns a suitable unique value for a new device interface
8276 * number. The caller must hold the rtnl semaphore or the
8277 * dev_base_lock to be sure it remains unique.
8279 static int dev_new_index(struct net *net)
8281 int ifindex = net->ifindex;
8286 if (!__dev_get_by_index(net, ifindex))
8287 return net->ifindex = ifindex;
8291 /* Delayed registration/unregisteration */
8292 static LIST_HEAD(net_todo_list);
8293 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8295 static void net_set_todo(struct net_device *dev)
8297 list_add_tail(&dev->todo_list, &net_todo_list);
8298 dev_net(dev)->dev_unreg_count++;
8301 static void rollback_registered_many(struct list_head *head)
8303 struct net_device *dev, *tmp;
8304 LIST_HEAD(close_head);
8306 BUG_ON(dev_boot_phase);
8309 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8310 /* Some devices call without registering
8311 * for initialization unwind. Remove those
8312 * devices and proceed with the remaining.
8314 if (dev->reg_state == NETREG_UNINITIALIZED) {
8315 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8319 list_del(&dev->unreg_list);
8322 dev->dismantle = true;
8323 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8326 /* If device is running, close it first. */
8327 list_for_each_entry(dev, head, unreg_list)
8328 list_add_tail(&dev->close_list, &close_head);
8329 dev_close_many(&close_head, true);
8331 list_for_each_entry(dev, head, unreg_list) {
8332 /* And unlink it from device chain. */
8333 unlist_netdevice(dev);
8335 dev->reg_state = NETREG_UNREGISTERING;
8337 flush_all_backlogs();
8341 list_for_each_entry(dev, head, unreg_list) {
8342 struct sk_buff *skb = NULL;
8344 /* Shutdown queueing discipline. */
8347 dev_xdp_uninstall(dev);
8349 /* Notify protocols, that we are about to destroy
8350 * this device. They should clean all the things.
8352 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8354 if (!dev->rtnl_link_ops ||
8355 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8356 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8357 GFP_KERNEL, NULL, 0);
8360 * Flush the unicast and multicast chains
8365 if (dev->netdev_ops->ndo_uninit)
8366 dev->netdev_ops->ndo_uninit(dev);
8369 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8371 /* Notifier chain MUST detach us all upper devices. */
8372 WARN_ON(netdev_has_any_upper_dev(dev));
8373 WARN_ON(netdev_has_any_lower_dev(dev));
8375 /* Remove entries from kobject tree */
8376 netdev_unregister_kobject(dev);
8378 /* Remove XPS queueing entries */
8379 netif_reset_xps_queues_gt(dev, 0);
8385 list_for_each_entry(dev, head, unreg_list)
8389 static void rollback_registered(struct net_device *dev)
8393 list_add(&dev->unreg_list, &single);
8394 rollback_registered_many(&single);
8398 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8399 struct net_device *upper, netdev_features_t features)
8401 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8402 netdev_features_t feature;
8405 for_each_netdev_feature(upper_disables, feature_bit) {
8406 feature = __NETIF_F_BIT(feature_bit);
8407 if (!(upper->wanted_features & feature)
8408 && (features & feature)) {
8409 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8410 &feature, upper->name);
8411 features &= ~feature;
8418 static void netdev_sync_lower_features(struct net_device *upper,
8419 struct net_device *lower, netdev_features_t features)
8421 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8422 netdev_features_t feature;
8425 for_each_netdev_feature(upper_disables, feature_bit) {
8426 feature = __NETIF_F_BIT(feature_bit);
8427 if (!(features & feature) && (lower->features & feature)) {
8428 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8429 &feature, lower->name);
8430 lower->wanted_features &= ~feature;
8431 netdev_update_features(lower);
8433 if (unlikely(lower->features & feature))
8434 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8435 &feature, lower->name);
8440 static netdev_features_t netdev_fix_features(struct net_device *dev,
8441 netdev_features_t features)
8443 /* Fix illegal checksum combinations */
8444 if ((features & NETIF_F_HW_CSUM) &&
8445 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8446 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8447 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8450 /* TSO requires that SG is present as well. */
8451 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8452 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8453 features &= ~NETIF_F_ALL_TSO;
8456 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8457 !(features & NETIF_F_IP_CSUM)) {
8458 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8459 features &= ~NETIF_F_TSO;
8460 features &= ~NETIF_F_TSO_ECN;
8463 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8464 !(features & NETIF_F_IPV6_CSUM)) {
8465 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8466 features &= ~NETIF_F_TSO6;
8469 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8470 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8471 features &= ~NETIF_F_TSO_MANGLEID;
8473 /* TSO ECN requires that TSO is present as well. */
8474 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8475 features &= ~NETIF_F_TSO_ECN;
8477 /* Software GSO depends on SG. */
8478 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8479 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8480 features &= ~NETIF_F_GSO;
8483 /* GSO partial features require GSO partial be set */
8484 if ((features & dev->gso_partial_features) &&
8485 !(features & NETIF_F_GSO_PARTIAL)) {
8487 "Dropping partially supported GSO features since no GSO partial.\n");
8488 features &= ~dev->gso_partial_features;
8491 if (!(features & NETIF_F_RXCSUM)) {
8492 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8493 * successfully merged by hardware must also have the
8494 * checksum verified by hardware. If the user does not
8495 * want to enable RXCSUM, logically, we should disable GRO_HW.
8497 if (features & NETIF_F_GRO_HW) {
8498 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8499 features &= ~NETIF_F_GRO_HW;
8503 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8504 if (features & NETIF_F_RXFCS) {
8505 if (features & NETIF_F_LRO) {
8506 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8507 features &= ~NETIF_F_LRO;
8510 if (features & NETIF_F_GRO_HW) {
8511 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8512 features &= ~NETIF_F_GRO_HW;
8519 int __netdev_update_features(struct net_device *dev)
8521 struct net_device *upper, *lower;
8522 netdev_features_t features;
8523 struct list_head *iter;
8528 features = netdev_get_wanted_features(dev);
8530 if (dev->netdev_ops->ndo_fix_features)
8531 features = dev->netdev_ops->ndo_fix_features(dev, features);
8533 /* driver might be less strict about feature dependencies */
8534 features = netdev_fix_features(dev, features);
8536 /* some features can't be enabled if they're off an an upper device */
8537 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8538 features = netdev_sync_upper_features(dev, upper, features);
8540 if (dev->features == features)
8543 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8544 &dev->features, &features);
8546 if (dev->netdev_ops->ndo_set_features)
8547 err = dev->netdev_ops->ndo_set_features(dev, features);
8551 if (unlikely(err < 0)) {
8553 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8554 err, &features, &dev->features);
8555 /* return non-0 since some features might have changed and
8556 * it's better to fire a spurious notification than miss it
8562 /* some features must be disabled on lower devices when disabled
8563 * on an upper device (think: bonding master or bridge)
8565 netdev_for_each_lower_dev(dev, lower, iter)
8566 netdev_sync_lower_features(dev, lower, features);
8569 netdev_features_t diff = features ^ dev->features;
8571 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8572 /* udp_tunnel_{get,drop}_rx_info both need
8573 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8574 * device, or they won't do anything.
8575 * Thus we need to update dev->features
8576 * *before* calling udp_tunnel_get_rx_info,
8577 * but *after* calling udp_tunnel_drop_rx_info.
8579 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8580 dev->features = features;
8581 udp_tunnel_get_rx_info(dev);
8583 udp_tunnel_drop_rx_info(dev);
8587 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8588 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8589 dev->features = features;
8590 err |= vlan_get_rx_ctag_filter_info(dev);
8592 vlan_drop_rx_ctag_filter_info(dev);
8596 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8597 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8598 dev->features = features;
8599 err |= vlan_get_rx_stag_filter_info(dev);
8601 vlan_drop_rx_stag_filter_info(dev);
8605 dev->features = features;
8608 return err < 0 ? 0 : 1;
8612 * netdev_update_features - recalculate device features
8613 * @dev: the device to check
8615 * Recalculate dev->features set and send notifications if it
8616 * has changed. Should be called after driver or hardware dependent
8617 * conditions might have changed that influence the features.
8619 void netdev_update_features(struct net_device *dev)
8621 if (__netdev_update_features(dev))
8622 netdev_features_change(dev);
8624 EXPORT_SYMBOL(netdev_update_features);
8627 * netdev_change_features - recalculate device features
8628 * @dev: the device to check
8630 * Recalculate dev->features set and send notifications even
8631 * if they have not changed. Should be called instead of
8632 * netdev_update_features() if also dev->vlan_features might
8633 * have changed to allow the changes to be propagated to stacked
8636 void netdev_change_features(struct net_device *dev)
8638 __netdev_update_features(dev);
8639 netdev_features_change(dev);
8641 EXPORT_SYMBOL(netdev_change_features);
8644 * netif_stacked_transfer_operstate - transfer operstate
8645 * @rootdev: the root or lower level device to transfer state from
8646 * @dev: the device to transfer operstate to
8648 * Transfer operational state from root to device. This is normally
8649 * called when a stacking relationship exists between the root
8650 * device and the device(a leaf device).
8652 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8653 struct net_device *dev)
8655 if (rootdev->operstate == IF_OPER_DORMANT)
8656 netif_dormant_on(dev);
8658 netif_dormant_off(dev);
8660 if (netif_carrier_ok(rootdev))
8661 netif_carrier_on(dev);
8663 netif_carrier_off(dev);
8665 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8667 static int netif_alloc_rx_queues(struct net_device *dev)
8669 unsigned int i, count = dev->num_rx_queues;
8670 struct netdev_rx_queue *rx;
8671 size_t sz = count * sizeof(*rx);
8676 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8682 for (i = 0; i < count; i++) {
8685 /* XDP RX-queue setup */
8686 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8693 /* Rollback successful reg's and free other resources */
8695 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8701 static void netif_free_rx_queues(struct net_device *dev)
8703 unsigned int i, count = dev->num_rx_queues;
8705 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8709 for (i = 0; i < count; i++)
8710 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8715 static void netdev_init_one_queue(struct net_device *dev,
8716 struct netdev_queue *queue, void *_unused)
8718 /* Initialize queue lock */
8719 spin_lock_init(&queue->_xmit_lock);
8720 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
8721 queue->xmit_lock_owner = -1;
8722 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8725 dql_init(&queue->dql, HZ);
8729 static void netif_free_tx_queues(struct net_device *dev)
8734 static int netif_alloc_netdev_queues(struct net_device *dev)
8736 unsigned int count = dev->num_tx_queues;
8737 struct netdev_queue *tx;
8738 size_t sz = count * sizeof(*tx);
8740 if (count < 1 || count > 0xffff)
8743 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8749 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8750 spin_lock_init(&dev->tx_global_lock);
8755 void netif_tx_stop_all_queues(struct net_device *dev)
8759 for (i = 0; i < dev->num_tx_queues; i++) {
8760 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8762 netif_tx_stop_queue(txq);
8765 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8767 static void netdev_register_lockdep_key(struct net_device *dev)
8769 lockdep_register_key(&dev->qdisc_tx_busylock_key);
8770 lockdep_register_key(&dev->qdisc_running_key);
8771 lockdep_register_key(&dev->qdisc_xmit_lock_key);
8772 lockdep_register_key(&dev->addr_list_lock_key);
8775 static void netdev_unregister_lockdep_key(struct net_device *dev)
8777 lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
8778 lockdep_unregister_key(&dev->qdisc_running_key);
8779 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
8780 lockdep_unregister_key(&dev->addr_list_lock_key);
8783 void netdev_update_lockdep_key(struct net_device *dev)
8785 struct netdev_queue *queue;
8788 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
8789 lockdep_unregister_key(&dev->addr_list_lock_key);
8791 lockdep_register_key(&dev->qdisc_xmit_lock_key);
8792 lockdep_register_key(&dev->addr_list_lock_key);
8794 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
8795 for (i = 0; i < dev->num_tx_queues; i++) {
8796 queue = netdev_get_tx_queue(dev, i);
8798 lockdep_set_class(&queue->_xmit_lock,
8799 &dev->qdisc_xmit_lock_key);
8802 EXPORT_SYMBOL(netdev_update_lockdep_key);
8805 * register_netdevice - register a network device
8806 * @dev: device to register
8808 * Take a completed network device structure and add it to the kernel
8809 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8810 * chain. 0 is returned on success. A negative errno code is returned
8811 * on a failure to set up the device, or if the name is a duplicate.
8813 * Callers must hold the rtnl semaphore. You may want
8814 * register_netdev() instead of this.
8817 * The locking appears insufficient to guarantee two parallel registers
8818 * will not get the same name.
8821 int register_netdevice(struct net_device *dev)
8824 struct net *net = dev_net(dev);
8826 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8827 NETDEV_FEATURE_COUNT);
8828 BUG_ON(dev_boot_phase);
8833 /* When net_device's are persistent, this will be fatal. */
8834 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8837 spin_lock_init(&dev->addr_list_lock);
8838 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
8840 ret = dev_get_valid_name(net, dev, dev->name);
8844 /* Init, if this function is available */
8845 if (dev->netdev_ops->ndo_init) {
8846 ret = dev->netdev_ops->ndo_init(dev);
8854 if (((dev->hw_features | dev->features) &
8855 NETIF_F_HW_VLAN_CTAG_FILTER) &&
8856 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8857 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8858 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8865 dev->ifindex = dev_new_index(net);
8866 else if (__dev_get_by_index(net, dev->ifindex))
8869 /* Transfer changeable features to wanted_features and enable
8870 * software offloads (GSO and GRO).
8872 dev->hw_features |= NETIF_F_SOFT_FEATURES;
8873 dev->features |= NETIF_F_SOFT_FEATURES;
8875 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8876 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8877 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8880 dev->wanted_features = dev->features & dev->hw_features;
8882 if (!(dev->flags & IFF_LOOPBACK))
8883 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8885 /* If IPv4 TCP segmentation offload is supported we should also
8886 * allow the device to enable segmenting the frame with the option
8887 * of ignoring a static IP ID value. This doesn't enable the
8888 * feature itself but allows the user to enable it later.
8890 if (dev->hw_features & NETIF_F_TSO)
8891 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8892 if (dev->vlan_features & NETIF_F_TSO)
8893 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8894 if (dev->mpls_features & NETIF_F_TSO)
8895 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8896 if (dev->hw_enc_features & NETIF_F_TSO)
8897 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8899 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8901 dev->vlan_features |= NETIF_F_HIGHDMA;
8903 /* Make NETIF_F_SG inheritable to tunnel devices.
8905 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8907 /* Make NETIF_F_SG inheritable to MPLS.
8909 dev->mpls_features |= NETIF_F_SG;
8911 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8912 ret = notifier_to_errno(ret);
8916 ret = netdev_register_kobject(dev);
8919 dev->reg_state = NETREG_REGISTERED;
8921 __netdev_update_features(dev);
8924 * Default initial state at registry is that the
8925 * device is present.
8928 set_bit(__LINK_STATE_PRESENT, &dev->state);
8930 linkwatch_init_dev(dev);
8932 dev_init_scheduler(dev);
8934 list_netdevice(dev);
8935 add_device_randomness(dev->dev_addr, dev->addr_len);
8937 /* If the device has permanent device address, driver should
8938 * set dev_addr and also addr_assign_type should be set to
8939 * NET_ADDR_PERM (default value).
8941 if (dev->addr_assign_type == NET_ADDR_PERM)
8942 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8944 /* Notify protocols, that a new device appeared. */
8945 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8946 ret = notifier_to_errno(ret);
8948 rollback_registered(dev);
8951 dev->reg_state = NETREG_UNREGISTERED;
8954 * Prevent userspace races by waiting until the network
8955 * device is fully setup before sending notifications.
8957 if (!dev->rtnl_link_ops ||
8958 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8959 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8965 if (dev->netdev_ops->ndo_uninit)
8966 dev->netdev_ops->ndo_uninit(dev);
8967 if (dev->priv_destructor)
8968 dev->priv_destructor(dev);
8971 EXPORT_SYMBOL(register_netdevice);
8974 * init_dummy_netdev - init a dummy network device for NAPI
8975 * @dev: device to init
8977 * This takes a network device structure and initialize the minimum
8978 * amount of fields so it can be used to schedule NAPI polls without
8979 * registering a full blown interface. This is to be used by drivers
8980 * that need to tie several hardware interfaces to a single NAPI
8981 * poll scheduler due to HW limitations.
8983 int init_dummy_netdev(struct net_device *dev)
8985 /* Clear everything. Note we don't initialize spinlocks
8986 * are they aren't supposed to be taken by any of the
8987 * NAPI code and this dummy netdev is supposed to be
8988 * only ever used for NAPI polls
8990 memset(dev, 0, sizeof(struct net_device));
8992 /* make sure we BUG if trying to hit standard
8993 * register/unregister code path
8995 dev->reg_state = NETREG_DUMMY;
8997 /* NAPI wants this */
8998 INIT_LIST_HEAD(&dev->napi_list);
9000 /* a dummy interface is started by default */
9001 set_bit(__LINK_STATE_PRESENT, &dev->state);
9002 set_bit(__LINK_STATE_START, &dev->state);
9004 /* napi_busy_loop stats accounting wants this */
9005 dev_net_set(dev, &init_net);
9007 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9008 * because users of this 'device' dont need to change
9014 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9018 * register_netdev - register a network device
9019 * @dev: device to register
9021 * Take a completed network device structure and add it to the kernel
9022 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9023 * chain. 0 is returned on success. A negative errno code is returned
9024 * on a failure to set up the device, or if the name is a duplicate.
9026 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9027 * and expands the device name if you passed a format string to
9030 int register_netdev(struct net_device *dev)
9034 if (rtnl_lock_killable())
9036 err = register_netdevice(dev);
9040 EXPORT_SYMBOL(register_netdev);
9042 int netdev_refcnt_read(const struct net_device *dev)
9046 for_each_possible_cpu(i)
9047 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9050 EXPORT_SYMBOL(netdev_refcnt_read);
9053 * netdev_wait_allrefs - wait until all references are gone.
9054 * @dev: target net_device
9056 * This is called when unregistering network devices.
9058 * Any protocol or device that holds a reference should register
9059 * for netdevice notification, and cleanup and put back the
9060 * reference if they receive an UNREGISTER event.
9061 * We can get stuck here if buggy protocols don't correctly
9064 static void netdev_wait_allrefs(struct net_device *dev)
9066 unsigned long rebroadcast_time, warning_time;
9069 linkwatch_forget_dev(dev);
9071 rebroadcast_time = warning_time = jiffies;
9072 refcnt = netdev_refcnt_read(dev);
9074 while (refcnt != 0) {
9075 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9078 /* Rebroadcast unregister notification */
9079 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9085 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9087 /* We must not have linkwatch events
9088 * pending on unregister. If this
9089 * happens, we simply run the queue
9090 * unscheduled, resulting in a noop
9093 linkwatch_run_queue();
9098 rebroadcast_time = jiffies;
9103 refcnt = netdev_refcnt_read(dev);
9105 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9106 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9108 warning_time = jiffies;
9117 * register_netdevice(x1);
9118 * register_netdevice(x2);
9120 * unregister_netdevice(y1);
9121 * unregister_netdevice(y2);
9127 * We are invoked by rtnl_unlock().
9128 * This allows us to deal with problems:
9129 * 1) We can delete sysfs objects which invoke hotplug
9130 * without deadlocking with linkwatch via keventd.
9131 * 2) Since we run with the RTNL semaphore not held, we can sleep
9132 * safely in order to wait for the netdev refcnt to drop to zero.
9134 * We must not return until all unregister events added during
9135 * the interval the lock was held have been completed.
9137 void netdev_run_todo(void)
9139 struct list_head list;
9141 /* Snapshot list, allow later requests */
9142 list_replace_init(&net_todo_list, &list);
9147 /* Wait for rcu callbacks to finish before next phase */
9148 if (!list_empty(&list))
9151 while (!list_empty(&list)) {
9152 struct net_device *dev
9153 = list_first_entry(&list, struct net_device, todo_list);
9154 list_del(&dev->todo_list);
9156 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9157 pr_err("network todo '%s' but state %d\n",
9158 dev->name, dev->reg_state);
9163 dev->reg_state = NETREG_UNREGISTERED;
9165 netdev_wait_allrefs(dev);
9168 BUG_ON(netdev_refcnt_read(dev));
9169 BUG_ON(!list_empty(&dev->ptype_all));
9170 BUG_ON(!list_empty(&dev->ptype_specific));
9171 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9172 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9173 #if IS_ENABLED(CONFIG_DECNET)
9174 WARN_ON(dev->dn_ptr);
9176 if (dev->priv_destructor)
9177 dev->priv_destructor(dev);
9178 if (dev->needs_free_netdev)
9181 /* Report a network device has been unregistered */
9183 dev_net(dev)->dev_unreg_count--;
9185 wake_up(&netdev_unregistering_wq);
9187 /* Free network device */
9188 kobject_put(&dev->dev.kobj);
9192 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9193 * all the same fields in the same order as net_device_stats, with only
9194 * the type differing, but rtnl_link_stats64 may have additional fields
9195 * at the end for newer counters.
9197 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9198 const struct net_device_stats *netdev_stats)
9200 #if BITS_PER_LONG == 64
9201 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9202 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9203 /* zero out counters that only exist in rtnl_link_stats64 */
9204 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9205 sizeof(*stats64) - sizeof(*netdev_stats));
9207 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9208 const unsigned long *src = (const unsigned long *)netdev_stats;
9209 u64 *dst = (u64 *)stats64;
9211 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9212 for (i = 0; i < n; i++)
9214 /* zero out counters that only exist in rtnl_link_stats64 */
9215 memset((char *)stats64 + n * sizeof(u64), 0,
9216 sizeof(*stats64) - n * sizeof(u64));
9219 EXPORT_SYMBOL(netdev_stats_to_stats64);
9222 * dev_get_stats - get network device statistics
9223 * @dev: device to get statistics from
9224 * @storage: place to store stats
9226 * Get network statistics from device. Return @storage.
9227 * The device driver may provide its own method by setting
9228 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9229 * otherwise the internal statistics structure is used.
9231 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9232 struct rtnl_link_stats64 *storage)
9234 const struct net_device_ops *ops = dev->netdev_ops;
9236 if (ops->ndo_get_stats64) {
9237 memset(storage, 0, sizeof(*storage));
9238 ops->ndo_get_stats64(dev, storage);
9239 } else if (ops->ndo_get_stats) {
9240 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9242 netdev_stats_to_stats64(storage, &dev->stats);
9244 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9245 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9246 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9249 EXPORT_SYMBOL(dev_get_stats);
9251 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9253 struct netdev_queue *queue = dev_ingress_queue(dev);
9255 #ifdef CONFIG_NET_CLS_ACT
9258 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9261 netdev_init_one_queue(dev, queue, NULL);
9262 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9263 queue->qdisc_sleeping = &noop_qdisc;
9264 rcu_assign_pointer(dev->ingress_queue, queue);
9269 static const struct ethtool_ops default_ethtool_ops;
9271 void netdev_set_default_ethtool_ops(struct net_device *dev,
9272 const struct ethtool_ops *ops)
9274 if (dev->ethtool_ops == &default_ethtool_ops)
9275 dev->ethtool_ops = ops;
9277 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9279 void netdev_freemem(struct net_device *dev)
9281 char *addr = (char *)dev - dev->padded;
9287 * alloc_netdev_mqs - allocate network device
9288 * @sizeof_priv: size of private data to allocate space for
9289 * @name: device name format string
9290 * @name_assign_type: origin of device name
9291 * @setup: callback to initialize device
9292 * @txqs: the number of TX subqueues to allocate
9293 * @rxqs: the number of RX subqueues to allocate
9295 * Allocates a struct net_device with private data area for driver use
9296 * and performs basic initialization. Also allocates subqueue structs
9297 * for each queue on the device.
9299 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9300 unsigned char name_assign_type,
9301 void (*setup)(struct net_device *),
9302 unsigned int txqs, unsigned int rxqs)
9304 struct net_device *dev;
9305 unsigned int alloc_size;
9306 struct net_device *p;
9308 BUG_ON(strlen(name) >= sizeof(dev->name));
9311 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9316 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9320 alloc_size = sizeof(struct net_device);
9322 /* ensure 32-byte alignment of private area */
9323 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9324 alloc_size += sizeof_priv;
9326 /* ensure 32-byte alignment of whole construct */
9327 alloc_size += NETDEV_ALIGN - 1;
9329 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9333 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9334 dev->padded = (char *)dev - (char *)p;
9336 dev->pcpu_refcnt = alloc_percpu(int);
9337 if (!dev->pcpu_refcnt)
9340 if (dev_addr_init(dev))
9346 dev_net_set(dev, &init_net);
9348 netdev_register_lockdep_key(dev);
9350 dev->gso_max_size = GSO_MAX_SIZE;
9351 dev->gso_max_segs = GSO_MAX_SEGS;
9352 dev->upper_level = 1;
9353 dev->lower_level = 1;
9355 INIT_LIST_HEAD(&dev->napi_list);
9356 INIT_LIST_HEAD(&dev->unreg_list);
9357 INIT_LIST_HEAD(&dev->close_list);
9358 INIT_LIST_HEAD(&dev->link_watch_list);
9359 INIT_LIST_HEAD(&dev->adj_list.upper);
9360 INIT_LIST_HEAD(&dev->adj_list.lower);
9361 INIT_LIST_HEAD(&dev->ptype_all);
9362 INIT_LIST_HEAD(&dev->ptype_specific);
9363 #ifdef CONFIG_NET_SCHED
9364 hash_init(dev->qdisc_hash);
9366 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9369 if (!dev->tx_queue_len) {
9370 dev->priv_flags |= IFF_NO_QUEUE;
9371 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9374 dev->num_tx_queues = txqs;
9375 dev->real_num_tx_queues = txqs;
9376 if (netif_alloc_netdev_queues(dev))
9379 dev->num_rx_queues = rxqs;
9380 dev->real_num_rx_queues = rxqs;
9381 if (netif_alloc_rx_queues(dev))
9384 strcpy(dev->name, name);
9385 dev->name_assign_type = name_assign_type;
9386 dev->group = INIT_NETDEV_GROUP;
9387 if (!dev->ethtool_ops)
9388 dev->ethtool_ops = &default_ethtool_ops;
9390 nf_hook_ingress_init(dev);
9399 free_percpu(dev->pcpu_refcnt);
9401 netdev_freemem(dev);
9404 EXPORT_SYMBOL(alloc_netdev_mqs);
9407 * free_netdev - free network device
9410 * This function does the last stage of destroying an allocated device
9411 * interface. The reference to the device object is released. If this
9412 * is the last reference then it will be freed.Must be called in process
9415 void free_netdev(struct net_device *dev)
9417 struct napi_struct *p, *n;
9420 netif_free_tx_queues(dev);
9421 netif_free_rx_queues(dev);
9423 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9425 /* Flush device addresses */
9426 dev_addr_flush(dev);
9428 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9431 free_percpu(dev->pcpu_refcnt);
9432 dev->pcpu_refcnt = NULL;
9434 netdev_unregister_lockdep_key(dev);
9436 /* Compatibility with error handling in drivers */
9437 if (dev->reg_state == NETREG_UNINITIALIZED) {
9438 netdev_freemem(dev);
9442 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9443 dev->reg_state = NETREG_RELEASED;
9445 /* will free via device release */
9446 put_device(&dev->dev);
9448 EXPORT_SYMBOL(free_netdev);
9451 * synchronize_net - Synchronize with packet receive processing
9453 * Wait for packets currently being received to be done.
9454 * Does not block later packets from starting.
9456 void synchronize_net(void)
9459 if (rtnl_is_locked())
9460 synchronize_rcu_expedited();
9464 EXPORT_SYMBOL(synchronize_net);
9467 * unregister_netdevice_queue - remove device from the kernel
9471 * This function shuts down a device interface and removes it
9472 * from the kernel tables.
9473 * If head not NULL, device is queued to be unregistered later.
9475 * Callers must hold the rtnl semaphore. You may want
9476 * unregister_netdev() instead of this.
9479 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9484 list_move_tail(&dev->unreg_list, head);
9486 rollback_registered(dev);
9487 /* Finish processing unregister after unlock */
9491 EXPORT_SYMBOL(unregister_netdevice_queue);
9494 * unregister_netdevice_many - unregister many devices
9495 * @head: list of devices
9497 * Note: As most callers use a stack allocated list_head,
9498 * we force a list_del() to make sure stack wont be corrupted later.
9500 void unregister_netdevice_many(struct list_head *head)
9502 struct net_device *dev;
9504 if (!list_empty(head)) {
9505 rollback_registered_many(head);
9506 list_for_each_entry(dev, head, unreg_list)
9511 EXPORT_SYMBOL(unregister_netdevice_many);
9514 * unregister_netdev - remove device from the kernel
9517 * This function shuts down a device interface and removes it
9518 * from the kernel tables.
9520 * This is just a wrapper for unregister_netdevice that takes
9521 * the rtnl semaphore. In general you want to use this and not
9522 * unregister_netdevice.
9524 void unregister_netdev(struct net_device *dev)
9527 unregister_netdevice(dev);
9530 EXPORT_SYMBOL(unregister_netdev);
9533 * dev_change_net_namespace - move device to different nethost namespace
9535 * @net: network namespace
9536 * @pat: If not NULL name pattern to try if the current device name
9537 * is already taken in the destination network namespace.
9539 * This function shuts down a device interface and moves it
9540 * to a new network namespace. On success 0 is returned, on
9541 * a failure a netagive errno code is returned.
9543 * Callers must hold the rtnl semaphore.
9546 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9548 int err, new_nsid, new_ifindex;
9552 /* Don't allow namespace local devices to be moved. */
9554 if (dev->features & NETIF_F_NETNS_LOCAL)
9557 /* Ensure the device has been registrered */
9558 if (dev->reg_state != NETREG_REGISTERED)
9561 /* Get out if there is nothing todo */
9563 if (net_eq(dev_net(dev), net))
9566 /* Pick the destination device name, and ensure
9567 * we can use it in the destination network namespace.
9570 if (__dev_get_by_name(net, dev->name)) {
9571 /* We get here if we can't use the current device name */
9574 err = dev_get_valid_name(net, dev, pat);
9580 * And now a mini version of register_netdevice unregister_netdevice.
9583 /* If device is running close it first. */
9586 /* And unlink it from device chain */
9587 unlist_netdevice(dev);
9591 /* Shutdown queueing discipline. */
9594 /* Notify protocols, that we are about to destroy
9595 * this device. They should clean all the things.
9597 * Note that dev->reg_state stays at NETREG_REGISTERED.
9598 * This is wanted because this way 8021q and macvlan know
9599 * the device is just moving and can keep their slaves up.
9601 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9604 new_nsid = peernet2id_alloc(dev_net(dev), net);
9605 /* If there is an ifindex conflict assign a new one */
9606 if (__dev_get_by_index(net, dev->ifindex))
9607 new_ifindex = dev_new_index(net);
9609 new_ifindex = dev->ifindex;
9611 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9615 * Flush the unicast and multicast chains
9620 /* Send a netdev-removed uevent to the old namespace */
9621 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9622 netdev_adjacent_del_links(dev);
9624 /* Actually switch the network namespace */
9625 dev_net_set(dev, net);
9626 dev->ifindex = new_ifindex;
9628 /* Send a netdev-add uevent to the new namespace */
9629 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9630 netdev_adjacent_add_links(dev);
9632 /* Fixup kobjects */
9633 err = device_rename(&dev->dev, dev->name);
9636 /* Add the device back in the hashes */
9637 list_netdevice(dev);
9639 /* Notify protocols, that a new device appeared. */
9640 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9643 * Prevent userspace races by waiting until the network
9644 * device is fully setup before sending notifications.
9646 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9653 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9655 static int dev_cpu_dead(unsigned int oldcpu)
9657 struct sk_buff **list_skb;
9658 struct sk_buff *skb;
9660 struct softnet_data *sd, *oldsd, *remsd = NULL;
9662 local_irq_disable();
9663 cpu = smp_processor_id();
9664 sd = &per_cpu(softnet_data, cpu);
9665 oldsd = &per_cpu(softnet_data, oldcpu);
9667 /* Find end of our completion_queue. */
9668 list_skb = &sd->completion_queue;
9670 list_skb = &(*list_skb)->next;
9671 /* Append completion queue from offline CPU. */
9672 *list_skb = oldsd->completion_queue;
9673 oldsd->completion_queue = NULL;
9675 /* Append output queue from offline CPU. */
9676 if (oldsd->output_queue) {
9677 *sd->output_queue_tailp = oldsd->output_queue;
9678 sd->output_queue_tailp = oldsd->output_queue_tailp;
9679 oldsd->output_queue = NULL;
9680 oldsd->output_queue_tailp = &oldsd->output_queue;
9682 /* Append NAPI poll list from offline CPU, with one exception :
9683 * process_backlog() must be called by cpu owning percpu backlog.
9684 * We properly handle process_queue & input_pkt_queue later.
9686 while (!list_empty(&oldsd->poll_list)) {
9687 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9691 list_del_init(&napi->poll_list);
9692 if (napi->poll == process_backlog)
9695 ____napi_schedule(sd, napi);
9698 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9702 remsd = oldsd->rps_ipi_list;
9703 oldsd->rps_ipi_list = NULL;
9705 /* send out pending IPI's on offline CPU */
9706 net_rps_send_ipi(remsd);
9708 /* Process offline CPU's input_pkt_queue */
9709 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9711 input_queue_head_incr(oldsd);
9713 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9715 input_queue_head_incr(oldsd);
9722 * netdev_increment_features - increment feature set by one
9723 * @all: current feature set
9724 * @one: new feature set
9725 * @mask: mask feature set
9727 * Computes a new feature set after adding a device with feature set
9728 * @one to the master device with current feature set @all. Will not
9729 * enable anything that is off in @mask. Returns the new feature set.
9731 netdev_features_t netdev_increment_features(netdev_features_t all,
9732 netdev_features_t one, netdev_features_t mask)
9734 if (mask & NETIF_F_HW_CSUM)
9735 mask |= NETIF_F_CSUM_MASK;
9736 mask |= NETIF_F_VLAN_CHALLENGED;
9738 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9739 all &= one | ~NETIF_F_ALL_FOR_ALL;
9741 /* If one device supports hw checksumming, set for all. */
9742 if (all & NETIF_F_HW_CSUM)
9743 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9747 EXPORT_SYMBOL(netdev_increment_features);
9749 static struct hlist_head * __net_init netdev_create_hash(void)
9752 struct hlist_head *hash;
9754 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9756 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9757 INIT_HLIST_HEAD(&hash[i]);
9762 /* Initialize per network namespace state */
9763 static int __net_init netdev_init(struct net *net)
9765 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9766 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9768 if (net != &init_net)
9769 INIT_LIST_HEAD(&net->dev_base_head);
9771 net->dev_name_head = netdev_create_hash();
9772 if (net->dev_name_head == NULL)
9775 net->dev_index_head = netdev_create_hash();
9776 if (net->dev_index_head == NULL)
9782 kfree(net->dev_name_head);
9788 * netdev_drivername - network driver for the device
9789 * @dev: network device
9791 * Determine network driver for device.
9793 const char *netdev_drivername(const struct net_device *dev)
9795 const struct device_driver *driver;
9796 const struct device *parent;
9797 const char *empty = "";
9799 parent = dev->dev.parent;
9803 driver = parent->driver;
9804 if (driver && driver->name)
9805 return driver->name;
9809 static void __netdev_printk(const char *level, const struct net_device *dev,
9810 struct va_format *vaf)
9812 if (dev && dev->dev.parent) {
9813 dev_printk_emit(level[1] - '0',
9816 dev_driver_string(dev->dev.parent),
9817 dev_name(dev->dev.parent),
9818 netdev_name(dev), netdev_reg_state(dev),
9821 printk("%s%s%s: %pV",
9822 level, netdev_name(dev), netdev_reg_state(dev), vaf);
9824 printk("%s(NULL net_device): %pV", level, vaf);
9828 void netdev_printk(const char *level, const struct net_device *dev,
9829 const char *format, ...)
9831 struct va_format vaf;
9834 va_start(args, format);
9839 __netdev_printk(level, dev, &vaf);
9843 EXPORT_SYMBOL(netdev_printk);
9845 #define define_netdev_printk_level(func, level) \
9846 void func(const struct net_device *dev, const char *fmt, ...) \
9848 struct va_format vaf; \
9851 va_start(args, fmt); \
9856 __netdev_printk(level, dev, &vaf); \
9860 EXPORT_SYMBOL(func);
9862 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9863 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9864 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9865 define_netdev_printk_level(netdev_err, KERN_ERR);
9866 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9867 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9868 define_netdev_printk_level(netdev_info, KERN_INFO);
9870 static void __net_exit netdev_exit(struct net *net)
9872 kfree(net->dev_name_head);
9873 kfree(net->dev_index_head);
9874 if (net != &init_net)
9875 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9878 static struct pernet_operations __net_initdata netdev_net_ops = {
9879 .init = netdev_init,
9880 .exit = netdev_exit,
9883 static void __net_exit default_device_exit(struct net *net)
9885 struct net_device *dev, *aux;
9887 * Push all migratable network devices back to the
9888 * initial network namespace
9891 for_each_netdev_safe(net, dev, aux) {
9893 char fb_name[IFNAMSIZ];
9895 /* Ignore unmoveable devices (i.e. loopback) */
9896 if (dev->features & NETIF_F_NETNS_LOCAL)
9899 /* Leave virtual devices for the generic cleanup */
9900 if (dev->rtnl_link_ops)
9903 /* Push remaining network devices to init_net */
9904 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9905 if (__dev_get_by_name(&init_net, fb_name))
9906 snprintf(fb_name, IFNAMSIZ, "dev%%d");
9907 err = dev_change_net_namespace(dev, &init_net, fb_name);
9909 pr_emerg("%s: failed to move %s to init_net: %d\n",
9910 __func__, dev->name, err);
9917 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9919 /* Return with the rtnl_lock held when there are no network
9920 * devices unregistering in any network namespace in net_list.
9924 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9926 add_wait_queue(&netdev_unregistering_wq, &wait);
9928 unregistering = false;
9930 list_for_each_entry(net, net_list, exit_list) {
9931 if (net->dev_unreg_count > 0) {
9932 unregistering = true;
9940 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9942 remove_wait_queue(&netdev_unregistering_wq, &wait);
9945 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9947 /* At exit all network devices most be removed from a network
9948 * namespace. Do this in the reverse order of registration.
9949 * Do this across as many network namespaces as possible to
9950 * improve batching efficiency.
9952 struct net_device *dev;
9954 LIST_HEAD(dev_kill_list);
9956 /* To prevent network device cleanup code from dereferencing
9957 * loopback devices or network devices that have been freed
9958 * wait here for all pending unregistrations to complete,
9959 * before unregistring the loopback device and allowing the
9960 * network namespace be freed.
9962 * The netdev todo list containing all network devices
9963 * unregistrations that happen in default_device_exit_batch
9964 * will run in the rtnl_unlock() at the end of
9965 * default_device_exit_batch.
9967 rtnl_lock_unregistering(net_list);
9968 list_for_each_entry(net, net_list, exit_list) {
9969 for_each_netdev_reverse(net, dev) {
9970 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9971 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9973 unregister_netdevice_queue(dev, &dev_kill_list);
9976 unregister_netdevice_many(&dev_kill_list);
9980 static struct pernet_operations __net_initdata default_device_ops = {
9981 .exit = default_device_exit,
9982 .exit_batch = default_device_exit_batch,
9986 * Initialize the DEV module. At boot time this walks the device list and
9987 * unhooks any devices that fail to initialise (normally hardware not
9988 * present) and leaves us with a valid list of present and active devices.
9993 * This is called single threaded during boot, so no need
9994 * to take the rtnl semaphore.
9996 static int __init net_dev_init(void)
9998 int i, rc = -ENOMEM;
10000 BUG_ON(!dev_boot_phase);
10002 if (dev_proc_init())
10005 if (netdev_kobject_init())
10008 INIT_LIST_HEAD(&ptype_all);
10009 for (i = 0; i < PTYPE_HASH_SIZE; i++)
10010 INIT_LIST_HEAD(&ptype_base[i]);
10012 INIT_LIST_HEAD(&offload_base);
10014 if (register_pernet_subsys(&netdev_net_ops))
10018 * Initialise the packet receive queues.
10021 for_each_possible_cpu(i) {
10022 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10023 struct softnet_data *sd = &per_cpu(softnet_data, i);
10025 INIT_WORK(flush, flush_backlog);
10027 skb_queue_head_init(&sd->input_pkt_queue);
10028 skb_queue_head_init(&sd->process_queue);
10029 #ifdef CONFIG_XFRM_OFFLOAD
10030 skb_queue_head_init(&sd->xfrm_backlog);
10032 INIT_LIST_HEAD(&sd->poll_list);
10033 sd->output_queue_tailp = &sd->output_queue;
10035 sd->csd.func = rps_trigger_softirq;
10040 init_gro_hash(&sd->backlog);
10041 sd->backlog.poll = process_backlog;
10042 sd->backlog.weight = weight_p;
10045 dev_boot_phase = 0;
10047 /* The loopback device is special if any other network devices
10048 * is present in a network namespace the loopback device must
10049 * be present. Since we now dynamically allocate and free the
10050 * loopback device ensure this invariant is maintained by
10051 * keeping the loopback device as the first device on the
10052 * list of network devices. Ensuring the loopback devices
10053 * is the first device that appears and the last network device
10056 if (register_pernet_device(&loopback_net_ops))
10059 if (register_pernet_device(&default_device_ops))
10062 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10063 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10065 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10066 NULL, dev_cpu_dead);
10073 subsys_initcall(net_dev_init);