]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 #include "amdgpu_gmc.h"
37 #include "amdgpu_xgmi.h"
38
39 /**
40  * DOC: GPUVM
41  *
42  * GPUVM is similar to the legacy gart on older asics, however
43  * rather than there being a single global gart table
44  * for the entire GPU, there are multiple VM page tables active
45  * at any given time.  The VM page tables can contain a mix
46  * vram pages and system memory pages and system memory pages
47  * can be mapped as snooped (cached system pages) or unsnooped
48  * (uncached system pages).
49  * Each VM has an ID associated with it and there is a page table
50  * associated with each VMID.  When execting a command buffer,
51  * the kernel tells the the ring what VMID to use for that command
52  * buffer.  VMIDs are allocated dynamically as commands are submitted.
53  * The userspace drivers maintain their own address space and the kernel
54  * sets up their pages tables accordingly when they submit their
55  * command buffers and a VMID is assigned.
56  * Cayman/Trinity support up to 8 active VMs at any given time;
57  * SI supports 16.
58  */
59
60 #define START(node) ((node)->start)
61 #define LAST(node) ((node)->last)
62
63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
64                      START, LAST, static, amdgpu_vm_it)
65
66 #undef START
67 #undef LAST
68
69 /**
70  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
71  */
72 struct amdgpu_prt_cb {
73
74         /**
75          * @adev: amdgpu device
76          */
77         struct amdgpu_device *adev;
78
79         /**
80          * @cb: callback
81          */
82         struct dma_fence_cb cb;
83 };
84
85 /**
86  * amdgpu_vm_level_shift - return the addr shift for each level
87  *
88  * @adev: amdgpu_device pointer
89  * @level: VMPT level
90  *
91  * Returns:
92  * The number of bits the pfn needs to be right shifted for a level.
93  */
94 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
95                                       unsigned level)
96 {
97         unsigned shift = 0xff;
98
99         switch (level) {
100         case AMDGPU_VM_PDB2:
101         case AMDGPU_VM_PDB1:
102         case AMDGPU_VM_PDB0:
103                 shift = 9 * (AMDGPU_VM_PDB0 - level) +
104                         adev->vm_manager.block_size;
105                 break;
106         case AMDGPU_VM_PTB:
107                 shift = 0;
108                 break;
109         default:
110                 dev_err(adev->dev, "the level%d isn't supported.\n", level);
111         }
112
113         return shift;
114 }
115
116 /**
117  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
118  *
119  * @adev: amdgpu_device pointer
120  * @level: VMPT level
121  *
122  * Returns:
123  * The number of entries in a page directory or page table.
124  */
125 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
126                                       unsigned level)
127 {
128         unsigned shift = amdgpu_vm_level_shift(adev,
129                                                adev->vm_manager.root_level);
130
131         if (level == adev->vm_manager.root_level)
132                 /* For the root directory */
133                 return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
134                         >> shift;
135         else if (level != AMDGPU_VM_PTB)
136                 /* Everything in between */
137                 return 512;
138         else
139                 /* For the page tables on the leaves */
140                 return AMDGPU_VM_PTE_COUNT(adev);
141 }
142
143 /**
144  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
145  *
146  * @adev: amdgpu_device pointer
147  *
148  * Returns:
149  * The number of entries in the root page directory which needs the ATS setting.
150  */
151 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
152 {
153         unsigned shift;
154
155         shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
156         return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
157 }
158
159 /**
160  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
161  *
162  * @adev: amdgpu_device pointer
163  * @level: VMPT level
164  *
165  * Returns:
166  * The mask to extract the entry number of a PD/PT from an address.
167  */
168 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
169                                        unsigned int level)
170 {
171         if (level <= adev->vm_manager.root_level)
172                 return 0xffffffff;
173         else if (level != AMDGPU_VM_PTB)
174                 return 0x1ff;
175         else
176                 return AMDGPU_VM_PTE_COUNT(adev) - 1;
177 }
178
179 /**
180  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
181  *
182  * @adev: amdgpu_device pointer
183  * @level: VMPT level
184  *
185  * Returns:
186  * The size of the BO for a page directory or page table in bytes.
187  */
188 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
189 {
190         return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
191 }
192
193 /**
194  * amdgpu_vm_bo_evicted - vm_bo is evicted
195  *
196  * @vm_bo: vm_bo which is evicted
197  *
198  * State for PDs/PTs and per VM BOs which are not at the location they should
199  * be.
200  */
201 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
202 {
203         struct amdgpu_vm *vm = vm_bo->vm;
204         struct amdgpu_bo *bo = vm_bo->bo;
205
206         vm_bo->moved = true;
207         if (bo->tbo.type == ttm_bo_type_kernel)
208                 list_move(&vm_bo->vm_status, &vm->evicted);
209         else
210                 list_move_tail(&vm_bo->vm_status, &vm->evicted);
211 }
212
213 /**
214  * amdgpu_vm_bo_relocated - vm_bo is reloacted
215  *
216  * @vm_bo: vm_bo which is relocated
217  *
218  * State for PDs/PTs which needs to update their parent PD.
219  */
220 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
221 {
222         list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
223 }
224
225 /**
226  * amdgpu_vm_bo_moved - vm_bo is moved
227  *
228  * @vm_bo: vm_bo which is moved
229  *
230  * State for per VM BOs which are moved, but that change is not yet reflected
231  * in the page tables.
232  */
233 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
234 {
235         list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
236 }
237
238 /**
239  * amdgpu_vm_bo_idle - vm_bo is idle
240  *
241  * @vm_bo: vm_bo which is now idle
242  *
243  * State for PDs/PTs and per VM BOs which have gone through the state machine
244  * and are now idle.
245  */
246 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
247 {
248         list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
249         vm_bo->moved = false;
250 }
251
252 /**
253  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
254  *
255  * @vm_bo: vm_bo which is now invalidated
256  *
257  * State for normal BOs which are invalidated and that change not yet reflected
258  * in the PTs.
259  */
260 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
261 {
262         spin_lock(&vm_bo->vm->invalidated_lock);
263         list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
264         spin_unlock(&vm_bo->vm->invalidated_lock);
265 }
266
267 /**
268  * amdgpu_vm_bo_done - vm_bo is done
269  *
270  * @vm_bo: vm_bo which is now done
271  *
272  * State for normal BOs which are invalidated and that change has been updated
273  * in the PTs.
274  */
275 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
276 {
277         spin_lock(&vm_bo->vm->invalidated_lock);
278         list_del_init(&vm_bo->vm_status);
279         spin_unlock(&vm_bo->vm->invalidated_lock);
280 }
281
282 /**
283  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
284  *
285  * @base: base structure for tracking BO usage in a VM
286  * @vm: vm to which bo is to be added
287  * @bo: amdgpu buffer object
288  *
289  * Initialize a bo_va_base structure and add it to the appropriate lists
290  *
291  */
292 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
293                                    struct amdgpu_vm *vm,
294                                    struct amdgpu_bo *bo)
295 {
296         base->vm = vm;
297         base->bo = bo;
298         base->next = NULL;
299         INIT_LIST_HEAD(&base->vm_status);
300
301         if (!bo)
302                 return;
303         base->next = bo->vm_bo;
304         bo->vm_bo = base;
305
306         if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
307                 return;
308
309         vm->bulk_moveable = false;
310         if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
311                 amdgpu_vm_bo_relocated(base);
312         else
313                 amdgpu_vm_bo_idle(base);
314
315         if (bo->preferred_domains &
316             amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
317                 return;
318
319         /*
320          * we checked all the prerequisites, but it looks like this per vm bo
321          * is currently evicted. add the bo to the evicted list to make sure it
322          * is validated on next vm use to avoid fault.
323          * */
324         amdgpu_vm_bo_evicted(base);
325 }
326
327 /**
328  * amdgpu_vm_pt_parent - get the parent page directory
329  *
330  * @pt: child page table
331  *
332  * Helper to get the parent entry for the child page table. NULL if we are at
333  * the root page directory.
334  */
335 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
336 {
337         struct amdgpu_bo *parent = pt->base.bo->parent;
338
339         if (!parent)
340                 return NULL;
341
342         return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
343 }
344
345 /*
346  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
347  */
348 struct amdgpu_vm_pt_cursor {
349         uint64_t pfn;
350         struct amdgpu_vm_pt *parent;
351         struct amdgpu_vm_pt *entry;
352         unsigned level;
353 };
354
355 /**
356  * amdgpu_vm_pt_start - start PD/PT walk
357  *
358  * @adev: amdgpu_device pointer
359  * @vm: amdgpu_vm structure
360  * @start: start address of the walk
361  * @cursor: state to initialize
362  *
363  * Initialize a amdgpu_vm_pt_cursor to start a walk.
364  */
365 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
366                                struct amdgpu_vm *vm, uint64_t start,
367                                struct amdgpu_vm_pt_cursor *cursor)
368 {
369         cursor->pfn = start;
370         cursor->parent = NULL;
371         cursor->entry = &vm->root;
372         cursor->level = adev->vm_manager.root_level;
373 }
374
375 /**
376  * amdgpu_vm_pt_descendant - go to child node
377  *
378  * @adev: amdgpu_device pointer
379  * @cursor: current state
380  *
381  * Walk to the child node of the current node.
382  * Returns:
383  * True if the walk was possible, false otherwise.
384  */
385 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
386                                     struct amdgpu_vm_pt_cursor *cursor)
387 {
388         unsigned mask, shift, idx;
389
390         if (!cursor->entry->entries)
391                 return false;
392
393         BUG_ON(!cursor->entry->base.bo);
394         mask = amdgpu_vm_entries_mask(adev, cursor->level);
395         shift = amdgpu_vm_level_shift(adev, cursor->level);
396
397         ++cursor->level;
398         idx = (cursor->pfn >> shift) & mask;
399         cursor->parent = cursor->entry;
400         cursor->entry = &cursor->entry->entries[idx];
401         return true;
402 }
403
404 /**
405  * amdgpu_vm_pt_sibling - go to sibling node
406  *
407  * @adev: amdgpu_device pointer
408  * @cursor: current state
409  *
410  * Walk to the sibling node of the current node.
411  * Returns:
412  * True if the walk was possible, false otherwise.
413  */
414 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
415                                  struct amdgpu_vm_pt_cursor *cursor)
416 {
417         unsigned shift, num_entries;
418
419         /* Root doesn't have a sibling */
420         if (!cursor->parent)
421                 return false;
422
423         /* Go to our parents and see if we got a sibling */
424         shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
425         num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
426
427         if (cursor->entry == &cursor->parent->entries[num_entries - 1])
428                 return false;
429
430         cursor->pfn += 1ULL << shift;
431         cursor->pfn &= ~((1ULL << shift) - 1);
432         ++cursor->entry;
433         return true;
434 }
435
436 /**
437  * amdgpu_vm_pt_ancestor - go to parent node
438  *
439  * @cursor: current state
440  *
441  * Walk to the parent node of the current node.
442  * Returns:
443  * True if the walk was possible, false otherwise.
444  */
445 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
446 {
447         if (!cursor->parent)
448                 return false;
449
450         --cursor->level;
451         cursor->entry = cursor->parent;
452         cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
453         return true;
454 }
455
456 /**
457  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
458  *
459  * @adev: amdgpu_device pointer
460  * @cursor: current state
461  *
462  * Walk the PD/PT tree to the next node.
463  */
464 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
465                               struct amdgpu_vm_pt_cursor *cursor)
466 {
467         /* First try a newborn child */
468         if (amdgpu_vm_pt_descendant(adev, cursor))
469                 return;
470
471         /* If that didn't worked try to find a sibling */
472         while (!amdgpu_vm_pt_sibling(adev, cursor)) {
473                 /* No sibling, go to our parents and grandparents */
474                 if (!amdgpu_vm_pt_ancestor(cursor)) {
475                         cursor->pfn = ~0ll;
476                         return;
477                 }
478         }
479 }
480
481 /**
482  * amdgpu_vm_pt_first_dfs - start a deep first search
483  *
484  * @adev: amdgpu_device structure
485  * @vm: amdgpu_vm structure
486  * @start: optional cursor to start with
487  * @cursor: state to initialize
488  *
489  * Starts a deep first traversal of the PD/PT tree.
490  */
491 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
492                                    struct amdgpu_vm *vm,
493                                    struct amdgpu_vm_pt_cursor *start,
494                                    struct amdgpu_vm_pt_cursor *cursor)
495 {
496         if (start)
497                 *cursor = *start;
498         else
499                 amdgpu_vm_pt_start(adev, vm, 0, cursor);
500         while (amdgpu_vm_pt_descendant(adev, cursor));
501 }
502
503 /**
504  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
505  *
506  * @start: starting point for the search
507  * @entry: current entry
508  *
509  * Returns:
510  * True when the search should continue, false otherwise.
511  */
512 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
513                                       struct amdgpu_vm_pt *entry)
514 {
515         return entry && (!start || entry != start->entry);
516 }
517
518 /**
519  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
520  *
521  * @adev: amdgpu_device structure
522  * @cursor: current state
523  *
524  * Move the cursor to the next node in a deep first search.
525  */
526 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
527                                   struct amdgpu_vm_pt_cursor *cursor)
528 {
529         if (!cursor->entry)
530                 return;
531
532         if (!cursor->parent)
533                 cursor->entry = NULL;
534         else if (amdgpu_vm_pt_sibling(adev, cursor))
535                 while (amdgpu_vm_pt_descendant(adev, cursor));
536         else
537                 amdgpu_vm_pt_ancestor(cursor);
538 }
539
540 /*
541  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
542  */
543 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)          \
544         for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),          \
545              (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
546              amdgpu_vm_pt_continue_dfs((start), (entry));                       \
547              (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
548
549 /**
550  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
551  *
552  * @vm: vm providing the BOs
553  * @validated: head of validation list
554  * @entry: entry to add
555  *
556  * Add the page directory to the list of BOs to
557  * validate for command submission.
558  */
559 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
560                          struct list_head *validated,
561                          struct amdgpu_bo_list_entry *entry)
562 {
563         entry->priority = 0;
564         entry->tv.bo = &vm->root.base.bo->tbo;
565         /* One for the VM updates, one for TTM and one for the CS job */
566         entry->tv.num_shared = 3;
567         entry->user_pages = NULL;
568         list_add(&entry->tv.head, validated);
569 }
570
571 /**
572  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
573  *
574  * @bo: BO which was removed from the LRU
575  *
576  * Make sure the bulk_moveable flag is updated when a BO is removed from the
577  * LRU.
578  */
579 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
580 {
581         struct amdgpu_bo *abo;
582         struct amdgpu_vm_bo_base *bo_base;
583
584         if (!amdgpu_bo_is_amdgpu_bo(bo))
585                 return;
586
587         if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
588                 return;
589
590         abo = ttm_to_amdgpu_bo(bo);
591         if (!abo->parent)
592                 return;
593         for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
594                 struct amdgpu_vm *vm = bo_base->vm;
595
596                 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
597                         vm->bulk_moveable = false;
598         }
599
600 }
601 /**
602  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
603  *
604  * @adev: amdgpu device pointer
605  * @vm: vm providing the BOs
606  *
607  * Move all BOs to the end of LRU and remember their positions to put them
608  * together.
609  */
610 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
611                                 struct amdgpu_vm *vm)
612 {
613         struct amdgpu_vm_bo_base *bo_base;
614
615         if (vm->bulk_moveable) {
616                 spin_lock(&ttm_bo_glob.lru_lock);
617                 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
618                 spin_unlock(&ttm_bo_glob.lru_lock);
619                 return;
620         }
621
622         memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
623
624         spin_lock(&ttm_bo_glob.lru_lock);
625         list_for_each_entry(bo_base, &vm->idle, vm_status) {
626                 struct amdgpu_bo *bo = bo_base->bo;
627
628                 if (!bo->parent)
629                         continue;
630
631                 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
632                 if (bo->shadow)
633                         ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
634                                                 &vm->lru_bulk_move);
635         }
636         spin_unlock(&ttm_bo_glob.lru_lock);
637
638         vm->bulk_moveable = true;
639 }
640
641 /**
642  * amdgpu_vm_validate_pt_bos - validate the page table BOs
643  *
644  * @adev: amdgpu device pointer
645  * @vm: vm providing the BOs
646  * @validate: callback to do the validation
647  * @param: parameter for the validation callback
648  *
649  * Validate the page table BOs on command submission if neccessary.
650  *
651  * Returns:
652  * Validation result.
653  */
654 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
655                               int (*validate)(void *p, struct amdgpu_bo *bo),
656                               void *param)
657 {
658         struct amdgpu_vm_bo_base *bo_base, *tmp;
659         int r = 0;
660
661         vm->bulk_moveable &= list_empty(&vm->evicted);
662
663         list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
664                 struct amdgpu_bo *bo = bo_base->bo;
665
666                 r = validate(param, bo);
667                 if (r)
668                         break;
669
670                 if (bo->tbo.type != ttm_bo_type_kernel) {
671                         amdgpu_vm_bo_moved(bo_base);
672                 } else {
673                         vm->update_funcs->map_table(bo);
674                         if (bo->parent)
675                                 amdgpu_vm_bo_relocated(bo_base);
676                         else
677                                 amdgpu_vm_bo_idle(bo_base);
678                 }
679         }
680
681         return r;
682 }
683
684 /**
685  * amdgpu_vm_ready - check VM is ready for updates
686  *
687  * @vm: VM to check
688  *
689  * Check if all VM PDs/PTs are ready for updates
690  *
691  * Returns:
692  * True if eviction list is empty.
693  */
694 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
695 {
696         return list_empty(&vm->evicted);
697 }
698
699 /**
700  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
701  *
702  * @adev: amdgpu_device pointer
703  * @vm: VM to clear BO from
704  * @bo: BO to clear
705  * @direct: use a direct update
706  *
707  * Root PD needs to be reserved when calling this.
708  *
709  * Returns:
710  * 0 on success, errno otherwise.
711  */
712 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
713                               struct amdgpu_vm *vm,
714                               struct amdgpu_bo *bo,
715                               bool direct)
716 {
717         struct ttm_operation_ctx ctx = { true, false };
718         unsigned level = adev->vm_manager.root_level;
719         struct amdgpu_vm_update_params params;
720         struct amdgpu_bo *ancestor = bo;
721         unsigned entries, ats_entries;
722         uint64_t addr;
723         int r;
724
725         /* Figure out our place in the hierarchy */
726         if (ancestor->parent) {
727                 ++level;
728                 while (ancestor->parent->parent) {
729                         ++level;
730                         ancestor = ancestor->parent;
731                 }
732         }
733
734         entries = amdgpu_bo_size(bo) / 8;
735         if (!vm->pte_support_ats) {
736                 ats_entries = 0;
737
738         } else if (!bo->parent) {
739                 ats_entries = amdgpu_vm_num_ats_entries(adev);
740                 ats_entries = min(ats_entries, entries);
741                 entries -= ats_entries;
742
743         } else {
744                 struct amdgpu_vm_pt *pt;
745
746                 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
747                 ats_entries = amdgpu_vm_num_ats_entries(adev);
748                 if ((pt - vm->root.entries) >= ats_entries) {
749                         ats_entries = 0;
750                 } else {
751                         ats_entries = entries;
752                         entries = 0;
753                 }
754         }
755
756         r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
757         if (r)
758                 return r;
759
760         if (bo->shadow) {
761                 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
762                                     &ctx);
763                 if (r)
764                         return r;
765         }
766
767         r = vm->update_funcs->map_table(bo);
768         if (r)
769                 return r;
770
771         memset(&params, 0, sizeof(params));
772         params.adev = adev;
773         params.vm = vm;
774         params.direct = direct;
775
776         r = vm->update_funcs->prepare(&params, AMDGPU_FENCE_OWNER_KFD, NULL);
777         if (r)
778                 return r;
779
780         addr = 0;
781         if (ats_entries) {
782                 uint64_t value = 0, flags;
783
784                 flags = AMDGPU_PTE_DEFAULT_ATC;
785                 if (level != AMDGPU_VM_PTB) {
786                         /* Handle leaf PDEs as PTEs */
787                         flags |= AMDGPU_PDE_PTE;
788                         amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
789                 }
790
791                 r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
792                                              value, flags);
793                 if (r)
794                         return r;
795
796                 addr += ats_entries * 8;
797         }
798
799         if (entries) {
800                 uint64_t value = 0, flags = 0;
801
802                 if (adev->asic_type >= CHIP_VEGA10) {
803                         if (level != AMDGPU_VM_PTB) {
804                                 /* Handle leaf PDEs as PTEs */
805                                 flags |= AMDGPU_PDE_PTE;
806                                 amdgpu_gmc_get_vm_pde(adev, level,
807                                                       &value, &flags);
808                         } else {
809                                 /* Workaround for fault priority problem on GMC9 */
810                                 flags = AMDGPU_PTE_EXECUTABLE;
811                         }
812                 }
813
814                 r = vm->update_funcs->update(&params, bo, addr, 0, entries,
815                                              value, flags);
816                 if (r)
817                         return r;
818         }
819
820         return vm->update_funcs->commit(&params, NULL);
821 }
822
823 /**
824  * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
825  *
826  * @adev: amdgpu_device pointer
827  * @vm: requesting vm
828  * @level: the page table level
829  * @direct: use a direct update
830  * @bp: resulting BO allocation parameters
831  */
832 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
833                                int level, bool direct,
834                                struct amdgpu_bo_param *bp)
835 {
836         memset(bp, 0, sizeof(*bp));
837
838         bp->size = amdgpu_vm_bo_size(adev, level);
839         bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
840         bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
841         bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
842         bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
843                 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
844         if (vm->use_cpu_for_update)
845                 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
846         else if (!vm->root.base.bo || vm->root.base.bo->shadow)
847                 bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
848         bp->type = ttm_bo_type_kernel;
849         bp->no_wait_gpu = direct;
850         if (vm->root.base.bo)
851                 bp->resv = vm->root.base.bo->tbo.base.resv;
852 }
853
854 /**
855  * amdgpu_vm_alloc_pts - Allocate a specific page table
856  *
857  * @adev: amdgpu_device pointer
858  * @vm: VM to allocate page tables for
859  * @cursor: Which page table to allocate
860  * @direct: use a direct update
861  *
862  * Make sure a specific page table or directory is allocated.
863  *
864  * Returns:
865  * 1 if page table needed to be allocated, 0 if page table was already
866  * allocated, negative errno if an error occurred.
867  */
868 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
869                                struct amdgpu_vm *vm,
870                                struct amdgpu_vm_pt_cursor *cursor,
871                                bool direct)
872 {
873         struct amdgpu_vm_pt *entry = cursor->entry;
874         struct amdgpu_bo_param bp;
875         struct amdgpu_bo *pt;
876         int r;
877
878         if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
879                 unsigned num_entries;
880
881                 num_entries = amdgpu_vm_num_entries(adev, cursor->level);
882                 entry->entries = kvmalloc_array(num_entries,
883                                                 sizeof(*entry->entries),
884                                                 GFP_KERNEL | __GFP_ZERO);
885                 if (!entry->entries)
886                         return -ENOMEM;
887         }
888
889         if (entry->base.bo)
890                 return 0;
891
892         amdgpu_vm_bo_param(adev, vm, cursor->level, direct, &bp);
893
894         r = amdgpu_bo_create(adev, &bp, &pt);
895         if (r)
896                 return r;
897
898         /* Keep a reference to the root directory to avoid
899          * freeing them up in the wrong order.
900          */
901         pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
902         amdgpu_vm_bo_base_init(&entry->base, vm, pt);
903
904         r = amdgpu_vm_clear_bo(adev, vm, pt, direct);
905         if (r)
906                 goto error_free_pt;
907
908         return 0;
909
910 error_free_pt:
911         amdgpu_bo_unref(&pt->shadow);
912         amdgpu_bo_unref(&pt);
913         return r;
914 }
915
916 /**
917  * amdgpu_vm_free_table - fre one PD/PT
918  *
919  * @entry: PDE to free
920  */
921 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
922 {
923         if (entry->base.bo) {
924                 entry->base.bo->vm_bo = NULL;
925                 list_del(&entry->base.vm_status);
926                 amdgpu_bo_unref(&entry->base.bo->shadow);
927                 amdgpu_bo_unref(&entry->base.bo);
928         }
929         kvfree(entry->entries);
930         entry->entries = NULL;
931 }
932
933 /**
934  * amdgpu_vm_free_pts - free PD/PT levels
935  *
936  * @adev: amdgpu device structure
937  * @vm: amdgpu vm structure
938  * @start: optional cursor where to start freeing PDs/PTs
939  *
940  * Free the page directory or page table level and all sub levels.
941  */
942 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
943                                struct amdgpu_vm *vm,
944                                struct amdgpu_vm_pt_cursor *start)
945 {
946         struct amdgpu_vm_pt_cursor cursor;
947         struct amdgpu_vm_pt *entry;
948
949         vm->bulk_moveable = false;
950
951         for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
952                 amdgpu_vm_free_table(entry);
953
954         if (start)
955                 amdgpu_vm_free_table(start->entry);
956 }
957
958 /**
959  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
960  *
961  * @adev: amdgpu_device pointer
962  */
963 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
964 {
965         const struct amdgpu_ip_block *ip_block;
966         bool has_compute_vm_bug;
967         struct amdgpu_ring *ring;
968         int i;
969
970         has_compute_vm_bug = false;
971
972         ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
973         if (ip_block) {
974                 /* Compute has a VM bug for GFX version < 7.
975                    Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
976                 if (ip_block->version->major <= 7)
977                         has_compute_vm_bug = true;
978                 else if (ip_block->version->major == 8)
979                         if (adev->gfx.mec_fw_version < 673)
980                                 has_compute_vm_bug = true;
981         }
982
983         for (i = 0; i < adev->num_rings; i++) {
984                 ring = adev->rings[i];
985                 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
986                         /* only compute rings */
987                         ring->has_compute_vm_bug = has_compute_vm_bug;
988                 else
989                         ring->has_compute_vm_bug = false;
990         }
991 }
992
993 /**
994  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
995  *
996  * @ring: ring on which the job will be submitted
997  * @job: job to submit
998  *
999  * Returns:
1000  * True if sync is needed.
1001  */
1002 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1003                                   struct amdgpu_job *job)
1004 {
1005         struct amdgpu_device *adev = ring->adev;
1006         unsigned vmhub = ring->funcs->vmhub;
1007         struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1008         struct amdgpu_vmid *id;
1009         bool gds_switch_needed;
1010         bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1011
1012         if (job->vmid == 0)
1013                 return false;
1014         id = &id_mgr->ids[job->vmid];
1015         gds_switch_needed = ring->funcs->emit_gds_switch && (
1016                 id->gds_base != job->gds_base ||
1017                 id->gds_size != job->gds_size ||
1018                 id->gws_base != job->gws_base ||
1019                 id->gws_size != job->gws_size ||
1020                 id->oa_base != job->oa_base ||
1021                 id->oa_size != job->oa_size);
1022
1023         if (amdgpu_vmid_had_gpu_reset(adev, id))
1024                 return true;
1025
1026         return vm_flush_needed || gds_switch_needed;
1027 }
1028
1029 /**
1030  * amdgpu_vm_flush - hardware flush the vm
1031  *
1032  * @ring: ring to use for flush
1033  * @job:  related job
1034  * @need_pipe_sync: is pipe sync needed
1035  *
1036  * Emit a VM flush when it is necessary.
1037  *
1038  * Returns:
1039  * 0 on success, errno otherwise.
1040  */
1041 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1042                     bool need_pipe_sync)
1043 {
1044         struct amdgpu_device *adev = ring->adev;
1045         unsigned vmhub = ring->funcs->vmhub;
1046         struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1047         struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1048         bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1049                 id->gds_base != job->gds_base ||
1050                 id->gds_size != job->gds_size ||
1051                 id->gws_base != job->gws_base ||
1052                 id->gws_size != job->gws_size ||
1053                 id->oa_base != job->oa_base ||
1054                 id->oa_size != job->oa_size);
1055         bool vm_flush_needed = job->vm_needs_flush;
1056         struct dma_fence *fence = NULL;
1057         bool pasid_mapping_needed = false;
1058         unsigned patch_offset = 0;
1059         int r;
1060
1061         if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1062                 gds_switch_needed = true;
1063                 vm_flush_needed = true;
1064                 pasid_mapping_needed = true;
1065         }
1066
1067         mutex_lock(&id_mgr->lock);
1068         if (id->pasid != job->pasid || !id->pasid_mapping ||
1069             !dma_fence_is_signaled(id->pasid_mapping))
1070                 pasid_mapping_needed = true;
1071         mutex_unlock(&id_mgr->lock);
1072
1073         gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1074         vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1075                         job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1076         pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1077                 ring->funcs->emit_wreg;
1078
1079         if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1080                 return 0;
1081
1082         if (ring->funcs->init_cond_exec)
1083                 patch_offset = amdgpu_ring_init_cond_exec(ring);
1084
1085         if (need_pipe_sync)
1086                 amdgpu_ring_emit_pipeline_sync(ring);
1087
1088         if (vm_flush_needed) {
1089                 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1090                 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1091         }
1092
1093         if (pasid_mapping_needed)
1094                 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1095
1096         if (vm_flush_needed || pasid_mapping_needed) {
1097                 r = amdgpu_fence_emit(ring, &fence, 0);
1098                 if (r)
1099                         return r;
1100         }
1101
1102         if (vm_flush_needed) {
1103                 mutex_lock(&id_mgr->lock);
1104                 dma_fence_put(id->last_flush);
1105                 id->last_flush = dma_fence_get(fence);
1106                 id->current_gpu_reset_count =
1107                         atomic_read(&adev->gpu_reset_counter);
1108                 mutex_unlock(&id_mgr->lock);
1109         }
1110
1111         if (pasid_mapping_needed) {
1112                 mutex_lock(&id_mgr->lock);
1113                 id->pasid = job->pasid;
1114                 dma_fence_put(id->pasid_mapping);
1115                 id->pasid_mapping = dma_fence_get(fence);
1116                 mutex_unlock(&id_mgr->lock);
1117         }
1118         dma_fence_put(fence);
1119
1120         if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1121                 id->gds_base = job->gds_base;
1122                 id->gds_size = job->gds_size;
1123                 id->gws_base = job->gws_base;
1124                 id->gws_size = job->gws_size;
1125                 id->oa_base = job->oa_base;
1126                 id->oa_size = job->oa_size;
1127                 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1128                                             job->gds_size, job->gws_base,
1129                                             job->gws_size, job->oa_base,
1130                                             job->oa_size);
1131         }
1132
1133         if (ring->funcs->patch_cond_exec)
1134                 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1135
1136         /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1137         if (ring->funcs->emit_switch_buffer) {
1138                 amdgpu_ring_emit_switch_buffer(ring);
1139                 amdgpu_ring_emit_switch_buffer(ring);
1140         }
1141         return 0;
1142 }
1143
1144 /**
1145  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1146  *
1147  * @vm: requested vm
1148  * @bo: requested buffer object
1149  *
1150  * Find @bo inside the requested vm.
1151  * Search inside the @bos vm list for the requested vm
1152  * Returns the found bo_va or NULL if none is found
1153  *
1154  * Object has to be reserved!
1155  *
1156  * Returns:
1157  * Found bo_va or NULL.
1158  */
1159 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1160                                        struct amdgpu_bo *bo)
1161 {
1162         struct amdgpu_vm_bo_base *base;
1163
1164         for (base = bo->vm_bo; base; base = base->next) {
1165                 if (base->vm != vm)
1166                         continue;
1167
1168                 return container_of(base, struct amdgpu_bo_va, base);
1169         }
1170         return NULL;
1171 }
1172
1173 /**
1174  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1175  *
1176  * @pages_addr: optional DMA address to use for lookup
1177  * @addr: the unmapped addr
1178  *
1179  * Look up the physical address of the page that the pte resolves
1180  * to.
1181  *
1182  * Returns:
1183  * The pointer for the page table entry.
1184  */
1185 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1186 {
1187         uint64_t result;
1188
1189         /* page table offset */
1190         result = pages_addr[addr >> PAGE_SHIFT];
1191
1192         /* in case cpu page size != gpu page size*/
1193         result |= addr & (~PAGE_MASK);
1194
1195         result &= 0xFFFFFFFFFFFFF000ULL;
1196
1197         return result;
1198 }
1199
1200 /**
1201  * amdgpu_vm_update_pde - update a single level in the hierarchy
1202  *
1203  * @params: parameters for the update
1204  * @vm: requested vm
1205  * @entry: entry to update
1206  *
1207  * Makes sure the requested entry in parent is up to date.
1208  */
1209 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1210                                 struct amdgpu_vm *vm,
1211                                 struct amdgpu_vm_pt *entry)
1212 {
1213         struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1214         struct amdgpu_bo *bo = parent->base.bo, *pbo;
1215         uint64_t pde, pt, flags;
1216         unsigned level;
1217
1218         for (level = 0, pbo = bo->parent; pbo; ++level)
1219                 pbo = pbo->parent;
1220
1221         level += params->adev->vm_manager.root_level;
1222         amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1223         pde = (entry - parent->entries) * 8;
1224         return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1225 }
1226
1227 /**
1228  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1229  *
1230  * @adev: amdgpu_device pointer
1231  * @vm: related vm
1232  *
1233  * Mark all PD level as invalid after an error.
1234  */
1235 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1236                                      struct amdgpu_vm *vm)
1237 {
1238         struct amdgpu_vm_pt_cursor cursor;
1239         struct amdgpu_vm_pt *entry;
1240
1241         for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1242                 if (entry->base.bo && !entry->base.moved)
1243                         amdgpu_vm_bo_relocated(&entry->base);
1244 }
1245
1246 /**
1247  * amdgpu_vm_update_pdes - make sure that all directories are valid
1248  *
1249  * @adev: amdgpu_device pointer
1250  * @vm: requested vm
1251  * @direct: submit directly to the paging queue
1252  *
1253  * Makes sure all directories are up to date.
1254  *
1255  * Returns:
1256  * 0 for success, error for failure.
1257  */
1258 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1259                           struct amdgpu_vm *vm, bool direct)
1260 {
1261         struct amdgpu_vm_update_params params;
1262         int r;
1263
1264         if (list_empty(&vm->relocated))
1265                 return 0;
1266
1267         memset(&params, 0, sizeof(params));
1268         params.adev = adev;
1269         params.vm = vm;
1270         params.direct = direct;
1271
1272         r = vm->update_funcs->prepare(&params, AMDGPU_FENCE_OWNER_VM, NULL);
1273         if (r)
1274                 return r;
1275
1276         while (!list_empty(&vm->relocated)) {
1277                 struct amdgpu_vm_pt *entry;
1278
1279                 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1280                                          base.vm_status);
1281                 amdgpu_vm_bo_idle(&entry->base);
1282
1283                 r = amdgpu_vm_update_pde(&params, vm, entry);
1284                 if (r)
1285                         goto error;
1286         }
1287
1288         r = vm->update_funcs->commit(&params, &vm->last_update);
1289         if (r)
1290                 goto error;
1291         return 0;
1292
1293 error:
1294         amdgpu_vm_invalidate_pds(adev, vm);
1295         return r;
1296 }
1297
1298 /*
1299  * amdgpu_vm_update_flags - figure out flags for PTE updates
1300  *
1301  * Make sure to set the right flags for the PTEs at the desired level.
1302  */
1303 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1304                                    struct amdgpu_bo *bo, unsigned level,
1305                                    uint64_t pe, uint64_t addr,
1306                                    unsigned count, uint32_t incr,
1307                                    uint64_t flags)
1308
1309 {
1310         if (level != AMDGPU_VM_PTB) {
1311                 flags |= AMDGPU_PDE_PTE;
1312                 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1313
1314         } else if (params->adev->asic_type >= CHIP_VEGA10 &&
1315                    !(flags & AMDGPU_PTE_VALID) &&
1316                    !(flags & AMDGPU_PTE_PRT)) {
1317
1318                 /* Workaround for fault priority problem on GMC9 */
1319                 flags |= AMDGPU_PTE_EXECUTABLE;
1320         }
1321
1322         params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1323                                          flags);
1324 }
1325
1326 /**
1327  * amdgpu_vm_fragment - get fragment for PTEs
1328  *
1329  * @params: see amdgpu_vm_update_params definition
1330  * @start: first PTE to handle
1331  * @end: last PTE to handle
1332  * @flags: hw mapping flags
1333  * @frag: resulting fragment size
1334  * @frag_end: end of this fragment
1335  *
1336  * Returns the first possible fragment for the start and end address.
1337  */
1338 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1339                                uint64_t start, uint64_t end, uint64_t flags,
1340                                unsigned int *frag, uint64_t *frag_end)
1341 {
1342         /**
1343          * The MC L1 TLB supports variable sized pages, based on a fragment
1344          * field in the PTE. When this field is set to a non-zero value, page
1345          * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1346          * flags are considered valid for all PTEs within the fragment range
1347          * and corresponding mappings are assumed to be physically contiguous.
1348          *
1349          * The L1 TLB can store a single PTE for the whole fragment,
1350          * significantly increasing the space available for translation
1351          * caching. This leads to large improvements in throughput when the
1352          * TLB is under pressure.
1353          *
1354          * The L2 TLB distributes small and large fragments into two
1355          * asymmetric partitions. The large fragment cache is significantly
1356          * larger. Thus, we try to use large fragments wherever possible.
1357          * Userspace can support this by aligning virtual base address and
1358          * allocation size to the fragment size.
1359          *
1360          * Starting with Vega10 the fragment size only controls the L1. The L2
1361          * is now directly feed with small/huge/giant pages from the walker.
1362          */
1363         unsigned max_frag;
1364
1365         if (params->adev->asic_type < CHIP_VEGA10)
1366                 max_frag = params->adev->vm_manager.fragment_size;
1367         else
1368                 max_frag = 31;
1369
1370         /* system pages are non continuously */
1371         if (params->pages_addr) {
1372                 *frag = 0;
1373                 *frag_end = end;
1374                 return;
1375         }
1376
1377         /* This intentionally wraps around if no bit is set */
1378         *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1379         if (*frag >= max_frag) {
1380                 *frag = max_frag;
1381                 *frag_end = end & ~((1ULL << max_frag) - 1);
1382         } else {
1383                 *frag_end = start + (1 << *frag);
1384         }
1385 }
1386
1387 /**
1388  * amdgpu_vm_update_ptes - make sure that page tables are valid
1389  *
1390  * @params: see amdgpu_vm_update_params definition
1391  * @start: start of GPU address range
1392  * @end: end of GPU address range
1393  * @dst: destination address to map to, the next dst inside the function
1394  * @flags: mapping flags
1395  *
1396  * Update the page tables in the range @start - @end.
1397  *
1398  * Returns:
1399  * 0 for success, -EINVAL for failure.
1400  */
1401 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1402                                  uint64_t start, uint64_t end,
1403                                  uint64_t dst, uint64_t flags)
1404 {
1405         struct amdgpu_device *adev = params->adev;
1406         struct amdgpu_vm_pt_cursor cursor;
1407         uint64_t frag_start = start, frag_end;
1408         unsigned int frag;
1409         int r;
1410
1411         /* figure out the initial fragment */
1412         amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1413
1414         /* walk over the address space and update the PTs */
1415         amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1416         while (cursor.pfn < end) {
1417                 unsigned shift, parent_shift, mask;
1418                 uint64_t incr, entry_end, pe_start;
1419                 struct amdgpu_bo *pt;
1420
1421                 /* make sure that the page tables covering the address range are
1422                  * actually allocated
1423                  */
1424                 r = amdgpu_vm_alloc_pts(params->adev, params->vm, &cursor,
1425                                         params->direct);
1426                 if (r)
1427                         return r;
1428
1429                 pt = cursor.entry->base.bo;
1430
1431                 /* The root level can't be a huge page */
1432                 if (cursor.level == adev->vm_manager.root_level) {
1433                         if (!amdgpu_vm_pt_descendant(adev, &cursor))
1434                                 return -ENOENT;
1435                         continue;
1436                 }
1437
1438                 shift = amdgpu_vm_level_shift(adev, cursor.level);
1439                 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1440                 if (adev->asic_type < CHIP_VEGA10 &&
1441                     (flags & AMDGPU_PTE_VALID)) {
1442                         /* No huge page support before GMC v9 */
1443                         if (cursor.level != AMDGPU_VM_PTB) {
1444                                 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1445                                         return -ENOENT;
1446                                 continue;
1447                         }
1448                 } else if (frag < shift) {
1449                         /* We can't use this level when the fragment size is
1450                          * smaller than the address shift. Go to the next
1451                          * child entry and try again.
1452                          */
1453                         if (!amdgpu_vm_pt_descendant(adev, &cursor))
1454                                 return -ENOENT;
1455                         continue;
1456                 } else if (frag >= parent_shift &&
1457                            cursor.level - 1 != adev->vm_manager.root_level) {
1458                         /* If the fragment size is even larger than the parent
1459                          * shift we should go up one level and check it again
1460                          * unless one level up is the root level.
1461                          */
1462                         if (!amdgpu_vm_pt_ancestor(&cursor))
1463                                 return -ENOENT;
1464                         continue;
1465                 }
1466
1467                 /* Looks good so far, calculate parameters for the update */
1468                 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1469                 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1470                 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1471                 entry_end = (uint64_t)(mask + 1) << shift;
1472                 entry_end += cursor.pfn & ~(entry_end - 1);
1473                 entry_end = min(entry_end, end);
1474
1475                 do {
1476                         uint64_t upd_end = min(entry_end, frag_end);
1477                         unsigned nptes = (upd_end - frag_start) >> shift;
1478
1479                         amdgpu_vm_update_flags(params, pt, cursor.level,
1480                                                pe_start, dst, nptes, incr,
1481                                                flags | AMDGPU_PTE_FRAG(frag));
1482
1483                         pe_start += nptes * 8;
1484                         dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1485
1486                         frag_start = upd_end;
1487                         if (frag_start >= frag_end) {
1488                                 /* figure out the next fragment */
1489                                 amdgpu_vm_fragment(params, frag_start, end,
1490                                                    flags, &frag, &frag_end);
1491                                 if (frag < shift)
1492                                         break;
1493                         }
1494                 } while (frag_start < entry_end);
1495
1496                 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1497                         /* Free all child entries.
1498                          * Update the tables with the flags and addresses and free up subsequent
1499                          * tables in the case of huge pages or freed up areas.
1500                          * This is the maximum you can free, because all other page tables are not
1501                          * completely covered by the range and so potentially still in use.
1502                          */
1503                         while (cursor.pfn < frag_start) {
1504                                 amdgpu_vm_free_pts(adev, params->vm, &cursor);
1505                                 amdgpu_vm_pt_next(adev, &cursor);
1506                         }
1507
1508                 } else if (frag >= shift) {
1509                         /* or just move on to the next on the same level. */
1510                         amdgpu_vm_pt_next(adev, &cursor);
1511                 }
1512         }
1513
1514         return 0;
1515 }
1516
1517 /**
1518  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1519  *
1520  * @adev: amdgpu_device pointer
1521  * @vm: requested vm
1522  * @direct: direct submission in a page fault
1523  * @exclusive: fence we need to sync to
1524  * @start: start of mapped range
1525  * @last: last mapped entry
1526  * @flags: flags for the entries
1527  * @addr: addr to set the area to
1528  * @pages_addr: DMA addresses to use for mapping
1529  * @fence: optional resulting fence
1530  *
1531  * Fill in the page table entries between @start and @last.
1532  *
1533  * Returns:
1534  * 0 for success, -EINVAL for failure.
1535  */
1536 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1537                                        struct amdgpu_vm *vm, bool direct,
1538                                        struct dma_fence *exclusive,
1539                                        uint64_t start, uint64_t last,
1540                                        uint64_t flags, uint64_t addr,
1541                                        dma_addr_t *pages_addr,
1542                                        struct dma_fence **fence)
1543 {
1544         struct amdgpu_vm_update_params params;
1545         void *owner = AMDGPU_FENCE_OWNER_VM;
1546         int r;
1547
1548         memset(&params, 0, sizeof(params));
1549         params.adev = adev;
1550         params.vm = vm;
1551         params.direct = direct;
1552         params.pages_addr = pages_addr;
1553
1554         /* sync to everything except eviction fences on unmapping */
1555         if (!(flags & AMDGPU_PTE_VALID))
1556                 owner = AMDGPU_FENCE_OWNER_KFD;
1557
1558         r = vm->update_funcs->prepare(&params, owner, exclusive);
1559         if (r)
1560                 return r;
1561
1562         r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1563         if (r)
1564                 return r;
1565
1566         return vm->update_funcs->commit(&params, fence);
1567 }
1568
1569 /**
1570  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1571  *
1572  * @adev: amdgpu_device pointer
1573  * @exclusive: fence we need to sync to
1574  * @pages_addr: DMA addresses to use for mapping
1575  * @vm: requested vm
1576  * @mapping: mapped range and flags to use for the update
1577  * @flags: HW flags for the mapping
1578  * @bo_adev: amdgpu_device pointer that bo actually been allocated
1579  * @nodes: array of drm_mm_nodes with the MC addresses
1580  * @fence: optional resulting fence
1581  *
1582  * Split the mapping into smaller chunks so that each update fits
1583  * into a SDMA IB.
1584  *
1585  * Returns:
1586  * 0 for success, -EINVAL for failure.
1587  */
1588 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1589                                       struct dma_fence *exclusive,
1590                                       dma_addr_t *pages_addr,
1591                                       struct amdgpu_vm *vm,
1592                                       struct amdgpu_bo_va_mapping *mapping,
1593                                       uint64_t flags,
1594                                       struct amdgpu_device *bo_adev,
1595                                       struct drm_mm_node *nodes,
1596                                       struct dma_fence **fence)
1597 {
1598         unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1599         uint64_t pfn, start = mapping->start;
1600         int r;
1601
1602         /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1603          * but in case of something, we filter the flags in first place
1604          */
1605         if (!(mapping->flags & AMDGPU_PTE_READABLE))
1606                 flags &= ~AMDGPU_PTE_READABLE;
1607         if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1608                 flags &= ~AMDGPU_PTE_WRITEABLE;
1609
1610         /* Apply ASIC specific mapping flags */
1611         amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1612
1613         trace_amdgpu_vm_bo_update(mapping);
1614
1615         pfn = mapping->offset >> PAGE_SHIFT;
1616         if (nodes) {
1617                 while (pfn >= nodes->size) {
1618                         pfn -= nodes->size;
1619                         ++nodes;
1620                 }
1621         }
1622
1623         do {
1624                 dma_addr_t *dma_addr = NULL;
1625                 uint64_t max_entries;
1626                 uint64_t addr, last;
1627
1628                 if (nodes) {
1629                         addr = nodes->start << PAGE_SHIFT;
1630                         max_entries = (nodes->size - pfn) *
1631                                 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1632                 } else {
1633                         addr = 0;
1634                         max_entries = S64_MAX;
1635                 }
1636
1637                 if (pages_addr) {
1638                         uint64_t count;
1639
1640                         for (count = 1;
1641                              count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1642                              ++count) {
1643                                 uint64_t idx = pfn + count;
1644
1645                                 if (pages_addr[idx] !=
1646                                     (pages_addr[idx - 1] + PAGE_SIZE))
1647                                         break;
1648                         }
1649
1650                         if (count < min_linear_pages) {
1651                                 addr = pfn << PAGE_SHIFT;
1652                                 dma_addr = pages_addr;
1653                         } else {
1654                                 addr = pages_addr[pfn];
1655                                 max_entries = count *
1656                                         AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1657                         }
1658
1659                 } else if (flags & AMDGPU_PTE_VALID) {
1660                         addr += bo_adev->vm_manager.vram_base_offset;
1661                         addr += pfn << PAGE_SHIFT;
1662                 }
1663
1664                 last = min((uint64_t)mapping->last, start + max_entries - 1);
1665                 r = amdgpu_vm_bo_update_mapping(adev, vm, false, exclusive,
1666                                                 start, last, flags, addr,
1667                                                 dma_addr, fence);
1668                 if (r)
1669                         return r;
1670
1671                 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1672                 if (nodes && nodes->size == pfn) {
1673                         pfn = 0;
1674                         ++nodes;
1675                 }
1676                 start = last + 1;
1677
1678         } while (unlikely(start != mapping->last + 1));
1679
1680         return 0;
1681 }
1682
1683 /**
1684  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1685  *
1686  * @adev: amdgpu_device pointer
1687  * @bo_va: requested BO and VM object
1688  * @clear: if true clear the entries
1689  *
1690  * Fill in the page table entries for @bo_va.
1691  *
1692  * Returns:
1693  * 0 for success, -EINVAL for failure.
1694  */
1695 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1696                         bool clear)
1697 {
1698         struct amdgpu_bo *bo = bo_va->base.bo;
1699         struct amdgpu_vm *vm = bo_va->base.vm;
1700         struct amdgpu_bo_va_mapping *mapping;
1701         dma_addr_t *pages_addr = NULL;
1702         struct ttm_mem_reg *mem;
1703         struct drm_mm_node *nodes;
1704         struct dma_fence *exclusive, **last_update;
1705         uint64_t flags;
1706         struct amdgpu_device *bo_adev = adev;
1707         int r;
1708
1709         if (clear || !bo) {
1710                 mem = NULL;
1711                 nodes = NULL;
1712                 exclusive = NULL;
1713         } else {
1714                 struct ttm_dma_tt *ttm;
1715
1716                 mem = &bo->tbo.mem;
1717                 nodes = mem->mm_node;
1718                 if (mem->mem_type == TTM_PL_TT) {
1719                         ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1720                         pages_addr = ttm->dma_address;
1721                 }
1722                 exclusive = bo->tbo.moving;
1723         }
1724
1725         if (bo) {
1726                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1727                 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1728         } else {
1729                 flags = 0x0;
1730         }
1731
1732         if (clear || (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv))
1733                 last_update = &vm->last_update;
1734         else
1735                 last_update = &bo_va->last_pt_update;
1736
1737         if (!clear && bo_va->base.moved) {
1738                 bo_va->base.moved = false;
1739                 list_splice_init(&bo_va->valids, &bo_va->invalids);
1740
1741         } else if (bo_va->cleared != clear) {
1742                 list_splice_init(&bo_va->valids, &bo_va->invalids);
1743         }
1744
1745         list_for_each_entry(mapping, &bo_va->invalids, list) {
1746                 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1747                                                mapping, flags, bo_adev, nodes,
1748                                                last_update);
1749                 if (r)
1750                         return r;
1751         }
1752
1753         /* If the BO is not in its preferred location add it back to
1754          * the evicted list so that it gets validated again on the
1755          * next command submission.
1756          */
1757         if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1758                 uint32_t mem_type = bo->tbo.mem.mem_type;
1759
1760                 if (!(bo->preferred_domains &
1761                       amdgpu_mem_type_to_domain(mem_type)))
1762                         amdgpu_vm_bo_evicted(&bo_va->base);
1763                 else
1764                         amdgpu_vm_bo_idle(&bo_va->base);
1765         } else {
1766                 amdgpu_vm_bo_done(&bo_va->base);
1767         }
1768
1769         list_splice_init(&bo_va->invalids, &bo_va->valids);
1770         bo_va->cleared = clear;
1771
1772         if (trace_amdgpu_vm_bo_mapping_enabled()) {
1773                 list_for_each_entry(mapping, &bo_va->valids, list)
1774                         trace_amdgpu_vm_bo_mapping(mapping);
1775         }
1776
1777         return 0;
1778 }
1779
1780 /**
1781  * amdgpu_vm_update_prt_state - update the global PRT state
1782  *
1783  * @adev: amdgpu_device pointer
1784  */
1785 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1786 {
1787         unsigned long flags;
1788         bool enable;
1789
1790         spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1791         enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1792         adev->gmc.gmc_funcs->set_prt(adev, enable);
1793         spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1794 }
1795
1796 /**
1797  * amdgpu_vm_prt_get - add a PRT user
1798  *
1799  * @adev: amdgpu_device pointer
1800  */
1801 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1802 {
1803         if (!adev->gmc.gmc_funcs->set_prt)
1804                 return;
1805
1806         if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1807                 amdgpu_vm_update_prt_state(adev);
1808 }
1809
1810 /**
1811  * amdgpu_vm_prt_put - drop a PRT user
1812  *
1813  * @adev: amdgpu_device pointer
1814  */
1815 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1816 {
1817         if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1818                 amdgpu_vm_update_prt_state(adev);
1819 }
1820
1821 /**
1822  * amdgpu_vm_prt_cb - callback for updating the PRT status
1823  *
1824  * @fence: fence for the callback
1825  * @_cb: the callback function
1826  */
1827 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1828 {
1829         struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1830
1831         amdgpu_vm_prt_put(cb->adev);
1832         kfree(cb);
1833 }
1834
1835 /**
1836  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1837  *
1838  * @adev: amdgpu_device pointer
1839  * @fence: fence for the callback
1840  */
1841 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1842                                  struct dma_fence *fence)
1843 {
1844         struct amdgpu_prt_cb *cb;
1845
1846         if (!adev->gmc.gmc_funcs->set_prt)
1847                 return;
1848
1849         cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1850         if (!cb) {
1851                 /* Last resort when we are OOM */
1852                 if (fence)
1853                         dma_fence_wait(fence, false);
1854
1855                 amdgpu_vm_prt_put(adev);
1856         } else {
1857                 cb->adev = adev;
1858                 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1859                                                      amdgpu_vm_prt_cb))
1860                         amdgpu_vm_prt_cb(fence, &cb->cb);
1861         }
1862 }
1863
1864 /**
1865  * amdgpu_vm_free_mapping - free a mapping
1866  *
1867  * @adev: amdgpu_device pointer
1868  * @vm: requested vm
1869  * @mapping: mapping to be freed
1870  * @fence: fence of the unmap operation
1871  *
1872  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1873  */
1874 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1875                                    struct amdgpu_vm *vm,
1876                                    struct amdgpu_bo_va_mapping *mapping,
1877                                    struct dma_fence *fence)
1878 {
1879         if (mapping->flags & AMDGPU_PTE_PRT)
1880                 amdgpu_vm_add_prt_cb(adev, fence);
1881         kfree(mapping);
1882 }
1883
1884 /**
1885  * amdgpu_vm_prt_fini - finish all prt mappings
1886  *
1887  * @adev: amdgpu_device pointer
1888  * @vm: requested vm
1889  *
1890  * Register a cleanup callback to disable PRT support after VM dies.
1891  */
1892 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1893 {
1894         struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1895         struct dma_fence *excl, **shared;
1896         unsigned i, shared_count;
1897         int r;
1898
1899         r = dma_resv_get_fences_rcu(resv, &excl,
1900                                               &shared_count, &shared);
1901         if (r) {
1902                 /* Not enough memory to grab the fence list, as last resort
1903                  * block for all the fences to complete.
1904                  */
1905                 dma_resv_wait_timeout_rcu(resv, true, false,
1906                                                     MAX_SCHEDULE_TIMEOUT);
1907                 return;
1908         }
1909
1910         /* Add a callback for each fence in the reservation object */
1911         amdgpu_vm_prt_get(adev);
1912         amdgpu_vm_add_prt_cb(adev, excl);
1913
1914         for (i = 0; i < shared_count; ++i) {
1915                 amdgpu_vm_prt_get(adev);
1916                 amdgpu_vm_add_prt_cb(adev, shared[i]);
1917         }
1918
1919         kfree(shared);
1920 }
1921
1922 /**
1923  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1924  *
1925  * @adev: amdgpu_device pointer
1926  * @vm: requested vm
1927  * @fence: optional resulting fence (unchanged if no work needed to be done
1928  * or if an error occurred)
1929  *
1930  * Make sure all freed BOs are cleared in the PT.
1931  * PTs have to be reserved and mutex must be locked!
1932  *
1933  * Returns:
1934  * 0 for success.
1935  *
1936  */
1937 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1938                           struct amdgpu_vm *vm,
1939                           struct dma_fence **fence)
1940 {
1941         struct amdgpu_bo_va_mapping *mapping;
1942         uint64_t init_pte_value = 0;
1943         struct dma_fence *f = NULL;
1944         int r;
1945
1946         while (!list_empty(&vm->freed)) {
1947                 mapping = list_first_entry(&vm->freed,
1948                         struct amdgpu_bo_va_mapping, list);
1949                 list_del(&mapping->list);
1950
1951                 if (vm->pte_support_ats &&
1952                     mapping->start < AMDGPU_GMC_HOLE_START)
1953                         init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1954
1955                 r = amdgpu_vm_bo_update_mapping(adev, vm, false, NULL,
1956                                                 mapping->start, mapping->last,
1957                                                 init_pte_value, 0, NULL, &f);
1958                 amdgpu_vm_free_mapping(adev, vm, mapping, f);
1959                 if (r) {
1960                         dma_fence_put(f);
1961                         return r;
1962                 }
1963         }
1964
1965         if (fence && f) {
1966                 dma_fence_put(*fence);
1967                 *fence = f;
1968         } else {
1969                 dma_fence_put(f);
1970         }
1971
1972         return 0;
1973
1974 }
1975
1976 /**
1977  * amdgpu_vm_handle_moved - handle moved BOs in the PT
1978  *
1979  * @adev: amdgpu_device pointer
1980  * @vm: requested vm
1981  *
1982  * Make sure all BOs which are moved are updated in the PTs.
1983  *
1984  * Returns:
1985  * 0 for success.
1986  *
1987  * PTs have to be reserved!
1988  */
1989 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1990                            struct amdgpu_vm *vm)
1991 {
1992         struct amdgpu_bo_va *bo_va, *tmp;
1993         struct dma_resv *resv;
1994         bool clear;
1995         int r;
1996
1997         list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1998                 /* Per VM BOs never need to bo cleared in the page tables */
1999                 r = amdgpu_vm_bo_update(adev, bo_va, false);
2000                 if (r)
2001                         return r;
2002         }
2003
2004         spin_lock(&vm->invalidated_lock);
2005         while (!list_empty(&vm->invalidated)) {
2006                 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2007                                          base.vm_status);
2008                 resv = bo_va->base.bo->tbo.base.resv;
2009                 spin_unlock(&vm->invalidated_lock);
2010
2011                 /* Try to reserve the BO to avoid clearing its ptes */
2012                 if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2013                         clear = false;
2014                 /* Somebody else is using the BO right now */
2015                 else
2016                         clear = true;
2017
2018                 r = amdgpu_vm_bo_update(adev, bo_va, clear);
2019                 if (r)
2020                         return r;
2021
2022                 if (!clear)
2023                         dma_resv_unlock(resv);
2024                 spin_lock(&vm->invalidated_lock);
2025         }
2026         spin_unlock(&vm->invalidated_lock);
2027
2028         return 0;
2029 }
2030
2031 /**
2032  * amdgpu_vm_bo_add - add a bo to a specific vm
2033  *
2034  * @adev: amdgpu_device pointer
2035  * @vm: requested vm
2036  * @bo: amdgpu buffer object
2037  *
2038  * Add @bo into the requested vm.
2039  * Add @bo to the list of bos associated with the vm
2040  *
2041  * Returns:
2042  * Newly added bo_va or NULL for failure
2043  *
2044  * Object has to be reserved!
2045  */
2046 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2047                                       struct amdgpu_vm *vm,
2048                                       struct amdgpu_bo *bo)
2049 {
2050         struct amdgpu_bo_va *bo_va;
2051
2052         bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2053         if (bo_va == NULL) {
2054                 return NULL;
2055         }
2056         amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2057
2058         bo_va->ref_count = 1;
2059         INIT_LIST_HEAD(&bo_va->valids);
2060         INIT_LIST_HEAD(&bo_va->invalids);
2061
2062         if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) &&
2063             (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) {
2064                 bo_va->is_xgmi = true;
2065                 mutex_lock(&adev->vm_manager.lock_pstate);
2066                 /* Power up XGMI if it can be potentially used */
2067                 if (++adev->vm_manager.xgmi_map_counter == 1)
2068                         amdgpu_xgmi_set_pstate(adev, 1);
2069                 mutex_unlock(&adev->vm_manager.lock_pstate);
2070         }
2071
2072         return bo_va;
2073 }
2074
2075
2076 /**
2077  * amdgpu_vm_bo_insert_mapping - insert a new mapping
2078  *
2079  * @adev: amdgpu_device pointer
2080  * @bo_va: bo_va to store the address
2081  * @mapping: the mapping to insert
2082  *
2083  * Insert a new mapping into all structures.
2084  */
2085 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2086                                     struct amdgpu_bo_va *bo_va,
2087                                     struct amdgpu_bo_va_mapping *mapping)
2088 {
2089         struct amdgpu_vm *vm = bo_va->base.vm;
2090         struct amdgpu_bo *bo = bo_va->base.bo;
2091
2092         mapping->bo_va = bo_va;
2093         list_add(&mapping->list, &bo_va->invalids);
2094         amdgpu_vm_it_insert(mapping, &vm->va);
2095
2096         if (mapping->flags & AMDGPU_PTE_PRT)
2097                 amdgpu_vm_prt_get(adev);
2098
2099         if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2100             !bo_va->base.moved) {
2101                 list_move(&bo_va->base.vm_status, &vm->moved);
2102         }
2103         trace_amdgpu_vm_bo_map(bo_va, mapping);
2104 }
2105
2106 /**
2107  * amdgpu_vm_bo_map - map bo inside a vm
2108  *
2109  * @adev: amdgpu_device pointer
2110  * @bo_va: bo_va to store the address
2111  * @saddr: where to map the BO
2112  * @offset: requested offset in the BO
2113  * @size: BO size in bytes
2114  * @flags: attributes of pages (read/write/valid/etc.)
2115  *
2116  * Add a mapping of the BO at the specefied addr into the VM.
2117  *
2118  * Returns:
2119  * 0 for success, error for failure.
2120  *
2121  * Object has to be reserved and unreserved outside!
2122  */
2123 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2124                      struct amdgpu_bo_va *bo_va,
2125                      uint64_t saddr, uint64_t offset,
2126                      uint64_t size, uint64_t flags)
2127 {
2128         struct amdgpu_bo_va_mapping *mapping, *tmp;
2129         struct amdgpu_bo *bo = bo_va->base.bo;
2130         struct amdgpu_vm *vm = bo_va->base.vm;
2131         uint64_t eaddr;
2132
2133         /* validate the parameters */
2134         if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2135             size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2136                 return -EINVAL;
2137
2138         /* make sure object fit at this offset */
2139         eaddr = saddr + size - 1;
2140         if (saddr >= eaddr ||
2141             (bo && offset + size > amdgpu_bo_size(bo)))
2142                 return -EINVAL;
2143
2144         saddr /= AMDGPU_GPU_PAGE_SIZE;
2145         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2146
2147         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2148         if (tmp) {
2149                 /* bo and tmp overlap, invalid addr */
2150                 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2151                         "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2152                         tmp->start, tmp->last + 1);
2153                 return -EINVAL;
2154         }
2155
2156         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2157         if (!mapping)
2158                 return -ENOMEM;
2159
2160         mapping->start = saddr;
2161         mapping->last = eaddr;
2162         mapping->offset = offset;
2163         mapping->flags = flags;
2164
2165         amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2166
2167         return 0;
2168 }
2169
2170 /**
2171  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2172  *
2173  * @adev: amdgpu_device pointer
2174  * @bo_va: bo_va to store the address
2175  * @saddr: where to map the BO
2176  * @offset: requested offset in the BO
2177  * @size: BO size in bytes
2178  * @flags: attributes of pages (read/write/valid/etc.)
2179  *
2180  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2181  * mappings as we do so.
2182  *
2183  * Returns:
2184  * 0 for success, error for failure.
2185  *
2186  * Object has to be reserved and unreserved outside!
2187  */
2188 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2189                              struct amdgpu_bo_va *bo_va,
2190                              uint64_t saddr, uint64_t offset,
2191                              uint64_t size, uint64_t flags)
2192 {
2193         struct amdgpu_bo_va_mapping *mapping;
2194         struct amdgpu_bo *bo = bo_va->base.bo;
2195         uint64_t eaddr;
2196         int r;
2197
2198         /* validate the parameters */
2199         if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2200             size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2201                 return -EINVAL;
2202
2203         /* make sure object fit at this offset */
2204         eaddr = saddr + size - 1;
2205         if (saddr >= eaddr ||
2206             (bo && offset + size > amdgpu_bo_size(bo)))
2207                 return -EINVAL;
2208
2209         /* Allocate all the needed memory */
2210         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2211         if (!mapping)
2212                 return -ENOMEM;
2213
2214         r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2215         if (r) {
2216                 kfree(mapping);
2217                 return r;
2218         }
2219
2220         saddr /= AMDGPU_GPU_PAGE_SIZE;
2221         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2222
2223         mapping->start = saddr;
2224         mapping->last = eaddr;
2225         mapping->offset = offset;
2226         mapping->flags = flags;
2227
2228         amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2229
2230         return 0;
2231 }
2232
2233 /**
2234  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2235  *
2236  * @adev: amdgpu_device pointer
2237  * @bo_va: bo_va to remove the address from
2238  * @saddr: where to the BO is mapped
2239  *
2240  * Remove a mapping of the BO at the specefied addr from the VM.
2241  *
2242  * Returns:
2243  * 0 for success, error for failure.
2244  *
2245  * Object has to be reserved and unreserved outside!
2246  */
2247 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2248                        struct amdgpu_bo_va *bo_va,
2249                        uint64_t saddr)
2250 {
2251         struct amdgpu_bo_va_mapping *mapping;
2252         struct amdgpu_vm *vm = bo_va->base.vm;
2253         bool valid = true;
2254
2255         saddr /= AMDGPU_GPU_PAGE_SIZE;
2256
2257         list_for_each_entry(mapping, &bo_va->valids, list) {
2258                 if (mapping->start == saddr)
2259                         break;
2260         }
2261
2262         if (&mapping->list == &bo_va->valids) {
2263                 valid = false;
2264
2265                 list_for_each_entry(mapping, &bo_va->invalids, list) {
2266                         if (mapping->start == saddr)
2267                                 break;
2268                 }
2269
2270                 if (&mapping->list == &bo_va->invalids)
2271                         return -ENOENT;
2272         }
2273
2274         list_del(&mapping->list);
2275         amdgpu_vm_it_remove(mapping, &vm->va);
2276         mapping->bo_va = NULL;
2277         trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2278
2279         if (valid)
2280                 list_add(&mapping->list, &vm->freed);
2281         else
2282                 amdgpu_vm_free_mapping(adev, vm, mapping,
2283                                        bo_va->last_pt_update);
2284
2285         return 0;
2286 }
2287
2288 /**
2289  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2290  *
2291  * @adev: amdgpu_device pointer
2292  * @vm: VM structure to use
2293  * @saddr: start of the range
2294  * @size: size of the range
2295  *
2296  * Remove all mappings in a range, split them as appropriate.
2297  *
2298  * Returns:
2299  * 0 for success, error for failure.
2300  */
2301 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2302                                 struct amdgpu_vm *vm,
2303                                 uint64_t saddr, uint64_t size)
2304 {
2305         struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2306         LIST_HEAD(removed);
2307         uint64_t eaddr;
2308
2309         eaddr = saddr + size - 1;
2310         saddr /= AMDGPU_GPU_PAGE_SIZE;
2311         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2312
2313         /* Allocate all the needed memory */
2314         before = kzalloc(sizeof(*before), GFP_KERNEL);
2315         if (!before)
2316                 return -ENOMEM;
2317         INIT_LIST_HEAD(&before->list);
2318
2319         after = kzalloc(sizeof(*after), GFP_KERNEL);
2320         if (!after) {
2321                 kfree(before);
2322                 return -ENOMEM;
2323         }
2324         INIT_LIST_HEAD(&after->list);
2325
2326         /* Now gather all removed mappings */
2327         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2328         while (tmp) {
2329                 /* Remember mapping split at the start */
2330                 if (tmp->start < saddr) {
2331                         before->start = tmp->start;
2332                         before->last = saddr - 1;
2333                         before->offset = tmp->offset;
2334                         before->flags = tmp->flags;
2335                         before->bo_va = tmp->bo_va;
2336                         list_add(&before->list, &tmp->bo_va->invalids);
2337                 }
2338
2339                 /* Remember mapping split at the end */
2340                 if (tmp->last > eaddr) {
2341                         after->start = eaddr + 1;
2342                         after->last = tmp->last;
2343                         after->offset = tmp->offset;
2344                         after->offset += after->start - tmp->start;
2345                         after->flags = tmp->flags;
2346                         after->bo_va = tmp->bo_va;
2347                         list_add(&after->list, &tmp->bo_va->invalids);
2348                 }
2349
2350                 list_del(&tmp->list);
2351                 list_add(&tmp->list, &removed);
2352
2353                 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2354         }
2355
2356         /* And free them up */
2357         list_for_each_entry_safe(tmp, next, &removed, list) {
2358                 amdgpu_vm_it_remove(tmp, &vm->va);
2359                 list_del(&tmp->list);
2360
2361                 if (tmp->start < saddr)
2362                     tmp->start = saddr;
2363                 if (tmp->last > eaddr)
2364                     tmp->last = eaddr;
2365
2366                 tmp->bo_va = NULL;
2367                 list_add(&tmp->list, &vm->freed);
2368                 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2369         }
2370
2371         /* Insert partial mapping before the range */
2372         if (!list_empty(&before->list)) {
2373                 amdgpu_vm_it_insert(before, &vm->va);
2374                 if (before->flags & AMDGPU_PTE_PRT)
2375                         amdgpu_vm_prt_get(adev);
2376         } else {
2377                 kfree(before);
2378         }
2379
2380         /* Insert partial mapping after the range */
2381         if (!list_empty(&after->list)) {
2382                 amdgpu_vm_it_insert(after, &vm->va);
2383                 if (after->flags & AMDGPU_PTE_PRT)
2384                         amdgpu_vm_prt_get(adev);
2385         } else {
2386                 kfree(after);
2387         }
2388
2389         return 0;
2390 }
2391
2392 /**
2393  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2394  *
2395  * @vm: the requested VM
2396  * @addr: the address
2397  *
2398  * Find a mapping by it's address.
2399  *
2400  * Returns:
2401  * The amdgpu_bo_va_mapping matching for addr or NULL
2402  *
2403  */
2404 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2405                                                          uint64_t addr)
2406 {
2407         return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2408 }
2409
2410 /**
2411  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2412  *
2413  * @vm: the requested vm
2414  * @ticket: CS ticket
2415  *
2416  * Trace all mappings of BOs reserved during a command submission.
2417  */
2418 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2419 {
2420         struct amdgpu_bo_va_mapping *mapping;
2421
2422         if (!trace_amdgpu_vm_bo_cs_enabled())
2423                 return;
2424
2425         for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2426              mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2427                 if (mapping->bo_va && mapping->bo_va->base.bo) {
2428                         struct amdgpu_bo *bo;
2429
2430                         bo = mapping->bo_va->base.bo;
2431                         if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2432                             ticket)
2433                                 continue;
2434                 }
2435
2436                 trace_amdgpu_vm_bo_cs(mapping);
2437         }
2438 }
2439
2440 /**
2441  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2442  *
2443  * @adev: amdgpu_device pointer
2444  * @bo_va: requested bo_va
2445  *
2446  * Remove @bo_va->bo from the requested vm.
2447  *
2448  * Object have to be reserved!
2449  */
2450 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2451                       struct amdgpu_bo_va *bo_va)
2452 {
2453         struct amdgpu_bo_va_mapping *mapping, *next;
2454         struct amdgpu_bo *bo = bo_va->base.bo;
2455         struct amdgpu_vm *vm = bo_va->base.vm;
2456         struct amdgpu_vm_bo_base **base;
2457
2458         if (bo) {
2459                 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2460                         vm->bulk_moveable = false;
2461
2462                 for (base = &bo_va->base.bo->vm_bo; *base;
2463                      base = &(*base)->next) {
2464                         if (*base != &bo_va->base)
2465                                 continue;
2466
2467                         *base = bo_va->base.next;
2468                         break;
2469                 }
2470         }
2471
2472         spin_lock(&vm->invalidated_lock);
2473         list_del(&bo_va->base.vm_status);
2474         spin_unlock(&vm->invalidated_lock);
2475
2476         list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2477                 list_del(&mapping->list);
2478                 amdgpu_vm_it_remove(mapping, &vm->va);
2479                 mapping->bo_va = NULL;
2480                 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2481                 list_add(&mapping->list, &vm->freed);
2482         }
2483         list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2484                 list_del(&mapping->list);
2485                 amdgpu_vm_it_remove(mapping, &vm->va);
2486                 amdgpu_vm_free_mapping(adev, vm, mapping,
2487                                        bo_va->last_pt_update);
2488         }
2489
2490         dma_fence_put(bo_va->last_pt_update);
2491
2492         if (bo && bo_va->is_xgmi) {
2493                 mutex_lock(&adev->vm_manager.lock_pstate);
2494                 if (--adev->vm_manager.xgmi_map_counter == 0)
2495                         amdgpu_xgmi_set_pstate(adev, 0);
2496                 mutex_unlock(&adev->vm_manager.lock_pstate);
2497         }
2498
2499         kfree(bo_va);
2500 }
2501
2502 /**
2503  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2504  *
2505  * @adev: amdgpu_device pointer
2506  * @bo: amdgpu buffer object
2507  * @evicted: is the BO evicted
2508  *
2509  * Mark @bo as invalid.
2510  */
2511 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2512                              struct amdgpu_bo *bo, bool evicted)
2513 {
2514         struct amdgpu_vm_bo_base *bo_base;
2515
2516         /* shadow bo doesn't have bo base, its validation needs its parent */
2517         if (bo->parent && bo->parent->shadow == bo)
2518                 bo = bo->parent;
2519
2520         for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2521                 struct amdgpu_vm *vm = bo_base->vm;
2522
2523                 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2524                         amdgpu_vm_bo_evicted(bo_base);
2525                         continue;
2526                 }
2527
2528                 if (bo_base->moved)
2529                         continue;
2530                 bo_base->moved = true;
2531
2532                 if (bo->tbo.type == ttm_bo_type_kernel)
2533                         amdgpu_vm_bo_relocated(bo_base);
2534                 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2535                         amdgpu_vm_bo_moved(bo_base);
2536                 else
2537                         amdgpu_vm_bo_invalidated(bo_base);
2538         }
2539 }
2540
2541 /**
2542  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2543  *
2544  * @vm_size: VM size
2545  *
2546  * Returns:
2547  * VM page table as power of two
2548  */
2549 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2550 {
2551         /* Total bits covered by PD + PTs */
2552         unsigned bits = ilog2(vm_size) + 18;
2553
2554         /* Make sure the PD is 4K in size up to 8GB address space.
2555            Above that split equal between PD and PTs */
2556         if (vm_size <= 8)
2557                 return (bits - 9);
2558         else
2559                 return ((bits + 3) / 2);
2560 }
2561
2562 /**
2563  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2564  *
2565  * @adev: amdgpu_device pointer
2566  * @min_vm_size: the minimum vm size in GB if it's set auto
2567  * @fragment_size_default: Default PTE fragment size
2568  * @max_level: max VMPT level
2569  * @max_bits: max address space size in bits
2570  *
2571  */
2572 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2573                            uint32_t fragment_size_default, unsigned max_level,
2574                            unsigned max_bits)
2575 {
2576         unsigned int max_size = 1 << (max_bits - 30);
2577         unsigned int vm_size;
2578         uint64_t tmp;
2579
2580         /* adjust vm size first */
2581         if (amdgpu_vm_size != -1) {
2582                 vm_size = amdgpu_vm_size;
2583                 if (vm_size > max_size) {
2584                         dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2585                                  amdgpu_vm_size, max_size);
2586                         vm_size = max_size;
2587                 }
2588         } else {
2589                 struct sysinfo si;
2590                 unsigned int phys_ram_gb;
2591
2592                 /* Optimal VM size depends on the amount of physical
2593                  * RAM available. Underlying requirements and
2594                  * assumptions:
2595                  *
2596                  *  - Need to map system memory and VRAM from all GPUs
2597                  *     - VRAM from other GPUs not known here
2598                  *     - Assume VRAM <= system memory
2599                  *  - On GFX8 and older, VM space can be segmented for
2600                  *    different MTYPEs
2601                  *  - Need to allow room for fragmentation, guard pages etc.
2602                  *
2603                  * This adds up to a rough guess of system memory x3.
2604                  * Round up to power of two to maximize the available
2605                  * VM size with the given page table size.
2606                  */
2607                 si_meminfo(&si);
2608                 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2609                                (1 << 30) - 1) >> 30;
2610                 vm_size = roundup_pow_of_two(
2611                         min(max(phys_ram_gb * 3, min_vm_size), max_size));
2612         }
2613
2614         adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2615
2616         tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2617         if (amdgpu_vm_block_size != -1)
2618                 tmp >>= amdgpu_vm_block_size - 9;
2619         tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2620         adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2621         switch (adev->vm_manager.num_level) {
2622         case 3:
2623                 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2624                 break;
2625         case 2:
2626                 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2627                 break;
2628         case 1:
2629                 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2630                 break;
2631         default:
2632                 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2633         }
2634         /* block size depends on vm size and hw setup*/
2635         if (amdgpu_vm_block_size != -1)
2636                 adev->vm_manager.block_size =
2637                         min((unsigned)amdgpu_vm_block_size, max_bits
2638                             - AMDGPU_GPU_PAGE_SHIFT
2639                             - 9 * adev->vm_manager.num_level);
2640         else if (adev->vm_manager.num_level > 1)
2641                 adev->vm_manager.block_size = 9;
2642         else
2643                 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2644
2645         if (amdgpu_vm_fragment_size == -1)
2646                 adev->vm_manager.fragment_size = fragment_size_default;
2647         else
2648                 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2649
2650         DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2651                  vm_size, adev->vm_manager.num_level + 1,
2652                  adev->vm_manager.block_size,
2653                  adev->vm_manager.fragment_size);
2654 }
2655
2656 /**
2657  * amdgpu_vm_wait_idle - wait for the VM to become idle
2658  *
2659  * @vm: VM object to wait for
2660  * @timeout: timeout to wait for VM to become idle
2661  */
2662 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2663 {
2664         return dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2665                                                    true, true, timeout);
2666 }
2667
2668 /**
2669  * amdgpu_vm_init - initialize a vm instance
2670  *
2671  * @adev: amdgpu_device pointer
2672  * @vm: requested vm
2673  * @vm_context: Indicates if it GFX or Compute context
2674  * @pasid: Process address space identifier
2675  *
2676  * Init @vm fields.
2677  *
2678  * Returns:
2679  * 0 for success, error for failure.
2680  */
2681 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2682                    int vm_context, unsigned int pasid)
2683 {
2684         struct amdgpu_bo_param bp;
2685         struct amdgpu_bo *root;
2686         int r, i;
2687
2688         vm->va = RB_ROOT_CACHED;
2689         for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2690                 vm->reserved_vmid[i] = NULL;
2691         INIT_LIST_HEAD(&vm->evicted);
2692         INIT_LIST_HEAD(&vm->relocated);
2693         INIT_LIST_HEAD(&vm->moved);
2694         INIT_LIST_HEAD(&vm->idle);
2695         INIT_LIST_HEAD(&vm->invalidated);
2696         spin_lock_init(&vm->invalidated_lock);
2697         INIT_LIST_HEAD(&vm->freed);
2698
2699         /* create scheduler entities for page table updates */
2700         r = drm_sched_entity_init(&vm->direct, adev->vm_manager.vm_pte_rqs,
2701                                   adev->vm_manager.vm_pte_num_rqs, NULL);
2702         if (r)
2703                 return r;
2704
2705         r = drm_sched_entity_init(&vm->delayed, adev->vm_manager.vm_pte_rqs,
2706                                   adev->vm_manager.vm_pte_num_rqs, NULL);
2707         if (r)
2708                 goto error_free_direct;
2709
2710         vm->pte_support_ats = false;
2711
2712         if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2713                 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2714                                                 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2715
2716                 if (adev->asic_type == CHIP_RAVEN)
2717                         vm->pte_support_ats = true;
2718         } else {
2719                 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2720                                                 AMDGPU_VM_USE_CPU_FOR_GFX);
2721         }
2722         DRM_DEBUG_DRIVER("VM update mode is %s\n",
2723                          vm->use_cpu_for_update ? "CPU" : "SDMA");
2724         WARN_ONCE((vm->use_cpu_for_update &&
2725                    !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2726                   "CPU update of VM recommended only for large BAR system\n");
2727
2728         if (vm->use_cpu_for_update)
2729                 vm->update_funcs = &amdgpu_vm_cpu_funcs;
2730         else
2731                 vm->update_funcs = &amdgpu_vm_sdma_funcs;
2732         vm->last_update = NULL;
2733
2734         amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2735         if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2736                 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2737         r = amdgpu_bo_create(adev, &bp, &root);
2738         if (r)
2739                 goto error_free_delayed;
2740
2741         r = amdgpu_bo_reserve(root, true);
2742         if (r)
2743                 goto error_free_root;
2744
2745         r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2746         if (r)
2747                 goto error_unreserve;
2748
2749         amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2750
2751         r = amdgpu_vm_clear_bo(adev, vm, root, false);
2752         if (r)
2753                 goto error_unreserve;
2754
2755         amdgpu_bo_unreserve(vm->root.base.bo);
2756
2757         if (pasid) {
2758                 unsigned long flags;
2759
2760                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2761                 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2762                               GFP_ATOMIC);
2763                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2764                 if (r < 0)
2765                         goto error_free_root;
2766
2767                 vm->pasid = pasid;
2768         }
2769
2770         INIT_KFIFO(vm->faults);
2771
2772         return 0;
2773
2774 error_unreserve:
2775         amdgpu_bo_unreserve(vm->root.base.bo);
2776
2777 error_free_root:
2778         amdgpu_bo_unref(&vm->root.base.bo->shadow);
2779         amdgpu_bo_unref(&vm->root.base.bo);
2780         vm->root.base.bo = NULL;
2781
2782 error_free_delayed:
2783         drm_sched_entity_destroy(&vm->delayed);
2784
2785 error_free_direct:
2786         drm_sched_entity_destroy(&vm->direct);
2787
2788         return r;
2789 }
2790
2791 /**
2792  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2793  *
2794  * @adev: amdgpu_device pointer
2795  * @vm: the VM to check
2796  *
2797  * check all entries of the root PD, if any subsequent PDs are allocated,
2798  * it means there are page table creating and filling, and is no a clean
2799  * VM
2800  *
2801  * Returns:
2802  *      0 if this VM is clean
2803  */
2804 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2805         struct amdgpu_vm *vm)
2806 {
2807         enum amdgpu_vm_level root = adev->vm_manager.root_level;
2808         unsigned int entries = amdgpu_vm_num_entries(adev, root);
2809         unsigned int i = 0;
2810
2811         if (!(vm->root.entries))
2812                 return 0;
2813
2814         for (i = 0; i < entries; i++) {
2815                 if (vm->root.entries[i].base.bo)
2816                         return -EINVAL;
2817         }
2818
2819         return 0;
2820 }
2821
2822 /**
2823  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2824  *
2825  * @adev: amdgpu_device pointer
2826  * @vm: requested vm
2827  * @pasid: pasid to use
2828  *
2829  * This only works on GFX VMs that don't have any BOs added and no
2830  * page tables allocated yet.
2831  *
2832  * Changes the following VM parameters:
2833  * - use_cpu_for_update
2834  * - pte_supports_ats
2835  * - pasid (old PASID is released, because compute manages its own PASIDs)
2836  *
2837  * Reinitializes the page directory to reflect the changed ATS
2838  * setting.
2839  *
2840  * Returns:
2841  * 0 for success, -errno for errors.
2842  */
2843 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2844                            unsigned int pasid)
2845 {
2846         bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2847         int r;
2848
2849         r = amdgpu_bo_reserve(vm->root.base.bo, true);
2850         if (r)
2851                 return r;
2852
2853         /* Sanity checks */
2854         r = amdgpu_vm_check_clean_reserved(adev, vm);
2855         if (r)
2856                 goto unreserve_bo;
2857
2858         if (pasid) {
2859                 unsigned long flags;
2860
2861                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2862                 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2863                               GFP_ATOMIC);
2864                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2865
2866                 if (r == -ENOSPC)
2867                         goto unreserve_bo;
2868                 r = 0;
2869         }
2870
2871         /* Check if PD needs to be reinitialized and do it before
2872          * changing any other state, in case it fails.
2873          */
2874         if (pte_support_ats != vm->pte_support_ats) {
2875                 vm->pte_support_ats = pte_support_ats;
2876                 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
2877                 if (r)
2878                         goto free_idr;
2879         }
2880
2881         /* Update VM state */
2882         vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2883                                     AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2884         DRM_DEBUG_DRIVER("VM update mode is %s\n",
2885                          vm->use_cpu_for_update ? "CPU" : "SDMA");
2886         WARN_ONCE((vm->use_cpu_for_update &&
2887                    !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2888                   "CPU update of VM recommended only for large BAR system\n");
2889
2890         if (vm->use_cpu_for_update)
2891                 vm->update_funcs = &amdgpu_vm_cpu_funcs;
2892         else
2893                 vm->update_funcs = &amdgpu_vm_sdma_funcs;
2894         dma_fence_put(vm->last_update);
2895         vm->last_update = NULL;
2896
2897         if (vm->pasid) {
2898                 unsigned long flags;
2899
2900                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2901                 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2902                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2903
2904                 /* Free the original amdgpu allocated pasid
2905                  * Will be replaced with kfd allocated pasid
2906                  */
2907                 amdgpu_pasid_free(vm->pasid);
2908                 vm->pasid = 0;
2909         }
2910
2911         /* Free the shadow bo for compute VM */
2912         amdgpu_bo_unref(&vm->root.base.bo->shadow);
2913
2914         if (pasid)
2915                 vm->pasid = pasid;
2916
2917         goto unreserve_bo;
2918
2919 free_idr:
2920         if (pasid) {
2921                 unsigned long flags;
2922
2923                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2924                 idr_remove(&adev->vm_manager.pasid_idr, pasid);
2925                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2926         }
2927 unreserve_bo:
2928         amdgpu_bo_unreserve(vm->root.base.bo);
2929         return r;
2930 }
2931
2932 /**
2933  * amdgpu_vm_release_compute - release a compute vm
2934  * @adev: amdgpu_device pointer
2935  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2936  *
2937  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2938  * pasid from vm. Compute should stop use of vm after this call.
2939  */
2940 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2941 {
2942         if (vm->pasid) {
2943                 unsigned long flags;
2944
2945                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2946                 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2947                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2948         }
2949         vm->pasid = 0;
2950 }
2951
2952 /**
2953  * amdgpu_vm_fini - tear down a vm instance
2954  *
2955  * @adev: amdgpu_device pointer
2956  * @vm: requested vm
2957  *
2958  * Tear down @vm.
2959  * Unbind the VM and remove all bos from the vm bo list
2960  */
2961 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2962 {
2963         struct amdgpu_bo_va_mapping *mapping, *tmp;
2964         bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2965         struct amdgpu_bo *root;
2966         int i;
2967
2968         amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2969
2970         root = amdgpu_bo_ref(vm->root.base.bo);
2971         amdgpu_bo_reserve(root, true);
2972         if (vm->pasid) {
2973                 unsigned long flags;
2974
2975                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2976                 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2977                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2978                 vm->pasid = 0;
2979         }
2980
2981         list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2982                 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2983                         amdgpu_vm_prt_fini(adev, vm);
2984                         prt_fini_needed = false;
2985                 }
2986
2987                 list_del(&mapping->list);
2988                 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2989         }
2990
2991         amdgpu_vm_free_pts(adev, vm, NULL);
2992         amdgpu_bo_unreserve(root);
2993         amdgpu_bo_unref(&root);
2994         WARN_ON(vm->root.base.bo);
2995
2996         drm_sched_entity_destroy(&vm->direct);
2997         drm_sched_entity_destroy(&vm->delayed);
2998
2999         if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3000                 dev_err(adev->dev, "still active bo inside vm\n");
3001         }
3002         rbtree_postorder_for_each_entry_safe(mapping, tmp,
3003                                              &vm->va.rb_root, rb) {
3004                 /* Don't remove the mapping here, we don't want to trigger a
3005                  * rebalance and the tree is about to be destroyed anyway.
3006                  */
3007                 list_del(&mapping->list);
3008                 kfree(mapping);
3009         }
3010
3011         dma_fence_put(vm->last_update);
3012         for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3013                 amdgpu_vmid_free_reserved(adev, vm, i);
3014 }
3015
3016 /**
3017  * amdgpu_vm_manager_init - init the VM manager
3018  *
3019  * @adev: amdgpu_device pointer
3020  *
3021  * Initialize the VM manager structures
3022  */
3023 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3024 {
3025         unsigned i;
3026
3027         amdgpu_vmid_mgr_init(adev);
3028
3029         adev->vm_manager.fence_context =
3030                 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3031         for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3032                 adev->vm_manager.seqno[i] = 0;
3033
3034         spin_lock_init(&adev->vm_manager.prt_lock);
3035         atomic_set(&adev->vm_manager.num_prt_users, 0);
3036
3037         /* If not overridden by the user, by default, only in large BAR systems
3038          * Compute VM tables will be updated by CPU
3039          */
3040 #ifdef CONFIG_X86_64
3041         if (amdgpu_vm_update_mode == -1) {
3042                 if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3043                         adev->vm_manager.vm_update_mode =
3044                                 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3045                 else
3046                         adev->vm_manager.vm_update_mode = 0;
3047         } else
3048                 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3049 #else
3050         adev->vm_manager.vm_update_mode = 0;
3051 #endif
3052
3053         idr_init(&adev->vm_manager.pasid_idr);
3054         spin_lock_init(&adev->vm_manager.pasid_lock);
3055
3056         adev->vm_manager.xgmi_map_counter = 0;
3057         mutex_init(&adev->vm_manager.lock_pstate);
3058 }
3059
3060 /**
3061  * amdgpu_vm_manager_fini - cleanup VM manager
3062  *
3063  * @adev: amdgpu_device pointer
3064  *
3065  * Cleanup the VM manager and free resources.
3066  */
3067 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3068 {
3069         WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3070         idr_destroy(&adev->vm_manager.pasid_idr);
3071
3072         amdgpu_vmid_mgr_fini(adev);
3073 }
3074
3075 /**
3076  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3077  *
3078  * @dev: drm device pointer
3079  * @data: drm_amdgpu_vm
3080  * @filp: drm file pointer
3081  *
3082  * Returns:
3083  * 0 for success, -errno for errors.
3084  */
3085 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3086 {
3087         union drm_amdgpu_vm *args = data;
3088         struct amdgpu_device *adev = dev->dev_private;
3089         struct amdgpu_fpriv *fpriv = filp->driver_priv;
3090         int r;
3091
3092         switch (args->in.op) {
3093         case AMDGPU_VM_OP_RESERVE_VMID:
3094                 /* We only have requirement to reserve vmid from gfxhub */
3095                 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3096                                                AMDGPU_GFXHUB_0);
3097                 if (r)
3098                         return r;
3099                 break;
3100         case AMDGPU_VM_OP_UNRESERVE_VMID:
3101                 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3102                 break;
3103         default:
3104                 return -EINVAL;
3105         }
3106
3107         return 0;
3108 }
3109
3110 /**
3111  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3112  *
3113  * @adev: drm device pointer
3114  * @pasid: PASID identifier for VM
3115  * @task_info: task_info to fill.
3116  */
3117 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3118                          struct amdgpu_task_info *task_info)
3119 {
3120         struct amdgpu_vm *vm;
3121         unsigned long flags;
3122
3123         spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3124
3125         vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3126         if (vm)
3127                 *task_info = vm->task_info;
3128
3129         spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3130 }
3131
3132 /**
3133  * amdgpu_vm_set_task_info - Sets VMs task info.
3134  *
3135  * @vm: vm for which to set the info
3136  */
3137 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3138 {
3139         if (vm->task_info.pid)
3140                 return;
3141
3142         vm->task_info.pid = current->pid;
3143         get_task_comm(vm->task_info.task_name, current);
3144
3145         if (current->group_leader->mm != current->mm)
3146                 return;
3147
3148         vm->task_info.tgid = current->group_leader->pid;
3149         get_task_comm(vm->task_info.process_name, current->group_leader);
3150 }
3151
3152 /**
3153  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3154  * @adev: amdgpu device pointer
3155  * @pasid: PASID of the VM
3156  * @addr: Address of the fault
3157  *
3158  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3159  * shouldn't be reported any more.
3160  */
3161 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid,
3162                             uint64_t addr)
3163 {
3164         struct amdgpu_bo *root;
3165         uint64_t value, flags;
3166         struct amdgpu_vm *vm;
3167         long r;
3168
3169         spin_lock(&adev->vm_manager.pasid_lock);
3170         vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3171         if (vm)
3172                 root = amdgpu_bo_ref(vm->root.base.bo);
3173         else
3174                 root = NULL;
3175         spin_unlock(&adev->vm_manager.pasid_lock);
3176
3177         if (!root)
3178                 return false;
3179
3180         r = amdgpu_bo_reserve(root, true);
3181         if (r)
3182                 goto error_unref;
3183
3184         /* Double check that the VM still exists */
3185         spin_lock(&adev->vm_manager.pasid_lock);
3186         vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3187         if (vm && vm->root.base.bo != root)
3188                 vm = NULL;
3189         spin_unlock(&adev->vm_manager.pasid_lock);
3190         if (!vm)
3191                 goto error_unlock;
3192
3193         addr /= AMDGPU_GPU_PAGE_SIZE;
3194         flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3195                 AMDGPU_PTE_SYSTEM;
3196
3197         if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3198                 /* Redirect the access to the dummy page */
3199                 value = adev->dummy_page_addr;
3200                 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3201                         AMDGPU_PTE_WRITEABLE;
3202         } else {
3203                 /* Let the hw retry silently on the PTE */
3204                 value = 0;
3205         }
3206
3207         r = amdgpu_vm_bo_update_mapping(adev, vm, true, NULL, addr, addr + 1,
3208                                         flags, value, NULL, NULL);
3209         if (r)
3210                 goto error_unlock;
3211
3212         r = amdgpu_vm_update_pdes(adev, vm, true);
3213
3214 error_unlock:
3215         amdgpu_bo_unreserve(root);
3216         if (r < 0)
3217                 DRM_ERROR("Can't handle page fault (%ld)\n", r);
3218
3219 error_unref:
3220         amdgpu_bo_unref(&root);
3221
3222         return false;
3223 }
This page took 0.2221 seconds and 4 git commands to generate.