2 * Copyright (C) 2011 Fujitsu. All rights reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
23 #include "transaction.h"
25 #define BTRFS_DELAYED_WRITEBACK 400
26 #define BTRFS_DELAYED_BACKGROUND 100
28 static struct kmem_cache *delayed_node_cache;
30 int __init btrfs_delayed_inode_init(void)
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
37 if (!delayed_node_cache)
42 void btrfs_delayed_inode_exit(void)
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
48 static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
67 static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
79 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
82 return root->fs_info->delayed_root;
85 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
88 struct btrfs_delayed_node *node;
89 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90 struct btrfs_root *root = btrfs_inode->root;
91 u64 ino = btrfs_ino(inode);
95 node = ACCESS_ONCE(btrfs_inode->delayed_node);
97 atomic_inc(&node->refs); /* can be accessed */
101 spin_lock(&root->inode_lock);
102 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
104 if (btrfs_inode->delayed_node) {
105 spin_unlock(&root->inode_lock);
108 btrfs_inode->delayed_node = node;
109 atomic_inc(&node->refs); /* can be accessed */
110 atomic_inc(&node->refs); /* cached in the inode */
111 spin_unlock(&root->inode_lock);
114 spin_unlock(&root->inode_lock);
116 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
118 return ERR_PTR(-ENOMEM);
119 btrfs_init_delayed_node(node, root, ino);
121 atomic_inc(&node->refs); /* cached in the btrfs inode */
122 atomic_inc(&node->refs); /* can be accessed */
124 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
126 kmem_cache_free(delayed_node_cache, node);
130 spin_lock(&root->inode_lock);
131 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
132 if (ret == -EEXIST) {
133 kmem_cache_free(delayed_node_cache, node);
134 spin_unlock(&root->inode_lock);
135 radix_tree_preload_end();
138 btrfs_inode->delayed_node = node;
139 spin_unlock(&root->inode_lock);
140 radix_tree_preload_end();
146 * Call it when holding delayed_node->mutex
148 * If mod = 1, add this node into the prepared list.
150 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
151 struct btrfs_delayed_node *node,
154 spin_lock(&root->lock);
156 if (!list_empty(&node->p_list))
157 list_move_tail(&node->p_list, &root->prepare_list);
159 list_add_tail(&node->p_list, &root->prepare_list);
161 list_add_tail(&node->n_list, &root->node_list);
162 list_add_tail(&node->p_list, &root->prepare_list);
163 atomic_inc(&node->refs); /* inserted into list */
167 spin_unlock(&root->lock);
170 /* Call it when holding delayed_node->mutex */
171 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
172 struct btrfs_delayed_node *node)
174 spin_lock(&root->lock);
177 atomic_dec(&node->refs); /* not in the list */
178 list_del_init(&node->n_list);
179 if (!list_empty(&node->p_list))
180 list_del_init(&node->p_list);
183 spin_unlock(&root->lock);
186 struct btrfs_delayed_node *btrfs_first_delayed_node(
187 struct btrfs_delayed_root *delayed_root)
190 struct btrfs_delayed_node *node = NULL;
192 spin_lock(&delayed_root->lock);
193 if (list_empty(&delayed_root->node_list))
196 p = delayed_root->node_list.next;
197 node = list_entry(p, struct btrfs_delayed_node, n_list);
198 atomic_inc(&node->refs);
200 spin_unlock(&delayed_root->lock);
205 struct btrfs_delayed_node *btrfs_next_delayed_node(
206 struct btrfs_delayed_node *node)
208 struct btrfs_delayed_root *delayed_root;
210 struct btrfs_delayed_node *next = NULL;
212 delayed_root = node->root->fs_info->delayed_root;
213 spin_lock(&delayed_root->lock);
214 if (!node->in_list) { /* not in the list */
215 if (list_empty(&delayed_root->node_list))
217 p = delayed_root->node_list.next;
218 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
221 p = node->n_list.next;
223 next = list_entry(p, struct btrfs_delayed_node, n_list);
224 atomic_inc(&next->refs);
226 spin_unlock(&delayed_root->lock);
231 static void __btrfs_release_delayed_node(
232 struct btrfs_delayed_node *delayed_node,
235 struct btrfs_delayed_root *delayed_root;
240 delayed_root = delayed_node->root->fs_info->delayed_root;
242 mutex_lock(&delayed_node->mutex);
243 if (delayed_node->count)
244 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
246 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
247 mutex_unlock(&delayed_node->mutex);
249 if (atomic_dec_and_test(&delayed_node->refs)) {
250 struct btrfs_root *root = delayed_node->root;
251 spin_lock(&root->inode_lock);
252 if (atomic_read(&delayed_node->refs) == 0) {
253 radix_tree_delete(&root->delayed_nodes_tree,
254 delayed_node->inode_id);
255 kmem_cache_free(delayed_node_cache, delayed_node);
257 spin_unlock(&root->inode_lock);
261 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
263 __btrfs_release_delayed_node(node, 0);
266 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
267 struct btrfs_delayed_root *delayed_root)
270 struct btrfs_delayed_node *node = NULL;
272 spin_lock(&delayed_root->lock);
273 if (list_empty(&delayed_root->prepare_list))
276 p = delayed_root->prepare_list.next;
278 node = list_entry(p, struct btrfs_delayed_node, p_list);
279 atomic_inc(&node->refs);
281 spin_unlock(&delayed_root->lock);
286 static inline void btrfs_release_prepared_delayed_node(
287 struct btrfs_delayed_node *node)
289 __btrfs_release_delayed_node(node, 1);
292 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
294 struct btrfs_delayed_item *item;
295 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
297 item->data_len = data_len;
298 item->ins_or_del = 0;
299 item->bytes_reserved = 0;
300 item->delayed_node = NULL;
301 atomic_set(&item->refs, 1);
307 * __btrfs_lookup_delayed_item - look up the delayed item by key
308 * @delayed_node: pointer to the delayed node
309 * @key: the key to look up
310 * @prev: used to store the prev item if the right item isn't found
311 * @next: used to store the next item if the right item isn't found
313 * Note: if we don't find the right item, we will return the prev item and
316 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
317 struct rb_root *root,
318 struct btrfs_key *key,
319 struct btrfs_delayed_item **prev,
320 struct btrfs_delayed_item **next)
322 struct rb_node *node, *prev_node = NULL;
323 struct btrfs_delayed_item *delayed_item = NULL;
326 node = root->rb_node;
329 delayed_item = rb_entry(node, struct btrfs_delayed_item,
332 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
334 node = node->rb_right;
336 node = node->rb_left;
345 *prev = delayed_item;
346 else if ((node = rb_prev(prev_node)) != NULL) {
347 *prev = rb_entry(node, struct btrfs_delayed_item,
357 *next = delayed_item;
358 else if ((node = rb_next(prev_node)) != NULL) {
359 *next = rb_entry(node, struct btrfs_delayed_item,
367 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
368 struct btrfs_delayed_node *delayed_node,
369 struct btrfs_key *key)
371 struct btrfs_delayed_item *item;
373 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
378 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
379 struct btrfs_delayed_node *delayed_node,
380 struct btrfs_key *key)
382 struct btrfs_delayed_item *item;
384 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
389 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
390 struct btrfs_delayed_node *delayed_node,
391 struct btrfs_key *key)
393 struct btrfs_delayed_item *item, *next;
395 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
403 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
404 struct btrfs_delayed_node *delayed_node,
405 struct btrfs_key *key)
407 struct btrfs_delayed_item *item, *next;
409 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
417 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
418 struct btrfs_delayed_item *ins,
421 struct rb_node **p, *node;
422 struct rb_node *parent_node = NULL;
423 struct rb_root *root;
424 struct btrfs_delayed_item *item;
427 if (action == BTRFS_DELAYED_INSERTION_ITEM)
428 root = &delayed_node->ins_root;
429 else if (action == BTRFS_DELAYED_DELETION_ITEM)
430 root = &delayed_node->del_root;
434 node = &ins->rb_node;
438 item = rb_entry(parent_node, struct btrfs_delayed_item,
441 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
450 rb_link_node(node, parent_node, p);
451 rb_insert_color(node, root);
452 ins->delayed_node = delayed_node;
453 ins->ins_or_del = action;
455 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
456 action == BTRFS_DELAYED_INSERTION_ITEM &&
457 ins->key.offset >= delayed_node->index_cnt)
458 delayed_node->index_cnt = ins->key.offset + 1;
460 delayed_node->count++;
461 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
465 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
466 struct btrfs_delayed_item *item)
468 return __btrfs_add_delayed_item(node, item,
469 BTRFS_DELAYED_INSERTION_ITEM);
472 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
473 struct btrfs_delayed_item *item)
475 return __btrfs_add_delayed_item(node, item,
476 BTRFS_DELAYED_DELETION_ITEM);
479 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
481 struct rb_root *root;
482 struct btrfs_delayed_root *delayed_root;
484 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
486 BUG_ON(!delayed_root);
487 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
488 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
490 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
491 root = &delayed_item->delayed_node->ins_root;
493 root = &delayed_item->delayed_node->del_root;
495 rb_erase(&delayed_item->rb_node, root);
496 delayed_item->delayed_node->count--;
497 atomic_dec(&delayed_root->items);
498 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
499 waitqueue_active(&delayed_root->wait))
500 wake_up(&delayed_root->wait);
503 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
506 __btrfs_remove_delayed_item(item);
507 if (atomic_dec_and_test(&item->refs))
512 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
513 struct btrfs_delayed_node *delayed_node)
516 struct btrfs_delayed_item *item = NULL;
518 p = rb_first(&delayed_node->ins_root);
520 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
525 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
526 struct btrfs_delayed_node *delayed_node)
529 struct btrfs_delayed_item *item = NULL;
531 p = rb_first(&delayed_node->del_root);
533 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
538 struct btrfs_delayed_item *__btrfs_next_delayed_item(
539 struct btrfs_delayed_item *item)
542 struct btrfs_delayed_item *next = NULL;
544 p = rb_next(&item->rb_node);
546 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
551 static inline struct btrfs_delayed_node *btrfs_get_delayed_node(
554 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
555 struct btrfs_delayed_node *delayed_node;
557 delayed_node = btrfs_inode->delayed_node;
559 atomic_inc(&delayed_node->refs);
564 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
567 struct btrfs_key root_key;
569 if (root->objectid == root_id)
572 root_key.objectid = root_id;
573 root_key.type = BTRFS_ROOT_ITEM_KEY;
574 root_key.offset = (u64)-1;
575 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
578 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
579 struct btrfs_root *root,
580 struct btrfs_delayed_item *item)
582 struct btrfs_block_rsv *src_rsv;
583 struct btrfs_block_rsv *dst_rsv;
587 if (!trans->bytes_reserved)
590 src_rsv = trans->block_rsv;
591 dst_rsv = &root->fs_info->global_block_rsv;
593 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
594 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
596 item->bytes_reserved = num_bytes;
601 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
602 struct btrfs_delayed_item *item)
604 struct btrfs_block_rsv *rsv;
606 if (!item->bytes_reserved)
609 rsv = &root->fs_info->global_block_rsv;
610 btrfs_block_rsv_release(root, rsv,
611 item->bytes_reserved);
614 static int btrfs_delayed_inode_reserve_metadata(
615 struct btrfs_trans_handle *trans,
616 struct btrfs_root *root,
617 struct btrfs_delayed_node *node)
619 struct btrfs_block_rsv *src_rsv;
620 struct btrfs_block_rsv *dst_rsv;
624 if (!trans->bytes_reserved)
627 src_rsv = trans->block_rsv;
628 dst_rsv = &root->fs_info->global_block_rsv;
630 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
631 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
633 node->bytes_reserved = num_bytes;
638 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
639 struct btrfs_delayed_node *node)
641 struct btrfs_block_rsv *rsv;
643 if (!node->bytes_reserved)
646 rsv = &root->fs_info->global_block_rsv;
647 btrfs_block_rsv_release(root, rsv,
648 node->bytes_reserved);
649 node->bytes_reserved = 0;
653 * This helper will insert some continuous items into the same leaf according
654 * to the free space of the leaf.
656 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct btrfs_delayed_item *item)
661 struct btrfs_delayed_item *curr, *next;
663 int total_data_size = 0, total_size = 0;
664 struct extent_buffer *leaf;
666 struct btrfs_key *keys;
668 struct list_head head;
674 BUG_ON(!path->nodes[0]);
676 leaf = path->nodes[0];
677 free_space = btrfs_leaf_free_space(root, leaf);
678 INIT_LIST_HEAD(&head);
684 * count the number of the continuous items that we can insert in batch
686 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
688 total_data_size += next->data_len;
689 total_size += next->data_len + sizeof(struct btrfs_item);
690 list_add_tail(&next->tree_list, &head);
694 next = __btrfs_next_delayed_item(curr);
698 if (!btrfs_is_continuous_delayed_item(curr, next))
708 * we need allocate some memory space, but it might cause the task
709 * to sleep, so we set all locked nodes in the path to blocking locks
712 btrfs_set_path_blocking(path);
714 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
720 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
726 /* get keys of all the delayed items */
728 list_for_each_entry(next, &head, tree_list) {
730 data_size[i] = next->data_len;
734 /* reset all the locked nodes in the patch to spinning locks. */
735 btrfs_clear_path_blocking(path, NULL);
737 /* insert the keys of the items */
738 ret = setup_items_for_insert(trans, root, path, keys, data_size,
739 total_data_size, total_size, nitems);
743 /* insert the dir index items */
744 slot = path->slots[0];
745 list_for_each_entry_safe(curr, next, &head, tree_list) {
746 data_ptr = btrfs_item_ptr(leaf, slot, char);
747 write_extent_buffer(leaf, &curr->data,
748 (unsigned long)data_ptr,
752 btrfs_delayed_item_release_metadata(root, curr);
754 list_del(&curr->tree_list);
755 btrfs_release_delayed_item(curr);
766 * This helper can just do simple insertion that needn't extend item for new
767 * data, such as directory name index insertion, inode insertion.
769 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
770 struct btrfs_root *root,
771 struct btrfs_path *path,
772 struct btrfs_delayed_item *delayed_item)
774 struct extent_buffer *leaf;
775 struct btrfs_item *item;
779 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
780 delayed_item->data_len);
781 if (ret < 0 && ret != -EEXIST)
784 leaf = path->nodes[0];
786 item = btrfs_item_nr(leaf, path->slots[0]);
787 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
789 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
790 delayed_item->data_len);
791 btrfs_mark_buffer_dirty(leaf);
793 btrfs_delayed_item_release_metadata(root, delayed_item);
798 * we insert an item first, then if there are some continuous items, we try
799 * to insert those items into the same leaf.
801 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
802 struct btrfs_path *path,
803 struct btrfs_root *root,
804 struct btrfs_delayed_node *node)
806 struct btrfs_delayed_item *curr, *prev;
810 mutex_lock(&node->mutex);
811 curr = __btrfs_first_delayed_insertion_item(node);
815 ret = btrfs_insert_delayed_item(trans, root, path, curr);
817 btrfs_release_path(path);
822 curr = __btrfs_next_delayed_item(prev);
823 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
824 /* insert the continuous items into the same leaf */
826 btrfs_batch_insert_items(trans, root, path, curr);
828 btrfs_release_delayed_item(prev);
829 btrfs_mark_buffer_dirty(path->nodes[0]);
831 btrfs_release_path(path);
832 mutex_unlock(&node->mutex);
836 mutex_unlock(&node->mutex);
840 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
841 struct btrfs_root *root,
842 struct btrfs_path *path,
843 struct btrfs_delayed_item *item)
845 struct btrfs_delayed_item *curr, *next;
846 struct extent_buffer *leaf;
847 struct btrfs_key key;
848 struct list_head head;
849 int nitems, i, last_item;
852 BUG_ON(!path->nodes[0]);
854 leaf = path->nodes[0];
857 last_item = btrfs_header_nritems(leaf) - 1;
859 return -ENOENT; /* FIXME: Is errno suitable? */
862 INIT_LIST_HEAD(&head);
863 btrfs_item_key_to_cpu(leaf, &key, i);
866 * count the number of the dir index items that we can delete in batch
868 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
869 list_add_tail(&next->tree_list, &head);
873 next = __btrfs_next_delayed_item(curr);
877 if (!btrfs_is_continuous_delayed_item(curr, next))
883 btrfs_item_key_to_cpu(leaf, &key, i);
889 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
893 list_for_each_entry_safe(curr, next, &head, tree_list) {
894 btrfs_delayed_item_release_metadata(root, curr);
895 list_del(&curr->tree_list);
896 btrfs_release_delayed_item(curr);
903 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
904 struct btrfs_path *path,
905 struct btrfs_root *root,
906 struct btrfs_delayed_node *node)
908 struct btrfs_delayed_item *curr, *prev;
912 mutex_lock(&node->mutex);
913 curr = __btrfs_first_delayed_deletion_item(node);
917 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
922 * can't find the item which the node points to, so this node
923 * is invalid, just drop it.
926 curr = __btrfs_next_delayed_item(prev);
927 btrfs_release_delayed_item(prev);
929 btrfs_release_path(path);
936 btrfs_batch_delete_items(trans, root, path, curr);
937 btrfs_release_path(path);
938 mutex_unlock(&node->mutex);
942 btrfs_release_path(path);
943 mutex_unlock(&node->mutex);
947 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
949 struct btrfs_delayed_root *delayed_root;
951 if (delayed_node && delayed_node->inode_dirty) {
952 BUG_ON(!delayed_node->root);
953 delayed_node->inode_dirty = 0;
954 delayed_node->count--;
956 delayed_root = delayed_node->root->fs_info->delayed_root;
957 atomic_dec(&delayed_root->items);
958 if (atomic_read(&delayed_root->items) <
959 BTRFS_DELAYED_BACKGROUND &&
960 waitqueue_active(&delayed_root->wait))
961 wake_up(&delayed_root->wait);
965 static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
966 struct btrfs_root *root,
967 struct btrfs_path *path,
968 struct btrfs_delayed_node *node)
970 struct btrfs_key key;
971 struct btrfs_inode_item *inode_item;
972 struct extent_buffer *leaf;
975 mutex_lock(&node->mutex);
976 if (!node->inode_dirty) {
977 mutex_unlock(&node->mutex);
981 key.objectid = node->inode_id;
982 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
984 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
986 btrfs_release_path(path);
987 mutex_unlock(&node->mutex);
989 } else if (ret < 0) {
990 mutex_unlock(&node->mutex);
994 btrfs_unlock_up_safe(path, 1);
995 leaf = path->nodes[0];
996 inode_item = btrfs_item_ptr(leaf, path->slots[0],
997 struct btrfs_inode_item);
998 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
999 sizeof(struct btrfs_inode_item));
1000 btrfs_mark_buffer_dirty(leaf);
1001 btrfs_release_path(path);
1003 btrfs_delayed_inode_release_metadata(root, node);
1004 btrfs_release_delayed_inode(node);
1005 mutex_unlock(&node->mutex);
1010 /* Called when committing the transaction. */
1011 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1012 struct btrfs_root *root)
1014 struct btrfs_delayed_root *delayed_root;
1015 struct btrfs_delayed_node *curr_node, *prev_node;
1016 struct btrfs_path *path;
1017 struct btrfs_block_rsv *block_rsv;
1020 path = btrfs_alloc_path();
1023 path->leave_spinning = 1;
1025 block_rsv = trans->block_rsv;
1026 trans->block_rsv = &root->fs_info->global_block_rsv;
1028 delayed_root = btrfs_get_delayed_root(root);
1030 curr_node = btrfs_first_delayed_node(delayed_root);
1032 root = curr_node->root;
1033 ret = btrfs_insert_delayed_items(trans, path, root,
1036 ret = btrfs_delete_delayed_items(trans, path, root,
1039 ret = btrfs_update_delayed_inode(trans, root, path,
1042 btrfs_release_delayed_node(curr_node);
1046 prev_node = curr_node;
1047 curr_node = btrfs_next_delayed_node(curr_node);
1048 btrfs_release_delayed_node(prev_node);
1051 btrfs_free_path(path);
1052 trans->block_rsv = block_rsv;
1056 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1057 struct btrfs_delayed_node *node)
1059 struct btrfs_path *path;
1060 struct btrfs_block_rsv *block_rsv;
1063 path = btrfs_alloc_path();
1066 path->leave_spinning = 1;
1068 block_rsv = trans->block_rsv;
1069 trans->block_rsv = &node->root->fs_info->global_block_rsv;
1071 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1073 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1075 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1076 btrfs_free_path(path);
1078 trans->block_rsv = block_rsv;
1082 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1083 struct inode *inode)
1085 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1091 mutex_lock(&delayed_node->mutex);
1092 if (!delayed_node->count) {
1093 mutex_unlock(&delayed_node->mutex);
1094 btrfs_release_delayed_node(delayed_node);
1097 mutex_unlock(&delayed_node->mutex);
1099 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1100 btrfs_release_delayed_node(delayed_node);
1104 void btrfs_remove_delayed_node(struct inode *inode)
1106 struct btrfs_delayed_node *delayed_node;
1108 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1112 BTRFS_I(inode)->delayed_node = NULL;
1113 btrfs_release_delayed_node(delayed_node);
1116 struct btrfs_async_delayed_node {
1117 struct btrfs_root *root;
1118 struct btrfs_delayed_node *delayed_node;
1119 struct btrfs_work work;
1122 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1124 struct btrfs_async_delayed_node *async_node;
1125 struct btrfs_trans_handle *trans;
1126 struct btrfs_path *path;
1127 struct btrfs_delayed_node *delayed_node = NULL;
1128 struct btrfs_root *root;
1129 struct btrfs_block_rsv *block_rsv;
1130 unsigned long nr = 0;
1131 int need_requeue = 0;
1134 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1136 path = btrfs_alloc_path();
1139 path->leave_spinning = 1;
1141 delayed_node = async_node->delayed_node;
1142 root = delayed_node->root;
1144 trans = btrfs_join_transaction(root);
1148 block_rsv = trans->block_rsv;
1149 trans->block_rsv = &root->fs_info->global_block_rsv;
1151 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1153 ret = btrfs_delete_delayed_items(trans, path, root,
1157 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1160 * Maybe new delayed items have been inserted, so we need requeue
1161 * the work. Besides that, we must dequeue the empty delayed nodes
1162 * to avoid the race between delayed items balance and the worker.
1163 * The race like this:
1164 * Task1 Worker thread
1165 * count == 0, needn't requeue
1166 * also needn't insert the
1167 * delayed node into prepare
1169 * add lots of delayed items
1170 * queue the delayed node
1171 * already in the list,
1172 * and not in the prepare
1173 * list, it means the delayed
1174 * node is being dealt with
1176 * do delayed items balance
1177 * the delayed node is being
1178 * dealt with by the worker
1180 * the worker goto idle.
1181 * Task1 will sleep until the transaction is commited.
1183 mutex_lock(&delayed_node->mutex);
1184 if (delayed_node->count)
1187 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1189 mutex_unlock(&delayed_node->mutex);
1191 nr = trans->blocks_used;
1193 trans->block_rsv = block_rsv;
1194 btrfs_end_transaction_dmeta(trans, root);
1195 __btrfs_btree_balance_dirty(root, nr);
1197 btrfs_free_path(path);
1200 btrfs_requeue_work(&async_node->work);
1202 btrfs_release_prepared_delayed_node(delayed_node);
1207 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1208 struct btrfs_root *root, int all)
1210 struct btrfs_async_delayed_node *async_node;
1211 struct btrfs_delayed_node *curr;
1215 curr = btrfs_first_prepared_delayed_node(delayed_root);
1219 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1221 btrfs_release_prepared_delayed_node(curr);
1225 async_node->root = root;
1226 async_node->delayed_node = curr;
1228 async_node->work.func = btrfs_async_run_delayed_node_done;
1229 async_node->work.flags = 0;
1231 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1234 if (all || count < 4)
1240 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1242 struct btrfs_delayed_root *delayed_root;
1243 delayed_root = btrfs_get_delayed_root(root);
1244 WARN_ON(btrfs_first_delayed_node(delayed_root));
1247 void btrfs_balance_delayed_items(struct btrfs_root *root)
1249 struct btrfs_delayed_root *delayed_root;
1251 delayed_root = btrfs_get_delayed_root(root);
1253 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1256 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1258 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1262 wait_event_interruptible_timeout(
1264 (atomic_read(&delayed_root->items) <
1265 BTRFS_DELAYED_BACKGROUND),
1270 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1273 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1274 struct btrfs_root *root, const char *name,
1275 int name_len, struct inode *dir,
1276 struct btrfs_disk_key *disk_key, u8 type,
1279 struct btrfs_delayed_node *delayed_node;
1280 struct btrfs_delayed_item *delayed_item;
1281 struct btrfs_dir_item *dir_item;
1284 delayed_node = btrfs_get_or_create_delayed_node(dir);
1285 if (IS_ERR(delayed_node))
1286 return PTR_ERR(delayed_node);
1288 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1289 if (!delayed_item) {
1294 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1296 * we have reserved enough space when we start a new transaction,
1297 * so reserving metadata failure is impossible
1301 delayed_item->key.objectid = btrfs_ino(dir);
1302 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1303 delayed_item->key.offset = index;
1305 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1306 dir_item->location = *disk_key;
1307 dir_item->transid = cpu_to_le64(trans->transid);
1308 dir_item->data_len = 0;
1309 dir_item->name_len = cpu_to_le16(name_len);
1310 dir_item->type = type;
1311 memcpy((char *)(dir_item + 1), name, name_len);
1313 mutex_lock(&delayed_node->mutex);
1314 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1315 if (unlikely(ret)) {
1316 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1317 "the insertion tree of the delayed node"
1318 "(root id: %llu, inode id: %llu, errno: %d)\n",
1320 (unsigned long long)delayed_node->root->objectid,
1321 (unsigned long long)delayed_node->inode_id,
1325 mutex_unlock(&delayed_node->mutex);
1328 btrfs_release_delayed_node(delayed_node);
1332 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1333 struct btrfs_delayed_node *node,
1334 struct btrfs_key *key)
1336 struct btrfs_delayed_item *item;
1338 mutex_lock(&node->mutex);
1339 item = __btrfs_lookup_delayed_insertion_item(node, key);
1341 mutex_unlock(&node->mutex);
1345 btrfs_delayed_item_release_metadata(root, item);
1346 btrfs_release_delayed_item(item);
1347 mutex_unlock(&node->mutex);
1351 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1352 struct btrfs_root *root, struct inode *dir,
1355 struct btrfs_delayed_node *node;
1356 struct btrfs_delayed_item *item;
1357 struct btrfs_key item_key;
1360 node = btrfs_get_or_create_delayed_node(dir);
1362 return PTR_ERR(node);
1364 item_key.objectid = btrfs_ino(dir);
1365 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1366 item_key.offset = index;
1368 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1372 item = btrfs_alloc_delayed_item(0);
1378 item->key = item_key;
1380 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1382 * we have reserved enough space when we start a new transaction,
1383 * so reserving metadata failure is impossible.
1387 mutex_lock(&node->mutex);
1388 ret = __btrfs_add_delayed_deletion_item(node, item);
1389 if (unlikely(ret)) {
1390 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1391 "into the deletion tree of the delayed node"
1392 "(root id: %llu, inode id: %llu, errno: %d)\n",
1393 (unsigned long long)index,
1394 (unsigned long long)node->root->objectid,
1395 (unsigned long long)node->inode_id,
1399 mutex_unlock(&node->mutex);
1401 btrfs_release_delayed_node(node);
1405 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1407 struct btrfs_delayed_node *delayed_node = BTRFS_I(inode)->delayed_node;
1414 * Since we have held i_mutex of this directory, it is impossible that
1415 * a new directory index is added into the delayed node and index_cnt
1416 * is updated now. So we needn't lock the delayed node.
1418 if (!delayed_node->index_cnt)
1421 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1425 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1426 struct list_head *del_list)
1428 struct btrfs_delayed_node *delayed_node;
1429 struct btrfs_delayed_item *item;
1431 delayed_node = btrfs_get_delayed_node(inode);
1435 mutex_lock(&delayed_node->mutex);
1436 item = __btrfs_first_delayed_insertion_item(delayed_node);
1438 atomic_inc(&item->refs);
1439 list_add_tail(&item->readdir_list, ins_list);
1440 item = __btrfs_next_delayed_item(item);
1443 item = __btrfs_first_delayed_deletion_item(delayed_node);
1445 atomic_inc(&item->refs);
1446 list_add_tail(&item->readdir_list, del_list);
1447 item = __btrfs_next_delayed_item(item);
1449 mutex_unlock(&delayed_node->mutex);
1451 * This delayed node is still cached in the btrfs inode, so refs
1452 * must be > 1 now, and we needn't check it is going to be freed
1455 * Besides that, this function is used to read dir, we do not
1456 * insert/delete delayed items in this period. So we also needn't
1457 * requeue or dequeue this delayed node.
1459 atomic_dec(&delayed_node->refs);
1462 void btrfs_put_delayed_items(struct list_head *ins_list,
1463 struct list_head *del_list)
1465 struct btrfs_delayed_item *curr, *next;
1467 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1468 list_del(&curr->readdir_list);
1469 if (atomic_dec_and_test(&curr->refs))
1473 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1474 list_del(&curr->readdir_list);
1475 if (atomic_dec_and_test(&curr->refs))
1480 int btrfs_should_delete_dir_index(struct list_head *del_list,
1483 struct btrfs_delayed_item *curr, *next;
1486 if (list_empty(del_list))
1489 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1490 if (curr->key.offset > index)
1493 list_del(&curr->readdir_list);
1494 ret = (curr->key.offset == index);
1496 if (atomic_dec_and_test(&curr->refs))
1508 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1511 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1513 struct list_head *ins_list)
1515 struct btrfs_dir_item *di;
1516 struct btrfs_delayed_item *curr, *next;
1517 struct btrfs_key location;
1521 unsigned char d_type;
1523 if (list_empty(ins_list))
1527 * Changing the data of the delayed item is impossible. So
1528 * we needn't lock them. And we have held i_mutex of the
1529 * directory, nobody can delete any directory indexes now.
1531 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1532 list_del(&curr->readdir_list);
1534 if (curr->key.offset < filp->f_pos) {
1535 if (atomic_dec_and_test(&curr->refs))
1540 filp->f_pos = curr->key.offset;
1542 di = (struct btrfs_dir_item *)curr->data;
1543 name = (char *)(di + 1);
1544 name_len = le16_to_cpu(di->name_len);
1546 d_type = btrfs_filetype_table[di->type];
1547 btrfs_disk_key_to_cpu(&location, &di->location);
1549 over = filldir(dirent, name, name_len, curr->key.offset,
1550 location.objectid, d_type);
1552 if (atomic_dec_and_test(&curr->refs))
1561 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1563 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1565 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1567 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1568 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1570 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1572 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1573 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1574 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1575 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1576 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1577 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1579 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1580 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1582 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1583 struct btrfs_inode_item *inode_item,
1584 struct inode *inode)
1586 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1587 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1588 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1589 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1590 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1591 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1592 btrfs_set_stack_inode_generation(inode_item,
1593 BTRFS_I(inode)->generation);
1594 btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1595 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1596 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1597 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1598 btrfs_set_stack_inode_block_group(inode_item, 0);
1600 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1601 inode->i_atime.tv_sec);
1602 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1603 inode->i_atime.tv_nsec);
1605 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1606 inode->i_mtime.tv_sec);
1607 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1608 inode->i_mtime.tv_nsec);
1610 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1611 inode->i_ctime.tv_sec);
1612 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1613 inode->i_ctime.tv_nsec);
1616 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1617 struct btrfs_root *root, struct inode *inode)
1619 struct btrfs_delayed_node *delayed_node;
1622 delayed_node = btrfs_get_or_create_delayed_node(inode);
1623 if (IS_ERR(delayed_node))
1624 return PTR_ERR(delayed_node);
1626 mutex_lock(&delayed_node->mutex);
1627 if (delayed_node->inode_dirty) {
1628 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1632 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1634 * we must reserve enough space when we start a new transaction,
1635 * so reserving metadata failure is impossible
1639 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1640 delayed_node->inode_dirty = 1;
1641 delayed_node->count++;
1642 atomic_inc(&root->fs_info->delayed_root->items);
1644 mutex_unlock(&delayed_node->mutex);
1645 btrfs_release_delayed_node(delayed_node);
1649 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1651 struct btrfs_root *root = delayed_node->root;
1652 struct btrfs_delayed_item *curr_item, *prev_item;
1654 mutex_lock(&delayed_node->mutex);
1655 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1657 btrfs_delayed_item_release_metadata(root, curr_item);
1658 prev_item = curr_item;
1659 curr_item = __btrfs_next_delayed_item(prev_item);
1660 btrfs_release_delayed_item(prev_item);
1663 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1665 btrfs_delayed_item_release_metadata(root, curr_item);
1666 prev_item = curr_item;
1667 curr_item = __btrfs_next_delayed_item(prev_item);
1668 btrfs_release_delayed_item(prev_item);
1671 if (delayed_node->inode_dirty) {
1672 btrfs_delayed_inode_release_metadata(root, delayed_node);
1673 btrfs_release_delayed_inode(delayed_node);
1675 mutex_unlock(&delayed_node->mutex);
1678 void btrfs_kill_delayed_inode_items(struct inode *inode)
1680 struct btrfs_delayed_node *delayed_node;
1682 delayed_node = btrfs_get_delayed_node(inode);
1686 __btrfs_kill_delayed_node(delayed_node);
1687 btrfs_release_delayed_node(delayed_node);
1690 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1693 struct btrfs_delayed_node *delayed_nodes[8];
1697 spin_lock(&root->inode_lock);
1698 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1699 (void **)delayed_nodes, inode_id,
1700 ARRAY_SIZE(delayed_nodes));
1702 spin_unlock(&root->inode_lock);
1706 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1708 for (i = 0; i < n; i++)
1709 atomic_inc(&delayed_nodes[i]->refs);
1710 spin_unlock(&root->inode_lock);
1712 for (i = 0; i < n; i++) {
1713 __btrfs_kill_delayed_node(delayed_nodes[i]);
1714 btrfs_release_delayed_node(delayed_nodes[i]);