]> Git Repo - linux.git/blob - fs/btrfs/extent_io.c
block: fix updating bio's front segment size
[linux.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33         return !RB_EMPTY_NODE(&state->rb_node);
34 }
35
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39
40 static DEFINE_SPINLOCK(leak_lock);
41
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45         unsigned long flags;
46
47         spin_lock_irqsave(&leak_lock, flags);
48         list_add(new, head);
49         spin_unlock_irqrestore(&leak_lock, flags);
50 }
51
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55         unsigned long flags;
56
57         spin_lock_irqsave(&leak_lock, flags);
58         list_del(entry);
59         spin_unlock_irqrestore(&leak_lock, flags);
60 }
61
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65         struct extent_state *state;
66         struct extent_buffer *eb;
67
68         while (!list_empty(&states)) {
69                 state = list_entry(states.next, struct extent_state, leak_list);
70                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71                        state->start, state->end, state->state,
72                        extent_state_in_tree(state),
73                        refcount_read(&state->refs));
74                 list_del(&state->leak_list);
75                 kmem_cache_free(extent_state_cache, state);
76         }
77
78         while (!list_empty(&buffers)) {
79                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80                 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81                        eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82                 list_del(&eb->leak_list);
83                 kmem_cache_free(extent_buffer_cache, eb);
84         }
85 }
86
87 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
88         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90                 struct extent_io_tree *tree, u64 start, u64 end)
91 {
92         struct inode *inode = tree->private_data;
93         u64 isize;
94
95         if (!inode || !is_data_inode(inode))
96                 return;
97
98         isize = i_size_read(inode);
99         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
102                         caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103         }
104 }
105 #else
106 #define btrfs_leak_debug_add(new, head) do {} while (0)
107 #define btrfs_leak_debug_del(entry)     do {} while (0)
108 #define btrfs_leak_debug_check()        do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
110 #endif
111
112 #define BUFFER_LRU_MAX 64
113
114 struct tree_entry {
115         u64 start;
116         u64 end;
117         struct rb_node rb_node;
118 };
119
120 struct extent_page_data {
121         struct bio *bio;
122         struct extent_io_tree *tree;
123         /* tells writepage not to lock the state bits for this range
124          * it still does the unlocking
125          */
126         unsigned int extent_locked:1;
127
128         /* tells the submit_bio code to use REQ_SYNC */
129         unsigned int sync_io:1;
130 };
131
132 static int add_extent_changeset(struct extent_state *state, unsigned bits,
133                                  struct extent_changeset *changeset,
134                                  int set)
135 {
136         int ret;
137
138         if (!changeset)
139                 return 0;
140         if (set && (state->state & bits) == bits)
141                 return 0;
142         if (!set && (state->state & bits) == 0)
143                 return 0;
144         changeset->bytes_changed += state->end - state->start + 1;
145         ret = ulist_add(&changeset->range_changed, state->start, state->end,
146                         GFP_ATOMIC);
147         return ret;
148 }
149
150 static void flush_write_bio(struct extent_page_data *epd);
151
152 int __init extent_io_init(void)
153 {
154         extent_state_cache = kmem_cache_create("btrfs_extent_state",
155                         sizeof(struct extent_state), 0,
156                         SLAB_MEM_SPREAD, NULL);
157         if (!extent_state_cache)
158                 return -ENOMEM;
159
160         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
161                         sizeof(struct extent_buffer), 0,
162                         SLAB_MEM_SPREAD, NULL);
163         if (!extent_buffer_cache)
164                 goto free_state_cache;
165
166         if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
167                         offsetof(struct btrfs_io_bio, bio),
168                         BIOSET_NEED_BVECS))
169                 goto free_buffer_cache;
170
171         if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
172                 goto free_bioset;
173
174         return 0;
175
176 free_bioset:
177         bioset_exit(&btrfs_bioset);
178
179 free_buffer_cache:
180         kmem_cache_destroy(extent_buffer_cache);
181         extent_buffer_cache = NULL;
182
183 free_state_cache:
184         kmem_cache_destroy(extent_state_cache);
185         extent_state_cache = NULL;
186         return -ENOMEM;
187 }
188
189 void __cold extent_io_exit(void)
190 {
191         btrfs_leak_debug_check();
192
193         /*
194          * Make sure all delayed rcu free are flushed before we
195          * destroy caches.
196          */
197         rcu_barrier();
198         kmem_cache_destroy(extent_state_cache);
199         kmem_cache_destroy(extent_buffer_cache);
200         bioset_exit(&btrfs_bioset);
201 }
202
203 void extent_io_tree_init(struct extent_io_tree *tree,
204                          void *private_data)
205 {
206         tree->state = RB_ROOT;
207         tree->ops = NULL;
208         tree->dirty_bytes = 0;
209         spin_lock_init(&tree->lock);
210         tree->private_data = private_data;
211 }
212
213 static struct extent_state *alloc_extent_state(gfp_t mask)
214 {
215         struct extent_state *state;
216
217         /*
218          * The given mask might be not appropriate for the slab allocator,
219          * drop the unsupported bits
220          */
221         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
222         state = kmem_cache_alloc(extent_state_cache, mask);
223         if (!state)
224                 return state;
225         state->state = 0;
226         state->failrec = NULL;
227         RB_CLEAR_NODE(&state->rb_node);
228         btrfs_leak_debug_add(&state->leak_list, &states);
229         refcount_set(&state->refs, 1);
230         init_waitqueue_head(&state->wq);
231         trace_alloc_extent_state(state, mask, _RET_IP_);
232         return state;
233 }
234
235 void free_extent_state(struct extent_state *state)
236 {
237         if (!state)
238                 return;
239         if (refcount_dec_and_test(&state->refs)) {
240                 WARN_ON(extent_state_in_tree(state));
241                 btrfs_leak_debug_del(&state->leak_list);
242                 trace_free_extent_state(state, _RET_IP_);
243                 kmem_cache_free(extent_state_cache, state);
244         }
245 }
246
247 static struct rb_node *tree_insert(struct rb_root *root,
248                                    struct rb_node *search_start,
249                                    u64 offset,
250                                    struct rb_node *node,
251                                    struct rb_node ***p_in,
252                                    struct rb_node **parent_in)
253 {
254         struct rb_node **p;
255         struct rb_node *parent = NULL;
256         struct tree_entry *entry;
257
258         if (p_in && parent_in) {
259                 p = *p_in;
260                 parent = *parent_in;
261                 goto do_insert;
262         }
263
264         p = search_start ? &search_start : &root->rb_node;
265         while (*p) {
266                 parent = *p;
267                 entry = rb_entry(parent, struct tree_entry, rb_node);
268
269                 if (offset < entry->start)
270                         p = &(*p)->rb_left;
271                 else if (offset > entry->end)
272                         p = &(*p)->rb_right;
273                 else
274                         return parent;
275         }
276
277 do_insert:
278         rb_link_node(node, parent, p);
279         rb_insert_color(node, root);
280         return NULL;
281 }
282
283 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
284                                       struct rb_node **prev_ret,
285                                       struct rb_node **next_ret,
286                                       struct rb_node ***p_ret,
287                                       struct rb_node **parent_ret)
288 {
289         struct rb_root *root = &tree->state;
290         struct rb_node **n = &root->rb_node;
291         struct rb_node *prev = NULL;
292         struct rb_node *orig_prev = NULL;
293         struct tree_entry *entry;
294         struct tree_entry *prev_entry = NULL;
295
296         while (*n) {
297                 prev = *n;
298                 entry = rb_entry(prev, struct tree_entry, rb_node);
299                 prev_entry = entry;
300
301                 if (offset < entry->start)
302                         n = &(*n)->rb_left;
303                 else if (offset > entry->end)
304                         n = &(*n)->rb_right;
305                 else
306                         return *n;
307         }
308
309         if (p_ret)
310                 *p_ret = n;
311         if (parent_ret)
312                 *parent_ret = prev;
313
314         if (prev_ret) {
315                 orig_prev = prev;
316                 while (prev && offset > prev_entry->end) {
317                         prev = rb_next(prev);
318                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319                 }
320                 *prev_ret = prev;
321                 prev = orig_prev;
322         }
323
324         if (next_ret) {
325                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326                 while (prev && offset < prev_entry->start) {
327                         prev = rb_prev(prev);
328                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
329                 }
330                 *next_ret = prev;
331         }
332         return NULL;
333 }
334
335 static inline struct rb_node *
336 tree_search_for_insert(struct extent_io_tree *tree,
337                        u64 offset,
338                        struct rb_node ***p_ret,
339                        struct rb_node **parent_ret)
340 {
341         struct rb_node *prev = NULL;
342         struct rb_node *ret;
343
344         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
345         if (!ret)
346                 return prev;
347         return ret;
348 }
349
350 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
351                                           u64 offset)
352 {
353         return tree_search_for_insert(tree, offset, NULL, NULL);
354 }
355
356 /*
357  * utility function to look for merge candidates inside a given range.
358  * Any extents with matching state are merged together into a single
359  * extent in the tree.  Extents with EXTENT_IO in their state field
360  * are not merged because the end_io handlers need to be able to do
361  * operations on them without sleeping (or doing allocations/splits).
362  *
363  * This should be called with the tree lock held.
364  */
365 static void merge_state(struct extent_io_tree *tree,
366                         struct extent_state *state)
367 {
368         struct extent_state *other;
369         struct rb_node *other_node;
370
371         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
372                 return;
373
374         other_node = rb_prev(&state->rb_node);
375         if (other_node) {
376                 other = rb_entry(other_node, struct extent_state, rb_node);
377                 if (other->end == state->start - 1 &&
378                     other->state == state->state) {
379                         if (tree->private_data &&
380                             is_data_inode(tree->private_data))
381                                 btrfs_merge_delalloc_extent(tree->private_data,
382                                                             state, other);
383                         state->start = other->start;
384                         rb_erase(&other->rb_node, &tree->state);
385                         RB_CLEAR_NODE(&other->rb_node);
386                         free_extent_state(other);
387                 }
388         }
389         other_node = rb_next(&state->rb_node);
390         if (other_node) {
391                 other = rb_entry(other_node, struct extent_state, rb_node);
392                 if (other->start == state->end + 1 &&
393                     other->state == state->state) {
394                         if (tree->private_data &&
395                             is_data_inode(tree->private_data))
396                                 btrfs_merge_delalloc_extent(tree->private_data,
397                                                             state, other);
398                         state->end = other->end;
399                         rb_erase(&other->rb_node, &tree->state);
400                         RB_CLEAR_NODE(&other->rb_node);
401                         free_extent_state(other);
402                 }
403         }
404 }
405
406 static void set_state_bits(struct extent_io_tree *tree,
407                            struct extent_state *state, unsigned *bits,
408                            struct extent_changeset *changeset);
409
410 /*
411  * insert an extent_state struct into the tree.  'bits' are set on the
412  * struct before it is inserted.
413  *
414  * This may return -EEXIST if the extent is already there, in which case the
415  * state struct is freed.
416  *
417  * The tree lock is not taken internally.  This is a utility function and
418  * probably isn't what you want to call (see set/clear_extent_bit).
419  */
420 static int insert_state(struct extent_io_tree *tree,
421                         struct extent_state *state, u64 start, u64 end,
422                         struct rb_node ***p,
423                         struct rb_node **parent,
424                         unsigned *bits, struct extent_changeset *changeset)
425 {
426         struct rb_node *node;
427
428         if (end < start)
429                 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
430                        end, start);
431         state->start = start;
432         state->end = end;
433
434         set_state_bits(tree, state, bits, changeset);
435
436         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
437         if (node) {
438                 struct extent_state *found;
439                 found = rb_entry(node, struct extent_state, rb_node);
440                 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
441                        found->start, found->end, start, end);
442                 return -EEXIST;
443         }
444         merge_state(tree, state);
445         return 0;
446 }
447
448 /*
449  * split a given extent state struct in two, inserting the preallocated
450  * struct 'prealloc' as the newly created second half.  'split' indicates an
451  * offset inside 'orig' where it should be split.
452  *
453  * Before calling,
454  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
455  * are two extent state structs in the tree:
456  * prealloc: [orig->start, split - 1]
457  * orig: [ split, orig->end ]
458  *
459  * The tree locks are not taken by this function. They need to be held
460  * by the caller.
461  */
462 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
463                        struct extent_state *prealloc, u64 split)
464 {
465         struct rb_node *node;
466
467         if (tree->private_data && is_data_inode(tree->private_data))
468                 btrfs_split_delalloc_extent(tree->private_data, orig, split);
469
470         prealloc->start = orig->start;
471         prealloc->end = split - 1;
472         prealloc->state = orig->state;
473         orig->start = split;
474
475         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
476                            &prealloc->rb_node, NULL, NULL);
477         if (node) {
478                 free_extent_state(prealloc);
479                 return -EEXIST;
480         }
481         return 0;
482 }
483
484 static struct extent_state *next_state(struct extent_state *state)
485 {
486         struct rb_node *next = rb_next(&state->rb_node);
487         if (next)
488                 return rb_entry(next, struct extent_state, rb_node);
489         else
490                 return NULL;
491 }
492
493 /*
494  * utility function to clear some bits in an extent state struct.
495  * it will optionally wake up anyone waiting on this state (wake == 1).
496  *
497  * If no bits are set on the state struct after clearing things, the
498  * struct is freed and removed from the tree
499  */
500 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
501                                             struct extent_state *state,
502                                             unsigned *bits, int wake,
503                                             struct extent_changeset *changeset)
504 {
505         struct extent_state *next;
506         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
507         int ret;
508
509         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
510                 u64 range = state->end - state->start + 1;
511                 WARN_ON(range > tree->dirty_bytes);
512                 tree->dirty_bytes -= range;
513         }
514
515         if (tree->private_data && is_data_inode(tree->private_data))
516                 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
517
518         ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
519         BUG_ON(ret < 0);
520         state->state &= ~bits_to_clear;
521         if (wake)
522                 wake_up(&state->wq);
523         if (state->state == 0) {
524                 next = next_state(state);
525                 if (extent_state_in_tree(state)) {
526                         rb_erase(&state->rb_node, &tree->state);
527                         RB_CLEAR_NODE(&state->rb_node);
528                         free_extent_state(state);
529                 } else {
530                         WARN_ON(1);
531                 }
532         } else {
533                 merge_state(tree, state);
534                 next = next_state(state);
535         }
536         return next;
537 }
538
539 static struct extent_state *
540 alloc_extent_state_atomic(struct extent_state *prealloc)
541 {
542         if (!prealloc)
543                 prealloc = alloc_extent_state(GFP_ATOMIC);
544
545         return prealloc;
546 }
547
548 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
549 {
550         struct inode *inode = tree->private_data;
551
552         btrfs_panic(btrfs_sb(inode->i_sb), err,
553         "locking error: extent tree was modified by another thread while locked");
554 }
555
556 /*
557  * clear some bits on a range in the tree.  This may require splitting
558  * or inserting elements in the tree, so the gfp mask is used to
559  * indicate which allocations or sleeping are allowed.
560  *
561  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
562  * the given range from the tree regardless of state (ie for truncate).
563  *
564  * the range [start, end] is inclusive.
565  *
566  * This takes the tree lock, and returns 0 on success and < 0 on error.
567  */
568 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
569                               unsigned bits, int wake, int delete,
570                               struct extent_state **cached_state,
571                               gfp_t mask, struct extent_changeset *changeset)
572 {
573         struct extent_state *state;
574         struct extent_state *cached;
575         struct extent_state *prealloc = NULL;
576         struct rb_node *node;
577         u64 last_end;
578         int err;
579         int clear = 0;
580
581         btrfs_debug_check_extent_io_range(tree, start, end);
582
583         if (bits & EXTENT_DELALLOC)
584                 bits |= EXTENT_NORESERVE;
585
586         if (delete)
587                 bits |= ~EXTENT_CTLBITS;
588         bits |= EXTENT_FIRST_DELALLOC;
589
590         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
591                 clear = 1;
592 again:
593         if (!prealloc && gfpflags_allow_blocking(mask)) {
594                 /*
595                  * Don't care for allocation failure here because we might end
596                  * up not needing the pre-allocated extent state at all, which
597                  * is the case if we only have in the tree extent states that
598                  * cover our input range and don't cover too any other range.
599                  * If we end up needing a new extent state we allocate it later.
600                  */
601                 prealloc = alloc_extent_state(mask);
602         }
603
604         spin_lock(&tree->lock);
605         if (cached_state) {
606                 cached = *cached_state;
607
608                 if (clear) {
609                         *cached_state = NULL;
610                         cached_state = NULL;
611                 }
612
613                 if (cached && extent_state_in_tree(cached) &&
614                     cached->start <= start && cached->end > start) {
615                         if (clear)
616                                 refcount_dec(&cached->refs);
617                         state = cached;
618                         goto hit_next;
619                 }
620                 if (clear)
621                         free_extent_state(cached);
622         }
623         /*
624          * this search will find the extents that end after
625          * our range starts
626          */
627         node = tree_search(tree, start);
628         if (!node)
629                 goto out;
630         state = rb_entry(node, struct extent_state, rb_node);
631 hit_next:
632         if (state->start > end)
633                 goto out;
634         WARN_ON(state->end < start);
635         last_end = state->end;
636
637         /* the state doesn't have the wanted bits, go ahead */
638         if (!(state->state & bits)) {
639                 state = next_state(state);
640                 goto next;
641         }
642
643         /*
644          *     | ---- desired range ---- |
645          *  | state | or
646          *  | ------------- state -------------- |
647          *
648          * We need to split the extent we found, and may flip
649          * bits on second half.
650          *
651          * If the extent we found extends past our range, we
652          * just split and search again.  It'll get split again
653          * the next time though.
654          *
655          * If the extent we found is inside our range, we clear
656          * the desired bit on it.
657          */
658
659         if (state->start < start) {
660                 prealloc = alloc_extent_state_atomic(prealloc);
661                 BUG_ON(!prealloc);
662                 err = split_state(tree, state, prealloc, start);
663                 if (err)
664                         extent_io_tree_panic(tree, err);
665
666                 prealloc = NULL;
667                 if (err)
668                         goto out;
669                 if (state->end <= end) {
670                         state = clear_state_bit(tree, state, &bits, wake,
671                                                 changeset);
672                         goto next;
673                 }
674                 goto search_again;
675         }
676         /*
677          * | ---- desired range ---- |
678          *                        | state |
679          * We need to split the extent, and clear the bit
680          * on the first half
681          */
682         if (state->start <= end && state->end > end) {
683                 prealloc = alloc_extent_state_atomic(prealloc);
684                 BUG_ON(!prealloc);
685                 err = split_state(tree, state, prealloc, end + 1);
686                 if (err)
687                         extent_io_tree_panic(tree, err);
688
689                 if (wake)
690                         wake_up(&state->wq);
691
692                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
693
694                 prealloc = NULL;
695                 goto out;
696         }
697
698         state = clear_state_bit(tree, state, &bits, wake, changeset);
699 next:
700         if (last_end == (u64)-1)
701                 goto out;
702         start = last_end + 1;
703         if (start <= end && state && !need_resched())
704                 goto hit_next;
705
706 search_again:
707         if (start > end)
708                 goto out;
709         spin_unlock(&tree->lock);
710         if (gfpflags_allow_blocking(mask))
711                 cond_resched();
712         goto again;
713
714 out:
715         spin_unlock(&tree->lock);
716         if (prealloc)
717                 free_extent_state(prealloc);
718
719         return 0;
720
721 }
722
723 static void wait_on_state(struct extent_io_tree *tree,
724                           struct extent_state *state)
725                 __releases(tree->lock)
726                 __acquires(tree->lock)
727 {
728         DEFINE_WAIT(wait);
729         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
730         spin_unlock(&tree->lock);
731         schedule();
732         spin_lock(&tree->lock);
733         finish_wait(&state->wq, &wait);
734 }
735
736 /*
737  * waits for one or more bits to clear on a range in the state tree.
738  * The range [start, end] is inclusive.
739  * The tree lock is taken by this function
740  */
741 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
742                             unsigned long bits)
743 {
744         struct extent_state *state;
745         struct rb_node *node;
746
747         btrfs_debug_check_extent_io_range(tree, start, end);
748
749         spin_lock(&tree->lock);
750 again:
751         while (1) {
752                 /*
753                  * this search will find all the extents that end after
754                  * our range starts
755                  */
756                 node = tree_search(tree, start);
757 process_node:
758                 if (!node)
759                         break;
760
761                 state = rb_entry(node, struct extent_state, rb_node);
762
763                 if (state->start > end)
764                         goto out;
765
766                 if (state->state & bits) {
767                         start = state->start;
768                         refcount_inc(&state->refs);
769                         wait_on_state(tree, state);
770                         free_extent_state(state);
771                         goto again;
772                 }
773                 start = state->end + 1;
774
775                 if (start > end)
776                         break;
777
778                 if (!cond_resched_lock(&tree->lock)) {
779                         node = rb_next(node);
780                         goto process_node;
781                 }
782         }
783 out:
784         spin_unlock(&tree->lock);
785 }
786
787 static void set_state_bits(struct extent_io_tree *tree,
788                            struct extent_state *state,
789                            unsigned *bits, struct extent_changeset *changeset)
790 {
791         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
792         int ret;
793
794         if (tree->private_data && is_data_inode(tree->private_data))
795                 btrfs_set_delalloc_extent(tree->private_data, state, bits);
796
797         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
798                 u64 range = state->end - state->start + 1;
799                 tree->dirty_bytes += range;
800         }
801         ret = add_extent_changeset(state, bits_to_set, changeset, 1);
802         BUG_ON(ret < 0);
803         state->state |= bits_to_set;
804 }
805
806 static void cache_state_if_flags(struct extent_state *state,
807                                  struct extent_state **cached_ptr,
808                                  unsigned flags)
809 {
810         if (cached_ptr && !(*cached_ptr)) {
811                 if (!flags || (state->state & flags)) {
812                         *cached_ptr = state;
813                         refcount_inc(&state->refs);
814                 }
815         }
816 }
817
818 static void cache_state(struct extent_state *state,
819                         struct extent_state **cached_ptr)
820 {
821         return cache_state_if_flags(state, cached_ptr,
822                                     EXTENT_IOBITS | EXTENT_BOUNDARY);
823 }
824
825 /*
826  * set some bits on a range in the tree.  This may require allocations or
827  * sleeping, so the gfp mask is used to indicate what is allowed.
828  *
829  * If any of the exclusive bits are set, this will fail with -EEXIST if some
830  * part of the range already has the desired bits set.  The start of the
831  * existing range is returned in failed_start in this case.
832  *
833  * [start, end] is inclusive This takes the tree lock.
834  */
835
836 static int __must_check
837 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
838                  unsigned bits, unsigned exclusive_bits,
839                  u64 *failed_start, struct extent_state **cached_state,
840                  gfp_t mask, struct extent_changeset *changeset)
841 {
842         struct extent_state *state;
843         struct extent_state *prealloc = NULL;
844         struct rb_node *node;
845         struct rb_node **p;
846         struct rb_node *parent;
847         int err = 0;
848         u64 last_start;
849         u64 last_end;
850
851         btrfs_debug_check_extent_io_range(tree, start, end);
852
853         bits |= EXTENT_FIRST_DELALLOC;
854 again:
855         if (!prealloc && gfpflags_allow_blocking(mask)) {
856                 /*
857                  * Don't care for allocation failure here because we might end
858                  * up not needing the pre-allocated extent state at all, which
859                  * is the case if we only have in the tree extent states that
860                  * cover our input range and don't cover too any other range.
861                  * If we end up needing a new extent state we allocate it later.
862                  */
863                 prealloc = alloc_extent_state(mask);
864         }
865
866         spin_lock(&tree->lock);
867         if (cached_state && *cached_state) {
868                 state = *cached_state;
869                 if (state->start <= start && state->end > start &&
870                     extent_state_in_tree(state)) {
871                         node = &state->rb_node;
872                         goto hit_next;
873                 }
874         }
875         /*
876          * this search will find all the extents that end after
877          * our range starts.
878          */
879         node = tree_search_for_insert(tree, start, &p, &parent);
880         if (!node) {
881                 prealloc = alloc_extent_state_atomic(prealloc);
882                 BUG_ON(!prealloc);
883                 err = insert_state(tree, prealloc, start, end,
884                                    &p, &parent, &bits, changeset);
885                 if (err)
886                         extent_io_tree_panic(tree, err);
887
888                 cache_state(prealloc, cached_state);
889                 prealloc = NULL;
890                 goto out;
891         }
892         state = rb_entry(node, struct extent_state, rb_node);
893 hit_next:
894         last_start = state->start;
895         last_end = state->end;
896
897         /*
898          * | ---- desired range ---- |
899          * | state |
900          *
901          * Just lock what we found and keep going
902          */
903         if (state->start == start && state->end <= end) {
904                 if (state->state & exclusive_bits) {
905                         *failed_start = state->start;
906                         err = -EEXIST;
907                         goto out;
908                 }
909
910                 set_state_bits(tree, state, &bits, changeset);
911                 cache_state(state, cached_state);
912                 merge_state(tree, state);
913                 if (last_end == (u64)-1)
914                         goto out;
915                 start = last_end + 1;
916                 state = next_state(state);
917                 if (start < end && state && state->start == start &&
918                     !need_resched())
919                         goto hit_next;
920                 goto search_again;
921         }
922
923         /*
924          *     | ---- desired range ---- |
925          * | state |
926          *   or
927          * | ------------- state -------------- |
928          *
929          * We need to split the extent we found, and may flip bits on
930          * second half.
931          *
932          * If the extent we found extends past our
933          * range, we just split and search again.  It'll get split
934          * again the next time though.
935          *
936          * If the extent we found is inside our range, we set the
937          * desired bit on it.
938          */
939         if (state->start < start) {
940                 if (state->state & exclusive_bits) {
941                         *failed_start = start;
942                         err = -EEXIST;
943                         goto out;
944                 }
945
946                 prealloc = alloc_extent_state_atomic(prealloc);
947                 BUG_ON(!prealloc);
948                 err = split_state(tree, state, prealloc, start);
949                 if (err)
950                         extent_io_tree_panic(tree, err);
951
952                 prealloc = NULL;
953                 if (err)
954                         goto out;
955                 if (state->end <= end) {
956                         set_state_bits(tree, state, &bits, changeset);
957                         cache_state(state, cached_state);
958                         merge_state(tree, state);
959                         if (last_end == (u64)-1)
960                                 goto out;
961                         start = last_end + 1;
962                         state = next_state(state);
963                         if (start < end && state && state->start == start &&
964                             !need_resched())
965                                 goto hit_next;
966                 }
967                 goto search_again;
968         }
969         /*
970          * | ---- desired range ---- |
971          *     | state | or               | state |
972          *
973          * There's a hole, we need to insert something in it and
974          * ignore the extent we found.
975          */
976         if (state->start > start) {
977                 u64 this_end;
978                 if (end < last_start)
979                         this_end = end;
980                 else
981                         this_end = last_start - 1;
982
983                 prealloc = alloc_extent_state_atomic(prealloc);
984                 BUG_ON(!prealloc);
985
986                 /*
987                  * Avoid to free 'prealloc' if it can be merged with
988                  * the later extent.
989                  */
990                 err = insert_state(tree, prealloc, start, this_end,
991                                    NULL, NULL, &bits, changeset);
992                 if (err)
993                         extent_io_tree_panic(tree, err);
994
995                 cache_state(prealloc, cached_state);
996                 prealloc = NULL;
997                 start = this_end + 1;
998                 goto search_again;
999         }
1000         /*
1001          * | ---- desired range ---- |
1002          *                        | state |
1003          * We need to split the extent, and set the bit
1004          * on the first half
1005          */
1006         if (state->start <= end && state->end > end) {
1007                 if (state->state & exclusive_bits) {
1008                         *failed_start = start;
1009                         err = -EEXIST;
1010                         goto out;
1011                 }
1012
1013                 prealloc = alloc_extent_state_atomic(prealloc);
1014                 BUG_ON(!prealloc);
1015                 err = split_state(tree, state, prealloc, end + 1);
1016                 if (err)
1017                         extent_io_tree_panic(tree, err);
1018
1019                 set_state_bits(tree, prealloc, &bits, changeset);
1020                 cache_state(prealloc, cached_state);
1021                 merge_state(tree, prealloc);
1022                 prealloc = NULL;
1023                 goto out;
1024         }
1025
1026 search_again:
1027         if (start > end)
1028                 goto out;
1029         spin_unlock(&tree->lock);
1030         if (gfpflags_allow_blocking(mask))
1031                 cond_resched();
1032         goto again;
1033
1034 out:
1035         spin_unlock(&tree->lock);
1036         if (prealloc)
1037                 free_extent_state(prealloc);
1038
1039         return err;
1040
1041 }
1042
1043 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1044                    unsigned bits, u64 * failed_start,
1045                    struct extent_state **cached_state, gfp_t mask)
1046 {
1047         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1048                                 cached_state, mask, NULL);
1049 }
1050
1051
1052 /**
1053  * convert_extent_bit - convert all bits in a given range from one bit to
1054  *                      another
1055  * @tree:       the io tree to search
1056  * @start:      the start offset in bytes
1057  * @end:        the end offset in bytes (inclusive)
1058  * @bits:       the bits to set in this range
1059  * @clear_bits: the bits to clear in this range
1060  * @cached_state:       state that we're going to cache
1061  *
1062  * This will go through and set bits for the given range.  If any states exist
1063  * already in this range they are set with the given bit and cleared of the
1064  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1065  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1066  * boundary bits like LOCK.
1067  *
1068  * All allocations are done with GFP_NOFS.
1069  */
1070 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1071                        unsigned bits, unsigned clear_bits,
1072                        struct extent_state **cached_state)
1073 {
1074         struct extent_state *state;
1075         struct extent_state *prealloc = NULL;
1076         struct rb_node *node;
1077         struct rb_node **p;
1078         struct rb_node *parent;
1079         int err = 0;
1080         u64 last_start;
1081         u64 last_end;
1082         bool first_iteration = true;
1083
1084         btrfs_debug_check_extent_io_range(tree, start, end);
1085
1086 again:
1087         if (!prealloc) {
1088                 /*
1089                  * Best effort, don't worry if extent state allocation fails
1090                  * here for the first iteration. We might have a cached state
1091                  * that matches exactly the target range, in which case no
1092                  * extent state allocations are needed. We'll only know this
1093                  * after locking the tree.
1094                  */
1095                 prealloc = alloc_extent_state(GFP_NOFS);
1096                 if (!prealloc && !first_iteration)
1097                         return -ENOMEM;
1098         }
1099
1100         spin_lock(&tree->lock);
1101         if (cached_state && *cached_state) {
1102                 state = *cached_state;
1103                 if (state->start <= start && state->end > start &&
1104                     extent_state_in_tree(state)) {
1105                         node = &state->rb_node;
1106                         goto hit_next;
1107                 }
1108         }
1109
1110         /*
1111          * this search will find all the extents that end after
1112          * our range starts.
1113          */
1114         node = tree_search_for_insert(tree, start, &p, &parent);
1115         if (!node) {
1116                 prealloc = alloc_extent_state_atomic(prealloc);
1117                 if (!prealloc) {
1118                         err = -ENOMEM;
1119                         goto out;
1120                 }
1121                 err = insert_state(tree, prealloc, start, end,
1122                                    &p, &parent, &bits, NULL);
1123                 if (err)
1124                         extent_io_tree_panic(tree, err);
1125                 cache_state(prealloc, cached_state);
1126                 prealloc = NULL;
1127                 goto out;
1128         }
1129         state = rb_entry(node, struct extent_state, rb_node);
1130 hit_next:
1131         last_start = state->start;
1132         last_end = state->end;
1133
1134         /*
1135          * | ---- desired range ---- |
1136          * | state |
1137          *
1138          * Just lock what we found and keep going
1139          */
1140         if (state->start == start && state->end <= end) {
1141                 set_state_bits(tree, state, &bits, NULL);
1142                 cache_state(state, cached_state);
1143                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1144                 if (last_end == (u64)-1)
1145                         goto out;
1146                 start = last_end + 1;
1147                 if (start < end && state && state->start == start &&
1148                     !need_resched())
1149                         goto hit_next;
1150                 goto search_again;
1151         }
1152
1153         /*
1154          *     | ---- desired range ---- |
1155          * | state |
1156          *   or
1157          * | ------------- state -------------- |
1158          *
1159          * We need to split the extent we found, and may flip bits on
1160          * second half.
1161          *
1162          * If the extent we found extends past our
1163          * range, we just split and search again.  It'll get split
1164          * again the next time though.
1165          *
1166          * If the extent we found is inside our range, we set the
1167          * desired bit on it.
1168          */
1169         if (state->start < start) {
1170                 prealloc = alloc_extent_state_atomic(prealloc);
1171                 if (!prealloc) {
1172                         err = -ENOMEM;
1173                         goto out;
1174                 }
1175                 err = split_state(tree, state, prealloc, start);
1176                 if (err)
1177                         extent_io_tree_panic(tree, err);
1178                 prealloc = NULL;
1179                 if (err)
1180                         goto out;
1181                 if (state->end <= end) {
1182                         set_state_bits(tree, state, &bits, NULL);
1183                         cache_state(state, cached_state);
1184                         state = clear_state_bit(tree, state, &clear_bits, 0,
1185                                                 NULL);
1186                         if (last_end == (u64)-1)
1187                                 goto out;
1188                         start = last_end + 1;
1189                         if (start < end && state && state->start == start &&
1190                             !need_resched())
1191                                 goto hit_next;
1192                 }
1193                 goto search_again;
1194         }
1195         /*
1196          * | ---- desired range ---- |
1197          *     | state | or               | state |
1198          *
1199          * There's a hole, we need to insert something in it and
1200          * ignore the extent we found.
1201          */
1202         if (state->start > start) {
1203                 u64 this_end;
1204                 if (end < last_start)
1205                         this_end = end;
1206                 else
1207                         this_end = last_start - 1;
1208
1209                 prealloc = alloc_extent_state_atomic(prealloc);
1210                 if (!prealloc) {
1211                         err = -ENOMEM;
1212                         goto out;
1213                 }
1214
1215                 /*
1216                  * Avoid to free 'prealloc' if it can be merged with
1217                  * the later extent.
1218                  */
1219                 err = insert_state(tree, prealloc, start, this_end,
1220                                    NULL, NULL, &bits, NULL);
1221                 if (err)
1222                         extent_io_tree_panic(tree, err);
1223                 cache_state(prealloc, cached_state);
1224                 prealloc = NULL;
1225                 start = this_end + 1;
1226                 goto search_again;
1227         }
1228         /*
1229          * | ---- desired range ---- |
1230          *                        | state |
1231          * We need to split the extent, and set the bit
1232          * on the first half
1233          */
1234         if (state->start <= end && state->end > end) {
1235                 prealloc = alloc_extent_state_atomic(prealloc);
1236                 if (!prealloc) {
1237                         err = -ENOMEM;
1238                         goto out;
1239                 }
1240
1241                 err = split_state(tree, state, prealloc, end + 1);
1242                 if (err)
1243                         extent_io_tree_panic(tree, err);
1244
1245                 set_state_bits(tree, prealloc, &bits, NULL);
1246                 cache_state(prealloc, cached_state);
1247                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1248                 prealloc = NULL;
1249                 goto out;
1250         }
1251
1252 search_again:
1253         if (start > end)
1254                 goto out;
1255         spin_unlock(&tree->lock);
1256         cond_resched();
1257         first_iteration = false;
1258         goto again;
1259
1260 out:
1261         spin_unlock(&tree->lock);
1262         if (prealloc)
1263                 free_extent_state(prealloc);
1264
1265         return err;
1266 }
1267
1268 /* wrappers around set/clear extent bit */
1269 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1270                            unsigned bits, struct extent_changeset *changeset)
1271 {
1272         /*
1273          * We don't support EXTENT_LOCKED yet, as current changeset will
1274          * record any bits changed, so for EXTENT_LOCKED case, it will
1275          * either fail with -EEXIST or changeset will record the whole
1276          * range.
1277          */
1278         BUG_ON(bits & EXTENT_LOCKED);
1279
1280         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1281                                 changeset);
1282 }
1283
1284 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1285                      unsigned bits, int wake, int delete,
1286                      struct extent_state **cached)
1287 {
1288         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1289                                   cached, GFP_NOFS, NULL);
1290 }
1291
1292 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1293                 unsigned bits, struct extent_changeset *changeset)
1294 {
1295         /*
1296          * Don't support EXTENT_LOCKED case, same reason as
1297          * set_record_extent_bits().
1298          */
1299         BUG_ON(bits & EXTENT_LOCKED);
1300
1301         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1302                                   changeset);
1303 }
1304
1305 /*
1306  * either insert or lock state struct between start and end use mask to tell
1307  * us if waiting is desired.
1308  */
1309 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1310                      struct extent_state **cached_state)
1311 {
1312         int err;
1313         u64 failed_start;
1314
1315         while (1) {
1316                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1317                                        EXTENT_LOCKED, &failed_start,
1318                                        cached_state, GFP_NOFS, NULL);
1319                 if (err == -EEXIST) {
1320                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321                         start = failed_start;
1322                 } else
1323                         break;
1324                 WARN_ON(start > end);
1325         }
1326         return err;
1327 }
1328
1329 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1330 {
1331         int err;
1332         u64 failed_start;
1333
1334         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1335                                &failed_start, NULL, GFP_NOFS, NULL);
1336         if (err == -EEXIST) {
1337                 if (failed_start > start)
1338                         clear_extent_bit(tree, start, failed_start - 1,
1339                                          EXTENT_LOCKED, 1, 0, NULL);
1340                 return 0;
1341         }
1342         return 1;
1343 }
1344
1345 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1346 {
1347         unsigned long index = start >> PAGE_SHIFT;
1348         unsigned long end_index = end >> PAGE_SHIFT;
1349         struct page *page;
1350
1351         while (index <= end_index) {
1352                 page = find_get_page(inode->i_mapping, index);
1353                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1354                 clear_page_dirty_for_io(page);
1355                 put_page(page);
1356                 index++;
1357         }
1358 }
1359
1360 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1361 {
1362         unsigned long index = start >> PAGE_SHIFT;
1363         unsigned long end_index = end >> PAGE_SHIFT;
1364         struct page *page;
1365
1366         while (index <= end_index) {
1367                 page = find_get_page(inode->i_mapping, index);
1368                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1369                 __set_page_dirty_nobuffers(page);
1370                 account_page_redirty(page);
1371                 put_page(page);
1372                 index++;
1373         }
1374 }
1375
1376 /* find the first state struct with 'bits' set after 'start', and
1377  * return it.  tree->lock must be held.  NULL will returned if
1378  * nothing was found after 'start'
1379  */
1380 static struct extent_state *
1381 find_first_extent_bit_state(struct extent_io_tree *tree,
1382                             u64 start, unsigned bits)
1383 {
1384         struct rb_node *node;
1385         struct extent_state *state;
1386
1387         /*
1388          * this search will find all the extents that end after
1389          * our range starts.
1390          */
1391         node = tree_search(tree, start);
1392         if (!node)
1393                 goto out;
1394
1395         while (1) {
1396                 state = rb_entry(node, struct extent_state, rb_node);
1397                 if (state->end >= start && (state->state & bits))
1398                         return state;
1399
1400                 node = rb_next(node);
1401                 if (!node)
1402                         break;
1403         }
1404 out:
1405         return NULL;
1406 }
1407
1408 /*
1409  * find the first offset in the io tree with 'bits' set. zero is
1410  * returned if we find something, and *start_ret and *end_ret are
1411  * set to reflect the state struct that was found.
1412  *
1413  * If nothing was found, 1 is returned. If found something, return 0.
1414  */
1415 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1416                           u64 *start_ret, u64 *end_ret, unsigned bits,
1417                           struct extent_state **cached_state)
1418 {
1419         struct extent_state *state;
1420         int ret = 1;
1421
1422         spin_lock(&tree->lock);
1423         if (cached_state && *cached_state) {
1424                 state = *cached_state;
1425                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1426                         while ((state = next_state(state)) != NULL) {
1427                                 if (state->state & bits)
1428                                         goto got_it;
1429                         }
1430                         free_extent_state(*cached_state);
1431                         *cached_state = NULL;
1432                         goto out;
1433                 }
1434                 free_extent_state(*cached_state);
1435                 *cached_state = NULL;
1436         }
1437
1438         state = find_first_extent_bit_state(tree, start, bits);
1439 got_it:
1440         if (state) {
1441                 cache_state_if_flags(state, cached_state, 0);
1442                 *start_ret = state->start;
1443                 *end_ret = state->end;
1444                 ret = 0;
1445         }
1446 out:
1447         spin_unlock(&tree->lock);
1448         return ret;
1449 }
1450
1451 /*
1452  * find a contiguous range of bytes in the file marked as delalloc, not
1453  * more than 'max_bytes'.  start and end are used to return the range,
1454  *
1455  * true is returned if we find something, false if nothing was in the tree
1456  */
1457 static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1458                                         u64 *start, u64 *end, u64 max_bytes,
1459                                         struct extent_state **cached_state)
1460 {
1461         struct rb_node *node;
1462         struct extent_state *state;
1463         u64 cur_start = *start;
1464         bool found = false;
1465         u64 total_bytes = 0;
1466
1467         spin_lock(&tree->lock);
1468
1469         /*
1470          * this search will find all the extents that end after
1471          * our range starts.
1472          */
1473         node = tree_search(tree, cur_start);
1474         if (!node) {
1475                 *end = (u64)-1;
1476                 goto out;
1477         }
1478
1479         while (1) {
1480                 state = rb_entry(node, struct extent_state, rb_node);
1481                 if (found && (state->start != cur_start ||
1482                               (state->state & EXTENT_BOUNDARY))) {
1483                         goto out;
1484                 }
1485                 if (!(state->state & EXTENT_DELALLOC)) {
1486                         if (!found)
1487                                 *end = state->end;
1488                         goto out;
1489                 }
1490                 if (!found) {
1491                         *start = state->start;
1492                         *cached_state = state;
1493                         refcount_inc(&state->refs);
1494                 }
1495                 found = true;
1496                 *end = state->end;
1497                 cur_start = state->end + 1;
1498                 node = rb_next(node);
1499                 total_bytes += state->end - state->start + 1;
1500                 if (total_bytes >= max_bytes)
1501                         break;
1502                 if (!node)
1503                         break;
1504         }
1505 out:
1506         spin_unlock(&tree->lock);
1507         return found;
1508 }
1509
1510 static int __process_pages_contig(struct address_space *mapping,
1511                                   struct page *locked_page,
1512                                   pgoff_t start_index, pgoff_t end_index,
1513                                   unsigned long page_ops, pgoff_t *index_ret);
1514
1515 static noinline void __unlock_for_delalloc(struct inode *inode,
1516                                            struct page *locked_page,
1517                                            u64 start, u64 end)
1518 {
1519         unsigned long index = start >> PAGE_SHIFT;
1520         unsigned long end_index = end >> PAGE_SHIFT;
1521
1522         ASSERT(locked_page);
1523         if (index == locked_page->index && end_index == index)
1524                 return;
1525
1526         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1527                                PAGE_UNLOCK, NULL);
1528 }
1529
1530 static noinline int lock_delalloc_pages(struct inode *inode,
1531                                         struct page *locked_page,
1532                                         u64 delalloc_start,
1533                                         u64 delalloc_end)
1534 {
1535         unsigned long index = delalloc_start >> PAGE_SHIFT;
1536         unsigned long index_ret = index;
1537         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1538         int ret;
1539
1540         ASSERT(locked_page);
1541         if (index == locked_page->index && index == end_index)
1542                 return 0;
1543
1544         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1545                                      end_index, PAGE_LOCK, &index_ret);
1546         if (ret == -EAGAIN)
1547                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1548                                       (u64)index_ret << PAGE_SHIFT);
1549         return ret;
1550 }
1551
1552 /*
1553  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1554  * more than @max_bytes.  @Start and @end are used to return the range,
1555  *
1556  * Return: true if we find something
1557  *         false if nothing was in the tree
1558  */
1559 EXPORT_FOR_TESTS
1560 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1561                                     struct extent_io_tree *tree,
1562                                     struct page *locked_page, u64 *start,
1563                                     u64 *end)
1564 {
1565         u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1566         u64 delalloc_start;
1567         u64 delalloc_end;
1568         bool found;
1569         struct extent_state *cached_state = NULL;
1570         int ret;
1571         int loops = 0;
1572
1573 again:
1574         /* step one, find a bunch of delalloc bytes starting at start */
1575         delalloc_start = *start;
1576         delalloc_end = 0;
1577         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1578                                     max_bytes, &cached_state);
1579         if (!found || delalloc_end <= *start) {
1580                 *start = delalloc_start;
1581                 *end = delalloc_end;
1582                 free_extent_state(cached_state);
1583                 return false;
1584         }
1585
1586         /*
1587          * start comes from the offset of locked_page.  We have to lock
1588          * pages in order, so we can't process delalloc bytes before
1589          * locked_page
1590          */
1591         if (delalloc_start < *start)
1592                 delalloc_start = *start;
1593
1594         /*
1595          * make sure to limit the number of pages we try to lock down
1596          */
1597         if (delalloc_end + 1 - delalloc_start > max_bytes)
1598                 delalloc_end = delalloc_start + max_bytes - 1;
1599
1600         /* step two, lock all the pages after the page that has start */
1601         ret = lock_delalloc_pages(inode, locked_page,
1602                                   delalloc_start, delalloc_end);
1603         ASSERT(!ret || ret == -EAGAIN);
1604         if (ret == -EAGAIN) {
1605                 /* some of the pages are gone, lets avoid looping by
1606                  * shortening the size of the delalloc range we're searching
1607                  */
1608                 free_extent_state(cached_state);
1609                 cached_state = NULL;
1610                 if (!loops) {
1611                         max_bytes = PAGE_SIZE;
1612                         loops = 1;
1613                         goto again;
1614                 } else {
1615                         found = false;
1616                         goto out_failed;
1617                 }
1618         }
1619
1620         /* step three, lock the state bits for the whole range */
1621         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1622
1623         /* then test to make sure it is all still delalloc */
1624         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1625                              EXTENT_DELALLOC, 1, cached_state);
1626         if (!ret) {
1627                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1628                                      &cached_state);
1629                 __unlock_for_delalloc(inode, locked_page,
1630                               delalloc_start, delalloc_end);
1631                 cond_resched();
1632                 goto again;
1633         }
1634         free_extent_state(cached_state);
1635         *start = delalloc_start;
1636         *end = delalloc_end;
1637 out_failed:
1638         return found;
1639 }
1640
1641 static int __process_pages_contig(struct address_space *mapping,
1642                                   struct page *locked_page,
1643                                   pgoff_t start_index, pgoff_t end_index,
1644                                   unsigned long page_ops, pgoff_t *index_ret)
1645 {
1646         unsigned long nr_pages = end_index - start_index + 1;
1647         unsigned long pages_locked = 0;
1648         pgoff_t index = start_index;
1649         struct page *pages[16];
1650         unsigned ret;
1651         int err = 0;
1652         int i;
1653
1654         if (page_ops & PAGE_LOCK) {
1655                 ASSERT(page_ops == PAGE_LOCK);
1656                 ASSERT(index_ret && *index_ret == start_index);
1657         }
1658
1659         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1660                 mapping_set_error(mapping, -EIO);
1661
1662         while (nr_pages > 0) {
1663                 ret = find_get_pages_contig(mapping, index,
1664                                      min_t(unsigned long,
1665                                      nr_pages, ARRAY_SIZE(pages)), pages);
1666                 if (ret == 0) {
1667                         /*
1668                          * Only if we're going to lock these pages,
1669                          * can we find nothing at @index.
1670                          */
1671                         ASSERT(page_ops & PAGE_LOCK);
1672                         err = -EAGAIN;
1673                         goto out;
1674                 }
1675
1676                 for (i = 0; i < ret; i++) {
1677                         if (page_ops & PAGE_SET_PRIVATE2)
1678                                 SetPagePrivate2(pages[i]);
1679
1680                         if (pages[i] == locked_page) {
1681                                 put_page(pages[i]);
1682                                 pages_locked++;
1683                                 continue;
1684                         }
1685                         if (page_ops & PAGE_CLEAR_DIRTY)
1686                                 clear_page_dirty_for_io(pages[i]);
1687                         if (page_ops & PAGE_SET_WRITEBACK)
1688                                 set_page_writeback(pages[i]);
1689                         if (page_ops & PAGE_SET_ERROR)
1690                                 SetPageError(pages[i]);
1691                         if (page_ops & PAGE_END_WRITEBACK)
1692                                 end_page_writeback(pages[i]);
1693                         if (page_ops & PAGE_UNLOCK)
1694                                 unlock_page(pages[i]);
1695                         if (page_ops & PAGE_LOCK) {
1696                                 lock_page(pages[i]);
1697                                 if (!PageDirty(pages[i]) ||
1698                                     pages[i]->mapping != mapping) {
1699                                         unlock_page(pages[i]);
1700                                         put_page(pages[i]);
1701                                         err = -EAGAIN;
1702                                         goto out;
1703                                 }
1704                         }
1705                         put_page(pages[i]);
1706                         pages_locked++;
1707                 }
1708                 nr_pages -= ret;
1709                 index += ret;
1710                 cond_resched();
1711         }
1712 out:
1713         if (err && index_ret)
1714                 *index_ret = start_index + pages_locked - 1;
1715         return err;
1716 }
1717
1718 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1719                                  u64 delalloc_end, struct page *locked_page,
1720                                  unsigned clear_bits,
1721                                  unsigned long page_ops)
1722 {
1723         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1724                          NULL);
1725
1726         __process_pages_contig(inode->i_mapping, locked_page,
1727                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1728                                page_ops, NULL);
1729 }
1730
1731 /*
1732  * count the number of bytes in the tree that have a given bit(s)
1733  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1734  * cached.  The total number found is returned.
1735  */
1736 u64 count_range_bits(struct extent_io_tree *tree,
1737                      u64 *start, u64 search_end, u64 max_bytes,
1738                      unsigned bits, int contig)
1739 {
1740         struct rb_node *node;
1741         struct extent_state *state;
1742         u64 cur_start = *start;
1743         u64 total_bytes = 0;
1744         u64 last = 0;
1745         int found = 0;
1746
1747         if (WARN_ON(search_end <= cur_start))
1748                 return 0;
1749
1750         spin_lock(&tree->lock);
1751         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1752                 total_bytes = tree->dirty_bytes;
1753                 goto out;
1754         }
1755         /*
1756          * this search will find all the extents that end after
1757          * our range starts.
1758          */
1759         node = tree_search(tree, cur_start);
1760         if (!node)
1761                 goto out;
1762
1763         while (1) {
1764                 state = rb_entry(node, struct extent_state, rb_node);
1765                 if (state->start > search_end)
1766                         break;
1767                 if (contig && found && state->start > last + 1)
1768                         break;
1769                 if (state->end >= cur_start && (state->state & bits) == bits) {
1770                         total_bytes += min(search_end, state->end) + 1 -
1771                                        max(cur_start, state->start);
1772                         if (total_bytes >= max_bytes)
1773                                 break;
1774                         if (!found) {
1775                                 *start = max(cur_start, state->start);
1776                                 found = 1;
1777                         }
1778                         last = state->end;
1779                 } else if (contig && found) {
1780                         break;
1781                 }
1782                 node = rb_next(node);
1783                 if (!node)
1784                         break;
1785         }
1786 out:
1787         spin_unlock(&tree->lock);
1788         return total_bytes;
1789 }
1790
1791 /*
1792  * set the private field for a given byte offset in the tree.  If there isn't
1793  * an extent_state there already, this does nothing.
1794  */
1795 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1796                 struct io_failure_record *failrec)
1797 {
1798         struct rb_node *node;
1799         struct extent_state *state;
1800         int ret = 0;
1801
1802         spin_lock(&tree->lock);
1803         /*
1804          * this search will find all the extents that end after
1805          * our range starts.
1806          */
1807         node = tree_search(tree, start);
1808         if (!node) {
1809                 ret = -ENOENT;
1810                 goto out;
1811         }
1812         state = rb_entry(node, struct extent_state, rb_node);
1813         if (state->start != start) {
1814                 ret = -ENOENT;
1815                 goto out;
1816         }
1817         state->failrec = failrec;
1818 out:
1819         spin_unlock(&tree->lock);
1820         return ret;
1821 }
1822
1823 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1824                 struct io_failure_record **failrec)
1825 {
1826         struct rb_node *node;
1827         struct extent_state *state;
1828         int ret = 0;
1829
1830         spin_lock(&tree->lock);
1831         /*
1832          * this search will find all the extents that end after
1833          * our range starts.
1834          */
1835         node = tree_search(tree, start);
1836         if (!node) {
1837                 ret = -ENOENT;
1838                 goto out;
1839         }
1840         state = rb_entry(node, struct extent_state, rb_node);
1841         if (state->start != start) {
1842                 ret = -ENOENT;
1843                 goto out;
1844         }
1845         *failrec = state->failrec;
1846 out:
1847         spin_unlock(&tree->lock);
1848         return ret;
1849 }
1850
1851 /*
1852  * searches a range in the state tree for a given mask.
1853  * If 'filled' == 1, this returns 1 only if every extent in the tree
1854  * has the bits set.  Otherwise, 1 is returned if any bit in the
1855  * range is found set.
1856  */
1857 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1858                    unsigned bits, int filled, struct extent_state *cached)
1859 {
1860         struct extent_state *state = NULL;
1861         struct rb_node *node;
1862         int bitset = 0;
1863
1864         spin_lock(&tree->lock);
1865         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1866             cached->end > start)
1867                 node = &cached->rb_node;
1868         else
1869                 node = tree_search(tree, start);
1870         while (node && start <= end) {
1871                 state = rb_entry(node, struct extent_state, rb_node);
1872
1873                 if (filled && state->start > start) {
1874                         bitset = 0;
1875                         break;
1876                 }
1877
1878                 if (state->start > end)
1879                         break;
1880
1881                 if (state->state & bits) {
1882                         bitset = 1;
1883                         if (!filled)
1884                                 break;
1885                 } else if (filled) {
1886                         bitset = 0;
1887                         break;
1888                 }
1889
1890                 if (state->end == (u64)-1)
1891                         break;
1892
1893                 start = state->end + 1;
1894                 if (start > end)
1895                         break;
1896                 node = rb_next(node);
1897                 if (!node) {
1898                         if (filled)
1899                                 bitset = 0;
1900                         break;
1901                 }
1902         }
1903         spin_unlock(&tree->lock);
1904         return bitset;
1905 }
1906
1907 /*
1908  * helper function to set a given page up to date if all the
1909  * extents in the tree for that page are up to date
1910  */
1911 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1912 {
1913         u64 start = page_offset(page);
1914         u64 end = start + PAGE_SIZE - 1;
1915         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1916                 SetPageUptodate(page);
1917 }
1918
1919 int free_io_failure(struct extent_io_tree *failure_tree,
1920                     struct extent_io_tree *io_tree,
1921                     struct io_failure_record *rec)
1922 {
1923         int ret;
1924         int err = 0;
1925
1926         set_state_failrec(failure_tree, rec->start, NULL);
1927         ret = clear_extent_bits(failure_tree, rec->start,
1928                                 rec->start + rec->len - 1,
1929                                 EXTENT_LOCKED | EXTENT_DIRTY);
1930         if (ret)
1931                 err = ret;
1932
1933         ret = clear_extent_bits(io_tree, rec->start,
1934                                 rec->start + rec->len - 1,
1935                                 EXTENT_DAMAGED);
1936         if (ret && !err)
1937                 err = ret;
1938
1939         kfree(rec);
1940         return err;
1941 }
1942
1943 /*
1944  * this bypasses the standard btrfs submit functions deliberately, as
1945  * the standard behavior is to write all copies in a raid setup. here we only
1946  * want to write the one bad copy. so we do the mapping for ourselves and issue
1947  * submit_bio directly.
1948  * to avoid any synchronization issues, wait for the data after writing, which
1949  * actually prevents the read that triggered the error from finishing.
1950  * currently, there can be no more than two copies of every data bit. thus,
1951  * exactly one rewrite is required.
1952  */
1953 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1954                       u64 length, u64 logical, struct page *page,
1955                       unsigned int pg_offset, int mirror_num)
1956 {
1957         struct bio *bio;
1958         struct btrfs_device *dev;
1959         u64 map_length = 0;
1960         u64 sector;
1961         struct btrfs_bio *bbio = NULL;
1962         int ret;
1963
1964         ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1965         BUG_ON(!mirror_num);
1966
1967         bio = btrfs_io_bio_alloc(1);
1968         bio->bi_iter.bi_size = 0;
1969         map_length = length;
1970
1971         /*
1972          * Avoid races with device replace and make sure our bbio has devices
1973          * associated to its stripes that don't go away while we are doing the
1974          * read repair operation.
1975          */
1976         btrfs_bio_counter_inc_blocked(fs_info);
1977         if (btrfs_is_parity_mirror(fs_info, logical, length)) {
1978                 /*
1979                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1980                  * to update all raid stripes, but here we just want to correct
1981                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1982                  * stripe's dev and sector.
1983                  */
1984                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1985                                       &map_length, &bbio, 0);
1986                 if (ret) {
1987                         btrfs_bio_counter_dec(fs_info);
1988                         bio_put(bio);
1989                         return -EIO;
1990                 }
1991                 ASSERT(bbio->mirror_num == 1);
1992         } else {
1993                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
1994                                       &map_length, &bbio, mirror_num);
1995                 if (ret) {
1996                         btrfs_bio_counter_dec(fs_info);
1997                         bio_put(bio);
1998                         return -EIO;
1999                 }
2000                 BUG_ON(mirror_num != bbio->mirror_num);
2001         }
2002
2003         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2004         bio->bi_iter.bi_sector = sector;
2005         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2006         btrfs_put_bbio(bbio);
2007         if (!dev || !dev->bdev ||
2008             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2009                 btrfs_bio_counter_dec(fs_info);
2010                 bio_put(bio);
2011                 return -EIO;
2012         }
2013         bio_set_dev(bio, dev->bdev);
2014         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2015         bio_add_page(bio, page, length, pg_offset);
2016
2017         if (btrfsic_submit_bio_wait(bio)) {
2018                 /* try to remap that extent elsewhere? */
2019                 btrfs_bio_counter_dec(fs_info);
2020                 bio_put(bio);
2021                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2022                 return -EIO;
2023         }
2024
2025         btrfs_info_rl_in_rcu(fs_info,
2026                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2027                                   ino, start,
2028                                   rcu_str_deref(dev->name), sector);
2029         btrfs_bio_counter_dec(fs_info);
2030         bio_put(bio);
2031         return 0;
2032 }
2033
2034 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2035                          struct extent_buffer *eb, int mirror_num)
2036 {
2037         u64 start = eb->start;
2038         int i, num_pages = num_extent_pages(eb);
2039         int ret = 0;
2040
2041         if (sb_rdonly(fs_info->sb))
2042                 return -EROFS;
2043
2044         for (i = 0; i < num_pages; i++) {
2045                 struct page *p = eb->pages[i];
2046
2047                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2048                                         start - page_offset(p), mirror_num);
2049                 if (ret)
2050                         break;
2051                 start += PAGE_SIZE;
2052         }
2053
2054         return ret;
2055 }
2056
2057 /*
2058  * each time an IO finishes, we do a fast check in the IO failure tree
2059  * to see if we need to process or clean up an io_failure_record
2060  */
2061 int clean_io_failure(struct btrfs_fs_info *fs_info,
2062                      struct extent_io_tree *failure_tree,
2063                      struct extent_io_tree *io_tree, u64 start,
2064                      struct page *page, u64 ino, unsigned int pg_offset)
2065 {
2066         u64 private;
2067         struct io_failure_record *failrec;
2068         struct extent_state *state;
2069         int num_copies;
2070         int ret;
2071
2072         private = 0;
2073         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2074                                EXTENT_DIRTY, 0);
2075         if (!ret)
2076                 return 0;
2077
2078         ret = get_state_failrec(failure_tree, start, &failrec);
2079         if (ret)
2080                 return 0;
2081
2082         BUG_ON(!failrec->this_mirror);
2083
2084         if (failrec->in_validation) {
2085                 /* there was no real error, just free the record */
2086                 btrfs_debug(fs_info,
2087                         "clean_io_failure: freeing dummy error at %llu",
2088                         failrec->start);
2089                 goto out;
2090         }
2091         if (sb_rdonly(fs_info->sb))
2092                 goto out;
2093
2094         spin_lock(&io_tree->lock);
2095         state = find_first_extent_bit_state(io_tree,
2096                                             failrec->start,
2097                                             EXTENT_LOCKED);
2098         spin_unlock(&io_tree->lock);
2099
2100         if (state && state->start <= failrec->start &&
2101             state->end >= failrec->start + failrec->len - 1) {
2102                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2103                                               failrec->len);
2104                 if (num_copies > 1)  {
2105                         repair_io_failure(fs_info, ino, start, failrec->len,
2106                                           failrec->logical, page, pg_offset,
2107                                           failrec->failed_mirror);
2108                 }
2109         }
2110
2111 out:
2112         free_io_failure(failure_tree, io_tree, failrec);
2113
2114         return 0;
2115 }
2116
2117 /*
2118  * Can be called when
2119  * - hold extent lock
2120  * - under ordered extent
2121  * - the inode is freeing
2122  */
2123 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2124 {
2125         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2126         struct io_failure_record *failrec;
2127         struct extent_state *state, *next;
2128
2129         if (RB_EMPTY_ROOT(&failure_tree->state))
2130                 return;
2131
2132         spin_lock(&failure_tree->lock);
2133         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2134         while (state) {
2135                 if (state->start > end)
2136                         break;
2137
2138                 ASSERT(state->end <= end);
2139
2140                 next = next_state(state);
2141
2142                 failrec = state->failrec;
2143                 free_extent_state(state);
2144                 kfree(failrec);
2145
2146                 state = next;
2147         }
2148         spin_unlock(&failure_tree->lock);
2149 }
2150
2151 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2152                 struct io_failure_record **failrec_ret)
2153 {
2154         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2155         struct io_failure_record *failrec;
2156         struct extent_map *em;
2157         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2158         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2159         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2160         int ret;
2161         u64 logical;
2162
2163         ret = get_state_failrec(failure_tree, start, &failrec);
2164         if (ret) {
2165                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2166                 if (!failrec)
2167                         return -ENOMEM;
2168
2169                 failrec->start = start;
2170                 failrec->len = end - start + 1;
2171                 failrec->this_mirror = 0;
2172                 failrec->bio_flags = 0;
2173                 failrec->in_validation = 0;
2174
2175                 read_lock(&em_tree->lock);
2176                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2177                 if (!em) {
2178                         read_unlock(&em_tree->lock);
2179                         kfree(failrec);
2180                         return -EIO;
2181                 }
2182
2183                 if (em->start > start || em->start + em->len <= start) {
2184                         free_extent_map(em);
2185                         em = NULL;
2186                 }
2187                 read_unlock(&em_tree->lock);
2188                 if (!em) {
2189                         kfree(failrec);
2190                         return -EIO;
2191                 }
2192
2193                 logical = start - em->start;
2194                 logical = em->block_start + logical;
2195                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2196                         logical = em->block_start;
2197                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2198                         extent_set_compress_type(&failrec->bio_flags,
2199                                                  em->compress_type);
2200                 }
2201
2202                 btrfs_debug(fs_info,
2203                         "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2204                         logical, start, failrec->len);
2205
2206                 failrec->logical = logical;
2207                 free_extent_map(em);
2208
2209                 /* set the bits in the private failure tree */
2210                 ret = set_extent_bits(failure_tree, start, end,
2211                                         EXTENT_LOCKED | EXTENT_DIRTY);
2212                 if (ret >= 0)
2213                         ret = set_state_failrec(failure_tree, start, failrec);
2214                 /* set the bits in the inode's tree */
2215                 if (ret >= 0)
2216                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2217                 if (ret < 0) {
2218                         kfree(failrec);
2219                         return ret;
2220                 }
2221         } else {
2222                 btrfs_debug(fs_info,
2223                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2224                         failrec->logical, failrec->start, failrec->len,
2225                         failrec->in_validation);
2226                 /*
2227                  * when data can be on disk more than twice, add to failrec here
2228                  * (e.g. with a list for failed_mirror) to make
2229                  * clean_io_failure() clean all those errors at once.
2230                  */
2231         }
2232
2233         *failrec_ret = failrec;
2234
2235         return 0;
2236 }
2237
2238 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2239                            struct io_failure_record *failrec, int failed_mirror)
2240 {
2241         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2242         int num_copies;
2243
2244         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2245         if (num_copies == 1) {
2246                 /*
2247                  * we only have a single copy of the data, so don't bother with
2248                  * all the retry and error correction code that follows. no
2249                  * matter what the error is, it is very likely to persist.
2250                  */
2251                 btrfs_debug(fs_info,
2252                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2253                         num_copies, failrec->this_mirror, failed_mirror);
2254                 return false;
2255         }
2256
2257         /*
2258          * there are two premises:
2259          *      a) deliver good data to the caller
2260          *      b) correct the bad sectors on disk
2261          */
2262         if (failed_bio_pages > 1) {
2263                 /*
2264                  * to fulfill b), we need to know the exact failing sectors, as
2265                  * we don't want to rewrite any more than the failed ones. thus,
2266                  * we need separate read requests for the failed bio
2267                  *
2268                  * if the following BUG_ON triggers, our validation request got
2269                  * merged. we need separate requests for our algorithm to work.
2270                  */
2271                 BUG_ON(failrec->in_validation);
2272                 failrec->in_validation = 1;
2273                 failrec->this_mirror = failed_mirror;
2274         } else {
2275                 /*
2276                  * we're ready to fulfill a) and b) alongside. get a good copy
2277                  * of the failed sector and if we succeed, we have setup
2278                  * everything for repair_io_failure to do the rest for us.
2279                  */
2280                 if (failrec->in_validation) {
2281                         BUG_ON(failrec->this_mirror != failed_mirror);
2282                         failrec->in_validation = 0;
2283                         failrec->this_mirror = 0;
2284                 }
2285                 failrec->failed_mirror = failed_mirror;
2286                 failrec->this_mirror++;
2287                 if (failrec->this_mirror == failed_mirror)
2288                         failrec->this_mirror++;
2289         }
2290
2291         if (failrec->this_mirror > num_copies) {
2292                 btrfs_debug(fs_info,
2293                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2294                         num_copies, failrec->this_mirror, failed_mirror);
2295                 return false;
2296         }
2297
2298         return true;
2299 }
2300
2301
2302 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2303                                     struct io_failure_record *failrec,
2304                                     struct page *page, int pg_offset, int icsum,
2305                                     bio_end_io_t *endio_func, void *data)
2306 {
2307         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2308         struct bio *bio;
2309         struct btrfs_io_bio *btrfs_failed_bio;
2310         struct btrfs_io_bio *btrfs_bio;
2311
2312         bio = btrfs_io_bio_alloc(1);
2313         bio->bi_end_io = endio_func;
2314         bio->bi_iter.bi_sector = failrec->logical >> 9;
2315         bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2316         bio->bi_iter.bi_size = 0;
2317         bio->bi_private = data;
2318
2319         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2320         if (btrfs_failed_bio->csum) {
2321                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2322
2323                 btrfs_bio = btrfs_io_bio(bio);
2324                 btrfs_bio->csum = btrfs_bio->csum_inline;
2325                 icsum *= csum_size;
2326                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2327                        csum_size);
2328         }
2329
2330         bio_add_page(bio, page, failrec->len, pg_offset);
2331
2332         return bio;
2333 }
2334
2335 /*
2336  * This is a generic handler for readpage errors. If other copies exist, read
2337  * those and write back good data to the failed position. Does not investigate
2338  * in remapping the failed extent elsewhere, hoping the device will be smart
2339  * enough to do this as needed
2340  */
2341 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2342                               struct page *page, u64 start, u64 end,
2343                               int failed_mirror)
2344 {
2345         struct io_failure_record *failrec;
2346         struct inode *inode = page->mapping->host;
2347         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2348         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2349         struct bio *bio;
2350         int read_mode = 0;
2351         blk_status_t status;
2352         int ret;
2353         unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2354
2355         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2356
2357         ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2358         if (ret)
2359                 return ret;
2360
2361         if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2362                                     failed_mirror)) {
2363                 free_io_failure(failure_tree, tree, failrec);
2364                 return -EIO;
2365         }
2366
2367         if (failed_bio_pages > 1)
2368                 read_mode |= REQ_FAILFAST_DEV;
2369
2370         phy_offset >>= inode->i_sb->s_blocksize_bits;
2371         bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2372                                       start - page_offset(page),
2373                                       (int)phy_offset, failed_bio->bi_end_io,
2374                                       NULL);
2375         bio->bi_opf = REQ_OP_READ | read_mode;
2376
2377         btrfs_debug(btrfs_sb(inode->i_sb),
2378                 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2379                 read_mode, failrec->this_mirror, failrec->in_validation);
2380
2381         status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2382                                          failrec->bio_flags, 0);
2383         if (status) {
2384                 free_io_failure(failure_tree, tree, failrec);
2385                 bio_put(bio);
2386                 ret = blk_status_to_errno(status);
2387         }
2388
2389         return ret;
2390 }
2391
2392 /* lots and lots of room for performance fixes in the end_bio funcs */
2393
2394 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2395 {
2396         int uptodate = (err == 0);
2397         int ret = 0;
2398
2399         btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2400
2401         if (!uptodate) {
2402                 ClearPageUptodate(page);
2403                 SetPageError(page);
2404                 ret = err < 0 ? err : -EIO;
2405                 mapping_set_error(page->mapping, ret);
2406         }
2407 }
2408
2409 /*
2410  * after a writepage IO is done, we need to:
2411  * clear the uptodate bits on error
2412  * clear the writeback bits in the extent tree for this IO
2413  * end_page_writeback if the page has no more pending IO
2414  *
2415  * Scheduling is not allowed, so the extent state tree is expected
2416  * to have one and only one object corresponding to this IO.
2417  */
2418 static void end_bio_extent_writepage(struct bio *bio)
2419 {
2420         int error = blk_status_to_errno(bio->bi_status);
2421         struct bio_vec *bvec;
2422         u64 start;
2423         u64 end;
2424         int i;
2425         struct bvec_iter_all iter_all;
2426
2427         ASSERT(!bio_flagged(bio, BIO_CLONED));
2428         bio_for_each_segment_all(bvec, bio, i, iter_all) {
2429                 struct page *page = bvec->bv_page;
2430                 struct inode *inode = page->mapping->host;
2431                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2432
2433                 /* We always issue full-page reads, but if some block
2434                  * in a page fails to read, blk_update_request() will
2435                  * advance bv_offset and adjust bv_len to compensate.
2436                  * Print a warning for nonzero offsets, and an error
2437                  * if they don't add up to a full page.  */
2438                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2439                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2440                                 btrfs_err(fs_info,
2441                                    "partial page write in btrfs with offset %u and length %u",
2442                                         bvec->bv_offset, bvec->bv_len);
2443                         else
2444                                 btrfs_info(fs_info,
2445                                    "incomplete page write in btrfs with offset %u and length %u",
2446                                         bvec->bv_offset, bvec->bv_len);
2447                 }
2448
2449                 start = page_offset(page);
2450                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2451
2452                 end_extent_writepage(page, error, start, end);
2453                 end_page_writeback(page);
2454         }
2455
2456         bio_put(bio);
2457 }
2458
2459 static void
2460 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2461                               int uptodate)
2462 {
2463         struct extent_state *cached = NULL;
2464         u64 end = start + len - 1;
2465
2466         if (uptodate && tree->track_uptodate)
2467                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2468         unlock_extent_cached_atomic(tree, start, end, &cached);
2469 }
2470
2471 /*
2472  * after a readpage IO is done, we need to:
2473  * clear the uptodate bits on error
2474  * set the uptodate bits if things worked
2475  * set the page up to date if all extents in the tree are uptodate
2476  * clear the lock bit in the extent tree
2477  * unlock the page if there are no other extents locked for it
2478  *
2479  * Scheduling is not allowed, so the extent state tree is expected
2480  * to have one and only one object corresponding to this IO.
2481  */
2482 static void end_bio_extent_readpage(struct bio *bio)
2483 {
2484         struct bio_vec *bvec;
2485         int uptodate = !bio->bi_status;
2486         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2487         struct extent_io_tree *tree, *failure_tree;
2488         u64 offset = 0;
2489         u64 start;
2490         u64 end;
2491         u64 len;
2492         u64 extent_start = 0;
2493         u64 extent_len = 0;
2494         int mirror;
2495         int ret;
2496         int i;
2497         struct bvec_iter_all iter_all;
2498
2499         ASSERT(!bio_flagged(bio, BIO_CLONED));
2500         bio_for_each_segment_all(bvec, bio, i, iter_all) {
2501                 struct page *page = bvec->bv_page;
2502                 struct inode *inode = page->mapping->host;
2503                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2504                 bool data_inode = btrfs_ino(BTRFS_I(inode))
2505                         != BTRFS_BTREE_INODE_OBJECTID;
2506
2507                 btrfs_debug(fs_info,
2508                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2509                         (u64)bio->bi_iter.bi_sector, bio->bi_status,
2510                         io_bio->mirror_num);
2511                 tree = &BTRFS_I(inode)->io_tree;
2512                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2513
2514                 /* We always issue full-page reads, but if some block
2515                  * in a page fails to read, blk_update_request() will
2516                  * advance bv_offset and adjust bv_len to compensate.
2517                  * Print a warning for nonzero offsets, and an error
2518                  * if they don't add up to a full page.  */
2519                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2520                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2521                                 btrfs_err(fs_info,
2522                                         "partial page read in btrfs with offset %u and length %u",
2523                                         bvec->bv_offset, bvec->bv_len);
2524                         else
2525                                 btrfs_info(fs_info,
2526                                         "incomplete page read in btrfs with offset %u and length %u",
2527                                         bvec->bv_offset, bvec->bv_len);
2528                 }
2529
2530                 start = page_offset(page);
2531                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2532                 len = bvec->bv_len;
2533
2534                 mirror = io_bio->mirror_num;
2535                 if (likely(uptodate)) {
2536                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2537                                                               page, start, end,
2538                                                               mirror);
2539                         if (ret)
2540                                 uptodate = 0;
2541                         else
2542                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2543                                                  failure_tree, tree, start,
2544                                                  page,
2545                                                  btrfs_ino(BTRFS_I(inode)), 0);
2546                 }
2547
2548                 if (likely(uptodate))
2549                         goto readpage_ok;
2550
2551                 if (data_inode) {
2552
2553                         /*
2554                          * The generic bio_readpage_error handles errors the
2555                          * following way: If possible, new read requests are
2556                          * created and submitted and will end up in
2557                          * end_bio_extent_readpage as well (if we're lucky,
2558                          * not in the !uptodate case). In that case it returns
2559                          * 0 and we just go on with the next page in our bio.
2560                          * If it can't handle the error it will return -EIO and
2561                          * we remain responsible for that page.
2562                          */
2563                         ret = bio_readpage_error(bio, offset, page, start, end,
2564                                                  mirror);
2565                         if (ret == 0) {
2566                                 uptodate = !bio->bi_status;
2567                                 offset += len;
2568                                 continue;
2569                         }
2570                 } else {
2571                         struct extent_buffer *eb;
2572
2573                         eb = (struct extent_buffer *)page->private;
2574                         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2575                         eb->read_mirror = mirror;
2576                         atomic_dec(&eb->io_pages);
2577                         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2578                                                &eb->bflags))
2579                                 btree_readahead_hook(eb, -EIO);
2580
2581                         ret = -EIO;
2582                 }
2583 readpage_ok:
2584                 if (likely(uptodate)) {
2585                         loff_t i_size = i_size_read(inode);
2586                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2587                         unsigned off;
2588
2589                         /* Zero out the end if this page straddles i_size */
2590                         off = offset_in_page(i_size);
2591                         if (page->index == end_index && off)
2592                                 zero_user_segment(page, off, PAGE_SIZE);
2593                         SetPageUptodate(page);
2594                 } else {
2595                         ClearPageUptodate(page);
2596                         SetPageError(page);
2597                 }
2598                 unlock_page(page);
2599                 offset += len;
2600
2601                 if (unlikely(!uptodate)) {
2602                         if (extent_len) {
2603                                 endio_readpage_release_extent(tree,
2604                                                               extent_start,
2605                                                               extent_len, 1);
2606                                 extent_start = 0;
2607                                 extent_len = 0;
2608                         }
2609                         endio_readpage_release_extent(tree, start,
2610                                                       end - start + 1, 0);
2611                 } else if (!extent_len) {
2612                         extent_start = start;
2613                         extent_len = end + 1 - start;
2614                 } else if (extent_start + extent_len == start) {
2615                         extent_len += end + 1 - start;
2616                 } else {
2617                         endio_readpage_release_extent(tree, extent_start,
2618                                                       extent_len, uptodate);
2619                         extent_start = start;
2620                         extent_len = end + 1 - start;
2621                 }
2622         }
2623
2624         if (extent_len)
2625                 endio_readpage_release_extent(tree, extent_start, extent_len,
2626                                               uptodate);
2627         btrfs_io_bio_free_csum(io_bio);
2628         bio_put(bio);
2629 }
2630
2631 /*
2632  * Initialize the members up to but not including 'bio'. Use after allocating a
2633  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2634  * 'bio' because use of __GFP_ZERO is not supported.
2635  */
2636 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2637 {
2638         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2639 }
2640
2641 /*
2642  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2643  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2644  * for the appropriate container_of magic
2645  */
2646 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2647 {
2648         struct bio *bio;
2649
2650         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2651         bio_set_dev(bio, bdev);
2652         bio->bi_iter.bi_sector = first_byte >> 9;
2653         btrfs_io_bio_init(btrfs_io_bio(bio));
2654         return bio;
2655 }
2656
2657 struct bio *btrfs_bio_clone(struct bio *bio)
2658 {
2659         struct btrfs_io_bio *btrfs_bio;
2660         struct bio *new;
2661
2662         /* Bio allocation backed by a bioset does not fail */
2663         new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2664         btrfs_bio = btrfs_io_bio(new);
2665         btrfs_io_bio_init(btrfs_bio);
2666         btrfs_bio->iter = bio->bi_iter;
2667         return new;
2668 }
2669
2670 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2671 {
2672         struct bio *bio;
2673
2674         /* Bio allocation backed by a bioset does not fail */
2675         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2676         btrfs_io_bio_init(btrfs_io_bio(bio));
2677         return bio;
2678 }
2679
2680 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2681 {
2682         struct bio *bio;
2683         struct btrfs_io_bio *btrfs_bio;
2684
2685         /* this will never fail when it's backed by a bioset */
2686         bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2687         ASSERT(bio);
2688
2689         btrfs_bio = btrfs_io_bio(bio);
2690         btrfs_io_bio_init(btrfs_bio);
2691
2692         bio_trim(bio, offset >> 9, size >> 9);
2693         btrfs_bio->iter = bio->bi_iter;
2694         return bio;
2695 }
2696
2697 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2698                                        unsigned long bio_flags)
2699 {
2700         blk_status_t ret = 0;
2701         struct bio_vec *bvec = bio_last_bvec_all(bio);
2702         struct bio_vec bv;
2703         struct extent_io_tree *tree = bio->bi_private;
2704         u64 start;
2705
2706         mp_bvec_last_segment(bvec, &bv);
2707         start = page_offset(bv.bv_page) + bv.bv_offset;
2708
2709         bio->bi_private = NULL;
2710
2711         if (tree->ops)
2712                 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2713                                            mirror_num, bio_flags, start);
2714         else
2715                 btrfsic_submit_bio(bio);
2716
2717         return blk_status_to_errno(ret);
2718 }
2719
2720 /*
2721  * @opf:        bio REQ_OP_* and REQ_* flags as one value
2722  * @tree:       tree so we can call our merge_bio hook
2723  * @wbc:        optional writeback control for io accounting
2724  * @page:       page to add to the bio
2725  * @pg_offset:  offset of the new bio or to check whether we are adding
2726  *              a contiguous page to the previous one
2727  * @size:       portion of page that we want to write
2728  * @offset:     starting offset in the page
2729  * @bdev:       attach newly created bios to this bdev
2730  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
2731  * @end_io_func:     end_io callback for new bio
2732  * @mirror_num:      desired mirror to read/write
2733  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2734  * @bio_flags:  flags of the current bio to see if we can merge them
2735  */
2736 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2737                               struct writeback_control *wbc,
2738                               struct page *page, u64 offset,
2739                               size_t size, unsigned long pg_offset,
2740                               struct block_device *bdev,
2741                               struct bio **bio_ret,
2742                               bio_end_io_t end_io_func,
2743                               int mirror_num,
2744                               unsigned long prev_bio_flags,
2745                               unsigned long bio_flags,
2746                               bool force_bio_submit)
2747 {
2748         int ret = 0;
2749         struct bio *bio;
2750         size_t page_size = min_t(size_t, size, PAGE_SIZE);
2751         sector_t sector = offset >> 9;
2752
2753         ASSERT(bio_ret);
2754
2755         if (*bio_ret) {
2756                 bool contig;
2757                 bool can_merge = true;
2758
2759                 bio = *bio_ret;
2760                 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2761                         contig = bio->bi_iter.bi_sector == sector;
2762                 else
2763                         contig = bio_end_sector(bio) == sector;
2764
2765                 ASSERT(tree->ops);
2766                 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2767                         can_merge = false;
2768
2769                 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2770                     force_bio_submit ||
2771                     bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2772                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2773                         if (ret < 0) {
2774                                 *bio_ret = NULL;
2775                                 return ret;
2776                         }
2777                         bio = NULL;
2778                 } else {
2779                         if (wbc)
2780                                 wbc_account_io(wbc, page, page_size);
2781                         return 0;
2782                 }
2783         }
2784
2785         bio = btrfs_bio_alloc(bdev, offset);
2786         bio_add_page(bio, page, page_size, pg_offset);
2787         bio->bi_end_io = end_io_func;
2788         bio->bi_private = tree;
2789         bio->bi_write_hint = page->mapping->host->i_write_hint;
2790         bio->bi_opf = opf;
2791         if (wbc) {
2792                 wbc_init_bio(wbc, bio);
2793                 wbc_account_io(wbc, page, page_size);
2794         }
2795
2796         *bio_ret = bio;
2797
2798         return ret;
2799 }
2800
2801 static void attach_extent_buffer_page(struct extent_buffer *eb,
2802                                       struct page *page)
2803 {
2804         if (!PagePrivate(page)) {
2805                 SetPagePrivate(page);
2806                 get_page(page);
2807                 set_page_private(page, (unsigned long)eb);
2808         } else {
2809                 WARN_ON(page->private != (unsigned long)eb);
2810         }
2811 }
2812
2813 void set_page_extent_mapped(struct page *page)
2814 {
2815         if (!PagePrivate(page)) {
2816                 SetPagePrivate(page);
2817                 get_page(page);
2818                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2819         }
2820 }
2821
2822 static struct extent_map *
2823 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2824                  u64 start, u64 len, get_extent_t *get_extent,
2825                  struct extent_map **em_cached)
2826 {
2827         struct extent_map *em;
2828
2829         if (em_cached && *em_cached) {
2830                 em = *em_cached;
2831                 if (extent_map_in_tree(em) && start >= em->start &&
2832                     start < extent_map_end(em)) {
2833                         refcount_inc(&em->refs);
2834                         return em;
2835                 }
2836
2837                 free_extent_map(em);
2838                 *em_cached = NULL;
2839         }
2840
2841         em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2842         if (em_cached && !IS_ERR_OR_NULL(em)) {
2843                 BUG_ON(*em_cached);
2844                 refcount_inc(&em->refs);
2845                 *em_cached = em;
2846         }
2847         return em;
2848 }
2849 /*
2850  * basic readpage implementation.  Locked extent state structs are inserted
2851  * into the tree that are removed when the IO is done (by the end_io
2852  * handlers)
2853  * XXX JDM: This needs looking at to ensure proper page locking
2854  * return 0 on success, otherwise return error
2855  */
2856 static int __do_readpage(struct extent_io_tree *tree,
2857                          struct page *page,
2858                          get_extent_t *get_extent,
2859                          struct extent_map **em_cached,
2860                          struct bio **bio, int mirror_num,
2861                          unsigned long *bio_flags, unsigned int read_flags,
2862                          u64 *prev_em_start)
2863 {
2864         struct inode *inode = page->mapping->host;
2865         u64 start = page_offset(page);
2866         const u64 end = start + PAGE_SIZE - 1;
2867         u64 cur = start;
2868         u64 extent_offset;
2869         u64 last_byte = i_size_read(inode);
2870         u64 block_start;
2871         u64 cur_end;
2872         struct extent_map *em;
2873         struct block_device *bdev;
2874         int ret = 0;
2875         int nr = 0;
2876         size_t pg_offset = 0;
2877         size_t iosize;
2878         size_t disk_io_size;
2879         size_t blocksize = inode->i_sb->s_blocksize;
2880         unsigned long this_bio_flag = 0;
2881
2882         set_page_extent_mapped(page);
2883
2884         if (!PageUptodate(page)) {
2885                 if (cleancache_get_page(page) == 0) {
2886                         BUG_ON(blocksize != PAGE_SIZE);
2887                         unlock_extent(tree, start, end);
2888                         goto out;
2889                 }
2890         }
2891
2892         if (page->index == last_byte >> PAGE_SHIFT) {
2893                 char *userpage;
2894                 size_t zero_offset = offset_in_page(last_byte);
2895
2896                 if (zero_offset) {
2897                         iosize = PAGE_SIZE - zero_offset;
2898                         userpage = kmap_atomic(page);
2899                         memset(userpage + zero_offset, 0, iosize);
2900                         flush_dcache_page(page);
2901                         kunmap_atomic(userpage);
2902                 }
2903         }
2904         while (cur <= end) {
2905                 bool force_bio_submit = false;
2906                 u64 offset;
2907
2908                 if (cur >= last_byte) {
2909                         char *userpage;
2910                         struct extent_state *cached = NULL;
2911
2912                         iosize = PAGE_SIZE - pg_offset;
2913                         userpage = kmap_atomic(page);
2914                         memset(userpage + pg_offset, 0, iosize);
2915                         flush_dcache_page(page);
2916                         kunmap_atomic(userpage);
2917                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2918                                             &cached, GFP_NOFS);
2919                         unlock_extent_cached(tree, cur,
2920                                              cur + iosize - 1, &cached);
2921                         break;
2922                 }
2923                 em = __get_extent_map(inode, page, pg_offset, cur,
2924                                       end - cur + 1, get_extent, em_cached);
2925                 if (IS_ERR_OR_NULL(em)) {
2926                         SetPageError(page);
2927                         unlock_extent(tree, cur, end);
2928                         break;
2929                 }
2930                 extent_offset = cur - em->start;
2931                 BUG_ON(extent_map_end(em) <= cur);
2932                 BUG_ON(end < cur);
2933
2934                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2935                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2936                         extent_set_compress_type(&this_bio_flag,
2937                                                  em->compress_type);
2938                 }
2939
2940                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2941                 cur_end = min(extent_map_end(em) - 1, end);
2942                 iosize = ALIGN(iosize, blocksize);
2943                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2944                         disk_io_size = em->block_len;
2945                         offset = em->block_start;
2946                 } else {
2947                         offset = em->block_start + extent_offset;
2948                         disk_io_size = iosize;
2949                 }
2950                 bdev = em->bdev;
2951                 block_start = em->block_start;
2952                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2953                         block_start = EXTENT_MAP_HOLE;
2954
2955                 /*
2956                  * If we have a file range that points to a compressed extent
2957                  * and it's followed by a consecutive file range that points to
2958                  * to the same compressed extent (possibly with a different
2959                  * offset and/or length, so it either points to the whole extent
2960                  * or only part of it), we must make sure we do not submit a
2961                  * single bio to populate the pages for the 2 ranges because
2962                  * this makes the compressed extent read zero out the pages
2963                  * belonging to the 2nd range. Imagine the following scenario:
2964                  *
2965                  *  File layout
2966                  *  [0 - 8K]                     [8K - 24K]
2967                  *    |                               |
2968                  *    |                               |
2969                  * points to extent X,         points to extent X,
2970                  * offset 4K, length of 8K     offset 0, length 16K
2971                  *
2972                  * [extent X, compressed length = 4K uncompressed length = 16K]
2973                  *
2974                  * If the bio to read the compressed extent covers both ranges,
2975                  * it will decompress extent X into the pages belonging to the
2976                  * first range and then it will stop, zeroing out the remaining
2977                  * pages that belong to the other range that points to extent X.
2978                  * So here we make sure we submit 2 bios, one for the first
2979                  * range and another one for the third range. Both will target
2980                  * the same physical extent from disk, but we can't currently
2981                  * make the compressed bio endio callback populate the pages
2982                  * for both ranges because each compressed bio is tightly
2983                  * coupled with a single extent map, and each range can have
2984                  * an extent map with a different offset value relative to the
2985                  * uncompressed data of our extent and different lengths. This
2986                  * is a corner case so we prioritize correctness over
2987                  * non-optimal behavior (submitting 2 bios for the same extent).
2988                  */
2989                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
2990                     prev_em_start && *prev_em_start != (u64)-1 &&
2991                     *prev_em_start != em->orig_start)
2992                         force_bio_submit = true;
2993
2994                 if (prev_em_start)
2995                         *prev_em_start = em->orig_start;
2996
2997                 free_extent_map(em);
2998                 em = NULL;
2999
3000                 /* we've found a hole, just zero and go on */
3001                 if (block_start == EXTENT_MAP_HOLE) {
3002                         char *userpage;
3003                         struct extent_state *cached = NULL;
3004
3005                         userpage = kmap_atomic(page);
3006                         memset(userpage + pg_offset, 0, iosize);
3007                         flush_dcache_page(page);
3008                         kunmap_atomic(userpage);
3009
3010                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3011                                             &cached, GFP_NOFS);
3012                         unlock_extent_cached(tree, cur,
3013                                              cur + iosize - 1, &cached);
3014                         cur = cur + iosize;
3015                         pg_offset += iosize;
3016                         continue;
3017                 }
3018                 /* the get_extent function already copied into the page */
3019                 if (test_range_bit(tree, cur, cur_end,
3020                                    EXTENT_UPTODATE, 1, NULL)) {
3021                         check_page_uptodate(tree, page);
3022                         unlock_extent(tree, cur, cur + iosize - 1);
3023                         cur = cur + iosize;
3024                         pg_offset += iosize;
3025                         continue;
3026                 }
3027                 /* we have an inline extent but it didn't get marked up
3028                  * to date.  Error out
3029                  */
3030                 if (block_start == EXTENT_MAP_INLINE) {
3031                         SetPageError(page);
3032                         unlock_extent(tree, cur, cur + iosize - 1);
3033                         cur = cur + iosize;
3034                         pg_offset += iosize;
3035                         continue;
3036                 }
3037
3038                 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3039                                          page, offset, disk_io_size,
3040                                          pg_offset, bdev, bio,
3041                                          end_bio_extent_readpage, mirror_num,
3042                                          *bio_flags,
3043                                          this_bio_flag,
3044                                          force_bio_submit);
3045                 if (!ret) {
3046                         nr++;
3047                         *bio_flags = this_bio_flag;
3048                 } else {
3049                         SetPageError(page);
3050                         unlock_extent(tree, cur, cur + iosize - 1);
3051                         goto out;
3052                 }
3053                 cur = cur + iosize;
3054                 pg_offset += iosize;
3055         }
3056 out:
3057         if (!nr) {
3058                 if (!PageError(page))
3059                         SetPageUptodate(page);
3060                 unlock_page(page);
3061         }
3062         return ret;
3063 }
3064
3065 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3066                                              struct page *pages[], int nr_pages,
3067                                              u64 start, u64 end,
3068                                              struct extent_map **em_cached,
3069                                              struct bio **bio,
3070                                              unsigned long *bio_flags,
3071                                              u64 *prev_em_start)
3072 {
3073         struct inode *inode;
3074         struct btrfs_ordered_extent *ordered;
3075         int index;
3076
3077         inode = pages[0]->mapping->host;
3078         while (1) {
3079                 lock_extent(tree, start, end);
3080                 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3081                                                      end - start + 1);
3082                 if (!ordered)
3083                         break;
3084                 unlock_extent(tree, start, end);
3085                 btrfs_start_ordered_extent(inode, ordered, 1);
3086                 btrfs_put_ordered_extent(ordered);
3087         }
3088
3089         for (index = 0; index < nr_pages; index++) {
3090                 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3091                                 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3092                 put_page(pages[index]);
3093         }
3094 }
3095
3096 static void __extent_readpages(struct extent_io_tree *tree,
3097                                struct page *pages[],
3098                                int nr_pages,
3099                                struct extent_map **em_cached,
3100                                struct bio **bio, unsigned long *bio_flags,
3101                                u64 *prev_em_start)
3102 {
3103         u64 start = 0;
3104         u64 end = 0;
3105         u64 page_start;
3106         int index;
3107         int first_index = 0;
3108
3109         for (index = 0; index < nr_pages; index++) {
3110                 page_start = page_offset(pages[index]);
3111                 if (!end) {
3112                         start = page_start;
3113                         end = start + PAGE_SIZE - 1;
3114                         first_index = index;
3115                 } else if (end + 1 == page_start) {
3116                         end += PAGE_SIZE;
3117                 } else {
3118                         __do_contiguous_readpages(tree, &pages[first_index],
3119                                                   index - first_index, start,
3120                                                   end, em_cached,
3121                                                   bio, bio_flags,
3122                                                   prev_em_start);
3123                         start = page_start;
3124                         end = start + PAGE_SIZE - 1;
3125                         first_index = index;
3126                 }
3127         }
3128
3129         if (end)
3130                 __do_contiguous_readpages(tree, &pages[first_index],
3131                                           index - first_index, start,
3132                                           end, em_cached, bio,
3133                                           bio_flags, prev_em_start);
3134 }
3135
3136 static int __extent_read_full_page(struct extent_io_tree *tree,
3137                                    struct page *page,
3138                                    get_extent_t *get_extent,
3139                                    struct bio **bio, int mirror_num,
3140                                    unsigned long *bio_flags,
3141                                    unsigned int read_flags)
3142 {
3143         struct inode *inode = page->mapping->host;
3144         struct btrfs_ordered_extent *ordered;
3145         u64 start = page_offset(page);
3146         u64 end = start + PAGE_SIZE - 1;
3147         int ret;
3148
3149         while (1) {
3150                 lock_extent(tree, start, end);
3151                 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3152                                                 PAGE_SIZE);
3153                 if (!ordered)
3154                         break;
3155                 unlock_extent(tree, start, end);
3156                 btrfs_start_ordered_extent(inode, ordered, 1);
3157                 btrfs_put_ordered_extent(ordered);
3158         }
3159
3160         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3161                             bio_flags, read_flags, NULL);
3162         return ret;
3163 }
3164
3165 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3166                             get_extent_t *get_extent, int mirror_num)
3167 {
3168         struct bio *bio = NULL;
3169         unsigned long bio_flags = 0;
3170         int ret;
3171
3172         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3173                                       &bio_flags, 0);
3174         if (bio)
3175                 ret = submit_one_bio(bio, mirror_num, bio_flags);
3176         return ret;
3177 }
3178
3179 static void update_nr_written(struct writeback_control *wbc,
3180                               unsigned long nr_written)
3181 {
3182         wbc->nr_to_write -= nr_written;
3183 }
3184
3185 /*
3186  * helper for __extent_writepage, doing all of the delayed allocation setup.
3187  *
3188  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3189  * to write the page (copy into inline extent).  In this case the IO has
3190  * been started and the page is already unlocked.
3191  *
3192  * This returns 0 if all went well (page still locked)
3193  * This returns < 0 if there were errors (page still locked)
3194  */
3195 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3196                 struct page *page, struct writeback_control *wbc,
3197                 u64 delalloc_start, unsigned long *nr_written)
3198 {
3199         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3200         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3201         bool found;
3202         u64 delalloc_to_write = 0;
3203         u64 delalloc_end = 0;
3204         int ret;
3205         int page_started = 0;
3206
3207
3208         while (delalloc_end < page_end) {
3209                 found = find_lock_delalloc_range(inode, tree,
3210                                                page,
3211                                                &delalloc_start,
3212                                                &delalloc_end);
3213                 if (!found) {
3214                         delalloc_start = delalloc_end + 1;
3215                         continue;
3216                 }
3217                 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3218                                 delalloc_end, &page_started, nr_written, wbc);
3219                 /* File system has been set read-only */
3220                 if (ret) {
3221                         SetPageError(page);
3222                         /*
3223                          * btrfs_run_delalloc_range should return < 0 for error
3224                          * but just in case, we use > 0 here meaning the IO is
3225                          * started, so we don't want to return > 0 unless
3226                          * things are going well.
3227                          */
3228                         ret = ret < 0 ? ret : -EIO;
3229                         goto done;
3230                 }
3231                 /*
3232                  * delalloc_end is already one less than the total length, so
3233                  * we don't subtract one from PAGE_SIZE
3234                  */
3235                 delalloc_to_write += (delalloc_end - delalloc_start +
3236                                       PAGE_SIZE) >> PAGE_SHIFT;
3237                 delalloc_start = delalloc_end + 1;
3238         }
3239         if (wbc->nr_to_write < delalloc_to_write) {
3240                 int thresh = 8192;
3241
3242                 if (delalloc_to_write < thresh * 2)
3243                         thresh = delalloc_to_write;
3244                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3245                                          thresh);
3246         }
3247
3248         /* did the fill delalloc function already unlock and start
3249          * the IO?
3250          */
3251         if (page_started) {
3252                 /*
3253                  * we've unlocked the page, so we can't update
3254                  * the mapping's writeback index, just update
3255                  * nr_to_write.
3256                  */
3257                 wbc->nr_to_write -= *nr_written;
3258                 return 1;
3259         }
3260
3261         ret = 0;
3262
3263 done:
3264         return ret;
3265 }
3266
3267 /*
3268  * helper for __extent_writepage.  This calls the writepage start hooks,
3269  * and does the loop to map the page into extents and bios.
3270  *
3271  * We return 1 if the IO is started and the page is unlocked,
3272  * 0 if all went well (page still locked)
3273  * < 0 if there were errors (page still locked)
3274  */
3275 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3276                                  struct page *page,
3277                                  struct writeback_control *wbc,
3278                                  struct extent_page_data *epd,
3279                                  loff_t i_size,
3280                                  unsigned long nr_written,
3281                                  unsigned int write_flags, int *nr_ret)
3282 {
3283         struct extent_io_tree *tree = epd->tree;
3284         u64 start = page_offset(page);
3285         u64 page_end = start + PAGE_SIZE - 1;
3286         u64 end;
3287         u64 cur = start;
3288         u64 extent_offset;
3289         u64 block_start;
3290         u64 iosize;
3291         struct extent_map *em;
3292         struct block_device *bdev;
3293         size_t pg_offset = 0;
3294         size_t blocksize;
3295         int ret = 0;
3296         int nr = 0;
3297         bool compressed;
3298
3299         ret = btrfs_writepage_cow_fixup(page, start, page_end);
3300         if (ret) {
3301                 /* Fixup worker will requeue */
3302                 if (ret == -EBUSY)
3303                         wbc->pages_skipped++;
3304                 else
3305                         redirty_page_for_writepage(wbc, page);
3306
3307                 update_nr_written(wbc, nr_written);
3308                 unlock_page(page);
3309                 return 1;
3310         }
3311
3312         /*
3313          * we don't want to touch the inode after unlocking the page,
3314          * so we update the mapping writeback index now
3315          */
3316         update_nr_written(wbc, nr_written + 1);
3317
3318         end = page_end;
3319         if (i_size <= start) {
3320                 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3321                 goto done;
3322         }
3323
3324         blocksize = inode->i_sb->s_blocksize;
3325
3326         while (cur <= end) {
3327                 u64 em_end;
3328                 u64 offset;
3329
3330                 if (cur >= i_size) {
3331                         btrfs_writepage_endio_finish_ordered(page, cur,
3332                                                              page_end, 1);
3333                         break;
3334                 }
3335                 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3336                                      end - cur + 1, 1);
3337                 if (IS_ERR_OR_NULL(em)) {
3338                         SetPageError(page);
3339                         ret = PTR_ERR_OR_ZERO(em);
3340                         break;
3341                 }
3342
3343                 extent_offset = cur - em->start;
3344                 em_end = extent_map_end(em);
3345                 BUG_ON(em_end <= cur);
3346                 BUG_ON(end < cur);
3347                 iosize = min(em_end - cur, end - cur + 1);
3348                 iosize = ALIGN(iosize, blocksize);
3349                 offset = em->block_start + extent_offset;
3350                 bdev = em->bdev;
3351                 block_start = em->block_start;
3352                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3353                 free_extent_map(em);
3354                 em = NULL;
3355
3356                 /*
3357                  * compressed and inline extents are written through other
3358                  * paths in the FS
3359                  */
3360                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3361                     block_start == EXTENT_MAP_INLINE) {
3362                         /*
3363                          * end_io notification does not happen here for
3364                          * compressed extents
3365                          */
3366                         if (!compressed)
3367                                 btrfs_writepage_endio_finish_ordered(page, cur,
3368                                                             cur + iosize - 1,
3369                                                             1);
3370                         else if (compressed) {
3371                                 /* we don't want to end_page_writeback on
3372                                  * a compressed extent.  this happens
3373                                  * elsewhere
3374                                  */
3375                                 nr++;
3376                         }
3377
3378                         cur += iosize;
3379                         pg_offset += iosize;
3380                         continue;
3381                 }
3382
3383                 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3384                 if (!PageWriteback(page)) {
3385                         btrfs_err(BTRFS_I(inode)->root->fs_info,
3386                                    "page %lu not writeback, cur %llu end %llu",
3387                                page->index, cur, end);
3388                 }
3389
3390                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3391                                          page, offset, iosize, pg_offset,
3392                                          bdev, &epd->bio,
3393                                          end_bio_extent_writepage,
3394                                          0, 0, 0, false);
3395                 if (ret) {
3396                         SetPageError(page);
3397                         if (PageWriteback(page))
3398                                 end_page_writeback(page);
3399                 }
3400
3401                 cur = cur + iosize;
3402                 pg_offset += iosize;
3403                 nr++;
3404         }
3405 done:
3406         *nr_ret = nr;
3407         return ret;
3408 }
3409
3410 /*
3411  * the writepage semantics are similar to regular writepage.  extent
3412  * records are inserted to lock ranges in the tree, and as dirty areas
3413  * are found, they are marked writeback.  Then the lock bits are removed
3414  * and the end_io handler clears the writeback ranges
3415  */
3416 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3417                               struct extent_page_data *epd)
3418 {
3419         struct inode *inode = page->mapping->host;
3420         u64 start = page_offset(page);
3421         u64 page_end = start + PAGE_SIZE - 1;
3422         int ret;
3423         int nr = 0;
3424         size_t pg_offset = 0;
3425         loff_t i_size = i_size_read(inode);
3426         unsigned long end_index = i_size >> PAGE_SHIFT;
3427         unsigned int write_flags = 0;
3428         unsigned long nr_written = 0;
3429
3430         write_flags = wbc_to_write_flags(wbc);
3431
3432         trace___extent_writepage(page, inode, wbc);
3433
3434         WARN_ON(!PageLocked(page));
3435
3436         ClearPageError(page);
3437
3438         pg_offset = offset_in_page(i_size);
3439         if (page->index > end_index ||
3440            (page->index == end_index && !pg_offset)) {
3441                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3442                 unlock_page(page);
3443                 return 0;
3444         }
3445
3446         if (page->index == end_index) {
3447                 char *userpage;
3448
3449                 userpage = kmap_atomic(page);
3450                 memset(userpage + pg_offset, 0,
3451                        PAGE_SIZE - pg_offset);
3452                 kunmap_atomic(userpage);
3453                 flush_dcache_page(page);
3454         }
3455
3456         pg_offset = 0;
3457
3458         set_page_extent_mapped(page);
3459
3460         if (!epd->extent_locked) {
3461                 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3462                 if (ret == 1)
3463                         goto done_unlocked;
3464                 if (ret)
3465                         goto done;
3466         }
3467
3468         ret = __extent_writepage_io(inode, page, wbc, epd,
3469                                     i_size, nr_written, write_flags, &nr);
3470         if (ret == 1)
3471                 goto done_unlocked;
3472
3473 done:
3474         if (nr == 0) {
3475                 /* make sure the mapping tag for page dirty gets cleared */
3476                 set_page_writeback(page);
3477                 end_page_writeback(page);
3478         }
3479         if (PageError(page)) {
3480                 ret = ret < 0 ? ret : -EIO;
3481                 end_extent_writepage(page, ret, start, page_end);
3482         }
3483         unlock_page(page);
3484         return ret;
3485
3486 done_unlocked:
3487         return 0;
3488 }
3489
3490 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3491 {
3492         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3493                        TASK_UNINTERRUPTIBLE);
3494 }
3495
3496 static noinline_for_stack int
3497 lock_extent_buffer_for_io(struct extent_buffer *eb,
3498                           struct btrfs_fs_info *fs_info,
3499                           struct extent_page_data *epd)
3500 {
3501         int i, num_pages;
3502         int flush = 0;
3503         int ret = 0;
3504
3505         if (!btrfs_try_tree_write_lock(eb)) {
3506                 flush = 1;
3507                 flush_write_bio(epd);
3508                 btrfs_tree_lock(eb);
3509         }
3510
3511         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3512                 btrfs_tree_unlock(eb);
3513                 if (!epd->sync_io)
3514                         return 0;
3515                 if (!flush) {
3516                         flush_write_bio(epd);
3517                         flush = 1;
3518                 }
3519                 while (1) {
3520                         wait_on_extent_buffer_writeback(eb);
3521                         btrfs_tree_lock(eb);
3522                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3523                                 break;
3524                         btrfs_tree_unlock(eb);
3525                 }
3526         }
3527
3528         /*
3529          * We need to do this to prevent races in people who check if the eb is
3530          * under IO since we can end up having no IO bits set for a short period
3531          * of time.
3532          */
3533         spin_lock(&eb->refs_lock);
3534         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3535                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3536                 spin_unlock(&eb->refs_lock);
3537                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3538                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3539                                          -eb->len,
3540                                          fs_info->dirty_metadata_batch);
3541                 ret = 1;
3542         } else {
3543                 spin_unlock(&eb->refs_lock);
3544         }
3545
3546         btrfs_tree_unlock(eb);
3547
3548         if (!ret)
3549                 return ret;
3550
3551         num_pages = num_extent_pages(eb);
3552         for (i = 0; i < num_pages; i++) {
3553                 struct page *p = eb->pages[i];
3554
3555                 if (!trylock_page(p)) {
3556                         if (!flush) {
3557                                 flush_write_bio(epd);
3558                                 flush = 1;
3559                         }
3560                         lock_page(p);
3561                 }
3562         }
3563
3564         return ret;
3565 }
3566
3567 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3568 {
3569         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3570         smp_mb__after_atomic();
3571         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3572 }
3573
3574 static void set_btree_ioerr(struct page *page)
3575 {
3576         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3577
3578         SetPageError(page);
3579         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3580                 return;
3581
3582         /*
3583          * If writeback for a btree extent that doesn't belong to a log tree
3584          * failed, increment the counter transaction->eb_write_errors.
3585          * We do this because while the transaction is running and before it's
3586          * committing (when we call filemap_fdata[write|wait]_range against
3587          * the btree inode), we might have
3588          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3589          * returns an error or an error happens during writeback, when we're
3590          * committing the transaction we wouldn't know about it, since the pages
3591          * can be no longer dirty nor marked anymore for writeback (if a
3592          * subsequent modification to the extent buffer didn't happen before the
3593          * transaction commit), which makes filemap_fdata[write|wait]_range not
3594          * able to find the pages tagged with SetPageError at transaction
3595          * commit time. So if this happens we must abort the transaction,
3596          * otherwise we commit a super block with btree roots that point to
3597          * btree nodes/leafs whose content on disk is invalid - either garbage
3598          * or the content of some node/leaf from a past generation that got
3599          * cowed or deleted and is no longer valid.
3600          *
3601          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3602          * not be enough - we need to distinguish between log tree extents vs
3603          * non-log tree extents, and the next filemap_fdatawait_range() call
3604          * will catch and clear such errors in the mapping - and that call might
3605          * be from a log sync and not from a transaction commit. Also, checking
3606          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3607          * not done and would not be reliable - the eb might have been released
3608          * from memory and reading it back again means that flag would not be
3609          * set (since it's a runtime flag, not persisted on disk).
3610          *
3611          * Using the flags below in the btree inode also makes us achieve the
3612          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3613          * writeback for all dirty pages and before filemap_fdatawait_range()
3614          * is called, the writeback for all dirty pages had already finished
3615          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3616          * filemap_fdatawait_range() would return success, as it could not know
3617          * that writeback errors happened (the pages were no longer tagged for
3618          * writeback).
3619          */
3620         switch (eb->log_index) {
3621         case -1:
3622                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3623                 break;
3624         case 0:
3625                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3626                 break;
3627         case 1:
3628                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3629                 break;
3630         default:
3631                 BUG(); /* unexpected, logic error */
3632         }
3633 }
3634
3635 static void end_bio_extent_buffer_writepage(struct bio *bio)
3636 {
3637         struct bio_vec *bvec;
3638         struct extent_buffer *eb;
3639         int i, done;
3640         struct bvec_iter_all iter_all;
3641
3642         ASSERT(!bio_flagged(bio, BIO_CLONED));
3643         bio_for_each_segment_all(bvec, bio, i, iter_all) {
3644                 struct page *page = bvec->bv_page;
3645
3646                 eb = (struct extent_buffer *)page->private;
3647                 BUG_ON(!eb);
3648                 done = atomic_dec_and_test(&eb->io_pages);
3649
3650                 if (bio->bi_status ||
3651                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3652                         ClearPageUptodate(page);
3653                         set_btree_ioerr(page);
3654                 }
3655
3656                 end_page_writeback(page);
3657
3658                 if (!done)
3659                         continue;
3660
3661                 end_extent_buffer_writeback(eb);
3662         }
3663
3664         bio_put(bio);
3665 }
3666
3667 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3668                         struct btrfs_fs_info *fs_info,
3669                         struct writeback_control *wbc,
3670                         struct extent_page_data *epd)
3671 {
3672         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3673         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3674         u64 offset = eb->start;
3675         u32 nritems;
3676         int i, num_pages;
3677         unsigned long start, end;
3678         unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3679         int ret = 0;
3680
3681         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3682         num_pages = num_extent_pages(eb);
3683         atomic_set(&eb->io_pages, num_pages);
3684
3685         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3686         nritems = btrfs_header_nritems(eb);
3687         if (btrfs_header_level(eb) > 0) {
3688                 end = btrfs_node_key_ptr_offset(nritems);
3689
3690                 memzero_extent_buffer(eb, end, eb->len - end);
3691         } else {
3692                 /*
3693                  * leaf:
3694                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3695                  */
3696                 start = btrfs_item_nr_offset(nritems);
3697                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3698                 memzero_extent_buffer(eb, start, end - start);
3699         }
3700
3701         for (i = 0; i < num_pages; i++) {
3702                 struct page *p = eb->pages[i];
3703
3704                 clear_page_dirty_for_io(p);
3705                 set_page_writeback(p);
3706                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3707                                          p, offset, PAGE_SIZE, 0, bdev,
3708                                          &epd->bio,
3709                                          end_bio_extent_buffer_writepage,
3710                                          0, 0, 0, false);
3711                 if (ret) {
3712                         set_btree_ioerr(p);
3713                         if (PageWriteback(p))
3714                                 end_page_writeback(p);
3715                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3716                                 end_extent_buffer_writeback(eb);
3717                         ret = -EIO;
3718                         break;
3719                 }
3720                 offset += PAGE_SIZE;
3721                 update_nr_written(wbc, 1);
3722                 unlock_page(p);
3723         }
3724
3725         if (unlikely(ret)) {
3726                 for (; i < num_pages; i++) {
3727                         struct page *p = eb->pages[i];
3728                         clear_page_dirty_for_io(p);
3729                         unlock_page(p);
3730                 }
3731         }
3732
3733         return ret;
3734 }
3735
3736 int btree_write_cache_pages(struct address_space *mapping,
3737                                    struct writeback_control *wbc)
3738 {
3739         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3740         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3741         struct extent_buffer *eb, *prev_eb = NULL;
3742         struct extent_page_data epd = {
3743                 .bio = NULL,
3744                 .tree = tree,
3745                 .extent_locked = 0,
3746                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3747         };
3748         int ret = 0;
3749         int done = 0;
3750         int nr_to_write_done = 0;
3751         struct pagevec pvec;
3752         int nr_pages;
3753         pgoff_t index;
3754         pgoff_t end;            /* Inclusive */
3755         int scanned = 0;
3756         xa_mark_t tag;
3757
3758         pagevec_init(&pvec);
3759         if (wbc->range_cyclic) {
3760                 index = mapping->writeback_index; /* Start from prev offset */
3761                 end = -1;
3762         } else {
3763                 index = wbc->range_start >> PAGE_SHIFT;
3764                 end = wbc->range_end >> PAGE_SHIFT;
3765                 scanned = 1;
3766         }
3767         if (wbc->sync_mode == WB_SYNC_ALL)
3768                 tag = PAGECACHE_TAG_TOWRITE;
3769         else
3770                 tag = PAGECACHE_TAG_DIRTY;
3771 retry:
3772         if (wbc->sync_mode == WB_SYNC_ALL)
3773                 tag_pages_for_writeback(mapping, index, end);
3774         while (!done && !nr_to_write_done && (index <= end) &&
3775                (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3776                         tag))) {
3777                 unsigned i;
3778
3779                 scanned = 1;
3780                 for (i = 0; i < nr_pages; i++) {
3781                         struct page *page = pvec.pages[i];
3782
3783                         if (!PagePrivate(page))
3784                                 continue;
3785
3786                         spin_lock(&mapping->private_lock);
3787                         if (!PagePrivate(page)) {
3788                                 spin_unlock(&mapping->private_lock);
3789                                 continue;
3790                         }
3791
3792                         eb = (struct extent_buffer *)page->private;
3793
3794                         /*
3795                          * Shouldn't happen and normally this would be a BUG_ON
3796                          * but no sense in crashing the users box for something
3797                          * we can survive anyway.
3798                          */
3799                         if (WARN_ON(!eb)) {
3800                                 spin_unlock(&mapping->private_lock);
3801                                 continue;
3802                         }
3803
3804                         if (eb == prev_eb) {
3805                                 spin_unlock(&mapping->private_lock);
3806                                 continue;
3807                         }
3808
3809                         ret = atomic_inc_not_zero(&eb->refs);
3810                         spin_unlock(&mapping->private_lock);
3811                         if (!ret)
3812                                 continue;
3813
3814                         prev_eb = eb;
3815                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3816                         if (!ret) {
3817                                 free_extent_buffer(eb);
3818                                 continue;
3819                         }
3820
3821                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3822                         if (ret) {
3823                                 done = 1;
3824                                 free_extent_buffer(eb);
3825                                 break;
3826                         }
3827                         free_extent_buffer(eb);
3828
3829                         /*
3830                          * the filesystem may choose to bump up nr_to_write.
3831                          * We have to make sure to honor the new nr_to_write
3832                          * at any time
3833                          */
3834                         nr_to_write_done = wbc->nr_to_write <= 0;
3835                 }
3836                 pagevec_release(&pvec);
3837                 cond_resched();
3838         }
3839         if (!scanned && !done) {
3840                 /*
3841                  * We hit the last page and there is more work to be done: wrap
3842                  * back to the start of the file
3843                  */
3844                 scanned = 1;
3845                 index = 0;
3846                 goto retry;
3847         }
3848         flush_write_bio(&epd);
3849         return ret;
3850 }
3851
3852 /**
3853  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3854  * @mapping: address space structure to write
3855  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3856  * @data: data passed to __extent_writepage function
3857  *
3858  * If a page is already under I/O, write_cache_pages() skips it, even
3859  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3860  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3861  * and msync() need to guarantee that all the data which was dirty at the time
3862  * the call was made get new I/O started against them.  If wbc->sync_mode is
3863  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3864  * existing IO to complete.
3865  */
3866 static int extent_write_cache_pages(struct address_space *mapping,
3867                              struct writeback_control *wbc,
3868                              struct extent_page_data *epd)
3869 {
3870         struct inode *inode = mapping->host;
3871         int ret = 0;
3872         int done = 0;
3873         int nr_to_write_done = 0;
3874         struct pagevec pvec;
3875         int nr_pages;
3876         pgoff_t index;
3877         pgoff_t end;            /* Inclusive */
3878         pgoff_t done_index;
3879         int range_whole = 0;
3880         int scanned = 0;
3881         xa_mark_t tag;
3882
3883         /*
3884          * We have to hold onto the inode so that ordered extents can do their
3885          * work when the IO finishes.  The alternative to this is failing to add
3886          * an ordered extent if the igrab() fails there and that is a huge pain
3887          * to deal with, so instead just hold onto the inode throughout the
3888          * writepages operation.  If it fails here we are freeing up the inode
3889          * anyway and we'd rather not waste our time writing out stuff that is
3890          * going to be truncated anyway.
3891          */
3892         if (!igrab(inode))
3893                 return 0;
3894
3895         pagevec_init(&pvec);
3896         if (wbc->range_cyclic) {
3897                 index = mapping->writeback_index; /* Start from prev offset */
3898                 end = -1;
3899         } else {
3900                 index = wbc->range_start >> PAGE_SHIFT;
3901                 end = wbc->range_end >> PAGE_SHIFT;
3902                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3903                         range_whole = 1;
3904                 scanned = 1;
3905         }
3906
3907         /*
3908          * We do the tagged writepage as long as the snapshot flush bit is set
3909          * and we are the first one who do the filemap_flush() on this inode.
3910          *
3911          * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3912          * not race in and drop the bit.
3913          */
3914         if (range_whole && wbc->nr_to_write == LONG_MAX &&
3915             test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3916                                &BTRFS_I(inode)->runtime_flags))
3917                 wbc->tagged_writepages = 1;
3918
3919         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3920                 tag = PAGECACHE_TAG_TOWRITE;
3921         else
3922                 tag = PAGECACHE_TAG_DIRTY;
3923 retry:
3924         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3925                 tag_pages_for_writeback(mapping, index, end);
3926         done_index = index;
3927         while (!done && !nr_to_write_done && (index <= end) &&
3928                         (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3929                                                 &index, end, tag))) {
3930                 unsigned i;
3931
3932                 scanned = 1;
3933                 for (i = 0; i < nr_pages; i++) {
3934                         struct page *page = pvec.pages[i];
3935
3936                         done_index = page->index;
3937                         /*
3938                          * At this point we hold neither the i_pages lock nor
3939                          * the page lock: the page may be truncated or
3940                          * invalidated (changing page->mapping to NULL),
3941                          * or even swizzled back from swapper_space to
3942                          * tmpfs file mapping
3943                          */
3944                         if (!trylock_page(page)) {
3945                                 flush_write_bio(epd);
3946                                 lock_page(page);
3947                         }
3948
3949                         if (unlikely(page->mapping != mapping)) {
3950                                 unlock_page(page);
3951                                 continue;
3952                         }
3953
3954                         if (wbc->sync_mode != WB_SYNC_NONE) {
3955                                 if (PageWriteback(page))
3956                                         flush_write_bio(epd);
3957                                 wait_on_page_writeback(page);
3958                         }
3959
3960                         if (PageWriteback(page) ||
3961                             !clear_page_dirty_for_io(page)) {
3962                                 unlock_page(page);
3963                                 continue;
3964                         }
3965
3966                         ret = __extent_writepage(page, wbc, epd);
3967
3968                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3969                                 unlock_page(page);
3970                                 ret = 0;
3971                         }
3972                         if (ret < 0) {
3973                                 /*
3974                                  * done_index is set past this page,
3975                                  * so media errors will not choke
3976                                  * background writeout for the entire
3977                                  * file. This has consequences for
3978                                  * range_cyclic semantics (ie. it may
3979                                  * not be suitable for data integrity
3980                                  * writeout).
3981                                  */
3982                                 done_index = page->index + 1;
3983                                 done = 1;
3984                                 break;
3985                         }
3986
3987                         /*
3988                          * the filesystem may choose to bump up nr_to_write.
3989                          * We have to make sure to honor the new nr_to_write
3990                          * at any time
3991                          */
3992                         nr_to_write_done = wbc->nr_to_write <= 0;
3993                 }
3994                 pagevec_release(&pvec);
3995                 cond_resched();
3996         }
3997         if (!scanned && !done) {
3998                 /*
3999                  * We hit the last page and there is more work to be done: wrap
4000                  * back to the start of the file
4001                  */
4002                 scanned = 1;
4003                 index = 0;
4004                 goto retry;
4005         }
4006
4007         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4008                 mapping->writeback_index = done_index;
4009
4010         btrfs_add_delayed_iput(inode);
4011         return ret;
4012 }
4013
4014 static void flush_write_bio(struct extent_page_data *epd)
4015 {
4016         if (epd->bio) {
4017                 int ret;
4018
4019                 ret = submit_one_bio(epd->bio, 0, 0);
4020                 BUG_ON(ret < 0); /* -ENOMEM */
4021                 epd->bio = NULL;
4022         }
4023 }
4024
4025 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4026 {
4027         int ret;
4028         struct extent_page_data epd = {
4029                 .bio = NULL,
4030                 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4031                 .extent_locked = 0,
4032                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4033         };
4034
4035         ret = __extent_writepage(page, wbc, &epd);
4036
4037         flush_write_bio(&epd);
4038         return ret;
4039 }
4040
4041 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4042                               int mode)
4043 {
4044         int ret = 0;
4045         struct address_space *mapping = inode->i_mapping;
4046         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4047         struct page *page;
4048         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4049                 PAGE_SHIFT;
4050
4051         struct extent_page_data epd = {
4052                 .bio = NULL,
4053                 .tree = tree,
4054                 .extent_locked = 1,
4055                 .sync_io = mode == WB_SYNC_ALL,
4056         };
4057         struct writeback_control wbc_writepages = {
4058                 .sync_mode      = mode,
4059                 .nr_to_write    = nr_pages * 2,
4060                 .range_start    = start,
4061                 .range_end      = end + 1,
4062         };
4063
4064         while (start <= end) {
4065                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4066                 if (clear_page_dirty_for_io(page))
4067                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4068                 else {
4069                         btrfs_writepage_endio_finish_ordered(page, start,
4070                                                     start + PAGE_SIZE - 1, 1);
4071                         unlock_page(page);
4072                 }
4073                 put_page(page);
4074                 start += PAGE_SIZE;
4075         }
4076
4077         flush_write_bio(&epd);
4078         return ret;
4079 }
4080
4081 int extent_writepages(struct address_space *mapping,
4082                       struct writeback_control *wbc)
4083 {
4084         int ret = 0;
4085         struct extent_page_data epd = {
4086                 .bio = NULL,
4087                 .tree = &BTRFS_I(mapping->host)->io_tree,
4088                 .extent_locked = 0,
4089                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4090         };
4091
4092         ret = extent_write_cache_pages(mapping, wbc, &epd);
4093         flush_write_bio(&epd);
4094         return ret;
4095 }
4096
4097 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4098                      unsigned nr_pages)
4099 {
4100         struct bio *bio = NULL;
4101         unsigned long bio_flags = 0;
4102         struct page *pagepool[16];
4103         struct extent_map *em_cached = NULL;
4104         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4105         int nr = 0;
4106         u64 prev_em_start = (u64)-1;
4107
4108         while (!list_empty(pages)) {
4109                 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4110                         struct page *page = lru_to_page(pages);
4111
4112                         prefetchw(&page->flags);
4113                         list_del(&page->lru);
4114                         if (add_to_page_cache_lru(page, mapping, page->index,
4115                                                 readahead_gfp_mask(mapping))) {
4116                                 put_page(page);
4117                                 continue;
4118                         }
4119
4120                         pagepool[nr++] = page;
4121                 }
4122
4123                 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4124                                    &bio_flags, &prev_em_start);
4125         }
4126
4127         if (em_cached)
4128                 free_extent_map(em_cached);
4129
4130         if (bio)
4131                 return submit_one_bio(bio, 0, bio_flags);
4132         return 0;
4133 }
4134
4135 /*
4136  * basic invalidatepage code, this waits on any locked or writeback
4137  * ranges corresponding to the page, and then deletes any extent state
4138  * records from the tree
4139  */
4140 int extent_invalidatepage(struct extent_io_tree *tree,
4141                           struct page *page, unsigned long offset)
4142 {
4143         struct extent_state *cached_state = NULL;
4144         u64 start = page_offset(page);
4145         u64 end = start + PAGE_SIZE - 1;
4146         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4147
4148         start += ALIGN(offset, blocksize);
4149         if (start > end)
4150                 return 0;
4151
4152         lock_extent_bits(tree, start, end, &cached_state);
4153         wait_on_page_writeback(page);
4154         clear_extent_bit(tree, start, end,
4155                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4156                          EXTENT_DO_ACCOUNTING,
4157                          1, 1, &cached_state);
4158         return 0;
4159 }
4160
4161 /*
4162  * a helper for releasepage, this tests for areas of the page that
4163  * are locked or under IO and drops the related state bits if it is safe
4164  * to drop the page.
4165  */
4166 static int try_release_extent_state(struct extent_io_tree *tree,
4167                                     struct page *page, gfp_t mask)
4168 {
4169         u64 start = page_offset(page);
4170         u64 end = start + PAGE_SIZE - 1;
4171         int ret = 1;
4172
4173         if (test_range_bit(tree, start, end,
4174                            EXTENT_IOBITS, 0, NULL))
4175                 ret = 0;
4176         else {
4177                 /*
4178                  * at this point we can safely clear everything except the
4179                  * locked bit and the nodatasum bit
4180                  */
4181                 ret = __clear_extent_bit(tree, start, end,
4182                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4183                                  0, 0, NULL, mask, NULL);
4184
4185                 /* if clear_extent_bit failed for enomem reasons,
4186                  * we can't allow the release to continue.
4187                  */
4188                 if (ret < 0)
4189                         ret = 0;
4190                 else
4191                         ret = 1;
4192         }
4193         return ret;
4194 }
4195
4196 /*
4197  * a helper for releasepage.  As long as there are no locked extents
4198  * in the range corresponding to the page, both state records and extent
4199  * map records are removed
4200  */
4201 int try_release_extent_mapping(struct page *page, gfp_t mask)
4202 {
4203         struct extent_map *em;
4204         u64 start = page_offset(page);
4205         u64 end = start + PAGE_SIZE - 1;
4206         struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4207         struct extent_io_tree *tree = &btrfs_inode->io_tree;
4208         struct extent_map_tree *map = &btrfs_inode->extent_tree;
4209
4210         if (gfpflags_allow_blocking(mask) &&
4211             page->mapping->host->i_size > SZ_16M) {
4212                 u64 len;
4213                 while (start <= end) {
4214                         len = end - start + 1;
4215                         write_lock(&map->lock);
4216                         em = lookup_extent_mapping(map, start, len);
4217                         if (!em) {
4218                                 write_unlock(&map->lock);
4219                                 break;
4220                         }
4221                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4222                             em->start != start) {
4223                                 write_unlock(&map->lock);
4224                                 free_extent_map(em);
4225                                 break;
4226                         }
4227                         if (!test_range_bit(tree, em->start,
4228                                             extent_map_end(em) - 1,
4229                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4230                                             0, NULL)) {
4231                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4232                                         &btrfs_inode->runtime_flags);
4233                                 remove_extent_mapping(map, em);
4234                                 /* once for the rb tree */
4235                                 free_extent_map(em);
4236                         }
4237                         start = extent_map_end(em);
4238                         write_unlock(&map->lock);
4239
4240                         /* once for us */
4241                         free_extent_map(em);
4242                 }
4243         }
4244         return try_release_extent_state(tree, page, mask);
4245 }
4246
4247 /*
4248  * helper function for fiemap, which doesn't want to see any holes.
4249  * This maps until we find something past 'last'
4250  */
4251 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4252                                                 u64 offset, u64 last)
4253 {
4254         u64 sectorsize = btrfs_inode_sectorsize(inode);
4255         struct extent_map *em;
4256         u64 len;
4257
4258         if (offset >= last)
4259                 return NULL;
4260
4261         while (1) {
4262                 len = last - offset;
4263                 if (len == 0)
4264                         break;
4265                 len = ALIGN(len, sectorsize);
4266                 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4267                                 len, 0);
4268                 if (IS_ERR_OR_NULL(em))
4269                         return em;
4270
4271                 /* if this isn't a hole return it */
4272                 if (em->block_start != EXTENT_MAP_HOLE)
4273                         return em;
4274
4275                 /* this is a hole, advance to the next extent */
4276                 offset = extent_map_end(em);
4277                 free_extent_map(em);
4278                 if (offset >= last)
4279                         break;
4280         }
4281         return NULL;
4282 }
4283
4284 /*
4285  * To cache previous fiemap extent
4286  *
4287  * Will be used for merging fiemap extent
4288  */
4289 struct fiemap_cache {
4290         u64 offset;
4291         u64 phys;
4292         u64 len;
4293         u32 flags;
4294         bool cached;
4295 };
4296
4297 /*
4298  * Helper to submit fiemap extent.
4299  *
4300  * Will try to merge current fiemap extent specified by @offset, @phys,
4301  * @len and @flags with cached one.
4302  * And only when we fails to merge, cached one will be submitted as
4303  * fiemap extent.
4304  *
4305  * Return value is the same as fiemap_fill_next_extent().
4306  */
4307 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4308                                 struct fiemap_cache *cache,
4309                                 u64 offset, u64 phys, u64 len, u32 flags)
4310 {
4311         int ret = 0;
4312
4313         if (!cache->cached)
4314                 goto assign;
4315
4316         /*
4317          * Sanity check, extent_fiemap() should have ensured that new
4318          * fiemap extent won't overlap with cached one.
4319          * Not recoverable.
4320          *
4321          * NOTE: Physical address can overlap, due to compression
4322          */
4323         if (cache->offset + cache->len > offset) {
4324                 WARN_ON(1);
4325                 return -EINVAL;
4326         }
4327
4328         /*
4329          * Only merges fiemap extents if
4330          * 1) Their logical addresses are continuous
4331          *
4332          * 2) Their physical addresses are continuous
4333          *    So truly compressed (physical size smaller than logical size)
4334          *    extents won't get merged with each other
4335          *
4336          * 3) Share same flags except FIEMAP_EXTENT_LAST
4337          *    So regular extent won't get merged with prealloc extent
4338          */
4339         if (cache->offset + cache->len  == offset &&
4340             cache->phys + cache->len == phys  &&
4341             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4342                         (flags & ~FIEMAP_EXTENT_LAST)) {
4343                 cache->len += len;
4344                 cache->flags |= flags;
4345                 goto try_submit_last;
4346         }
4347
4348         /* Not mergeable, need to submit cached one */
4349         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4350                                       cache->len, cache->flags);
4351         cache->cached = false;
4352         if (ret)
4353                 return ret;
4354 assign:
4355         cache->cached = true;
4356         cache->offset = offset;
4357         cache->phys = phys;
4358         cache->len = len;
4359         cache->flags = flags;
4360 try_submit_last:
4361         if (cache->flags & FIEMAP_EXTENT_LAST) {
4362                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4363                                 cache->phys, cache->len, cache->flags);
4364                 cache->cached = false;
4365         }
4366         return ret;
4367 }
4368
4369 /*
4370  * Emit last fiemap cache
4371  *
4372  * The last fiemap cache may still be cached in the following case:
4373  * 0                  4k                    8k
4374  * |<- Fiemap range ->|
4375  * |<------------  First extent ----------->|
4376  *
4377  * In this case, the first extent range will be cached but not emitted.
4378  * So we must emit it before ending extent_fiemap().
4379  */
4380 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4381                                   struct fiemap_extent_info *fieinfo,
4382                                   struct fiemap_cache *cache)
4383 {
4384         int ret;
4385
4386         if (!cache->cached)
4387                 return 0;
4388
4389         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4390                                       cache->len, cache->flags);
4391         cache->cached = false;
4392         if (ret > 0)
4393                 ret = 0;
4394         return ret;
4395 }
4396
4397 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4398                 __u64 start, __u64 len)
4399 {
4400         int ret = 0;
4401         u64 off = start;
4402         u64 max = start + len;
4403         u32 flags = 0;
4404         u32 found_type;
4405         u64 last;
4406         u64 last_for_get_extent = 0;
4407         u64 disko = 0;
4408         u64 isize = i_size_read(inode);
4409         struct btrfs_key found_key;
4410         struct extent_map *em = NULL;
4411         struct extent_state *cached_state = NULL;
4412         struct btrfs_path *path;
4413         struct btrfs_root *root = BTRFS_I(inode)->root;
4414         struct fiemap_cache cache = { 0 };
4415         int end = 0;
4416         u64 em_start = 0;
4417         u64 em_len = 0;
4418         u64 em_end = 0;
4419
4420         if (len == 0)
4421                 return -EINVAL;
4422
4423         path = btrfs_alloc_path();
4424         if (!path)
4425                 return -ENOMEM;
4426         path->leave_spinning = 1;
4427
4428         start = round_down(start, btrfs_inode_sectorsize(inode));
4429         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4430
4431         /*
4432          * lookup the last file extent.  We're not using i_size here
4433          * because there might be preallocation past i_size
4434          */
4435         ret = btrfs_lookup_file_extent(NULL, root, path,
4436                         btrfs_ino(BTRFS_I(inode)), -1, 0);
4437         if (ret < 0) {
4438                 btrfs_free_path(path);
4439                 return ret;
4440         } else {
4441                 WARN_ON(!ret);
4442                 if (ret == 1)
4443                         ret = 0;
4444         }
4445
4446         path->slots[0]--;
4447         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4448         found_type = found_key.type;
4449
4450         /* No extents, but there might be delalloc bits */
4451         if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4452             found_type != BTRFS_EXTENT_DATA_KEY) {
4453                 /* have to trust i_size as the end */
4454                 last = (u64)-1;
4455                 last_for_get_extent = isize;
4456         } else {
4457                 /*
4458                  * remember the start of the last extent.  There are a
4459                  * bunch of different factors that go into the length of the
4460                  * extent, so its much less complex to remember where it started
4461                  */
4462                 last = found_key.offset;
4463                 last_for_get_extent = last + 1;
4464         }
4465         btrfs_release_path(path);
4466
4467         /*
4468          * we might have some extents allocated but more delalloc past those
4469          * extents.  so, we trust isize unless the start of the last extent is
4470          * beyond isize
4471          */
4472         if (last < isize) {
4473                 last = (u64)-1;
4474                 last_for_get_extent = isize;
4475         }
4476
4477         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4478                          &cached_state);
4479
4480         em = get_extent_skip_holes(inode, start, last_for_get_extent);
4481         if (!em)
4482                 goto out;
4483         if (IS_ERR(em)) {
4484                 ret = PTR_ERR(em);
4485                 goto out;
4486         }
4487
4488         while (!end) {
4489                 u64 offset_in_extent = 0;
4490
4491                 /* break if the extent we found is outside the range */
4492                 if (em->start >= max || extent_map_end(em) < off)
4493                         break;
4494
4495                 /*
4496                  * get_extent may return an extent that starts before our
4497                  * requested range.  We have to make sure the ranges
4498                  * we return to fiemap always move forward and don't
4499                  * overlap, so adjust the offsets here
4500                  */
4501                 em_start = max(em->start, off);
4502
4503                 /*
4504                  * record the offset from the start of the extent
4505                  * for adjusting the disk offset below.  Only do this if the
4506                  * extent isn't compressed since our in ram offset may be past
4507                  * what we have actually allocated on disk.
4508                  */
4509                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4510                         offset_in_extent = em_start - em->start;
4511                 em_end = extent_map_end(em);
4512                 em_len = em_end - em_start;
4513                 flags = 0;
4514                 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4515                         disko = em->block_start + offset_in_extent;
4516                 else
4517                         disko = 0;
4518
4519                 /*
4520                  * bump off for our next call to get_extent
4521                  */
4522                 off = extent_map_end(em);
4523                 if (off >= max)
4524                         end = 1;
4525
4526                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4527                         end = 1;
4528                         flags |= FIEMAP_EXTENT_LAST;
4529                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4530                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4531                                   FIEMAP_EXTENT_NOT_ALIGNED);
4532                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4533                         flags |= (FIEMAP_EXTENT_DELALLOC |
4534                                   FIEMAP_EXTENT_UNKNOWN);
4535                 } else if (fieinfo->fi_extents_max) {
4536                         u64 bytenr = em->block_start -
4537                                 (em->start - em->orig_start);
4538
4539                         /*
4540                          * As btrfs supports shared space, this information
4541                          * can be exported to userspace tools via
4542                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4543                          * then we're just getting a count and we can skip the
4544                          * lookup stuff.
4545                          */
4546                         ret = btrfs_check_shared(root,
4547                                                  btrfs_ino(BTRFS_I(inode)),
4548                                                  bytenr);
4549                         if (ret < 0)
4550                                 goto out_free;
4551                         if (ret)
4552                                 flags |= FIEMAP_EXTENT_SHARED;
4553                         ret = 0;
4554                 }
4555                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4556                         flags |= FIEMAP_EXTENT_ENCODED;
4557                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4558                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4559
4560                 free_extent_map(em);
4561                 em = NULL;
4562                 if ((em_start >= last) || em_len == (u64)-1 ||
4563                    (last == (u64)-1 && isize <= em_end)) {
4564                         flags |= FIEMAP_EXTENT_LAST;
4565                         end = 1;
4566                 }
4567
4568                 /* now scan forward to see if this is really the last extent. */
4569                 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4570                 if (IS_ERR(em)) {
4571                         ret = PTR_ERR(em);
4572                         goto out;
4573                 }
4574                 if (!em) {
4575                         flags |= FIEMAP_EXTENT_LAST;
4576                         end = 1;
4577                 }
4578                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4579                                            em_len, flags);
4580                 if (ret) {
4581                         if (ret == 1)
4582                                 ret = 0;
4583                         goto out_free;
4584                 }
4585         }
4586 out_free:
4587         if (!ret)
4588                 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4589         free_extent_map(em);
4590 out:
4591         btrfs_free_path(path);
4592         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4593                              &cached_state);
4594         return ret;
4595 }
4596
4597 static void __free_extent_buffer(struct extent_buffer *eb)
4598 {
4599         btrfs_leak_debug_del(&eb->leak_list);
4600         kmem_cache_free(extent_buffer_cache, eb);
4601 }
4602
4603 int extent_buffer_under_io(struct extent_buffer *eb)
4604 {
4605         return (atomic_read(&eb->io_pages) ||
4606                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4607                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4608 }
4609
4610 /*
4611  * Release all pages attached to the extent buffer.
4612  */
4613 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4614 {
4615         int i;
4616         int num_pages;
4617         int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4618
4619         BUG_ON(extent_buffer_under_io(eb));
4620
4621         num_pages = num_extent_pages(eb);
4622         for (i = 0; i < num_pages; i++) {
4623                 struct page *page = eb->pages[i];
4624
4625                 if (!page)
4626                         continue;
4627                 if (mapped)
4628                         spin_lock(&page->mapping->private_lock);
4629                 /*
4630                  * We do this since we'll remove the pages after we've
4631                  * removed the eb from the radix tree, so we could race
4632                  * and have this page now attached to the new eb.  So
4633                  * only clear page_private if it's still connected to
4634                  * this eb.
4635                  */
4636                 if (PagePrivate(page) &&
4637                     page->private == (unsigned long)eb) {
4638                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4639                         BUG_ON(PageDirty(page));
4640                         BUG_ON(PageWriteback(page));
4641                         /*
4642                          * We need to make sure we haven't be attached
4643                          * to a new eb.
4644                          */
4645                         ClearPagePrivate(page);
4646                         set_page_private(page, 0);
4647                         /* One for the page private */
4648                         put_page(page);
4649                 }
4650
4651                 if (mapped)
4652                         spin_unlock(&page->mapping->private_lock);
4653
4654                 /* One for when we allocated the page */
4655                 put_page(page);
4656         }
4657 }
4658
4659 /*
4660  * Helper for releasing the extent buffer.
4661  */
4662 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4663 {
4664         btrfs_release_extent_buffer_pages(eb);
4665         __free_extent_buffer(eb);
4666 }
4667
4668 static struct extent_buffer *
4669 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4670                       unsigned long len)
4671 {
4672         struct extent_buffer *eb = NULL;
4673
4674         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4675         eb->start = start;
4676         eb->len = len;
4677         eb->fs_info = fs_info;
4678         eb->bflags = 0;
4679         rwlock_init(&eb->lock);
4680         atomic_set(&eb->write_locks, 0);
4681         atomic_set(&eb->read_locks, 0);
4682         atomic_set(&eb->blocking_readers, 0);
4683         atomic_set(&eb->blocking_writers, 0);
4684         atomic_set(&eb->spinning_readers, 0);
4685         atomic_set(&eb->spinning_writers, 0);
4686         eb->lock_nested = 0;
4687         init_waitqueue_head(&eb->write_lock_wq);
4688         init_waitqueue_head(&eb->read_lock_wq);
4689
4690         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4691
4692         spin_lock_init(&eb->refs_lock);
4693         atomic_set(&eb->refs, 1);
4694         atomic_set(&eb->io_pages, 0);
4695
4696         /*
4697          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4698          */
4699         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4700                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4701         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4702
4703         return eb;
4704 }
4705
4706 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4707 {
4708         int i;
4709         struct page *p;
4710         struct extent_buffer *new;
4711         int num_pages = num_extent_pages(src);
4712
4713         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4714         if (new == NULL)
4715                 return NULL;
4716
4717         for (i = 0; i < num_pages; i++) {
4718                 p = alloc_page(GFP_NOFS);
4719                 if (!p) {
4720                         btrfs_release_extent_buffer(new);
4721                         return NULL;
4722                 }
4723                 attach_extent_buffer_page(new, p);
4724                 WARN_ON(PageDirty(p));
4725                 SetPageUptodate(p);
4726                 new->pages[i] = p;
4727                 copy_page(page_address(p), page_address(src->pages[i]));
4728         }
4729
4730         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4731         set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4732
4733         return new;
4734 }
4735
4736 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4737                                                   u64 start, unsigned long len)
4738 {
4739         struct extent_buffer *eb;
4740         int num_pages;
4741         int i;
4742
4743         eb = __alloc_extent_buffer(fs_info, start, len);
4744         if (!eb)
4745                 return NULL;
4746
4747         num_pages = num_extent_pages(eb);
4748         for (i = 0; i < num_pages; i++) {
4749                 eb->pages[i] = alloc_page(GFP_NOFS);
4750                 if (!eb->pages[i])
4751                         goto err;
4752         }
4753         set_extent_buffer_uptodate(eb);
4754         btrfs_set_header_nritems(eb, 0);
4755         set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4756
4757         return eb;
4758 err:
4759         for (; i > 0; i--)
4760                 __free_page(eb->pages[i - 1]);
4761         __free_extent_buffer(eb);
4762         return NULL;
4763 }
4764
4765 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4766                                                 u64 start)
4767 {
4768         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4769 }
4770
4771 static void check_buffer_tree_ref(struct extent_buffer *eb)
4772 {
4773         int refs;
4774         /* the ref bit is tricky.  We have to make sure it is set
4775          * if we have the buffer dirty.   Otherwise the
4776          * code to free a buffer can end up dropping a dirty
4777          * page
4778          *
4779          * Once the ref bit is set, it won't go away while the
4780          * buffer is dirty or in writeback, and it also won't
4781          * go away while we have the reference count on the
4782          * eb bumped.
4783          *
4784          * We can't just set the ref bit without bumping the
4785          * ref on the eb because free_extent_buffer might
4786          * see the ref bit and try to clear it.  If this happens
4787          * free_extent_buffer might end up dropping our original
4788          * ref by mistake and freeing the page before we are able
4789          * to add one more ref.
4790          *
4791          * So bump the ref count first, then set the bit.  If someone
4792          * beat us to it, drop the ref we added.
4793          */
4794         refs = atomic_read(&eb->refs);
4795         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4796                 return;
4797
4798         spin_lock(&eb->refs_lock);
4799         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4800                 atomic_inc(&eb->refs);
4801         spin_unlock(&eb->refs_lock);
4802 }
4803
4804 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4805                 struct page *accessed)
4806 {
4807         int num_pages, i;
4808
4809         check_buffer_tree_ref(eb);
4810
4811         num_pages = num_extent_pages(eb);
4812         for (i = 0; i < num_pages; i++) {
4813                 struct page *p = eb->pages[i];
4814
4815                 if (p != accessed)
4816                         mark_page_accessed(p);
4817         }
4818 }
4819
4820 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4821                                          u64 start)
4822 {
4823         struct extent_buffer *eb;
4824
4825         rcu_read_lock();
4826         eb = radix_tree_lookup(&fs_info->buffer_radix,
4827                                start >> PAGE_SHIFT);
4828         if (eb && atomic_inc_not_zero(&eb->refs)) {
4829                 rcu_read_unlock();
4830                 /*
4831                  * Lock our eb's refs_lock to avoid races with
4832                  * free_extent_buffer. When we get our eb it might be flagged
4833                  * with EXTENT_BUFFER_STALE and another task running
4834                  * free_extent_buffer might have seen that flag set,
4835                  * eb->refs == 2, that the buffer isn't under IO (dirty and
4836                  * writeback flags not set) and it's still in the tree (flag
4837                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4838                  * of decrementing the extent buffer's reference count twice.
4839                  * So here we could race and increment the eb's reference count,
4840                  * clear its stale flag, mark it as dirty and drop our reference
4841                  * before the other task finishes executing free_extent_buffer,
4842                  * which would later result in an attempt to free an extent
4843                  * buffer that is dirty.
4844                  */
4845                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4846                         spin_lock(&eb->refs_lock);
4847                         spin_unlock(&eb->refs_lock);
4848                 }
4849                 mark_extent_buffer_accessed(eb, NULL);
4850                 return eb;
4851         }
4852         rcu_read_unlock();
4853
4854         return NULL;
4855 }
4856
4857 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4858 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4859                                         u64 start)
4860 {
4861         struct extent_buffer *eb, *exists = NULL;
4862         int ret;
4863
4864         eb = find_extent_buffer(fs_info, start);
4865         if (eb)
4866                 return eb;
4867         eb = alloc_dummy_extent_buffer(fs_info, start);
4868         if (!eb)
4869                 return NULL;
4870         eb->fs_info = fs_info;
4871 again:
4872         ret = radix_tree_preload(GFP_NOFS);
4873         if (ret)
4874                 goto free_eb;
4875         spin_lock(&fs_info->buffer_lock);
4876         ret = radix_tree_insert(&fs_info->buffer_radix,
4877                                 start >> PAGE_SHIFT, eb);
4878         spin_unlock(&fs_info->buffer_lock);
4879         radix_tree_preload_end();
4880         if (ret == -EEXIST) {
4881                 exists = find_extent_buffer(fs_info, start);
4882                 if (exists)
4883                         goto free_eb;
4884                 else
4885                         goto again;
4886         }
4887         check_buffer_tree_ref(eb);
4888         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4889
4890         return eb;
4891 free_eb:
4892         btrfs_release_extent_buffer(eb);
4893         return exists;
4894 }
4895 #endif
4896
4897 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4898                                           u64 start)
4899 {
4900         unsigned long len = fs_info->nodesize;
4901         int num_pages;
4902         int i;
4903         unsigned long index = start >> PAGE_SHIFT;
4904         struct extent_buffer *eb;
4905         struct extent_buffer *exists = NULL;
4906         struct page *p;
4907         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4908         int uptodate = 1;
4909         int ret;
4910
4911         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4912                 btrfs_err(fs_info, "bad tree block start %llu", start);
4913                 return ERR_PTR(-EINVAL);
4914         }
4915
4916         eb = find_extent_buffer(fs_info, start);
4917         if (eb)
4918                 return eb;
4919
4920         eb = __alloc_extent_buffer(fs_info, start, len);
4921         if (!eb)
4922                 return ERR_PTR(-ENOMEM);
4923
4924         num_pages = num_extent_pages(eb);
4925         for (i = 0; i < num_pages; i++, index++) {
4926                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4927                 if (!p) {
4928                         exists = ERR_PTR(-ENOMEM);
4929                         goto free_eb;
4930                 }
4931
4932                 spin_lock(&mapping->private_lock);
4933                 if (PagePrivate(p)) {
4934                         /*
4935                          * We could have already allocated an eb for this page
4936                          * and attached one so lets see if we can get a ref on
4937                          * the existing eb, and if we can we know it's good and
4938                          * we can just return that one, else we know we can just
4939                          * overwrite page->private.
4940                          */
4941                         exists = (struct extent_buffer *)p->private;
4942                         if (atomic_inc_not_zero(&exists->refs)) {
4943                                 spin_unlock(&mapping->private_lock);
4944                                 unlock_page(p);
4945                                 put_page(p);
4946                                 mark_extent_buffer_accessed(exists, p);
4947                                 goto free_eb;
4948                         }
4949                         exists = NULL;
4950
4951                         /*
4952                          * Do this so attach doesn't complain and we need to
4953                          * drop the ref the old guy had.
4954                          */
4955                         ClearPagePrivate(p);
4956                         WARN_ON(PageDirty(p));
4957                         put_page(p);
4958                 }
4959                 attach_extent_buffer_page(eb, p);
4960                 spin_unlock(&mapping->private_lock);
4961                 WARN_ON(PageDirty(p));
4962                 eb->pages[i] = p;
4963                 if (!PageUptodate(p))
4964                         uptodate = 0;
4965
4966                 /*
4967                  * We can't unlock the pages just yet since the extent buffer
4968                  * hasn't been properly inserted in the radix tree, this
4969                  * opens a race with btree_releasepage which can free a page
4970                  * while we are still filling in all pages for the buffer and
4971                  * we could crash.
4972                  */
4973         }
4974         if (uptodate)
4975                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4976 again:
4977         ret = radix_tree_preload(GFP_NOFS);
4978         if (ret) {
4979                 exists = ERR_PTR(ret);
4980                 goto free_eb;
4981         }
4982
4983         spin_lock(&fs_info->buffer_lock);
4984         ret = radix_tree_insert(&fs_info->buffer_radix,
4985                                 start >> PAGE_SHIFT, eb);
4986         spin_unlock(&fs_info->buffer_lock);
4987         radix_tree_preload_end();
4988         if (ret == -EEXIST) {
4989                 exists = find_extent_buffer(fs_info, start);
4990                 if (exists)
4991                         goto free_eb;
4992                 else
4993                         goto again;
4994         }
4995         /* add one reference for the tree */
4996         check_buffer_tree_ref(eb);
4997         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4998
4999         /*
5000          * Now it's safe to unlock the pages because any calls to
5001          * btree_releasepage will correctly detect that a page belongs to a
5002          * live buffer and won't free them prematurely.
5003          */
5004         for (i = 0; i < num_pages; i++)
5005                 unlock_page(eb->pages[i]);
5006         return eb;
5007
5008 free_eb:
5009         WARN_ON(!atomic_dec_and_test(&eb->refs));
5010         for (i = 0; i < num_pages; i++) {
5011                 if (eb->pages[i])
5012                         unlock_page(eb->pages[i]);
5013         }
5014
5015         btrfs_release_extent_buffer(eb);
5016         return exists;
5017 }
5018
5019 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5020 {
5021         struct extent_buffer *eb =
5022                         container_of(head, struct extent_buffer, rcu_head);
5023
5024         __free_extent_buffer(eb);
5025 }
5026
5027 static int release_extent_buffer(struct extent_buffer *eb)
5028 {
5029         lockdep_assert_held(&eb->refs_lock);
5030
5031         WARN_ON(atomic_read(&eb->refs) == 0);
5032         if (atomic_dec_and_test(&eb->refs)) {
5033                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5034                         struct btrfs_fs_info *fs_info = eb->fs_info;
5035
5036                         spin_unlock(&eb->refs_lock);
5037
5038                         spin_lock(&fs_info->buffer_lock);
5039                         radix_tree_delete(&fs_info->buffer_radix,
5040                                           eb->start >> PAGE_SHIFT);
5041                         spin_unlock(&fs_info->buffer_lock);
5042                 } else {
5043                         spin_unlock(&eb->refs_lock);
5044                 }
5045
5046                 /* Should be safe to release our pages at this point */
5047                 btrfs_release_extent_buffer_pages(eb);
5048 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5049                 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5050                         __free_extent_buffer(eb);
5051                         return 1;
5052                 }
5053 #endif
5054                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5055                 return 1;
5056         }
5057         spin_unlock(&eb->refs_lock);
5058
5059         return 0;
5060 }
5061
5062 void free_extent_buffer(struct extent_buffer *eb)
5063 {
5064         int refs;
5065         int old;
5066         if (!eb)
5067                 return;
5068
5069         while (1) {
5070                 refs = atomic_read(&eb->refs);
5071                 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5072                     || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5073                         refs == 1))
5074                         break;
5075                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5076                 if (old == refs)
5077                         return;
5078         }
5079
5080         spin_lock(&eb->refs_lock);
5081         if (atomic_read(&eb->refs) == 2 &&
5082             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5083             !extent_buffer_under_io(eb) &&
5084             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5085                 atomic_dec(&eb->refs);
5086
5087         /*
5088          * I know this is terrible, but it's temporary until we stop tracking
5089          * the uptodate bits and such for the extent buffers.
5090          */
5091         release_extent_buffer(eb);
5092 }
5093
5094 void free_extent_buffer_stale(struct extent_buffer *eb)
5095 {
5096         if (!eb)
5097                 return;
5098
5099         spin_lock(&eb->refs_lock);
5100         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5101
5102         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5103             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5104                 atomic_dec(&eb->refs);
5105         release_extent_buffer(eb);
5106 }
5107
5108 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5109 {
5110         int i;
5111         int num_pages;
5112         struct page *page;
5113
5114         num_pages = num_extent_pages(eb);
5115
5116         for (i = 0; i < num_pages; i++) {
5117                 page = eb->pages[i];
5118                 if (!PageDirty(page))
5119                         continue;
5120
5121                 lock_page(page);
5122                 WARN_ON(!PagePrivate(page));
5123
5124                 clear_page_dirty_for_io(page);
5125                 xa_lock_irq(&page->mapping->i_pages);
5126                 if (!PageDirty(page))
5127                         __xa_clear_mark(&page->mapping->i_pages,
5128                                         page_index(page), PAGECACHE_TAG_DIRTY);
5129                 xa_unlock_irq(&page->mapping->i_pages);
5130                 ClearPageError(page);
5131                 unlock_page(page);
5132         }
5133         WARN_ON(atomic_read(&eb->refs) == 0);
5134 }
5135
5136 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5137 {
5138         int i;
5139         int num_pages;
5140         bool was_dirty;
5141
5142         check_buffer_tree_ref(eb);
5143
5144         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5145
5146         num_pages = num_extent_pages(eb);
5147         WARN_ON(atomic_read(&eb->refs) == 0);
5148         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5149
5150         if (!was_dirty)
5151                 for (i = 0; i < num_pages; i++)
5152                         set_page_dirty(eb->pages[i]);
5153
5154 #ifdef CONFIG_BTRFS_DEBUG
5155         for (i = 0; i < num_pages; i++)
5156                 ASSERT(PageDirty(eb->pages[i]));
5157 #endif
5158
5159         return was_dirty;
5160 }
5161
5162 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5163 {
5164         int i;
5165         struct page *page;
5166         int num_pages;
5167
5168         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5169         num_pages = num_extent_pages(eb);
5170         for (i = 0; i < num_pages; i++) {
5171                 page = eb->pages[i];
5172                 if (page)
5173                         ClearPageUptodate(page);
5174         }
5175 }
5176
5177 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5178 {
5179         int i;
5180         struct page *page;
5181         int num_pages;
5182
5183         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5184         num_pages = num_extent_pages(eb);
5185         for (i = 0; i < num_pages; i++) {
5186                 page = eb->pages[i];
5187                 SetPageUptodate(page);
5188         }
5189 }
5190
5191 int read_extent_buffer_pages(struct extent_io_tree *tree,
5192                              struct extent_buffer *eb, int wait, int mirror_num)
5193 {
5194         int i;
5195         struct page *page;
5196         int err;
5197         int ret = 0;
5198         int locked_pages = 0;
5199         int all_uptodate = 1;
5200         int num_pages;
5201         unsigned long num_reads = 0;
5202         struct bio *bio = NULL;
5203         unsigned long bio_flags = 0;
5204
5205         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5206                 return 0;
5207
5208         num_pages = num_extent_pages(eb);
5209         for (i = 0; i < num_pages; i++) {
5210                 page = eb->pages[i];
5211                 if (wait == WAIT_NONE) {
5212                         if (!trylock_page(page))
5213                                 goto unlock_exit;
5214                 } else {
5215                         lock_page(page);
5216                 }
5217                 locked_pages++;
5218         }
5219         /*
5220          * We need to firstly lock all pages to make sure that
5221          * the uptodate bit of our pages won't be affected by
5222          * clear_extent_buffer_uptodate().
5223          */
5224         for (i = 0; i < num_pages; i++) {
5225                 page = eb->pages[i];
5226                 if (!PageUptodate(page)) {
5227                         num_reads++;
5228                         all_uptodate = 0;
5229                 }
5230         }
5231
5232         if (all_uptodate) {
5233                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5234                 goto unlock_exit;
5235         }
5236
5237         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5238         eb->read_mirror = 0;
5239         atomic_set(&eb->io_pages, num_reads);
5240         for (i = 0; i < num_pages; i++) {
5241                 page = eb->pages[i];
5242
5243                 if (!PageUptodate(page)) {
5244                         if (ret) {
5245                                 atomic_dec(&eb->io_pages);
5246                                 unlock_page(page);
5247                                 continue;
5248                         }
5249
5250                         ClearPageError(page);
5251                         err = __extent_read_full_page(tree, page,
5252                                                       btree_get_extent, &bio,
5253                                                       mirror_num, &bio_flags,
5254                                                       REQ_META);
5255                         if (err) {
5256                                 ret = err;
5257                                 /*
5258                                  * We use &bio in above __extent_read_full_page,
5259                                  * so we ensure that if it returns error, the
5260                                  * current page fails to add itself to bio and
5261                                  * it's been unlocked.
5262                                  *
5263                                  * We must dec io_pages by ourselves.
5264                                  */
5265                                 atomic_dec(&eb->io_pages);
5266                         }
5267                 } else {
5268                         unlock_page(page);
5269                 }
5270         }
5271
5272         if (bio) {
5273                 err = submit_one_bio(bio, mirror_num, bio_flags);
5274                 if (err)
5275                         return err;
5276         }
5277
5278         if (ret || wait != WAIT_COMPLETE)
5279                 return ret;
5280
5281         for (i = 0; i < num_pages; i++) {
5282                 page = eb->pages[i];
5283                 wait_on_page_locked(page);
5284                 if (!PageUptodate(page))
5285                         ret = -EIO;
5286         }
5287
5288         return ret;
5289
5290 unlock_exit:
5291         while (locked_pages > 0) {
5292                 locked_pages--;
5293                 page = eb->pages[locked_pages];
5294                 unlock_page(page);
5295         }
5296         return ret;
5297 }
5298
5299 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5300                         unsigned long start, unsigned long len)
5301 {
5302         size_t cur;
5303         size_t offset;
5304         struct page *page;
5305         char *kaddr;
5306         char *dst = (char *)dstv;
5307         size_t start_offset = offset_in_page(eb->start);
5308         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5309
5310         if (start + len > eb->len) {
5311                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5312                      eb->start, eb->len, start, len);
5313                 memset(dst, 0, len);
5314                 return;
5315         }
5316
5317         offset = offset_in_page(start_offset + start);
5318
5319         while (len > 0) {
5320                 page = eb->pages[i];
5321
5322                 cur = min(len, (PAGE_SIZE - offset));
5323                 kaddr = page_address(page);
5324                 memcpy(dst, kaddr + offset, cur);
5325
5326                 dst += cur;
5327                 len -= cur;
5328                 offset = 0;
5329                 i++;
5330         }
5331 }
5332
5333 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5334                                void __user *dstv,
5335                                unsigned long start, unsigned long len)
5336 {
5337         size_t cur;
5338         size_t offset;
5339         struct page *page;
5340         char *kaddr;
5341         char __user *dst = (char __user *)dstv;
5342         size_t start_offset = offset_in_page(eb->start);
5343         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5344         int ret = 0;
5345
5346         WARN_ON(start > eb->len);
5347         WARN_ON(start + len > eb->start + eb->len);
5348
5349         offset = offset_in_page(start_offset + start);
5350
5351         while (len > 0) {
5352                 page = eb->pages[i];
5353
5354                 cur = min(len, (PAGE_SIZE - offset));
5355                 kaddr = page_address(page);
5356                 if (copy_to_user(dst, kaddr + offset, cur)) {
5357                         ret = -EFAULT;
5358                         break;
5359                 }
5360
5361                 dst += cur;
5362                 len -= cur;
5363                 offset = 0;
5364                 i++;
5365         }
5366
5367         return ret;
5368 }
5369
5370 /*
5371  * return 0 if the item is found within a page.
5372  * return 1 if the item spans two pages.
5373  * return -EINVAL otherwise.
5374  */
5375 int map_private_extent_buffer(const struct extent_buffer *eb,
5376                               unsigned long start, unsigned long min_len,
5377                               char **map, unsigned long *map_start,
5378                               unsigned long *map_len)
5379 {
5380         size_t offset;
5381         char *kaddr;
5382         struct page *p;
5383         size_t start_offset = offset_in_page(eb->start);
5384         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5385         unsigned long end_i = (start_offset + start + min_len - 1) >>
5386                 PAGE_SHIFT;
5387
5388         if (start + min_len > eb->len) {
5389                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5390                        eb->start, eb->len, start, min_len);
5391                 return -EINVAL;
5392         }
5393
5394         if (i != end_i)
5395                 return 1;
5396
5397         if (i == 0) {
5398                 offset = start_offset;
5399                 *map_start = 0;
5400         } else {
5401                 offset = 0;
5402                 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5403         }
5404
5405         p = eb->pages[i];
5406         kaddr = page_address(p);
5407         *map = kaddr + offset;
5408         *map_len = PAGE_SIZE - offset;
5409         return 0;
5410 }
5411
5412 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5413                          unsigned long start, unsigned long len)
5414 {
5415         size_t cur;
5416         size_t offset;
5417         struct page *page;
5418         char *kaddr;
5419         char *ptr = (char *)ptrv;
5420         size_t start_offset = offset_in_page(eb->start);
5421         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5422         int ret = 0;
5423
5424         WARN_ON(start > eb->len);
5425         WARN_ON(start + len > eb->start + eb->len);
5426
5427         offset = offset_in_page(start_offset + start);
5428
5429         while (len > 0) {
5430                 page = eb->pages[i];
5431
5432                 cur = min(len, (PAGE_SIZE - offset));
5433
5434                 kaddr = page_address(page);
5435                 ret = memcmp(ptr, kaddr + offset, cur);
5436                 if (ret)
5437                         break;
5438
5439                 ptr += cur;
5440                 len -= cur;
5441                 offset = 0;
5442                 i++;
5443         }
5444         return ret;
5445 }
5446
5447 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5448                 const void *srcv)
5449 {
5450         char *kaddr;
5451
5452         WARN_ON(!PageUptodate(eb->pages[0]));
5453         kaddr = page_address(eb->pages[0]);
5454         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5455                         BTRFS_FSID_SIZE);
5456 }
5457
5458 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5459 {
5460         char *kaddr;
5461
5462         WARN_ON(!PageUptodate(eb->pages[0]));
5463         kaddr = page_address(eb->pages[0]);
5464         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5465                         BTRFS_FSID_SIZE);
5466 }
5467
5468 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5469                          unsigned long start, unsigned long len)
5470 {
5471         size_t cur;
5472         size_t offset;
5473         struct page *page;
5474         char *kaddr;
5475         char *src = (char *)srcv;
5476         size_t start_offset = offset_in_page(eb->start);
5477         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5478
5479         WARN_ON(start > eb->len);
5480         WARN_ON(start + len > eb->start + eb->len);
5481
5482         offset = offset_in_page(start_offset + start);
5483
5484         while (len > 0) {
5485                 page = eb->pages[i];
5486                 WARN_ON(!PageUptodate(page));
5487
5488                 cur = min(len, PAGE_SIZE - offset);
5489                 kaddr = page_address(page);
5490                 memcpy(kaddr + offset, src, cur);
5491
5492                 src += cur;
5493                 len -= cur;
5494                 offset = 0;
5495                 i++;
5496         }
5497 }
5498
5499 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5500                 unsigned long len)
5501 {
5502         size_t cur;
5503         size_t offset;
5504         struct page *page;
5505         char *kaddr;
5506         size_t start_offset = offset_in_page(eb->start);
5507         unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5508
5509         WARN_ON(start > eb->len);
5510         WARN_ON(start + len > eb->start + eb->len);
5511
5512         offset = offset_in_page(start_offset + start);
5513
5514         while (len > 0) {
5515                 page = eb->pages[i];
5516                 WARN_ON(!PageUptodate(page));
5517
5518                 cur = min(len, PAGE_SIZE - offset);
5519                 kaddr = page_address(page);
5520                 memset(kaddr + offset, 0, cur);
5521
5522                 len -= cur;
5523                 offset = 0;
5524                 i++;
5525         }
5526 }
5527
5528 void copy_extent_buffer_full(struct extent_buffer *dst,
5529                              struct extent_buffer *src)
5530 {
5531         int i;
5532         int num_pages;
5533
5534         ASSERT(dst->len == src->len);
5535
5536         num_pages = num_extent_pages(dst);
5537         for (i = 0; i < num_pages; i++)
5538                 copy_page(page_address(dst->pages[i]),
5539                                 page_address(src->pages[i]));
5540 }
5541
5542 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5543                         unsigned long dst_offset, unsigned long src_offset,
5544                         unsigned long len)
5545 {
5546         u64 dst_len = dst->len;
5547         size_t cur;
5548         size_t offset;
5549         struct page *page;
5550         char *kaddr;
5551         size_t start_offset = offset_in_page(dst->start);
5552         unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5553
5554         WARN_ON(src->len != dst_len);
5555
5556         offset = offset_in_page(start_offset + dst_offset);
5557
5558         while (len > 0) {
5559                 page = dst->pages[i];
5560                 WARN_ON(!PageUptodate(page));
5561
5562                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5563
5564                 kaddr = page_address(page);
5565                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5566
5567                 src_offset += cur;
5568                 len -= cur;
5569                 offset = 0;
5570                 i++;
5571         }
5572 }
5573
5574 /*
5575  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5576  * given bit number
5577  * @eb: the extent buffer
5578  * @start: offset of the bitmap item in the extent buffer
5579  * @nr: bit number
5580  * @page_index: return index of the page in the extent buffer that contains the
5581  * given bit number
5582  * @page_offset: return offset into the page given by page_index
5583  *
5584  * This helper hides the ugliness of finding the byte in an extent buffer which
5585  * contains a given bit.
5586  */
5587 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5588                                     unsigned long start, unsigned long nr,
5589                                     unsigned long *page_index,
5590                                     size_t *page_offset)
5591 {
5592         size_t start_offset = offset_in_page(eb->start);
5593         size_t byte_offset = BIT_BYTE(nr);
5594         size_t offset;
5595
5596         /*
5597          * The byte we want is the offset of the extent buffer + the offset of
5598          * the bitmap item in the extent buffer + the offset of the byte in the
5599          * bitmap item.
5600          */
5601         offset = start_offset + start + byte_offset;
5602
5603         *page_index = offset >> PAGE_SHIFT;
5604         *page_offset = offset_in_page(offset);
5605 }
5606
5607 /**
5608  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5609  * @eb: the extent buffer
5610  * @start: offset of the bitmap item in the extent buffer
5611  * @nr: bit number to test
5612  */
5613 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5614                            unsigned long nr)
5615 {
5616         u8 *kaddr;
5617         struct page *page;
5618         unsigned long i;
5619         size_t offset;
5620
5621         eb_bitmap_offset(eb, start, nr, &i, &offset);
5622         page = eb->pages[i];
5623         WARN_ON(!PageUptodate(page));
5624         kaddr = page_address(page);
5625         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5626 }
5627
5628 /**
5629  * extent_buffer_bitmap_set - set an area of a bitmap
5630  * @eb: the extent buffer
5631  * @start: offset of the bitmap item in the extent buffer
5632  * @pos: bit number of the first bit
5633  * @len: number of bits to set
5634  */
5635 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5636                               unsigned long pos, unsigned long len)
5637 {
5638         u8 *kaddr;
5639         struct page *page;
5640         unsigned long i;
5641         size_t offset;
5642         const unsigned int size = pos + len;
5643         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5644         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5645
5646         eb_bitmap_offset(eb, start, pos, &i, &offset);
5647         page = eb->pages[i];
5648         WARN_ON(!PageUptodate(page));
5649         kaddr = page_address(page);
5650
5651         while (len >= bits_to_set) {
5652                 kaddr[offset] |= mask_to_set;
5653                 len -= bits_to_set;
5654                 bits_to_set = BITS_PER_BYTE;
5655                 mask_to_set = ~0;
5656                 if (++offset >= PAGE_SIZE && len > 0) {
5657                         offset = 0;
5658                         page = eb->pages[++i];
5659                         WARN_ON(!PageUptodate(page));
5660                         kaddr = page_address(page);
5661                 }
5662         }
5663         if (len) {
5664                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5665                 kaddr[offset] |= mask_to_set;
5666         }
5667 }
5668
5669
5670 /**
5671  * extent_buffer_bitmap_clear - clear an area of a bitmap
5672  * @eb: the extent buffer
5673  * @start: offset of the bitmap item in the extent buffer
5674  * @pos: bit number of the first bit
5675  * @len: number of bits to clear
5676  */
5677 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5678                                 unsigned long pos, unsigned long len)
5679 {
5680         u8 *kaddr;
5681         struct page *page;
5682         unsigned long i;
5683         size_t offset;
5684         const unsigned int size = pos + len;
5685         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5686         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5687
5688         eb_bitmap_offset(eb, start, pos, &i, &offset);
5689         page = eb->pages[i];
5690         WARN_ON(!PageUptodate(page));
5691         kaddr = page_address(page);
5692
5693         while (len >= bits_to_clear) {
5694                 kaddr[offset] &= ~mask_to_clear;
5695                 len -= bits_to_clear;
5696                 bits_to_clear = BITS_PER_BYTE;
5697                 mask_to_clear = ~0;
5698                 if (++offset >= PAGE_SIZE && len > 0) {
5699                         offset = 0;
5700                         page = eb->pages[++i];
5701                         WARN_ON(!PageUptodate(page));
5702                         kaddr = page_address(page);
5703                 }
5704         }
5705         if (len) {
5706                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5707                 kaddr[offset] &= ~mask_to_clear;
5708         }
5709 }
5710
5711 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5712 {
5713         unsigned long distance = (src > dst) ? src - dst : dst - src;
5714         return distance < len;
5715 }
5716
5717 static void copy_pages(struct page *dst_page, struct page *src_page,
5718                        unsigned long dst_off, unsigned long src_off,
5719                        unsigned long len)
5720 {
5721         char *dst_kaddr = page_address(dst_page);
5722         char *src_kaddr;
5723         int must_memmove = 0;
5724
5725         if (dst_page != src_page) {
5726                 src_kaddr = page_address(src_page);
5727         } else {
5728                 src_kaddr = dst_kaddr;
5729                 if (areas_overlap(src_off, dst_off, len))
5730                         must_memmove = 1;
5731         }
5732
5733         if (must_memmove)
5734                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5735         else
5736                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5737 }
5738
5739 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5740                            unsigned long src_offset, unsigned long len)
5741 {
5742         struct btrfs_fs_info *fs_info = dst->fs_info;
5743         size_t cur;
5744         size_t dst_off_in_page;
5745         size_t src_off_in_page;
5746         size_t start_offset = offset_in_page(dst->start);
5747         unsigned long dst_i;
5748         unsigned long src_i;
5749
5750         if (src_offset + len > dst->len) {
5751                 btrfs_err(fs_info,
5752                         "memmove bogus src_offset %lu move len %lu dst len %lu",
5753                          src_offset, len, dst->len);
5754                 BUG_ON(1);
5755         }
5756         if (dst_offset + len > dst->len) {
5757                 btrfs_err(fs_info,
5758                         "memmove bogus dst_offset %lu move len %lu dst len %lu",
5759                          dst_offset, len, dst->len);
5760                 BUG_ON(1);
5761         }
5762
5763         while (len > 0) {
5764                 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5765                 src_off_in_page = offset_in_page(start_offset + src_offset);
5766
5767                 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5768                 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5769
5770                 cur = min(len, (unsigned long)(PAGE_SIZE -
5771                                                src_off_in_page));
5772                 cur = min_t(unsigned long, cur,
5773                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
5774
5775                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5776                            dst_off_in_page, src_off_in_page, cur);
5777
5778                 src_offset += cur;
5779                 dst_offset += cur;
5780                 len -= cur;
5781         }
5782 }
5783
5784 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5785                            unsigned long src_offset, unsigned long len)
5786 {
5787         struct btrfs_fs_info *fs_info = dst->fs_info;
5788         size_t cur;
5789         size_t dst_off_in_page;
5790         size_t src_off_in_page;
5791         unsigned long dst_end = dst_offset + len - 1;
5792         unsigned long src_end = src_offset + len - 1;
5793         size_t start_offset = offset_in_page(dst->start);
5794         unsigned long dst_i;
5795         unsigned long src_i;
5796
5797         if (src_offset + len > dst->len) {
5798                 btrfs_err(fs_info,
5799                           "memmove bogus src_offset %lu move len %lu len %lu",
5800                           src_offset, len, dst->len);
5801                 BUG_ON(1);
5802         }
5803         if (dst_offset + len > dst->len) {
5804                 btrfs_err(fs_info,
5805                           "memmove bogus dst_offset %lu move len %lu len %lu",
5806                           dst_offset, len, dst->len);
5807                 BUG_ON(1);
5808         }
5809         if (dst_offset < src_offset) {
5810                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5811                 return;
5812         }
5813         while (len > 0) {
5814                 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5815                 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5816
5817                 dst_off_in_page = offset_in_page(start_offset + dst_end);
5818                 src_off_in_page = offset_in_page(start_offset + src_end);
5819
5820                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5821                 cur = min(cur, dst_off_in_page + 1);
5822                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5823                            dst_off_in_page - cur + 1,
5824                            src_off_in_page - cur + 1, cur);
5825
5826                 dst_end -= cur;
5827                 src_end -= cur;
5828                 len -= cur;
5829         }
5830 }
5831
5832 int try_release_extent_buffer(struct page *page)
5833 {
5834         struct extent_buffer *eb;
5835
5836         /*
5837          * We need to make sure nobody is attaching this page to an eb right
5838          * now.
5839          */
5840         spin_lock(&page->mapping->private_lock);
5841         if (!PagePrivate(page)) {
5842                 spin_unlock(&page->mapping->private_lock);
5843                 return 1;
5844         }
5845
5846         eb = (struct extent_buffer *)page->private;
5847         BUG_ON(!eb);
5848
5849         /*
5850          * This is a little awful but should be ok, we need to make sure that
5851          * the eb doesn't disappear out from under us while we're looking at
5852          * this page.
5853          */
5854         spin_lock(&eb->refs_lock);
5855         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5856                 spin_unlock(&eb->refs_lock);
5857                 spin_unlock(&page->mapping->private_lock);
5858                 return 0;
5859         }
5860         spin_unlock(&page->mapping->private_lock);
5861
5862         /*
5863          * If tree ref isn't set then we know the ref on this eb is a real ref,
5864          * so just return, this page will likely be freed soon anyway.
5865          */
5866         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5867                 spin_unlock(&eb->refs_lock);
5868                 return 0;
5869         }
5870
5871         return release_extent_buffer(eb);
5872 }
This page took 0.410478 seconds and 4 git commands to generate.