]> Git Repo - linux.git/blob - drivers/md/raid10.c
RISC-V: Improve /proc/cpuinfo output for ISA extensions
[linux.git] / drivers / md / raid10.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid10.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 2000-2004 Neil Brown
6  *
7  * RAID-10 support for md.
8  *
9  * Base on code in raid1.c.  See raid1.c for further copyright information.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
22 #include "raid10.h"
23 #include "raid0.h"
24 #include "md-bitmap.h"
25
26 /*
27  * RAID10 provides a combination of RAID0 and RAID1 functionality.
28  * The layout of data is defined by
29  *    chunk_size
30  *    raid_disks
31  *    near_copies (stored in low byte of layout)
32  *    far_copies (stored in second byte of layout)
33  *    far_offset (stored in bit 16 of layout )
34  *    use_far_sets (stored in bit 17 of layout )
35  *    use_far_sets_bugfixed (stored in bit 18 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.  Each device
38  * is divided into far_copies sections.   In each section, chunks are laid out
39  * in a style similar to raid0, but near_copies copies of each chunk is stored
40  * (each on a different drive).  The starting device for each section is offset
41  * near_copies from the starting device of the previous section.  Thus there
42  * are (near_copies * far_copies) of each chunk, and each is on a different
43  * drive.  near_copies and far_copies must be at least one, and their product
44  * is at most raid_disks.
45  *
46  * If far_offset is true, then the far_copies are handled a bit differently.
47  * The copies are still in different stripes, but instead of being very far
48  * apart on disk, there are adjacent stripes.
49  *
50  * The far and offset algorithms are handled slightly differently if
51  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
52  * sets that are (near_copies * far_copies) in size.  The far copied stripes
53  * are still shifted by 'near_copies' devices, but this shifting stays confined
54  * to the set rather than the entire array.  This is done to improve the number
55  * of device combinations that can fail without causing the array to fail.
56  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
57  * on a device):
58  *    A B C D    A B C D E
59  *      ...         ...
60  *    D A B C    E A B C D
61  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
62  *    [A B] [C D]    [A B] [C D E]
63  *    |...| |...|    |...| | ... |
64  *    [B A] [D C]    [B A] [E C D]
65  */
66
67 static void allow_barrier(struct r10conf *conf);
68 static void lower_barrier(struct r10conf *conf);
69 static int _enough(struct r10conf *conf, int previous, int ignore);
70 static int enough(struct r10conf *conf, int ignore);
71 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
72                                 int *skipped);
73 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
74 static void end_reshape_write(struct bio *bio);
75 static void end_reshape(struct r10conf *conf);
76
77 #define raid10_log(md, fmt, args...)                            \
78         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
79
80 #include "raid1-10.c"
81
82 /*
83  * for resync bio, r10bio pointer can be retrieved from the per-bio
84  * 'struct resync_pages'.
85  */
86 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
87 {
88         return get_resync_pages(bio)->raid_bio;
89 }
90
91 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
92 {
93         struct r10conf *conf = data;
94         int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
95
96         /* allocate a r10bio with room for raid_disks entries in the
97          * bios array */
98         return kzalloc(size, gfp_flags);
99 }
100
101 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
102 /* amount of memory to reserve for resync requests */
103 #define RESYNC_WINDOW (1024*1024)
104 /* maximum number of concurrent requests, memory permitting */
105 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
106 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
107 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
108
109 /*
110  * When performing a resync, we need to read and compare, so
111  * we need as many pages are there are copies.
112  * When performing a recovery, we need 2 bios, one for read,
113  * one for write (we recover only one drive per r10buf)
114  *
115  */
116 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct r10conf *conf = data;
119         struct r10bio *r10_bio;
120         struct bio *bio;
121         int j;
122         int nalloc, nalloc_rp;
123         struct resync_pages *rps;
124
125         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
126         if (!r10_bio)
127                 return NULL;
128
129         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
130             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
131                 nalloc = conf->copies; /* resync */
132         else
133                 nalloc = 2; /* recovery */
134
135         /* allocate once for all bios */
136         if (!conf->have_replacement)
137                 nalloc_rp = nalloc;
138         else
139                 nalloc_rp = nalloc * 2;
140         rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
141         if (!rps)
142                 goto out_free_r10bio;
143
144         /*
145          * Allocate bios.
146          */
147         for (j = nalloc ; j-- ; ) {
148                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
149                 if (!bio)
150                         goto out_free_bio;
151                 r10_bio->devs[j].bio = bio;
152                 if (!conf->have_replacement)
153                         continue;
154                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
155                 if (!bio)
156                         goto out_free_bio;
157                 r10_bio->devs[j].repl_bio = bio;
158         }
159         /*
160          * Allocate RESYNC_PAGES data pages and attach them
161          * where needed.
162          */
163         for (j = 0; j < nalloc; j++) {
164                 struct bio *rbio = r10_bio->devs[j].repl_bio;
165                 struct resync_pages *rp, *rp_repl;
166
167                 rp = &rps[j];
168                 if (rbio)
169                         rp_repl = &rps[nalloc + j];
170
171                 bio = r10_bio->devs[j].bio;
172
173                 if (!j || test_bit(MD_RECOVERY_SYNC,
174                                    &conf->mddev->recovery)) {
175                         if (resync_alloc_pages(rp, gfp_flags))
176                                 goto out_free_pages;
177                 } else {
178                         memcpy(rp, &rps[0], sizeof(*rp));
179                         resync_get_all_pages(rp);
180                 }
181
182                 rp->raid_bio = r10_bio;
183                 bio->bi_private = rp;
184                 if (rbio) {
185                         memcpy(rp_repl, rp, sizeof(*rp));
186                         rbio->bi_private = rp_repl;
187                 }
188         }
189
190         return r10_bio;
191
192 out_free_pages:
193         while (--j >= 0)
194                 resync_free_pages(&rps[j]);
195
196         j = 0;
197 out_free_bio:
198         for ( ; j < nalloc; j++) {
199                 if (r10_bio->devs[j].bio)
200                         bio_put(r10_bio->devs[j].bio);
201                 if (r10_bio->devs[j].repl_bio)
202                         bio_put(r10_bio->devs[j].repl_bio);
203         }
204         kfree(rps);
205 out_free_r10bio:
206         rbio_pool_free(r10_bio, conf);
207         return NULL;
208 }
209
210 static void r10buf_pool_free(void *__r10_bio, void *data)
211 {
212         struct r10conf *conf = data;
213         struct r10bio *r10bio = __r10_bio;
214         int j;
215         struct resync_pages *rp = NULL;
216
217         for (j = conf->copies; j--; ) {
218                 struct bio *bio = r10bio->devs[j].bio;
219
220                 if (bio) {
221                         rp = get_resync_pages(bio);
222                         resync_free_pages(rp);
223                         bio_put(bio);
224                 }
225
226                 bio = r10bio->devs[j].repl_bio;
227                 if (bio)
228                         bio_put(bio);
229         }
230
231         /* resync pages array stored in the 1st bio's .bi_private */
232         kfree(rp);
233
234         rbio_pool_free(r10bio, conf);
235 }
236
237 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
238 {
239         int i;
240
241         for (i = 0; i < conf->geo.raid_disks; i++) {
242                 struct bio **bio = & r10_bio->devs[i].bio;
243                 if (!BIO_SPECIAL(*bio))
244                         bio_put(*bio);
245                 *bio = NULL;
246                 bio = &r10_bio->devs[i].repl_bio;
247                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
248                         bio_put(*bio);
249                 *bio = NULL;
250         }
251 }
252
253 static void free_r10bio(struct r10bio *r10_bio)
254 {
255         struct r10conf *conf = r10_bio->mddev->private;
256
257         put_all_bios(conf, r10_bio);
258         mempool_free(r10_bio, &conf->r10bio_pool);
259 }
260
261 static void put_buf(struct r10bio *r10_bio)
262 {
263         struct r10conf *conf = r10_bio->mddev->private;
264
265         mempool_free(r10_bio, &conf->r10buf_pool);
266
267         lower_barrier(conf);
268 }
269
270 static void reschedule_retry(struct r10bio *r10_bio)
271 {
272         unsigned long flags;
273         struct mddev *mddev = r10_bio->mddev;
274         struct r10conf *conf = mddev->private;
275
276         spin_lock_irqsave(&conf->device_lock, flags);
277         list_add(&r10_bio->retry_list, &conf->retry_list);
278         conf->nr_queued ++;
279         spin_unlock_irqrestore(&conf->device_lock, flags);
280
281         /* wake up frozen array... */
282         wake_up(&conf->wait_barrier);
283
284         md_wakeup_thread(mddev->thread);
285 }
286
287 /*
288  * raid_end_bio_io() is called when we have finished servicing a mirrored
289  * operation and are ready to return a success/failure code to the buffer
290  * cache layer.
291  */
292 static void raid_end_bio_io(struct r10bio *r10_bio)
293 {
294         struct bio *bio = r10_bio->master_bio;
295         struct r10conf *conf = r10_bio->mddev->private;
296
297         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
298                 bio->bi_status = BLK_STS_IOERR;
299
300         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
301                 bio_end_io_acct(bio, r10_bio->start_time);
302         bio_endio(bio);
303         /*
304          * Wake up any possible resync thread that waits for the device
305          * to go idle.
306          */
307         allow_barrier(conf);
308
309         free_r10bio(r10_bio);
310 }
311
312 /*
313  * Update disk head position estimator based on IRQ completion info.
314  */
315 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
316 {
317         struct r10conf *conf = r10_bio->mddev->private;
318
319         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
320                 r10_bio->devs[slot].addr + (r10_bio->sectors);
321 }
322
323 /*
324  * Find the disk number which triggered given bio
325  */
326 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
327                          struct bio *bio, int *slotp, int *replp)
328 {
329         int slot;
330         int repl = 0;
331
332         for (slot = 0; slot < conf->geo.raid_disks; slot++) {
333                 if (r10_bio->devs[slot].bio == bio)
334                         break;
335                 if (r10_bio->devs[slot].repl_bio == bio) {
336                         repl = 1;
337                         break;
338                 }
339         }
340
341         update_head_pos(slot, r10_bio);
342
343         if (slotp)
344                 *slotp = slot;
345         if (replp)
346                 *replp = repl;
347         return r10_bio->devs[slot].devnum;
348 }
349
350 static void raid10_end_read_request(struct bio *bio)
351 {
352         int uptodate = !bio->bi_status;
353         struct r10bio *r10_bio = bio->bi_private;
354         int slot;
355         struct md_rdev *rdev;
356         struct r10conf *conf = r10_bio->mddev->private;
357
358         slot = r10_bio->read_slot;
359         rdev = r10_bio->devs[slot].rdev;
360         /*
361          * this branch is our 'one mirror IO has finished' event handler:
362          */
363         update_head_pos(slot, r10_bio);
364
365         if (uptodate) {
366                 /*
367                  * Set R10BIO_Uptodate in our master bio, so that
368                  * we will return a good error code to the higher
369                  * levels even if IO on some other mirrored buffer fails.
370                  *
371                  * The 'master' represents the composite IO operation to
372                  * user-side. So if something waits for IO, then it will
373                  * wait for the 'master' bio.
374                  */
375                 set_bit(R10BIO_Uptodate, &r10_bio->state);
376         } else {
377                 /* If all other devices that store this block have
378                  * failed, we want to return the error upwards rather
379                  * than fail the last device.  Here we redefine
380                  * "uptodate" to mean "Don't want to retry"
381                  */
382                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
383                              rdev->raid_disk))
384                         uptodate = 1;
385         }
386         if (uptodate) {
387                 raid_end_bio_io(r10_bio);
388                 rdev_dec_pending(rdev, conf->mddev);
389         } else {
390                 /*
391                  * oops, read error - keep the refcount on the rdev
392                  */
393                 char b[BDEVNAME_SIZE];
394                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
395                                    mdname(conf->mddev),
396                                    bdevname(rdev->bdev, b),
397                                    (unsigned long long)r10_bio->sector);
398                 set_bit(R10BIO_ReadError, &r10_bio->state);
399                 reschedule_retry(r10_bio);
400         }
401 }
402
403 static void close_write(struct r10bio *r10_bio)
404 {
405         /* clear the bitmap if all writes complete successfully */
406         md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
407                            r10_bio->sectors,
408                            !test_bit(R10BIO_Degraded, &r10_bio->state),
409                            0);
410         md_write_end(r10_bio->mddev);
411 }
412
413 static void one_write_done(struct r10bio *r10_bio)
414 {
415         if (atomic_dec_and_test(&r10_bio->remaining)) {
416                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
417                         reschedule_retry(r10_bio);
418                 else {
419                         close_write(r10_bio);
420                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
421                                 reschedule_retry(r10_bio);
422                         else
423                                 raid_end_bio_io(r10_bio);
424                 }
425         }
426 }
427
428 static void raid10_end_write_request(struct bio *bio)
429 {
430         struct r10bio *r10_bio = bio->bi_private;
431         int dev;
432         int dec_rdev = 1;
433         struct r10conf *conf = r10_bio->mddev->private;
434         int slot, repl;
435         struct md_rdev *rdev = NULL;
436         struct bio *to_put = NULL;
437         bool discard_error;
438
439         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
440
441         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
442
443         if (repl)
444                 rdev = conf->mirrors[dev].replacement;
445         if (!rdev) {
446                 smp_rmb();
447                 repl = 0;
448                 rdev = conf->mirrors[dev].rdev;
449         }
450         /*
451          * this branch is our 'one mirror IO has finished' event handler:
452          */
453         if (bio->bi_status && !discard_error) {
454                 if (repl)
455                         /* Never record new bad blocks to replacement,
456                          * just fail it.
457                          */
458                         md_error(rdev->mddev, rdev);
459                 else {
460                         set_bit(WriteErrorSeen, &rdev->flags);
461                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
462                                 set_bit(MD_RECOVERY_NEEDED,
463                                         &rdev->mddev->recovery);
464
465                         dec_rdev = 0;
466                         if (test_bit(FailFast, &rdev->flags) &&
467                             (bio->bi_opf & MD_FAILFAST)) {
468                                 md_error(rdev->mddev, rdev);
469                         }
470
471                         /*
472                          * When the device is faulty, it is not necessary to
473                          * handle write error.
474                          */
475                         if (!test_bit(Faulty, &rdev->flags))
476                                 set_bit(R10BIO_WriteError, &r10_bio->state);
477                         else {
478                                 /* Fail the request */
479                                 set_bit(R10BIO_Degraded, &r10_bio->state);
480                                 r10_bio->devs[slot].bio = NULL;
481                                 to_put = bio;
482                                 dec_rdev = 1;
483                         }
484                 }
485         } else {
486                 /*
487                  * Set R10BIO_Uptodate in our master bio, so that
488                  * we will return a good error code for to the higher
489                  * levels even if IO on some other mirrored buffer fails.
490                  *
491                  * The 'master' represents the composite IO operation to
492                  * user-side. So if something waits for IO, then it will
493                  * wait for the 'master' bio.
494                  */
495                 sector_t first_bad;
496                 int bad_sectors;
497
498                 /*
499                  * Do not set R10BIO_Uptodate if the current device is
500                  * rebuilding or Faulty. This is because we cannot use
501                  * such device for properly reading the data back (we could
502                  * potentially use it, if the current write would have felt
503                  * before rdev->recovery_offset, but for simplicity we don't
504                  * check this here.
505                  */
506                 if (test_bit(In_sync, &rdev->flags) &&
507                     !test_bit(Faulty, &rdev->flags))
508                         set_bit(R10BIO_Uptodate, &r10_bio->state);
509
510                 /* Maybe we can clear some bad blocks. */
511                 if (is_badblock(rdev,
512                                 r10_bio->devs[slot].addr,
513                                 r10_bio->sectors,
514                                 &first_bad, &bad_sectors) && !discard_error) {
515                         bio_put(bio);
516                         if (repl)
517                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
518                         else
519                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
520                         dec_rdev = 0;
521                         set_bit(R10BIO_MadeGood, &r10_bio->state);
522                 }
523         }
524
525         /*
526          *
527          * Let's see if all mirrored write operations have finished
528          * already.
529          */
530         one_write_done(r10_bio);
531         if (dec_rdev)
532                 rdev_dec_pending(rdev, conf->mddev);
533         if (to_put)
534                 bio_put(to_put);
535 }
536
537 /*
538  * RAID10 layout manager
539  * As well as the chunksize and raid_disks count, there are two
540  * parameters: near_copies and far_copies.
541  * near_copies * far_copies must be <= raid_disks.
542  * Normally one of these will be 1.
543  * If both are 1, we get raid0.
544  * If near_copies == raid_disks, we get raid1.
545  *
546  * Chunks are laid out in raid0 style with near_copies copies of the
547  * first chunk, followed by near_copies copies of the next chunk and
548  * so on.
549  * If far_copies > 1, then after 1/far_copies of the array has been assigned
550  * as described above, we start again with a device offset of near_copies.
551  * So we effectively have another copy of the whole array further down all
552  * the drives, but with blocks on different drives.
553  * With this layout, and block is never stored twice on the one device.
554  *
555  * raid10_find_phys finds the sector offset of a given virtual sector
556  * on each device that it is on.
557  *
558  * raid10_find_virt does the reverse mapping, from a device and a
559  * sector offset to a virtual address
560  */
561
562 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
563 {
564         int n,f;
565         sector_t sector;
566         sector_t chunk;
567         sector_t stripe;
568         int dev;
569         int slot = 0;
570         int last_far_set_start, last_far_set_size;
571
572         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
573         last_far_set_start *= geo->far_set_size;
574
575         last_far_set_size = geo->far_set_size;
576         last_far_set_size += (geo->raid_disks % geo->far_set_size);
577
578         /* now calculate first sector/dev */
579         chunk = r10bio->sector >> geo->chunk_shift;
580         sector = r10bio->sector & geo->chunk_mask;
581
582         chunk *= geo->near_copies;
583         stripe = chunk;
584         dev = sector_div(stripe, geo->raid_disks);
585         if (geo->far_offset)
586                 stripe *= geo->far_copies;
587
588         sector += stripe << geo->chunk_shift;
589
590         /* and calculate all the others */
591         for (n = 0; n < geo->near_copies; n++) {
592                 int d = dev;
593                 int set;
594                 sector_t s = sector;
595                 r10bio->devs[slot].devnum = d;
596                 r10bio->devs[slot].addr = s;
597                 slot++;
598
599                 for (f = 1; f < geo->far_copies; f++) {
600                         set = d / geo->far_set_size;
601                         d += geo->near_copies;
602
603                         if ((geo->raid_disks % geo->far_set_size) &&
604                             (d > last_far_set_start)) {
605                                 d -= last_far_set_start;
606                                 d %= last_far_set_size;
607                                 d += last_far_set_start;
608                         } else {
609                                 d %= geo->far_set_size;
610                                 d += geo->far_set_size * set;
611                         }
612                         s += geo->stride;
613                         r10bio->devs[slot].devnum = d;
614                         r10bio->devs[slot].addr = s;
615                         slot++;
616                 }
617                 dev++;
618                 if (dev >= geo->raid_disks) {
619                         dev = 0;
620                         sector += (geo->chunk_mask + 1);
621                 }
622         }
623 }
624
625 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
626 {
627         struct geom *geo = &conf->geo;
628
629         if (conf->reshape_progress != MaxSector &&
630             ((r10bio->sector >= conf->reshape_progress) !=
631              conf->mddev->reshape_backwards)) {
632                 set_bit(R10BIO_Previous, &r10bio->state);
633                 geo = &conf->prev;
634         } else
635                 clear_bit(R10BIO_Previous, &r10bio->state);
636
637         __raid10_find_phys(geo, r10bio);
638 }
639
640 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
641 {
642         sector_t offset, chunk, vchunk;
643         /* Never use conf->prev as this is only called during resync
644          * or recovery, so reshape isn't happening
645          */
646         struct geom *geo = &conf->geo;
647         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
648         int far_set_size = geo->far_set_size;
649         int last_far_set_start;
650
651         if (geo->raid_disks % geo->far_set_size) {
652                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
653                 last_far_set_start *= geo->far_set_size;
654
655                 if (dev >= last_far_set_start) {
656                         far_set_size = geo->far_set_size;
657                         far_set_size += (geo->raid_disks % geo->far_set_size);
658                         far_set_start = last_far_set_start;
659                 }
660         }
661
662         offset = sector & geo->chunk_mask;
663         if (geo->far_offset) {
664                 int fc;
665                 chunk = sector >> geo->chunk_shift;
666                 fc = sector_div(chunk, geo->far_copies);
667                 dev -= fc * geo->near_copies;
668                 if (dev < far_set_start)
669                         dev += far_set_size;
670         } else {
671                 while (sector >= geo->stride) {
672                         sector -= geo->stride;
673                         if (dev < (geo->near_copies + far_set_start))
674                                 dev += far_set_size - geo->near_copies;
675                         else
676                                 dev -= geo->near_copies;
677                 }
678                 chunk = sector >> geo->chunk_shift;
679         }
680         vchunk = chunk * geo->raid_disks + dev;
681         sector_div(vchunk, geo->near_copies);
682         return (vchunk << geo->chunk_shift) + offset;
683 }
684
685 /*
686  * This routine returns the disk from which the requested read should
687  * be done. There is a per-array 'next expected sequential IO' sector
688  * number - if this matches on the next IO then we use the last disk.
689  * There is also a per-disk 'last know head position' sector that is
690  * maintained from IRQ contexts, both the normal and the resync IO
691  * completion handlers update this position correctly. If there is no
692  * perfect sequential match then we pick the disk whose head is closest.
693  *
694  * If there are 2 mirrors in the same 2 devices, performance degrades
695  * because position is mirror, not device based.
696  *
697  * The rdev for the device selected will have nr_pending incremented.
698  */
699
700 /*
701  * FIXME: possibly should rethink readbalancing and do it differently
702  * depending on near_copies / far_copies geometry.
703  */
704 static struct md_rdev *read_balance(struct r10conf *conf,
705                                     struct r10bio *r10_bio,
706                                     int *max_sectors)
707 {
708         const sector_t this_sector = r10_bio->sector;
709         int disk, slot;
710         int sectors = r10_bio->sectors;
711         int best_good_sectors;
712         sector_t new_distance, best_dist;
713         struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
714         int do_balance;
715         int best_dist_slot, best_pending_slot;
716         bool has_nonrot_disk = false;
717         unsigned int min_pending;
718         struct geom *geo = &conf->geo;
719
720         raid10_find_phys(conf, r10_bio);
721         rcu_read_lock();
722         best_dist_slot = -1;
723         min_pending = UINT_MAX;
724         best_dist_rdev = NULL;
725         best_pending_rdev = NULL;
726         best_dist = MaxSector;
727         best_good_sectors = 0;
728         do_balance = 1;
729         clear_bit(R10BIO_FailFast, &r10_bio->state);
730         /*
731          * Check if we can balance. We can balance on the whole
732          * device if no resync is going on (recovery is ok), or below
733          * the resync window. We take the first readable disk when
734          * above the resync window.
735          */
736         if ((conf->mddev->recovery_cp < MaxSector
737              && (this_sector + sectors >= conf->next_resync)) ||
738             (mddev_is_clustered(conf->mddev) &&
739              md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
740                                             this_sector + sectors)))
741                 do_balance = 0;
742
743         for (slot = 0; slot < conf->copies ; slot++) {
744                 sector_t first_bad;
745                 int bad_sectors;
746                 sector_t dev_sector;
747                 unsigned int pending;
748                 bool nonrot;
749
750                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
751                         continue;
752                 disk = r10_bio->devs[slot].devnum;
753                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
754                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
755                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
757                 if (rdev == NULL ||
758                     test_bit(Faulty, &rdev->flags))
759                         continue;
760                 if (!test_bit(In_sync, &rdev->flags) &&
761                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
762                         continue;
763
764                 dev_sector = r10_bio->devs[slot].addr;
765                 if (is_badblock(rdev, dev_sector, sectors,
766                                 &first_bad, &bad_sectors)) {
767                         if (best_dist < MaxSector)
768                                 /* Already have a better slot */
769                                 continue;
770                         if (first_bad <= dev_sector) {
771                                 /* Cannot read here.  If this is the
772                                  * 'primary' device, then we must not read
773                                  * beyond 'bad_sectors' from another device.
774                                  */
775                                 bad_sectors -= (dev_sector - first_bad);
776                                 if (!do_balance && sectors > bad_sectors)
777                                         sectors = bad_sectors;
778                                 if (best_good_sectors > sectors)
779                                         best_good_sectors = sectors;
780                         } else {
781                                 sector_t good_sectors =
782                                         first_bad - dev_sector;
783                                 if (good_sectors > best_good_sectors) {
784                                         best_good_sectors = good_sectors;
785                                         best_dist_slot = slot;
786                                         best_dist_rdev = rdev;
787                                 }
788                                 if (!do_balance)
789                                         /* Must read from here */
790                                         break;
791                         }
792                         continue;
793                 } else
794                         best_good_sectors = sectors;
795
796                 if (!do_balance)
797                         break;
798
799                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
800                 has_nonrot_disk |= nonrot;
801                 pending = atomic_read(&rdev->nr_pending);
802                 if (min_pending > pending && nonrot) {
803                         min_pending = pending;
804                         best_pending_slot = slot;
805                         best_pending_rdev = rdev;
806                 }
807
808                 if (best_dist_slot >= 0)
809                         /* At least 2 disks to choose from so failfast is OK */
810                         set_bit(R10BIO_FailFast, &r10_bio->state);
811                 /* This optimisation is debatable, and completely destroys
812                  * sequential read speed for 'far copies' arrays.  So only
813                  * keep it for 'near' arrays, and review those later.
814                  */
815                 if (geo->near_copies > 1 && !pending)
816                         new_distance = 0;
817
818                 /* for far > 1 always use the lowest address */
819                 else if (geo->far_copies > 1)
820                         new_distance = r10_bio->devs[slot].addr;
821                 else
822                         new_distance = abs(r10_bio->devs[slot].addr -
823                                            conf->mirrors[disk].head_position);
824
825                 if (new_distance < best_dist) {
826                         best_dist = new_distance;
827                         best_dist_slot = slot;
828                         best_dist_rdev = rdev;
829                 }
830         }
831         if (slot >= conf->copies) {
832                 if (has_nonrot_disk) {
833                         slot = best_pending_slot;
834                         rdev = best_pending_rdev;
835                 } else {
836                         slot = best_dist_slot;
837                         rdev = best_dist_rdev;
838                 }
839         }
840
841         if (slot >= 0) {
842                 atomic_inc(&rdev->nr_pending);
843                 r10_bio->read_slot = slot;
844         } else
845                 rdev = NULL;
846         rcu_read_unlock();
847         *max_sectors = best_good_sectors;
848
849         return rdev;
850 }
851
852 static void flush_pending_writes(struct r10conf *conf)
853 {
854         /* Any writes that have been queued but are awaiting
855          * bitmap updates get flushed here.
856          */
857         spin_lock_irq(&conf->device_lock);
858
859         if (conf->pending_bio_list.head) {
860                 struct blk_plug plug;
861                 struct bio *bio;
862
863                 bio = bio_list_get(&conf->pending_bio_list);
864                 conf->pending_count = 0;
865                 spin_unlock_irq(&conf->device_lock);
866
867                 /*
868                  * As this is called in a wait_event() loop (see freeze_array),
869                  * current->state might be TASK_UNINTERRUPTIBLE which will
870                  * cause a warning when we prepare to wait again.  As it is
871                  * rare that this path is taken, it is perfectly safe to force
872                  * us to go around the wait_event() loop again, so the warning
873                  * is a false-positive. Silence the warning by resetting
874                  * thread state
875                  */
876                 __set_current_state(TASK_RUNNING);
877
878                 blk_start_plug(&plug);
879                 /* flush any pending bitmap writes to disk
880                  * before proceeding w/ I/O */
881                 md_bitmap_unplug(conf->mddev->bitmap);
882                 wake_up(&conf->wait_barrier);
883
884                 while (bio) { /* submit pending writes */
885                         struct bio *next = bio->bi_next;
886                         struct md_rdev *rdev = (void*)bio->bi_bdev;
887                         bio->bi_next = NULL;
888                         bio_set_dev(bio, rdev->bdev);
889                         if (test_bit(Faulty, &rdev->flags)) {
890                                 bio_io_error(bio);
891                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
892                                             !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
893                                 /* Just ignore it */
894                                 bio_endio(bio);
895                         else
896                                 submit_bio_noacct(bio);
897                         bio = next;
898                 }
899                 blk_finish_plug(&plug);
900         } else
901                 spin_unlock_irq(&conf->device_lock);
902 }
903
904 /* Barriers....
905  * Sometimes we need to suspend IO while we do something else,
906  * either some resync/recovery, or reconfigure the array.
907  * To do this we raise a 'barrier'.
908  * The 'barrier' is a counter that can be raised multiple times
909  * to count how many activities are happening which preclude
910  * normal IO.
911  * We can only raise the barrier if there is no pending IO.
912  * i.e. if nr_pending == 0.
913  * We choose only to raise the barrier if no-one is waiting for the
914  * barrier to go down.  This means that as soon as an IO request
915  * is ready, no other operations which require a barrier will start
916  * until the IO request has had a chance.
917  *
918  * So: regular IO calls 'wait_barrier'.  When that returns there
919  *    is no backgroup IO happening,  It must arrange to call
920  *    allow_barrier when it has finished its IO.
921  * backgroup IO calls must call raise_barrier.  Once that returns
922  *    there is no normal IO happeing.  It must arrange to call
923  *    lower_barrier when the particular background IO completes.
924  */
925
926 static void raise_barrier(struct r10conf *conf, int force)
927 {
928         BUG_ON(force && !conf->barrier);
929         spin_lock_irq(&conf->resync_lock);
930
931         /* Wait until no block IO is waiting (unless 'force') */
932         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
933                             conf->resync_lock);
934
935         /* block any new IO from starting */
936         conf->barrier++;
937
938         /* Now wait for all pending IO to complete */
939         wait_event_lock_irq(conf->wait_barrier,
940                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
941                             conf->resync_lock);
942
943         spin_unlock_irq(&conf->resync_lock);
944 }
945
946 static void lower_barrier(struct r10conf *conf)
947 {
948         unsigned long flags;
949         spin_lock_irqsave(&conf->resync_lock, flags);
950         conf->barrier--;
951         spin_unlock_irqrestore(&conf->resync_lock, flags);
952         wake_up(&conf->wait_barrier);
953 }
954
955 static bool wait_barrier(struct r10conf *conf, bool nowait)
956 {
957         bool ret = true;
958
959         spin_lock_irq(&conf->resync_lock);
960         if (conf->barrier) {
961                 struct bio_list *bio_list = current->bio_list;
962                 conf->nr_waiting++;
963                 /* Wait for the barrier to drop.
964                  * However if there are already pending
965                  * requests (preventing the barrier from
966                  * rising completely), and the
967                  * pre-process bio queue isn't empty,
968                  * then don't wait, as we need to empty
969                  * that queue to get the nr_pending
970                  * count down.
971                  */
972                 /* Return false when nowait flag is set */
973                 if (nowait) {
974                         ret = false;
975                 } else {
976                         raid10_log(conf->mddev, "wait barrier");
977                         wait_event_lock_irq(conf->wait_barrier,
978                                             !conf->barrier ||
979                                             (atomic_read(&conf->nr_pending) &&
980                                              bio_list &&
981                                              (!bio_list_empty(&bio_list[0]) ||
982                                               !bio_list_empty(&bio_list[1]))) ||
983                                              /* move on if recovery thread is
984                                               * blocked by us
985                                               */
986                                              (conf->mddev->thread->tsk == current &&
987                                               test_bit(MD_RECOVERY_RUNNING,
988                                                        &conf->mddev->recovery) &&
989                                               conf->nr_queued > 0),
990                                             conf->resync_lock);
991                 }
992                 conf->nr_waiting--;
993                 if (!conf->nr_waiting)
994                         wake_up(&conf->wait_barrier);
995         }
996         /* Only increment nr_pending when we wait */
997         if (ret)
998                 atomic_inc(&conf->nr_pending);
999         spin_unlock_irq(&conf->resync_lock);
1000         return ret;
1001 }
1002
1003 static void allow_barrier(struct r10conf *conf)
1004 {
1005         if ((atomic_dec_and_test(&conf->nr_pending)) ||
1006                         (conf->array_freeze_pending))
1007                 wake_up(&conf->wait_barrier);
1008 }
1009
1010 static void freeze_array(struct r10conf *conf, int extra)
1011 {
1012         /* stop syncio and normal IO and wait for everything to
1013          * go quiet.
1014          * We increment barrier and nr_waiting, and then
1015          * wait until nr_pending match nr_queued+extra
1016          * This is called in the context of one normal IO request
1017          * that has failed. Thus any sync request that might be pending
1018          * will be blocked by nr_pending, and we need to wait for
1019          * pending IO requests to complete or be queued for re-try.
1020          * Thus the number queued (nr_queued) plus this request (extra)
1021          * must match the number of pending IOs (nr_pending) before
1022          * we continue.
1023          */
1024         spin_lock_irq(&conf->resync_lock);
1025         conf->array_freeze_pending++;
1026         conf->barrier++;
1027         conf->nr_waiting++;
1028         wait_event_lock_irq_cmd(conf->wait_barrier,
1029                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1030                                 conf->resync_lock,
1031                                 flush_pending_writes(conf));
1032
1033         conf->array_freeze_pending--;
1034         spin_unlock_irq(&conf->resync_lock);
1035 }
1036
1037 static void unfreeze_array(struct r10conf *conf)
1038 {
1039         /* reverse the effect of the freeze */
1040         spin_lock_irq(&conf->resync_lock);
1041         conf->barrier--;
1042         conf->nr_waiting--;
1043         wake_up(&conf->wait_barrier);
1044         spin_unlock_irq(&conf->resync_lock);
1045 }
1046
1047 static sector_t choose_data_offset(struct r10bio *r10_bio,
1048                                    struct md_rdev *rdev)
1049 {
1050         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1051             test_bit(R10BIO_Previous, &r10_bio->state))
1052                 return rdev->data_offset;
1053         else
1054                 return rdev->new_data_offset;
1055 }
1056
1057 struct raid10_plug_cb {
1058         struct blk_plug_cb      cb;
1059         struct bio_list         pending;
1060         int                     pending_cnt;
1061 };
1062
1063 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1064 {
1065         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1066                                                    cb);
1067         struct mddev *mddev = plug->cb.data;
1068         struct r10conf *conf = mddev->private;
1069         struct bio *bio;
1070
1071         if (from_schedule || current->bio_list) {
1072                 spin_lock_irq(&conf->device_lock);
1073                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1074                 conf->pending_count += plug->pending_cnt;
1075                 spin_unlock_irq(&conf->device_lock);
1076                 wake_up(&conf->wait_barrier);
1077                 md_wakeup_thread(mddev->thread);
1078                 kfree(plug);
1079                 return;
1080         }
1081
1082         /* we aren't scheduling, so we can do the write-out directly. */
1083         bio = bio_list_get(&plug->pending);
1084         md_bitmap_unplug(mddev->bitmap);
1085         wake_up(&conf->wait_barrier);
1086
1087         while (bio) { /* submit pending writes */
1088                 struct bio *next = bio->bi_next;
1089                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1090                 bio->bi_next = NULL;
1091                 bio_set_dev(bio, rdev->bdev);
1092                 if (test_bit(Faulty, &rdev->flags)) {
1093                         bio_io_error(bio);
1094                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1095                                     !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
1096                         /* Just ignore it */
1097                         bio_endio(bio);
1098                 else
1099                         submit_bio_noacct(bio);
1100                 bio = next;
1101         }
1102         kfree(plug);
1103 }
1104
1105 /*
1106  * 1. Register the new request and wait if the reconstruction thread has put
1107  * up a bar for new requests. Continue immediately if no resync is active
1108  * currently.
1109  * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1110  */
1111 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1112                                  struct bio *bio, sector_t sectors)
1113 {
1114         /* Bail out if REQ_NOWAIT is set for the bio */
1115         if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1116                 bio_wouldblock_error(bio);
1117                 return false;
1118         }
1119         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1120             bio->bi_iter.bi_sector < conf->reshape_progress &&
1121             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1122                 allow_barrier(conf);
1123                 if (bio->bi_opf & REQ_NOWAIT) {
1124                         bio_wouldblock_error(bio);
1125                         return false;
1126                 }
1127                 raid10_log(conf->mddev, "wait reshape");
1128                 wait_event(conf->wait_barrier,
1129                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1130                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1131                            sectors);
1132                 wait_barrier(conf, false);
1133         }
1134         return true;
1135 }
1136
1137 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1138                                 struct r10bio *r10_bio)
1139 {
1140         struct r10conf *conf = mddev->private;
1141         struct bio *read_bio;
1142         const int op = bio_op(bio);
1143         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1144         int max_sectors;
1145         struct md_rdev *rdev;
1146         char b[BDEVNAME_SIZE];
1147         int slot = r10_bio->read_slot;
1148         struct md_rdev *err_rdev = NULL;
1149         gfp_t gfp = GFP_NOIO;
1150
1151         if (slot >= 0 && r10_bio->devs[slot].rdev) {
1152                 /*
1153                  * This is an error retry, but we cannot
1154                  * safely dereference the rdev in the r10_bio,
1155                  * we must use the one in conf.
1156                  * If it has already been disconnected (unlikely)
1157                  * we lose the device name in error messages.
1158                  */
1159                 int disk;
1160                 /*
1161                  * As we are blocking raid10, it is a little safer to
1162                  * use __GFP_HIGH.
1163                  */
1164                 gfp = GFP_NOIO | __GFP_HIGH;
1165
1166                 rcu_read_lock();
1167                 disk = r10_bio->devs[slot].devnum;
1168                 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1169                 if (err_rdev)
1170                         bdevname(err_rdev->bdev, b);
1171                 else {
1172                         strcpy(b, "???");
1173                         /* This never gets dereferenced */
1174                         err_rdev = r10_bio->devs[slot].rdev;
1175                 }
1176                 rcu_read_unlock();
1177         }
1178
1179         if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1180                 return;
1181         rdev = read_balance(conf, r10_bio, &max_sectors);
1182         if (!rdev) {
1183                 if (err_rdev) {
1184                         pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1185                                             mdname(mddev), b,
1186                                             (unsigned long long)r10_bio->sector);
1187                 }
1188                 raid_end_bio_io(r10_bio);
1189                 return;
1190         }
1191         if (err_rdev)
1192                 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1193                                    mdname(mddev),
1194                                    bdevname(rdev->bdev, b),
1195                                    (unsigned long long)r10_bio->sector);
1196         if (max_sectors < bio_sectors(bio)) {
1197                 struct bio *split = bio_split(bio, max_sectors,
1198                                               gfp, &conf->bio_split);
1199                 bio_chain(split, bio);
1200                 allow_barrier(conf);
1201                 submit_bio_noacct(bio);
1202                 wait_barrier(conf, false);
1203                 bio = split;
1204                 r10_bio->master_bio = bio;
1205                 r10_bio->sectors = max_sectors;
1206         }
1207         slot = r10_bio->read_slot;
1208
1209         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1210                 r10_bio->start_time = bio_start_io_acct(bio);
1211         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1212
1213         r10_bio->devs[slot].bio = read_bio;
1214         r10_bio->devs[slot].rdev = rdev;
1215
1216         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1217                 choose_data_offset(r10_bio, rdev);
1218         bio_set_dev(read_bio, rdev->bdev);
1219         read_bio->bi_end_io = raid10_end_read_request;
1220         bio_set_op_attrs(read_bio, op, do_sync);
1221         if (test_bit(FailFast, &rdev->flags) &&
1222             test_bit(R10BIO_FailFast, &r10_bio->state))
1223                 read_bio->bi_opf |= MD_FAILFAST;
1224         read_bio->bi_private = r10_bio;
1225
1226         if (mddev->gendisk)
1227                 trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1228                                       r10_bio->sector);
1229         submit_bio_noacct(read_bio);
1230         return;
1231 }
1232
1233 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1234                                   struct bio *bio, bool replacement,
1235                                   int n_copy)
1236 {
1237         const int op = bio_op(bio);
1238         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1239         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1240         unsigned long flags;
1241         struct blk_plug_cb *cb;
1242         struct raid10_plug_cb *plug = NULL;
1243         struct r10conf *conf = mddev->private;
1244         struct md_rdev *rdev;
1245         int devnum = r10_bio->devs[n_copy].devnum;
1246         struct bio *mbio;
1247
1248         if (replacement) {
1249                 rdev = conf->mirrors[devnum].replacement;
1250                 if (rdev == NULL) {
1251                         /* Replacement just got moved to main 'rdev' */
1252                         smp_mb();
1253                         rdev = conf->mirrors[devnum].rdev;
1254                 }
1255         } else
1256                 rdev = conf->mirrors[devnum].rdev;
1257
1258         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1259         if (replacement)
1260                 r10_bio->devs[n_copy].repl_bio = mbio;
1261         else
1262                 r10_bio->devs[n_copy].bio = mbio;
1263
1264         mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1265                                    choose_data_offset(r10_bio, rdev));
1266         bio_set_dev(mbio, rdev->bdev);
1267         mbio->bi_end_io = raid10_end_write_request;
1268         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1269         if (!replacement && test_bit(FailFast,
1270                                      &conf->mirrors[devnum].rdev->flags)
1271                          && enough(conf, devnum))
1272                 mbio->bi_opf |= MD_FAILFAST;
1273         mbio->bi_private = r10_bio;
1274
1275         if (conf->mddev->gendisk)
1276                 trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1277                                       r10_bio->sector);
1278         /* flush_pending_writes() needs access to the rdev so...*/
1279         mbio->bi_bdev = (void *)rdev;
1280
1281         atomic_inc(&r10_bio->remaining);
1282
1283         cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1284         if (cb)
1285                 plug = container_of(cb, struct raid10_plug_cb, cb);
1286         else
1287                 plug = NULL;
1288         if (plug) {
1289                 bio_list_add(&plug->pending, mbio);
1290                 plug->pending_cnt++;
1291         } else {
1292                 spin_lock_irqsave(&conf->device_lock, flags);
1293                 bio_list_add(&conf->pending_bio_list, mbio);
1294                 conf->pending_count++;
1295                 spin_unlock_irqrestore(&conf->device_lock, flags);
1296                 md_wakeup_thread(mddev->thread);
1297         }
1298 }
1299
1300 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1301 {
1302         int i;
1303         struct r10conf *conf = mddev->private;
1304         struct md_rdev *blocked_rdev;
1305
1306 retry_wait:
1307         blocked_rdev = NULL;
1308         rcu_read_lock();
1309         for (i = 0; i < conf->copies; i++) {
1310                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1311                 struct md_rdev *rrdev = rcu_dereference(
1312                         conf->mirrors[i].replacement);
1313                 if (rdev == rrdev)
1314                         rrdev = NULL;
1315                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1316                         atomic_inc(&rdev->nr_pending);
1317                         blocked_rdev = rdev;
1318                         break;
1319                 }
1320                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1321                         atomic_inc(&rrdev->nr_pending);
1322                         blocked_rdev = rrdev;
1323                         break;
1324                 }
1325
1326                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1327                         sector_t first_bad;
1328                         sector_t dev_sector = r10_bio->devs[i].addr;
1329                         int bad_sectors;
1330                         int is_bad;
1331
1332                         /*
1333                          * Discard request doesn't care the write result
1334                          * so it doesn't need to wait blocked disk here.
1335                          */
1336                         if (!r10_bio->sectors)
1337                                 continue;
1338
1339                         is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1340                                              &first_bad, &bad_sectors);
1341                         if (is_bad < 0) {
1342                                 /*
1343                                  * Mustn't write here until the bad block
1344                                  * is acknowledged
1345                                  */
1346                                 atomic_inc(&rdev->nr_pending);
1347                                 set_bit(BlockedBadBlocks, &rdev->flags);
1348                                 blocked_rdev = rdev;
1349                                 break;
1350                         }
1351                 }
1352         }
1353         rcu_read_unlock();
1354
1355         if (unlikely(blocked_rdev)) {
1356                 /* Have to wait for this device to get unblocked, then retry */
1357                 allow_barrier(conf);
1358                 raid10_log(conf->mddev, "%s wait rdev %d blocked",
1359                                 __func__, blocked_rdev->raid_disk);
1360                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1361                 wait_barrier(conf, false);
1362                 goto retry_wait;
1363         }
1364 }
1365
1366 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1367                                  struct r10bio *r10_bio)
1368 {
1369         struct r10conf *conf = mddev->private;
1370         int i;
1371         sector_t sectors;
1372         int max_sectors;
1373
1374         if ((mddev_is_clustered(mddev) &&
1375              md_cluster_ops->area_resyncing(mddev, WRITE,
1376                                             bio->bi_iter.bi_sector,
1377                                             bio_end_sector(bio)))) {
1378                 DEFINE_WAIT(w);
1379                 /* Bail out if REQ_NOWAIT is set for the bio */
1380                 if (bio->bi_opf & REQ_NOWAIT) {
1381                         bio_wouldblock_error(bio);
1382                         return;
1383                 }
1384                 for (;;) {
1385                         prepare_to_wait(&conf->wait_barrier,
1386                                         &w, TASK_IDLE);
1387                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1388                                  bio->bi_iter.bi_sector, bio_end_sector(bio)))
1389                                 break;
1390                         schedule();
1391                 }
1392                 finish_wait(&conf->wait_barrier, &w);
1393         }
1394
1395         sectors = r10_bio->sectors;
1396         if (!regular_request_wait(mddev, conf, bio, sectors))
1397                 return;
1398         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1399             (mddev->reshape_backwards
1400              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1401                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1402              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1403                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1404                 /* Need to update reshape_position in metadata */
1405                 mddev->reshape_position = conf->reshape_progress;
1406                 set_mask_bits(&mddev->sb_flags, 0,
1407                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1408                 md_wakeup_thread(mddev->thread);
1409                 if (bio->bi_opf & REQ_NOWAIT) {
1410                         allow_barrier(conf);
1411                         bio_wouldblock_error(bio);
1412                         return;
1413                 }
1414                 raid10_log(conf->mddev, "wait reshape metadata");
1415                 wait_event(mddev->sb_wait,
1416                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1417
1418                 conf->reshape_safe = mddev->reshape_position;
1419         }
1420
1421         /* first select target devices under rcu_lock and
1422          * inc refcount on their rdev.  Record them by setting
1423          * bios[x] to bio
1424          * If there are known/acknowledged bad blocks on any device
1425          * on which we have seen a write error, we want to avoid
1426          * writing to those blocks.  This potentially requires several
1427          * writes to write around the bad blocks.  Each set of writes
1428          * gets its own r10_bio with a set of bios attached.
1429          */
1430
1431         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1432         raid10_find_phys(conf, r10_bio);
1433
1434         wait_blocked_dev(mddev, r10_bio);
1435
1436         rcu_read_lock();
1437         max_sectors = r10_bio->sectors;
1438
1439         for (i = 0;  i < conf->copies; i++) {
1440                 int d = r10_bio->devs[i].devnum;
1441                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1442                 struct md_rdev *rrdev = rcu_dereference(
1443                         conf->mirrors[d].replacement);
1444                 if (rdev == rrdev)
1445                         rrdev = NULL;
1446                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1447                         rdev = NULL;
1448                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1449                         rrdev = NULL;
1450
1451                 r10_bio->devs[i].bio = NULL;
1452                 r10_bio->devs[i].repl_bio = NULL;
1453
1454                 if (!rdev && !rrdev) {
1455                         set_bit(R10BIO_Degraded, &r10_bio->state);
1456                         continue;
1457                 }
1458                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1459                         sector_t first_bad;
1460                         sector_t dev_sector = r10_bio->devs[i].addr;
1461                         int bad_sectors;
1462                         int is_bad;
1463
1464                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1465                                              &first_bad, &bad_sectors);
1466                         if (is_bad && first_bad <= dev_sector) {
1467                                 /* Cannot write here at all */
1468                                 bad_sectors -= (dev_sector - first_bad);
1469                                 if (bad_sectors < max_sectors)
1470                                         /* Mustn't write more than bad_sectors
1471                                          * to other devices yet
1472                                          */
1473                                         max_sectors = bad_sectors;
1474                                 /* We don't set R10BIO_Degraded as that
1475                                  * only applies if the disk is missing,
1476                                  * so it might be re-added, and we want to
1477                                  * know to recover this chunk.
1478                                  * In this case the device is here, and the
1479                                  * fact that this chunk is not in-sync is
1480                                  * recorded in the bad block log.
1481                                  */
1482                                 continue;
1483                         }
1484                         if (is_bad) {
1485                                 int good_sectors = first_bad - dev_sector;
1486                                 if (good_sectors < max_sectors)
1487                                         max_sectors = good_sectors;
1488                         }
1489                 }
1490                 if (rdev) {
1491                         r10_bio->devs[i].bio = bio;
1492                         atomic_inc(&rdev->nr_pending);
1493                 }
1494                 if (rrdev) {
1495                         r10_bio->devs[i].repl_bio = bio;
1496                         atomic_inc(&rrdev->nr_pending);
1497                 }
1498         }
1499         rcu_read_unlock();
1500
1501         if (max_sectors < r10_bio->sectors)
1502                 r10_bio->sectors = max_sectors;
1503
1504         if (r10_bio->sectors < bio_sectors(bio)) {
1505                 struct bio *split = bio_split(bio, r10_bio->sectors,
1506                                               GFP_NOIO, &conf->bio_split);
1507                 bio_chain(split, bio);
1508                 allow_barrier(conf);
1509                 submit_bio_noacct(bio);
1510                 wait_barrier(conf, false);
1511                 bio = split;
1512                 r10_bio->master_bio = bio;
1513         }
1514
1515         if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1516                 r10_bio->start_time = bio_start_io_acct(bio);
1517         atomic_set(&r10_bio->remaining, 1);
1518         md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1519
1520         for (i = 0; i < conf->copies; i++) {
1521                 if (r10_bio->devs[i].bio)
1522                         raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1523                 if (r10_bio->devs[i].repl_bio)
1524                         raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1525         }
1526         one_write_done(r10_bio);
1527 }
1528
1529 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1530 {
1531         struct r10conf *conf = mddev->private;
1532         struct r10bio *r10_bio;
1533
1534         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1535
1536         r10_bio->master_bio = bio;
1537         r10_bio->sectors = sectors;
1538
1539         r10_bio->mddev = mddev;
1540         r10_bio->sector = bio->bi_iter.bi_sector;
1541         r10_bio->state = 0;
1542         r10_bio->read_slot = -1;
1543         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1544                         conf->geo.raid_disks);
1545
1546         if (bio_data_dir(bio) == READ)
1547                 raid10_read_request(mddev, bio, r10_bio);
1548         else
1549                 raid10_write_request(mddev, bio, r10_bio);
1550 }
1551
1552 static void raid_end_discard_bio(struct r10bio *r10bio)
1553 {
1554         struct r10conf *conf = r10bio->mddev->private;
1555         struct r10bio *first_r10bio;
1556
1557         while (atomic_dec_and_test(&r10bio->remaining)) {
1558
1559                 allow_barrier(conf);
1560
1561                 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1562                         first_r10bio = (struct r10bio *)r10bio->master_bio;
1563                         free_r10bio(r10bio);
1564                         r10bio = first_r10bio;
1565                 } else {
1566                         md_write_end(r10bio->mddev);
1567                         bio_endio(r10bio->master_bio);
1568                         free_r10bio(r10bio);
1569                         break;
1570                 }
1571         }
1572 }
1573
1574 static void raid10_end_discard_request(struct bio *bio)
1575 {
1576         struct r10bio *r10_bio = bio->bi_private;
1577         struct r10conf *conf = r10_bio->mddev->private;
1578         struct md_rdev *rdev = NULL;
1579         int dev;
1580         int slot, repl;
1581
1582         /*
1583          * We don't care the return value of discard bio
1584          */
1585         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1586                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1587
1588         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1589         if (repl)
1590                 rdev = conf->mirrors[dev].replacement;
1591         if (!rdev) {
1592                 /*
1593                  * raid10_remove_disk uses smp_mb to make sure rdev is set to
1594                  * replacement before setting replacement to NULL. It can read
1595                  * rdev first without barrier protect even replacment is NULL
1596                  */
1597                 smp_rmb();
1598                 rdev = conf->mirrors[dev].rdev;
1599         }
1600
1601         raid_end_discard_bio(r10_bio);
1602         rdev_dec_pending(rdev, conf->mddev);
1603 }
1604
1605 /*
1606  * There are some limitations to handle discard bio
1607  * 1st, the discard size is bigger than stripe_size*2.
1608  * 2st, if the discard bio spans reshape progress, we use the old way to
1609  * handle discard bio
1610  */
1611 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1612 {
1613         struct r10conf *conf = mddev->private;
1614         struct geom *geo = &conf->geo;
1615         int far_copies = geo->far_copies;
1616         bool first_copy = true;
1617         struct r10bio *r10_bio, *first_r10bio;
1618         struct bio *split;
1619         int disk;
1620         sector_t chunk;
1621         unsigned int stripe_size;
1622         unsigned int stripe_data_disks;
1623         sector_t split_size;
1624         sector_t bio_start, bio_end;
1625         sector_t first_stripe_index, last_stripe_index;
1626         sector_t start_disk_offset;
1627         unsigned int start_disk_index;
1628         sector_t end_disk_offset;
1629         unsigned int end_disk_index;
1630         unsigned int remainder;
1631
1632         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1633                 return -EAGAIN;
1634
1635         if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1636                 bio_wouldblock_error(bio);
1637                 return 0;
1638         }
1639         wait_barrier(conf, false);
1640
1641         /*
1642          * Check reshape again to avoid reshape happens after checking
1643          * MD_RECOVERY_RESHAPE and before wait_barrier
1644          */
1645         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1646                 goto out;
1647
1648         if (geo->near_copies)
1649                 stripe_data_disks = geo->raid_disks / geo->near_copies +
1650                                         geo->raid_disks % geo->near_copies;
1651         else
1652                 stripe_data_disks = geo->raid_disks;
1653
1654         stripe_size = stripe_data_disks << geo->chunk_shift;
1655
1656         bio_start = bio->bi_iter.bi_sector;
1657         bio_end = bio_end_sector(bio);
1658
1659         /*
1660          * Maybe one discard bio is smaller than strip size or across one
1661          * stripe and discard region is larger than one stripe size. For far
1662          * offset layout, if the discard region is not aligned with stripe
1663          * size, there is hole when we submit discard bio to member disk.
1664          * For simplicity, we only handle discard bio which discard region
1665          * is bigger than stripe_size * 2
1666          */
1667         if (bio_sectors(bio) < stripe_size*2)
1668                 goto out;
1669
1670         /*
1671          * Keep bio aligned with strip size.
1672          */
1673         div_u64_rem(bio_start, stripe_size, &remainder);
1674         if (remainder) {
1675                 split_size = stripe_size - remainder;
1676                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1677                 bio_chain(split, bio);
1678                 allow_barrier(conf);
1679                 /* Resend the fist split part */
1680                 submit_bio_noacct(split);
1681                 wait_barrier(conf, false);
1682         }
1683         div_u64_rem(bio_end, stripe_size, &remainder);
1684         if (remainder) {
1685                 split_size = bio_sectors(bio) - remainder;
1686                 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1687                 bio_chain(split, bio);
1688                 allow_barrier(conf);
1689                 /* Resend the second split part */
1690                 submit_bio_noacct(bio);
1691                 bio = split;
1692                 wait_barrier(conf, false);
1693         }
1694
1695         bio_start = bio->bi_iter.bi_sector;
1696         bio_end = bio_end_sector(bio);
1697
1698         /*
1699          * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1700          * One stripe contains the chunks from all member disk (one chunk from
1701          * one disk at the same HBA address). For layout detail, see 'man md 4'
1702          */
1703         chunk = bio_start >> geo->chunk_shift;
1704         chunk *= geo->near_copies;
1705         first_stripe_index = chunk;
1706         start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1707         if (geo->far_offset)
1708                 first_stripe_index *= geo->far_copies;
1709         start_disk_offset = (bio_start & geo->chunk_mask) +
1710                                 (first_stripe_index << geo->chunk_shift);
1711
1712         chunk = bio_end >> geo->chunk_shift;
1713         chunk *= geo->near_copies;
1714         last_stripe_index = chunk;
1715         end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1716         if (geo->far_offset)
1717                 last_stripe_index *= geo->far_copies;
1718         end_disk_offset = (bio_end & geo->chunk_mask) +
1719                                 (last_stripe_index << geo->chunk_shift);
1720
1721 retry_discard:
1722         r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1723         r10_bio->mddev = mddev;
1724         r10_bio->state = 0;
1725         r10_bio->sectors = 0;
1726         memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1727         wait_blocked_dev(mddev, r10_bio);
1728
1729         /*
1730          * For far layout it needs more than one r10bio to cover all regions.
1731          * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1732          * to record the discard bio. Other r10bio->master_bio record the first
1733          * r10bio. The first r10bio only release after all other r10bios finish.
1734          * The discard bio returns only first r10bio finishes
1735          */
1736         if (first_copy) {
1737                 r10_bio->master_bio = bio;
1738                 set_bit(R10BIO_Discard, &r10_bio->state);
1739                 first_copy = false;
1740                 first_r10bio = r10_bio;
1741         } else
1742                 r10_bio->master_bio = (struct bio *)first_r10bio;
1743
1744         /*
1745          * first select target devices under rcu_lock and
1746          * inc refcount on their rdev.  Record them by setting
1747          * bios[x] to bio
1748          */
1749         rcu_read_lock();
1750         for (disk = 0; disk < geo->raid_disks; disk++) {
1751                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1752                 struct md_rdev *rrdev = rcu_dereference(
1753                         conf->mirrors[disk].replacement);
1754
1755                 r10_bio->devs[disk].bio = NULL;
1756                 r10_bio->devs[disk].repl_bio = NULL;
1757
1758                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1759                         rdev = NULL;
1760                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1761                         rrdev = NULL;
1762                 if (!rdev && !rrdev)
1763                         continue;
1764
1765                 if (rdev) {
1766                         r10_bio->devs[disk].bio = bio;
1767                         atomic_inc(&rdev->nr_pending);
1768                 }
1769                 if (rrdev) {
1770                         r10_bio->devs[disk].repl_bio = bio;
1771                         atomic_inc(&rrdev->nr_pending);
1772                 }
1773         }
1774         rcu_read_unlock();
1775
1776         atomic_set(&r10_bio->remaining, 1);
1777         for (disk = 0; disk < geo->raid_disks; disk++) {
1778                 sector_t dev_start, dev_end;
1779                 struct bio *mbio, *rbio = NULL;
1780
1781                 /*
1782                  * Now start to calculate the start and end address for each disk.
1783                  * The space between dev_start and dev_end is the discard region.
1784                  *
1785                  * For dev_start, it needs to consider three conditions:
1786                  * 1st, the disk is before start_disk, you can imagine the disk in
1787                  * the next stripe. So the dev_start is the start address of next
1788                  * stripe.
1789                  * 2st, the disk is after start_disk, it means the disk is at the
1790                  * same stripe of first disk
1791                  * 3st, the first disk itself, we can use start_disk_offset directly
1792                  */
1793                 if (disk < start_disk_index)
1794                         dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1795                 else if (disk > start_disk_index)
1796                         dev_start = first_stripe_index * mddev->chunk_sectors;
1797                 else
1798                         dev_start = start_disk_offset;
1799
1800                 if (disk < end_disk_index)
1801                         dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1802                 else if (disk > end_disk_index)
1803                         dev_end = last_stripe_index * mddev->chunk_sectors;
1804                 else
1805                         dev_end = end_disk_offset;
1806
1807                 /*
1808                  * It only handles discard bio which size is >= stripe size, so
1809                  * dev_end > dev_start all the time.
1810                  * It doesn't need to use rcu lock to get rdev here. We already
1811                  * add rdev->nr_pending in the first loop.
1812                  */
1813                 if (r10_bio->devs[disk].bio) {
1814                         struct md_rdev *rdev = conf->mirrors[disk].rdev;
1815                         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1816                         mbio->bi_end_io = raid10_end_discard_request;
1817                         mbio->bi_private = r10_bio;
1818                         r10_bio->devs[disk].bio = mbio;
1819                         r10_bio->devs[disk].devnum = disk;
1820                         atomic_inc(&r10_bio->remaining);
1821                         md_submit_discard_bio(mddev, rdev, mbio,
1822                                         dev_start + choose_data_offset(r10_bio, rdev),
1823                                         dev_end - dev_start);
1824                         bio_endio(mbio);
1825                 }
1826                 if (r10_bio->devs[disk].repl_bio) {
1827                         struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1828                         rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1829                         rbio->bi_end_io = raid10_end_discard_request;
1830                         rbio->bi_private = r10_bio;
1831                         r10_bio->devs[disk].repl_bio = rbio;
1832                         r10_bio->devs[disk].devnum = disk;
1833                         atomic_inc(&r10_bio->remaining);
1834                         md_submit_discard_bio(mddev, rrdev, rbio,
1835                                         dev_start + choose_data_offset(r10_bio, rrdev),
1836                                         dev_end - dev_start);
1837                         bio_endio(rbio);
1838                 }
1839         }
1840
1841         if (!geo->far_offset && --far_copies) {
1842                 first_stripe_index += geo->stride >> geo->chunk_shift;
1843                 start_disk_offset += geo->stride;
1844                 last_stripe_index += geo->stride >> geo->chunk_shift;
1845                 end_disk_offset += geo->stride;
1846                 atomic_inc(&first_r10bio->remaining);
1847                 raid_end_discard_bio(r10_bio);
1848                 wait_barrier(conf, false);
1849                 goto retry_discard;
1850         }
1851
1852         raid_end_discard_bio(r10_bio);
1853
1854         return 0;
1855 out:
1856         allow_barrier(conf);
1857         return -EAGAIN;
1858 }
1859
1860 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1861 {
1862         struct r10conf *conf = mddev->private;
1863         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1864         int chunk_sects = chunk_mask + 1;
1865         int sectors = bio_sectors(bio);
1866
1867         if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1868             && md_flush_request(mddev, bio))
1869                 return true;
1870
1871         if (!md_write_start(mddev, bio))
1872                 return false;
1873
1874         if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1875                 if (!raid10_handle_discard(mddev, bio))
1876                         return true;
1877
1878         /*
1879          * If this request crosses a chunk boundary, we need to split
1880          * it.
1881          */
1882         if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1883                      sectors > chunk_sects
1884                      && (conf->geo.near_copies < conf->geo.raid_disks
1885                          || conf->prev.near_copies <
1886                          conf->prev.raid_disks)))
1887                 sectors = chunk_sects -
1888                         (bio->bi_iter.bi_sector &
1889                          (chunk_sects - 1));
1890         __make_request(mddev, bio, sectors);
1891
1892         /* In case raid10d snuck in to freeze_array */
1893         wake_up(&conf->wait_barrier);
1894         return true;
1895 }
1896
1897 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1898 {
1899         struct r10conf *conf = mddev->private;
1900         int i;
1901
1902         if (conf->geo.near_copies < conf->geo.raid_disks)
1903                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1904         if (conf->geo.near_copies > 1)
1905                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1906         if (conf->geo.far_copies > 1) {
1907                 if (conf->geo.far_offset)
1908                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1909                 else
1910                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1911                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1912                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1913         }
1914         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1915                                         conf->geo.raid_disks - mddev->degraded);
1916         rcu_read_lock();
1917         for (i = 0; i < conf->geo.raid_disks; i++) {
1918                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1919                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1920         }
1921         rcu_read_unlock();
1922         seq_printf(seq, "]");
1923 }
1924
1925 /* check if there are enough drives for
1926  * every block to appear on atleast one.
1927  * Don't consider the device numbered 'ignore'
1928  * as we might be about to remove it.
1929  */
1930 static int _enough(struct r10conf *conf, int previous, int ignore)
1931 {
1932         int first = 0;
1933         int has_enough = 0;
1934         int disks, ncopies;
1935         if (previous) {
1936                 disks = conf->prev.raid_disks;
1937                 ncopies = conf->prev.near_copies;
1938         } else {
1939                 disks = conf->geo.raid_disks;
1940                 ncopies = conf->geo.near_copies;
1941         }
1942
1943         rcu_read_lock();
1944         do {
1945                 int n = conf->copies;
1946                 int cnt = 0;
1947                 int this = first;
1948                 while (n--) {
1949                         struct md_rdev *rdev;
1950                         if (this != ignore &&
1951                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1952                             test_bit(In_sync, &rdev->flags))
1953                                 cnt++;
1954                         this = (this+1) % disks;
1955                 }
1956                 if (cnt == 0)
1957                         goto out;
1958                 first = (first + ncopies) % disks;
1959         } while (first != 0);
1960         has_enough = 1;
1961 out:
1962         rcu_read_unlock();
1963         return has_enough;
1964 }
1965
1966 static int enough(struct r10conf *conf, int ignore)
1967 {
1968         /* when calling 'enough', both 'prev' and 'geo' must
1969          * be stable.
1970          * This is ensured if ->reconfig_mutex or ->device_lock
1971          * is held.
1972          */
1973         return _enough(conf, 0, ignore) &&
1974                 _enough(conf, 1, ignore);
1975 }
1976
1977 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1978 {
1979         char b[BDEVNAME_SIZE];
1980         struct r10conf *conf = mddev->private;
1981         unsigned long flags;
1982
1983         /*
1984          * If it is not operational, then we have already marked it as dead
1985          * else if it is the last working disks with "fail_last_dev == false",
1986          * ignore the error, let the next level up know.
1987          * else mark the drive as failed
1988          */
1989         spin_lock_irqsave(&conf->device_lock, flags);
1990         if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1991             && !enough(conf, rdev->raid_disk)) {
1992                 /*
1993                  * Don't fail the drive, just return an IO error.
1994                  */
1995                 spin_unlock_irqrestore(&conf->device_lock, flags);
1996                 return;
1997         }
1998         if (test_and_clear_bit(In_sync, &rdev->flags))
1999                 mddev->degraded++;
2000         /*
2001          * If recovery is running, make sure it aborts.
2002          */
2003         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2004         set_bit(Blocked, &rdev->flags);
2005         set_bit(Faulty, &rdev->flags);
2006         set_mask_bits(&mddev->sb_flags, 0,
2007                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2008         spin_unlock_irqrestore(&conf->device_lock, flags);
2009         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
2010                 "md/raid10:%s: Operation continuing on %d devices.\n",
2011                 mdname(mddev), bdevname(rdev->bdev, b),
2012                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2013 }
2014
2015 static void print_conf(struct r10conf *conf)
2016 {
2017         int i;
2018         struct md_rdev *rdev;
2019
2020         pr_debug("RAID10 conf printout:\n");
2021         if (!conf) {
2022                 pr_debug("(!conf)\n");
2023                 return;
2024         }
2025         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2026                  conf->geo.raid_disks);
2027
2028         /* This is only called with ->reconfix_mutex held, so
2029          * rcu protection of rdev is not needed */
2030         for (i = 0; i < conf->geo.raid_disks; i++) {
2031                 char b[BDEVNAME_SIZE];
2032                 rdev = conf->mirrors[i].rdev;
2033                 if (rdev)
2034                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2035                                  i, !test_bit(In_sync, &rdev->flags),
2036                                  !test_bit(Faulty, &rdev->flags),
2037                                  bdevname(rdev->bdev,b));
2038         }
2039 }
2040
2041 static void close_sync(struct r10conf *conf)
2042 {
2043         wait_barrier(conf, false);
2044         allow_barrier(conf);
2045
2046         mempool_exit(&conf->r10buf_pool);
2047 }
2048
2049 static int raid10_spare_active(struct mddev *mddev)
2050 {
2051         int i;
2052         struct r10conf *conf = mddev->private;
2053         struct raid10_info *tmp;
2054         int count = 0;
2055         unsigned long flags;
2056
2057         /*
2058          * Find all non-in_sync disks within the RAID10 configuration
2059          * and mark them in_sync
2060          */
2061         for (i = 0; i < conf->geo.raid_disks; i++) {
2062                 tmp = conf->mirrors + i;
2063                 if (tmp->replacement
2064                     && tmp->replacement->recovery_offset == MaxSector
2065                     && !test_bit(Faulty, &tmp->replacement->flags)
2066                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2067                         /* Replacement has just become active */
2068                         if (!tmp->rdev
2069                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2070                                 count++;
2071                         if (tmp->rdev) {
2072                                 /* Replaced device not technically faulty,
2073                                  * but we need to be sure it gets removed
2074                                  * and never re-added.
2075                                  */
2076                                 set_bit(Faulty, &tmp->rdev->flags);
2077                                 sysfs_notify_dirent_safe(
2078                                         tmp->rdev->sysfs_state);
2079                         }
2080                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2081                 } else if (tmp->rdev
2082                            && tmp->rdev->recovery_offset == MaxSector
2083                            && !test_bit(Faulty, &tmp->rdev->flags)
2084                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2085                         count++;
2086                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2087                 }
2088         }
2089         spin_lock_irqsave(&conf->device_lock, flags);
2090         mddev->degraded -= count;
2091         spin_unlock_irqrestore(&conf->device_lock, flags);
2092
2093         print_conf(conf);
2094         return count;
2095 }
2096
2097 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2098 {
2099         struct r10conf *conf = mddev->private;
2100         int err = -EEXIST;
2101         int mirror;
2102         int first = 0;
2103         int last = conf->geo.raid_disks - 1;
2104
2105         if (mddev->recovery_cp < MaxSector)
2106                 /* only hot-add to in-sync arrays, as recovery is
2107                  * very different from resync
2108                  */
2109                 return -EBUSY;
2110         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2111                 return -EINVAL;
2112
2113         if (md_integrity_add_rdev(rdev, mddev))
2114                 return -ENXIO;
2115
2116         if (rdev->raid_disk >= 0)
2117                 first = last = rdev->raid_disk;
2118
2119         if (rdev->saved_raid_disk >= first &&
2120             rdev->saved_raid_disk < conf->geo.raid_disks &&
2121             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2122                 mirror = rdev->saved_raid_disk;
2123         else
2124                 mirror = first;
2125         for ( ; mirror <= last ; mirror++) {
2126                 struct raid10_info *p = &conf->mirrors[mirror];
2127                 if (p->recovery_disabled == mddev->recovery_disabled)
2128                         continue;
2129                 if (p->rdev) {
2130                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
2131                             p->replacement != NULL)
2132                                 continue;
2133                         clear_bit(In_sync, &rdev->flags);
2134                         set_bit(Replacement, &rdev->flags);
2135                         rdev->raid_disk = mirror;
2136                         err = 0;
2137                         if (mddev->gendisk)
2138                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2139                                                   rdev->data_offset << 9);
2140                         conf->fullsync = 1;
2141                         rcu_assign_pointer(p->replacement, rdev);
2142                         break;
2143                 }
2144
2145                 if (mddev->gendisk)
2146                         disk_stack_limits(mddev->gendisk, rdev->bdev,
2147                                           rdev->data_offset << 9);
2148
2149                 p->head_position = 0;
2150                 p->recovery_disabled = mddev->recovery_disabled - 1;
2151                 rdev->raid_disk = mirror;
2152                 err = 0;
2153                 if (rdev->saved_raid_disk != mirror)
2154                         conf->fullsync = 1;
2155                 rcu_assign_pointer(p->rdev, rdev);
2156                 break;
2157         }
2158         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2159                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
2160
2161         print_conf(conf);
2162         return err;
2163 }
2164
2165 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2166 {
2167         struct r10conf *conf = mddev->private;
2168         int err = 0;
2169         int number = rdev->raid_disk;
2170         struct md_rdev **rdevp;
2171         struct raid10_info *p = conf->mirrors + number;
2172
2173         print_conf(conf);
2174         if (rdev == p->rdev)
2175                 rdevp = &p->rdev;
2176         else if (rdev == p->replacement)
2177                 rdevp = &p->replacement;
2178         else
2179                 return 0;
2180
2181         if (test_bit(In_sync, &rdev->flags) ||
2182             atomic_read(&rdev->nr_pending)) {
2183                 err = -EBUSY;
2184                 goto abort;
2185         }
2186         /* Only remove non-faulty devices if recovery
2187          * is not possible.
2188          */
2189         if (!test_bit(Faulty, &rdev->flags) &&
2190             mddev->recovery_disabled != p->recovery_disabled &&
2191             (!p->replacement || p->replacement == rdev) &&
2192             number < conf->geo.raid_disks &&
2193             enough(conf, -1)) {
2194                 err = -EBUSY;
2195                 goto abort;
2196         }
2197         *rdevp = NULL;
2198         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2199                 synchronize_rcu();
2200                 if (atomic_read(&rdev->nr_pending)) {
2201                         /* lost the race, try later */
2202                         err = -EBUSY;
2203                         *rdevp = rdev;
2204                         goto abort;
2205                 }
2206         }
2207         if (p->replacement) {
2208                 /* We must have just cleared 'rdev' */
2209                 p->rdev = p->replacement;
2210                 clear_bit(Replacement, &p->replacement->flags);
2211                 smp_mb(); /* Make sure other CPUs may see both as identical
2212                            * but will never see neither -- if they are careful.
2213                            */
2214                 p->replacement = NULL;
2215         }
2216
2217         clear_bit(WantReplacement, &rdev->flags);
2218         err = md_integrity_register(mddev);
2219
2220 abort:
2221
2222         print_conf(conf);
2223         return err;
2224 }
2225
2226 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2227 {
2228         struct r10conf *conf = r10_bio->mddev->private;
2229
2230         if (!bio->bi_status)
2231                 set_bit(R10BIO_Uptodate, &r10_bio->state);
2232         else
2233                 /* The write handler will notice the lack of
2234                  * R10BIO_Uptodate and record any errors etc
2235                  */
2236                 atomic_add(r10_bio->sectors,
2237                            &conf->mirrors[d].rdev->corrected_errors);
2238
2239         /* for reconstruct, we always reschedule after a read.
2240          * for resync, only after all reads
2241          */
2242         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2243         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2244             atomic_dec_and_test(&r10_bio->remaining)) {
2245                 /* we have read all the blocks,
2246                  * do the comparison in process context in raid10d
2247                  */
2248                 reschedule_retry(r10_bio);
2249         }
2250 }
2251
2252 static void end_sync_read(struct bio *bio)
2253 {
2254         struct r10bio *r10_bio = get_resync_r10bio(bio);
2255         struct r10conf *conf = r10_bio->mddev->private;
2256         int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2257
2258         __end_sync_read(r10_bio, bio, d);
2259 }
2260
2261 static void end_reshape_read(struct bio *bio)
2262 {
2263         /* reshape read bio isn't allocated from r10buf_pool */
2264         struct r10bio *r10_bio = bio->bi_private;
2265
2266         __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2267 }
2268
2269 static void end_sync_request(struct r10bio *r10_bio)
2270 {
2271         struct mddev *mddev = r10_bio->mddev;
2272
2273         while (atomic_dec_and_test(&r10_bio->remaining)) {
2274                 if (r10_bio->master_bio == NULL) {
2275                         /* the primary of several recovery bios */
2276                         sector_t s = r10_bio->sectors;
2277                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2278                             test_bit(R10BIO_WriteError, &r10_bio->state))
2279                                 reschedule_retry(r10_bio);
2280                         else
2281                                 put_buf(r10_bio);
2282                         md_done_sync(mddev, s, 1);
2283                         break;
2284                 } else {
2285                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2286                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2287                             test_bit(R10BIO_WriteError, &r10_bio->state))
2288                                 reschedule_retry(r10_bio);
2289                         else
2290                                 put_buf(r10_bio);
2291                         r10_bio = r10_bio2;
2292                 }
2293         }
2294 }
2295
2296 static void end_sync_write(struct bio *bio)
2297 {
2298         struct r10bio *r10_bio = get_resync_r10bio(bio);
2299         struct mddev *mddev = r10_bio->mddev;
2300         struct r10conf *conf = mddev->private;
2301         int d;
2302         sector_t first_bad;
2303         int bad_sectors;
2304         int slot;
2305         int repl;
2306         struct md_rdev *rdev = NULL;
2307
2308         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2309         if (repl)
2310                 rdev = conf->mirrors[d].replacement;
2311         else
2312                 rdev = conf->mirrors[d].rdev;
2313
2314         if (bio->bi_status) {
2315                 if (repl)
2316                         md_error(mddev, rdev);
2317                 else {
2318                         set_bit(WriteErrorSeen, &rdev->flags);
2319                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2320                                 set_bit(MD_RECOVERY_NEEDED,
2321                                         &rdev->mddev->recovery);
2322                         set_bit(R10BIO_WriteError, &r10_bio->state);
2323                 }
2324         } else if (is_badblock(rdev,
2325                              r10_bio->devs[slot].addr,
2326                              r10_bio->sectors,
2327                              &first_bad, &bad_sectors))
2328                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2329
2330         rdev_dec_pending(rdev, mddev);
2331
2332         end_sync_request(r10_bio);
2333 }
2334
2335 /*
2336  * Note: sync and recover and handled very differently for raid10
2337  * This code is for resync.
2338  * For resync, we read through virtual addresses and read all blocks.
2339  * If there is any error, we schedule a write.  The lowest numbered
2340  * drive is authoritative.
2341  * However requests come for physical address, so we need to map.
2342  * For every physical address there are raid_disks/copies virtual addresses,
2343  * which is always are least one, but is not necessarly an integer.
2344  * This means that a physical address can span multiple chunks, so we may
2345  * have to submit multiple io requests for a single sync request.
2346  */
2347 /*
2348  * We check if all blocks are in-sync and only write to blocks that
2349  * aren't in sync
2350  */
2351 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2352 {
2353         struct r10conf *conf = mddev->private;
2354         int i, first;
2355         struct bio *tbio, *fbio;
2356         int vcnt;
2357         struct page **tpages, **fpages;
2358
2359         atomic_set(&r10_bio->remaining, 1);
2360
2361         /* find the first device with a block */
2362         for (i=0; i<conf->copies; i++)
2363                 if (!r10_bio->devs[i].bio->bi_status)
2364                         break;
2365
2366         if (i == conf->copies)
2367                 goto done;
2368
2369         first = i;
2370         fbio = r10_bio->devs[i].bio;
2371         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2372         fbio->bi_iter.bi_idx = 0;
2373         fpages = get_resync_pages(fbio)->pages;
2374
2375         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2376         /* now find blocks with errors */
2377         for (i=0 ; i < conf->copies ; i++) {
2378                 int  j, d;
2379                 struct md_rdev *rdev;
2380                 struct resync_pages *rp;
2381
2382                 tbio = r10_bio->devs[i].bio;
2383
2384                 if (tbio->bi_end_io != end_sync_read)
2385                         continue;
2386                 if (i == first)
2387                         continue;
2388
2389                 tpages = get_resync_pages(tbio)->pages;
2390                 d = r10_bio->devs[i].devnum;
2391                 rdev = conf->mirrors[d].rdev;
2392                 if (!r10_bio->devs[i].bio->bi_status) {
2393                         /* We know that the bi_io_vec layout is the same for
2394                          * both 'first' and 'i', so we just compare them.
2395                          * All vec entries are PAGE_SIZE;
2396                          */
2397                         int sectors = r10_bio->sectors;
2398                         for (j = 0; j < vcnt; j++) {
2399                                 int len = PAGE_SIZE;
2400                                 if (sectors < (len / 512))
2401                                         len = sectors * 512;
2402                                 if (memcmp(page_address(fpages[j]),
2403                                            page_address(tpages[j]),
2404                                            len))
2405                                         break;
2406                                 sectors -= len/512;
2407                         }
2408                         if (j == vcnt)
2409                                 continue;
2410                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2411                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2412                                 /* Don't fix anything. */
2413                                 continue;
2414                 } else if (test_bit(FailFast, &rdev->flags)) {
2415                         /* Just give up on this device */
2416                         md_error(rdev->mddev, rdev);
2417                         continue;
2418                 }
2419                 /* Ok, we need to write this bio, either to correct an
2420                  * inconsistency or to correct an unreadable block.
2421                  * First we need to fixup bv_offset, bv_len and
2422                  * bi_vecs, as the read request might have corrupted these
2423                  */
2424                 rp = get_resync_pages(tbio);
2425                 bio_reset(tbio);
2426
2427                 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2428
2429                 rp->raid_bio = r10_bio;
2430                 tbio->bi_private = rp;
2431                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2432                 tbio->bi_end_io = end_sync_write;
2433                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2434
2435                 bio_copy_data(tbio, fbio);
2436
2437                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2438                 atomic_inc(&r10_bio->remaining);
2439                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2440
2441                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2442                         tbio->bi_opf |= MD_FAILFAST;
2443                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2444                 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2445                 submit_bio_noacct(tbio);
2446         }
2447
2448         /* Now write out to any replacement devices
2449          * that are active
2450          */
2451         for (i = 0; i < conf->copies; i++) {
2452                 int d;
2453
2454                 tbio = r10_bio->devs[i].repl_bio;
2455                 if (!tbio || !tbio->bi_end_io)
2456                         continue;
2457                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2458                     && r10_bio->devs[i].bio != fbio)
2459                         bio_copy_data(tbio, fbio);
2460                 d = r10_bio->devs[i].devnum;
2461                 atomic_inc(&r10_bio->remaining);
2462                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2463                              bio_sectors(tbio));
2464                 submit_bio_noacct(tbio);
2465         }
2466
2467 done:
2468         if (atomic_dec_and_test(&r10_bio->remaining)) {
2469                 md_done_sync(mddev, r10_bio->sectors, 1);
2470                 put_buf(r10_bio);
2471         }
2472 }
2473
2474 /*
2475  * Now for the recovery code.
2476  * Recovery happens across physical sectors.
2477  * We recover all non-is_sync drives by finding the virtual address of
2478  * each, and then choose a working drive that also has that virt address.
2479  * There is a separate r10_bio for each non-in_sync drive.
2480  * Only the first two slots are in use. The first for reading,
2481  * The second for writing.
2482  *
2483  */
2484 static void fix_recovery_read_error(struct r10bio *r10_bio)
2485 {
2486         /* We got a read error during recovery.
2487          * We repeat the read in smaller page-sized sections.
2488          * If a read succeeds, write it to the new device or record
2489          * a bad block if we cannot.
2490          * If a read fails, record a bad block on both old and
2491          * new devices.
2492          */
2493         struct mddev *mddev = r10_bio->mddev;
2494         struct r10conf *conf = mddev->private;
2495         struct bio *bio = r10_bio->devs[0].bio;
2496         sector_t sect = 0;
2497         int sectors = r10_bio->sectors;
2498         int idx = 0;
2499         int dr = r10_bio->devs[0].devnum;
2500         int dw = r10_bio->devs[1].devnum;
2501         struct page **pages = get_resync_pages(bio)->pages;
2502
2503         while (sectors) {
2504                 int s = sectors;
2505                 struct md_rdev *rdev;
2506                 sector_t addr;
2507                 int ok;
2508
2509                 if (s > (PAGE_SIZE>>9))
2510                         s = PAGE_SIZE >> 9;
2511
2512                 rdev = conf->mirrors[dr].rdev;
2513                 addr = r10_bio->devs[0].addr + sect,
2514                 ok = sync_page_io(rdev,
2515                                   addr,
2516                                   s << 9,
2517                                   pages[idx],
2518                                   REQ_OP_READ, 0, false);
2519                 if (ok) {
2520                         rdev = conf->mirrors[dw].rdev;
2521                         addr = r10_bio->devs[1].addr + sect;
2522                         ok = sync_page_io(rdev,
2523                                           addr,
2524                                           s << 9,
2525                                           pages[idx],
2526                                           REQ_OP_WRITE, 0, false);
2527                         if (!ok) {
2528                                 set_bit(WriteErrorSeen, &rdev->flags);
2529                                 if (!test_and_set_bit(WantReplacement,
2530                                                       &rdev->flags))
2531                                         set_bit(MD_RECOVERY_NEEDED,
2532                                                 &rdev->mddev->recovery);
2533                         }
2534                 }
2535                 if (!ok) {
2536                         /* We don't worry if we cannot set a bad block -
2537                          * it really is bad so there is no loss in not
2538                          * recording it yet
2539                          */
2540                         rdev_set_badblocks(rdev, addr, s, 0);
2541
2542                         if (rdev != conf->mirrors[dw].rdev) {
2543                                 /* need bad block on destination too */
2544                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2545                                 addr = r10_bio->devs[1].addr + sect;
2546                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2547                                 if (!ok) {
2548                                         /* just abort the recovery */
2549                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2550                                                   mdname(mddev));
2551
2552                                         conf->mirrors[dw].recovery_disabled
2553                                                 = mddev->recovery_disabled;
2554                                         set_bit(MD_RECOVERY_INTR,
2555                                                 &mddev->recovery);
2556                                         break;
2557                                 }
2558                         }
2559                 }
2560
2561                 sectors -= s;
2562                 sect += s;
2563                 idx++;
2564         }
2565 }
2566
2567 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2568 {
2569         struct r10conf *conf = mddev->private;
2570         int d;
2571         struct bio *wbio, *wbio2;
2572
2573         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2574                 fix_recovery_read_error(r10_bio);
2575                 end_sync_request(r10_bio);
2576                 return;
2577         }
2578
2579         /*
2580          * share the pages with the first bio
2581          * and submit the write request
2582          */
2583         d = r10_bio->devs[1].devnum;
2584         wbio = r10_bio->devs[1].bio;
2585         wbio2 = r10_bio->devs[1].repl_bio;
2586         /* Need to test wbio2->bi_end_io before we call
2587          * submit_bio_noacct as if the former is NULL,
2588          * the latter is free to free wbio2.
2589          */
2590         if (wbio2 && !wbio2->bi_end_io)
2591                 wbio2 = NULL;
2592         if (wbio->bi_end_io) {
2593                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2594                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2595                 submit_bio_noacct(wbio);
2596         }
2597         if (wbio2) {
2598                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2599                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2600                              bio_sectors(wbio2));
2601                 submit_bio_noacct(wbio2);
2602         }
2603 }
2604
2605 /*
2606  * Used by fix_read_error() to decay the per rdev read_errors.
2607  * We halve the read error count for every hour that has elapsed
2608  * since the last recorded read error.
2609  *
2610  */
2611 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2612 {
2613         long cur_time_mon;
2614         unsigned long hours_since_last;
2615         unsigned int read_errors = atomic_read(&rdev->read_errors);
2616
2617         cur_time_mon = ktime_get_seconds();
2618
2619         if (rdev->last_read_error == 0) {
2620                 /* first time we've seen a read error */
2621                 rdev->last_read_error = cur_time_mon;
2622                 return;
2623         }
2624
2625         hours_since_last = (long)(cur_time_mon -
2626                             rdev->last_read_error) / 3600;
2627
2628         rdev->last_read_error = cur_time_mon;
2629
2630         /*
2631          * if hours_since_last is > the number of bits in read_errors
2632          * just set read errors to 0. We do this to avoid
2633          * overflowing the shift of read_errors by hours_since_last.
2634          */
2635         if (hours_since_last >= 8 * sizeof(read_errors))
2636                 atomic_set(&rdev->read_errors, 0);
2637         else
2638                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2639 }
2640
2641 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2642                             int sectors, struct page *page, int rw)
2643 {
2644         sector_t first_bad;
2645         int bad_sectors;
2646
2647         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2648             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2649                 return -1;
2650         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2651                 /* success */
2652                 return 1;
2653         if (rw == WRITE) {
2654                 set_bit(WriteErrorSeen, &rdev->flags);
2655                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2656                         set_bit(MD_RECOVERY_NEEDED,
2657                                 &rdev->mddev->recovery);
2658         }
2659         /* need to record an error - either for the block or the device */
2660         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2661                 md_error(rdev->mddev, rdev);
2662         return 0;
2663 }
2664
2665 /*
2666  * This is a kernel thread which:
2667  *
2668  *      1.      Retries failed read operations on working mirrors.
2669  *      2.      Updates the raid superblock when problems encounter.
2670  *      3.      Performs writes following reads for array synchronising.
2671  */
2672
2673 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2674 {
2675         int sect = 0; /* Offset from r10_bio->sector */
2676         int sectors = r10_bio->sectors;
2677         struct md_rdev *rdev;
2678         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2679         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2680
2681         /* still own a reference to this rdev, so it cannot
2682          * have been cleared recently.
2683          */
2684         rdev = conf->mirrors[d].rdev;
2685
2686         if (test_bit(Faulty, &rdev->flags))
2687                 /* drive has already been failed, just ignore any
2688                    more fix_read_error() attempts */
2689                 return;
2690
2691         check_decay_read_errors(mddev, rdev);
2692         atomic_inc(&rdev->read_errors);
2693         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2694                 char b[BDEVNAME_SIZE];
2695                 bdevname(rdev->bdev, b);
2696
2697                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2698                           mdname(mddev), b,
2699                           atomic_read(&rdev->read_errors), max_read_errors);
2700                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2701                           mdname(mddev), b);
2702                 md_error(mddev, rdev);
2703                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2704                 return;
2705         }
2706
2707         while(sectors) {
2708                 int s = sectors;
2709                 int sl = r10_bio->read_slot;
2710                 int success = 0;
2711                 int start;
2712
2713                 if (s > (PAGE_SIZE>>9))
2714                         s = PAGE_SIZE >> 9;
2715
2716                 rcu_read_lock();
2717                 do {
2718                         sector_t first_bad;
2719                         int bad_sectors;
2720
2721                         d = r10_bio->devs[sl].devnum;
2722                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2723                         if (rdev &&
2724                             test_bit(In_sync, &rdev->flags) &&
2725                             !test_bit(Faulty, &rdev->flags) &&
2726                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2727                                         &first_bad, &bad_sectors) == 0) {
2728                                 atomic_inc(&rdev->nr_pending);
2729                                 rcu_read_unlock();
2730                                 success = sync_page_io(rdev,
2731                                                        r10_bio->devs[sl].addr +
2732                                                        sect,
2733                                                        s<<9,
2734                                                        conf->tmppage,
2735                                                        REQ_OP_READ, 0, false);
2736                                 rdev_dec_pending(rdev, mddev);
2737                                 rcu_read_lock();
2738                                 if (success)
2739                                         break;
2740                         }
2741                         sl++;
2742                         if (sl == conf->copies)
2743                                 sl = 0;
2744                 } while (!success && sl != r10_bio->read_slot);
2745                 rcu_read_unlock();
2746
2747                 if (!success) {
2748                         /* Cannot read from anywhere, just mark the block
2749                          * as bad on the first device to discourage future
2750                          * reads.
2751                          */
2752                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2753                         rdev = conf->mirrors[dn].rdev;
2754
2755                         if (!rdev_set_badblocks(
2756                                     rdev,
2757                                     r10_bio->devs[r10_bio->read_slot].addr
2758                                     + sect,
2759                                     s, 0)) {
2760                                 md_error(mddev, rdev);
2761                                 r10_bio->devs[r10_bio->read_slot].bio
2762                                         = IO_BLOCKED;
2763                         }
2764                         break;
2765                 }
2766
2767                 start = sl;
2768                 /* write it back and re-read */
2769                 rcu_read_lock();
2770                 while (sl != r10_bio->read_slot) {
2771                         char b[BDEVNAME_SIZE];
2772
2773                         if (sl==0)
2774                                 sl = conf->copies;
2775                         sl--;
2776                         d = r10_bio->devs[sl].devnum;
2777                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2778                         if (!rdev ||
2779                             test_bit(Faulty, &rdev->flags) ||
2780                             !test_bit(In_sync, &rdev->flags))
2781                                 continue;
2782
2783                         atomic_inc(&rdev->nr_pending);
2784                         rcu_read_unlock();
2785                         if (r10_sync_page_io(rdev,
2786                                              r10_bio->devs[sl].addr +
2787                                              sect,
2788                                              s, conf->tmppage, WRITE)
2789                             == 0) {
2790                                 /* Well, this device is dead */
2791                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2792                                           mdname(mddev), s,
2793                                           (unsigned long long)(
2794                                                   sect +
2795                                                   choose_data_offset(r10_bio,
2796                                                                      rdev)),
2797                                           bdevname(rdev->bdev, b));
2798                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2799                                           mdname(mddev),
2800                                           bdevname(rdev->bdev, b));
2801                         }
2802                         rdev_dec_pending(rdev, mddev);
2803                         rcu_read_lock();
2804                 }
2805                 sl = start;
2806                 while (sl != r10_bio->read_slot) {
2807                         char b[BDEVNAME_SIZE];
2808
2809                         if (sl==0)
2810                                 sl = conf->copies;
2811                         sl--;
2812                         d = r10_bio->devs[sl].devnum;
2813                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2814                         if (!rdev ||
2815                             test_bit(Faulty, &rdev->flags) ||
2816                             !test_bit(In_sync, &rdev->flags))
2817                                 continue;
2818
2819                         atomic_inc(&rdev->nr_pending);
2820                         rcu_read_unlock();
2821                         switch (r10_sync_page_io(rdev,
2822                                              r10_bio->devs[sl].addr +
2823                                              sect,
2824                                              s, conf->tmppage,
2825                                                  READ)) {
2826                         case 0:
2827                                 /* Well, this device is dead */
2828                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2829                                        mdname(mddev), s,
2830                                        (unsigned long long)(
2831                                                sect +
2832                                                choose_data_offset(r10_bio, rdev)),
2833                                        bdevname(rdev->bdev, b));
2834                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2835                                        mdname(mddev),
2836                                        bdevname(rdev->bdev, b));
2837                                 break;
2838                         case 1:
2839                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2840                                        mdname(mddev), s,
2841                                        (unsigned long long)(
2842                                                sect +
2843                                                choose_data_offset(r10_bio, rdev)),
2844                                        bdevname(rdev->bdev, b));
2845                                 atomic_add(s, &rdev->corrected_errors);
2846                         }
2847
2848                         rdev_dec_pending(rdev, mddev);
2849                         rcu_read_lock();
2850                 }
2851                 rcu_read_unlock();
2852
2853                 sectors -= s;
2854                 sect += s;
2855         }
2856 }
2857
2858 static int narrow_write_error(struct r10bio *r10_bio, int i)
2859 {
2860         struct bio *bio = r10_bio->master_bio;
2861         struct mddev *mddev = r10_bio->mddev;
2862         struct r10conf *conf = mddev->private;
2863         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2864         /* bio has the data to be written to slot 'i' where
2865          * we just recently had a write error.
2866          * We repeatedly clone the bio and trim down to one block,
2867          * then try the write.  Where the write fails we record
2868          * a bad block.
2869          * It is conceivable that the bio doesn't exactly align with
2870          * blocks.  We must handle this.
2871          *
2872          * We currently own a reference to the rdev.
2873          */
2874
2875         int block_sectors;
2876         sector_t sector;
2877         int sectors;
2878         int sect_to_write = r10_bio->sectors;
2879         int ok = 1;
2880
2881         if (rdev->badblocks.shift < 0)
2882                 return 0;
2883
2884         block_sectors = roundup(1 << rdev->badblocks.shift,
2885                                 bdev_logical_block_size(rdev->bdev) >> 9);
2886         sector = r10_bio->sector;
2887         sectors = ((r10_bio->sector + block_sectors)
2888                    & ~(sector_t)(block_sectors - 1))
2889                 - sector;
2890
2891         while (sect_to_write) {
2892                 struct bio *wbio;
2893                 sector_t wsector;
2894                 if (sectors > sect_to_write)
2895                         sectors = sect_to_write;
2896                 /* Write at 'sector' for 'sectors' */
2897                 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2898                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2899                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2900                 wbio->bi_iter.bi_sector = wsector +
2901                                    choose_data_offset(r10_bio, rdev);
2902                 bio_set_dev(wbio, rdev->bdev);
2903                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2904
2905                 if (submit_bio_wait(wbio) < 0)
2906                         /* Failure! */
2907                         ok = rdev_set_badblocks(rdev, wsector,
2908                                                 sectors, 0)
2909                                 && ok;
2910
2911                 bio_put(wbio);
2912                 sect_to_write -= sectors;
2913                 sector += sectors;
2914                 sectors = block_sectors;
2915         }
2916         return ok;
2917 }
2918
2919 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2920 {
2921         int slot = r10_bio->read_slot;
2922         struct bio *bio;
2923         struct r10conf *conf = mddev->private;
2924         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2925
2926         /* we got a read error. Maybe the drive is bad.  Maybe just
2927          * the block and we can fix it.
2928          * We freeze all other IO, and try reading the block from
2929          * other devices.  When we find one, we re-write
2930          * and check it that fixes the read error.
2931          * This is all done synchronously while the array is
2932          * frozen.
2933          */
2934         bio = r10_bio->devs[slot].bio;
2935         bio_put(bio);
2936         r10_bio->devs[slot].bio = NULL;
2937
2938         if (mddev->ro)
2939                 r10_bio->devs[slot].bio = IO_BLOCKED;
2940         else if (!test_bit(FailFast, &rdev->flags)) {
2941                 freeze_array(conf, 1);
2942                 fix_read_error(conf, mddev, r10_bio);
2943                 unfreeze_array(conf);
2944         } else
2945                 md_error(mddev, rdev);
2946
2947         rdev_dec_pending(rdev, mddev);
2948         allow_barrier(conf);
2949         r10_bio->state = 0;
2950         raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2951 }
2952
2953 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2954 {
2955         /* Some sort of write request has finished and it
2956          * succeeded in writing where we thought there was a
2957          * bad block.  So forget the bad block.
2958          * Or possibly if failed and we need to record
2959          * a bad block.
2960          */
2961         int m;
2962         struct md_rdev *rdev;
2963
2964         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2965             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2966                 for (m = 0; m < conf->copies; m++) {
2967                         int dev = r10_bio->devs[m].devnum;
2968                         rdev = conf->mirrors[dev].rdev;
2969                         if (r10_bio->devs[m].bio == NULL ||
2970                                 r10_bio->devs[m].bio->bi_end_io == NULL)
2971                                 continue;
2972                         if (!r10_bio->devs[m].bio->bi_status) {
2973                                 rdev_clear_badblocks(
2974                                         rdev,
2975                                         r10_bio->devs[m].addr,
2976                                         r10_bio->sectors, 0);
2977                         } else {
2978                                 if (!rdev_set_badblocks(
2979                                             rdev,
2980                                             r10_bio->devs[m].addr,
2981                                             r10_bio->sectors, 0))
2982                                         md_error(conf->mddev, rdev);
2983                         }
2984                         rdev = conf->mirrors[dev].replacement;
2985                         if (r10_bio->devs[m].repl_bio == NULL ||
2986                                 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2987                                 continue;
2988
2989                         if (!r10_bio->devs[m].repl_bio->bi_status) {
2990                                 rdev_clear_badblocks(
2991                                         rdev,
2992                                         r10_bio->devs[m].addr,
2993                                         r10_bio->sectors, 0);
2994                         } else {
2995                                 if (!rdev_set_badblocks(
2996                                             rdev,
2997                                             r10_bio->devs[m].addr,
2998                                             r10_bio->sectors, 0))
2999                                         md_error(conf->mddev, rdev);
3000                         }
3001                 }
3002                 put_buf(r10_bio);
3003         } else {
3004                 bool fail = false;
3005                 for (m = 0; m < conf->copies; m++) {
3006                         int dev = r10_bio->devs[m].devnum;
3007                         struct bio *bio = r10_bio->devs[m].bio;
3008                         rdev = conf->mirrors[dev].rdev;
3009                         if (bio == IO_MADE_GOOD) {
3010                                 rdev_clear_badblocks(
3011                                         rdev,
3012                                         r10_bio->devs[m].addr,
3013                                         r10_bio->sectors, 0);
3014                                 rdev_dec_pending(rdev, conf->mddev);
3015                         } else if (bio != NULL && bio->bi_status) {
3016                                 fail = true;
3017                                 if (!narrow_write_error(r10_bio, m)) {
3018                                         md_error(conf->mddev, rdev);
3019                                         set_bit(R10BIO_Degraded,
3020                                                 &r10_bio->state);
3021                                 }
3022                                 rdev_dec_pending(rdev, conf->mddev);
3023                         }
3024                         bio = r10_bio->devs[m].repl_bio;
3025                         rdev = conf->mirrors[dev].replacement;
3026                         if (rdev && bio == IO_MADE_GOOD) {
3027                                 rdev_clear_badblocks(
3028                                         rdev,
3029                                         r10_bio->devs[m].addr,
3030                                         r10_bio->sectors, 0);
3031                                 rdev_dec_pending(rdev, conf->mddev);
3032                         }
3033                 }
3034                 if (fail) {
3035                         spin_lock_irq(&conf->device_lock);
3036                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3037                         conf->nr_queued++;
3038                         spin_unlock_irq(&conf->device_lock);
3039                         /*
3040                          * In case freeze_array() is waiting for condition
3041                          * nr_pending == nr_queued + extra to be true.
3042                          */
3043                         wake_up(&conf->wait_barrier);
3044                         md_wakeup_thread(conf->mddev->thread);
3045                 } else {
3046                         if (test_bit(R10BIO_WriteError,
3047                                      &r10_bio->state))
3048                                 close_write(r10_bio);
3049                         raid_end_bio_io(r10_bio);
3050                 }
3051         }
3052 }
3053
3054 static void raid10d(struct md_thread *thread)
3055 {
3056         struct mddev *mddev = thread->mddev;
3057         struct r10bio *r10_bio;
3058         unsigned long flags;
3059         struct r10conf *conf = mddev->private;
3060         struct list_head *head = &conf->retry_list;
3061         struct blk_plug plug;
3062
3063         md_check_recovery(mddev);
3064
3065         if (!list_empty_careful(&conf->bio_end_io_list) &&
3066             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3067                 LIST_HEAD(tmp);
3068                 spin_lock_irqsave(&conf->device_lock, flags);
3069                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3070                         while (!list_empty(&conf->bio_end_io_list)) {
3071                                 list_move(conf->bio_end_io_list.prev, &tmp);
3072                                 conf->nr_queued--;
3073                         }
3074                 }
3075                 spin_unlock_irqrestore(&conf->device_lock, flags);
3076                 while (!list_empty(&tmp)) {
3077                         r10_bio = list_first_entry(&tmp, struct r10bio,
3078                                                    retry_list);
3079                         list_del(&r10_bio->retry_list);
3080                         if (mddev->degraded)
3081                                 set_bit(R10BIO_Degraded, &r10_bio->state);
3082
3083                         if (test_bit(R10BIO_WriteError,
3084                                      &r10_bio->state))
3085                                 close_write(r10_bio);
3086                         raid_end_bio_io(r10_bio);
3087                 }
3088         }
3089
3090         blk_start_plug(&plug);
3091         for (;;) {
3092
3093                 flush_pending_writes(conf);
3094
3095                 spin_lock_irqsave(&conf->device_lock, flags);
3096                 if (list_empty(head)) {
3097                         spin_unlock_irqrestore(&conf->device_lock, flags);
3098                         break;
3099                 }
3100                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3101                 list_del(head->prev);
3102                 conf->nr_queued--;
3103                 spin_unlock_irqrestore(&conf->device_lock, flags);
3104
3105                 mddev = r10_bio->mddev;
3106                 conf = mddev->private;
3107                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3108                     test_bit(R10BIO_WriteError, &r10_bio->state))
3109                         handle_write_completed(conf, r10_bio);
3110                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3111                         reshape_request_write(mddev, r10_bio);
3112                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3113                         sync_request_write(mddev, r10_bio);
3114                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3115                         recovery_request_write(mddev, r10_bio);
3116                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3117                         handle_read_error(mddev, r10_bio);
3118                 else
3119                         WARN_ON_ONCE(1);
3120
3121                 cond_resched();
3122                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3123                         md_check_recovery(mddev);
3124         }
3125         blk_finish_plug(&plug);
3126 }
3127
3128 static int init_resync(struct r10conf *conf)
3129 {
3130         int ret, buffs, i;
3131
3132         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3133         BUG_ON(mempool_initialized(&conf->r10buf_pool));
3134         conf->have_replacement = 0;
3135         for (i = 0; i < conf->geo.raid_disks; i++)
3136                 if (conf->mirrors[i].replacement)
3137                         conf->have_replacement = 1;
3138         ret = mempool_init(&conf->r10buf_pool, buffs,
3139                            r10buf_pool_alloc, r10buf_pool_free, conf);
3140         if (ret)
3141                 return ret;
3142         conf->next_resync = 0;
3143         return 0;
3144 }
3145
3146 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3147 {
3148         struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3149         struct rsync_pages *rp;
3150         struct bio *bio;
3151         int nalloc;
3152         int i;
3153
3154         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3155             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3156                 nalloc = conf->copies; /* resync */
3157         else
3158                 nalloc = 2; /* recovery */
3159
3160         for (i = 0; i < nalloc; i++) {
3161                 bio = r10bio->devs[i].bio;
3162                 rp = bio->bi_private;
3163                 bio_reset(bio);
3164                 bio->bi_private = rp;
3165                 bio = r10bio->devs[i].repl_bio;
3166                 if (bio) {
3167                         rp = bio->bi_private;
3168                         bio_reset(bio);
3169                         bio->bi_private = rp;
3170                 }
3171         }
3172         return r10bio;
3173 }
3174
3175 /*
3176  * Set cluster_sync_high since we need other nodes to add the
3177  * range [cluster_sync_low, cluster_sync_high] to suspend list.
3178  */
3179 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3180 {
3181         sector_t window_size;
3182         int extra_chunk, chunks;
3183
3184         /*
3185          * First, here we define "stripe" as a unit which across
3186          * all member devices one time, so we get chunks by use
3187          * raid_disks / near_copies. Otherwise, if near_copies is
3188          * close to raid_disks, then resync window could increases
3189          * linearly with the increase of raid_disks, which means
3190          * we will suspend a really large IO window while it is not
3191          * necessary. If raid_disks is not divisible by near_copies,
3192          * an extra chunk is needed to ensure the whole "stripe" is
3193          * covered.
3194          */
3195
3196         chunks = conf->geo.raid_disks / conf->geo.near_copies;
3197         if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3198                 extra_chunk = 0;
3199         else
3200                 extra_chunk = 1;
3201         window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3202
3203         /*
3204          * At least use a 32M window to align with raid1's resync window
3205          */
3206         window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3207                         CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3208
3209         conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3210 }
3211
3212 /*
3213  * perform a "sync" on one "block"
3214  *
3215  * We need to make sure that no normal I/O request - particularly write
3216  * requests - conflict with active sync requests.
3217  *
3218  * This is achieved by tracking pending requests and a 'barrier' concept
3219  * that can be installed to exclude normal IO requests.
3220  *
3221  * Resync and recovery are handled very differently.
3222  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3223  *
3224  * For resync, we iterate over virtual addresses, read all copies,
3225  * and update if there are differences.  If only one copy is live,
3226  * skip it.
3227  * For recovery, we iterate over physical addresses, read a good
3228  * value for each non-in_sync drive, and over-write.
3229  *
3230  * So, for recovery we may have several outstanding complex requests for a
3231  * given address, one for each out-of-sync device.  We model this by allocating
3232  * a number of r10_bio structures, one for each out-of-sync device.
3233  * As we setup these structures, we collect all bio's together into a list
3234  * which we then process collectively to add pages, and then process again
3235  * to pass to submit_bio_noacct.
3236  *
3237  * The r10_bio structures are linked using a borrowed master_bio pointer.
3238  * This link is counted in ->remaining.  When the r10_bio that points to NULL
3239  * has its remaining count decremented to 0, the whole complex operation
3240  * is complete.
3241  *
3242  */
3243
3244 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3245                              int *skipped)
3246 {
3247         struct r10conf *conf = mddev->private;
3248         struct r10bio *r10_bio;
3249         struct bio *biolist = NULL, *bio;
3250         sector_t max_sector, nr_sectors;
3251         int i;
3252         int max_sync;
3253         sector_t sync_blocks;
3254         sector_t sectors_skipped = 0;
3255         int chunks_skipped = 0;
3256         sector_t chunk_mask = conf->geo.chunk_mask;
3257         int page_idx = 0;
3258
3259         if (!mempool_initialized(&conf->r10buf_pool))
3260                 if (init_resync(conf))
3261                         return 0;
3262
3263         /*
3264          * Allow skipping a full rebuild for incremental assembly
3265          * of a clean array, like RAID1 does.
3266          */
3267         if (mddev->bitmap == NULL &&
3268             mddev->recovery_cp == MaxSector &&
3269             mddev->reshape_position == MaxSector &&
3270             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3271             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3272             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3273             conf->fullsync == 0) {
3274                 *skipped = 1;
3275                 return mddev->dev_sectors - sector_nr;
3276         }
3277
3278  skipped:
3279         max_sector = mddev->dev_sectors;
3280         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3281             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3282                 max_sector = mddev->resync_max_sectors;
3283         if (sector_nr >= max_sector) {
3284                 conf->cluster_sync_low = 0;
3285                 conf->cluster_sync_high = 0;
3286
3287                 /* If we aborted, we need to abort the
3288                  * sync on the 'current' bitmap chucks (there can
3289                  * be several when recovering multiple devices).
3290                  * as we may have started syncing it but not finished.
3291                  * We can find the current address in
3292                  * mddev->curr_resync, but for recovery,
3293                  * we need to convert that to several
3294                  * virtual addresses.
3295                  */
3296                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3297                         end_reshape(conf);
3298                         close_sync(conf);
3299                         return 0;
3300                 }
3301
3302                 if (mddev->curr_resync < max_sector) { /* aborted */
3303                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3304                                 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3305                                                    &sync_blocks, 1);
3306                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3307                                 sector_t sect =
3308                                         raid10_find_virt(conf, mddev->curr_resync, i);
3309                                 md_bitmap_end_sync(mddev->bitmap, sect,
3310                                                    &sync_blocks, 1);
3311                         }
3312                 } else {
3313                         /* completed sync */
3314                         if ((!mddev->bitmap || conf->fullsync)
3315                             && conf->have_replacement
3316                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3317                                 /* Completed a full sync so the replacements
3318                                  * are now fully recovered.
3319                                  */
3320                                 rcu_read_lock();
3321                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3322                                         struct md_rdev *rdev =
3323                                                 rcu_dereference(conf->mirrors[i].replacement);
3324                                         if (rdev)
3325                                                 rdev->recovery_offset = MaxSector;
3326                                 }
3327                                 rcu_read_unlock();
3328                         }
3329                         conf->fullsync = 0;
3330                 }
3331                 md_bitmap_close_sync(mddev->bitmap);
3332                 close_sync(conf);
3333                 *skipped = 1;
3334                 return sectors_skipped;
3335         }
3336
3337         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3338                 return reshape_request(mddev, sector_nr, skipped);
3339
3340         if (chunks_skipped >= conf->geo.raid_disks) {
3341                 /* if there has been nothing to do on any drive,
3342                  * then there is nothing to do at all..
3343                  */
3344                 *skipped = 1;
3345                 return (max_sector - sector_nr) + sectors_skipped;
3346         }
3347
3348         if (max_sector > mddev->resync_max)
3349                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3350
3351         /* make sure whole request will fit in a chunk - if chunks
3352          * are meaningful
3353          */
3354         if (conf->geo.near_copies < conf->geo.raid_disks &&
3355             max_sector > (sector_nr | chunk_mask))
3356                 max_sector = (sector_nr | chunk_mask) + 1;
3357
3358         /*
3359          * If there is non-resync activity waiting for a turn, then let it
3360          * though before starting on this new sync request.
3361          */
3362         if (conf->nr_waiting)
3363                 schedule_timeout_uninterruptible(1);
3364
3365         /* Again, very different code for resync and recovery.
3366          * Both must result in an r10bio with a list of bios that
3367          * have bi_end_io, bi_sector, bi_bdev set,
3368          * and bi_private set to the r10bio.
3369          * For recovery, we may actually create several r10bios
3370          * with 2 bios in each, that correspond to the bios in the main one.
3371          * In this case, the subordinate r10bios link back through a
3372          * borrowed master_bio pointer, and the counter in the master
3373          * includes a ref from each subordinate.
3374          */
3375         /* First, we decide what to do and set ->bi_end_io
3376          * To end_sync_read if we want to read, and
3377          * end_sync_write if we will want to write.
3378          */
3379
3380         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3381         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3382                 /* recovery... the complicated one */
3383                 int j;
3384                 r10_bio = NULL;
3385
3386                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3387                         int still_degraded;
3388                         struct r10bio *rb2;
3389                         sector_t sect;
3390                         int must_sync;
3391                         int any_working;
3392                         int need_recover = 0;
3393                         int need_replace = 0;
3394                         struct raid10_info *mirror = &conf->mirrors[i];
3395                         struct md_rdev *mrdev, *mreplace;
3396
3397                         rcu_read_lock();
3398                         mrdev = rcu_dereference(mirror->rdev);
3399                         mreplace = rcu_dereference(mirror->replacement);
3400
3401                         if (mrdev != NULL &&
3402                             !test_bit(Faulty, &mrdev->flags) &&
3403                             !test_bit(In_sync, &mrdev->flags))
3404                                 need_recover = 1;
3405                         if (mreplace != NULL &&
3406                             !test_bit(Faulty, &mreplace->flags))
3407                                 need_replace = 1;
3408
3409                         if (!need_recover && !need_replace) {
3410                                 rcu_read_unlock();
3411                                 continue;
3412                         }
3413
3414                         still_degraded = 0;
3415                         /* want to reconstruct this device */
3416                         rb2 = r10_bio;
3417                         sect = raid10_find_virt(conf, sector_nr, i);
3418                         if (sect >= mddev->resync_max_sectors) {
3419                                 /* last stripe is not complete - don't
3420                                  * try to recover this sector.
3421                                  */
3422                                 rcu_read_unlock();
3423                                 continue;
3424                         }
3425                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3426                                 mreplace = NULL;
3427                         /* Unless we are doing a full sync, or a replacement
3428                          * we only need to recover the block if it is set in
3429                          * the bitmap
3430                          */
3431                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3432                                                          &sync_blocks, 1);
3433                         if (sync_blocks < max_sync)
3434                                 max_sync = sync_blocks;
3435                         if (!must_sync &&
3436                             mreplace == NULL &&
3437                             !conf->fullsync) {
3438                                 /* yep, skip the sync_blocks here, but don't assume
3439                                  * that there will never be anything to do here
3440                                  */
3441                                 chunks_skipped = -1;
3442                                 rcu_read_unlock();
3443                                 continue;
3444                         }
3445                         atomic_inc(&mrdev->nr_pending);
3446                         if (mreplace)
3447                                 atomic_inc(&mreplace->nr_pending);
3448                         rcu_read_unlock();
3449
3450                         r10_bio = raid10_alloc_init_r10buf(conf);
3451                         r10_bio->state = 0;
3452                         raise_barrier(conf, rb2 != NULL);
3453                         atomic_set(&r10_bio->remaining, 0);
3454
3455                         r10_bio->master_bio = (struct bio*)rb2;
3456                         if (rb2)
3457                                 atomic_inc(&rb2->remaining);
3458                         r10_bio->mddev = mddev;
3459                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3460                         r10_bio->sector = sect;
3461
3462                         raid10_find_phys(conf, r10_bio);
3463
3464                         /* Need to check if the array will still be
3465                          * degraded
3466                          */
3467                         rcu_read_lock();
3468                         for (j = 0; j < conf->geo.raid_disks; j++) {
3469                                 struct md_rdev *rdev = rcu_dereference(
3470                                         conf->mirrors[j].rdev);
3471                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3472                                         still_degraded = 1;
3473                                         break;
3474                                 }
3475                         }
3476
3477                         must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3478                                                          &sync_blocks, still_degraded);
3479
3480                         any_working = 0;
3481                         for (j=0; j<conf->copies;j++) {
3482                                 int k;
3483                                 int d = r10_bio->devs[j].devnum;
3484                                 sector_t from_addr, to_addr;
3485                                 struct md_rdev *rdev =
3486                                         rcu_dereference(conf->mirrors[d].rdev);
3487                                 sector_t sector, first_bad;
3488                                 int bad_sectors;
3489                                 if (!rdev ||
3490                                     !test_bit(In_sync, &rdev->flags))
3491                                         continue;
3492                                 /* This is where we read from */
3493                                 any_working = 1;
3494                                 sector = r10_bio->devs[j].addr;
3495
3496                                 if (is_badblock(rdev, sector, max_sync,
3497                                                 &first_bad, &bad_sectors)) {
3498                                         if (first_bad > sector)
3499                                                 max_sync = first_bad - sector;
3500                                         else {
3501                                                 bad_sectors -= (sector
3502                                                                 - first_bad);
3503                                                 if (max_sync > bad_sectors)
3504                                                         max_sync = bad_sectors;
3505                                                 continue;
3506                                         }
3507                                 }
3508                                 bio = r10_bio->devs[0].bio;
3509                                 bio->bi_next = biolist;
3510                                 biolist = bio;
3511                                 bio->bi_end_io = end_sync_read;
3512                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3513                                 if (test_bit(FailFast, &rdev->flags))
3514                                         bio->bi_opf |= MD_FAILFAST;
3515                                 from_addr = r10_bio->devs[j].addr;
3516                                 bio->bi_iter.bi_sector = from_addr +
3517                                         rdev->data_offset;
3518                                 bio_set_dev(bio, rdev->bdev);
3519                                 atomic_inc(&rdev->nr_pending);
3520                                 /* and we write to 'i' (if not in_sync) */
3521
3522                                 for (k=0; k<conf->copies; k++)
3523                                         if (r10_bio->devs[k].devnum == i)
3524                                                 break;
3525                                 BUG_ON(k == conf->copies);
3526                                 to_addr = r10_bio->devs[k].addr;
3527                                 r10_bio->devs[0].devnum = d;
3528                                 r10_bio->devs[0].addr = from_addr;
3529                                 r10_bio->devs[1].devnum = i;
3530                                 r10_bio->devs[1].addr = to_addr;
3531
3532                                 if (need_recover) {
3533                                         bio = r10_bio->devs[1].bio;
3534                                         bio->bi_next = biolist;
3535                                         biolist = bio;
3536                                         bio->bi_end_io = end_sync_write;
3537                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3538                                         bio->bi_iter.bi_sector = to_addr
3539                                                 + mrdev->data_offset;
3540                                         bio_set_dev(bio, mrdev->bdev);
3541                                         atomic_inc(&r10_bio->remaining);
3542                                 } else
3543                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3544
3545                                 /* and maybe write to replacement */
3546                                 bio = r10_bio->devs[1].repl_bio;
3547                                 if (bio)
3548                                         bio->bi_end_io = NULL;
3549                                 /* Note: if need_replace, then bio
3550                                  * cannot be NULL as r10buf_pool_alloc will
3551                                  * have allocated it.
3552                                  */
3553                                 if (!need_replace)
3554                                         break;
3555                                 bio->bi_next = biolist;
3556                                 biolist = bio;
3557                                 bio->bi_end_io = end_sync_write;
3558                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3559                                 bio->bi_iter.bi_sector = to_addr +
3560                                         mreplace->data_offset;
3561                                 bio_set_dev(bio, mreplace->bdev);
3562                                 atomic_inc(&r10_bio->remaining);
3563                                 break;
3564                         }
3565                         rcu_read_unlock();
3566                         if (j == conf->copies) {
3567                                 /* Cannot recover, so abort the recovery or
3568                                  * record a bad block */
3569                                 if (any_working) {
3570                                         /* problem is that there are bad blocks
3571                                          * on other device(s)
3572                                          */
3573                                         int k;
3574                                         for (k = 0; k < conf->copies; k++)
3575                                                 if (r10_bio->devs[k].devnum == i)
3576                                                         break;
3577                                         if (!test_bit(In_sync,
3578                                                       &mrdev->flags)
3579                                             && !rdev_set_badblocks(
3580                                                     mrdev,
3581                                                     r10_bio->devs[k].addr,
3582                                                     max_sync, 0))
3583                                                 any_working = 0;
3584                                         if (mreplace &&
3585                                             !rdev_set_badblocks(
3586                                                     mreplace,
3587                                                     r10_bio->devs[k].addr,
3588                                                     max_sync, 0))
3589                                                 any_working = 0;
3590                                 }
3591                                 if (!any_working)  {
3592                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3593                                                               &mddev->recovery))
3594                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3595                                                        mdname(mddev));
3596                                         mirror->recovery_disabled
3597                                                 = mddev->recovery_disabled;
3598                                 }
3599                                 put_buf(r10_bio);
3600                                 if (rb2)
3601                                         atomic_dec(&rb2->remaining);
3602                                 r10_bio = rb2;
3603                                 rdev_dec_pending(mrdev, mddev);
3604                                 if (mreplace)
3605                                         rdev_dec_pending(mreplace, mddev);
3606                                 break;
3607                         }
3608                         rdev_dec_pending(mrdev, mddev);
3609                         if (mreplace)
3610                                 rdev_dec_pending(mreplace, mddev);
3611                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3612                                 /* Only want this if there is elsewhere to
3613                                  * read from. 'j' is currently the first
3614                                  * readable copy.
3615                                  */
3616                                 int targets = 1;
3617                                 for (; j < conf->copies; j++) {
3618                                         int d = r10_bio->devs[j].devnum;
3619                                         if (conf->mirrors[d].rdev &&
3620                                             test_bit(In_sync,
3621                                                       &conf->mirrors[d].rdev->flags))
3622                                                 targets++;
3623                                 }
3624                                 if (targets == 1)
3625                                         r10_bio->devs[0].bio->bi_opf
3626                                                 &= ~MD_FAILFAST;
3627                         }
3628                 }
3629                 if (biolist == NULL) {
3630                         while (r10_bio) {
3631                                 struct r10bio *rb2 = r10_bio;
3632                                 r10_bio = (struct r10bio*) rb2->master_bio;
3633                                 rb2->master_bio = NULL;
3634                                 put_buf(rb2);
3635                         }
3636                         goto giveup;
3637                 }
3638         } else {
3639                 /* resync. Schedule a read for every block at this virt offset */
3640                 int count = 0;
3641
3642                 /*
3643                  * Since curr_resync_completed could probably not update in
3644                  * time, and we will set cluster_sync_low based on it.
3645                  * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3646                  * safety reason, which ensures curr_resync_completed is
3647                  * updated in bitmap_cond_end_sync.
3648                  */
3649                 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3650                                         mddev_is_clustered(mddev) &&
3651                                         (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3652
3653                 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3654                                           &sync_blocks, mddev->degraded) &&
3655                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3656                                                  &mddev->recovery)) {
3657                         /* We can skip this block */
3658                         *skipped = 1;
3659                         return sync_blocks + sectors_skipped;
3660                 }
3661                 if (sync_blocks < max_sync)
3662                         max_sync = sync_blocks;
3663                 r10_bio = raid10_alloc_init_r10buf(conf);
3664                 r10_bio->state = 0;
3665
3666                 r10_bio->mddev = mddev;
3667                 atomic_set(&r10_bio->remaining, 0);
3668                 raise_barrier(conf, 0);
3669                 conf->next_resync = sector_nr;
3670
3671                 r10_bio->master_bio = NULL;
3672                 r10_bio->sector = sector_nr;
3673                 set_bit(R10BIO_IsSync, &r10_bio->state);
3674                 raid10_find_phys(conf, r10_bio);
3675                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3676
3677                 for (i = 0; i < conf->copies; i++) {
3678                         int d = r10_bio->devs[i].devnum;
3679                         sector_t first_bad, sector;
3680                         int bad_sectors;
3681                         struct md_rdev *rdev;
3682
3683                         if (r10_bio->devs[i].repl_bio)
3684                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3685
3686                         bio = r10_bio->devs[i].bio;
3687                         bio->bi_status = BLK_STS_IOERR;
3688                         rcu_read_lock();
3689                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3690                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3691                                 rcu_read_unlock();
3692                                 continue;
3693                         }
3694                         sector = r10_bio->devs[i].addr;
3695                         if (is_badblock(rdev, sector, max_sync,
3696                                         &first_bad, &bad_sectors)) {
3697                                 if (first_bad > sector)
3698                                         max_sync = first_bad - sector;
3699                                 else {
3700                                         bad_sectors -= (sector - first_bad);
3701                                         if (max_sync > bad_sectors)
3702                                                 max_sync = bad_sectors;
3703                                         rcu_read_unlock();
3704                                         continue;
3705                                 }
3706                         }
3707                         atomic_inc(&rdev->nr_pending);
3708                         atomic_inc(&r10_bio->remaining);
3709                         bio->bi_next = biolist;
3710                         biolist = bio;
3711                         bio->bi_end_io = end_sync_read;
3712                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3713                         if (test_bit(FailFast, &rdev->flags))
3714                                 bio->bi_opf |= MD_FAILFAST;
3715                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3716                         bio_set_dev(bio, rdev->bdev);
3717                         count++;
3718
3719                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3720                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3721                                 rcu_read_unlock();
3722                                 continue;
3723                         }
3724                         atomic_inc(&rdev->nr_pending);
3725
3726                         /* Need to set up for writing to the replacement */
3727                         bio = r10_bio->devs[i].repl_bio;
3728                         bio->bi_status = BLK_STS_IOERR;
3729
3730                         sector = r10_bio->devs[i].addr;
3731                         bio->bi_next = biolist;
3732                         biolist = bio;
3733                         bio->bi_end_io = end_sync_write;
3734                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3735                         if (test_bit(FailFast, &rdev->flags))
3736                                 bio->bi_opf |= MD_FAILFAST;
3737                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3738                         bio_set_dev(bio, rdev->bdev);
3739                         count++;
3740                         rcu_read_unlock();
3741                 }
3742
3743                 if (count < 2) {
3744                         for (i=0; i<conf->copies; i++) {
3745                                 int d = r10_bio->devs[i].devnum;
3746                                 if (r10_bio->devs[i].bio->bi_end_io)
3747                                         rdev_dec_pending(conf->mirrors[d].rdev,
3748                                                          mddev);
3749                                 if (r10_bio->devs[i].repl_bio &&
3750                                     r10_bio->devs[i].repl_bio->bi_end_io)
3751                                         rdev_dec_pending(
3752                                                 conf->mirrors[d].replacement,
3753                                                 mddev);
3754                         }
3755                         put_buf(r10_bio);
3756                         biolist = NULL;
3757                         goto giveup;
3758                 }
3759         }
3760
3761         nr_sectors = 0;
3762         if (sector_nr + max_sync < max_sector)
3763                 max_sector = sector_nr + max_sync;
3764         do {
3765                 struct page *page;
3766                 int len = PAGE_SIZE;
3767                 if (sector_nr + (len>>9) > max_sector)
3768                         len = (max_sector - sector_nr) << 9;
3769                 if (len == 0)
3770                         break;
3771                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3772                         struct resync_pages *rp = get_resync_pages(bio);
3773                         page = resync_fetch_page(rp, page_idx);
3774                         /*
3775                          * won't fail because the vec table is big enough
3776                          * to hold all these pages
3777                          */
3778                         bio_add_page(bio, page, len, 0);
3779                 }
3780                 nr_sectors += len>>9;
3781                 sector_nr += len>>9;
3782         } while (++page_idx < RESYNC_PAGES);
3783         r10_bio->sectors = nr_sectors;
3784
3785         if (mddev_is_clustered(mddev) &&
3786             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3787                 /* It is resync not recovery */
3788                 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3789                         conf->cluster_sync_low = mddev->curr_resync_completed;
3790                         raid10_set_cluster_sync_high(conf);
3791                         /* Send resync message */
3792                         md_cluster_ops->resync_info_update(mddev,
3793                                                 conf->cluster_sync_low,
3794                                                 conf->cluster_sync_high);
3795                 }
3796         } else if (mddev_is_clustered(mddev)) {
3797                 /* This is recovery not resync */
3798                 sector_t sect_va1, sect_va2;
3799                 bool broadcast_msg = false;
3800
3801                 for (i = 0; i < conf->geo.raid_disks; i++) {
3802                         /*
3803                          * sector_nr is a device address for recovery, so we
3804                          * need translate it to array address before compare
3805                          * with cluster_sync_high.
3806                          */
3807                         sect_va1 = raid10_find_virt(conf, sector_nr, i);
3808
3809                         if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3810                                 broadcast_msg = true;
3811                                 /*
3812                                  * curr_resync_completed is similar as
3813                                  * sector_nr, so make the translation too.
3814                                  */
3815                                 sect_va2 = raid10_find_virt(conf,
3816                                         mddev->curr_resync_completed, i);
3817
3818                                 if (conf->cluster_sync_low == 0 ||
3819                                     conf->cluster_sync_low > sect_va2)
3820                                         conf->cluster_sync_low = sect_va2;
3821                         }
3822                 }
3823                 if (broadcast_msg) {
3824                         raid10_set_cluster_sync_high(conf);
3825                         md_cluster_ops->resync_info_update(mddev,
3826                                                 conf->cluster_sync_low,
3827                                                 conf->cluster_sync_high);
3828                 }
3829         }
3830
3831         while (biolist) {
3832                 bio = biolist;
3833                 biolist = biolist->bi_next;
3834
3835                 bio->bi_next = NULL;
3836                 r10_bio = get_resync_r10bio(bio);
3837                 r10_bio->sectors = nr_sectors;
3838
3839                 if (bio->bi_end_io == end_sync_read) {
3840                         md_sync_acct_bio(bio, nr_sectors);
3841                         bio->bi_status = 0;
3842                         submit_bio_noacct(bio);
3843                 }
3844         }
3845
3846         if (sectors_skipped)
3847                 /* pretend they weren't skipped, it makes
3848                  * no important difference in this case
3849                  */
3850                 md_done_sync(mddev, sectors_skipped, 1);
3851
3852         return sectors_skipped + nr_sectors;
3853  giveup:
3854         /* There is nowhere to write, so all non-sync
3855          * drives must be failed or in resync, all drives
3856          * have a bad block, so try the next chunk...
3857          */
3858         if (sector_nr + max_sync < max_sector)
3859                 max_sector = sector_nr + max_sync;
3860
3861         sectors_skipped += (max_sector - sector_nr);
3862         chunks_skipped ++;
3863         sector_nr = max_sector;
3864         goto skipped;
3865 }
3866
3867 static sector_t
3868 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3869 {
3870         sector_t size;
3871         struct r10conf *conf = mddev->private;
3872
3873         if (!raid_disks)
3874                 raid_disks = min(conf->geo.raid_disks,
3875                                  conf->prev.raid_disks);
3876         if (!sectors)
3877                 sectors = conf->dev_sectors;
3878
3879         size = sectors >> conf->geo.chunk_shift;
3880         sector_div(size, conf->geo.far_copies);
3881         size = size * raid_disks;
3882         sector_div(size, conf->geo.near_copies);
3883
3884         return size << conf->geo.chunk_shift;
3885 }
3886
3887 static void calc_sectors(struct r10conf *conf, sector_t size)
3888 {
3889         /* Calculate the number of sectors-per-device that will
3890          * actually be used, and set conf->dev_sectors and
3891          * conf->stride
3892          */
3893
3894         size = size >> conf->geo.chunk_shift;
3895         sector_div(size, conf->geo.far_copies);
3896         size = size * conf->geo.raid_disks;
3897         sector_div(size, conf->geo.near_copies);
3898         /* 'size' is now the number of chunks in the array */
3899         /* calculate "used chunks per device" */
3900         size = size * conf->copies;
3901
3902         /* We need to round up when dividing by raid_disks to
3903          * get the stride size.
3904          */
3905         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3906
3907         conf->dev_sectors = size << conf->geo.chunk_shift;
3908
3909         if (conf->geo.far_offset)
3910                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3911         else {
3912                 sector_div(size, conf->geo.far_copies);
3913                 conf->geo.stride = size << conf->geo.chunk_shift;
3914         }
3915 }
3916
3917 enum geo_type {geo_new, geo_old, geo_start};
3918 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3919 {
3920         int nc, fc, fo;
3921         int layout, chunk, disks;
3922         switch (new) {
3923         case geo_old:
3924                 layout = mddev->layout;
3925                 chunk = mddev->chunk_sectors;
3926                 disks = mddev->raid_disks - mddev->delta_disks;
3927                 break;
3928         case geo_new:
3929                 layout = mddev->new_layout;
3930                 chunk = mddev->new_chunk_sectors;
3931                 disks = mddev->raid_disks;
3932                 break;
3933         default: /* avoid 'may be unused' warnings */
3934         case geo_start: /* new when starting reshape - raid_disks not
3935                          * updated yet. */
3936                 layout = mddev->new_layout;
3937                 chunk = mddev->new_chunk_sectors;
3938                 disks = mddev->raid_disks + mddev->delta_disks;
3939                 break;
3940         }
3941         if (layout >> 19)
3942                 return -1;
3943         if (chunk < (PAGE_SIZE >> 9) ||
3944             !is_power_of_2(chunk))
3945                 return -2;
3946         nc = layout & 255;
3947         fc = (layout >> 8) & 255;
3948         fo = layout & (1<<16);
3949         geo->raid_disks = disks;
3950         geo->near_copies = nc;
3951         geo->far_copies = fc;
3952         geo->far_offset = fo;
3953         switch (layout >> 17) {
3954         case 0: /* original layout.  simple but not always optimal */
3955                 geo->far_set_size = disks;
3956                 break;
3957         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3958                  * actually using this, but leave code here just in case.*/
3959                 geo->far_set_size = disks/fc;
3960                 WARN(geo->far_set_size < fc,
3961                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3962                 break;
3963         case 2: /* "improved" layout fixed to match documentation */
3964                 geo->far_set_size = fc * nc;
3965                 break;
3966         default: /* Not a valid layout */
3967                 return -1;
3968         }
3969         geo->chunk_mask = chunk - 1;
3970         geo->chunk_shift = ffz(~chunk);
3971         return nc*fc;
3972 }
3973
3974 static struct r10conf *setup_conf(struct mddev *mddev)
3975 {
3976         struct r10conf *conf = NULL;
3977         int err = -EINVAL;
3978         struct geom geo;
3979         int copies;
3980
3981         copies = setup_geo(&geo, mddev, geo_new);
3982
3983         if (copies == -2) {
3984                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3985                         mdname(mddev), PAGE_SIZE);
3986                 goto out;
3987         }
3988
3989         if (copies < 2 || copies > mddev->raid_disks) {
3990                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3991                         mdname(mddev), mddev->new_layout);
3992                 goto out;
3993         }
3994
3995         err = -ENOMEM;
3996         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3997         if (!conf)
3998                 goto out;
3999
4000         /* FIXME calc properly */
4001         conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4002                                 sizeof(struct raid10_info),
4003                                 GFP_KERNEL);
4004         if (!conf->mirrors)
4005                 goto out;
4006
4007         conf->tmppage = alloc_page(GFP_KERNEL);
4008         if (!conf->tmppage)
4009                 goto out;
4010
4011         conf->geo = geo;
4012         conf->copies = copies;
4013         err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4014                            rbio_pool_free, conf);
4015         if (err)
4016                 goto out;
4017
4018         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4019         if (err)
4020                 goto out;
4021
4022         calc_sectors(conf, mddev->dev_sectors);
4023         if (mddev->reshape_position == MaxSector) {
4024                 conf->prev = conf->geo;
4025                 conf->reshape_progress = MaxSector;
4026         } else {
4027                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4028                         err = -EINVAL;
4029                         goto out;
4030                 }
4031                 conf->reshape_progress = mddev->reshape_position;
4032                 if (conf->prev.far_offset)
4033                         conf->prev.stride = 1 << conf->prev.chunk_shift;
4034                 else
4035                         /* far_copies must be 1 */
4036                         conf->prev.stride = conf->dev_sectors;
4037         }
4038         conf->reshape_safe = conf->reshape_progress;
4039         spin_lock_init(&conf->device_lock);
4040         INIT_LIST_HEAD(&conf->retry_list);
4041         INIT_LIST_HEAD(&conf->bio_end_io_list);
4042
4043         spin_lock_init(&conf->resync_lock);
4044         init_waitqueue_head(&conf->wait_barrier);
4045         atomic_set(&conf->nr_pending, 0);
4046
4047         err = -ENOMEM;
4048         conf->thread = md_register_thread(raid10d, mddev, "raid10");
4049         if (!conf->thread)
4050                 goto out;
4051
4052         conf->mddev = mddev;
4053         return conf;
4054
4055  out:
4056         if (conf) {
4057                 mempool_exit(&conf->r10bio_pool);
4058                 kfree(conf->mirrors);
4059                 safe_put_page(conf->tmppage);
4060                 bioset_exit(&conf->bio_split);
4061                 kfree(conf);
4062         }
4063         return ERR_PTR(err);
4064 }
4065
4066 static void raid10_set_io_opt(struct r10conf *conf)
4067 {
4068         int raid_disks = conf->geo.raid_disks;
4069
4070         if (!(conf->geo.raid_disks % conf->geo.near_copies))
4071                 raid_disks /= conf->geo.near_copies;
4072         blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4073                          raid_disks);
4074 }
4075
4076 static int raid10_run(struct mddev *mddev)
4077 {
4078         struct r10conf *conf;
4079         int i, disk_idx;
4080         struct raid10_info *disk;
4081         struct md_rdev *rdev;
4082         sector_t size;
4083         sector_t min_offset_diff = 0;
4084         int first = 1;
4085         bool discard_supported = false;
4086
4087         if (mddev_init_writes_pending(mddev) < 0)
4088                 return -ENOMEM;
4089
4090         if (mddev->private == NULL) {
4091                 conf = setup_conf(mddev);
4092                 if (IS_ERR(conf))
4093                         return PTR_ERR(conf);
4094                 mddev->private = conf;
4095         }
4096         conf = mddev->private;
4097         if (!conf)
4098                 goto out;
4099
4100         if (mddev_is_clustered(conf->mddev)) {
4101                 int fc, fo;
4102
4103                 fc = (mddev->layout >> 8) & 255;
4104                 fo = mddev->layout & (1<<16);
4105                 if (fc > 1 || fo > 0) {
4106                         pr_err("only near layout is supported by clustered"
4107                                 " raid10\n");
4108                         goto out_free_conf;
4109                 }
4110         }
4111
4112         mddev->thread = conf->thread;
4113         conf->thread = NULL;
4114
4115         if (mddev->queue) {
4116                 blk_queue_max_discard_sectors(mddev->queue,
4117                                               UINT_MAX);
4118                 blk_queue_max_write_same_sectors(mddev->queue, 0);
4119                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4120                 blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4121                 raid10_set_io_opt(conf);
4122         }
4123
4124         rdev_for_each(rdev, mddev) {
4125                 long long diff;
4126
4127                 disk_idx = rdev->raid_disk;
4128                 if (disk_idx < 0)
4129                         continue;
4130                 if (disk_idx >= conf->geo.raid_disks &&
4131                     disk_idx >= conf->prev.raid_disks)
4132                         continue;
4133                 disk = conf->mirrors + disk_idx;
4134
4135                 if (test_bit(Replacement, &rdev->flags)) {
4136                         if (disk->replacement)
4137                                 goto out_free_conf;
4138                         disk->replacement = rdev;
4139                 } else {
4140                         if (disk->rdev)
4141                                 goto out_free_conf;
4142                         disk->rdev = rdev;
4143                 }
4144                 diff = (rdev->new_data_offset - rdev->data_offset);
4145                 if (!mddev->reshape_backwards)
4146                         diff = -diff;
4147                 if (diff < 0)
4148                         diff = 0;
4149                 if (first || diff < min_offset_diff)
4150                         min_offset_diff = diff;
4151
4152                 if (mddev->gendisk)
4153                         disk_stack_limits(mddev->gendisk, rdev->bdev,
4154                                           rdev->data_offset << 9);
4155
4156                 disk->head_position = 0;
4157
4158                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4159                         discard_supported = true;
4160                 first = 0;
4161         }
4162
4163         if (mddev->queue) {
4164                 if (discard_supported)
4165                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
4166                                                 mddev->queue);
4167                 else
4168                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
4169                                                   mddev->queue);
4170         }
4171         /* need to check that every block has at least one working mirror */
4172         if (!enough(conf, -1)) {
4173                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4174                        mdname(mddev));
4175                 goto out_free_conf;
4176         }
4177
4178         if (conf->reshape_progress != MaxSector) {
4179                 /* must ensure that shape change is supported */
4180                 if (conf->geo.far_copies != 1 &&
4181                     conf->geo.far_offset == 0)
4182                         goto out_free_conf;
4183                 if (conf->prev.far_copies != 1 &&
4184                     conf->prev.far_offset == 0)
4185                         goto out_free_conf;
4186         }
4187
4188         mddev->degraded = 0;
4189         for (i = 0;
4190              i < conf->geo.raid_disks
4191                      || i < conf->prev.raid_disks;
4192              i++) {
4193
4194                 disk = conf->mirrors + i;
4195
4196                 if (!disk->rdev && disk->replacement) {
4197                         /* The replacement is all we have - use it */
4198                         disk->rdev = disk->replacement;
4199                         disk->replacement = NULL;
4200                         clear_bit(Replacement, &disk->rdev->flags);
4201                 }
4202
4203                 if (!disk->rdev ||
4204                     !test_bit(In_sync, &disk->rdev->flags)) {
4205                         disk->head_position = 0;
4206                         mddev->degraded++;
4207                         if (disk->rdev &&
4208                             disk->rdev->saved_raid_disk < 0)
4209                                 conf->fullsync = 1;
4210                 }
4211
4212                 if (disk->replacement &&
4213                     !test_bit(In_sync, &disk->replacement->flags) &&
4214                     disk->replacement->saved_raid_disk < 0) {
4215                         conf->fullsync = 1;
4216                 }
4217
4218                 disk->recovery_disabled = mddev->recovery_disabled - 1;
4219         }
4220
4221         if (mddev->recovery_cp != MaxSector)
4222                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4223                           mdname(mddev));
4224         pr_info("md/raid10:%s: active with %d out of %d devices\n",
4225                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4226                 conf->geo.raid_disks);
4227         /*
4228          * Ok, everything is just fine now
4229          */
4230         mddev->dev_sectors = conf->dev_sectors;
4231         size = raid10_size(mddev, 0, 0);
4232         md_set_array_sectors(mddev, size);
4233         mddev->resync_max_sectors = size;
4234         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4235
4236         if (md_integrity_register(mddev))
4237                 goto out_free_conf;
4238
4239         if (conf->reshape_progress != MaxSector) {
4240                 unsigned long before_length, after_length;
4241
4242                 before_length = ((1 << conf->prev.chunk_shift) *
4243                                  conf->prev.far_copies);
4244                 after_length = ((1 << conf->geo.chunk_shift) *
4245                                 conf->geo.far_copies);
4246
4247                 if (max(before_length, after_length) > min_offset_diff) {
4248                         /* This cannot work */
4249                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4250                         goto out_free_conf;
4251                 }
4252                 conf->offset_diff = min_offset_diff;
4253
4254                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4255                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4256                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4257                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4258                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4259                                                         "reshape");
4260                 if (!mddev->sync_thread)
4261                         goto out_free_conf;
4262         }
4263
4264         return 0;
4265
4266 out_free_conf:
4267         md_unregister_thread(&mddev->thread);
4268         mempool_exit(&conf->r10bio_pool);
4269         safe_put_page(conf->tmppage);
4270         kfree(conf->mirrors);
4271         kfree(conf);
4272         mddev->private = NULL;
4273 out:
4274         return -EIO;
4275 }
4276
4277 static void raid10_free(struct mddev *mddev, void *priv)
4278 {
4279         struct r10conf *conf = priv;
4280
4281         mempool_exit(&conf->r10bio_pool);
4282         safe_put_page(conf->tmppage);
4283         kfree(conf->mirrors);
4284         kfree(conf->mirrors_old);
4285         kfree(conf->mirrors_new);
4286         bioset_exit(&conf->bio_split);
4287         kfree(conf);
4288 }
4289
4290 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4291 {
4292         struct r10conf *conf = mddev->private;
4293
4294         if (quiesce)
4295                 raise_barrier(conf, 0);
4296         else
4297                 lower_barrier(conf);
4298 }
4299
4300 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4301 {
4302         /* Resize of 'far' arrays is not supported.
4303          * For 'near' and 'offset' arrays we can set the
4304          * number of sectors used to be an appropriate multiple
4305          * of the chunk size.
4306          * For 'offset', this is far_copies*chunksize.
4307          * For 'near' the multiplier is the LCM of
4308          * near_copies and raid_disks.
4309          * So if far_copies > 1 && !far_offset, fail.
4310          * Else find LCM(raid_disks, near_copy)*far_copies and
4311          * multiply by chunk_size.  Then round to this number.
4312          * This is mostly done by raid10_size()
4313          */
4314         struct r10conf *conf = mddev->private;
4315         sector_t oldsize, size;
4316
4317         if (mddev->reshape_position != MaxSector)
4318                 return -EBUSY;
4319
4320         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4321                 return -EINVAL;
4322
4323         oldsize = raid10_size(mddev, 0, 0);
4324         size = raid10_size(mddev, sectors, 0);
4325         if (mddev->external_size &&
4326             mddev->array_sectors > size)
4327                 return -EINVAL;
4328         if (mddev->bitmap) {
4329                 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4330                 if (ret)
4331                         return ret;
4332         }
4333         md_set_array_sectors(mddev, size);
4334         if (sectors > mddev->dev_sectors &&
4335             mddev->recovery_cp > oldsize) {
4336                 mddev->recovery_cp = oldsize;
4337                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4338         }
4339         calc_sectors(conf, sectors);
4340         mddev->dev_sectors = conf->dev_sectors;
4341         mddev->resync_max_sectors = size;
4342         return 0;
4343 }
4344
4345 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4346 {
4347         struct md_rdev *rdev;
4348         struct r10conf *conf;
4349
4350         if (mddev->degraded > 0) {
4351                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4352                         mdname(mddev));
4353                 return ERR_PTR(-EINVAL);
4354         }
4355         sector_div(size, devs);
4356
4357         /* Set new parameters */
4358         mddev->new_level = 10;
4359         /* new layout: far_copies = 1, near_copies = 2 */
4360         mddev->new_layout = (1<<8) + 2;
4361         mddev->new_chunk_sectors = mddev->chunk_sectors;
4362         mddev->delta_disks = mddev->raid_disks;
4363         mddev->raid_disks *= 2;
4364         /* make sure it will be not marked as dirty */
4365         mddev->recovery_cp = MaxSector;
4366         mddev->dev_sectors = size;
4367
4368         conf = setup_conf(mddev);
4369         if (!IS_ERR(conf)) {
4370                 rdev_for_each(rdev, mddev)
4371                         if (rdev->raid_disk >= 0) {
4372                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4373                                 rdev->sectors = size;
4374                         }
4375                 conf->barrier = 1;
4376         }
4377
4378         return conf;
4379 }
4380
4381 static void *raid10_takeover(struct mddev *mddev)
4382 {
4383         struct r0conf *raid0_conf;
4384
4385         /* raid10 can take over:
4386          *  raid0 - providing it has only two drives
4387          */
4388         if (mddev->level == 0) {
4389                 /* for raid0 takeover only one zone is supported */
4390                 raid0_conf = mddev->private;
4391                 if (raid0_conf->nr_strip_zones > 1) {
4392                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4393                                 mdname(mddev));
4394                         return ERR_PTR(-EINVAL);
4395                 }
4396                 return raid10_takeover_raid0(mddev,
4397                         raid0_conf->strip_zone->zone_end,
4398                         raid0_conf->strip_zone->nb_dev);
4399         }
4400         return ERR_PTR(-EINVAL);
4401 }
4402
4403 static int raid10_check_reshape(struct mddev *mddev)
4404 {
4405         /* Called when there is a request to change
4406          * - layout (to ->new_layout)
4407          * - chunk size (to ->new_chunk_sectors)
4408          * - raid_disks (by delta_disks)
4409          * or when trying to restart a reshape that was ongoing.
4410          *
4411          * We need to validate the request and possibly allocate
4412          * space if that might be an issue later.
4413          *
4414          * Currently we reject any reshape of a 'far' mode array,
4415          * allow chunk size to change if new is generally acceptable,
4416          * allow raid_disks to increase, and allow
4417          * a switch between 'near' mode and 'offset' mode.
4418          */
4419         struct r10conf *conf = mddev->private;
4420         struct geom geo;
4421
4422         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4423                 return -EINVAL;
4424
4425         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4426                 /* mustn't change number of copies */
4427                 return -EINVAL;
4428         if (geo.far_copies > 1 && !geo.far_offset)
4429                 /* Cannot switch to 'far' mode */
4430                 return -EINVAL;
4431
4432         if (mddev->array_sectors & geo.chunk_mask)
4433                         /* not factor of array size */
4434                         return -EINVAL;
4435
4436         if (!enough(conf, -1))
4437                 return -EINVAL;
4438
4439         kfree(conf->mirrors_new);
4440         conf->mirrors_new = NULL;
4441         if (mddev->delta_disks > 0) {
4442                 /* allocate new 'mirrors' list */
4443                 conf->mirrors_new =
4444                         kcalloc(mddev->raid_disks + mddev->delta_disks,
4445                                 sizeof(struct raid10_info),
4446                                 GFP_KERNEL);
4447                 if (!conf->mirrors_new)
4448                         return -ENOMEM;
4449         }
4450         return 0;
4451 }
4452
4453 /*
4454  * Need to check if array has failed when deciding whether to:
4455  *  - start an array
4456  *  - remove non-faulty devices
4457  *  - add a spare
4458  *  - allow a reshape
4459  * This determination is simple when no reshape is happening.
4460  * However if there is a reshape, we need to carefully check
4461  * both the before and after sections.
4462  * This is because some failed devices may only affect one
4463  * of the two sections, and some non-in_sync devices may
4464  * be insync in the section most affected by failed devices.
4465  */
4466 static int calc_degraded(struct r10conf *conf)
4467 {
4468         int degraded, degraded2;
4469         int i;
4470
4471         rcu_read_lock();
4472         degraded = 0;
4473         /* 'prev' section first */
4474         for (i = 0; i < conf->prev.raid_disks; i++) {
4475                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4476                 if (!rdev || test_bit(Faulty, &rdev->flags))
4477                         degraded++;
4478                 else if (!test_bit(In_sync, &rdev->flags))
4479                         /* When we can reduce the number of devices in
4480                          * an array, this might not contribute to
4481                          * 'degraded'.  It does now.
4482                          */
4483                         degraded++;
4484         }
4485         rcu_read_unlock();
4486         if (conf->geo.raid_disks == conf->prev.raid_disks)
4487                 return degraded;
4488         rcu_read_lock();
4489         degraded2 = 0;
4490         for (i = 0; i < conf->geo.raid_disks; i++) {
4491                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4492                 if (!rdev || test_bit(Faulty, &rdev->flags))
4493                         degraded2++;
4494                 else if (!test_bit(In_sync, &rdev->flags)) {
4495                         /* If reshape is increasing the number of devices,
4496                          * this section has already been recovered, so
4497                          * it doesn't contribute to degraded.
4498                          * else it does.
4499                          */
4500                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4501                                 degraded2++;
4502                 }
4503         }
4504         rcu_read_unlock();
4505         if (degraded2 > degraded)
4506                 return degraded2;
4507         return degraded;
4508 }
4509
4510 static int raid10_start_reshape(struct mddev *mddev)
4511 {
4512         /* A 'reshape' has been requested. This commits
4513          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4514          * This also checks if there are enough spares and adds them
4515          * to the array.
4516          * We currently require enough spares to make the final
4517          * array non-degraded.  We also require that the difference
4518          * between old and new data_offset - on each device - is
4519          * enough that we never risk over-writing.
4520          */
4521
4522         unsigned long before_length, after_length;
4523         sector_t min_offset_diff = 0;
4524         int first = 1;
4525         struct geom new;
4526         struct r10conf *conf = mddev->private;
4527         struct md_rdev *rdev;
4528         int spares = 0;
4529         int ret;
4530
4531         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4532                 return -EBUSY;
4533
4534         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4535                 return -EINVAL;
4536
4537         before_length = ((1 << conf->prev.chunk_shift) *
4538                          conf->prev.far_copies);
4539         after_length = ((1 << conf->geo.chunk_shift) *
4540                         conf->geo.far_copies);
4541
4542         rdev_for_each(rdev, mddev) {
4543                 if (!test_bit(In_sync, &rdev->flags)
4544                     && !test_bit(Faulty, &rdev->flags))
4545                         spares++;
4546                 if (rdev->raid_disk >= 0) {
4547                         long long diff = (rdev->new_data_offset
4548                                           - rdev->data_offset);
4549                         if (!mddev->reshape_backwards)
4550                                 diff = -diff;
4551                         if (diff < 0)
4552                                 diff = 0;
4553                         if (first || diff < min_offset_diff)
4554                                 min_offset_diff = diff;
4555                         first = 0;
4556                 }
4557         }
4558
4559         if (max(before_length, after_length) > min_offset_diff)
4560                 return -EINVAL;
4561
4562         if (spares < mddev->delta_disks)
4563                 return -EINVAL;
4564
4565         conf->offset_diff = min_offset_diff;
4566         spin_lock_irq(&conf->device_lock);
4567         if (conf->mirrors_new) {
4568                 memcpy(conf->mirrors_new, conf->mirrors,
4569                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4570                 smp_mb();
4571                 kfree(conf->mirrors_old);
4572                 conf->mirrors_old = conf->mirrors;
4573                 conf->mirrors = conf->mirrors_new;
4574                 conf->mirrors_new = NULL;
4575         }
4576         setup_geo(&conf->geo, mddev, geo_start);
4577         smp_mb();
4578         if (mddev->reshape_backwards) {
4579                 sector_t size = raid10_size(mddev, 0, 0);
4580                 if (size < mddev->array_sectors) {
4581                         spin_unlock_irq(&conf->device_lock);
4582                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4583                                 mdname(mddev));
4584                         return -EINVAL;
4585                 }
4586                 mddev->resync_max_sectors = size;
4587                 conf->reshape_progress = size;
4588         } else
4589                 conf->reshape_progress = 0;
4590         conf->reshape_safe = conf->reshape_progress;
4591         spin_unlock_irq(&conf->device_lock);
4592
4593         if (mddev->delta_disks && mddev->bitmap) {
4594                 struct mdp_superblock_1 *sb = NULL;
4595                 sector_t oldsize, newsize;
4596
4597                 oldsize = raid10_size(mddev, 0, 0);
4598                 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4599
4600                 if (!mddev_is_clustered(mddev)) {
4601                         ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4602                         if (ret)
4603                                 goto abort;
4604                         else
4605                                 goto out;
4606                 }
4607
4608                 rdev_for_each(rdev, mddev) {
4609                         if (rdev->raid_disk > -1 &&
4610                             !test_bit(Faulty, &rdev->flags))
4611                                 sb = page_address(rdev->sb_page);
4612                 }
4613
4614                 /*
4615                  * some node is already performing reshape, and no need to
4616                  * call md_bitmap_resize again since it should be called when
4617                  * receiving BITMAP_RESIZE msg
4618                  */
4619                 if ((sb && (le32_to_cpu(sb->feature_map) &
4620                             MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4621                         goto out;
4622
4623                 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4624                 if (ret)
4625                         goto abort;
4626
4627                 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4628                 if (ret) {
4629                         md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4630                         goto abort;
4631                 }
4632         }
4633 out:
4634         if (mddev->delta_disks > 0) {
4635                 rdev_for_each(rdev, mddev)
4636                         if (rdev->raid_disk < 0 &&
4637                             !test_bit(Faulty, &rdev->flags)) {
4638                                 if (raid10_add_disk(mddev, rdev) == 0) {
4639                                         if (rdev->raid_disk >=
4640                                             conf->prev.raid_disks)
4641                                                 set_bit(In_sync, &rdev->flags);
4642                                         else
4643                                                 rdev->recovery_offset = 0;
4644
4645                                         /* Failure here is OK */
4646                                         sysfs_link_rdev(mddev, rdev);
4647                                 }
4648                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4649                                    && !test_bit(Faulty, &rdev->flags)) {
4650                                 /* This is a spare that was manually added */
4651                                 set_bit(In_sync, &rdev->flags);
4652                         }
4653         }
4654         /* When a reshape changes the number of devices,
4655          * ->degraded is measured against the larger of the
4656          * pre and  post numbers.
4657          */
4658         spin_lock_irq(&conf->device_lock);
4659         mddev->degraded = calc_degraded(conf);
4660         spin_unlock_irq(&conf->device_lock);
4661         mddev->raid_disks = conf->geo.raid_disks;
4662         mddev->reshape_position = conf->reshape_progress;
4663         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4664
4665         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4666         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4667         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4668         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4669         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4670
4671         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4672                                                 "reshape");
4673         if (!mddev->sync_thread) {
4674                 ret = -EAGAIN;
4675                 goto abort;
4676         }
4677         conf->reshape_checkpoint = jiffies;
4678         md_wakeup_thread(mddev->sync_thread);
4679         md_new_event();
4680         return 0;
4681
4682 abort:
4683         mddev->recovery = 0;
4684         spin_lock_irq(&conf->device_lock);
4685         conf->geo = conf->prev;
4686         mddev->raid_disks = conf->geo.raid_disks;
4687         rdev_for_each(rdev, mddev)
4688                 rdev->new_data_offset = rdev->data_offset;
4689         smp_wmb();
4690         conf->reshape_progress = MaxSector;
4691         conf->reshape_safe = MaxSector;
4692         mddev->reshape_position = MaxSector;
4693         spin_unlock_irq(&conf->device_lock);
4694         return ret;
4695 }
4696
4697 /* Calculate the last device-address that could contain
4698  * any block from the chunk that includes the array-address 's'
4699  * and report the next address.
4700  * i.e. the address returned will be chunk-aligned and after
4701  * any data that is in the chunk containing 's'.
4702  */
4703 static sector_t last_dev_address(sector_t s, struct geom *geo)
4704 {
4705         s = (s | geo->chunk_mask) + 1;
4706         s >>= geo->chunk_shift;
4707         s *= geo->near_copies;
4708         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4709         s *= geo->far_copies;
4710         s <<= geo->chunk_shift;
4711         return s;
4712 }
4713
4714 /* Calculate the first device-address that could contain
4715  * any block from the chunk that includes the array-address 's'.
4716  * This too will be the start of a chunk
4717  */
4718 static sector_t first_dev_address(sector_t s, struct geom *geo)
4719 {
4720         s >>= geo->chunk_shift;
4721         s *= geo->near_copies;
4722         sector_div(s, geo->raid_disks);
4723         s *= geo->far_copies;
4724         s <<= geo->chunk_shift;
4725         return s;
4726 }
4727
4728 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4729                                 int *skipped)
4730 {
4731         /* We simply copy at most one chunk (smallest of old and new)
4732          * at a time, possibly less if that exceeds RESYNC_PAGES,
4733          * or we hit a bad block or something.
4734          * This might mean we pause for normal IO in the middle of
4735          * a chunk, but that is not a problem as mddev->reshape_position
4736          * can record any location.
4737          *
4738          * If we will want to write to a location that isn't
4739          * yet recorded as 'safe' (i.e. in metadata on disk) then
4740          * we need to flush all reshape requests and update the metadata.
4741          *
4742          * When reshaping forwards (e.g. to more devices), we interpret
4743          * 'safe' as the earliest block which might not have been copied
4744          * down yet.  We divide this by previous stripe size and multiply
4745          * by previous stripe length to get lowest device offset that we
4746          * cannot write to yet.
4747          * We interpret 'sector_nr' as an address that we want to write to.
4748          * From this we use last_device_address() to find where we might
4749          * write to, and first_device_address on the  'safe' position.
4750          * If this 'next' write position is after the 'safe' position,
4751          * we must update the metadata to increase the 'safe' position.
4752          *
4753          * When reshaping backwards, we round in the opposite direction
4754          * and perform the reverse test:  next write position must not be
4755          * less than current safe position.
4756          *
4757          * In all this the minimum difference in data offsets
4758          * (conf->offset_diff - always positive) allows a bit of slack,
4759          * so next can be after 'safe', but not by more than offset_diff
4760          *
4761          * We need to prepare all the bios here before we start any IO
4762          * to ensure the size we choose is acceptable to all devices.
4763          * The means one for each copy for write-out and an extra one for
4764          * read-in.
4765          * We store the read-in bio in ->master_bio and the others in
4766          * ->devs[x].bio and ->devs[x].repl_bio.
4767          */
4768         struct r10conf *conf = mddev->private;
4769         struct r10bio *r10_bio;
4770         sector_t next, safe, last;
4771         int max_sectors;
4772         int nr_sectors;
4773         int s;
4774         struct md_rdev *rdev;
4775         int need_flush = 0;
4776         struct bio *blist;
4777         struct bio *bio, *read_bio;
4778         int sectors_done = 0;
4779         struct page **pages;
4780
4781         if (sector_nr == 0) {
4782                 /* If restarting in the middle, skip the initial sectors */
4783                 if (mddev->reshape_backwards &&
4784                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4785                         sector_nr = (raid10_size(mddev, 0, 0)
4786                                      - conf->reshape_progress);
4787                 } else if (!mddev->reshape_backwards &&
4788                            conf->reshape_progress > 0)
4789                         sector_nr = conf->reshape_progress;
4790                 if (sector_nr) {
4791                         mddev->curr_resync_completed = sector_nr;
4792                         sysfs_notify_dirent_safe(mddev->sysfs_completed);
4793                         *skipped = 1;
4794                         return sector_nr;
4795                 }
4796         }
4797
4798         /* We don't use sector_nr to track where we are up to
4799          * as that doesn't work well for ->reshape_backwards.
4800          * So just use ->reshape_progress.
4801          */
4802         if (mddev->reshape_backwards) {
4803                 /* 'next' is the earliest device address that we might
4804                  * write to for this chunk in the new layout
4805                  */
4806                 next = first_dev_address(conf->reshape_progress - 1,
4807                                          &conf->geo);
4808
4809                 /* 'safe' is the last device address that we might read from
4810                  * in the old layout after a restart
4811                  */
4812                 safe = last_dev_address(conf->reshape_safe - 1,
4813                                         &conf->prev);
4814
4815                 if (next + conf->offset_diff < safe)
4816                         need_flush = 1;
4817
4818                 last = conf->reshape_progress - 1;
4819                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4820                                                & conf->prev.chunk_mask);
4821                 if (sector_nr + RESYNC_SECTORS < last)
4822                         sector_nr = last + 1 - RESYNC_SECTORS;
4823         } else {
4824                 /* 'next' is after the last device address that we
4825                  * might write to for this chunk in the new layout
4826                  */
4827                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4828
4829                 /* 'safe' is the earliest device address that we might
4830                  * read from in the old layout after a restart
4831                  */
4832                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4833
4834                 /* Need to update metadata if 'next' might be beyond 'safe'
4835                  * as that would possibly corrupt data
4836                  */
4837                 if (next > safe + conf->offset_diff)
4838                         need_flush = 1;
4839
4840                 sector_nr = conf->reshape_progress;
4841                 last  = sector_nr | (conf->geo.chunk_mask
4842                                      & conf->prev.chunk_mask);
4843
4844                 if (sector_nr + RESYNC_SECTORS <= last)
4845                         last = sector_nr + RESYNC_SECTORS - 1;
4846         }
4847
4848         if (need_flush ||
4849             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4850                 /* Need to update reshape_position in metadata */
4851                 wait_barrier(conf, false);
4852                 mddev->reshape_position = conf->reshape_progress;
4853                 if (mddev->reshape_backwards)
4854                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4855                                 - conf->reshape_progress;
4856                 else
4857                         mddev->curr_resync_completed = conf->reshape_progress;
4858                 conf->reshape_checkpoint = jiffies;
4859                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4860                 md_wakeup_thread(mddev->thread);
4861                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4862                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4863                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4864                         allow_barrier(conf);
4865                         return sectors_done;
4866                 }
4867                 conf->reshape_safe = mddev->reshape_position;
4868                 allow_barrier(conf);
4869         }
4870
4871         raise_barrier(conf, 0);
4872 read_more:
4873         /* Now schedule reads for blocks from sector_nr to last */
4874         r10_bio = raid10_alloc_init_r10buf(conf);
4875         r10_bio->state = 0;
4876         raise_barrier(conf, 1);
4877         atomic_set(&r10_bio->remaining, 0);
4878         r10_bio->mddev = mddev;
4879         r10_bio->sector = sector_nr;
4880         set_bit(R10BIO_IsReshape, &r10_bio->state);
4881         r10_bio->sectors = last - sector_nr + 1;
4882         rdev = read_balance(conf, r10_bio, &max_sectors);
4883         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4884
4885         if (!rdev) {
4886                 /* Cannot read from here, so need to record bad blocks
4887                  * on all the target devices.
4888                  */
4889                 // FIXME
4890                 mempool_free(r10_bio, &conf->r10buf_pool);
4891                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4892                 return sectors_done;
4893         }
4894
4895         read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set);
4896
4897         bio_set_dev(read_bio, rdev->bdev);
4898         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4899                                + rdev->data_offset);
4900         read_bio->bi_private = r10_bio;
4901         read_bio->bi_end_io = end_reshape_read;
4902         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4903         r10_bio->master_bio = read_bio;
4904         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4905
4906         /*
4907          * Broadcast RESYNC message to other nodes, so all nodes would not
4908          * write to the region to avoid conflict.
4909         */
4910         if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4911                 struct mdp_superblock_1 *sb = NULL;
4912                 int sb_reshape_pos = 0;
4913
4914                 conf->cluster_sync_low = sector_nr;
4915                 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4916                 sb = page_address(rdev->sb_page);
4917                 if (sb) {
4918                         sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4919                         /*
4920                          * Set cluster_sync_low again if next address for array
4921                          * reshape is less than cluster_sync_low. Since we can't
4922                          * update cluster_sync_low until it has finished reshape.
4923                          */
4924                         if (sb_reshape_pos < conf->cluster_sync_low)
4925                                 conf->cluster_sync_low = sb_reshape_pos;
4926                 }
4927
4928                 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4929                                                           conf->cluster_sync_high);
4930         }
4931
4932         /* Now find the locations in the new layout */
4933         __raid10_find_phys(&conf->geo, r10_bio);
4934
4935         blist = read_bio;
4936         read_bio->bi_next = NULL;
4937
4938         rcu_read_lock();
4939         for (s = 0; s < conf->copies*2; s++) {
4940                 struct bio *b;
4941                 int d = r10_bio->devs[s/2].devnum;
4942                 struct md_rdev *rdev2;
4943                 if (s&1) {
4944                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4945                         b = r10_bio->devs[s/2].repl_bio;
4946                 } else {
4947                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4948                         b = r10_bio->devs[s/2].bio;
4949                 }
4950                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4951                         continue;
4952
4953                 bio_set_dev(b, rdev2->bdev);
4954                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4955                         rdev2->new_data_offset;
4956                 b->bi_end_io = end_reshape_write;
4957                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4958                 b->bi_next = blist;
4959                 blist = b;
4960         }
4961
4962         /* Now add as many pages as possible to all of these bios. */
4963
4964         nr_sectors = 0;
4965         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4966         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4967                 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4968                 int len = (max_sectors - s) << 9;
4969                 if (len > PAGE_SIZE)
4970                         len = PAGE_SIZE;
4971                 for (bio = blist; bio ; bio = bio->bi_next) {
4972                         /*
4973                          * won't fail because the vec table is big enough
4974                          * to hold all these pages
4975                          */
4976                         bio_add_page(bio, page, len, 0);
4977                 }
4978                 sector_nr += len >> 9;
4979                 nr_sectors += len >> 9;
4980         }
4981         rcu_read_unlock();
4982         r10_bio->sectors = nr_sectors;
4983
4984         /* Now submit the read */
4985         md_sync_acct_bio(read_bio, r10_bio->sectors);
4986         atomic_inc(&r10_bio->remaining);
4987         read_bio->bi_next = NULL;
4988         submit_bio_noacct(read_bio);
4989         sectors_done += nr_sectors;
4990         if (sector_nr <= last)
4991                 goto read_more;
4992
4993         lower_barrier(conf);
4994
4995         /* Now that we have done the whole section we can
4996          * update reshape_progress
4997          */
4998         if (mddev->reshape_backwards)
4999                 conf->reshape_progress -= sectors_done;
5000         else
5001                 conf->reshape_progress += sectors_done;
5002
5003         return sectors_done;
5004 }
5005
5006 static void end_reshape_request(struct r10bio *r10_bio);
5007 static int handle_reshape_read_error(struct mddev *mddev,
5008                                      struct r10bio *r10_bio);
5009 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
5010 {
5011         /* Reshape read completed.  Hopefully we have a block
5012          * to write out.
5013          * If we got a read error then we do sync 1-page reads from
5014          * elsewhere until we find the data - or give up.
5015          */
5016         struct r10conf *conf = mddev->private;
5017         int s;
5018
5019         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5020                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5021                         /* Reshape has been aborted */
5022                         md_done_sync(mddev, r10_bio->sectors, 0);
5023                         return;
5024                 }
5025
5026         /* We definitely have the data in the pages, schedule the
5027          * writes.
5028          */
5029         atomic_set(&r10_bio->remaining, 1);
5030         for (s = 0; s < conf->copies*2; s++) {
5031                 struct bio *b;
5032                 int d = r10_bio->devs[s/2].devnum;
5033                 struct md_rdev *rdev;
5034                 rcu_read_lock();
5035                 if (s&1) {
5036                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5037                         b = r10_bio->devs[s/2].repl_bio;
5038                 } else {
5039                         rdev = rcu_dereference(conf->mirrors[d].rdev);
5040                         b = r10_bio->devs[s/2].bio;
5041                 }
5042                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
5043                         rcu_read_unlock();
5044                         continue;
5045                 }
5046                 atomic_inc(&rdev->nr_pending);
5047                 rcu_read_unlock();
5048                 md_sync_acct_bio(b, r10_bio->sectors);
5049                 atomic_inc(&r10_bio->remaining);
5050                 b->bi_next = NULL;
5051                 submit_bio_noacct(b);
5052         }
5053         end_reshape_request(r10_bio);
5054 }
5055
5056 static void end_reshape(struct r10conf *conf)
5057 {
5058         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5059                 return;
5060
5061         spin_lock_irq(&conf->device_lock);
5062         conf->prev = conf->geo;
5063         md_finish_reshape(conf->mddev);
5064         smp_wmb();
5065         conf->reshape_progress = MaxSector;
5066         conf->reshape_safe = MaxSector;
5067         spin_unlock_irq(&conf->device_lock);
5068
5069         if (conf->mddev->queue)
5070                 raid10_set_io_opt(conf);
5071         conf->fullsync = 0;
5072 }
5073
5074 static void raid10_update_reshape_pos(struct mddev *mddev)
5075 {
5076         struct r10conf *conf = mddev->private;
5077         sector_t lo, hi;
5078
5079         md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5080         if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5081             || mddev->reshape_position == MaxSector)
5082                 conf->reshape_progress = mddev->reshape_position;
5083         else
5084                 WARN_ON_ONCE(1);
5085 }
5086
5087 static int handle_reshape_read_error(struct mddev *mddev,
5088                                      struct r10bio *r10_bio)
5089 {
5090         /* Use sync reads to get the blocks from somewhere else */
5091         int sectors = r10_bio->sectors;
5092         struct r10conf *conf = mddev->private;
5093         struct r10bio *r10b;
5094         int slot = 0;
5095         int idx = 0;
5096         struct page **pages;
5097
5098         r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5099         if (!r10b) {
5100                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5101                 return -ENOMEM;
5102         }
5103
5104         /* reshape IOs share pages from .devs[0].bio */
5105         pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5106
5107         r10b->sector = r10_bio->sector;
5108         __raid10_find_phys(&conf->prev, r10b);
5109
5110         while (sectors) {
5111                 int s = sectors;
5112                 int success = 0;
5113                 int first_slot = slot;
5114
5115                 if (s > (PAGE_SIZE >> 9))
5116                         s = PAGE_SIZE >> 9;
5117
5118                 rcu_read_lock();
5119                 while (!success) {
5120                         int d = r10b->devs[slot].devnum;
5121                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5122                         sector_t addr;
5123                         if (rdev == NULL ||
5124                             test_bit(Faulty, &rdev->flags) ||
5125                             !test_bit(In_sync, &rdev->flags))
5126                                 goto failed;
5127
5128                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5129                         atomic_inc(&rdev->nr_pending);
5130                         rcu_read_unlock();
5131                         success = sync_page_io(rdev,
5132                                                addr,
5133                                                s << 9,
5134                                                pages[idx],
5135                                                REQ_OP_READ, 0, false);
5136                         rdev_dec_pending(rdev, mddev);
5137                         rcu_read_lock();
5138                         if (success)
5139                                 break;
5140                 failed:
5141                         slot++;
5142                         if (slot >= conf->copies)
5143                                 slot = 0;
5144                         if (slot == first_slot)
5145                                 break;
5146                 }
5147                 rcu_read_unlock();
5148                 if (!success) {
5149                         /* couldn't read this block, must give up */
5150                         set_bit(MD_RECOVERY_INTR,
5151                                 &mddev->recovery);
5152                         kfree(r10b);
5153                         return -EIO;
5154                 }
5155                 sectors -= s;
5156                 idx++;
5157         }
5158         kfree(r10b);
5159         return 0;
5160 }
5161
5162 static void end_reshape_write(struct bio *bio)
5163 {
5164         struct r10bio *r10_bio = get_resync_r10bio(bio);
5165         struct mddev *mddev = r10_bio->mddev;
5166         struct r10conf *conf = mddev->private;
5167         int d;
5168         int slot;
5169         int repl;
5170         struct md_rdev *rdev = NULL;
5171
5172         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5173         if (repl)
5174                 rdev = conf->mirrors[d].replacement;
5175         if (!rdev) {
5176                 smp_mb();
5177                 rdev = conf->mirrors[d].rdev;
5178         }
5179
5180         if (bio->bi_status) {
5181                 /* FIXME should record badblock */
5182                 md_error(mddev, rdev);
5183         }
5184
5185         rdev_dec_pending(rdev, mddev);
5186         end_reshape_request(r10_bio);
5187 }
5188
5189 static void end_reshape_request(struct r10bio *r10_bio)
5190 {
5191         if (!atomic_dec_and_test(&r10_bio->remaining))
5192                 return;
5193         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5194         bio_put(r10_bio->master_bio);
5195         put_buf(r10_bio);
5196 }
5197
5198 static void raid10_finish_reshape(struct mddev *mddev)
5199 {
5200         struct r10conf *conf = mddev->private;
5201
5202         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5203                 return;
5204
5205         if (mddev->delta_disks > 0) {
5206                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5207                         mddev->recovery_cp = mddev->resync_max_sectors;
5208                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5209                 }
5210                 mddev->resync_max_sectors = mddev->array_sectors;
5211         } else {
5212                 int d;
5213                 rcu_read_lock();
5214                 for (d = conf->geo.raid_disks ;
5215                      d < conf->geo.raid_disks - mddev->delta_disks;
5216                      d++) {
5217                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5218                         if (rdev)
5219                                 clear_bit(In_sync, &rdev->flags);
5220                         rdev = rcu_dereference(conf->mirrors[d].replacement);
5221                         if (rdev)
5222                                 clear_bit(In_sync, &rdev->flags);
5223                 }
5224                 rcu_read_unlock();
5225         }
5226         mddev->layout = mddev->new_layout;
5227         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5228         mddev->reshape_position = MaxSector;
5229         mddev->delta_disks = 0;
5230         mddev->reshape_backwards = 0;
5231 }
5232
5233 static struct md_personality raid10_personality =
5234 {
5235         .name           = "raid10",
5236         .level          = 10,
5237         .owner          = THIS_MODULE,
5238         .make_request   = raid10_make_request,
5239         .run            = raid10_run,
5240         .free           = raid10_free,
5241         .status         = raid10_status,
5242         .error_handler  = raid10_error,
5243         .hot_add_disk   = raid10_add_disk,
5244         .hot_remove_disk= raid10_remove_disk,
5245         .spare_active   = raid10_spare_active,
5246         .sync_request   = raid10_sync_request,
5247         .quiesce        = raid10_quiesce,
5248         .size           = raid10_size,
5249         .resize         = raid10_resize,
5250         .takeover       = raid10_takeover,
5251         .check_reshape  = raid10_check_reshape,
5252         .start_reshape  = raid10_start_reshape,
5253         .finish_reshape = raid10_finish_reshape,
5254         .update_reshape_pos = raid10_update_reshape_pos,
5255 };
5256
5257 static int __init raid_init(void)
5258 {
5259         return register_md_personality(&raid10_personality);
5260 }
5261
5262 static void raid_exit(void)
5263 {
5264         unregister_md_personality(&raid10_personality);
5265 }
5266
5267 module_init(raid_init);
5268 module_exit(raid_exit);
5269 MODULE_LICENSE("GPL");
5270 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5271 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5272 MODULE_ALIAS("md-raid10");
5273 MODULE_ALIAS("md-level-10");
This page took 0.354675 seconds and 4 git commands to generate.