1 // SPDX-License-Identifier: GPL-2.0-only
5 * Print the CFS rbtree and other debugging details
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
11 static DEFINE_SPINLOCK(sched_debug_lock);
14 * This allows printing both to /proc/sched_debug and
17 #define SEQ_printf(m, x...) \
26 * Ease the printing of nsec fields:
28 static long long nsec_high(unsigned long long nsec)
30 if ((long long)nsec < 0) {
32 do_div(nsec, 1000000);
35 do_div(nsec, 1000000);
40 static unsigned long nsec_low(unsigned long long nsec)
42 if ((long long)nsec < 0)
45 return do_div(nsec, 1000000);
48 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
50 #define SCHED_FEAT(name, enabled) \
53 static const char * const sched_feat_names[] = {
59 static int sched_feat_show(struct seq_file *m, void *v)
63 for (i = 0; i < __SCHED_FEAT_NR; i++) {
64 if (!(sysctl_sched_features & (1UL << i)))
66 seq_printf(m, "%s ", sched_feat_names[i]);
73 #ifdef CONFIG_JUMP_LABEL
75 #define jump_label_key__true STATIC_KEY_INIT_TRUE
76 #define jump_label_key__false STATIC_KEY_INIT_FALSE
78 #define SCHED_FEAT(name, enabled) \
79 jump_label_key__##enabled ,
81 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
87 static void sched_feat_disable(int i)
89 static_key_disable_cpuslocked(&sched_feat_keys[i]);
92 static void sched_feat_enable(int i)
94 static_key_enable_cpuslocked(&sched_feat_keys[i]);
97 static void sched_feat_disable(int i) { };
98 static void sched_feat_enable(int i) { };
99 #endif /* CONFIG_JUMP_LABEL */
101 static int sched_feat_set(char *cmp)
106 if (strncmp(cmp, "NO_", 3) == 0) {
111 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
116 sysctl_sched_features &= ~(1UL << i);
117 sched_feat_disable(i);
119 sysctl_sched_features |= (1UL << i);
120 sched_feat_enable(i);
127 sched_feat_write(struct file *filp, const char __user *ubuf,
128 size_t cnt, loff_t *ppos)
138 if (copy_from_user(&buf, ubuf, cnt))
144 /* Ensure the static_key remains in a consistent state */
145 inode = file_inode(filp);
148 ret = sched_feat_set(cmp);
159 static int sched_feat_open(struct inode *inode, struct file *filp)
161 return single_open(filp, sched_feat_show, NULL);
164 static const struct file_operations sched_feat_fops = {
165 .open = sched_feat_open,
166 .write = sched_feat_write,
169 .release = single_release,
172 __read_mostly bool sched_debug_enabled;
174 static __init int sched_init_debug(void)
176 debugfs_create_file("sched_features", 0644, NULL, NULL,
179 debugfs_create_bool("sched_debug", 0644, NULL,
180 &sched_debug_enabled);
184 late_initcall(sched_init_debug);
190 static struct ctl_table sd_ctl_dir[] = {
192 .procname = "sched_domain",
198 static struct ctl_table sd_ctl_root[] = {
200 .procname = "kernel",
207 static struct ctl_table *sd_alloc_ctl_entry(int n)
209 struct ctl_table *entry =
210 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
215 static void sd_free_ctl_entry(struct ctl_table **tablep)
217 struct ctl_table *entry;
220 * In the intermediate directories, both the child directory and
221 * procname are dynamically allocated and could fail but the mode
222 * will always be set. In the lowest directory the names are
223 * static strings and all have proc handlers.
225 for (entry = *tablep; entry->mode; entry++) {
227 sd_free_ctl_entry(&entry->child);
228 if (entry->proc_handler == NULL)
229 kfree(entry->procname);
237 set_table_entry(struct ctl_table *entry,
238 const char *procname, void *data, int maxlen,
239 umode_t mode, proc_handler *proc_handler)
241 entry->procname = procname;
243 entry->maxlen = maxlen;
245 entry->proc_handler = proc_handler;
248 static struct ctl_table *
249 sd_alloc_ctl_domain_table(struct sched_domain *sd)
251 struct ctl_table *table = sd_alloc_ctl_entry(9);
256 set_table_entry(&table[0], "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax);
257 set_table_entry(&table[1], "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax);
258 set_table_entry(&table[2], "busy_factor", &sd->busy_factor, sizeof(int), 0644, proc_dointvec_minmax);
259 set_table_entry(&table[3], "imbalance_pct", &sd->imbalance_pct, sizeof(int), 0644, proc_dointvec_minmax);
260 set_table_entry(&table[4], "cache_nice_tries", &sd->cache_nice_tries, sizeof(int), 0644, proc_dointvec_minmax);
261 set_table_entry(&table[5], "flags", &sd->flags, sizeof(int), 0644, proc_dointvec_minmax);
262 set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
263 set_table_entry(&table[7], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring);
264 /* &table[8] is terminator */
269 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
271 struct ctl_table *entry, *table;
272 struct sched_domain *sd;
273 int domain_num = 0, i;
276 for_each_domain(cpu, sd)
278 entry = table = sd_alloc_ctl_entry(domain_num + 1);
283 for_each_domain(cpu, sd) {
284 snprintf(buf, 32, "domain%d", i);
285 entry->procname = kstrdup(buf, GFP_KERNEL);
287 entry->child = sd_alloc_ctl_domain_table(sd);
294 static cpumask_var_t sd_sysctl_cpus;
295 static struct ctl_table_header *sd_sysctl_header;
297 void register_sched_domain_sysctl(void)
299 static struct ctl_table *cpu_entries;
300 static struct ctl_table **cpu_idx;
301 static bool init_done = false;
306 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
310 WARN_ON(sd_ctl_dir[0].child);
311 sd_ctl_dir[0].child = cpu_entries;
315 struct ctl_table *e = cpu_entries;
317 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
321 /* deal with sparse possible map */
322 for_each_possible_cpu(i) {
328 if (!cpumask_available(sd_sysctl_cpus)) {
329 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
335 /* init to possible to not have holes in @cpu_entries */
336 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
339 for_each_cpu(i, sd_sysctl_cpus) {
340 struct ctl_table *e = cpu_idx[i];
343 sd_free_ctl_entry(&e->child);
346 snprintf(buf, 32, "cpu%d", i);
347 e->procname = kstrdup(buf, GFP_KERNEL);
350 e->child = sd_alloc_ctl_cpu_table(i);
352 __cpumask_clear_cpu(i, sd_sysctl_cpus);
355 WARN_ON(sd_sysctl_header);
356 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
359 void dirty_sched_domain_sysctl(int cpu)
361 if (cpumask_available(sd_sysctl_cpus))
362 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
365 /* may be called multiple times per register */
366 void unregister_sched_domain_sysctl(void)
368 unregister_sysctl_table(sd_sysctl_header);
369 sd_sysctl_header = NULL;
371 #endif /* CONFIG_SYSCTL */
372 #endif /* CONFIG_SMP */
374 #ifdef CONFIG_FAIR_GROUP_SCHED
375 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
377 struct sched_entity *se = tg->se[cpu];
379 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
380 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
381 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
382 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
389 PN(se->sum_exec_runtime);
391 if (schedstat_enabled()) {
392 PN_SCHEDSTAT(se->statistics.wait_start);
393 PN_SCHEDSTAT(se->statistics.sleep_start);
394 PN_SCHEDSTAT(se->statistics.block_start);
395 PN_SCHEDSTAT(se->statistics.sleep_max);
396 PN_SCHEDSTAT(se->statistics.block_max);
397 PN_SCHEDSTAT(se->statistics.exec_max);
398 PN_SCHEDSTAT(se->statistics.slice_max);
399 PN_SCHEDSTAT(se->statistics.wait_max);
400 PN_SCHEDSTAT(se->statistics.wait_sum);
401 P_SCHEDSTAT(se->statistics.wait_count);
408 P(se->avg.runnable_avg);
418 #ifdef CONFIG_CGROUP_SCHED
419 static char group_path[PATH_MAX];
421 static char *task_group_path(struct task_group *tg)
423 if (autogroup_path(tg, group_path, PATH_MAX))
426 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
433 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
438 SEQ_printf(m, " %c", task_state_to_char(p));
440 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
441 p->comm, task_pid_nr(p),
442 SPLIT_NS(p->se.vruntime),
443 (long long)(p->nvcsw + p->nivcsw),
446 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
447 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
448 SPLIT_NS(p->se.sum_exec_runtime),
449 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
451 #ifdef CONFIG_NUMA_BALANCING
452 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
454 #ifdef CONFIG_CGROUP_SCHED
455 SEQ_printf(m, " %s", task_group_path(task_group(p)));
461 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
463 struct task_struct *g, *p;
466 SEQ_printf(m, "runnable tasks:\n");
467 SEQ_printf(m, " S task PID tree-key switches prio"
468 " wait-time sum-exec sum-sleep\n");
469 SEQ_printf(m, "-------------------------------------------------------"
470 "----------------------------------------------------\n");
473 for_each_process_thread(g, p) {
474 if (task_cpu(p) != rq_cpu)
477 print_task(m, rq, p);
482 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
484 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
485 spread, rq0_min_vruntime, spread0;
486 struct rq *rq = cpu_rq(cpu);
487 struct sched_entity *last;
490 #ifdef CONFIG_FAIR_GROUP_SCHED
492 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
495 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
497 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
498 SPLIT_NS(cfs_rq->exec_clock));
500 raw_spin_lock_irqsave(&rq->lock, flags);
501 if (rb_first_cached(&cfs_rq->tasks_timeline))
502 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
503 last = __pick_last_entity(cfs_rq);
505 max_vruntime = last->vruntime;
506 min_vruntime = cfs_rq->min_vruntime;
507 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
508 raw_spin_unlock_irqrestore(&rq->lock, flags);
509 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
510 SPLIT_NS(MIN_vruntime));
511 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
512 SPLIT_NS(min_vruntime));
513 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
514 SPLIT_NS(max_vruntime));
515 spread = max_vruntime - MIN_vruntime;
516 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
518 spread0 = min_vruntime - rq0_min_vruntime;
519 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
521 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
522 cfs_rq->nr_spread_over);
523 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
524 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
526 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
527 cfs_rq->avg.load_avg);
528 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
529 cfs_rq->avg.runnable_avg);
530 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
531 cfs_rq->avg.util_avg);
532 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
533 cfs_rq->avg.util_est.enqueued);
534 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
535 cfs_rq->removed.load_avg);
536 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
537 cfs_rq->removed.util_avg);
538 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
539 cfs_rq->removed.runnable_avg);
540 #ifdef CONFIG_FAIR_GROUP_SCHED
541 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
542 cfs_rq->tg_load_avg_contrib);
543 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
544 atomic_long_read(&cfs_rq->tg->load_avg));
547 #ifdef CONFIG_CFS_BANDWIDTH
548 SEQ_printf(m, " .%-30s: %d\n", "throttled",
550 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
551 cfs_rq->throttle_count);
554 #ifdef CONFIG_FAIR_GROUP_SCHED
555 print_cfs_group_stats(m, cpu, cfs_rq->tg);
559 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
561 #ifdef CONFIG_RT_GROUP_SCHED
563 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
566 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
570 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
572 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
574 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
589 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
594 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
597 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
602 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
604 dl_bw = &dl_rq->dl_bw;
606 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
607 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
612 static void print_cpu(struct seq_file *m, int cpu)
614 struct rq *rq = cpu_rq(cpu);
619 unsigned int freq = cpu_khz ? : 1;
621 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
622 cpu, freq / 1000, (freq % 1000));
625 SEQ_printf(m, "cpu#%d\n", cpu);
630 if (sizeof(rq->x) == 4) \
631 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
633 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
637 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
642 P(nr_uninterruptible);
644 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
651 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
653 P64(max_idle_balance_cost);
657 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
658 if (schedstat_enabled()) {
667 spin_lock_irqsave(&sched_debug_lock, flags);
668 print_cfs_stats(m, cpu);
669 print_rt_stats(m, cpu);
670 print_dl_stats(m, cpu);
672 print_rq(m, rq, cpu);
673 spin_unlock_irqrestore(&sched_debug_lock, flags);
677 static const char *sched_tunable_scaling_names[] = {
683 static void sched_debug_header(struct seq_file *m)
685 u64 ktime, sched_clk, cpu_clk;
688 local_irq_save(flags);
689 ktime = ktime_to_ns(ktime_get());
690 sched_clk = sched_clock();
691 cpu_clk = local_clock();
692 local_irq_restore(flags);
694 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
695 init_utsname()->release,
696 (int)strcspn(init_utsname()->version, " "),
697 init_utsname()->version);
700 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
702 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
707 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
708 P(sched_clock_stable());
714 SEQ_printf(m, "sysctl_sched\n");
717 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
719 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
720 PN(sysctl_sched_latency);
721 PN(sysctl_sched_min_granularity);
722 PN(sysctl_sched_wakeup_granularity);
723 P(sysctl_sched_child_runs_first);
724 P(sysctl_sched_features);
728 SEQ_printf(m, " .%-40s: %d (%s)\n",
729 "sysctl_sched_tunable_scaling",
730 sysctl_sched_tunable_scaling,
731 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
735 static int sched_debug_show(struct seq_file *m, void *v)
737 int cpu = (unsigned long)(v - 2);
742 sched_debug_header(m);
747 void sysrq_sched_debug_show(void)
751 sched_debug_header(NULL);
752 for_each_online_cpu(cpu) {
754 * Need to reset softlockup watchdogs on all CPUs, because
755 * another CPU might be blocked waiting for us to process
756 * an IPI or stop_machine.
758 touch_nmi_watchdog();
759 touch_all_softlockup_watchdogs();
760 print_cpu(NULL, cpu);
765 * This itererator needs some explanation.
766 * It returns 1 for the header position.
767 * This means 2 is CPU 0.
768 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
769 * to use cpumask_* to iterate over the CPUs.
771 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
773 unsigned long n = *offset;
781 n = cpumask_next(n - 1, cpu_online_mask);
783 n = cpumask_first(cpu_online_mask);
788 return (void *)(unsigned long)(n + 2);
793 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
796 return sched_debug_start(file, offset);
799 static void sched_debug_stop(struct seq_file *file, void *data)
803 static const struct seq_operations sched_debug_sops = {
804 .start = sched_debug_start,
805 .next = sched_debug_next,
806 .stop = sched_debug_stop,
807 .show = sched_debug_show,
810 static int __init init_sched_debug_procfs(void)
812 if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
817 __initcall(init_sched_debug_procfs);
819 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
820 #define __P(F) __PS(#F, F)
821 #define P(F) __PS(#F, p->F)
822 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
823 #define __PN(F) __PSN(#F, F)
824 #define PN(F) __PSN(#F, p->F)
827 #ifdef CONFIG_NUMA_BALANCING
828 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
829 unsigned long tpf, unsigned long gsf, unsigned long gpf)
831 SEQ_printf(m, "numa_faults node=%d ", node);
832 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
833 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
838 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
840 #ifdef CONFIG_NUMA_BALANCING
841 struct mempolicy *pol;
844 P(mm->numa_scan_seq);
848 if (pol && !(pol->flags & MPOL_F_MORON))
853 P(numa_pages_migrated);
854 P(numa_preferred_nid);
855 P(total_numa_faults);
856 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
857 task_node(p), task_numa_group_id(p));
858 show_numa_stats(p, m);
863 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
866 unsigned long nr_switches;
868 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
871 "---------------------------------------------------------"
874 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->F))
875 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F))
879 PN(se.sum_exec_runtime);
881 nr_switches = p->nvcsw + p->nivcsw;
885 if (schedstat_enabled()) {
886 u64 avg_atom, avg_per_cpu;
888 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
889 PN_SCHEDSTAT(se.statistics.wait_start);
890 PN_SCHEDSTAT(se.statistics.sleep_start);
891 PN_SCHEDSTAT(se.statistics.block_start);
892 PN_SCHEDSTAT(se.statistics.sleep_max);
893 PN_SCHEDSTAT(se.statistics.block_max);
894 PN_SCHEDSTAT(se.statistics.exec_max);
895 PN_SCHEDSTAT(se.statistics.slice_max);
896 PN_SCHEDSTAT(se.statistics.wait_max);
897 PN_SCHEDSTAT(se.statistics.wait_sum);
898 P_SCHEDSTAT(se.statistics.wait_count);
899 PN_SCHEDSTAT(se.statistics.iowait_sum);
900 P_SCHEDSTAT(se.statistics.iowait_count);
901 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
902 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
903 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
904 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
905 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
906 P_SCHEDSTAT(se.statistics.nr_wakeups);
907 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
908 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
909 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
910 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
911 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
912 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
913 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
914 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
916 avg_atom = p->se.sum_exec_runtime;
918 avg_atom = div64_ul(avg_atom, nr_switches);
922 avg_per_cpu = p->se.sum_exec_runtime;
923 if (p->se.nr_migrations) {
924 avg_per_cpu = div64_u64(avg_per_cpu,
925 p->se.nr_migrations);
935 __PS("nr_voluntary_switches", p->nvcsw);
936 __PS("nr_involuntary_switches", p->nivcsw);
941 P(se.avg.runnable_sum);
944 P(se.avg.runnable_avg);
946 P(se.avg.last_update_time);
947 P(se.avg.util_est.ewma);
948 P(se.avg.util_est.enqueued);
950 #ifdef CONFIG_UCLAMP_TASK
951 __PS("uclamp.min", p->uclamp[UCLAMP_MIN].value);
952 __PS("uclamp.max", p->uclamp[UCLAMP_MAX].value);
953 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
954 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
958 if (task_has_dl_policy(p)) {
966 unsigned int this_cpu = raw_smp_processor_id();
969 t0 = cpu_clock(this_cpu);
970 t1 = cpu_clock(this_cpu);
971 __PS("clock-delta", t1-t0);
974 sched_show_numa(p, m);
977 void proc_sched_set_task(struct task_struct *p)
979 #ifdef CONFIG_SCHEDSTATS
980 memset(&p->se.statistics, 0, sizeof(p->se.statistics));