1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
53 * 1. slab_mutex (Global Mutex)
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
56 * 4. slab_lock(slab) (Only on some arches)
57 * 5. object_map_lock (Only for debugging)
61 * The role of the slab_mutex is to protect the list of all the slabs
62 * and to synchronize major metadata changes to slab cache structures.
63 * Also synchronizes memory hotplug callbacks.
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
83 * slab is the one who can perform list operations on the slab. Other
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
119 * cpu_slab->lock local lock
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
140 * irq, preemption, migration considerations
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
156 * freed then the slab will show up again on the partial lists.
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
164 * slab->frozen The slab is frozen and exempt from list processing.
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
176 * freelist that allows lockless access to
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
181 * options set. This moves slab handling out of
182 * the fast path and disables lockless freelists.
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH() (true)
194 #define slub_get_cpu_ptr(var) \
199 #define slub_put_cpu_ptr(var) \
204 #define USE_LOCKLESS_FAST_PATH() (false)
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
210 #define __fastpath_inline
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
219 #endif /* CONFIG_SLUB_DEBUG */
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
224 unsigned int orig_size;
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 (s->flags & SLAB_KMALLOC));
239 void *fixup_red_left(struct kmem_cache *s, void *p)
241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 p += s->red_left_pad;
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 return !kmem_cache_debug(s);
257 * Issues still to be resolved:
259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
261 * - Variable sizing of the per node arrays
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
267 #ifndef CONFIG_SLUB_TINY
269 * Minimum number of partial slabs. These will be left on the partial
270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
272 #define MIN_PARTIAL 5
275 * Maximum number of desirable partial slabs.
276 * The existence of more partial slabs makes kmem_cache_shrink
277 * sort the partial list by the number of objects in use.
279 #define MAX_PARTIAL 10
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 SLAB_POISON | SLAB_STORE_USER)
289 * These debug flags cannot use CMPXCHG because there might be consistency
290 * issues when checking or reading debug information
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
297 * Debugging flags that require metadata to be stored in the slab. These get
298 * disabled when slab_debug=O is used and a cache's min order increases with
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
304 #define OO_MASK ((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
307 /* Internal SLUB flags */
309 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
315 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
319 * Tracking user of a slab.
321 #define TRACK_ADDRS_COUNT 16
323 unsigned long addr; /* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 depot_stack_handle_t handle;
327 int cpu; /* Was running on cpu */
328 int pid; /* Pid context */
329 unsigned long when; /* When did the operation occur */
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
350 ALLOC_FASTPATH, /* Allocation from cpu slab */
351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
352 FREE_FASTPATH, /* Free to cpu slab */
353 FREE_SLOWPATH, /* Freeing not to cpu slab */
354 FREE_FROZEN, /* Freeing to frozen slab */
355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
361 FREE_SLAB, /* Slab freed to the page allocator */
362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 DEACTIVATE_BYPASS, /* Implicit deactivation */
369 ORDER_FALLBACK, /* Number of times fallback was necessary */
370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
379 #ifndef CONFIG_SLUB_TINY
381 * When changing the layout, make sure freelist and tid are still compatible
382 * with this_cpu_cmpxchg_double() alignment requirements.
384 struct kmem_cache_cpu {
387 void **freelist; /* Pointer to next available object */
388 unsigned long tid; /* Globally unique transaction id */
390 freelist_aba_t freelist_tid;
392 struct slab *slab; /* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 struct slab *partial; /* Partially allocated slabs */
396 local_lock_t lock; /* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 unsigned int stat[NR_SLUB_STAT_ITEMS];
401 #endif /* CONFIG_SLUB_TINY */
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
405 #ifdef CONFIG_SLUB_STATS
407 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 * avoid this_cpu_add()'s irq-disable overhead.
410 raw_cpu_inc(s->cpu_slab->stat[si]);
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
417 #ifdef CONFIG_SLUB_STATS
418 raw_cpu_add(s->cpu_slab->stat[si], v);
423 * The slab lists for all objects.
425 struct kmem_cache_node {
426 spinlock_t list_lock;
427 unsigned long nr_partial;
428 struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 atomic_long_t nr_slabs;
431 atomic_long_t total_objects;
432 struct list_head full;
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
438 return s->node[node];
442 * Iterator over all nodes. The body will be executed for each node that has
443 * a kmem_cache_node structure allocated (which is true for all online nodes)
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 for (__node = 0; __node < nr_node_ids; __node++) \
447 if ((__n = get_node(__s, __node)))
450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452 * differ during memory hotplug/hotremove operations.
453 * Protected by slab_mutex.
455 static nodemask_t slab_nodes;
457 #ifndef CONFIG_SLUB_TINY
459 * Workqueue used for flush_cpu_slab().
461 static struct workqueue_struct *flushwq;
464 /********************************************************************
465 * Core slab cache functions
466 *******************************************************************/
469 * Returns freelist pointer (ptr). With hardening, this is obfuscated
470 * with an XOR of the address where the pointer is held and a per-cache
473 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
474 void *ptr, unsigned long ptr_addr)
476 unsigned long encoded;
478 #ifdef CONFIG_SLAB_FREELIST_HARDENED
479 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
481 encoded = (unsigned long)ptr;
483 return (freeptr_t){.v = encoded};
486 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
487 freeptr_t ptr, unsigned long ptr_addr)
491 #ifdef CONFIG_SLAB_FREELIST_HARDENED
492 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
494 decoded = (void *)ptr.v;
499 static inline void *get_freepointer(struct kmem_cache *s, void *object)
501 unsigned long ptr_addr;
504 object = kasan_reset_tag(object);
505 ptr_addr = (unsigned long)object + s->offset;
506 p = *(freeptr_t *)(ptr_addr);
507 return freelist_ptr_decode(s, p, ptr_addr);
510 #ifndef CONFIG_SLUB_TINY
511 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
513 prefetchw(object + s->offset);
518 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
519 * pointer value in the case the current thread loses the race for the next
520 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
521 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
522 * KMSAN will still check all arguments of cmpxchg because of imperfect
523 * handling of inline assembly.
524 * To work around this problem, we apply __no_kmsan_checks to ensure that
525 * get_freepointer_safe() returns initialized memory.
528 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
530 unsigned long freepointer_addr;
533 if (!debug_pagealloc_enabled_static())
534 return get_freepointer(s, object);
536 object = kasan_reset_tag(object);
537 freepointer_addr = (unsigned long)object + s->offset;
538 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
539 return freelist_ptr_decode(s, p, freepointer_addr);
542 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
544 unsigned long freeptr_addr = (unsigned long)object + s->offset;
546 #ifdef CONFIG_SLAB_FREELIST_HARDENED
547 BUG_ON(object == fp); /* naive detection of double free or corruption */
550 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
551 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
555 * See comment in calculate_sizes().
557 static inline bool freeptr_outside_object(struct kmem_cache *s)
559 return s->offset >= s->inuse;
563 * Return offset of the end of info block which is inuse + free pointer if
564 * not overlapping with object.
566 static inline unsigned int get_info_end(struct kmem_cache *s)
568 if (freeptr_outside_object(s))
569 return s->inuse + sizeof(void *);
574 /* Loop over all objects in a slab */
575 #define for_each_object(__p, __s, __addr, __objects) \
576 for (__p = fixup_red_left(__s, __addr); \
577 __p < (__addr) + (__objects) * (__s)->size; \
580 static inline unsigned int order_objects(unsigned int order, unsigned int size)
582 return ((unsigned int)PAGE_SIZE << order) / size;
585 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
588 struct kmem_cache_order_objects x = {
589 (order << OO_SHIFT) + order_objects(order, size)
595 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
597 return x.x >> OO_SHIFT;
600 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
602 return x.x & OO_MASK;
605 #ifdef CONFIG_SLUB_CPU_PARTIAL
606 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
608 unsigned int nr_slabs;
610 s->cpu_partial = nr_objects;
613 * We take the number of objects but actually limit the number of
614 * slabs on the per cpu partial list, in order to limit excessive
615 * growth of the list. For simplicity we assume that the slabs will
618 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
619 s->cpu_partial_slabs = nr_slabs;
622 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
624 return s->cpu_partial_slabs;
628 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
632 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
636 #endif /* CONFIG_SLUB_CPU_PARTIAL */
639 * Per slab locking using the pagelock
641 static __always_inline void slab_lock(struct slab *slab)
643 bit_spin_lock(PG_locked, &slab->__page_flags);
646 static __always_inline void slab_unlock(struct slab *slab)
648 bit_spin_unlock(PG_locked, &slab->__page_flags);
652 __update_freelist_fast(struct slab *slab,
653 void *freelist_old, unsigned long counters_old,
654 void *freelist_new, unsigned long counters_new)
656 #ifdef system_has_freelist_aba
657 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
658 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
660 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
667 __update_freelist_slow(struct slab *slab,
668 void *freelist_old, unsigned long counters_old,
669 void *freelist_new, unsigned long counters_new)
674 if (slab->freelist == freelist_old &&
675 slab->counters == counters_old) {
676 slab->freelist = freelist_new;
677 slab->counters = counters_new;
686 * Interrupts must be disabled (for the fallback code to work right), typically
687 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
688 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
689 * allocation/ free operation in hardirq context. Therefore nothing can
690 * interrupt the operation.
692 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
693 void *freelist_old, unsigned long counters_old,
694 void *freelist_new, unsigned long counters_new,
699 if (USE_LOCKLESS_FAST_PATH())
700 lockdep_assert_irqs_disabled();
702 if (s->flags & __CMPXCHG_DOUBLE) {
703 ret = __update_freelist_fast(slab, freelist_old, counters_old,
704 freelist_new, counters_new);
706 ret = __update_freelist_slow(slab, freelist_old, counters_old,
707 freelist_new, counters_new);
713 stat(s, CMPXCHG_DOUBLE_FAIL);
715 #ifdef SLUB_DEBUG_CMPXCHG
716 pr_info("%s %s: cmpxchg double redo ", n, s->name);
722 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
723 void *freelist_old, unsigned long counters_old,
724 void *freelist_new, unsigned long counters_new,
729 if (s->flags & __CMPXCHG_DOUBLE) {
730 ret = __update_freelist_fast(slab, freelist_old, counters_old,
731 freelist_new, counters_new);
735 local_irq_save(flags);
736 ret = __update_freelist_slow(slab, freelist_old, counters_old,
737 freelist_new, counters_new);
738 local_irq_restore(flags);
744 stat(s, CMPXCHG_DOUBLE_FAIL);
746 #ifdef SLUB_DEBUG_CMPXCHG
747 pr_info("%s %s: cmpxchg double redo ", n, s->name);
754 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
755 * family will round up the real request size to these fixed ones, so
756 * there could be an extra area than what is requested. Save the original
757 * request size in the meta data area, for better debug and sanity check.
759 static inline void set_orig_size(struct kmem_cache *s,
760 void *object, unsigned int orig_size)
762 void *p = kasan_reset_tag(object);
763 unsigned int kasan_meta_size;
765 if (!slub_debug_orig_size(s))
769 * KASAN can save its free meta data inside of the object at offset 0.
770 * If this meta data size is larger than 'orig_size', it will overlap
771 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
772 * 'orig_size' to be as at least as big as KASAN's meta data.
774 kasan_meta_size = kasan_metadata_size(s, true);
775 if (kasan_meta_size > orig_size)
776 orig_size = kasan_meta_size;
778 p += get_info_end(s);
779 p += sizeof(struct track) * 2;
781 *(unsigned int *)p = orig_size;
784 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
786 void *p = kasan_reset_tag(object);
788 if (!slub_debug_orig_size(s))
789 return s->object_size;
791 p += get_info_end(s);
792 p += sizeof(struct track) * 2;
794 return *(unsigned int *)p;
797 #ifdef CONFIG_SLUB_DEBUG
798 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
799 static DEFINE_SPINLOCK(object_map_lock);
801 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
804 void *addr = slab_address(slab);
807 bitmap_zero(obj_map, slab->objects);
809 for (p = slab->freelist; p; p = get_freepointer(s, p))
810 set_bit(__obj_to_index(s, addr, p), obj_map);
813 #if IS_ENABLED(CONFIG_KUNIT)
814 static bool slab_add_kunit_errors(void)
816 struct kunit_resource *resource;
818 if (!kunit_get_current_test())
821 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
825 (*(int *)resource->data)++;
826 kunit_put_resource(resource);
830 bool slab_in_kunit_test(void)
832 struct kunit_resource *resource;
834 if (!kunit_get_current_test())
837 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
841 kunit_put_resource(resource);
845 static inline bool slab_add_kunit_errors(void) { return false; }
848 static inline unsigned int size_from_object(struct kmem_cache *s)
850 if (s->flags & SLAB_RED_ZONE)
851 return s->size - s->red_left_pad;
856 static inline void *restore_red_left(struct kmem_cache *s, void *p)
858 if (s->flags & SLAB_RED_ZONE)
859 p -= s->red_left_pad;
867 #if defined(CONFIG_SLUB_DEBUG_ON)
868 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
870 static slab_flags_t slub_debug;
873 static char *slub_debug_string;
874 static int disable_higher_order_debug;
877 * slub is about to manipulate internal object metadata. This memory lies
878 * outside the range of the allocated object, so accessing it would normally
879 * be reported by kasan as a bounds error. metadata_access_enable() is used
880 * to tell kasan that these accesses are OK.
882 static inline void metadata_access_enable(void)
884 kasan_disable_current();
885 kmsan_disable_current();
888 static inline void metadata_access_disable(void)
890 kmsan_enable_current();
891 kasan_enable_current();
898 /* Verify that a pointer has an address that is valid within a slab page */
899 static inline int check_valid_pointer(struct kmem_cache *s,
900 struct slab *slab, void *object)
907 base = slab_address(slab);
908 object = kasan_reset_tag(object);
909 object = restore_red_left(s, object);
910 if (object < base || object >= base + slab->objects * s->size ||
911 (object - base) % s->size) {
918 static void print_section(char *level, char *text, u8 *addr,
921 metadata_access_enable();
922 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
923 16, 1, kasan_reset_tag((void *)addr), length, 1);
924 metadata_access_disable();
927 static struct track *get_track(struct kmem_cache *s, void *object,
928 enum track_item alloc)
932 p = object + get_info_end(s);
934 return kasan_reset_tag(p + alloc);
937 #ifdef CONFIG_STACKDEPOT
938 static noinline depot_stack_handle_t set_track_prepare(void)
940 depot_stack_handle_t handle;
941 unsigned long entries[TRACK_ADDRS_COUNT];
942 unsigned int nr_entries;
944 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
945 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
950 static inline depot_stack_handle_t set_track_prepare(void)
956 static void set_track_update(struct kmem_cache *s, void *object,
957 enum track_item alloc, unsigned long addr,
958 depot_stack_handle_t handle)
960 struct track *p = get_track(s, object, alloc);
962 #ifdef CONFIG_STACKDEPOT
966 p->cpu = smp_processor_id();
967 p->pid = current->pid;
971 static __always_inline void set_track(struct kmem_cache *s, void *object,
972 enum track_item alloc, unsigned long addr)
974 depot_stack_handle_t handle = set_track_prepare();
976 set_track_update(s, object, alloc, addr, handle);
979 static void init_tracking(struct kmem_cache *s, void *object)
983 if (!(s->flags & SLAB_STORE_USER))
986 p = get_track(s, object, TRACK_ALLOC);
987 memset(p, 0, 2*sizeof(struct track));
990 static void print_track(const char *s, struct track *t, unsigned long pr_time)
992 depot_stack_handle_t handle __maybe_unused;
997 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
998 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
999 #ifdef CONFIG_STACKDEPOT
1000 handle = READ_ONCE(t->handle);
1002 stack_depot_print(handle);
1004 pr_err("object allocation/free stack trace missing\n");
1008 void print_tracking(struct kmem_cache *s, void *object)
1010 unsigned long pr_time = jiffies;
1011 if (!(s->flags & SLAB_STORE_USER))
1014 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1015 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1018 static void print_slab_info(const struct slab *slab)
1020 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1021 slab, slab->objects, slab->inuse, slab->freelist,
1022 &slab->__page_flags);
1025 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1027 set_orig_size(s, (void *)object, s->object_size);
1030 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1032 struct va_format vaf;
1035 va_start(args, fmt);
1038 pr_err("=============================================================================\n");
1039 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1040 pr_err("-----------------------------------------------------------------------------\n\n");
1045 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1047 struct va_format vaf;
1050 if (slab_add_kunit_errors())
1053 va_start(args, fmt);
1056 pr_err("FIX %s: %pV\n", s->name, &vaf);
1060 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1062 unsigned int off; /* Offset of last byte */
1063 u8 *addr = slab_address(slab);
1065 print_tracking(s, p);
1067 print_slab_info(slab);
1069 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1070 p, p - addr, get_freepointer(s, p));
1072 if (s->flags & SLAB_RED_ZONE)
1073 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1075 else if (p > addr + 16)
1076 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1078 print_section(KERN_ERR, "Object ", p,
1079 min_t(unsigned int, s->object_size, PAGE_SIZE));
1080 if (s->flags & SLAB_RED_ZONE)
1081 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1082 s->inuse - s->object_size);
1084 off = get_info_end(s);
1086 if (s->flags & SLAB_STORE_USER)
1087 off += 2 * sizeof(struct track);
1089 if (slub_debug_orig_size(s))
1090 off += sizeof(unsigned int);
1092 off += kasan_metadata_size(s, false);
1094 if (off != size_from_object(s))
1095 /* Beginning of the filler is the free pointer */
1096 print_section(KERN_ERR, "Padding ", p + off,
1097 size_from_object(s) - off);
1102 static void object_err(struct kmem_cache *s, struct slab *slab,
1103 u8 *object, char *reason)
1105 if (slab_add_kunit_errors())
1108 slab_bug(s, "%s", reason);
1109 print_trailer(s, slab, object);
1110 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1113 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1114 void **freelist, void *nextfree)
1116 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1117 !check_valid_pointer(s, slab, nextfree) && freelist) {
1118 object_err(s, slab, *freelist, "Freechain corrupt");
1120 slab_fix(s, "Isolate corrupted freechain");
1127 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1128 const char *fmt, ...)
1133 if (slab_add_kunit_errors())
1136 va_start(args, fmt);
1137 vsnprintf(buf, sizeof(buf), fmt, args);
1139 slab_bug(s, "%s", buf);
1140 print_slab_info(slab);
1142 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1145 static void init_object(struct kmem_cache *s, void *object, u8 val)
1147 u8 *p = kasan_reset_tag(object);
1148 unsigned int poison_size = s->object_size;
1150 if (s->flags & SLAB_RED_ZONE) {
1152 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1153 * the shadow makes it possible to distinguish uninit-value
1154 * from use-after-free.
1156 memset_no_sanitize_memory(p - s->red_left_pad, val,
1159 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1161 * Redzone the extra allocated space by kmalloc than
1162 * requested, and the poison size will be limited to
1163 * the original request size accordingly.
1165 poison_size = get_orig_size(s, object);
1169 if (s->flags & __OBJECT_POISON) {
1170 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1171 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1174 if (s->flags & SLAB_RED_ZONE)
1175 memset_no_sanitize_memory(p + poison_size, val,
1176 s->inuse - poison_size);
1179 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1180 void *from, void *to)
1182 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1183 memset(from, data, to - from);
1187 #define pad_check_attributes noinline __no_kmsan_checks
1189 #define pad_check_attributes
1192 static pad_check_attributes int
1193 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1194 u8 *object, char *what,
1195 u8 *start, unsigned int value, unsigned int bytes)
1199 u8 *addr = slab_address(slab);
1201 metadata_access_enable();
1202 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1203 metadata_access_disable();
1207 end = start + bytes;
1208 while (end > fault && end[-1] == value)
1211 if (slab_add_kunit_errors())
1212 goto skip_bug_print;
1214 slab_bug(s, "%s overwritten", what);
1215 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1216 fault, end - 1, fault - addr,
1220 restore_bytes(s, what, value, fault, end);
1228 * Bytes of the object to be managed.
1229 * If the freepointer may overlay the object then the free
1230 * pointer is at the middle of the object.
1232 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1235 * object + s->object_size
1236 * Padding to reach word boundary. This is also used for Redzoning.
1237 * Padding is extended by another word if Redzoning is enabled and
1238 * object_size == inuse.
1240 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1241 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1244 * Meta data starts here.
1246 * A. Free pointer (if we cannot overwrite object on free)
1247 * B. Tracking data for SLAB_STORE_USER
1248 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1249 * D. Padding to reach required alignment boundary or at minimum
1250 * one word if debugging is on to be able to detect writes
1251 * before the word boundary.
1253 * Padding is done using 0x5a (POISON_INUSE)
1256 * Nothing is used beyond s->size.
1258 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1259 * ignored. And therefore no slab options that rely on these boundaries
1260 * may be used with merged slabcaches.
1263 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1265 unsigned long off = get_info_end(s); /* The end of info */
1267 if (s->flags & SLAB_STORE_USER) {
1268 /* We also have user information there */
1269 off += 2 * sizeof(struct track);
1271 if (s->flags & SLAB_KMALLOC)
1272 off += sizeof(unsigned int);
1275 off += kasan_metadata_size(s, false);
1277 if (size_from_object(s) == off)
1280 return check_bytes_and_report(s, slab, p, "Object padding",
1281 p + off, POISON_INUSE, size_from_object(s) - off);
1284 /* Check the pad bytes at the end of a slab page */
1285 static pad_check_attributes void
1286 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1295 if (!(s->flags & SLAB_POISON))
1298 start = slab_address(slab);
1299 length = slab_size(slab);
1300 end = start + length;
1301 remainder = length % s->size;
1305 pad = end - remainder;
1306 metadata_access_enable();
1307 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1308 metadata_access_disable();
1311 while (end > fault && end[-1] == POISON_INUSE)
1314 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1315 fault, end - 1, fault - start);
1316 print_section(KERN_ERR, "Padding ", pad, remainder);
1318 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1321 static int check_object(struct kmem_cache *s, struct slab *slab,
1322 void *object, u8 val)
1325 u8 *endobject = object + s->object_size;
1326 unsigned int orig_size, kasan_meta_size;
1329 if (s->flags & SLAB_RED_ZONE) {
1330 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1331 object - s->red_left_pad, val, s->red_left_pad))
1334 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1335 endobject, val, s->inuse - s->object_size))
1338 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1339 orig_size = get_orig_size(s, object);
1341 if (s->object_size > orig_size &&
1342 !check_bytes_and_report(s, slab, object,
1343 "kmalloc Redzone", p + orig_size,
1344 val, s->object_size - orig_size)) {
1349 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1350 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1351 endobject, POISON_INUSE,
1352 s->inuse - s->object_size))
1357 if (s->flags & SLAB_POISON) {
1358 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1360 * KASAN can save its free meta data inside of the
1361 * object at offset 0. Thus, skip checking the part of
1362 * the redzone that overlaps with the meta data.
1364 kasan_meta_size = kasan_metadata_size(s, true);
1365 if (kasan_meta_size < s->object_size - 1 &&
1366 !check_bytes_and_report(s, slab, p, "Poison",
1367 p + kasan_meta_size, POISON_FREE,
1368 s->object_size - kasan_meta_size - 1))
1370 if (kasan_meta_size < s->object_size &&
1371 !check_bytes_and_report(s, slab, p, "End Poison",
1372 p + s->object_size - 1, POISON_END, 1))
1376 * check_pad_bytes cleans up on its own.
1378 if (!check_pad_bytes(s, slab, p))
1383 * Cannot check freepointer while object is allocated if
1384 * object and freepointer overlap.
1386 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1387 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1388 object_err(s, slab, p, "Freepointer corrupt");
1390 * No choice but to zap it and thus lose the remainder
1391 * of the free objects in this slab. May cause
1392 * another error because the object count is now wrong.
1394 set_freepointer(s, p, NULL);
1398 if (!ret && !slab_in_kunit_test()) {
1399 print_trailer(s, slab, object);
1400 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1406 static int check_slab(struct kmem_cache *s, struct slab *slab)
1410 if (!folio_test_slab(slab_folio(slab))) {
1411 slab_err(s, slab, "Not a valid slab page");
1415 maxobj = order_objects(slab_order(slab), s->size);
1416 if (slab->objects > maxobj) {
1417 slab_err(s, slab, "objects %u > max %u",
1418 slab->objects, maxobj);
1421 if (slab->inuse > slab->objects) {
1422 slab_err(s, slab, "inuse %u > max %u",
1423 slab->inuse, slab->objects);
1426 /* Slab_pad_check fixes things up after itself */
1427 slab_pad_check(s, slab);
1432 * Determine if a certain object in a slab is on the freelist. Must hold the
1433 * slab lock to guarantee that the chains are in a consistent state.
1435 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1439 void *object = NULL;
1442 fp = slab->freelist;
1443 while (fp && nr <= slab->objects) {
1446 if (!check_valid_pointer(s, slab, fp)) {
1448 object_err(s, slab, object,
1449 "Freechain corrupt");
1450 set_freepointer(s, object, NULL);
1452 slab_err(s, slab, "Freepointer corrupt");
1453 slab->freelist = NULL;
1454 slab->inuse = slab->objects;
1455 slab_fix(s, "Freelist cleared");
1461 fp = get_freepointer(s, object);
1465 max_objects = order_objects(slab_order(slab), s->size);
1466 if (max_objects > MAX_OBJS_PER_PAGE)
1467 max_objects = MAX_OBJS_PER_PAGE;
1469 if (slab->objects != max_objects) {
1470 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1471 slab->objects, max_objects);
1472 slab->objects = max_objects;
1473 slab_fix(s, "Number of objects adjusted");
1475 if (slab->inuse != slab->objects - nr) {
1476 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1477 slab->inuse, slab->objects - nr);
1478 slab->inuse = slab->objects - nr;
1479 slab_fix(s, "Object count adjusted");
1481 return search == NULL;
1484 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1487 if (s->flags & SLAB_TRACE) {
1488 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1490 alloc ? "alloc" : "free",
1491 object, slab->inuse,
1495 print_section(KERN_INFO, "Object ", (void *)object,
1503 * Tracking of fully allocated slabs for debugging purposes.
1505 static void add_full(struct kmem_cache *s,
1506 struct kmem_cache_node *n, struct slab *slab)
1508 if (!(s->flags & SLAB_STORE_USER))
1511 lockdep_assert_held(&n->list_lock);
1512 list_add(&slab->slab_list, &n->full);
1515 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1517 if (!(s->flags & SLAB_STORE_USER))
1520 lockdep_assert_held(&n->list_lock);
1521 list_del(&slab->slab_list);
1524 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1526 return atomic_long_read(&n->nr_slabs);
1529 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1531 struct kmem_cache_node *n = get_node(s, node);
1533 atomic_long_inc(&n->nr_slabs);
1534 atomic_long_add(objects, &n->total_objects);
1536 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1538 struct kmem_cache_node *n = get_node(s, node);
1540 atomic_long_dec(&n->nr_slabs);
1541 atomic_long_sub(objects, &n->total_objects);
1544 /* Object debug checks for alloc/free paths */
1545 static void setup_object_debug(struct kmem_cache *s, void *object)
1547 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1550 init_object(s, object, SLUB_RED_INACTIVE);
1551 init_tracking(s, object);
1555 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1557 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1560 metadata_access_enable();
1561 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1562 metadata_access_disable();
1565 static inline int alloc_consistency_checks(struct kmem_cache *s,
1566 struct slab *slab, void *object)
1568 if (!check_slab(s, slab))
1571 if (!check_valid_pointer(s, slab, object)) {
1572 object_err(s, slab, object, "Freelist Pointer check fails");
1576 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1582 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1583 struct slab *slab, void *object, int orig_size)
1585 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1586 if (!alloc_consistency_checks(s, slab, object))
1590 /* Success. Perform special debug activities for allocs */
1591 trace(s, slab, object, 1);
1592 set_orig_size(s, object, orig_size);
1593 init_object(s, object, SLUB_RED_ACTIVE);
1597 if (folio_test_slab(slab_folio(slab))) {
1599 * If this is a slab page then lets do the best we can
1600 * to avoid issues in the future. Marking all objects
1601 * as used avoids touching the remaining objects.
1603 slab_fix(s, "Marking all objects used");
1604 slab->inuse = slab->objects;
1605 slab->freelist = NULL;
1610 static inline int free_consistency_checks(struct kmem_cache *s,
1611 struct slab *slab, void *object, unsigned long addr)
1613 if (!check_valid_pointer(s, slab, object)) {
1614 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1618 if (on_freelist(s, slab, object)) {
1619 object_err(s, slab, object, "Object already free");
1623 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1626 if (unlikely(s != slab->slab_cache)) {
1627 if (!folio_test_slab(slab_folio(slab))) {
1628 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1630 } else if (!slab->slab_cache) {
1631 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1635 object_err(s, slab, object,
1636 "page slab pointer corrupt.");
1643 * Parse a block of slab_debug options. Blocks are delimited by ';'
1645 * @str: start of block
1646 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1647 * @slabs: return start of list of slabs, or NULL when there's no list
1648 * @init: assume this is initial parsing and not per-kmem-create parsing
1650 * returns the start of next block if there's any, or NULL
1653 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1655 bool higher_order_disable = false;
1657 /* Skip any completely empty blocks */
1658 while (*str && *str == ';')
1663 * No options but restriction on slabs. This means full
1664 * debugging for slabs matching a pattern.
1666 *flags = DEBUG_DEFAULT_FLAGS;
1671 /* Determine which debug features should be switched on */
1672 for (; *str && *str != ',' && *str != ';'; str++) {
1673 switch (tolower(*str)) {
1678 *flags |= SLAB_CONSISTENCY_CHECKS;
1681 *flags |= SLAB_RED_ZONE;
1684 *flags |= SLAB_POISON;
1687 *flags |= SLAB_STORE_USER;
1690 *flags |= SLAB_TRACE;
1693 *flags |= SLAB_FAILSLAB;
1697 * Avoid enabling debugging on caches if its minimum
1698 * order would increase as a result.
1700 higher_order_disable = true;
1704 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1713 /* Skip over the slab list */
1714 while (*str && *str != ';')
1717 /* Skip any completely empty blocks */
1718 while (*str && *str == ';')
1721 if (init && higher_order_disable)
1722 disable_higher_order_debug = 1;
1730 static int __init setup_slub_debug(char *str)
1733 slab_flags_t global_flags;
1736 bool global_slub_debug_changed = false;
1737 bool slab_list_specified = false;
1739 global_flags = DEBUG_DEFAULT_FLAGS;
1740 if (*str++ != '=' || !*str)
1742 * No options specified. Switch on full debugging.
1748 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1751 global_flags = flags;
1752 global_slub_debug_changed = true;
1754 slab_list_specified = true;
1755 if (flags & SLAB_STORE_USER)
1756 stack_depot_request_early_init();
1761 * For backwards compatibility, a single list of flags with list of
1762 * slabs means debugging is only changed for those slabs, so the global
1763 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1764 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1765 * long as there is no option specifying flags without a slab list.
1767 if (slab_list_specified) {
1768 if (!global_slub_debug_changed)
1769 global_flags = slub_debug;
1770 slub_debug_string = saved_str;
1773 slub_debug = global_flags;
1774 if (slub_debug & SLAB_STORE_USER)
1775 stack_depot_request_early_init();
1776 if (slub_debug != 0 || slub_debug_string)
1777 static_branch_enable(&slub_debug_enabled);
1779 static_branch_disable(&slub_debug_enabled);
1780 if ((static_branch_unlikely(&init_on_alloc) ||
1781 static_branch_unlikely(&init_on_free)) &&
1782 (slub_debug & SLAB_POISON))
1783 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1787 __setup("slab_debug", setup_slub_debug);
1788 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1791 * kmem_cache_flags - apply debugging options to the cache
1792 * @flags: flags to set
1793 * @name: name of the cache
1795 * Debug option(s) are applied to @flags. In addition to the debug
1796 * option(s), if a slab name (or multiple) is specified i.e.
1797 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1798 * then only the select slabs will receive the debug option(s).
1800 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1805 slab_flags_t block_flags;
1806 slab_flags_t slub_debug_local = slub_debug;
1808 if (flags & SLAB_NO_USER_FLAGS)
1812 * If the slab cache is for debugging (e.g. kmemleak) then
1813 * don't store user (stack trace) information by default,
1814 * but let the user enable it via the command line below.
1816 if (flags & SLAB_NOLEAKTRACE)
1817 slub_debug_local &= ~SLAB_STORE_USER;
1820 next_block = slub_debug_string;
1821 /* Go through all blocks of debug options, see if any matches our slab's name */
1822 while (next_block) {
1823 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1826 /* Found a block that has a slab list, search it */
1831 end = strchrnul(iter, ',');
1832 if (next_block && next_block < end)
1833 end = next_block - 1;
1835 glob = strnchr(iter, end - iter, '*');
1837 cmplen = glob - iter;
1839 cmplen = max_t(size_t, len, (end - iter));
1841 if (!strncmp(name, iter, cmplen)) {
1842 flags |= block_flags;
1846 if (!*end || *end == ';')
1852 return flags | slub_debug_local;
1854 #else /* !CONFIG_SLUB_DEBUG */
1855 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1857 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1859 static inline bool alloc_debug_processing(struct kmem_cache *s,
1860 struct slab *slab, void *object, int orig_size) { return true; }
1862 static inline bool free_debug_processing(struct kmem_cache *s,
1863 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1864 unsigned long addr, depot_stack_handle_t handle) { return true; }
1866 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1867 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1868 void *object, u8 val) { return 1; }
1869 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1870 static inline void set_track(struct kmem_cache *s, void *object,
1871 enum track_item alloc, unsigned long addr) {}
1872 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1873 struct slab *slab) {}
1874 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1875 struct slab *slab) {}
1876 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1880 #define slub_debug 0
1882 #define disable_higher_order_debug 0
1884 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1886 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1888 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1890 #ifndef CONFIG_SLUB_TINY
1891 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1892 void **freelist, void *nextfree)
1897 #endif /* CONFIG_SLUB_DEBUG */
1899 #ifdef CONFIG_SLAB_OBJ_EXT
1901 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1903 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1905 struct slabobj_ext *slab_exts;
1906 struct slab *obj_exts_slab;
1908 obj_exts_slab = virt_to_slab(obj_exts);
1909 slab_exts = slab_obj_exts(obj_exts_slab);
1911 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1912 obj_exts_slab, obj_exts);
1913 /* codetag should be NULL */
1914 WARN_ON(slab_exts[offs].ref.ct);
1915 set_codetag_empty(&slab_exts[offs].ref);
1919 static inline void mark_failed_objexts_alloc(struct slab *slab)
1921 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1924 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1925 struct slabobj_ext *vec, unsigned int objects)
1928 * If vector previously failed to allocate then we have live
1929 * objects with no tag reference. Mark all references in this
1930 * vector as empty to avoid warnings later on.
1932 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1935 for (i = 0; i < objects; i++)
1936 set_codetag_empty(&vec[i].ref);
1940 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1942 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1943 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1944 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1945 struct slabobj_ext *vec, unsigned int objects) {}
1947 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1950 * The allocated objcg pointers array is not accounted directly.
1951 * Moreover, it should not come from DMA buffer and is not readily
1952 * reclaimable. So those GFP bits should be masked off.
1954 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1955 __GFP_ACCOUNT | __GFP_NOFAIL)
1957 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1958 gfp_t gfp, bool new_slab)
1960 unsigned int objects = objs_per_slab(s, slab);
1961 unsigned long new_exts;
1962 unsigned long old_exts;
1963 struct slabobj_ext *vec;
1965 gfp &= ~OBJCGS_CLEAR_MASK;
1966 /* Prevent recursive extension vector allocation */
1967 gfp |= __GFP_NO_OBJ_EXT;
1968 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1971 /* Mark vectors which failed to allocate */
1973 mark_failed_objexts_alloc(slab);
1978 new_exts = (unsigned long)vec;
1980 new_exts |= MEMCG_DATA_OBJEXTS;
1982 old_exts = READ_ONCE(slab->obj_exts);
1983 handle_failed_objexts_alloc(old_exts, vec, objects);
1986 * If the slab is brand new and nobody can yet access its
1987 * obj_exts, no synchronization is required and obj_exts can
1988 * be simply assigned.
1990 slab->obj_exts = new_exts;
1991 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1992 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
1994 * If the slab is already in use, somebody can allocate and
1995 * assign slabobj_exts in parallel. In this case the existing
1996 * objcg vector should be reused.
1998 mark_objexts_empty(vec);
2003 kmemleak_not_leak(vec);
2007 static inline void free_slab_obj_exts(struct slab *slab)
2009 struct slabobj_ext *obj_exts;
2011 obj_exts = slab_obj_exts(slab);
2016 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2017 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2018 * warning if slab has extensions but the extension of an object is
2019 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2020 * the extension for obj_exts is expected to be NULL.
2022 mark_objexts_empty(obj_exts);
2027 static inline bool need_slab_obj_ext(void)
2029 if (mem_alloc_profiling_enabled())
2033 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2034 * inside memcg_slab_post_alloc_hook. No other users for now.
2039 #else /* CONFIG_SLAB_OBJ_EXT */
2041 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2042 gfp_t gfp, bool new_slab)
2047 static inline void free_slab_obj_exts(struct slab *slab)
2051 static inline bool need_slab_obj_ext(void)
2056 #endif /* CONFIG_SLAB_OBJ_EXT */
2058 #ifdef CONFIG_MEM_ALLOC_PROFILING
2060 static inline struct slabobj_ext *
2061 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2068 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2071 if (flags & __GFP_NO_OBJ_EXT)
2074 slab = virt_to_slab(p);
2075 if (!slab_obj_exts(slab) &&
2076 WARN(alloc_slab_obj_exts(slab, s, flags, false),
2077 "%s, %s: Failed to create slab extension vector!\n",
2081 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2085 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2087 if (need_slab_obj_ext()) {
2088 struct slabobj_ext *obj_exts;
2090 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2092 * Currently obj_exts is used only for allocation profiling.
2093 * If other users appear then mem_alloc_profiling_enabled()
2094 * check should be added before alloc_tag_add().
2096 if (likely(obj_exts))
2097 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2102 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2105 struct slabobj_ext *obj_exts;
2108 if (!mem_alloc_profiling_enabled())
2111 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2112 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2115 obj_exts = slab_obj_exts(slab);
2119 for (i = 0; i < objects; i++) {
2120 unsigned int off = obj_to_index(s, slab, p[i]);
2122 alloc_tag_sub(&obj_exts[off].ref, s->size);
2126 #else /* CONFIG_MEM_ALLOC_PROFILING */
2129 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2134 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2139 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2144 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2146 static __fastpath_inline
2147 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2148 gfp_t flags, size_t size, void **p)
2150 if (likely(!memcg_kmem_online()))
2153 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2156 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2159 if (likely(size == 1)) {
2160 memcg_alloc_abort_single(s, *p);
2163 kmem_cache_free_bulk(s, size, p);
2169 static __fastpath_inline
2170 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2173 struct slabobj_ext *obj_exts;
2175 if (!memcg_kmem_online())
2178 obj_exts = slab_obj_exts(slab);
2179 if (likely(!obj_exts))
2182 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2185 static __fastpath_inline
2186 bool memcg_slab_post_charge(void *p, gfp_t flags)
2188 struct slabobj_ext *slab_exts;
2189 struct kmem_cache *s;
2190 struct folio *folio;
2194 folio = virt_to_folio(p);
2195 if (!folio_test_slab(folio)) {
2196 return folio_memcg_kmem(folio) ||
2197 (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2198 folio_order(folio)) == 0);
2201 slab = folio_slab(folio);
2202 s = slab->slab_cache;
2205 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2206 * of slab_obj_exts being allocated from the same slab and thus the slab
2207 * becoming effectively unfreeable.
2209 if (is_kmalloc_normal(s))
2212 /* Ignore already charged objects. */
2213 slab_exts = slab_obj_exts(slab);
2215 off = obj_to_index(s, slab, p);
2216 if (unlikely(slab_exts[off].objcg))
2220 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2223 #else /* CONFIG_MEMCG */
2224 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2225 struct list_lru *lru,
2226 gfp_t flags, size_t size,
2232 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2233 void **p, int objects)
2237 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2241 #endif /* CONFIG_MEMCG */
2243 #ifdef CONFIG_SLUB_RCU_DEBUG
2244 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2246 struct rcu_delayed_free {
2247 struct rcu_head head;
2253 * Hooks for other subsystems that check memory allocations. In a typical
2254 * production configuration these hooks all should produce no code at all.
2256 * Returns true if freeing of the object can proceed, false if its reuse
2257 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2260 static __always_inline
2261 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2262 bool after_rcu_delay)
2264 /* Are the object contents still accessible? */
2265 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2267 kmemleak_free_recursive(x, s->flags);
2268 kmsan_slab_free(s, x);
2270 debug_check_no_locks_freed(x, s->object_size);
2272 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2273 debug_check_no_obj_freed(x, s->object_size);
2275 /* Use KCSAN to help debug racy use-after-free. */
2276 if (!still_accessible)
2277 __kcsan_check_access(x, s->object_size,
2278 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2284 * Give KASAN a chance to notice an invalid free operation before we
2285 * modify the object.
2287 if (kasan_slab_pre_free(s, x))
2290 #ifdef CONFIG_SLUB_RCU_DEBUG
2291 if (still_accessible) {
2292 struct rcu_delayed_free *delayed_free;
2294 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2297 * Let KASAN track our call stack as a "related work
2298 * creation", just like if the object had been freed
2299 * normally via kfree_rcu().
2300 * We have to do this manually because the rcu_head is
2301 * not located inside the object.
2303 kasan_record_aux_stack_noalloc(x);
2305 delayed_free->object = x;
2306 call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2310 #endif /* CONFIG_SLUB_RCU_DEBUG */
2313 * As memory initialization might be integrated into KASAN,
2314 * kasan_slab_free and initialization memset's must be
2315 * kept together to avoid discrepancies in behavior.
2317 * The initialization memset's clear the object and the metadata,
2318 * but don't touch the SLAB redzone.
2320 * The object's freepointer is also avoided if stored outside the
2323 if (unlikely(init)) {
2325 unsigned int inuse, orig_size;
2327 inuse = get_info_end(s);
2328 orig_size = get_orig_size(s, x);
2329 if (!kasan_has_integrated_init())
2330 memset(kasan_reset_tag(x), 0, orig_size);
2331 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2332 memset((char *)kasan_reset_tag(x) + inuse, 0,
2333 s->size - inuse - rsize);
2335 * Restore orig_size, otherwize kmalloc redzone overwritten
2338 set_orig_size(s, x, orig_size);
2341 /* KASAN might put x into memory quarantine, delaying its reuse. */
2342 return !kasan_slab_free(s, x, init, still_accessible);
2345 static __fastpath_inline
2346 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2352 void *old_tail = *tail;
2355 if (is_kfence_address(next)) {
2356 slab_free_hook(s, next, false, false);
2360 /* Head and tail of the reconstructed freelist */
2364 init = slab_want_init_on_free(s);
2368 next = get_freepointer(s, object);
2370 /* If object's reuse doesn't have to be delayed */
2371 if (likely(slab_free_hook(s, object, init, false))) {
2372 /* Move object to the new freelist */
2373 set_freepointer(s, object, *head);
2379 * Adjust the reconstructed freelist depth
2380 * accordingly if object's reuse is delayed.
2384 } while (object != old_tail);
2386 return *head != NULL;
2389 static void *setup_object(struct kmem_cache *s, void *object)
2391 setup_object_debug(s, object);
2392 object = kasan_init_slab_obj(s, object);
2393 if (unlikely(s->ctor)) {
2394 kasan_unpoison_new_object(s, object);
2396 kasan_poison_new_object(s, object);
2402 * Slab allocation and freeing
2404 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2405 struct kmem_cache_order_objects oo)
2407 struct folio *folio;
2409 unsigned int order = oo_order(oo);
2411 if (node == NUMA_NO_NODE)
2412 folio = (struct folio *)alloc_pages(flags, order);
2414 folio = (struct folio *)__alloc_pages_node(node, flags, order);
2419 slab = folio_slab(folio);
2420 __folio_set_slab(folio);
2421 /* Make the flag visible before any changes to folio->mapping */
2423 if (folio_is_pfmemalloc(folio))
2424 slab_set_pfmemalloc(slab);
2429 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2430 /* Pre-initialize the random sequence cache */
2431 static int init_cache_random_seq(struct kmem_cache *s)
2433 unsigned int count = oo_objects(s->oo);
2436 /* Bailout if already initialised */
2440 err = cache_random_seq_create(s, count, GFP_KERNEL);
2442 pr_err("SLUB: Unable to initialize free list for %s\n",
2447 /* Transform to an offset on the set of pages */
2448 if (s->random_seq) {
2451 for (i = 0; i < count; i++)
2452 s->random_seq[i] *= s->size;
2457 /* Initialize each random sequence freelist per cache */
2458 static void __init init_freelist_randomization(void)
2460 struct kmem_cache *s;
2462 mutex_lock(&slab_mutex);
2464 list_for_each_entry(s, &slab_caches, list)
2465 init_cache_random_seq(s);
2467 mutex_unlock(&slab_mutex);
2470 /* Get the next entry on the pre-computed freelist randomized */
2471 static void *next_freelist_entry(struct kmem_cache *s,
2472 unsigned long *pos, void *start,
2473 unsigned long page_limit,
2474 unsigned long freelist_count)
2479 * If the target page allocation failed, the number of objects on the
2480 * page might be smaller than the usual size defined by the cache.
2483 idx = s->random_seq[*pos];
2485 if (*pos >= freelist_count)
2487 } while (unlikely(idx >= page_limit));
2489 return (char *)start + idx;
2492 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2493 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2498 unsigned long idx, pos, page_limit, freelist_count;
2500 if (slab->objects < 2 || !s->random_seq)
2503 freelist_count = oo_objects(s->oo);
2504 pos = get_random_u32_below(freelist_count);
2506 page_limit = slab->objects * s->size;
2507 start = fixup_red_left(s, slab_address(slab));
2509 /* First entry is used as the base of the freelist */
2510 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2511 cur = setup_object(s, cur);
2512 slab->freelist = cur;
2514 for (idx = 1; idx < slab->objects; idx++) {
2515 next = next_freelist_entry(s, &pos, start, page_limit,
2517 next = setup_object(s, next);
2518 set_freepointer(s, cur, next);
2521 set_freepointer(s, cur, NULL);
2526 static inline int init_cache_random_seq(struct kmem_cache *s)
2530 static inline void init_freelist_randomization(void) { }
2531 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2535 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2537 static __always_inline void account_slab(struct slab *slab, int order,
2538 struct kmem_cache *s, gfp_t gfp)
2540 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2541 alloc_slab_obj_exts(slab, s, gfp, true);
2543 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2544 PAGE_SIZE << order);
2547 static __always_inline void unaccount_slab(struct slab *slab, int order,
2548 struct kmem_cache *s)
2550 if (memcg_kmem_online() || need_slab_obj_ext())
2551 free_slab_obj_exts(slab);
2553 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2554 -(PAGE_SIZE << order));
2557 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2560 struct kmem_cache_order_objects oo = s->oo;
2562 void *start, *p, *next;
2566 flags &= gfp_allowed_mask;
2568 flags |= s->allocflags;
2571 * Let the initial higher-order allocation fail under memory pressure
2572 * so we fall-back to the minimum order allocation.
2574 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2575 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2576 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2578 slab = alloc_slab_page(alloc_gfp, node, oo);
2579 if (unlikely(!slab)) {
2583 * Allocation may have failed due to fragmentation.
2584 * Try a lower order alloc if possible
2586 slab = alloc_slab_page(alloc_gfp, node, oo);
2587 if (unlikely(!slab))
2589 stat(s, ORDER_FALLBACK);
2592 slab->objects = oo_objects(oo);
2596 account_slab(slab, oo_order(oo), s, flags);
2598 slab->slab_cache = s;
2600 kasan_poison_slab(slab);
2602 start = slab_address(slab);
2604 setup_slab_debug(s, slab, start);
2606 shuffle = shuffle_freelist(s, slab);
2609 start = fixup_red_left(s, start);
2610 start = setup_object(s, start);
2611 slab->freelist = start;
2612 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2614 next = setup_object(s, next);
2615 set_freepointer(s, p, next);
2618 set_freepointer(s, p, NULL);
2624 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2626 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2627 flags = kmalloc_fix_flags(flags);
2629 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2631 return allocate_slab(s,
2632 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2635 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2637 struct folio *folio = slab_folio(slab);
2638 int order = folio_order(folio);
2639 int pages = 1 << order;
2641 __slab_clear_pfmemalloc(slab);
2642 folio->mapping = NULL;
2643 /* Make the mapping reset visible before clearing the flag */
2645 __folio_clear_slab(folio);
2646 mm_account_reclaimed_pages(pages);
2647 unaccount_slab(slab, order, s);
2648 __free_pages(&folio->page, order);
2651 static void rcu_free_slab(struct rcu_head *h)
2653 struct slab *slab = container_of(h, struct slab, rcu_head);
2655 __free_slab(slab->slab_cache, slab);
2658 static void free_slab(struct kmem_cache *s, struct slab *slab)
2660 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2663 slab_pad_check(s, slab);
2664 for_each_object(p, s, slab_address(slab), slab->objects)
2665 check_object(s, slab, p, SLUB_RED_INACTIVE);
2668 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2669 call_rcu(&slab->rcu_head, rcu_free_slab);
2671 __free_slab(s, slab);
2674 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2676 dec_slabs_node(s, slab_nid(slab), slab->objects);
2681 * SLUB reuses PG_workingset bit to keep track of whether it's on
2682 * the per-node partial list.
2684 static inline bool slab_test_node_partial(const struct slab *slab)
2686 return folio_test_workingset(slab_folio(slab));
2689 static inline void slab_set_node_partial(struct slab *slab)
2691 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2694 static inline void slab_clear_node_partial(struct slab *slab)
2696 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2700 * Management of partially allocated slabs.
2703 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2706 if (tail == DEACTIVATE_TO_TAIL)
2707 list_add_tail(&slab->slab_list, &n->partial);
2709 list_add(&slab->slab_list, &n->partial);
2710 slab_set_node_partial(slab);
2713 static inline void add_partial(struct kmem_cache_node *n,
2714 struct slab *slab, int tail)
2716 lockdep_assert_held(&n->list_lock);
2717 __add_partial(n, slab, tail);
2720 static inline void remove_partial(struct kmem_cache_node *n,
2723 lockdep_assert_held(&n->list_lock);
2724 list_del(&slab->slab_list);
2725 slab_clear_node_partial(slab);
2730 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2731 * slab from the n->partial list. Remove only a single object from the slab, do
2732 * the alloc_debug_processing() checks and leave the slab on the list, or move
2733 * it to full list if it was the last free object.
2735 static void *alloc_single_from_partial(struct kmem_cache *s,
2736 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2740 lockdep_assert_held(&n->list_lock);
2742 object = slab->freelist;
2743 slab->freelist = get_freepointer(s, object);
2746 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2747 remove_partial(n, slab);
2751 if (slab->inuse == slab->objects) {
2752 remove_partial(n, slab);
2753 add_full(s, n, slab);
2760 * Called only for kmem_cache_debug() caches to allocate from a freshly
2761 * allocated slab. Allocate a single object instead of whole freelist
2762 * and put the slab to the partial (or full) list.
2764 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2765 struct slab *slab, int orig_size)
2767 int nid = slab_nid(slab);
2768 struct kmem_cache_node *n = get_node(s, nid);
2769 unsigned long flags;
2773 object = slab->freelist;
2774 slab->freelist = get_freepointer(s, object);
2777 if (!alloc_debug_processing(s, slab, object, orig_size))
2779 * It's not really expected that this would fail on a
2780 * freshly allocated slab, but a concurrent memory
2781 * corruption in theory could cause that.
2785 spin_lock_irqsave(&n->list_lock, flags);
2787 if (slab->inuse == slab->objects)
2788 add_full(s, n, slab);
2790 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2792 inc_slabs_node(s, nid, slab->objects);
2793 spin_unlock_irqrestore(&n->list_lock, flags);
2798 #ifdef CONFIG_SLUB_CPU_PARTIAL
2799 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2801 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2804 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2807 * Try to allocate a partial slab from a specific node.
2809 static struct slab *get_partial_node(struct kmem_cache *s,
2810 struct kmem_cache_node *n,
2811 struct partial_context *pc)
2813 struct slab *slab, *slab2, *partial = NULL;
2814 unsigned long flags;
2815 unsigned int partial_slabs = 0;
2818 * Racy check. If we mistakenly see no partial slabs then we
2819 * just allocate an empty slab. If we mistakenly try to get a
2820 * partial slab and there is none available then get_partial()
2823 if (!n || !n->nr_partial)
2826 spin_lock_irqsave(&n->list_lock, flags);
2827 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2828 if (!pfmemalloc_match(slab, pc->flags))
2831 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2832 void *object = alloc_single_from_partial(s, n, slab,
2836 pc->object = object;
2842 remove_partial(n, slab);
2846 stat(s, ALLOC_FROM_PARTIAL);
2848 if ((slub_get_cpu_partial(s) == 0)) {
2852 put_cpu_partial(s, slab, 0);
2853 stat(s, CPU_PARTIAL_NODE);
2855 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2860 spin_unlock_irqrestore(&n->list_lock, flags);
2865 * Get a slab from somewhere. Search in increasing NUMA distances.
2867 static struct slab *get_any_partial(struct kmem_cache *s,
2868 struct partial_context *pc)
2871 struct zonelist *zonelist;
2874 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2876 unsigned int cpuset_mems_cookie;
2879 * The defrag ratio allows a configuration of the tradeoffs between
2880 * inter node defragmentation and node local allocations. A lower
2881 * defrag_ratio increases the tendency to do local allocations
2882 * instead of attempting to obtain partial slabs from other nodes.
2884 * If the defrag_ratio is set to 0 then kmalloc() always
2885 * returns node local objects. If the ratio is higher then kmalloc()
2886 * may return off node objects because partial slabs are obtained
2887 * from other nodes and filled up.
2889 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2890 * (which makes defrag_ratio = 1000) then every (well almost)
2891 * allocation will first attempt to defrag slab caches on other nodes.
2892 * This means scanning over all nodes to look for partial slabs which
2893 * may be expensive if we do it every time we are trying to find a slab
2894 * with available objects.
2896 if (!s->remote_node_defrag_ratio ||
2897 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2901 cpuset_mems_cookie = read_mems_allowed_begin();
2902 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2903 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2904 struct kmem_cache_node *n;
2906 n = get_node(s, zone_to_nid(zone));
2908 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2909 n->nr_partial > s->min_partial) {
2910 slab = get_partial_node(s, n, pc);
2913 * Don't check read_mems_allowed_retry()
2914 * here - if mems_allowed was updated in
2915 * parallel, that was a harmless race
2916 * between allocation and the cpuset
2923 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2924 #endif /* CONFIG_NUMA */
2929 * Get a partial slab, lock it and return it.
2931 static struct slab *get_partial(struct kmem_cache *s, int node,
2932 struct partial_context *pc)
2935 int searchnode = node;
2937 if (node == NUMA_NO_NODE)
2938 searchnode = numa_mem_id();
2940 slab = get_partial_node(s, get_node(s, searchnode), pc);
2941 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2944 return get_any_partial(s, pc);
2947 #ifndef CONFIG_SLUB_TINY
2949 #ifdef CONFIG_PREEMPTION
2951 * Calculate the next globally unique transaction for disambiguation
2952 * during cmpxchg. The transactions start with the cpu number and are then
2953 * incremented by CONFIG_NR_CPUS.
2955 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2958 * No preemption supported therefore also no need to check for
2962 #endif /* CONFIG_PREEMPTION */
2964 static inline unsigned long next_tid(unsigned long tid)
2966 return tid + TID_STEP;
2969 #ifdef SLUB_DEBUG_CMPXCHG
2970 static inline unsigned int tid_to_cpu(unsigned long tid)
2972 return tid % TID_STEP;
2975 static inline unsigned long tid_to_event(unsigned long tid)
2977 return tid / TID_STEP;
2981 static inline unsigned int init_tid(int cpu)
2986 static inline void note_cmpxchg_failure(const char *n,
2987 const struct kmem_cache *s, unsigned long tid)
2989 #ifdef SLUB_DEBUG_CMPXCHG
2990 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2992 pr_info("%s %s: cmpxchg redo ", n, s->name);
2994 #ifdef CONFIG_PREEMPTION
2995 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2996 pr_warn("due to cpu change %d -> %d\n",
2997 tid_to_cpu(tid), tid_to_cpu(actual_tid));
3000 if (tid_to_event(tid) != tid_to_event(actual_tid))
3001 pr_warn("due to cpu running other code. Event %ld->%ld\n",
3002 tid_to_event(tid), tid_to_event(actual_tid));
3004 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3005 actual_tid, tid, next_tid(tid));
3007 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3010 static void init_kmem_cache_cpus(struct kmem_cache *s)
3013 struct kmem_cache_cpu *c;
3015 for_each_possible_cpu(cpu) {
3016 c = per_cpu_ptr(s->cpu_slab, cpu);
3017 local_lock_init(&c->lock);
3018 c->tid = init_tid(cpu);
3023 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3024 * unfreezes the slabs and puts it on the proper list.
3025 * Assumes the slab has been already safely taken away from kmem_cache_cpu
3028 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3031 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3033 void *nextfree, *freelist_iter, *freelist_tail;
3034 int tail = DEACTIVATE_TO_HEAD;
3035 unsigned long flags = 0;
3039 if (READ_ONCE(slab->freelist)) {
3040 stat(s, DEACTIVATE_REMOTE_FREES);
3041 tail = DEACTIVATE_TO_TAIL;
3045 * Stage one: Count the objects on cpu's freelist as free_delta and
3046 * remember the last object in freelist_tail for later splicing.
3048 freelist_tail = NULL;
3049 freelist_iter = freelist;
3050 while (freelist_iter) {
3051 nextfree = get_freepointer(s, freelist_iter);
3054 * If 'nextfree' is invalid, it is possible that the object at
3055 * 'freelist_iter' is already corrupted. So isolate all objects
3056 * starting at 'freelist_iter' by skipping them.
3058 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3061 freelist_tail = freelist_iter;
3064 freelist_iter = nextfree;
3068 * Stage two: Unfreeze the slab while splicing the per-cpu
3069 * freelist to the head of slab's freelist.
3072 old.freelist = READ_ONCE(slab->freelist);
3073 old.counters = READ_ONCE(slab->counters);
3074 VM_BUG_ON(!old.frozen);
3076 /* Determine target state of the slab */
3077 new.counters = old.counters;
3079 if (freelist_tail) {
3080 new.inuse -= free_delta;
3081 set_freepointer(s, freelist_tail, old.freelist);
3082 new.freelist = freelist;
3084 new.freelist = old.freelist;
3086 } while (!slab_update_freelist(s, slab,
3087 old.freelist, old.counters,
3088 new.freelist, new.counters,
3089 "unfreezing slab"));
3092 * Stage three: Manipulate the slab list based on the updated state.
3094 if (!new.inuse && n->nr_partial >= s->min_partial) {
3095 stat(s, DEACTIVATE_EMPTY);
3096 discard_slab(s, slab);
3098 } else if (new.freelist) {
3099 spin_lock_irqsave(&n->list_lock, flags);
3100 add_partial(n, slab, tail);
3101 spin_unlock_irqrestore(&n->list_lock, flags);
3104 stat(s, DEACTIVATE_FULL);
3108 #ifdef CONFIG_SLUB_CPU_PARTIAL
3109 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3111 struct kmem_cache_node *n = NULL, *n2 = NULL;
3112 struct slab *slab, *slab_to_discard = NULL;
3113 unsigned long flags = 0;
3115 while (partial_slab) {
3116 slab = partial_slab;
3117 partial_slab = slab->next;
3119 n2 = get_node(s, slab_nid(slab));
3122 spin_unlock_irqrestore(&n->list_lock, flags);
3125 spin_lock_irqsave(&n->list_lock, flags);
3128 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3129 slab->next = slab_to_discard;
3130 slab_to_discard = slab;
3132 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3133 stat(s, FREE_ADD_PARTIAL);
3138 spin_unlock_irqrestore(&n->list_lock, flags);
3140 while (slab_to_discard) {
3141 slab = slab_to_discard;
3142 slab_to_discard = slab_to_discard->next;
3144 stat(s, DEACTIVATE_EMPTY);
3145 discard_slab(s, slab);
3151 * Put all the cpu partial slabs to the node partial list.
3153 static void put_partials(struct kmem_cache *s)
3155 struct slab *partial_slab;
3156 unsigned long flags;
3158 local_lock_irqsave(&s->cpu_slab->lock, flags);
3159 partial_slab = this_cpu_read(s->cpu_slab->partial);
3160 this_cpu_write(s->cpu_slab->partial, NULL);
3161 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3164 __put_partials(s, partial_slab);
3167 static void put_partials_cpu(struct kmem_cache *s,
3168 struct kmem_cache_cpu *c)
3170 struct slab *partial_slab;
3172 partial_slab = slub_percpu_partial(c);
3176 __put_partials(s, partial_slab);
3180 * Put a slab into a partial slab slot if available.
3182 * If we did not find a slot then simply move all the partials to the
3183 * per node partial list.
3185 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3187 struct slab *oldslab;
3188 struct slab *slab_to_put = NULL;
3189 unsigned long flags;
3192 local_lock_irqsave(&s->cpu_slab->lock, flags);
3194 oldslab = this_cpu_read(s->cpu_slab->partial);
3197 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3199 * Partial array is full. Move the existing set to the
3200 * per node partial list. Postpone the actual unfreezing
3201 * outside of the critical section.
3203 slab_to_put = oldslab;
3206 slabs = oldslab->slabs;
3212 slab->slabs = slabs;
3213 slab->next = oldslab;
3215 this_cpu_write(s->cpu_slab->partial, slab);
3217 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3220 __put_partials(s, slab_to_put);
3221 stat(s, CPU_PARTIAL_DRAIN);
3225 #else /* CONFIG_SLUB_CPU_PARTIAL */
3227 static inline void put_partials(struct kmem_cache *s) { }
3228 static inline void put_partials_cpu(struct kmem_cache *s,
3229 struct kmem_cache_cpu *c) { }
3231 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3233 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3235 unsigned long flags;
3239 local_lock_irqsave(&s->cpu_slab->lock, flags);
3242 freelist = c->freelist;
3246 c->tid = next_tid(c->tid);
3248 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3251 deactivate_slab(s, slab, freelist);
3252 stat(s, CPUSLAB_FLUSH);
3256 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3258 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3259 void *freelist = c->freelist;
3260 struct slab *slab = c->slab;
3264 c->tid = next_tid(c->tid);
3267 deactivate_slab(s, slab, freelist);
3268 stat(s, CPUSLAB_FLUSH);
3271 put_partials_cpu(s, c);
3274 struct slub_flush_work {
3275 struct work_struct work;
3276 struct kmem_cache *s;
3283 * Called from CPU work handler with migration disabled.
3285 static void flush_cpu_slab(struct work_struct *w)
3287 struct kmem_cache *s;
3288 struct kmem_cache_cpu *c;
3289 struct slub_flush_work *sfw;
3291 sfw = container_of(w, struct slub_flush_work, work);
3294 c = this_cpu_ptr(s->cpu_slab);
3302 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3304 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3306 return c->slab || slub_percpu_partial(c);
3309 static DEFINE_MUTEX(flush_lock);
3310 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3312 static void flush_all_cpus_locked(struct kmem_cache *s)
3314 struct slub_flush_work *sfw;
3317 lockdep_assert_cpus_held();
3318 mutex_lock(&flush_lock);
3320 for_each_online_cpu(cpu) {
3321 sfw = &per_cpu(slub_flush, cpu);
3322 if (!has_cpu_slab(cpu, s)) {
3326 INIT_WORK(&sfw->work, flush_cpu_slab);
3329 queue_work_on(cpu, flushwq, &sfw->work);
3332 for_each_online_cpu(cpu) {
3333 sfw = &per_cpu(slub_flush, cpu);
3336 flush_work(&sfw->work);
3339 mutex_unlock(&flush_lock);
3342 static void flush_all(struct kmem_cache *s)
3345 flush_all_cpus_locked(s);
3350 * Use the cpu notifier to insure that the cpu slabs are flushed when
3353 static int slub_cpu_dead(unsigned int cpu)
3355 struct kmem_cache *s;
3357 mutex_lock(&slab_mutex);
3358 list_for_each_entry(s, &slab_caches, list)
3359 __flush_cpu_slab(s, cpu);
3360 mutex_unlock(&slab_mutex);
3364 #else /* CONFIG_SLUB_TINY */
3365 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3366 static inline void flush_all(struct kmem_cache *s) { }
3367 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3368 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3369 #endif /* CONFIG_SLUB_TINY */
3372 * Check if the objects in a per cpu structure fit numa
3373 * locality expectations.
3375 static inline int node_match(struct slab *slab, int node)
3378 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3384 #ifdef CONFIG_SLUB_DEBUG
3385 static int count_free(struct slab *slab)
3387 return slab->objects - slab->inuse;
3390 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3392 return atomic_long_read(&n->total_objects);
3395 /* Supports checking bulk free of a constructed freelist */
3396 static inline bool free_debug_processing(struct kmem_cache *s,
3397 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3398 unsigned long addr, depot_stack_handle_t handle)
3400 bool checks_ok = false;
3401 void *object = head;
3404 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3405 if (!check_slab(s, slab))
3409 if (slab->inuse < *bulk_cnt) {
3410 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3411 slab->inuse, *bulk_cnt);
3417 if (++cnt > *bulk_cnt)
3420 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3421 if (!free_consistency_checks(s, slab, object, addr))
3425 if (s->flags & SLAB_STORE_USER)
3426 set_track_update(s, object, TRACK_FREE, addr, handle);
3427 trace(s, slab, object, 0);
3428 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3429 init_object(s, object, SLUB_RED_INACTIVE);
3431 /* Reached end of constructed freelist yet? */
3432 if (object != tail) {
3433 object = get_freepointer(s, object);
3439 if (cnt != *bulk_cnt) {
3440 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3448 slab_fix(s, "Object at 0x%p not freed", object);
3452 #endif /* CONFIG_SLUB_DEBUG */
3454 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3455 static unsigned long count_partial(struct kmem_cache_node *n,
3456 int (*get_count)(struct slab *))
3458 unsigned long flags;
3459 unsigned long x = 0;
3462 spin_lock_irqsave(&n->list_lock, flags);
3463 list_for_each_entry(slab, &n->partial, slab_list)
3464 x += get_count(slab);
3465 spin_unlock_irqrestore(&n->list_lock, flags);
3468 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3470 #ifdef CONFIG_SLUB_DEBUG
3471 #define MAX_PARTIAL_TO_SCAN 10000
3473 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3475 unsigned long flags;
3476 unsigned long x = 0;
3479 spin_lock_irqsave(&n->list_lock, flags);
3480 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3481 list_for_each_entry(slab, &n->partial, slab_list)
3482 x += slab->objects - slab->inuse;
3485 * For a long list, approximate the total count of objects in
3486 * it to meet the limit on the number of slabs to scan.
3487 * Scan from both the list's head and tail for better accuracy.
3489 unsigned long scanned = 0;
3491 list_for_each_entry(slab, &n->partial, slab_list) {
3492 x += slab->objects - slab->inuse;
3493 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3496 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3497 x += slab->objects - slab->inuse;
3498 if (++scanned == MAX_PARTIAL_TO_SCAN)
3501 x = mult_frac(x, n->nr_partial, scanned);
3502 x = min(x, node_nr_objs(n));
3504 spin_unlock_irqrestore(&n->list_lock, flags);
3508 static noinline void
3509 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3511 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3512 DEFAULT_RATELIMIT_BURST);
3513 int cpu = raw_smp_processor_id();
3515 struct kmem_cache_node *n;
3517 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3520 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3521 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3522 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3523 s->name, s->object_size, s->size, oo_order(s->oo),
3526 if (oo_order(s->min) > get_order(s->object_size))
3527 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3530 for_each_kmem_cache_node(s, node, n) {
3531 unsigned long nr_slabs;
3532 unsigned long nr_objs;
3533 unsigned long nr_free;
3535 nr_free = count_partial_free_approx(n);
3536 nr_slabs = node_nr_slabs(n);
3537 nr_objs = node_nr_objs(n);
3539 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3540 node, nr_slabs, nr_objs, nr_free);
3543 #else /* CONFIG_SLUB_DEBUG */
3545 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3548 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3550 if (unlikely(slab_test_pfmemalloc(slab)))
3551 return gfp_pfmemalloc_allowed(gfpflags);
3556 #ifndef CONFIG_SLUB_TINY
3558 __update_cpu_freelist_fast(struct kmem_cache *s,
3559 void *freelist_old, void *freelist_new,
3562 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3563 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3565 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3566 &old.full, new.full);
3570 * Check the slab->freelist and either transfer the freelist to the
3571 * per cpu freelist or deactivate the slab.
3573 * The slab is still frozen if the return value is not NULL.
3575 * If this function returns NULL then the slab has been unfrozen.
3577 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3580 unsigned long counters;
3583 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3586 freelist = slab->freelist;
3587 counters = slab->counters;
3589 new.counters = counters;
3591 new.inuse = slab->objects;
3592 new.frozen = freelist != NULL;
3594 } while (!__slab_update_freelist(s, slab,
3603 * Freeze the partial slab and return the pointer to the freelist.
3605 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3608 unsigned long counters;
3612 freelist = slab->freelist;
3613 counters = slab->counters;
3615 new.counters = counters;
3616 VM_BUG_ON(new.frozen);
3618 new.inuse = slab->objects;
3621 } while (!slab_update_freelist(s, slab,
3630 * Slow path. The lockless freelist is empty or we need to perform
3633 * Processing is still very fast if new objects have been freed to the
3634 * regular freelist. In that case we simply take over the regular freelist
3635 * as the lockless freelist and zap the regular freelist.
3637 * If that is not working then we fall back to the partial lists. We take the
3638 * first element of the freelist as the object to allocate now and move the
3639 * rest of the freelist to the lockless freelist.
3641 * And if we were unable to get a new slab from the partial slab lists then
3642 * we need to allocate a new slab. This is the slowest path since it involves
3643 * a call to the page allocator and the setup of a new slab.
3645 * Version of __slab_alloc to use when we know that preemption is
3646 * already disabled (which is the case for bulk allocation).
3648 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3649 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3653 unsigned long flags;
3654 struct partial_context pc;
3655 bool try_thisnode = true;
3657 stat(s, ALLOC_SLOWPATH);
3661 slab = READ_ONCE(c->slab);
3664 * if the node is not online or has no normal memory, just
3665 * ignore the node constraint
3667 if (unlikely(node != NUMA_NO_NODE &&
3668 !node_isset(node, slab_nodes)))
3669 node = NUMA_NO_NODE;
3673 if (unlikely(!node_match(slab, node))) {
3675 * same as above but node_match() being false already
3676 * implies node != NUMA_NO_NODE
3678 if (!node_isset(node, slab_nodes)) {
3679 node = NUMA_NO_NODE;
3681 stat(s, ALLOC_NODE_MISMATCH);
3682 goto deactivate_slab;
3687 * By rights, we should be searching for a slab page that was
3688 * PFMEMALLOC but right now, we are losing the pfmemalloc
3689 * information when the page leaves the per-cpu allocator
3691 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3692 goto deactivate_slab;
3694 /* must check again c->slab in case we got preempted and it changed */
3695 local_lock_irqsave(&s->cpu_slab->lock, flags);
3696 if (unlikely(slab != c->slab)) {
3697 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3700 freelist = c->freelist;
3704 freelist = get_freelist(s, slab);
3708 c->tid = next_tid(c->tid);
3709 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3710 stat(s, DEACTIVATE_BYPASS);
3714 stat(s, ALLOC_REFILL);
3718 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3721 * freelist is pointing to the list of objects to be used.
3722 * slab is pointing to the slab from which the objects are obtained.
3723 * That slab must be frozen for per cpu allocations to work.
3725 VM_BUG_ON(!c->slab->frozen);
3726 c->freelist = get_freepointer(s, freelist);
3727 c->tid = next_tid(c->tid);
3728 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3733 local_lock_irqsave(&s->cpu_slab->lock, flags);
3734 if (slab != c->slab) {
3735 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3738 freelist = c->freelist;
3741 c->tid = next_tid(c->tid);
3742 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3743 deactivate_slab(s, slab, freelist);
3747 #ifdef CONFIG_SLUB_CPU_PARTIAL
3748 while (slub_percpu_partial(c)) {
3749 local_lock_irqsave(&s->cpu_slab->lock, flags);
3750 if (unlikely(c->slab)) {
3751 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3754 if (unlikely(!slub_percpu_partial(c))) {
3755 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3756 /* we were preempted and partial list got empty */
3760 slab = slub_percpu_partial(c);
3761 slub_set_percpu_partial(c, slab);
3763 if (likely(node_match(slab, node) &&
3764 pfmemalloc_match(slab, gfpflags))) {
3766 freelist = get_freelist(s, slab);
3767 VM_BUG_ON(!freelist);
3768 stat(s, CPU_PARTIAL_ALLOC);
3772 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3775 __put_partials(s, slab);
3781 pc.flags = gfpflags;
3783 * When a preferred node is indicated but no __GFP_THISNODE
3785 * 1) try to get a partial slab from target node only by having
3786 * __GFP_THISNODE in pc.flags for get_partial()
3787 * 2) if 1) failed, try to allocate a new slab from target node with
3788 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3789 * 3) if 2) failed, retry with original gfpflags which will allow
3790 * get_partial() try partial lists of other nodes before potentially
3791 * allocating new page from other nodes
3793 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3795 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3797 pc.orig_size = orig_size;
3798 slab = get_partial(s, node, &pc);
3800 if (kmem_cache_debug(s)) {
3801 freelist = pc.object;
3803 * For debug caches here we had to go through
3804 * alloc_single_from_partial() so just store the
3805 * tracking info and return the object.
3807 if (s->flags & SLAB_STORE_USER)
3808 set_track(s, freelist, TRACK_ALLOC, addr);
3813 freelist = freeze_slab(s, slab);
3814 goto retry_load_slab;
3817 slub_put_cpu_ptr(s->cpu_slab);
3818 slab = new_slab(s, pc.flags, node);
3819 c = slub_get_cpu_ptr(s->cpu_slab);
3821 if (unlikely(!slab)) {
3822 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3824 try_thisnode = false;
3827 slab_out_of_memory(s, gfpflags, node);
3831 stat(s, ALLOC_SLAB);
3833 if (kmem_cache_debug(s)) {
3834 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3836 if (unlikely(!freelist))
3839 if (s->flags & SLAB_STORE_USER)
3840 set_track(s, freelist, TRACK_ALLOC, addr);
3846 * No other reference to the slab yet so we can
3847 * muck around with it freely without cmpxchg
3849 freelist = slab->freelist;
3850 slab->freelist = NULL;
3851 slab->inuse = slab->objects;
3854 inc_slabs_node(s, slab_nid(slab), slab->objects);
3856 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3858 * For !pfmemalloc_match() case we don't load freelist so that
3859 * we don't make further mismatched allocations easier.
3861 deactivate_slab(s, slab, get_freepointer(s, freelist));
3867 local_lock_irqsave(&s->cpu_slab->lock, flags);
3868 if (unlikely(c->slab)) {
3869 void *flush_freelist = c->freelist;
3870 struct slab *flush_slab = c->slab;
3874 c->tid = next_tid(c->tid);
3876 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3878 deactivate_slab(s, flush_slab, flush_freelist);
3880 stat(s, CPUSLAB_FLUSH);
3882 goto retry_load_slab;
3890 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3891 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3894 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3895 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3899 #ifdef CONFIG_PREEMPT_COUNT
3901 * We may have been preempted and rescheduled on a different
3902 * cpu before disabling preemption. Need to reload cpu area
3905 c = slub_get_cpu_ptr(s->cpu_slab);
3908 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3909 #ifdef CONFIG_PREEMPT_COUNT
3910 slub_put_cpu_ptr(s->cpu_slab);
3915 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3916 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3918 struct kmem_cache_cpu *c;
3925 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3926 * enabled. We may switch back and forth between cpus while
3927 * reading from one cpu area. That does not matter as long
3928 * as we end up on the original cpu again when doing the cmpxchg.
3930 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3931 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3932 * the tid. If we are preempted and switched to another cpu between the
3933 * two reads, it's OK as the two are still associated with the same cpu
3934 * and cmpxchg later will validate the cpu.
3936 c = raw_cpu_ptr(s->cpu_slab);
3937 tid = READ_ONCE(c->tid);
3940 * Irqless object alloc/free algorithm used here depends on sequence
3941 * of fetching cpu_slab's data. tid should be fetched before anything
3942 * on c to guarantee that object and slab associated with previous tid
3943 * won't be used with current tid. If we fetch tid first, object and
3944 * slab could be one associated with next tid and our alloc/free
3945 * request will be failed. In this case, we will retry. So, no problem.
3950 * The transaction ids are globally unique per cpu and per operation on
3951 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3952 * occurs on the right processor and that there was no operation on the
3953 * linked list in between.
3956 object = c->freelist;
3959 if (!USE_LOCKLESS_FAST_PATH() ||
3960 unlikely(!object || !slab || !node_match(slab, node))) {
3961 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3963 void *next_object = get_freepointer_safe(s, object);
3966 * The cmpxchg will only match if there was no additional
3967 * operation and if we are on the right processor.
3969 * The cmpxchg does the following atomically (without lock
3971 * 1. Relocate first pointer to the current per cpu area.
3972 * 2. Verify that tid and freelist have not been changed
3973 * 3. If they were not changed replace tid and freelist
3975 * Since this is without lock semantics the protection is only
3976 * against code executing on this cpu *not* from access by
3979 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3980 note_cmpxchg_failure("slab_alloc", s, tid);
3983 prefetch_freepointer(s, next_object);
3984 stat(s, ALLOC_FASTPATH);
3989 #else /* CONFIG_SLUB_TINY */
3990 static void *__slab_alloc_node(struct kmem_cache *s,
3991 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3993 struct partial_context pc;
3997 pc.flags = gfpflags;
3998 pc.orig_size = orig_size;
3999 slab = get_partial(s, node, &pc);
4004 slab = new_slab(s, gfpflags, node);
4005 if (unlikely(!slab)) {
4006 slab_out_of_memory(s, gfpflags, node);
4010 object = alloc_single_from_new_slab(s, slab, orig_size);
4014 #endif /* CONFIG_SLUB_TINY */
4017 * If the object has been wiped upon free, make sure it's fully initialized by
4018 * zeroing out freelist pointer.
4020 * Note that we also wipe custom freelist pointers.
4022 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4025 if (unlikely(slab_want_init_on_free(s)) && obj &&
4026 !freeptr_outside_object(s))
4027 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4031 static __fastpath_inline
4032 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4034 flags &= gfp_allowed_mask;
4038 if (unlikely(should_failslab(s, flags)))
4044 static __fastpath_inline
4045 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4046 gfp_t flags, size_t size, void **p, bool init,
4047 unsigned int orig_size)
4049 unsigned int zero_size = s->object_size;
4050 bool kasan_init = init;
4052 gfp_t init_flags = flags & gfp_allowed_mask;
4055 * For kmalloc object, the allocated memory size(object_size) is likely
4056 * larger than the requested size(orig_size). If redzone check is
4057 * enabled for the extra space, don't zero it, as it will be redzoned
4058 * soon. The redzone operation for this extra space could be seen as a
4059 * replacement of current poisoning under certain debug option, and
4060 * won't break other sanity checks.
4062 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4063 (s->flags & SLAB_KMALLOC))
4064 zero_size = orig_size;
4067 * When slab_debug is enabled, avoid memory initialization integrated
4068 * into KASAN and instead zero out the memory via the memset below with
4069 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4070 * cause false-positive reports. This does not lead to a performance
4071 * penalty on production builds, as slab_debug is not intended to be
4074 if (__slub_debug_enabled())
4078 * As memory initialization might be integrated into KASAN,
4079 * kasan_slab_alloc and initialization memset must be
4080 * kept together to avoid discrepancies in behavior.
4082 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4084 for (i = 0; i < size; i++) {
4085 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4086 if (p[i] && init && (!kasan_init ||
4087 !kasan_has_integrated_init()))
4088 memset(p[i], 0, zero_size);
4089 kmemleak_alloc_recursive(p[i], s->object_size, 1,
4090 s->flags, init_flags);
4091 kmsan_slab_alloc(s, p[i], init_flags);
4092 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4095 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4099 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4100 * have the fastpath folded into their functions. So no function call
4101 * overhead for requests that can be satisfied on the fastpath.
4103 * The fastpath works by first checking if the lockless freelist can be used.
4104 * If not then __slab_alloc is called for slow processing.
4106 * Otherwise we can simply pick the next object from the lockless free list.
4108 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4109 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4114 s = slab_pre_alloc_hook(s, gfpflags);
4118 object = kfence_alloc(s, orig_size, gfpflags);
4119 if (unlikely(object))
4122 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4124 maybe_wipe_obj_freeptr(s, object);
4125 init = slab_want_init_on_alloc(gfpflags, s);
4129 * When init equals 'true', like for kzalloc() family, only
4130 * @orig_size bytes might be zeroed instead of s->object_size
4131 * In case this fails due to memcg_slab_post_alloc_hook(),
4132 * object is set to NULL
4134 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4139 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4141 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4144 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4148 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4150 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4153 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4156 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4160 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4162 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4164 if (!memcg_kmem_online())
4167 return memcg_slab_post_charge(objp, gfpflags);
4169 EXPORT_SYMBOL(kmem_cache_charge);
4172 * kmem_cache_alloc_node - Allocate an object on the specified node
4173 * @s: The cache to allocate from.
4174 * @gfpflags: See kmalloc().
4175 * @node: node number of the target node.
4177 * Identical to kmem_cache_alloc but it will allocate memory on the given
4178 * node, which can improve the performance for cpu bound structures.
4180 * Fallback to other node is possible if __GFP_THISNODE is not set.
4182 * Return: pointer to the new object or %NULL in case of error
4184 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4186 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4188 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4192 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4195 * To avoid unnecessary overhead, we pass through large allocation requests
4196 * directly to the page allocator. We use __GFP_COMP, because we will need to
4197 * know the allocation order to free the pages properly in kfree.
4199 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4201 struct folio *folio;
4203 unsigned int order = get_order(size);
4205 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4206 flags = kmalloc_fix_flags(flags);
4208 flags |= __GFP_COMP;
4209 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4211 ptr = folio_address(folio);
4212 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4213 PAGE_SIZE << order);
4216 ptr = kasan_kmalloc_large(ptr, size, flags);
4217 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4218 kmemleak_alloc(ptr, size, 1, flags);
4219 kmsan_kmalloc_large(ptr, size, flags);
4224 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4226 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4228 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4229 flags, NUMA_NO_NODE);
4232 EXPORT_SYMBOL(__kmalloc_large_noprof);
4234 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4236 void *ret = ___kmalloc_large_node(size, flags, node);
4238 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4242 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4244 static __always_inline
4245 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4246 unsigned long caller)
4248 struct kmem_cache *s;
4251 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4252 ret = __kmalloc_large_node_noprof(size, flags, node);
4253 trace_kmalloc(caller, ret, size,
4254 PAGE_SIZE << get_order(size), flags, node);
4258 if (unlikely(!size))
4259 return ZERO_SIZE_PTR;
4261 s = kmalloc_slab(size, b, flags, caller);
4263 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4264 ret = kasan_kmalloc(s, ret, size, flags);
4265 trace_kmalloc(caller, ret, size, s->size, flags, node);
4268 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4270 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4272 EXPORT_SYMBOL(__kmalloc_node_noprof);
4274 void *__kmalloc_noprof(size_t size, gfp_t flags)
4276 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4278 EXPORT_SYMBOL(__kmalloc_noprof);
4280 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4281 int node, unsigned long caller)
4283 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4286 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4288 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4290 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4293 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4295 ret = kasan_kmalloc(s, ret, size, gfpflags);
4298 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4300 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4301 int node, size_t size)
4303 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4305 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4307 ret = kasan_kmalloc(s, ret, size, gfpflags);
4310 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4312 static noinline void free_to_partial_list(
4313 struct kmem_cache *s, struct slab *slab,
4314 void *head, void *tail, int bulk_cnt,
4317 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4318 struct slab *slab_free = NULL;
4320 unsigned long flags;
4321 depot_stack_handle_t handle = 0;
4323 if (s->flags & SLAB_STORE_USER)
4324 handle = set_track_prepare();
4326 spin_lock_irqsave(&n->list_lock, flags);
4328 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4329 void *prior = slab->freelist;
4331 /* Perform the actual freeing while we still hold the locks */
4333 set_freepointer(s, tail, prior);
4334 slab->freelist = head;
4337 * If the slab is empty, and node's partial list is full,
4338 * it should be discarded anyway no matter it's on full or
4341 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4345 /* was on full list */
4346 remove_full(s, n, slab);
4348 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4349 stat(s, FREE_ADD_PARTIAL);
4351 } else if (slab_free) {
4352 remove_partial(n, slab);
4353 stat(s, FREE_REMOVE_PARTIAL);
4359 * Update the counters while still holding n->list_lock to
4360 * prevent spurious validation warnings
4362 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4365 spin_unlock_irqrestore(&n->list_lock, flags);
4369 free_slab(s, slab_free);
4374 * Slow path handling. This may still be called frequently since objects
4375 * have a longer lifetime than the cpu slabs in most processing loads.
4377 * So we still attempt to reduce cache line usage. Just take the slab
4378 * lock and free the item. If there is no additional partial slab
4379 * handling required then we can return immediately.
4381 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4382 void *head, void *tail, int cnt,
4389 unsigned long counters;
4390 struct kmem_cache_node *n = NULL;
4391 unsigned long flags;
4392 bool on_node_partial;
4394 stat(s, FREE_SLOWPATH);
4396 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4397 free_to_partial_list(s, slab, head, tail, cnt, addr);
4403 spin_unlock_irqrestore(&n->list_lock, flags);
4406 prior = slab->freelist;
4407 counters = slab->counters;
4408 set_freepointer(s, tail, prior);
4409 new.counters = counters;
4410 was_frozen = new.frozen;
4412 if ((!new.inuse || !prior) && !was_frozen) {
4413 /* Needs to be taken off a list */
4414 if (!kmem_cache_has_cpu_partial(s) || prior) {
4416 n = get_node(s, slab_nid(slab));
4418 * Speculatively acquire the list_lock.
4419 * If the cmpxchg does not succeed then we may
4420 * drop the list_lock without any processing.
4422 * Otherwise the list_lock will synchronize with
4423 * other processors updating the list of slabs.
4425 spin_lock_irqsave(&n->list_lock, flags);
4427 on_node_partial = slab_test_node_partial(slab);
4431 } while (!slab_update_freelist(s, slab,
4438 if (likely(was_frozen)) {
4440 * The list lock was not taken therefore no list
4441 * activity can be necessary.
4443 stat(s, FREE_FROZEN);
4444 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4446 * If we started with a full slab then put it onto the
4447 * per cpu partial list.
4449 put_cpu_partial(s, slab, 1);
4450 stat(s, CPU_PARTIAL_FREE);
4457 * This slab was partially empty but not on the per-node partial list,
4458 * in which case we shouldn't manipulate its list, just return.
4460 if (prior && !on_node_partial) {
4461 spin_unlock_irqrestore(&n->list_lock, flags);
4465 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4469 * Objects left in the slab. If it was not on the partial list before
4472 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4473 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4474 stat(s, FREE_ADD_PARTIAL);
4476 spin_unlock_irqrestore(&n->list_lock, flags);
4482 * Slab on the partial list.
4484 remove_partial(n, slab);
4485 stat(s, FREE_REMOVE_PARTIAL);
4488 spin_unlock_irqrestore(&n->list_lock, flags);
4490 discard_slab(s, slab);
4493 #ifndef CONFIG_SLUB_TINY
4495 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4496 * can perform fastpath freeing without additional function calls.
4498 * The fastpath is only possible if we are freeing to the current cpu slab
4499 * of this processor. This typically the case if we have just allocated
4502 * If fastpath is not possible then fall back to __slab_free where we deal
4503 * with all sorts of special processing.
4505 * Bulk free of a freelist with several objects (all pointing to the
4506 * same slab) possible by specifying head and tail ptr, plus objects
4507 * count (cnt). Bulk free indicated by tail pointer being set.
4509 static __always_inline void do_slab_free(struct kmem_cache *s,
4510 struct slab *slab, void *head, void *tail,
4511 int cnt, unsigned long addr)
4513 struct kmem_cache_cpu *c;
4519 * Determine the currently cpus per cpu slab.
4520 * The cpu may change afterward. However that does not matter since
4521 * data is retrieved via this pointer. If we are on the same cpu
4522 * during the cmpxchg then the free will succeed.
4524 c = raw_cpu_ptr(s->cpu_slab);
4525 tid = READ_ONCE(c->tid);
4527 /* Same with comment on barrier() in __slab_alloc_node() */
4530 if (unlikely(slab != c->slab)) {
4531 __slab_free(s, slab, head, tail, cnt, addr);
4535 if (USE_LOCKLESS_FAST_PATH()) {
4536 freelist = READ_ONCE(c->freelist);
4538 set_freepointer(s, tail, freelist);
4540 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4541 note_cmpxchg_failure("slab_free", s, tid);
4545 /* Update the free list under the local lock */
4546 local_lock(&s->cpu_slab->lock);
4547 c = this_cpu_ptr(s->cpu_slab);
4548 if (unlikely(slab != c->slab)) {
4549 local_unlock(&s->cpu_slab->lock);
4553 freelist = c->freelist;
4555 set_freepointer(s, tail, freelist);
4557 c->tid = next_tid(tid);
4559 local_unlock(&s->cpu_slab->lock);
4561 stat_add(s, FREE_FASTPATH, cnt);
4563 #else /* CONFIG_SLUB_TINY */
4564 static void do_slab_free(struct kmem_cache *s,
4565 struct slab *slab, void *head, void *tail,
4566 int cnt, unsigned long addr)
4568 __slab_free(s, slab, head, tail, cnt, addr);
4570 #endif /* CONFIG_SLUB_TINY */
4572 static __fastpath_inline
4573 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4576 memcg_slab_free_hook(s, slab, &object, 1);
4577 alloc_tagging_slab_free_hook(s, slab, &object, 1);
4579 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4580 do_slab_free(s, slab, object, object, 1, addr);
4584 /* Do not inline the rare memcg charging failed path into the allocation path */
4586 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4588 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4589 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4593 static __fastpath_inline
4594 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4595 void *tail, void **p, int cnt, unsigned long addr)
4597 memcg_slab_free_hook(s, slab, p, cnt);
4598 alloc_tagging_slab_free_hook(s, slab, p, cnt);
4600 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4601 * to remove objects, whose reuse must be delayed.
4603 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4604 do_slab_free(s, slab, head, tail, cnt, addr);
4607 #ifdef CONFIG_SLUB_RCU_DEBUG
4608 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4610 struct rcu_delayed_free *delayed_free =
4611 container_of(rcu_head, struct rcu_delayed_free, head);
4612 void *object = delayed_free->object;
4613 struct slab *slab = virt_to_slab(object);
4614 struct kmem_cache *s;
4616 kfree(delayed_free);
4618 if (WARN_ON(is_kfence_address(object)))
4621 /* find the object and the cache again */
4624 s = slab->slab_cache;
4625 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4628 /* resume freeing */
4629 if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4630 do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4632 #endif /* CONFIG_SLUB_RCU_DEBUG */
4634 #ifdef CONFIG_KASAN_GENERIC
4635 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4637 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4641 static inline struct kmem_cache *virt_to_cache(const void *obj)
4645 slab = virt_to_slab(obj);
4646 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4648 return slab->slab_cache;
4651 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4653 struct kmem_cache *cachep;
4655 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4656 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4659 cachep = virt_to_cache(x);
4660 if (WARN(cachep && cachep != s,
4661 "%s: Wrong slab cache. %s but object is from %s\n",
4662 __func__, s->name, cachep->name))
4663 print_tracking(cachep, x);
4668 * kmem_cache_free - Deallocate an object
4669 * @s: The cache the allocation was from.
4670 * @x: The previously allocated object.
4672 * Free an object which was previously allocated from this
4675 void kmem_cache_free(struct kmem_cache *s, void *x)
4677 s = cache_from_obj(s, x);
4680 trace_kmem_cache_free(_RET_IP_, x, s);
4681 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4683 EXPORT_SYMBOL(kmem_cache_free);
4685 static void free_large_kmalloc(struct folio *folio, void *object)
4687 unsigned int order = folio_order(folio);
4689 if (WARN_ON_ONCE(order == 0))
4690 pr_warn_once("object pointer: 0x%p\n", object);
4692 kmemleak_free(object);
4693 kasan_kfree_large(object);
4694 kmsan_kfree_large(object);
4696 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4697 -(PAGE_SIZE << order));
4702 * kfree - free previously allocated memory
4703 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4705 * If @object is NULL, no operation is performed.
4707 void kfree(const void *object)
4709 struct folio *folio;
4711 struct kmem_cache *s;
4712 void *x = (void *)object;
4714 trace_kfree(_RET_IP_, object);
4716 if (unlikely(ZERO_OR_NULL_PTR(object)))
4719 folio = virt_to_folio(object);
4720 if (unlikely(!folio_test_slab(folio))) {
4721 free_large_kmalloc(folio, (void *)object);
4725 slab = folio_slab(folio);
4726 s = slab->slab_cache;
4727 slab_free(s, slab, x, _RET_IP_);
4729 EXPORT_SYMBOL(kfree);
4731 struct detached_freelist {
4736 struct kmem_cache *s;
4740 * This function progressively scans the array with free objects (with
4741 * a limited look ahead) and extract objects belonging to the same
4742 * slab. It builds a detached freelist directly within the given
4743 * slab/objects. This can happen without any need for
4744 * synchronization, because the objects are owned by running process.
4745 * The freelist is build up as a single linked list in the objects.
4746 * The idea is, that this detached freelist can then be bulk
4747 * transferred to the real freelist(s), but only requiring a single
4748 * synchronization primitive. Look ahead in the array is limited due
4749 * to performance reasons.
4752 int build_detached_freelist(struct kmem_cache *s, size_t size,
4753 void **p, struct detached_freelist *df)
4757 struct folio *folio;
4761 folio = virt_to_folio(object);
4763 /* Handle kalloc'ed objects */
4764 if (unlikely(!folio_test_slab(folio))) {
4765 free_large_kmalloc(folio, object);
4769 /* Derive kmem_cache from object */
4770 df->slab = folio_slab(folio);
4771 df->s = df->slab->slab_cache;
4773 df->slab = folio_slab(folio);
4774 df->s = cache_from_obj(s, object); /* Support for memcg */
4777 /* Start new detached freelist */
4779 df->freelist = object;
4782 if (is_kfence_address(object))
4785 set_freepointer(df->s, object, NULL);
4790 /* df->slab is always set at this point */
4791 if (df->slab == virt_to_slab(object)) {
4792 /* Opportunity build freelist */
4793 set_freepointer(df->s, object, df->freelist);
4794 df->freelist = object;
4798 swap(p[size], p[same]);
4802 /* Limit look ahead search */
4811 * Internal bulk free of objects that were not initialised by the post alloc
4812 * hooks and thus should not be processed by the free hooks
4814 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4820 struct detached_freelist df;
4822 size = build_detached_freelist(s, size, p, &df);
4826 if (kfence_free(df.freelist))
4829 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4831 } while (likely(size));
4834 /* Note that interrupts must be enabled when calling this function. */
4835 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4841 struct detached_freelist df;
4843 size = build_detached_freelist(s, size, p, &df);
4847 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4849 } while (likely(size));
4851 EXPORT_SYMBOL(kmem_cache_free_bulk);
4853 #ifndef CONFIG_SLUB_TINY
4855 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4858 struct kmem_cache_cpu *c;
4859 unsigned long irqflags;
4863 * Drain objects in the per cpu slab, while disabling local
4864 * IRQs, which protects against PREEMPT and interrupts
4865 * handlers invoking normal fastpath.
4867 c = slub_get_cpu_ptr(s->cpu_slab);
4868 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4870 for (i = 0; i < size; i++) {
4871 void *object = kfence_alloc(s, s->object_size, flags);
4873 if (unlikely(object)) {
4878 object = c->freelist;
4879 if (unlikely(!object)) {
4881 * We may have removed an object from c->freelist using
4882 * the fastpath in the previous iteration; in that case,
4883 * c->tid has not been bumped yet.
4884 * Since ___slab_alloc() may reenable interrupts while
4885 * allocating memory, we should bump c->tid now.
4887 c->tid = next_tid(c->tid);
4889 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4892 * Invoking slow path likely have side-effect
4893 * of re-populating per CPU c->freelist
4895 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4896 _RET_IP_, c, s->object_size);
4897 if (unlikely(!p[i]))
4900 c = this_cpu_ptr(s->cpu_slab);
4901 maybe_wipe_obj_freeptr(s, p[i]);
4903 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4905 continue; /* goto for-loop */
4907 c->freelist = get_freepointer(s, object);
4909 maybe_wipe_obj_freeptr(s, p[i]);
4910 stat(s, ALLOC_FASTPATH);
4912 c->tid = next_tid(c->tid);
4913 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4914 slub_put_cpu_ptr(s->cpu_slab);
4919 slub_put_cpu_ptr(s->cpu_slab);
4920 __kmem_cache_free_bulk(s, i, p);
4924 #else /* CONFIG_SLUB_TINY */
4925 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4926 size_t size, void **p)
4930 for (i = 0; i < size; i++) {
4931 void *object = kfence_alloc(s, s->object_size, flags);
4933 if (unlikely(object)) {
4938 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4939 _RET_IP_, s->object_size);
4940 if (unlikely(!p[i]))
4943 maybe_wipe_obj_freeptr(s, p[i]);
4949 __kmem_cache_free_bulk(s, i, p);
4952 #endif /* CONFIG_SLUB_TINY */
4954 /* Note that interrupts must be enabled when calling this function. */
4955 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4963 s = slab_pre_alloc_hook(s, flags);
4967 i = __kmem_cache_alloc_bulk(s, flags, size, p);
4968 if (unlikely(i == 0))
4972 * memcg and kmem_cache debug support and memory initialization.
4973 * Done outside of the IRQ disabled fastpath loop.
4975 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4976 slab_want_init_on_alloc(flags, s), s->object_size))) {
4981 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
4985 * Object placement in a slab is made very easy because we always start at
4986 * offset 0. If we tune the size of the object to the alignment then we can
4987 * get the required alignment by putting one properly sized object after
4990 * Notice that the allocation order determines the sizes of the per cpu
4991 * caches. Each processor has always one slab available for allocations.
4992 * Increasing the allocation order reduces the number of times that slabs
4993 * must be moved on and off the partial lists and is therefore a factor in
4998 * Minimum / Maximum order of slab pages. This influences locking overhead
4999 * and slab fragmentation. A higher order reduces the number of partial slabs
5000 * and increases the number of allocations possible without having to
5001 * take the list_lock.
5003 static unsigned int slub_min_order;
5004 static unsigned int slub_max_order =
5005 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5006 static unsigned int slub_min_objects;
5009 * Calculate the order of allocation given an slab object size.
5011 * The order of allocation has significant impact on performance and other
5012 * system components. Generally order 0 allocations should be preferred since
5013 * order 0 does not cause fragmentation in the page allocator. Larger objects
5014 * be problematic to put into order 0 slabs because there may be too much
5015 * unused space left. We go to a higher order if more than 1/16th of the slab
5018 * In order to reach satisfactory performance we must ensure that a minimum
5019 * number of objects is in one slab. Otherwise we may generate too much
5020 * activity on the partial lists which requires taking the list_lock. This is
5021 * less a concern for large slabs though which are rarely used.
5023 * slab_max_order specifies the order where we begin to stop considering the
5024 * number of objects in a slab as critical. If we reach slab_max_order then
5025 * we try to keep the page order as low as possible. So we accept more waste
5026 * of space in favor of a small page order.
5028 * Higher order allocations also allow the placement of more objects in a
5029 * slab and thereby reduce object handling overhead. If the user has
5030 * requested a higher minimum order then we start with that one instead of
5031 * the smallest order which will fit the object.
5033 static inline unsigned int calc_slab_order(unsigned int size,
5034 unsigned int min_order, unsigned int max_order,
5035 unsigned int fract_leftover)
5039 for (order = min_order; order <= max_order; order++) {
5041 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5044 rem = slab_size % size;
5046 if (rem <= slab_size / fract_leftover)
5053 static inline int calculate_order(unsigned int size)
5056 unsigned int min_objects;
5057 unsigned int max_objects;
5058 unsigned int min_order;
5060 min_objects = slub_min_objects;
5063 * Some architectures will only update present cpus when
5064 * onlining them, so don't trust the number if it's just 1. But
5065 * we also don't want to use nr_cpu_ids always, as on some other
5066 * architectures, there can be many possible cpus, but never
5067 * onlined. Here we compromise between trying to avoid too high
5068 * order on systems that appear larger than they are, and too
5069 * low order on systems that appear smaller than they are.
5071 unsigned int nr_cpus = num_present_cpus();
5073 nr_cpus = nr_cpu_ids;
5074 min_objects = 4 * (fls(nr_cpus) + 1);
5076 /* min_objects can't be 0 because get_order(0) is undefined */
5077 max_objects = max(order_objects(slub_max_order, size), 1U);
5078 min_objects = min(min_objects, max_objects);
5080 min_order = max_t(unsigned int, slub_min_order,
5081 get_order(min_objects * size));
5082 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5083 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5086 * Attempt to find best configuration for a slab. This works by first
5087 * attempting to generate a layout with the best possible configuration
5088 * and backing off gradually.
5090 * We start with accepting at most 1/16 waste and try to find the
5091 * smallest order from min_objects-derived/slab_min_order up to
5092 * slab_max_order that will satisfy the constraint. Note that increasing
5093 * the order can only result in same or less fractional waste, not more.
5095 * If that fails, we increase the acceptable fraction of waste and try
5096 * again. The last iteration with fraction of 1/2 would effectively
5097 * accept any waste and give us the order determined by min_objects, as
5098 * long as at least single object fits within slab_max_order.
5100 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5101 order = calc_slab_order(size, min_order, slub_max_order,
5103 if (order <= slub_max_order)
5108 * Doh this slab cannot be placed using slab_max_order.
5110 order = get_order(size);
5111 if (order <= MAX_PAGE_ORDER)
5117 init_kmem_cache_node(struct kmem_cache_node *n)
5120 spin_lock_init(&n->list_lock);
5121 INIT_LIST_HEAD(&n->partial);
5122 #ifdef CONFIG_SLUB_DEBUG
5123 atomic_long_set(&n->nr_slabs, 0);
5124 atomic_long_set(&n->total_objects, 0);
5125 INIT_LIST_HEAD(&n->full);
5129 #ifndef CONFIG_SLUB_TINY
5130 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5132 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5133 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5134 sizeof(struct kmem_cache_cpu));
5137 * Must align to double word boundary for the double cmpxchg
5138 * instructions to work; see __pcpu_double_call_return_bool().
5140 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5141 2 * sizeof(void *));
5146 init_kmem_cache_cpus(s);
5151 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5155 #endif /* CONFIG_SLUB_TINY */
5157 static struct kmem_cache *kmem_cache_node;
5160 * No kmalloc_node yet so do it by hand. We know that this is the first
5161 * slab on the node for this slabcache. There are no concurrent accesses
5164 * Note that this function only works on the kmem_cache_node
5165 * when allocating for the kmem_cache_node. This is used for bootstrapping
5166 * memory on a fresh node that has no slab structures yet.
5168 static void early_kmem_cache_node_alloc(int node)
5171 struct kmem_cache_node *n;
5173 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5175 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5178 if (slab_nid(slab) != node) {
5179 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5180 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5185 #ifdef CONFIG_SLUB_DEBUG
5186 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5188 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5189 slab->freelist = get_freepointer(kmem_cache_node, n);
5191 kmem_cache_node->node[node] = n;
5192 init_kmem_cache_node(n);
5193 inc_slabs_node(kmem_cache_node, node, slab->objects);
5196 * No locks need to be taken here as it has just been
5197 * initialized and there is no concurrent access.
5199 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
5202 static void free_kmem_cache_nodes(struct kmem_cache *s)
5205 struct kmem_cache_node *n;
5207 for_each_kmem_cache_node(s, node, n) {
5208 s->node[node] = NULL;
5209 kmem_cache_free(kmem_cache_node, n);
5213 void __kmem_cache_release(struct kmem_cache *s)
5215 cache_random_seq_destroy(s);
5216 #ifndef CONFIG_SLUB_TINY
5217 free_percpu(s->cpu_slab);
5219 free_kmem_cache_nodes(s);
5222 static int init_kmem_cache_nodes(struct kmem_cache *s)
5226 for_each_node_mask(node, slab_nodes) {
5227 struct kmem_cache_node *n;
5229 if (slab_state == DOWN) {
5230 early_kmem_cache_node_alloc(node);
5233 n = kmem_cache_alloc_node(kmem_cache_node,
5237 free_kmem_cache_nodes(s);
5241 init_kmem_cache_node(n);
5247 static void set_cpu_partial(struct kmem_cache *s)
5249 #ifdef CONFIG_SLUB_CPU_PARTIAL
5250 unsigned int nr_objects;
5253 * cpu_partial determined the maximum number of objects kept in the
5254 * per cpu partial lists of a processor.
5256 * Per cpu partial lists mainly contain slabs that just have one
5257 * object freed. If they are used for allocation then they can be
5258 * filled up again with minimal effort. The slab will never hit the
5259 * per node partial lists and therefore no locking will be required.
5261 * For backwards compatibility reasons, this is determined as number
5262 * of objects, even though we now limit maximum number of pages, see
5263 * slub_set_cpu_partial()
5265 if (!kmem_cache_has_cpu_partial(s))
5267 else if (s->size >= PAGE_SIZE)
5269 else if (s->size >= 1024)
5271 else if (s->size >= 256)
5276 slub_set_cpu_partial(s, nr_objects);
5281 * calculate_sizes() determines the order and the distribution of data within
5284 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5286 slab_flags_t flags = s->flags;
5287 unsigned int size = s->object_size;
5291 * Round up object size to the next word boundary. We can only
5292 * place the free pointer at word boundaries and this determines
5293 * the possible location of the free pointer.
5295 size = ALIGN(size, sizeof(void *));
5297 #ifdef CONFIG_SLUB_DEBUG
5299 * Determine if we can poison the object itself. If the user of
5300 * the slab may touch the object after free or before allocation
5301 * then we should never poison the object itself.
5303 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5305 s->flags |= __OBJECT_POISON;
5307 s->flags &= ~__OBJECT_POISON;
5311 * If we are Redzoning then check if there is some space between the
5312 * end of the object and the free pointer. If not then add an
5313 * additional word to have some bytes to store Redzone information.
5315 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5316 size += sizeof(void *);
5320 * With that we have determined the number of bytes in actual use
5321 * by the object and redzoning.
5325 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5326 (flags & SLAB_POISON) || s->ctor ||
5327 ((flags & SLAB_RED_ZONE) &&
5328 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5330 * Relocate free pointer after the object if it is not
5331 * permitted to overwrite the first word of the object on
5334 * This is the case if we do RCU, have a constructor or
5335 * destructor, are poisoning the objects, or are
5336 * redzoning an object smaller than sizeof(void *) or are
5337 * redzoning an object with slub_debug_orig_size() enabled,
5338 * in which case the right redzone may be extended.
5340 * The assumption that s->offset >= s->inuse means free
5341 * pointer is outside of the object is used in the
5342 * freeptr_outside_object() function. If that is no
5343 * longer true, the function needs to be modified.
5346 size += sizeof(void *);
5347 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5348 s->offset = args->freeptr_offset;
5351 * Store freelist pointer near middle of object to keep
5352 * it away from the edges of the object to avoid small
5353 * sized over/underflows from neighboring allocations.
5355 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5358 #ifdef CONFIG_SLUB_DEBUG
5359 if (flags & SLAB_STORE_USER) {
5361 * Need to store information about allocs and frees after
5364 size += 2 * sizeof(struct track);
5366 /* Save the original kmalloc request size */
5367 if (flags & SLAB_KMALLOC)
5368 size += sizeof(unsigned int);
5372 kasan_cache_create(s, &size, &s->flags);
5373 #ifdef CONFIG_SLUB_DEBUG
5374 if (flags & SLAB_RED_ZONE) {
5376 * Add some empty padding so that we can catch
5377 * overwrites from earlier objects rather than let
5378 * tracking information or the free pointer be
5379 * corrupted if a user writes before the start
5382 size += sizeof(void *);
5384 s->red_left_pad = sizeof(void *);
5385 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5386 size += s->red_left_pad;
5391 * SLUB stores one object immediately after another beginning from
5392 * offset 0. In order to align the objects we have to simply size
5393 * each object to conform to the alignment.
5395 size = ALIGN(size, s->align);
5397 s->reciprocal_size = reciprocal_value(size);
5398 order = calculate_order(size);
5403 s->allocflags = __GFP_COMP;
5405 if (s->flags & SLAB_CACHE_DMA)
5406 s->allocflags |= GFP_DMA;
5408 if (s->flags & SLAB_CACHE_DMA32)
5409 s->allocflags |= GFP_DMA32;
5411 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5412 s->allocflags |= __GFP_RECLAIMABLE;
5415 * Determine the number of objects per slab
5417 s->oo = oo_make(order, size);
5418 s->min = oo_make(get_order(size), size);
5420 return !!oo_objects(s->oo);
5423 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5426 #ifdef CONFIG_SLUB_DEBUG
5427 void *addr = slab_address(slab);
5430 slab_err(s, slab, text, s->name);
5432 spin_lock(&object_map_lock);
5433 __fill_map(object_map, s, slab);
5435 for_each_object(p, s, addr, slab->objects) {
5437 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5438 if (slab_add_kunit_errors())
5440 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5441 print_tracking(s, p);
5444 spin_unlock(&object_map_lock);
5449 * Attempt to free all partial slabs on a node.
5450 * This is called from __kmem_cache_shutdown(). We must take list_lock
5451 * because sysfs file might still access partial list after the shutdowning.
5453 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5456 struct slab *slab, *h;
5458 BUG_ON(irqs_disabled());
5459 spin_lock_irq(&n->list_lock);
5460 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5462 remove_partial(n, slab);
5463 list_add(&slab->slab_list, &discard);
5465 list_slab_objects(s, slab,
5466 "Objects remaining in %s on __kmem_cache_shutdown()");
5469 spin_unlock_irq(&n->list_lock);
5471 list_for_each_entry_safe(slab, h, &discard, slab_list)
5472 discard_slab(s, slab);
5475 bool __kmem_cache_empty(struct kmem_cache *s)
5478 struct kmem_cache_node *n;
5480 for_each_kmem_cache_node(s, node, n)
5481 if (n->nr_partial || node_nr_slabs(n))
5487 * Release all resources used by a slab cache.
5489 int __kmem_cache_shutdown(struct kmem_cache *s)
5492 struct kmem_cache_node *n;
5494 flush_all_cpus_locked(s);
5495 /* Attempt to free all objects */
5496 for_each_kmem_cache_node(s, node, n) {
5498 if (n->nr_partial || node_nr_slabs(n))
5504 #ifdef CONFIG_PRINTK
5505 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5508 int __maybe_unused i;
5512 struct kmem_cache *s = slab->slab_cache;
5513 struct track __maybe_unused *trackp;
5515 kpp->kp_ptr = object;
5516 kpp->kp_slab = slab;
5517 kpp->kp_slab_cache = s;
5518 base = slab_address(slab);
5519 objp0 = kasan_reset_tag(object);
5520 #ifdef CONFIG_SLUB_DEBUG
5521 objp = restore_red_left(s, objp0);
5525 objnr = obj_to_index(s, slab, objp);
5526 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5527 objp = base + s->size * objnr;
5528 kpp->kp_objp = objp;
5529 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5530 || (objp - base) % s->size) ||
5531 !(s->flags & SLAB_STORE_USER))
5533 #ifdef CONFIG_SLUB_DEBUG
5534 objp = fixup_red_left(s, objp);
5535 trackp = get_track(s, objp, TRACK_ALLOC);
5536 kpp->kp_ret = (void *)trackp->addr;
5537 #ifdef CONFIG_STACKDEPOT
5539 depot_stack_handle_t handle;
5540 unsigned long *entries;
5541 unsigned int nr_entries;
5543 handle = READ_ONCE(trackp->handle);
5545 nr_entries = stack_depot_fetch(handle, &entries);
5546 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5547 kpp->kp_stack[i] = (void *)entries[i];
5550 trackp = get_track(s, objp, TRACK_FREE);
5551 handle = READ_ONCE(trackp->handle);
5553 nr_entries = stack_depot_fetch(handle, &entries);
5554 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5555 kpp->kp_free_stack[i] = (void *)entries[i];
5563 /********************************************************************
5565 *******************************************************************/
5567 static int __init setup_slub_min_order(char *str)
5569 get_option(&str, (int *)&slub_min_order);
5571 if (slub_min_order > slub_max_order)
5572 slub_max_order = slub_min_order;
5577 __setup("slab_min_order=", setup_slub_min_order);
5578 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5581 static int __init setup_slub_max_order(char *str)
5583 get_option(&str, (int *)&slub_max_order);
5584 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5586 if (slub_min_order > slub_max_order)
5587 slub_min_order = slub_max_order;
5592 __setup("slab_max_order=", setup_slub_max_order);
5593 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5595 static int __init setup_slub_min_objects(char *str)
5597 get_option(&str, (int *)&slub_min_objects);
5602 __setup("slab_min_objects=", setup_slub_min_objects);
5603 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5605 #ifdef CONFIG_HARDENED_USERCOPY
5607 * Rejects incorrectly sized objects and objects that are to be copied
5608 * to/from userspace but do not fall entirely within the containing slab
5609 * cache's usercopy region.
5611 * Returns NULL if check passes, otherwise const char * to name of cache
5612 * to indicate an error.
5614 void __check_heap_object(const void *ptr, unsigned long n,
5615 const struct slab *slab, bool to_user)
5617 struct kmem_cache *s;
5618 unsigned int offset;
5619 bool is_kfence = is_kfence_address(ptr);
5621 ptr = kasan_reset_tag(ptr);
5623 /* Find object and usable object size. */
5624 s = slab->slab_cache;
5626 /* Reject impossible pointers. */
5627 if (ptr < slab_address(slab))
5628 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5631 /* Find offset within object. */
5633 offset = ptr - kfence_object_start(ptr);
5635 offset = (ptr - slab_address(slab)) % s->size;
5637 /* Adjust for redzone and reject if within the redzone. */
5638 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5639 if (offset < s->red_left_pad)
5640 usercopy_abort("SLUB object in left red zone",
5641 s->name, to_user, offset, n);
5642 offset -= s->red_left_pad;
5645 /* Allow address range falling entirely within usercopy region. */
5646 if (offset >= s->useroffset &&
5647 offset - s->useroffset <= s->usersize &&
5648 n <= s->useroffset - offset + s->usersize)
5651 usercopy_abort("SLUB object", s->name, to_user, offset, n);
5653 #endif /* CONFIG_HARDENED_USERCOPY */
5655 #define SHRINK_PROMOTE_MAX 32
5658 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5659 * up most to the head of the partial lists. New allocations will then
5660 * fill those up and thus they can be removed from the partial lists.
5662 * The slabs with the least items are placed last. This results in them
5663 * being allocated from last increasing the chance that the last objects
5664 * are freed in them.
5666 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5670 struct kmem_cache_node *n;
5673 struct list_head discard;
5674 struct list_head promote[SHRINK_PROMOTE_MAX];
5675 unsigned long flags;
5678 for_each_kmem_cache_node(s, node, n) {
5679 INIT_LIST_HEAD(&discard);
5680 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5681 INIT_LIST_HEAD(promote + i);
5683 spin_lock_irqsave(&n->list_lock, flags);
5686 * Build lists of slabs to discard or promote.
5688 * Note that concurrent frees may occur while we hold the
5689 * list_lock. slab->inuse here is the upper limit.
5691 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5692 int free = slab->objects - slab->inuse;
5694 /* Do not reread slab->inuse */
5697 /* We do not keep full slabs on the list */
5700 if (free == slab->objects) {
5701 list_move(&slab->slab_list, &discard);
5702 slab_clear_node_partial(slab);
5704 dec_slabs_node(s, node, slab->objects);
5705 } else if (free <= SHRINK_PROMOTE_MAX)
5706 list_move(&slab->slab_list, promote + free - 1);
5710 * Promote the slabs filled up most to the head of the
5713 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5714 list_splice(promote + i, &n->partial);
5716 spin_unlock_irqrestore(&n->list_lock, flags);
5718 /* Release empty slabs */
5719 list_for_each_entry_safe(slab, t, &discard, slab_list)
5722 if (node_nr_slabs(n))
5729 int __kmem_cache_shrink(struct kmem_cache *s)
5732 return __kmem_cache_do_shrink(s);
5735 static int slab_mem_going_offline_callback(void *arg)
5737 struct kmem_cache *s;
5739 mutex_lock(&slab_mutex);
5740 list_for_each_entry(s, &slab_caches, list) {
5741 flush_all_cpus_locked(s);
5742 __kmem_cache_do_shrink(s);
5744 mutex_unlock(&slab_mutex);
5749 static void slab_mem_offline_callback(void *arg)
5751 struct memory_notify *marg = arg;
5754 offline_node = marg->status_change_nid_normal;
5757 * If the node still has available memory. we need kmem_cache_node
5760 if (offline_node < 0)
5763 mutex_lock(&slab_mutex);
5764 node_clear(offline_node, slab_nodes);
5766 * We no longer free kmem_cache_node structures here, as it would be
5767 * racy with all get_node() users, and infeasible to protect them with
5770 mutex_unlock(&slab_mutex);
5773 static int slab_mem_going_online_callback(void *arg)
5775 struct kmem_cache_node *n;
5776 struct kmem_cache *s;
5777 struct memory_notify *marg = arg;
5778 int nid = marg->status_change_nid_normal;
5782 * If the node's memory is already available, then kmem_cache_node is
5783 * already created. Nothing to do.
5789 * We are bringing a node online. No memory is available yet. We must
5790 * allocate a kmem_cache_node structure in order to bring the node
5793 mutex_lock(&slab_mutex);
5794 list_for_each_entry(s, &slab_caches, list) {
5796 * The structure may already exist if the node was previously
5797 * onlined and offlined.
5799 if (get_node(s, nid))
5802 * XXX: kmem_cache_alloc_node will fallback to other nodes
5803 * since memory is not yet available from the node that
5806 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5811 init_kmem_cache_node(n);
5815 * Any cache created after this point will also have kmem_cache_node
5816 * initialized for the new node.
5818 node_set(nid, slab_nodes);
5820 mutex_unlock(&slab_mutex);
5824 static int slab_memory_callback(struct notifier_block *self,
5825 unsigned long action, void *arg)
5830 case MEM_GOING_ONLINE:
5831 ret = slab_mem_going_online_callback(arg);
5833 case MEM_GOING_OFFLINE:
5834 ret = slab_mem_going_offline_callback(arg);
5837 case MEM_CANCEL_ONLINE:
5838 slab_mem_offline_callback(arg);
5841 case MEM_CANCEL_OFFLINE:
5845 ret = notifier_from_errno(ret);
5851 /********************************************************************
5852 * Basic setup of slabs
5853 *******************************************************************/
5856 * Used for early kmem_cache structures that were allocated using
5857 * the page allocator. Allocate them properly then fix up the pointers
5858 * that may be pointing to the wrong kmem_cache structure.
5861 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5864 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5865 struct kmem_cache_node *n;
5867 memcpy(s, static_cache, kmem_cache->object_size);
5870 * This runs very early, and only the boot processor is supposed to be
5871 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5874 __flush_cpu_slab(s, smp_processor_id());
5875 for_each_kmem_cache_node(s, node, n) {
5878 list_for_each_entry(p, &n->partial, slab_list)
5881 #ifdef CONFIG_SLUB_DEBUG
5882 list_for_each_entry(p, &n->full, slab_list)
5886 list_add(&s->list, &slab_caches);
5890 void __init kmem_cache_init(void)
5892 static __initdata struct kmem_cache boot_kmem_cache,
5893 boot_kmem_cache_node;
5896 if (debug_guardpage_minorder())
5899 /* Print slub debugging pointers without hashing */
5900 if (__slub_debug_enabled())
5901 no_hash_pointers_enable(NULL);
5903 kmem_cache_node = &boot_kmem_cache_node;
5904 kmem_cache = &boot_kmem_cache;
5907 * Initialize the nodemask for which we will allocate per node
5908 * structures. Here we don't need taking slab_mutex yet.
5910 for_each_node_state(node, N_NORMAL_MEMORY)
5911 node_set(node, slab_nodes);
5913 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5914 sizeof(struct kmem_cache_node),
5915 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5917 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5919 /* Able to allocate the per node structures */
5920 slab_state = PARTIAL;
5922 create_boot_cache(kmem_cache, "kmem_cache",
5923 offsetof(struct kmem_cache, node) +
5924 nr_node_ids * sizeof(struct kmem_cache_node *),
5925 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5927 kmem_cache = bootstrap(&boot_kmem_cache);
5928 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5930 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5931 setup_kmalloc_cache_index_table();
5932 create_kmalloc_caches();
5934 /* Setup random freelists for each cache */
5935 init_freelist_randomization();
5937 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5940 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5942 slub_min_order, slub_max_order, slub_min_objects,
5943 nr_cpu_ids, nr_node_ids);
5946 void __init kmem_cache_init_late(void)
5948 #ifndef CONFIG_SLUB_TINY
5949 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5955 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5956 slab_flags_t flags, void (*ctor)(void *))
5958 struct kmem_cache *s;
5960 s = find_mergeable(size, align, flags, name, ctor);
5962 if (sysfs_slab_alias(s, name))
5968 * Adjust the object sizes so that we clear
5969 * the complete object on kzalloc.
5971 s->object_size = max(s->object_size, size);
5972 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5978 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
5979 unsigned int size, struct kmem_cache_args *args,
5985 s->size = s->object_size = size;
5987 s->flags = kmem_cache_flags(flags, s->name);
5988 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5989 s->random = get_random_long();
5991 s->align = args->align;
5992 s->ctor = args->ctor;
5993 #ifdef CONFIG_HARDENED_USERCOPY
5994 s->useroffset = args->useroffset;
5995 s->usersize = args->usersize;
5998 if (!calculate_sizes(args, s))
6000 if (disable_higher_order_debug) {
6002 * Disable debugging flags that store metadata if the min slab
6005 if (get_order(s->size) > get_order(s->object_size)) {
6006 s->flags &= ~DEBUG_METADATA_FLAGS;
6008 if (!calculate_sizes(args, s))
6013 #ifdef system_has_freelist_aba
6014 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6015 /* Enable fast mode */
6016 s->flags |= __CMPXCHG_DOUBLE;
6021 * The larger the object size is, the more slabs we want on the partial
6022 * list to avoid pounding the page allocator excessively.
6024 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6025 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6030 s->remote_node_defrag_ratio = 1000;
6033 /* Initialize the pre-computed randomized freelist if slab is up */
6034 if (slab_state >= UP) {
6035 if (init_cache_random_seq(s))
6039 if (!init_kmem_cache_nodes(s))
6042 if (!alloc_kmem_cache_cpus(s))
6045 /* Mutex is not taken during early boot */
6046 if (slab_state <= UP) {
6051 err = sysfs_slab_add(s);
6055 if (s->flags & SLAB_STORE_USER)
6056 debugfs_slab_add(s);
6060 __kmem_cache_release(s);
6064 #ifdef SLAB_SUPPORTS_SYSFS
6065 static int count_inuse(struct slab *slab)
6070 static int count_total(struct slab *slab)
6072 return slab->objects;
6076 #ifdef CONFIG_SLUB_DEBUG
6077 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6078 unsigned long *obj_map)
6081 void *addr = slab_address(slab);
6083 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6086 /* Now we know that a valid freelist exists */
6087 __fill_map(obj_map, s, slab);
6088 for_each_object(p, s, addr, slab->objects) {
6089 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6090 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6092 if (!check_object(s, slab, p, val))
6097 static int validate_slab_node(struct kmem_cache *s,
6098 struct kmem_cache_node *n, unsigned long *obj_map)
6100 unsigned long count = 0;
6102 unsigned long flags;
6104 spin_lock_irqsave(&n->list_lock, flags);
6106 list_for_each_entry(slab, &n->partial, slab_list) {
6107 validate_slab(s, slab, obj_map);
6110 if (count != n->nr_partial) {
6111 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6112 s->name, count, n->nr_partial);
6113 slab_add_kunit_errors();
6116 if (!(s->flags & SLAB_STORE_USER))
6119 list_for_each_entry(slab, &n->full, slab_list) {
6120 validate_slab(s, slab, obj_map);
6123 if (count != node_nr_slabs(n)) {
6124 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6125 s->name, count, node_nr_slabs(n));
6126 slab_add_kunit_errors();
6130 spin_unlock_irqrestore(&n->list_lock, flags);
6134 long validate_slab_cache(struct kmem_cache *s)
6137 unsigned long count = 0;
6138 struct kmem_cache_node *n;
6139 unsigned long *obj_map;
6141 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6146 for_each_kmem_cache_node(s, node, n)
6147 count += validate_slab_node(s, n, obj_map);
6149 bitmap_free(obj_map);
6153 EXPORT_SYMBOL(validate_slab_cache);
6155 #ifdef CONFIG_DEBUG_FS
6157 * Generate lists of code addresses where slabcache objects are allocated
6162 depot_stack_handle_t handle;
6163 unsigned long count;
6165 unsigned long waste;
6171 DECLARE_BITMAP(cpus, NR_CPUS);
6177 unsigned long count;
6178 struct location *loc;
6182 static struct dentry *slab_debugfs_root;
6184 static void free_loc_track(struct loc_track *t)
6187 free_pages((unsigned long)t->loc,
6188 get_order(sizeof(struct location) * t->max));
6191 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6196 order = get_order(sizeof(struct location) * max);
6198 l = (void *)__get_free_pages(flags, order);
6203 memcpy(l, t->loc, sizeof(struct location) * t->count);
6211 static int add_location(struct loc_track *t, struct kmem_cache *s,
6212 const struct track *track,
6213 unsigned int orig_size)
6215 long start, end, pos;
6217 unsigned long caddr, chandle, cwaste;
6218 unsigned long age = jiffies - track->when;
6219 depot_stack_handle_t handle = 0;
6220 unsigned int waste = s->object_size - orig_size;
6222 #ifdef CONFIG_STACKDEPOT
6223 handle = READ_ONCE(track->handle);
6229 pos = start + (end - start + 1) / 2;
6232 * There is nothing at "end". If we end up there
6233 * we need to add something to before end.
6240 chandle = l->handle;
6242 if ((track->addr == caddr) && (handle == chandle) &&
6243 (waste == cwaste)) {
6248 if (age < l->min_time)
6250 if (age > l->max_time)
6253 if (track->pid < l->min_pid)
6254 l->min_pid = track->pid;
6255 if (track->pid > l->max_pid)
6256 l->max_pid = track->pid;
6258 cpumask_set_cpu(track->cpu,
6259 to_cpumask(l->cpus));
6261 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6265 if (track->addr < caddr)
6267 else if (track->addr == caddr && handle < chandle)
6269 else if (track->addr == caddr && handle == chandle &&
6277 * Not found. Insert new tracking element.
6279 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6285 (t->count - pos) * sizeof(struct location));
6288 l->addr = track->addr;
6292 l->min_pid = track->pid;
6293 l->max_pid = track->pid;
6296 cpumask_clear(to_cpumask(l->cpus));
6297 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6298 nodes_clear(l->nodes);
6299 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6303 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6304 struct slab *slab, enum track_item alloc,
6305 unsigned long *obj_map)
6307 void *addr = slab_address(slab);
6308 bool is_alloc = (alloc == TRACK_ALLOC);
6311 __fill_map(obj_map, s, slab);
6313 for_each_object(p, s, addr, slab->objects)
6314 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6315 add_location(t, s, get_track(s, p, alloc),
6316 is_alloc ? get_orig_size(s, p) :
6319 #endif /* CONFIG_DEBUG_FS */
6320 #endif /* CONFIG_SLUB_DEBUG */
6322 #ifdef SLAB_SUPPORTS_SYSFS
6323 enum slab_stat_type {
6324 SL_ALL, /* All slabs */
6325 SL_PARTIAL, /* Only partially allocated slabs */
6326 SL_CPU, /* Only slabs used for cpu caches */
6327 SL_OBJECTS, /* Determine allocated objects not slabs */
6328 SL_TOTAL /* Determine object capacity not slabs */
6331 #define SO_ALL (1 << SL_ALL)
6332 #define SO_PARTIAL (1 << SL_PARTIAL)
6333 #define SO_CPU (1 << SL_CPU)
6334 #define SO_OBJECTS (1 << SL_OBJECTS)
6335 #define SO_TOTAL (1 << SL_TOTAL)
6337 static ssize_t show_slab_objects(struct kmem_cache *s,
6338 char *buf, unsigned long flags)
6340 unsigned long total = 0;
6343 unsigned long *nodes;
6346 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6350 if (flags & SO_CPU) {
6353 for_each_possible_cpu(cpu) {
6354 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6359 slab = READ_ONCE(c->slab);
6363 node = slab_nid(slab);
6364 if (flags & SO_TOTAL)
6366 else if (flags & SO_OBJECTS)
6374 #ifdef CONFIG_SLUB_CPU_PARTIAL
6375 slab = slub_percpu_partial_read_once(c);
6377 node = slab_nid(slab);
6378 if (flags & SO_TOTAL)
6380 else if (flags & SO_OBJECTS)
6383 x = data_race(slab->slabs);
6392 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6393 * already held which will conflict with an existing lock order:
6395 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6397 * We don't really need mem_hotplug_lock (to hold off
6398 * slab_mem_going_offline_callback) here because slab's memory hot
6399 * unplug code doesn't destroy the kmem_cache->node[] data.
6402 #ifdef CONFIG_SLUB_DEBUG
6403 if (flags & SO_ALL) {
6404 struct kmem_cache_node *n;
6406 for_each_kmem_cache_node(s, node, n) {
6408 if (flags & SO_TOTAL)
6409 x = node_nr_objs(n);
6410 else if (flags & SO_OBJECTS)
6411 x = node_nr_objs(n) - count_partial(n, count_free);
6413 x = node_nr_slabs(n);
6420 if (flags & SO_PARTIAL) {
6421 struct kmem_cache_node *n;
6423 for_each_kmem_cache_node(s, node, n) {
6424 if (flags & SO_TOTAL)
6425 x = count_partial(n, count_total);
6426 else if (flags & SO_OBJECTS)
6427 x = count_partial(n, count_inuse);
6435 len += sysfs_emit_at(buf, len, "%lu", total);
6437 for (node = 0; node < nr_node_ids; node++) {
6439 len += sysfs_emit_at(buf, len, " N%d=%lu",
6443 len += sysfs_emit_at(buf, len, "\n");
6449 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6450 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6452 struct slab_attribute {
6453 struct attribute attr;
6454 ssize_t (*show)(struct kmem_cache *s, char *buf);
6455 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6458 #define SLAB_ATTR_RO(_name) \
6459 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6461 #define SLAB_ATTR(_name) \
6462 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6464 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6466 return sysfs_emit(buf, "%u\n", s->size);
6468 SLAB_ATTR_RO(slab_size);
6470 static ssize_t align_show(struct kmem_cache *s, char *buf)
6472 return sysfs_emit(buf, "%u\n", s->align);
6474 SLAB_ATTR_RO(align);
6476 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6478 return sysfs_emit(buf, "%u\n", s->object_size);
6480 SLAB_ATTR_RO(object_size);
6482 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6484 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6486 SLAB_ATTR_RO(objs_per_slab);
6488 static ssize_t order_show(struct kmem_cache *s, char *buf)
6490 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6492 SLAB_ATTR_RO(order);
6494 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6496 return sysfs_emit(buf, "%lu\n", s->min_partial);
6499 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6505 err = kstrtoul(buf, 10, &min);
6509 s->min_partial = min;
6512 SLAB_ATTR(min_partial);
6514 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6516 unsigned int nr_partial = 0;
6517 #ifdef CONFIG_SLUB_CPU_PARTIAL
6518 nr_partial = s->cpu_partial;
6521 return sysfs_emit(buf, "%u\n", nr_partial);
6524 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6527 unsigned int objects;
6530 err = kstrtouint(buf, 10, &objects);
6533 if (objects && !kmem_cache_has_cpu_partial(s))
6536 slub_set_cpu_partial(s, objects);
6540 SLAB_ATTR(cpu_partial);
6542 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6546 return sysfs_emit(buf, "%pS\n", s->ctor);
6550 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6552 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6554 SLAB_ATTR_RO(aliases);
6556 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6558 return show_slab_objects(s, buf, SO_PARTIAL);
6560 SLAB_ATTR_RO(partial);
6562 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6564 return show_slab_objects(s, buf, SO_CPU);
6566 SLAB_ATTR_RO(cpu_slabs);
6568 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6570 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6572 SLAB_ATTR_RO(objects_partial);
6574 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6578 int cpu __maybe_unused;
6581 #ifdef CONFIG_SLUB_CPU_PARTIAL
6582 for_each_online_cpu(cpu) {
6585 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6588 slabs += data_race(slab->slabs);
6592 /* Approximate half-full slabs, see slub_set_cpu_partial() */
6593 objects = (slabs * oo_objects(s->oo)) / 2;
6594 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6596 #ifdef CONFIG_SLUB_CPU_PARTIAL
6597 for_each_online_cpu(cpu) {
6600 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6602 slabs = data_race(slab->slabs);
6603 objects = (slabs * oo_objects(s->oo)) / 2;
6604 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6605 cpu, objects, slabs);
6609 len += sysfs_emit_at(buf, len, "\n");
6613 SLAB_ATTR_RO(slabs_cpu_partial);
6615 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6617 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6619 SLAB_ATTR_RO(reclaim_account);
6621 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6623 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6625 SLAB_ATTR_RO(hwcache_align);
6627 #ifdef CONFIG_ZONE_DMA
6628 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6630 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6632 SLAB_ATTR_RO(cache_dma);
6635 #ifdef CONFIG_HARDENED_USERCOPY
6636 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6638 return sysfs_emit(buf, "%u\n", s->usersize);
6640 SLAB_ATTR_RO(usersize);
6643 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6645 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6647 SLAB_ATTR_RO(destroy_by_rcu);
6649 #ifdef CONFIG_SLUB_DEBUG
6650 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6652 return show_slab_objects(s, buf, SO_ALL);
6654 SLAB_ATTR_RO(slabs);
6656 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6658 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6660 SLAB_ATTR_RO(total_objects);
6662 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6664 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6666 SLAB_ATTR_RO(objects);
6668 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6670 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6672 SLAB_ATTR_RO(sanity_checks);
6674 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6676 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6678 SLAB_ATTR_RO(trace);
6680 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6682 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6685 SLAB_ATTR_RO(red_zone);
6687 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6689 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6692 SLAB_ATTR_RO(poison);
6694 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6696 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6699 SLAB_ATTR_RO(store_user);
6701 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6706 static ssize_t validate_store(struct kmem_cache *s,
6707 const char *buf, size_t length)
6711 if (buf[0] == '1' && kmem_cache_debug(s)) {
6712 ret = validate_slab_cache(s);
6718 SLAB_ATTR(validate);
6720 #endif /* CONFIG_SLUB_DEBUG */
6722 #ifdef CONFIG_FAILSLAB
6723 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6725 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6728 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6731 if (s->refcount > 1)
6735 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6737 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6741 SLAB_ATTR(failslab);
6744 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6749 static ssize_t shrink_store(struct kmem_cache *s,
6750 const char *buf, size_t length)
6753 kmem_cache_shrink(s);
6761 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6763 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6766 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6767 const char *buf, size_t length)
6772 err = kstrtouint(buf, 10, &ratio);
6778 s->remote_node_defrag_ratio = ratio * 10;
6782 SLAB_ATTR(remote_node_defrag_ratio);
6785 #ifdef CONFIG_SLUB_STATS
6786 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6788 unsigned long sum = 0;
6791 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6796 for_each_online_cpu(cpu) {
6797 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6803 len += sysfs_emit_at(buf, len, "%lu", sum);
6806 for_each_online_cpu(cpu) {
6808 len += sysfs_emit_at(buf, len, " C%d=%u",
6813 len += sysfs_emit_at(buf, len, "\n");
6818 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6822 for_each_online_cpu(cpu)
6823 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6826 #define STAT_ATTR(si, text) \
6827 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
6829 return show_stat(s, buf, si); \
6831 static ssize_t text##_store(struct kmem_cache *s, \
6832 const char *buf, size_t length) \
6834 if (buf[0] != '0') \
6836 clear_stat(s, si); \
6841 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6842 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6843 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6844 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6845 STAT_ATTR(FREE_FROZEN, free_frozen);
6846 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6847 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6848 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6849 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6850 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6851 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6852 STAT_ATTR(FREE_SLAB, free_slab);
6853 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6854 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6855 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6856 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6857 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6858 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6859 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6860 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6861 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6862 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6863 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6864 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6865 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6866 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6867 #endif /* CONFIG_SLUB_STATS */
6869 #ifdef CONFIG_KFENCE
6870 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6872 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6875 static ssize_t skip_kfence_store(struct kmem_cache *s,
6876 const char *buf, size_t length)
6881 s->flags &= ~SLAB_SKIP_KFENCE;
6882 else if (buf[0] == '1')
6883 s->flags |= SLAB_SKIP_KFENCE;
6889 SLAB_ATTR(skip_kfence);
6892 static struct attribute *slab_attrs[] = {
6893 &slab_size_attr.attr,
6894 &object_size_attr.attr,
6895 &objs_per_slab_attr.attr,
6897 &min_partial_attr.attr,
6898 &cpu_partial_attr.attr,
6899 &objects_partial_attr.attr,
6901 &cpu_slabs_attr.attr,
6905 &hwcache_align_attr.attr,
6906 &reclaim_account_attr.attr,
6907 &destroy_by_rcu_attr.attr,
6909 &slabs_cpu_partial_attr.attr,
6910 #ifdef CONFIG_SLUB_DEBUG
6911 &total_objects_attr.attr,
6914 &sanity_checks_attr.attr,
6916 &red_zone_attr.attr,
6918 &store_user_attr.attr,
6919 &validate_attr.attr,
6921 #ifdef CONFIG_ZONE_DMA
6922 &cache_dma_attr.attr,
6925 &remote_node_defrag_ratio_attr.attr,
6927 #ifdef CONFIG_SLUB_STATS
6928 &alloc_fastpath_attr.attr,
6929 &alloc_slowpath_attr.attr,
6930 &free_fastpath_attr.attr,
6931 &free_slowpath_attr.attr,
6932 &free_frozen_attr.attr,
6933 &free_add_partial_attr.attr,
6934 &free_remove_partial_attr.attr,
6935 &alloc_from_partial_attr.attr,
6936 &alloc_slab_attr.attr,
6937 &alloc_refill_attr.attr,
6938 &alloc_node_mismatch_attr.attr,
6939 &free_slab_attr.attr,
6940 &cpuslab_flush_attr.attr,
6941 &deactivate_full_attr.attr,
6942 &deactivate_empty_attr.attr,
6943 &deactivate_to_head_attr.attr,
6944 &deactivate_to_tail_attr.attr,
6945 &deactivate_remote_frees_attr.attr,
6946 &deactivate_bypass_attr.attr,
6947 &order_fallback_attr.attr,
6948 &cmpxchg_double_fail_attr.attr,
6949 &cmpxchg_double_cpu_fail_attr.attr,
6950 &cpu_partial_alloc_attr.attr,
6951 &cpu_partial_free_attr.attr,
6952 &cpu_partial_node_attr.attr,
6953 &cpu_partial_drain_attr.attr,
6955 #ifdef CONFIG_FAILSLAB
6956 &failslab_attr.attr,
6958 #ifdef CONFIG_HARDENED_USERCOPY
6959 &usersize_attr.attr,
6961 #ifdef CONFIG_KFENCE
6962 &skip_kfence_attr.attr,
6968 static const struct attribute_group slab_attr_group = {
6969 .attrs = slab_attrs,
6972 static ssize_t slab_attr_show(struct kobject *kobj,
6973 struct attribute *attr,
6976 struct slab_attribute *attribute;
6977 struct kmem_cache *s;
6979 attribute = to_slab_attr(attr);
6982 if (!attribute->show)
6985 return attribute->show(s, buf);
6988 static ssize_t slab_attr_store(struct kobject *kobj,
6989 struct attribute *attr,
6990 const char *buf, size_t len)
6992 struct slab_attribute *attribute;
6993 struct kmem_cache *s;
6995 attribute = to_slab_attr(attr);
6998 if (!attribute->store)
7001 return attribute->store(s, buf, len);
7004 static void kmem_cache_release(struct kobject *k)
7006 slab_kmem_cache_release(to_slab(k));
7009 static const struct sysfs_ops slab_sysfs_ops = {
7010 .show = slab_attr_show,
7011 .store = slab_attr_store,
7014 static const struct kobj_type slab_ktype = {
7015 .sysfs_ops = &slab_sysfs_ops,
7016 .release = kmem_cache_release,
7019 static struct kset *slab_kset;
7021 static inline struct kset *cache_kset(struct kmem_cache *s)
7026 #define ID_STR_LENGTH 32
7028 /* Create a unique string id for a slab cache:
7030 * Format :[flags-]size
7032 static char *create_unique_id(struct kmem_cache *s)
7034 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7038 return ERR_PTR(-ENOMEM);
7042 * First flags affecting slabcache operations. We will only
7043 * get here for aliasable slabs so we do not need to support
7044 * too many flags. The flags here must cover all flags that
7045 * are matched during merging to guarantee that the id is
7048 if (s->flags & SLAB_CACHE_DMA)
7050 if (s->flags & SLAB_CACHE_DMA32)
7052 if (s->flags & SLAB_RECLAIM_ACCOUNT)
7054 if (s->flags & SLAB_CONSISTENCY_CHECKS)
7056 if (s->flags & SLAB_ACCOUNT)
7060 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7062 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7064 return ERR_PTR(-EINVAL);
7066 kmsan_unpoison_memory(name, p - name);
7070 static int sysfs_slab_add(struct kmem_cache *s)
7074 struct kset *kset = cache_kset(s);
7075 int unmergeable = slab_unmergeable(s);
7077 if (!unmergeable && disable_higher_order_debug &&
7078 (slub_debug & DEBUG_METADATA_FLAGS))
7083 * Slabcache can never be merged so we can use the name proper.
7084 * This is typically the case for debug situations. In that
7085 * case we can catch duplicate names easily.
7087 sysfs_remove_link(&slab_kset->kobj, s->name);
7091 * Create a unique name for the slab as a target
7094 name = create_unique_id(s);
7096 return PTR_ERR(name);
7099 s->kobj.kset = kset;
7100 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7104 err = sysfs_create_group(&s->kobj, &slab_attr_group);
7109 /* Setup first alias */
7110 sysfs_slab_alias(s, s->name);
7117 kobject_del(&s->kobj);
7121 void sysfs_slab_unlink(struct kmem_cache *s)
7123 kobject_del(&s->kobj);
7126 void sysfs_slab_release(struct kmem_cache *s)
7128 kobject_put(&s->kobj);
7132 * Need to buffer aliases during bootup until sysfs becomes
7133 * available lest we lose that information.
7135 struct saved_alias {
7136 struct kmem_cache *s;
7138 struct saved_alias *next;
7141 static struct saved_alias *alias_list;
7143 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7145 struct saved_alias *al;
7147 if (slab_state == FULL) {
7149 * If we have a leftover link then remove it.
7151 sysfs_remove_link(&slab_kset->kobj, name);
7152 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7155 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7161 al->next = alias_list;
7163 kmsan_unpoison_memory(al, sizeof(*al));
7167 static int __init slab_sysfs_init(void)
7169 struct kmem_cache *s;
7172 mutex_lock(&slab_mutex);
7174 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7176 mutex_unlock(&slab_mutex);
7177 pr_err("Cannot register slab subsystem.\n");
7183 list_for_each_entry(s, &slab_caches, list) {
7184 err = sysfs_slab_add(s);
7186 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7190 while (alias_list) {
7191 struct saved_alias *al = alias_list;
7193 alias_list = alias_list->next;
7194 err = sysfs_slab_alias(al->s, al->name);
7196 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7201 mutex_unlock(&slab_mutex);
7204 late_initcall(slab_sysfs_init);
7205 #endif /* SLAB_SUPPORTS_SYSFS */
7207 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7208 static int slab_debugfs_show(struct seq_file *seq, void *v)
7210 struct loc_track *t = seq->private;
7214 idx = (unsigned long) t->idx;
7215 if (idx < t->count) {
7218 seq_printf(seq, "%7ld ", l->count);
7221 seq_printf(seq, "%pS", (void *)l->addr);
7223 seq_puts(seq, "<not-available>");
7226 seq_printf(seq, " waste=%lu/%lu",
7227 l->count * l->waste, l->waste);
7229 if (l->sum_time != l->min_time) {
7230 seq_printf(seq, " age=%ld/%llu/%ld",
7231 l->min_time, div_u64(l->sum_time, l->count),
7234 seq_printf(seq, " age=%ld", l->min_time);
7236 if (l->min_pid != l->max_pid)
7237 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7239 seq_printf(seq, " pid=%ld",
7242 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7243 seq_printf(seq, " cpus=%*pbl",
7244 cpumask_pr_args(to_cpumask(l->cpus)));
7246 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7247 seq_printf(seq, " nodes=%*pbl",
7248 nodemask_pr_args(&l->nodes));
7250 #ifdef CONFIG_STACKDEPOT
7252 depot_stack_handle_t handle;
7253 unsigned long *entries;
7254 unsigned int nr_entries, j;
7256 handle = READ_ONCE(l->handle);
7258 nr_entries = stack_depot_fetch(handle, &entries);
7259 seq_puts(seq, "\n");
7260 for (j = 0; j < nr_entries; j++)
7261 seq_printf(seq, " %pS\n", (void *)entries[j]);
7265 seq_puts(seq, "\n");
7268 if (!idx && !t->count)
7269 seq_puts(seq, "No data\n");
7274 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7278 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7280 struct loc_track *t = seq->private;
7283 if (*ppos <= t->count)
7289 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7291 struct location *loc1 = (struct location *)a;
7292 struct location *loc2 = (struct location *)b;
7294 if (loc1->count > loc2->count)
7300 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7302 struct loc_track *t = seq->private;
7308 static const struct seq_operations slab_debugfs_sops = {
7309 .start = slab_debugfs_start,
7310 .next = slab_debugfs_next,
7311 .stop = slab_debugfs_stop,
7312 .show = slab_debugfs_show,
7315 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7318 struct kmem_cache_node *n;
7319 enum track_item alloc;
7321 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7322 sizeof(struct loc_track));
7323 struct kmem_cache *s = file_inode(filep)->i_private;
7324 unsigned long *obj_map;
7329 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7331 seq_release_private(inode, filep);
7335 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7336 alloc = TRACK_ALLOC;
7340 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7341 bitmap_free(obj_map);
7342 seq_release_private(inode, filep);
7346 for_each_kmem_cache_node(s, node, n) {
7347 unsigned long flags;
7350 if (!node_nr_slabs(n))
7353 spin_lock_irqsave(&n->list_lock, flags);
7354 list_for_each_entry(slab, &n->partial, slab_list)
7355 process_slab(t, s, slab, alloc, obj_map);
7356 list_for_each_entry(slab, &n->full, slab_list)
7357 process_slab(t, s, slab, alloc, obj_map);
7358 spin_unlock_irqrestore(&n->list_lock, flags);
7361 /* Sort locations by count */
7362 sort_r(t->loc, t->count, sizeof(struct location),
7363 cmp_loc_by_count, NULL, NULL);
7365 bitmap_free(obj_map);
7369 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7371 struct seq_file *seq = file->private_data;
7372 struct loc_track *t = seq->private;
7375 return seq_release_private(inode, file);
7378 static const struct file_operations slab_debugfs_fops = {
7379 .open = slab_debug_trace_open,
7381 .llseek = seq_lseek,
7382 .release = slab_debug_trace_release,
7385 static void debugfs_slab_add(struct kmem_cache *s)
7387 struct dentry *slab_cache_dir;
7389 if (unlikely(!slab_debugfs_root))
7392 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7394 debugfs_create_file("alloc_traces", 0400,
7395 slab_cache_dir, s, &slab_debugfs_fops);
7397 debugfs_create_file("free_traces", 0400,
7398 slab_cache_dir, s, &slab_debugfs_fops);
7401 void debugfs_slab_release(struct kmem_cache *s)
7403 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7406 static int __init slab_debugfs_init(void)
7408 struct kmem_cache *s;
7410 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7412 list_for_each_entry(s, &slab_caches, list)
7413 if (s->flags & SLAB_STORE_USER)
7414 debugfs_slab_add(s);
7419 __initcall(slab_debugfs_init);
7422 * The /proc/slabinfo ABI
7424 #ifdef CONFIG_SLUB_DEBUG
7425 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7427 unsigned long nr_slabs = 0;
7428 unsigned long nr_objs = 0;
7429 unsigned long nr_free = 0;
7431 struct kmem_cache_node *n;
7433 for_each_kmem_cache_node(s, node, n) {
7434 nr_slabs += node_nr_slabs(n);
7435 nr_objs += node_nr_objs(n);
7436 nr_free += count_partial_free_approx(n);
7439 sinfo->active_objs = nr_objs - nr_free;
7440 sinfo->num_objs = nr_objs;
7441 sinfo->active_slabs = nr_slabs;
7442 sinfo->num_slabs = nr_slabs;
7443 sinfo->objects_per_slab = oo_objects(s->oo);
7444 sinfo->cache_order = oo_order(s->oo);
7446 #endif /* CONFIG_SLUB_DEBUG */