1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
7 * Copyright 2007 OpenVZ SWsoft Inc
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
70 #include <linux/uaccess.h>
72 #include <trace/events/vmscan.h>
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
85 /* Kernel memory accounting disabled? */
86 bool cgroup_memory_nokmem;
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 bool cgroup_memory_noswap __read_mostly;
92 #define cgroup_memory_noswap 1
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
113 struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
119 struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
126 struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
132 * cgroup_event represents events which userspace want to receive.
134 struct mem_cgroup_event {
136 * memcg which the event belongs to.
138 struct mem_cgroup *memcg;
140 * eventfd to signal userspace about the event.
142 struct eventfd_ctx *eventfd;
144 * Each of these stored in a list by the cgroup.
146 struct list_head list;
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174 /* Stuffs for move charges at task migration. */
176 * Types of charges to be moved.
178 #define MOVE_ANON 0x1U
179 #define MOVE_FILE 0x2U
180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206 /* for encoding cft->private value on file */
215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val) ((val) & 0xffff)
218 /* Used for OOM notifier */
219 #define OOM_CONTROL (0)
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
226 #define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
229 iter = mem_cgroup_iter(root, iter, NULL))
231 #define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
236 static inline bool should_force_charge(void)
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
255 #ifdef CONFIG_MEMCG_KMEM
256 extern spinlock_t css_set_lock;
258 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
259 unsigned int nr_pages);
261 static void obj_cgroup_release(struct percpu_ref *ref)
263 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
264 struct mem_cgroup *memcg;
265 unsigned int nr_bytes;
266 unsigned int nr_pages;
270 * At this point all allocated objects are freed, and
271 * objcg->nr_charged_bytes can't have an arbitrary byte value.
272 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 * The following sequence can lead to it:
275 * 1) CPU0: objcg == stock->cached_objcg
276 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
277 * PAGE_SIZE bytes are charged
278 * 3) CPU1: a process from another memcg is allocating something,
279 * the stock if flushed,
280 * objcg->nr_charged_bytes = PAGE_SIZE - 92
281 * 5) CPU0: we do release this object,
282 * 92 bytes are added to stock->nr_bytes
283 * 6) CPU0: stock is flushed,
284 * 92 bytes are added to objcg->nr_charged_bytes
286 * In the result, nr_charged_bytes == PAGE_SIZE.
287 * This page will be uncharged in obj_cgroup_release().
289 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
290 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
291 nr_pages = nr_bytes >> PAGE_SHIFT;
293 spin_lock_irqsave(&css_set_lock, flags);
294 memcg = obj_cgroup_memcg(objcg);
296 obj_cgroup_uncharge_pages(objcg, nr_pages);
297 list_del(&objcg->list);
298 mem_cgroup_put(memcg);
299 spin_unlock_irqrestore(&css_set_lock, flags);
301 percpu_ref_exit(ref);
302 kfree_rcu(objcg, rcu);
305 static struct obj_cgroup *obj_cgroup_alloc(void)
307 struct obj_cgroup *objcg;
310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
320 INIT_LIST_HEAD(&objcg->list);
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 struct mem_cgroup *parent)
327 struct obj_cgroup *objcg, *iter;
329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
331 spin_lock_irq(&css_set_lock);
333 /* Move active objcg to the parent's list */
334 xchg(&objcg->memcg, parent);
335 css_get(&parent->css);
336 list_add(&objcg->list, &parent->objcg_list);
338 /* Move already reparented objcgs to the parent's list */
339 list_for_each_entry(iter, &memcg->objcg_list, list) {
340 css_get(&parent->css);
341 xchg(&iter->memcg, parent);
342 css_put(&memcg->css);
344 list_splice(&memcg->objcg_list, &parent->objcg_list);
346 spin_unlock_irq(&css_set_lock);
348 percpu_ref_kill(&objcg->refcnt);
352 * This will be used as a shrinker list's index.
353 * The main reason for not using cgroup id for this:
354 * this works better in sparse environments, where we have a lot of memcgs,
355 * but only a few kmem-limited. Or also, if we have, for instance, 200
356 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
357 * 200 entry array for that.
359 * The current size of the caches array is stored in memcg_nr_cache_ids. It
360 * will double each time we have to increase it.
362 static DEFINE_IDA(memcg_cache_ida);
363 int memcg_nr_cache_ids;
365 /* Protects memcg_nr_cache_ids */
366 static DECLARE_RWSEM(memcg_cache_ids_sem);
368 void memcg_get_cache_ids(void)
370 down_read(&memcg_cache_ids_sem);
373 void memcg_put_cache_ids(void)
375 up_read(&memcg_cache_ids_sem);
379 * MIN_SIZE is different than 1, because we would like to avoid going through
380 * the alloc/free process all the time. In a small machine, 4 kmem-limited
381 * cgroups is a reasonable guess. In the future, it could be a parameter or
382 * tunable, but that is strictly not necessary.
384 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
385 * this constant directly from cgroup, but it is understandable that this is
386 * better kept as an internal representation in cgroup.c. In any case, the
387 * cgrp_id space is not getting any smaller, and we don't have to necessarily
388 * increase ours as well if it increases.
390 #define MEMCG_CACHES_MIN_SIZE 4
391 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
394 * A lot of the calls to the cache allocation functions are expected to be
395 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
396 * conditional to this static branch, we'll have to allow modules that does
397 * kmem_cache_alloc and the such to see this symbol as well
399 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
400 EXPORT_SYMBOL(memcg_kmem_enabled_key);
404 * mem_cgroup_css_from_page - css of the memcg associated with a page
405 * @page: page of interest
407 * If memcg is bound to the default hierarchy, css of the memcg associated
408 * with @page is returned. The returned css remains associated with @page
409 * until it is released.
411 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
414 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
416 struct mem_cgroup *memcg;
418 memcg = page_memcg(page);
420 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
421 memcg = root_mem_cgroup;
427 * page_cgroup_ino - return inode number of the memcg a page is charged to
430 * Look up the closest online ancestor of the memory cgroup @page is charged to
431 * and return its inode number or 0 if @page is not charged to any cgroup. It
432 * is safe to call this function without holding a reference to @page.
434 * Note, this function is inherently racy, because there is nothing to prevent
435 * the cgroup inode from getting torn down and potentially reallocated a moment
436 * after page_cgroup_ino() returns, so it only should be used by callers that
437 * do not care (such as procfs interfaces).
439 ino_t page_cgroup_ino(struct page *page)
441 struct mem_cgroup *memcg;
442 unsigned long ino = 0;
445 memcg = page_memcg_check(page);
447 while (memcg && !(memcg->css.flags & CSS_ONLINE))
448 memcg = parent_mem_cgroup(memcg);
450 ino = cgroup_ino(memcg->css.cgroup);
455 static struct mem_cgroup_per_node *
456 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
458 int nid = page_to_nid(page);
460 return memcg->nodeinfo[nid];
463 static struct mem_cgroup_tree_per_node *
464 soft_limit_tree_node(int nid)
466 return soft_limit_tree.rb_tree_per_node[nid];
469 static struct mem_cgroup_tree_per_node *
470 soft_limit_tree_from_page(struct page *page)
472 int nid = page_to_nid(page);
474 return soft_limit_tree.rb_tree_per_node[nid];
477 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
478 struct mem_cgroup_tree_per_node *mctz,
479 unsigned long new_usage_in_excess)
481 struct rb_node **p = &mctz->rb_root.rb_node;
482 struct rb_node *parent = NULL;
483 struct mem_cgroup_per_node *mz_node;
484 bool rightmost = true;
489 mz->usage_in_excess = new_usage_in_excess;
490 if (!mz->usage_in_excess)
494 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
496 if (mz->usage_in_excess < mz_node->usage_in_excess) {
505 mctz->rb_rightmost = &mz->tree_node;
507 rb_link_node(&mz->tree_node, parent, p);
508 rb_insert_color(&mz->tree_node, &mctz->rb_root);
512 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
513 struct mem_cgroup_tree_per_node *mctz)
518 if (&mz->tree_node == mctz->rb_rightmost)
519 mctz->rb_rightmost = rb_prev(&mz->tree_node);
521 rb_erase(&mz->tree_node, &mctz->rb_root);
525 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
526 struct mem_cgroup_tree_per_node *mctz)
530 spin_lock_irqsave(&mctz->lock, flags);
531 __mem_cgroup_remove_exceeded(mz, mctz);
532 spin_unlock_irqrestore(&mctz->lock, flags);
535 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
537 unsigned long nr_pages = page_counter_read(&memcg->memory);
538 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
539 unsigned long excess = 0;
541 if (nr_pages > soft_limit)
542 excess = nr_pages - soft_limit;
547 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
549 unsigned long excess;
550 struct mem_cgroup_per_node *mz;
551 struct mem_cgroup_tree_per_node *mctz;
553 mctz = soft_limit_tree_from_page(page);
557 * Necessary to update all ancestors when hierarchy is used.
558 * because their event counter is not touched.
560 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
561 mz = mem_cgroup_page_nodeinfo(memcg, page);
562 excess = soft_limit_excess(memcg);
564 * We have to update the tree if mz is on RB-tree or
565 * mem is over its softlimit.
567 if (excess || mz->on_tree) {
570 spin_lock_irqsave(&mctz->lock, flags);
571 /* if on-tree, remove it */
573 __mem_cgroup_remove_exceeded(mz, mctz);
575 * Insert again. mz->usage_in_excess will be updated.
576 * If excess is 0, no tree ops.
578 __mem_cgroup_insert_exceeded(mz, mctz, excess);
579 spin_unlock_irqrestore(&mctz->lock, flags);
584 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
586 struct mem_cgroup_tree_per_node *mctz;
587 struct mem_cgroup_per_node *mz;
591 mz = memcg->nodeinfo[nid];
592 mctz = soft_limit_tree_node(nid);
594 mem_cgroup_remove_exceeded(mz, mctz);
598 static struct mem_cgroup_per_node *
599 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
601 struct mem_cgroup_per_node *mz;
605 if (!mctz->rb_rightmost)
606 goto done; /* Nothing to reclaim from */
608 mz = rb_entry(mctz->rb_rightmost,
609 struct mem_cgroup_per_node, tree_node);
611 * Remove the node now but someone else can add it back,
612 * we will to add it back at the end of reclaim to its correct
613 * position in the tree.
615 __mem_cgroup_remove_exceeded(mz, mctz);
616 if (!soft_limit_excess(mz->memcg) ||
617 !css_tryget(&mz->memcg->css))
623 static struct mem_cgroup_per_node *
624 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
626 struct mem_cgroup_per_node *mz;
628 spin_lock_irq(&mctz->lock);
629 mz = __mem_cgroup_largest_soft_limit_node(mctz);
630 spin_unlock_irq(&mctz->lock);
635 * __mod_memcg_state - update cgroup memory statistics
636 * @memcg: the memory cgroup
637 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
638 * @val: delta to add to the counter, can be negative
640 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
642 if (mem_cgroup_disabled())
645 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
646 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
649 /* idx can be of type enum memcg_stat_item or node_stat_item. */
650 static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
652 long x = READ_ONCE(memcg->vmstats.state[idx]);
660 /* idx can be of type enum memcg_stat_item or node_stat_item. */
661 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
666 for_each_possible_cpu(cpu)
667 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
675 static struct mem_cgroup_per_node *
676 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
678 struct mem_cgroup *parent;
680 parent = parent_mem_cgroup(pn->memcg);
683 return parent->nodeinfo[nid];
686 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
689 struct mem_cgroup_per_node *pn;
690 struct mem_cgroup *memcg;
691 long x, threshold = MEMCG_CHARGE_BATCH;
693 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
697 __mod_memcg_state(memcg, idx, val);
700 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
702 if (vmstat_item_in_bytes(idx))
703 threshold <<= PAGE_SHIFT;
705 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
706 if (unlikely(abs(x) > threshold)) {
707 pg_data_t *pgdat = lruvec_pgdat(lruvec);
708 struct mem_cgroup_per_node *pi;
710 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
711 atomic_long_add(x, &pi->lruvec_stat[idx]);
714 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
718 * __mod_lruvec_state - update lruvec memory statistics
719 * @lruvec: the lruvec
720 * @idx: the stat item
721 * @val: delta to add to the counter, can be negative
723 * The lruvec is the intersection of the NUMA node and a cgroup. This
724 * function updates the all three counters that are affected by a
725 * change of state at this level: per-node, per-cgroup, per-lruvec.
727 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
731 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
733 /* Update memcg and lruvec */
734 if (!mem_cgroup_disabled())
735 __mod_memcg_lruvec_state(lruvec, idx, val);
738 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
741 struct page *head = compound_head(page); /* rmap on tail pages */
742 struct mem_cgroup *memcg;
743 pg_data_t *pgdat = page_pgdat(page);
744 struct lruvec *lruvec;
747 memcg = page_memcg(head);
748 /* Untracked pages have no memcg, no lruvec. Update only the node */
751 __mod_node_page_state(pgdat, idx, val);
755 lruvec = mem_cgroup_lruvec(memcg, pgdat);
756 __mod_lruvec_state(lruvec, idx, val);
759 EXPORT_SYMBOL(__mod_lruvec_page_state);
761 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
763 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
764 struct mem_cgroup *memcg;
765 struct lruvec *lruvec;
768 memcg = mem_cgroup_from_obj(p);
771 * Untracked pages have no memcg, no lruvec. Update only the
772 * node. If we reparent the slab objects to the root memcg,
773 * when we free the slab object, we need to update the per-memcg
774 * vmstats to keep it correct for the root memcg.
777 __mod_node_page_state(pgdat, idx, val);
779 lruvec = mem_cgroup_lruvec(memcg, pgdat);
780 __mod_lruvec_state(lruvec, idx, val);
786 * mod_objcg_mlstate() may be called with irq enabled, so
787 * mod_memcg_lruvec_state() should be used.
789 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
790 struct pglist_data *pgdat,
791 enum node_stat_item idx, int nr)
793 struct mem_cgroup *memcg;
794 struct lruvec *lruvec;
797 memcg = obj_cgroup_memcg(objcg);
798 lruvec = mem_cgroup_lruvec(memcg, pgdat);
799 mod_memcg_lruvec_state(lruvec, idx, nr);
804 * __count_memcg_events - account VM events in a cgroup
805 * @memcg: the memory cgroup
806 * @idx: the event item
807 * @count: the number of events that occurred
809 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
812 if (mem_cgroup_disabled())
815 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
816 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
819 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821 return READ_ONCE(memcg->vmstats.events[event]);
824 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
829 for_each_possible_cpu(cpu)
830 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
834 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
838 /* pagein of a big page is an event. So, ignore page size */
840 __count_memcg_events(memcg, PGPGIN, 1);
842 __count_memcg_events(memcg, PGPGOUT, 1);
843 nr_pages = -nr_pages; /* for event */
846 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
849 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
850 enum mem_cgroup_events_target target)
852 unsigned long val, next;
854 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
855 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
856 /* from time_after() in jiffies.h */
857 if ((long)(next - val) < 0) {
859 case MEM_CGROUP_TARGET_THRESH:
860 next = val + THRESHOLDS_EVENTS_TARGET;
862 case MEM_CGROUP_TARGET_SOFTLIMIT:
863 next = val + SOFTLIMIT_EVENTS_TARGET;
868 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
875 * Check events in order.
878 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
880 /* threshold event is triggered in finer grain than soft limit */
881 if (unlikely(mem_cgroup_event_ratelimit(memcg,
882 MEM_CGROUP_TARGET_THRESH))) {
885 do_softlimit = mem_cgroup_event_ratelimit(memcg,
886 MEM_CGROUP_TARGET_SOFTLIMIT);
887 mem_cgroup_threshold(memcg);
888 if (unlikely(do_softlimit))
889 mem_cgroup_update_tree(memcg, page);
893 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
896 * mm_update_next_owner() may clear mm->owner to NULL
897 * if it races with swapoff, page migration, etc.
898 * So this can be called with p == NULL.
903 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
905 EXPORT_SYMBOL(mem_cgroup_from_task);
908 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
909 * @mm: mm from which memcg should be extracted. It can be NULL.
911 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
912 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
915 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
917 struct mem_cgroup *memcg;
919 if (mem_cgroup_disabled())
923 * Page cache insertions can happen without an
924 * actual mm context, e.g. during disk probing
925 * on boot, loopback IO, acct() writes etc.
927 * No need to css_get on root memcg as the reference
928 * counting is disabled on the root level in the
929 * cgroup core. See CSS_NO_REF.
932 return root_mem_cgroup;
936 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
937 if (unlikely(!memcg))
938 memcg = root_mem_cgroup;
939 } while (!css_tryget(&memcg->css));
943 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
945 static __always_inline struct mem_cgroup *active_memcg(void)
948 return this_cpu_read(int_active_memcg);
950 return current->active_memcg;
953 static __always_inline bool memcg_kmem_bypass(void)
955 /* Allow remote memcg charging from any context. */
956 if (unlikely(active_memcg()))
959 /* Memcg to charge can't be determined. */
960 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
967 * mem_cgroup_iter - iterate over memory cgroup hierarchy
968 * @root: hierarchy root
969 * @prev: previously returned memcg, NULL on first invocation
970 * @reclaim: cookie for shared reclaim walks, NULL for full walks
972 * Returns references to children of the hierarchy below @root, or
973 * @root itself, or %NULL after a full round-trip.
975 * Caller must pass the return value in @prev on subsequent
976 * invocations for reference counting, or use mem_cgroup_iter_break()
977 * to cancel a hierarchy walk before the round-trip is complete.
979 * Reclaimers can specify a node in @reclaim to divide up the memcgs
980 * in the hierarchy among all concurrent reclaimers operating on the
983 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
984 struct mem_cgroup *prev,
985 struct mem_cgroup_reclaim_cookie *reclaim)
987 struct mem_cgroup_reclaim_iter *iter;
988 struct cgroup_subsys_state *css = NULL;
989 struct mem_cgroup *memcg = NULL;
990 struct mem_cgroup *pos = NULL;
992 if (mem_cgroup_disabled())
996 root = root_mem_cgroup;
998 if (prev && !reclaim)
1004 struct mem_cgroup_per_node *mz;
1006 mz = root->nodeinfo[reclaim->pgdat->node_id];
1009 if (prev && reclaim->generation != iter->generation)
1013 pos = READ_ONCE(iter->position);
1014 if (!pos || css_tryget(&pos->css))
1017 * css reference reached zero, so iter->position will
1018 * be cleared by ->css_released. However, we should not
1019 * rely on this happening soon, because ->css_released
1020 * is called from a work queue, and by busy-waiting we
1021 * might block it. So we clear iter->position right
1024 (void)cmpxchg(&iter->position, pos, NULL);
1032 css = css_next_descendant_pre(css, &root->css);
1035 * Reclaimers share the hierarchy walk, and a
1036 * new one might jump in right at the end of
1037 * the hierarchy - make sure they see at least
1038 * one group and restart from the beginning.
1046 * Verify the css and acquire a reference. The root
1047 * is provided by the caller, so we know it's alive
1048 * and kicking, and don't take an extra reference.
1050 memcg = mem_cgroup_from_css(css);
1052 if (css == &root->css)
1055 if (css_tryget(css))
1063 * The position could have already been updated by a competing
1064 * thread, so check that the value hasn't changed since we read
1065 * it to avoid reclaiming from the same cgroup twice.
1067 (void)cmpxchg(&iter->position, pos, memcg);
1075 reclaim->generation = iter->generation;
1080 if (prev && prev != root)
1081 css_put(&prev->css);
1087 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1088 * @root: hierarchy root
1089 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1091 void mem_cgroup_iter_break(struct mem_cgroup *root,
1092 struct mem_cgroup *prev)
1095 root = root_mem_cgroup;
1096 if (prev && prev != root)
1097 css_put(&prev->css);
1100 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1101 struct mem_cgroup *dead_memcg)
1103 struct mem_cgroup_reclaim_iter *iter;
1104 struct mem_cgroup_per_node *mz;
1107 for_each_node(nid) {
1108 mz = from->nodeinfo[nid];
1110 cmpxchg(&iter->position, dead_memcg, NULL);
1114 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1116 struct mem_cgroup *memcg = dead_memcg;
1117 struct mem_cgroup *last;
1120 __invalidate_reclaim_iterators(memcg, dead_memcg);
1122 } while ((memcg = parent_mem_cgroup(memcg)));
1125 * When cgruop1 non-hierarchy mode is used,
1126 * parent_mem_cgroup() does not walk all the way up to the
1127 * cgroup root (root_mem_cgroup). So we have to handle
1128 * dead_memcg from cgroup root separately.
1130 if (last != root_mem_cgroup)
1131 __invalidate_reclaim_iterators(root_mem_cgroup,
1136 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1137 * @memcg: hierarchy root
1138 * @fn: function to call for each task
1139 * @arg: argument passed to @fn
1141 * This function iterates over tasks attached to @memcg or to any of its
1142 * descendants and calls @fn for each task. If @fn returns a non-zero
1143 * value, the function breaks the iteration loop and returns the value.
1144 * Otherwise, it will iterate over all tasks and return 0.
1146 * This function must not be called for the root memory cgroup.
1148 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1149 int (*fn)(struct task_struct *, void *), void *arg)
1151 struct mem_cgroup *iter;
1154 BUG_ON(memcg == root_mem_cgroup);
1156 for_each_mem_cgroup_tree(iter, memcg) {
1157 struct css_task_iter it;
1158 struct task_struct *task;
1160 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1161 while (!ret && (task = css_task_iter_next(&it)))
1162 ret = fn(task, arg);
1163 css_task_iter_end(&it);
1165 mem_cgroup_iter_break(memcg, iter);
1172 #ifdef CONFIG_DEBUG_VM
1173 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1175 struct mem_cgroup *memcg;
1177 if (mem_cgroup_disabled())
1180 memcg = page_memcg(page);
1183 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1185 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1190 * lock_page_lruvec - lock and return lruvec for a given page.
1193 * These functions are safe to use under any of the following conditions:
1196 * - lock_page_memcg()
1197 * - page->_refcount is zero
1199 struct lruvec *lock_page_lruvec(struct page *page)
1201 struct lruvec *lruvec;
1203 lruvec = mem_cgroup_page_lruvec(page);
1204 spin_lock(&lruvec->lru_lock);
1206 lruvec_memcg_debug(lruvec, page);
1211 struct lruvec *lock_page_lruvec_irq(struct page *page)
1213 struct lruvec *lruvec;
1215 lruvec = mem_cgroup_page_lruvec(page);
1216 spin_lock_irq(&lruvec->lru_lock);
1218 lruvec_memcg_debug(lruvec, page);
1223 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1225 struct lruvec *lruvec;
1227 lruvec = mem_cgroup_page_lruvec(page);
1228 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1230 lruvec_memcg_debug(lruvec, page);
1236 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1237 * @lruvec: mem_cgroup per zone lru vector
1238 * @lru: index of lru list the page is sitting on
1239 * @zid: zone id of the accounted pages
1240 * @nr_pages: positive when adding or negative when removing
1242 * This function must be called under lru_lock, just before a page is added
1243 * to or just after a page is removed from an lru list (that ordering being
1244 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1246 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1247 int zid, int nr_pages)
1249 struct mem_cgroup_per_node *mz;
1250 unsigned long *lru_size;
1253 if (mem_cgroup_disabled())
1256 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1257 lru_size = &mz->lru_zone_size[zid][lru];
1260 *lru_size += nr_pages;
1263 if (WARN_ONCE(size < 0,
1264 "%s(%p, %d, %d): lru_size %ld\n",
1265 __func__, lruvec, lru, nr_pages, size)) {
1271 *lru_size += nr_pages;
1275 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1276 * @memcg: the memory cgroup
1278 * Returns the maximum amount of memory @mem can be charged with, in
1281 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1283 unsigned long margin = 0;
1284 unsigned long count;
1285 unsigned long limit;
1287 count = page_counter_read(&memcg->memory);
1288 limit = READ_ONCE(memcg->memory.max);
1290 margin = limit - count;
1292 if (do_memsw_account()) {
1293 count = page_counter_read(&memcg->memsw);
1294 limit = READ_ONCE(memcg->memsw.max);
1296 margin = min(margin, limit - count);
1305 * A routine for checking "mem" is under move_account() or not.
1307 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1308 * moving cgroups. This is for waiting at high-memory pressure
1311 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1313 struct mem_cgroup *from;
1314 struct mem_cgroup *to;
1317 * Unlike task_move routines, we access mc.to, mc.from not under
1318 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1320 spin_lock(&mc.lock);
1326 ret = mem_cgroup_is_descendant(from, memcg) ||
1327 mem_cgroup_is_descendant(to, memcg);
1329 spin_unlock(&mc.lock);
1333 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1335 if (mc.moving_task && current != mc.moving_task) {
1336 if (mem_cgroup_under_move(memcg)) {
1338 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1339 /* moving charge context might have finished. */
1342 finish_wait(&mc.waitq, &wait);
1349 struct memory_stat {
1354 static const struct memory_stat memory_stats[] = {
1355 { "anon", NR_ANON_MAPPED },
1356 { "file", NR_FILE_PAGES },
1357 { "kernel_stack", NR_KERNEL_STACK_KB },
1358 { "pagetables", NR_PAGETABLE },
1359 { "percpu", MEMCG_PERCPU_B },
1360 { "sock", MEMCG_SOCK },
1361 { "shmem", NR_SHMEM },
1362 { "file_mapped", NR_FILE_MAPPED },
1363 { "file_dirty", NR_FILE_DIRTY },
1364 { "file_writeback", NR_WRITEBACK },
1366 { "swapcached", NR_SWAPCACHE },
1368 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1369 { "anon_thp", NR_ANON_THPS },
1370 { "file_thp", NR_FILE_THPS },
1371 { "shmem_thp", NR_SHMEM_THPS },
1373 { "inactive_anon", NR_INACTIVE_ANON },
1374 { "active_anon", NR_ACTIVE_ANON },
1375 { "inactive_file", NR_INACTIVE_FILE },
1376 { "active_file", NR_ACTIVE_FILE },
1377 { "unevictable", NR_UNEVICTABLE },
1378 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1379 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1381 /* The memory events */
1382 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1383 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1384 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1385 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1386 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1387 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1388 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1391 /* Translate stat items to the correct unit for memory.stat output */
1392 static int memcg_page_state_unit(int item)
1395 case MEMCG_PERCPU_B:
1396 case NR_SLAB_RECLAIMABLE_B:
1397 case NR_SLAB_UNRECLAIMABLE_B:
1398 case WORKINGSET_REFAULT_ANON:
1399 case WORKINGSET_REFAULT_FILE:
1400 case WORKINGSET_ACTIVATE_ANON:
1401 case WORKINGSET_ACTIVATE_FILE:
1402 case WORKINGSET_RESTORE_ANON:
1403 case WORKINGSET_RESTORE_FILE:
1404 case WORKINGSET_NODERECLAIM:
1406 case NR_KERNEL_STACK_KB:
1413 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1416 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1419 static char *memory_stat_format(struct mem_cgroup *memcg)
1424 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1429 * Provide statistics on the state of the memory subsystem as
1430 * well as cumulative event counters that show past behavior.
1432 * This list is ordered following a combination of these gradients:
1433 * 1) generic big picture -> specifics and details
1434 * 2) reflecting userspace activity -> reflecting kernel heuristics
1436 * Current memory state:
1438 cgroup_rstat_flush(memcg->css.cgroup);
1440 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1443 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1444 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1446 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1447 size += memcg_page_state_output(memcg,
1448 NR_SLAB_RECLAIMABLE_B);
1449 seq_buf_printf(&s, "slab %llu\n", size);
1453 /* Accumulated memory events */
1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1456 memcg_events(memcg, PGFAULT));
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1458 memcg_events(memcg, PGMAJFAULT));
1459 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1460 memcg_events(memcg, PGREFILL));
1461 seq_buf_printf(&s, "pgscan %lu\n",
1462 memcg_events(memcg, PGSCAN_KSWAPD) +
1463 memcg_events(memcg, PGSCAN_DIRECT));
1464 seq_buf_printf(&s, "pgsteal %lu\n",
1465 memcg_events(memcg, PGSTEAL_KSWAPD) +
1466 memcg_events(memcg, PGSTEAL_DIRECT));
1467 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1468 memcg_events(memcg, PGACTIVATE));
1469 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1470 memcg_events(memcg, PGDEACTIVATE));
1471 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1472 memcg_events(memcg, PGLAZYFREE));
1473 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1474 memcg_events(memcg, PGLAZYFREED));
1476 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1477 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1478 memcg_events(memcg, THP_FAULT_ALLOC));
1479 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1480 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1483 /* The above should easily fit into one page */
1484 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1489 #define K(x) ((x) << (PAGE_SHIFT-10))
1491 * mem_cgroup_print_oom_context: Print OOM information relevant to
1492 * memory controller.
1493 * @memcg: The memory cgroup that went over limit
1494 * @p: Task that is going to be killed
1496 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1499 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1504 pr_cont(",oom_memcg=");
1505 pr_cont_cgroup_path(memcg->css.cgroup);
1507 pr_cont(",global_oom");
1509 pr_cont(",task_memcg=");
1510 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1516 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1517 * memory controller.
1518 * @memcg: The memory cgroup that went over limit
1520 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1524 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525 K((u64)page_counter_read(&memcg->memory)),
1526 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1527 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1528 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1529 K((u64)page_counter_read(&memcg->swap)),
1530 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1532 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 K((u64)page_counter_read(&memcg->memsw)),
1534 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1535 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->kmem)),
1537 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1540 pr_info("Memory cgroup stats for ");
1541 pr_cont_cgroup_path(memcg->css.cgroup);
1543 buf = memory_stat_format(memcg);
1551 * Return the memory (and swap, if configured) limit for a memcg.
1553 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1555 unsigned long max = READ_ONCE(memcg->memory.max);
1557 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1558 if (mem_cgroup_swappiness(memcg))
1559 max += min(READ_ONCE(memcg->swap.max),
1560 (unsigned long)total_swap_pages);
1562 if (mem_cgroup_swappiness(memcg)) {
1563 /* Calculate swap excess capacity from memsw limit */
1564 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1566 max += min(swap, (unsigned long)total_swap_pages);
1572 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1574 return page_counter_read(&memcg->memory);
1577 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1580 struct oom_control oc = {
1584 .gfp_mask = gfp_mask,
1589 if (mutex_lock_killable(&oom_lock))
1592 if (mem_cgroup_margin(memcg) >= (1 << order))
1596 * A few threads which were not waiting at mutex_lock_killable() can
1597 * fail to bail out. Therefore, check again after holding oom_lock.
1599 ret = should_force_charge() || out_of_memory(&oc);
1602 mutex_unlock(&oom_lock);
1606 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1609 unsigned long *total_scanned)
1611 struct mem_cgroup *victim = NULL;
1614 unsigned long excess;
1615 unsigned long nr_scanned;
1616 struct mem_cgroup_reclaim_cookie reclaim = {
1620 excess = soft_limit_excess(root_memcg);
1623 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1628 * If we have not been able to reclaim
1629 * anything, it might because there are
1630 * no reclaimable pages under this hierarchy
1635 * We want to do more targeted reclaim.
1636 * excess >> 2 is not to excessive so as to
1637 * reclaim too much, nor too less that we keep
1638 * coming back to reclaim from this cgroup
1640 if (total >= (excess >> 2) ||
1641 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1646 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1647 pgdat, &nr_scanned);
1648 *total_scanned += nr_scanned;
1649 if (!soft_limit_excess(root_memcg))
1652 mem_cgroup_iter_break(root_memcg, victim);
1656 #ifdef CONFIG_LOCKDEP
1657 static struct lockdep_map memcg_oom_lock_dep_map = {
1658 .name = "memcg_oom_lock",
1662 static DEFINE_SPINLOCK(memcg_oom_lock);
1665 * Check OOM-Killer is already running under our hierarchy.
1666 * If someone is running, return false.
1668 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1670 struct mem_cgroup *iter, *failed = NULL;
1672 spin_lock(&memcg_oom_lock);
1674 for_each_mem_cgroup_tree(iter, memcg) {
1675 if (iter->oom_lock) {
1677 * this subtree of our hierarchy is already locked
1678 * so we cannot give a lock.
1681 mem_cgroup_iter_break(memcg, iter);
1684 iter->oom_lock = true;
1689 * OK, we failed to lock the whole subtree so we have
1690 * to clean up what we set up to the failing subtree
1692 for_each_mem_cgroup_tree(iter, memcg) {
1693 if (iter == failed) {
1694 mem_cgroup_iter_break(memcg, iter);
1697 iter->oom_lock = false;
1700 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1702 spin_unlock(&memcg_oom_lock);
1707 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1709 struct mem_cgroup *iter;
1711 spin_lock(&memcg_oom_lock);
1712 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1713 for_each_mem_cgroup_tree(iter, memcg)
1714 iter->oom_lock = false;
1715 spin_unlock(&memcg_oom_lock);
1718 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1720 struct mem_cgroup *iter;
1722 spin_lock(&memcg_oom_lock);
1723 for_each_mem_cgroup_tree(iter, memcg)
1725 spin_unlock(&memcg_oom_lock);
1728 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1730 struct mem_cgroup *iter;
1733 * Be careful about under_oom underflows because a child memcg
1734 * could have been added after mem_cgroup_mark_under_oom.
1736 spin_lock(&memcg_oom_lock);
1737 for_each_mem_cgroup_tree(iter, memcg)
1738 if (iter->under_oom > 0)
1740 spin_unlock(&memcg_oom_lock);
1743 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1745 struct oom_wait_info {
1746 struct mem_cgroup *memcg;
1747 wait_queue_entry_t wait;
1750 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1751 unsigned mode, int sync, void *arg)
1753 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1754 struct mem_cgroup *oom_wait_memcg;
1755 struct oom_wait_info *oom_wait_info;
1757 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1758 oom_wait_memcg = oom_wait_info->memcg;
1760 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1761 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1763 return autoremove_wake_function(wait, mode, sync, arg);
1766 static void memcg_oom_recover(struct mem_cgroup *memcg)
1769 * For the following lockless ->under_oom test, the only required
1770 * guarantee is that it must see the state asserted by an OOM when
1771 * this function is called as a result of userland actions
1772 * triggered by the notification of the OOM. This is trivially
1773 * achieved by invoking mem_cgroup_mark_under_oom() before
1774 * triggering notification.
1776 if (memcg && memcg->under_oom)
1777 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1787 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1789 enum oom_status ret;
1792 if (order > PAGE_ALLOC_COSTLY_ORDER)
1795 memcg_memory_event(memcg, MEMCG_OOM);
1798 * We are in the middle of the charge context here, so we
1799 * don't want to block when potentially sitting on a callstack
1800 * that holds all kinds of filesystem and mm locks.
1802 * cgroup1 allows disabling the OOM killer and waiting for outside
1803 * handling until the charge can succeed; remember the context and put
1804 * the task to sleep at the end of the page fault when all locks are
1807 * On the other hand, in-kernel OOM killer allows for an async victim
1808 * memory reclaim (oom_reaper) and that means that we are not solely
1809 * relying on the oom victim to make a forward progress and we can
1810 * invoke the oom killer here.
1812 * Please note that mem_cgroup_out_of_memory might fail to find a
1813 * victim and then we have to bail out from the charge path.
1815 if (memcg->oom_kill_disable) {
1816 if (!current->in_user_fault)
1818 css_get(&memcg->css);
1819 current->memcg_in_oom = memcg;
1820 current->memcg_oom_gfp_mask = mask;
1821 current->memcg_oom_order = order;
1826 mem_cgroup_mark_under_oom(memcg);
1828 locked = mem_cgroup_oom_trylock(memcg);
1831 mem_cgroup_oom_notify(memcg);
1833 mem_cgroup_unmark_under_oom(memcg);
1834 if (mem_cgroup_out_of_memory(memcg, mask, order))
1840 mem_cgroup_oom_unlock(memcg);
1846 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1847 * @handle: actually kill/wait or just clean up the OOM state
1849 * This has to be called at the end of a page fault if the memcg OOM
1850 * handler was enabled.
1852 * Memcg supports userspace OOM handling where failed allocations must
1853 * sleep on a waitqueue until the userspace task resolves the
1854 * situation. Sleeping directly in the charge context with all kinds
1855 * of locks held is not a good idea, instead we remember an OOM state
1856 * in the task and mem_cgroup_oom_synchronize() has to be called at
1857 * the end of the page fault to complete the OOM handling.
1859 * Returns %true if an ongoing memcg OOM situation was detected and
1860 * completed, %false otherwise.
1862 bool mem_cgroup_oom_synchronize(bool handle)
1864 struct mem_cgroup *memcg = current->memcg_in_oom;
1865 struct oom_wait_info owait;
1868 /* OOM is global, do not handle */
1875 owait.memcg = memcg;
1876 owait.wait.flags = 0;
1877 owait.wait.func = memcg_oom_wake_function;
1878 owait.wait.private = current;
1879 INIT_LIST_HEAD(&owait.wait.entry);
1881 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1882 mem_cgroup_mark_under_oom(memcg);
1884 locked = mem_cgroup_oom_trylock(memcg);
1887 mem_cgroup_oom_notify(memcg);
1889 if (locked && !memcg->oom_kill_disable) {
1890 mem_cgroup_unmark_under_oom(memcg);
1891 finish_wait(&memcg_oom_waitq, &owait.wait);
1892 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1893 current->memcg_oom_order);
1896 mem_cgroup_unmark_under_oom(memcg);
1897 finish_wait(&memcg_oom_waitq, &owait.wait);
1901 mem_cgroup_oom_unlock(memcg);
1903 * There is no guarantee that an OOM-lock contender
1904 * sees the wakeups triggered by the OOM kill
1905 * uncharges. Wake any sleepers explicitly.
1907 memcg_oom_recover(memcg);
1910 current->memcg_in_oom = NULL;
1911 css_put(&memcg->css);
1916 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1917 * @victim: task to be killed by the OOM killer
1918 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1920 * Returns a pointer to a memory cgroup, which has to be cleaned up
1921 * by killing all belonging OOM-killable tasks.
1923 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1925 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1926 struct mem_cgroup *oom_domain)
1928 struct mem_cgroup *oom_group = NULL;
1929 struct mem_cgroup *memcg;
1931 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1935 oom_domain = root_mem_cgroup;
1939 memcg = mem_cgroup_from_task(victim);
1940 if (memcg == root_mem_cgroup)
1944 * If the victim task has been asynchronously moved to a different
1945 * memory cgroup, we might end up killing tasks outside oom_domain.
1946 * In this case it's better to ignore memory.group.oom.
1948 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1952 * Traverse the memory cgroup hierarchy from the victim task's
1953 * cgroup up to the OOMing cgroup (or root) to find the
1954 * highest-level memory cgroup with oom.group set.
1956 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1957 if (memcg->oom_group)
1960 if (memcg == oom_domain)
1965 css_get(&oom_group->css);
1972 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1974 pr_info("Tasks in ");
1975 pr_cont_cgroup_path(memcg->css.cgroup);
1976 pr_cont(" are going to be killed due to memory.oom.group set\n");
1980 * lock_page_memcg - lock a page and memcg binding
1983 * This function protects unlocked LRU pages from being moved to
1986 * It ensures lifetime of the locked memcg. Caller is responsible
1987 * for the lifetime of the page.
1989 void lock_page_memcg(struct page *page)
1991 struct page *head = compound_head(page); /* rmap on tail pages */
1992 struct mem_cgroup *memcg;
1993 unsigned long flags;
1996 * The RCU lock is held throughout the transaction. The fast
1997 * path can get away without acquiring the memcg->move_lock
1998 * because page moving starts with an RCU grace period.
2002 if (mem_cgroup_disabled())
2005 memcg = page_memcg(head);
2006 if (unlikely(!memcg))
2009 #ifdef CONFIG_PROVE_LOCKING
2010 local_irq_save(flags);
2011 might_lock(&memcg->move_lock);
2012 local_irq_restore(flags);
2015 if (atomic_read(&memcg->moving_account) <= 0)
2018 spin_lock_irqsave(&memcg->move_lock, flags);
2019 if (memcg != page_memcg(head)) {
2020 spin_unlock_irqrestore(&memcg->move_lock, flags);
2025 * When charge migration first begins, we can have multiple
2026 * critical sections holding the fast-path RCU lock and one
2027 * holding the slowpath move_lock. Track the task who has the
2028 * move_lock for unlock_page_memcg().
2030 memcg->move_lock_task = current;
2031 memcg->move_lock_flags = flags;
2033 EXPORT_SYMBOL(lock_page_memcg);
2035 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2037 if (memcg && memcg->move_lock_task == current) {
2038 unsigned long flags = memcg->move_lock_flags;
2040 memcg->move_lock_task = NULL;
2041 memcg->move_lock_flags = 0;
2043 spin_unlock_irqrestore(&memcg->move_lock, flags);
2050 * unlock_page_memcg - unlock a page and memcg binding
2053 void unlock_page_memcg(struct page *page)
2055 struct page *head = compound_head(page);
2057 __unlock_page_memcg(page_memcg(head));
2059 EXPORT_SYMBOL(unlock_page_memcg);
2062 #ifdef CONFIG_MEMCG_KMEM
2063 struct obj_cgroup *cached_objcg;
2064 struct pglist_data *cached_pgdat;
2065 unsigned int nr_bytes;
2066 int nr_slab_reclaimable_b;
2067 int nr_slab_unreclaimable_b;
2073 struct memcg_stock_pcp {
2074 struct mem_cgroup *cached; /* this never be root cgroup */
2075 unsigned int nr_pages;
2076 struct obj_stock task_obj;
2077 struct obj_stock irq_obj;
2079 struct work_struct work;
2080 unsigned long flags;
2081 #define FLUSHING_CACHED_CHARGE 0
2083 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2084 static DEFINE_MUTEX(percpu_charge_mutex);
2086 #ifdef CONFIG_MEMCG_KMEM
2087 static void drain_obj_stock(struct obj_stock *stock);
2088 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2089 struct mem_cgroup *root_memcg);
2092 static inline void drain_obj_stock(struct obj_stock *stock)
2095 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2096 struct mem_cgroup *root_memcg)
2103 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2104 * sequence used in this case to access content from object stock is slow.
2105 * To optimize for user context access, there are now two object stocks for
2106 * task context and interrupt context access respectively.
2108 * The task context object stock can be accessed by disabling preemption only
2109 * which is cheap in non-preempt kernel. The interrupt context object stock
2110 * can only be accessed after disabling interrupt. User context code can
2111 * access interrupt object stock, but not vice versa.
2113 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2115 struct memcg_stock_pcp *stock;
2117 if (likely(in_task())) {
2120 stock = this_cpu_ptr(&memcg_stock);
2121 return &stock->task_obj;
2124 local_irq_save(*pflags);
2125 stock = this_cpu_ptr(&memcg_stock);
2126 return &stock->irq_obj;
2129 static inline void put_obj_stock(unsigned long flags)
2131 if (likely(in_task()))
2134 local_irq_restore(flags);
2138 * consume_stock: Try to consume stocked charge on this cpu.
2139 * @memcg: memcg to consume from.
2140 * @nr_pages: how many pages to charge.
2142 * The charges will only happen if @memcg matches the current cpu's memcg
2143 * stock, and at least @nr_pages are available in that stock. Failure to
2144 * service an allocation will refill the stock.
2146 * returns true if successful, false otherwise.
2148 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2150 struct memcg_stock_pcp *stock;
2151 unsigned long flags;
2154 if (nr_pages > MEMCG_CHARGE_BATCH)
2157 local_irq_save(flags);
2159 stock = this_cpu_ptr(&memcg_stock);
2160 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2161 stock->nr_pages -= nr_pages;
2165 local_irq_restore(flags);
2171 * Returns stocks cached in percpu and reset cached information.
2173 static void drain_stock(struct memcg_stock_pcp *stock)
2175 struct mem_cgroup *old = stock->cached;
2180 if (stock->nr_pages) {
2181 page_counter_uncharge(&old->memory, stock->nr_pages);
2182 if (do_memsw_account())
2183 page_counter_uncharge(&old->memsw, stock->nr_pages);
2184 stock->nr_pages = 0;
2188 stock->cached = NULL;
2191 static void drain_local_stock(struct work_struct *dummy)
2193 struct memcg_stock_pcp *stock;
2194 unsigned long flags;
2197 * The only protection from memory hotplug vs. drain_stock races is
2198 * that we always operate on local CPU stock here with IRQ disabled
2200 local_irq_save(flags);
2202 stock = this_cpu_ptr(&memcg_stock);
2203 drain_obj_stock(&stock->irq_obj);
2205 drain_obj_stock(&stock->task_obj);
2207 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2209 local_irq_restore(flags);
2213 * Cache charges(val) to local per_cpu area.
2214 * This will be consumed by consume_stock() function, later.
2216 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2218 struct memcg_stock_pcp *stock;
2219 unsigned long flags;
2221 local_irq_save(flags);
2223 stock = this_cpu_ptr(&memcg_stock);
2224 if (stock->cached != memcg) { /* reset if necessary */
2226 css_get(&memcg->css);
2227 stock->cached = memcg;
2229 stock->nr_pages += nr_pages;
2231 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2234 local_irq_restore(flags);
2238 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2239 * of the hierarchy under it.
2241 static void drain_all_stock(struct mem_cgroup *root_memcg)
2245 /* If someone's already draining, avoid adding running more workers. */
2246 if (!mutex_trylock(&percpu_charge_mutex))
2249 * Notify other cpus that system-wide "drain" is running
2250 * We do not care about races with the cpu hotplug because cpu down
2251 * as well as workers from this path always operate on the local
2252 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2255 for_each_online_cpu(cpu) {
2256 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2257 struct mem_cgroup *memcg;
2261 memcg = stock->cached;
2262 if (memcg && stock->nr_pages &&
2263 mem_cgroup_is_descendant(memcg, root_memcg))
2265 if (obj_stock_flush_required(stock, root_memcg))
2270 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2272 drain_local_stock(&stock->work);
2274 schedule_work_on(cpu, &stock->work);
2278 mutex_unlock(&percpu_charge_mutex);
2281 static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2285 for_each_node(nid) {
2286 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2287 unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2288 struct batched_lruvec_stat *lstatc;
2291 lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2292 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2293 stat[i] = lstatc->count[i];
2294 lstatc->count[i] = 0;
2298 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2299 atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2300 } while ((pn = parent_nodeinfo(pn, nid)));
2304 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2306 struct memcg_stock_pcp *stock;
2307 struct mem_cgroup *memcg;
2309 stock = &per_cpu(memcg_stock, cpu);
2312 for_each_mem_cgroup(memcg)
2313 memcg_flush_lruvec_page_state(memcg, cpu);
2318 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2319 unsigned int nr_pages,
2322 unsigned long nr_reclaimed = 0;
2325 unsigned long pflags;
2327 if (page_counter_read(&memcg->memory) <=
2328 READ_ONCE(memcg->memory.high))
2331 memcg_memory_event(memcg, MEMCG_HIGH);
2333 psi_memstall_enter(&pflags);
2334 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2336 psi_memstall_leave(&pflags);
2337 } while ((memcg = parent_mem_cgroup(memcg)) &&
2338 !mem_cgroup_is_root(memcg));
2340 return nr_reclaimed;
2343 static void high_work_func(struct work_struct *work)
2345 struct mem_cgroup *memcg;
2347 memcg = container_of(work, struct mem_cgroup, high_work);
2348 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2352 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2353 * enough to still cause a significant slowdown in most cases, while still
2354 * allowing diagnostics and tracing to proceed without becoming stuck.
2356 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2359 * When calculating the delay, we use these either side of the exponentiation to
2360 * maintain precision and scale to a reasonable number of jiffies (see the table
2363 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2364 * overage ratio to a delay.
2365 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2366 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2367 * to produce a reasonable delay curve.
2369 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2370 * reasonable delay curve compared to precision-adjusted overage, not
2371 * penalising heavily at first, but still making sure that growth beyond the
2372 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2373 * example, with a high of 100 megabytes:
2375 * +-------+------------------------+
2376 * | usage | time to allocate in ms |
2377 * +-------+------------------------+
2399 * +-------+------------------------+
2401 #define MEMCG_DELAY_PRECISION_SHIFT 20
2402 #define MEMCG_DELAY_SCALING_SHIFT 14
2404 static u64 calculate_overage(unsigned long usage, unsigned long high)
2412 * Prevent division by 0 in overage calculation by acting as if
2413 * it was a threshold of 1 page
2415 high = max(high, 1UL);
2417 overage = usage - high;
2418 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2419 return div64_u64(overage, high);
2422 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2424 u64 overage, max_overage = 0;
2427 overage = calculate_overage(page_counter_read(&memcg->memory),
2428 READ_ONCE(memcg->memory.high));
2429 max_overage = max(overage, max_overage);
2430 } while ((memcg = parent_mem_cgroup(memcg)) &&
2431 !mem_cgroup_is_root(memcg));
2436 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2438 u64 overage, max_overage = 0;
2441 overage = calculate_overage(page_counter_read(&memcg->swap),
2442 READ_ONCE(memcg->swap.high));
2444 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2445 max_overage = max(overage, max_overage);
2446 } while ((memcg = parent_mem_cgroup(memcg)) &&
2447 !mem_cgroup_is_root(memcg));
2453 * Get the number of jiffies that we should penalise a mischievous cgroup which
2454 * is exceeding its memory.high by checking both it and its ancestors.
2456 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2457 unsigned int nr_pages,
2460 unsigned long penalty_jiffies;
2466 * We use overage compared to memory.high to calculate the number of
2467 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2468 * fairly lenient on small overages, and increasingly harsh when the
2469 * memcg in question makes it clear that it has no intention of stopping
2470 * its crazy behaviour, so we exponentially increase the delay based on
2473 penalty_jiffies = max_overage * max_overage * HZ;
2474 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2475 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2478 * Factor in the task's own contribution to the overage, such that four
2479 * N-sized allocations are throttled approximately the same as one
2480 * 4N-sized allocation.
2482 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2483 * larger the current charge patch is than that.
2485 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2489 * Scheduled by try_charge() to be executed from the userland return path
2490 * and reclaims memory over the high limit.
2492 void mem_cgroup_handle_over_high(void)
2494 unsigned long penalty_jiffies;
2495 unsigned long pflags;
2496 unsigned long nr_reclaimed;
2497 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2498 int nr_retries = MAX_RECLAIM_RETRIES;
2499 struct mem_cgroup *memcg;
2500 bool in_retry = false;
2502 if (likely(!nr_pages))
2505 memcg = get_mem_cgroup_from_mm(current->mm);
2506 current->memcg_nr_pages_over_high = 0;
2510 * The allocating task should reclaim at least the batch size, but for
2511 * subsequent retries we only want to do what's necessary to prevent oom
2512 * or breaching resource isolation.
2514 * This is distinct from memory.max or page allocator behaviour because
2515 * memory.high is currently batched, whereas memory.max and the page
2516 * allocator run every time an allocation is made.
2518 nr_reclaimed = reclaim_high(memcg,
2519 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2523 * memory.high is breached and reclaim is unable to keep up. Throttle
2524 * allocators proactively to slow down excessive growth.
2526 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2527 mem_find_max_overage(memcg));
2529 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2530 swap_find_max_overage(memcg));
2533 * Clamp the max delay per usermode return so as to still keep the
2534 * application moving forwards and also permit diagnostics, albeit
2537 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2540 * Don't sleep if the amount of jiffies this memcg owes us is so low
2541 * that it's not even worth doing, in an attempt to be nice to those who
2542 * go only a small amount over their memory.high value and maybe haven't
2543 * been aggressively reclaimed enough yet.
2545 if (penalty_jiffies <= HZ / 100)
2549 * If reclaim is making forward progress but we're still over
2550 * memory.high, we want to encourage that rather than doing allocator
2553 if (nr_reclaimed || nr_retries--) {
2559 * If we exit early, we're guaranteed to die (since
2560 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2561 * need to account for any ill-begotten jiffies to pay them off later.
2563 psi_memstall_enter(&pflags);
2564 schedule_timeout_killable(penalty_jiffies);
2565 psi_memstall_leave(&pflags);
2568 css_put(&memcg->css);
2571 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2572 unsigned int nr_pages)
2574 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2575 int nr_retries = MAX_RECLAIM_RETRIES;
2576 struct mem_cgroup *mem_over_limit;
2577 struct page_counter *counter;
2578 enum oom_status oom_status;
2579 unsigned long nr_reclaimed;
2580 bool may_swap = true;
2581 bool drained = false;
2582 unsigned long pflags;
2585 if (consume_stock(memcg, nr_pages))
2588 if (!do_memsw_account() ||
2589 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2590 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2592 if (do_memsw_account())
2593 page_counter_uncharge(&memcg->memsw, batch);
2594 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2596 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2600 if (batch > nr_pages) {
2606 * Memcg doesn't have a dedicated reserve for atomic
2607 * allocations. But like the global atomic pool, we need to
2608 * put the burden of reclaim on regular allocation requests
2609 * and let these go through as privileged allocations.
2611 if (gfp_mask & __GFP_ATOMIC)
2615 * Unlike in global OOM situations, memcg is not in a physical
2616 * memory shortage. Allow dying and OOM-killed tasks to
2617 * bypass the last charges so that they can exit quickly and
2618 * free their memory.
2620 if (unlikely(should_force_charge()))
2624 * Prevent unbounded recursion when reclaim operations need to
2625 * allocate memory. This might exceed the limits temporarily,
2626 * but we prefer facilitating memory reclaim and getting back
2627 * under the limit over triggering OOM kills in these cases.
2629 if (unlikely(current->flags & PF_MEMALLOC))
2632 if (unlikely(task_in_memcg_oom(current)))
2635 if (!gfpflags_allow_blocking(gfp_mask))
2638 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2640 psi_memstall_enter(&pflags);
2641 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2642 gfp_mask, may_swap);
2643 psi_memstall_leave(&pflags);
2645 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2649 drain_all_stock(mem_over_limit);
2654 if (gfp_mask & __GFP_NORETRY)
2657 * Even though the limit is exceeded at this point, reclaim
2658 * may have been able to free some pages. Retry the charge
2659 * before killing the task.
2661 * Only for regular pages, though: huge pages are rather
2662 * unlikely to succeed so close to the limit, and we fall back
2663 * to regular pages anyway in case of failure.
2665 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2668 * At task move, charge accounts can be doubly counted. So, it's
2669 * better to wait until the end of task_move if something is going on.
2671 if (mem_cgroup_wait_acct_move(mem_over_limit))
2677 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2680 if (fatal_signal_pending(current))
2684 * keep retrying as long as the memcg oom killer is able to make
2685 * a forward progress or bypass the charge if the oom killer
2686 * couldn't make any progress.
2688 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2689 get_order(nr_pages * PAGE_SIZE));
2690 switch (oom_status) {
2692 nr_retries = MAX_RECLAIM_RETRIES;
2700 if (!(gfp_mask & __GFP_NOFAIL))
2704 * The allocation either can't fail or will lead to more memory
2705 * being freed very soon. Allow memory usage go over the limit
2706 * temporarily by force charging it.
2708 page_counter_charge(&memcg->memory, nr_pages);
2709 if (do_memsw_account())
2710 page_counter_charge(&memcg->memsw, nr_pages);
2715 if (batch > nr_pages)
2716 refill_stock(memcg, batch - nr_pages);
2719 * If the hierarchy is above the normal consumption range, schedule
2720 * reclaim on returning to userland. We can perform reclaim here
2721 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2722 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2723 * not recorded as it most likely matches current's and won't
2724 * change in the meantime. As high limit is checked again before
2725 * reclaim, the cost of mismatch is negligible.
2728 bool mem_high, swap_high;
2730 mem_high = page_counter_read(&memcg->memory) >
2731 READ_ONCE(memcg->memory.high);
2732 swap_high = page_counter_read(&memcg->swap) >
2733 READ_ONCE(memcg->swap.high);
2735 /* Don't bother a random interrupted task */
2736 if (in_interrupt()) {
2738 schedule_work(&memcg->high_work);
2744 if (mem_high || swap_high) {
2746 * The allocating tasks in this cgroup will need to do
2747 * reclaim or be throttled to prevent further growth
2748 * of the memory or swap footprints.
2750 * Target some best-effort fairness between the tasks,
2751 * and distribute reclaim work and delay penalties
2752 * based on how much each task is actually allocating.
2754 current->memcg_nr_pages_over_high += batch;
2755 set_notify_resume(current);
2758 } while ((memcg = parent_mem_cgroup(memcg)));
2763 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2764 unsigned int nr_pages)
2766 if (mem_cgroup_is_root(memcg))
2769 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2772 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2773 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2775 if (mem_cgroup_is_root(memcg))
2778 page_counter_uncharge(&memcg->memory, nr_pages);
2779 if (do_memsw_account())
2780 page_counter_uncharge(&memcg->memsw, nr_pages);
2784 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2786 VM_BUG_ON_PAGE(page_memcg(page), page);
2788 * Any of the following ensures page's memcg stability:
2792 * - lock_page_memcg()
2793 * - exclusive reference
2795 page->memcg_data = (unsigned long)memcg;
2798 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2800 struct mem_cgroup *memcg;
2804 memcg = obj_cgroup_memcg(objcg);
2805 if (unlikely(!css_tryget(&memcg->css)))
2812 #ifdef CONFIG_MEMCG_KMEM
2814 * The allocated objcg pointers array is not accounted directly.
2815 * Moreover, it should not come from DMA buffer and is not readily
2816 * reclaimable. So those GFP bits should be masked off.
2818 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2820 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2821 gfp_t gfp, bool new_page)
2823 unsigned int objects = objs_per_slab_page(s, page);
2824 unsigned long memcg_data;
2827 gfp &= ~OBJCGS_CLEAR_MASK;
2828 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2833 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2836 * If the slab page is brand new and nobody can yet access
2837 * it's memcg_data, no synchronization is required and
2838 * memcg_data can be simply assigned.
2840 page->memcg_data = memcg_data;
2841 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2843 * If the slab page is already in use, somebody can allocate
2844 * and assign obj_cgroups in parallel. In this case the existing
2845 * objcg vector should be reused.
2851 kmemleak_not_leak(vec);
2856 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2858 * A passed kernel object can be a slab object or a generic kernel page, so
2859 * different mechanisms for getting the memory cgroup pointer should be used.
2860 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2861 * can not know for sure how the kernel object is implemented.
2862 * mem_cgroup_from_obj() can be safely used in such cases.
2864 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2865 * cgroup_mutex, etc.
2867 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2871 if (mem_cgroup_disabled())
2874 page = virt_to_head_page(p);
2877 * Slab objects are accounted individually, not per-page.
2878 * Memcg membership data for each individual object is saved in
2879 * the page->obj_cgroups.
2881 if (page_objcgs_check(page)) {
2882 struct obj_cgroup *objcg;
2885 off = obj_to_index(page->slab_cache, page, p);
2886 objcg = page_objcgs(page)[off];
2888 return obj_cgroup_memcg(objcg);
2894 * page_memcg_check() is used here, because page_has_obj_cgroups()
2895 * check above could fail because the object cgroups vector wasn't set
2896 * at that moment, but it can be set concurrently.
2897 * page_memcg_check(page) will guarantee that a proper memory
2898 * cgroup pointer or NULL will be returned.
2900 return page_memcg_check(page);
2903 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2905 struct obj_cgroup *objcg = NULL;
2906 struct mem_cgroup *memcg;
2908 if (memcg_kmem_bypass())
2912 if (unlikely(active_memcg()))
2913 memcg = active_memcg();
2915 memcg = mem_cgroup_from_task(current);
2917 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2918 objcg = rcu_dereference(memcg->objcg);
2919 if (objcg && obj_cgroup_tryget(objcg))
2928 static int memcg_alloc_cache_id(void)
2933 id = ida_simple_get(&memcg_cache_ida,
2934 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2938 if (id < memcg_nr_cache_ids)
2942 * There's no space for the new id in memcg_caches arrays,
2943 * so we have to grow them.
2945 down_write(&memcg_cache_ids_sem);
2947 size = 2 * (id + 1);
2948 if (size < MEMCG_CACHES_MIN_SIZE)
2949 size = MEMCG_CACHES_MIN_SIZE;
2950 else if (size > MEMCG_CACHES_MAX_SIZE)
2951 size = MEMCG_CACHES_MAX_SIZE;
2953 err = memcg_update_all_list_lrus(size);
2955 memcg_nr_cache_ids = size;
2957 up_write(&memcg_cache_ids_sem);
2960 ida_simple_remove(&memcg_cache_ida, id);
2966 static void memcg_free_cache_id(int id)
2968 ida_simple_remove(&memcg_cache_ida, id);
2972 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2973 * @objcg: object cgroup to uncharge
2974 * @nr_pages: number of pages to uncharge
2976 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2977 unsigned int nr_pages)
2979 struct mem_cgroup *memcg;
2981 memcg = get_mem_cgroup_from_objcg(objcg);
2983 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2984 page_counter_uncharge(&memcg->kmem, nr_pages);
2985 refill_stock(memcg, nr_pages);
2987 css_put(&memcg->css);
2991 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2992 * @objcg: object cgroup to charge
2993 * @gfp: reclaim mode
2994 * @nr_pages: number of pages to charge
2996 * Returns 0 on success, an error code on failure.
2998 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2999 unsigned int nr_pages)
3001 struct page_counter *counter;
3002 struct mem_cgroup *memcg;
3005 memcg = get_mem_cgroup_from_objcg(objcg);
3007 ret = try_charge_memcg(memcg, gfp, nr_pages);
3011 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3012 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3015 * Enforce __GFP_NOFAIL allocation because callers are not
3016 * prepared to see failures and likely do not have any failure
3019 if (gfp & __GFP_NOFAIL) {
3020 page_counter_charge(&memcg->kmem, nr_pages);
3023 cancel_charge(memcg, nr_pages);
3027 css_put(&memcg->css);
3033 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3034 * @page: page to charge
3035 * @gfp: reclaim mode
3036 * @order: allocation order
3038 * Returns 0 on success, an error code on failure.
3040 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3042 struct obj_cgroup *objcg;
3045 objcg = get_obj_cgroup_from_current();
3047 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3049 page->memcg_data = (unsigned long)objcg |
3053 obj_cgroup_put(objcg);
3059 * __memcg_kmem_uncharge_page: uncharge a kmem page
3060 * @page: page to uncharge
3061 * @order: allocation order
3063 void __memcg_kmem_uncharge_page(struct page *page, int order)
3065 struct obj_cgroup *objcg;
3066 unsigned int nr_pages = 1 << order;
3068 if (!PageMemcgKmem(page))
3071 objcg = __page_objcg(page);
3072 obj_cgroup_uncharge_pages(objcg, nr_pages);
3073 page->memcg_data = 0;
3074 obj_cgroup_put(objcg);
3077 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3078 enum node_stat_item idx, int nr)
3080 unsigned long flags;
3081 struct obj_stock *stock = get_obj_stock(&flags);
3085 * Save vmstat data in stock and skip vmstat array update unless
3086 * accumulating over a page of vmstat data or when pgdat or idx
3089 if (stock->cached_objcg != objcg) {
3090 drain_obj_stock(stock);
3091 obj_cgroup_get(objcg);
3092 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3093 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3094 stock->cached_objcg = objcg;
3095 stock->cached_pgdat = pgdat;
3096 } else if (stock->cached_pgdat != pgdat) {
3097 /* Flush the existing cached vmstat data */
3098 if (stock->nr_slab_reclaimable_b) {
3099 mod_objcg_mlstate(objcg, pgdat, NR_SLAB_RECLAIMABLE_B,
3100 stock->nr_slab_reclaimable_b);
3101 stock->nr_slab_reclaimable_b = 0;
3103 if (stock->nr_slab_unreclaimable_b) {
3104 mod_objcg_mlstate(objcg, pgdat, NR_SLAB_UNRECLAIMABLE_B,
3105 stock->nr_slab_unreclaimable_b);
3106 stock->nr_slab_unreclaimable_b = 0;
3108 stock->cached_pgdat = pgdat;
3111 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3112 : &stock->nr_slab_unreclaimable_b;
3114 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3115 * cached locally at least once before pushing it out.
3122 if (abs(*bytes) > PAGE_SIZE) {
3130 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3132 put_obj_stock(flags);
3135 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3137 unsigned long flags;
3138 struct obj_stock *stock = get_obj_stock(&flags);
3141 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3142 stock->nr_bytes -= nr_bytes;
3146 put_obj_stock(flags);
3151 static void drain_obj_stock(struct obj_stock *stock)
3153 struct obj_cgroup *old = stock->cached_objcg;
3158 if (stock->nr_bytes) {
3159 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3160 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3163 obj_cgroup_uncharge_pages(old, nr_pages);
3166 * The leftover is flushed to the centralized per-memcg value.
3167 * On the next attempt to refill obj stock it will be moved
3168 * to a per-cpu stock (probably, on an other CPU), see
3169 * refill_obj_stock().
3171 * How often it's flushed is a trade-off between the memory
3172 * limit enforcement accuracy and potential CPU contention,
3173 * so it might be changed in the future.
3175 atomic_add(nr_bytes, &old->nr_charged_bytes);
3176 stock->nr_bytes = 0;
3180 * Flush the vmstat data in current stock
3182 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3183 if (stock->nr_slab_reclaimable_b) {
3184 mod_objcg_mlstate(old, stock->cached_pgdat,
3185 NR_SLAB_RECLAIMABLE_B,
3186 stock->nr_slab_reclaimable_b);
3187 stock->nr_slab_reclaimable_b = 0;
3189 if (stock->nr_slab_unreclaimable_b) {
3190 mod_objcg_mlstate(old, stock->cached_pgdat,
3191 NR_SLAB_UNRECLAIMABLE_B,
3192 stock->nr_slab_unreclaimable_b);
3193 stock->nr_slab_unreclaimable_b = 0;
3195 stock->cached_pgdat = NULL;
3198 obj_cgroup_put(old);
3199 stock->cached_objcg = NULL;
3202 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3203 struct mem_cgroup *root_memcg)
3205 struct mem_cgroup *memcg;
3207 if (in_task() && stock->task_obj.cached_objcg) {
3208 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3209 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3212 if (stock->irq_obj.cached_objcg) {
3213 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3214 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3221 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3222 bool allow_uncharge)
3224 unsigned long flags;
3225 struct obj_stock *stock = get_obj_stock(&flags);
3226 unsigned int nr_pages = 0;
3228 if (stock->cached_objcg != objcg) { /* reset if necessary */
3229 drain_obj_stock(stock);
3230 obj_cgroup_get(objcg);
3231 stock->cached_objcg = objcg;
3232 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3233 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3234 allow_uncharge = true; /* Allow uncharge when objcg changes */
3236 stock->nr_bytes += nr_bytes;
3238 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3239 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3240 stock->nr_bytes &= (PAGE_SIZE - 1);
3243 put_obj_stock(flags);
3246 obj_cgroup_uncharge_pages(objcg, nr_pages);
3249 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3251 unsigned int nr_pages, nr_bytes;
3254 if (consume_obj_stock(objcg, size))
3258 * In theory, objcg->nr_charged_bytes can have enough
3259 * pre-charged bytes to satisfy the allocation. However,
3260 * flushing objcg->nr_charged_bytes requires two atomic
3261 * operations, and objcg->nr_charged_bytes can't be big.
3262 * The shared objcg->nr_charged_bytes can also become a
3263 * performance bottleneck if all tasks of the same memcg are
3264 * trying to update it. So it's better to ignore it and try
3265 * grab some new pages. The stock's nr_bytes will be flushed to
3266 * objcg->nr_charged_bytes later on when objcg changes.
3268 * The stock's nr_bytes may contain enough pre-charged bytes
3269 * to allow one less page from being charged, but we can't rely
3270 * on the pre-charged bytes not being changed outside of
3271 * consume_obj_stock() or refill_obj_stock(). So ignore those
3272 * pre-charged bytes as well when charging pages. To avoid a
3273 * page uncharge right after a page charge, we set the
3274 * allow_uncharge flag to false when calling refill_obj_stock()
3275 * to temporarily allow the pre-charged bytes to exceed the page
3276 * size limit. The maximum reachable value of the pre-charged
3277 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3280 nr_pages = size >> PAGE_SHIFT;
3281 nr_bytes = size & (PAGE_SIZE - 1);
3286 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3287 if (!ret && nr_bytes)
3288 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3293 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3295 refill_obj_stock(objcg, size, true);
3298 #endif /* CONFIG_MEMCG_KMEM */
3301 * Because page_memcg(head) is not set on tails, set it now.
3303 void split_page_memcg(struct page *head, unsigned int nr)
3305 struct mem_cgroup *memcg = page_memcg(head);
3308 if (mem_cgroup_disabled() || !memcg)
3311 for (i = 1; i < nr; i++)
3312 head[i].memcg_data = head->memcg_data;
3314 if (PageMemcgKmem(head))
3315 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3317 css_get_many(&memcg->css, nr - 1);
3320 #ifdef CONFIG_MEMCG_SWAP
3322 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3323 * @entry: swap entry to be moved
3324 * @from: mem_cgroup which the entry is moved from
3325 * @to: mem_cgroup which the entry is moved to
3327 * It succeeds only when the swap_cgroup's record for this entry is the same
3328 * as the mem_cgroup's id of @from.
3330 * Returns 0 on success, -EINVAL on failure.
3332 * The caller must have charged to @to, IOW, called page_counter_charge() about
3333 * both res and memsw, and called css_get().
3335 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3336 struct mem_cgroup *from, struct mem_cgroup *to)
3338 unsigned short old_id, new_id;
3340 old_id = mem_cgroup_id(from);
3341 new_id = mem_cgroup_id(to);
3343 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3344 mod_memcg_state(from, MEMCG_SWAP, -1);
3345 mod_memcg_state(to, MEMCG_SWAP, 1);
3351 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3352 struct mem_cgroup *from, struct mem_cgroup *to)
3358 static DEFINE_MUTEX(memcg_max_mutex);
3360 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3361 unsigned long max, bool memsw)
3363 bool enlarge = false;
3364 bool drained = false;
3366 bool limits_invariant;
3367 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3370 if (signal_pending(current)) {
3375 mutex_lock(&memcg_max_mutex);
3377 * Make sure that the new limit (memsw or memory limit) doesn't
3378 * break our basic invariant rule memory.max <= memsw.max.
3380 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3381 max <= memcg->memsw.max;
3382 if (!limits_invariant) {
3383 mutex_unlock(&memcg_max_mutex);
3387 if (max > counter->max)
3389 ret = page_counter_set_max(counter, max);
3390 mutex_unlock(&memcg_max_mutex);
3396 drain_all_stock(memcg);
3401 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3402 GFP_KERNEL, !memsw)) {
3408 if (!ret && enlarge)
3409 memcg_oom_recover(memcg);
3414 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3416 unsigned long *total_scanned)
3418 unsigned long nr_reclaimed = 0;
3419 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3420 unsigned long reclaimed;
3422 struct mem_cgroup_tree_per_node *mctz;
3423 unsigned long excess;
3424 unsigned long nr_scanned;
3429 mctz = soft_limit_tree_node(pgdat->node_id);
3432 * Do not even bother to check the largest node if the root
3433 * is empty. Do it lockless to prevent lock bouncing. Races
3434 * are acceptable as soft limit is best effort anyway.
3436 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3440 * This loop can run a while, specially if mem_cgroup's continuously
3441 * keep exceeding their soft limit and putting the system under
3448 mz = mem_cgroup_largest_soft_limit_node(mctz);
3453 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3454 gfp_mask, &nr_scanned);
3455 nr_reclaimed += reclaimed;
3456 *total_scanned += nr_scanned;
3457 spin_lock_irq(&mctz->lock);
3458 __mem_cgroup_remove_exceeded(mz, mctz);
3461 * If we failed to reclaim anything from this memory cgroup
3462 * it is time to move on to the next cgroup
3466 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3468 excess = soft_limit_excess(mz->memcg);
3470 * One school of thought says that we should not add
3471 * back the node to the tree if reclaim returns 0.
3472 * But our reclaim could return 0, simply because due
3473 * to priority we are exposing a smaller subset of
3474 * memory to reclaim from. Consider this as a longer
3477 /* If excess == 0, no tree ops */
3478 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3479 spin_unlock_irq(&mctz->lock);
3480 css_put(&mz->memcg->css);
3483 * Could not reclaim anything and there are no more
3484 * mem cgroups to try or we seem to be looping without
3485 * reclaiming anything.
3487 if (!nr_reclaimed &&
3489 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3491 } while (!nr_reclaimed);
3493 css_put(&next_mz->memcg->css);
3494 return nr_reclaimed;
3498 * Reclaims as many pages from the given memcg as possible.
3500 * Caller is responsible for holding css reference for memcg.
3502 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3504 int nr_retries = MAX_RECLAIM_RETRIES;
3506 /* we call try-to-free pages for make this cgroup empty */
3507 lru_add_drain_all();
3509 drain_all_stock(memcg);
3511 /* try to free all pages in this cgroup */
3512 while (nr_retries && page_counter_read(&memcg->memory)) {
3515 if (signal_pending(current))
3518 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3522 /* maybe some writeback is necessary */
3523 congestion_wait(BLK_RW_ASYNC, HZ/10);
3531 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3532 char *buf, size_t nbytes,
3535 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3537 if (mem_cgroup_is_root(memcg))
3539 return mem_cgroup_force_empty(memcg) ?: nbytes;
3542 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3548 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3549 struct cftype *cft, u64 val)
3554 pr_warn_once("Non-hierarchical mode is deprecated. "
3556 "depend on this functionality.\n");
3561 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3565 if (mem_cgroup_is_root(memcg)) {
3566 cgroup_rstat_flush(memcg->css.cgroup);
3567 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3568 memcg_page_state(memcg, NR_ANON_MAPPED);
3570 val += memcg_page_state(memcg, MEMCG_SWAP);
3573 val = page_counter_read(&memcg->memory);
3575 val = page_counter_read(&memcg->memsw);
3588 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3591 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3592 struct page_counter *counter;
3594 switch (MEMFILE_TYPE(cft->private)) {
3596 counter = &memcg->memory;
3599 counter = &memcg->memsw;
3602 counter = &memcg->kmem;
3605 counter = &memcg->tcpmem;
3611 switch (MEMFILE_ATTR(cft->private)) {
3613 if (counter == &memcg->memory)
3614 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3615 if (counter == &memcg->memsw)
3616 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3617 return (u64)page_counter_read(counter) * PAGE_SIZE;
3619 return (u64)counter->max * PAGE_SIZE;
3621 return (u64)counter->watermark * PAGE_SIZE;
3623 return counter->failcnt;
3624 case RES_SOFT_LIMIT:
3625 return (u64)memcg->soft_limit * PAGE_SIZE;
3631 #ifdef CONFIG_MEMCG_KMEM
3632 static int memcg_online_kmem(struct mem_cgroup *memcg)
3634 struct obj_cgroup *objcg;
3637 if (cgroup_memory_nokmem)
3640 BUG_ON(memcg->kmemcg_id >= 0);
3641 BUG_ON(memcg->kmem_state);
3643 memcg_id = memcg_alloc_cache_id();
3647 objcg = obj_cgroup_alloc();
3649 memcg_free_cache_id(memcg_id);
3652 objcg->memcg = memcg;
3653 rcu_assign_pointer(memcg->objcg, objcg);
3655 static_branch_enable(&memcg_kmem_enabled_key);
3657 memcg->kmemcg_id = memcg_id;
3658 memcg->kmem_state = KMEM_ONLINE;
3663 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3665 struct cgroup_subsys_state *css;
3666 struct mem_cgroup *parent, *child;
3669 if (memcg->kmem_state != KMEM_ONLINE)
3672 memcg->kmem_state = KMEM_ALLOCATED;
3674 parent = parent_mem_cgroup(memcg);
3676 parent = root_mem_cgroup;
3678 memcg_reparent_objcgs(memcg, parent);
3680 kmemcg_id = memcg->kmemcg_id;
3681 BUG_ON(kmemcg_id < 0);
3684 * Change kmemcg_id of this cgroup and all its descendants to the
3685 * parent's id, and then move all entries from this cgroup's list_lrus
3686 * to ones of the parent. After we have finished, all list_lrus
3687 * corresponding to this cgroup are guaranteed to remain empty. The
3688 * ordering is imposed by list_lru_node->lock taken by
3689 * memcg_drain_all_list_lrus().
3691 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3692 css_for_each_descendant_pre(css, &memcg->css) {
3693 child = mem_cgroup_from_css(css);
3694 BUG_ON(child->kmemcg_id != kmemcg_id);
3695 child->kmemcg_id = parent->kmemcg_id;
3699 memcg_drain_all_list_lrus(kmemcg_id, parent);
3701 memcg_free_cache_id(kmemcg_id);
3704 static void memcg_free_kmem(struct mem_cgroup *memcg)
3706 /* css_alloc() failed, offlining didn't happen */
3707 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3708 memcg_offline_kmem(memcg);
3711 static int memcg_online_kmem(struct mem_cgroup *memcg)
3715 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3718 static void memcg_free_kmem(struct mem_cgroup *memcg)
3721 #endif /* CONFIG_MEMCG_KMEM */
3723 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3728 mutex_lock(&memcg_max_mutex);
3729 ret = page_counter_set_max(&memcg->kmem, max);
3730 mutex_unlock(&memcg_max_mutex);
3734 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3738 mutex_lock(&memcg_max_mutex);
3740 ret = page_counter_set_max(&memcg->tcpmem, max);
3744 if (!memcg->tcpmem_active) {
3746 * The active flag needs to be written after the static_key
3747 * update. This is what guarantees that the socket activation
3748 * function is the last one to run. See mem_cgroup_sk_alloc()
3749 * for details, and note that we don't mark any socket as
3750 * belonging to this memcg until that flag is up.
3752 * We need to do this, because static_keys will span multiple
3753 * sites, but we can't control their order. If we mark a socket
3754 * as accounted, but the accounting functions are not patched in
3755 * yet, we'll lose accounting.
3757 * We never race with the readers in mem_cgroup_sk_alloc(),
3758 * because when this value change, the code to process it is not
3761 static_branch_inc(&memcg_sockets_enabled_key);
3762 memcg->tcpmem_active = true;
3765 mutex_unlock(&memcg_max_mutex);
3770 * The user of this function is...
3773 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3774 char *buf, size_t nbytes, loff_t off)
3776 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3777 unsigned long nr_pages;
3780 buf = strstrip(buf);
3781 ret = page_counter_memparse(buf, "-1", &nr_pages);
3785 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3787 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3791 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3793 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3796 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3799 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3801 "depend on this functionality.\n");
3802 ret = memcg_update_kmem_max(memcg, nr_pages);
3805 ret = memcg_update_tcp_max(memcg, nr_pages);
3809 case RES_SOFT_LIMIT:
3810 memcg->soft_limit = nr_pages;
3814 return ret ?: nbytes;
3817 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3818 size_t nbytes, loff_t off)
3820 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3821 struct page_counter *counter;
3823 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3825 counter = &memcg->memory;
3828 counter = &memcg->memsw;
3831 counter = &memcg->kmem;
3834 counter = &memcg->tcpmem;
3840 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3842 page_counter_reset_watermark(counter);
3845 counter->failcnt = 0;
3854 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3857 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3861 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3862 struct cftype *cft, u64 val)
3864 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3866 if (val & ~MOVE_MASK)
3870 * No kind of locking is needed in here, because ->can_attach() will
3871 * check this value once in the beginning of the process, and then carry
3872 * on with stale data. This means that changes to this value will only
3873 * affect task migrations starting after the change.
3875 memcg->move_charge_at_immigrate = val;
3879 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3880 struct cftype *cft, u64 val)
3888 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3889 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3890 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3892 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3893 int nid, unsigned int lru_mask, bool tree)
3895 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3896 unsigned long nr = 0;
3899 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3902 if (!(BIT(lru) & lru_mask))
3905 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3907 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3912 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3913 unsigned int lru_mask,
3916 unsigned long nr = 0;
3920 if (!(BIT(lru) & lru_mask))
3923 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3925 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3930 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3934 unsigned int lru_mask;
3937 static const struct numa_stat stats[] = {
3938 { "total", LRU_ALL },
3939 { "file", LRU_ALL_FILE },
3940 { "anon", LRU_ALL_ANON },
3941 { "unevictable", BIT(LRU_UNEVICTABLE) },
3943 const struct numa_stat *stat;
3945 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3947 cgroup_rstat_flush(memcg->css.cgroup);
3949 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3950 seq_printf(m, "%s=%lu", stat->name,
3951 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3953 for_each_node_state(nid, N_MEMORY)
3954 seq_printf(m, " N%d=%lu", nid,
3955 mem_cgroup_node_nr_lru_pages(memcg, nid,
3956 stat->lru_mask, false));
3960 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3962 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3963 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3965 for_each_node_state(nid, N_MEMORY)
3966 seq_printf(m, " N%d=%lu", nid,
3967 mem_cgroup_node_nr_lru_pages(memcg, nid,
3968 stat->lru_mask, true));
3974 #endif /* CONFIG_NUMA */
3976 static const unsigned int memcg1_stats[] = {
3979 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3989 static const char *const memcg1_stat_names[] = {
3992 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4002 /* Universal VM events cgroup1 shows, original sort order */
4003 static const unsigned int memcg1_events[] = {
4010 static int memcg_stat_show(struct seq_file *m, void *v)
4012 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4013 unsigned long memory, memsw;
4014 struct mem_cgroup *mi;
4017 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4019 cgroup_rstat_flush(memcg->css.cgroup);
4021 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4024 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4026 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4027 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4030 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4031 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4032 memcg_events_local(memcg, memcg1_events[i]));
4034 for (i = 0; i < NR_LRU_LISTS; i++)
4035 seq_printf(m, "%s %lu\n", lru_list_name(i),
4036 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4039 /* Hierarchical information */
4040 memory = memsw = PAGE_COUNTER_MAX;
4041 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4042 memory = min(memory, READ_ONCE(mi->memory.max));
4043 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4045 seq_printf(m, "hierarchical_memory_limit %llu\n",
4046 (u64)memory * PAGE_SIZE);
4047 if (do_memsw_account())
4048 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4049 (u64)memsw * PAGE_SIZE);
4051 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4054 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4056 nr = memcg_page_state(memcg, memcg1_stats[i]);
4057 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4058 (u64)nr * PAGE_SIZE);
4061 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4062 seq_printf(m, "total_%s %llu\n",
4063 vm_event_name(memcg1_events[i]),
4064 (u64)memcg_events(memcg, memcg1_events[i]));
4066 for (i = 0; i < NR_LRU_LISTS; i++)
4067 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4068 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4071 #ifdef CONFIG_DEBUG_VM
4074 struct mem_cgroup_per_node *mz;
4075 unsigned long anon_cost = 0;
4076 unsigned long file_cost = 0;
4078 for_each_online_pgdat(pgdat) {
4079 mz = memcg->nodeinfo[pgdat->node_id];
4081 anon_cost += mz->lruvec.anon_cost;
4082 file_cost += mz->lruvec.file_cost;
4084 seq_printf(m, "anon_cost %lu\n", anon_cost);
4085 seq_printf(m, "file_cost %lu\n", file_cost);
4092 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4095 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4097 return mem_cgroup_swappiness(memcg);
4100 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4101 struct cftype *cft, u64 val)
4103 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4108 if (!mem_cgroup_is_root(memcg))
4109 memcg->swappiness = val;
4111 vm_swappiness = val;
4116 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4118 struct mem_cgroup_threshold_ary *t;
4119 unsigned long usage;
4124 t = rcu_dereference(memcg->thresholds.primary);
4126 t = rcu_dereference(memcg->memsw_thresholds.primary);
4131 usage = mem_cgroup_usage(memcg, swap);
4134 * current_threshold points to threshold just below or equal to usage.
4135 * If it's not true, a threshold was crossed after last
4136 * call of __mem_cgroup_threshold().
4138 i = t->current_threshold;
4141 * Iterate backward over array of thresholds starting from
4142 * current_threshold and check if a threshold is crossed.
4143 * If none of thresholds below usage is crossed, we read
4144 * only one element of the array here.
4146 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4147 eventfd_signal(t->entries[i].eventfd, 1);
4149 /* i = current_threshold + 1 */
4153 * Iterate forward over array of thresholds starting from
4154 * current_threshold+1 and check if a threshold is crossed.
4155 * If none of thresholds above usage is crossed, we read
4156 * only one element of the array here.
4158 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4159 eventfd_signal(t->entries[i].eventfd, 1);
4161 /* Update current_threshold */
4162 t->current_threshold = i - 1;
4167 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4170 __mem_cgroup_threshold(memcg, false);
4171 if (do_memsw_account())
4172 __mem_cgroup_threshold(memcg, true);
4174 memcg = parent_mem_cgroup(memcg);
4178 static int compare_thresholds(const void *a, const void *b)
4180 const struct mem_cgroup_threshold *_a = a;
4181 const struct mem_cgroup_threshold *_b = b;
4183 if (_a->threshold > _b->threshold)
4186 if (_a->threshold < _b->threshold)
4192 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4194 struct mem_cgroup_eventfd_list *ev;
4196 spin_lock(&memcg_oom_lock);
4198 list_for_each_entry(ev, &memcg->oom_notify, list)
4199 eventfd_signal(ev->eventfd, 1);
4201 spin_unlock(&memcg_oom_lock);
4205 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4207 struct mem_cgroup *iter;
4209 for_each_mem_cgroup_tree(iter, memcg)
4210 mem_cgroup_oom_notify_cb(iter);
4213 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4214 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4216 struct mem_cgroup_thresholds *thresholds;
4217 struct mem_cgroup_threshold_ary *new;
4218 unsigned long threshold;
4219 unsigned long usage;
4222 ret = page_counter_memparse(args, "-1", &threshold);
4226 mutex_lock(&memcg->thresholds_lock);
4229 thresholds = &memcg->thresholds;
4230 usage = mem_cgroup_usage(memcg, false);
4231 } else if (type == _MEMSWAP) {
4232 thresholds = &memcg->memsw_thresholds;
4233 usage = mem_cgroup_usage(memcg, true);
4237 /* Check if a threshold crossed before adding a new one */
4238 if (thresholds->primary)
4239 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4241 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4243 /* Allocate memory for new array of thresholds */
4244 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4251 /* Copy thresholds (if any) to new array */
4252 if (thresholds->primary)
4253 memcpy(new->entries, thresholds->primary->entries,
4254 flex_array_size(new, entries, size - 1));
4256 /* Add new threshold */
4257 new->entries[size - 1].eventfd = eventfd;
4258 new->entries[size - 1].threshold = threshold;
4260 /* Sort thresholds. Registering of new threshold isn't time-critical */
4261 sort(new->entries, size, sizeof(*new->entries),
4262 compare_thresholds, NULL);
4264 /* Find current threshold */
4265 new->current_threshold = -1;
4266 for (i = 0; i < size; i++) {
4267 if (new->entries[i].threshold <= usage) {
4269 * new->current_threshold will not be used until
4270 * rcu_assign_pointer(), so it's safe to increment
4273 ++new->current_threshold;
4278 /* Free old spare buffer and save old primary buffer as spare */
4279 kfree(thresholds->spare);
4280 thresholds->spare = thresholds->primary;
4282 rcu_assign_pointer(thresholds->primary, new);
4284 /* To be sure that nobody uses thresholds */
4288 mutex_unlock(&memcg->thresholds_lock);
4293 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4294 struct eventfd_ctx *eventfd, const char *args)
4296 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4299 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4300 struct eventfd_ctx *eventfd, const char *args)
4302 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4305 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4306 struct eventfd_ctx *eventfd, enum res_type type)
4308 struct mem_cgroup_thresholds *thresholds;
4309 struct mem_cgroup_threshold_ary *new;
4310 unsigned long usage;
4311 int i, j, size, entries;
4313 mutex_lock(&memcg->thresholds_lock);
4316 thresholds = &memcg->thresholds;
4317 usage = mem_cgroup_usage(memcg, false);
4318 } else if (type == _MEMSWAP) {
4319 thresholds = &memcg->memsw_thresholds;
4320 usage = mem_cgroup_usage(memcg, true);
4324 if (!thresholds->primary)
4327 /* Check if a threshold crossed before removing */
4328 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4330 /* Calculate new number of threshold */
4332 for (i = 0; i < thresholds->primary->size; i++) {
4333 if (thresholds->primary->entries[i].eventfd != eventfd)
4339 new = thresholds->spare;
4341 /* If no items related to eventfd have been cleared, nothing to do */
4345 /* Set thresholds array to NULL if we don't have thresholds */
4354 /* Copy thresholds and find current threshold */
4355 new->current_threshold = -1;
4356 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4357 if (thresholds->primary->entries[i].eventfd == eventfd)
4360 new->entries[j] = thresholds->primary->entries[i];
4361 if (new->entries[j].threshold <= usage) {
4363 * new->current_threshold will not be used
4364 * until rcu_assign_pointer(), so it's safe to increment
4367 ++new->current_threshold;
4373 /* Swap primary and spare array */
4374 thresholds->spare = thresholds->primary;
4376 rcu_assign_pointer(thresholds->primary, new);
4378 /* To be sure that nobody uses thresholds */
4381 /* If all events are unregistered, free the spare array */
4383 kfree(thresholds->spare);
4384 thresholds->spare = NULL;
4387 mutex_unlock(&memcg->thresholds_lock);
4390 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4391 struct eventfd_ctx *eventfd)
4393 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4396 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4397 struct eventfd_ctx *eventfd)
4399 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4402 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4403 struct eventfd_ctx *eventfd, const char *args)
4405 struct mem_cgroup_eventfd_list *event;
4407 event = kmalloc(sizeof(*event), GFP_KERNEL);
4411 spin_lock(&memcg_oom_lock);
4413 event->eventfd = eventfd;
4414 list_add(&event->list, &memcg->oom_notify);
4416 /* already in OOM ? */
4417 if (memcg->under_oom)
4418 eventfd_signal(eventfd, 1);
4419 spin_unlock(&memcg_oom_lock);
4424 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4425 struct eventfd_ctx *eventfd)
4427 struct mem_cgroup_eventfd_list *ev, *tmp;
4429 spin_lock(&memcg_oom_lock);
4431 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4432 if (ev->eventfd == eventfd) {
4433 list_del(&ev->list);
4438 spin_unlock(&memcg_oom_lock);
4441 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4443 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4445 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4446 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4447 seq_printf(sf, "oom_kill %lu\n",
4448 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4452 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4453 struct cftype *cft, u64 val)
4455 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4457 /* cannot set to root cgroup and only 0 and 1 are allowed */
4458 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4461 memcg->oom_kill_disable = val;
4463 memcg_oom_recover(memcg);
4468 #ifdef CONFIG_CGROUP_WRITEBACK
4470 #include <trace/events/writeback.h>
4472 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4474 return wb_domain_init(&memcg->cgwb_domain, gfp);
4477 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4479 wb_domain_exit(&memcg->cgwb_domain);
4482 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4484 wb_domain_size_changed(&memcg->cgwb_domain);
4487 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4489 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4491 if (!memcg->css.parent)
4494 return &memcg->cgwb_domain;
4498 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4499 * @wb: bdi_writeback in question
4500 * @pfilepages: out parameter for number of file pages
4501 * @pheadroom: out parameter for number of allocatable pages according to memcg
4502 * @pdirty: out parameter for number of dirty pages
4503 * @pwriteback: out parameter for number of pages under writeback
4505 * Determine the numbers of file, headroom, dirty, and writeback pages in
4506 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4507 * is a bit more involved.
4509 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4510 * headroom is calculated as the lowest headroom of itself and the
4511 * ancestors. Note that this doesn't consider the actual amount of
4512 * available memory in the system. The caller should further cap
4513 * *@pheadroom accordingly.
4515 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4516 unsigned long *pheadroom, unsigned long *pdirty,
4517 unsigned long *pwriteback)
4519 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4520 struct mem_cgroup *parent;
4522 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4524 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4525 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4526 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4527 memcg_page_state(memcg, NR_ACTIVE_FILE);
4529 *pheadroom = PAGE_COUNTER_MAX;
4530 while ((parent = parent_mem_cgroup(memcg))) {
4531 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4532 READ_ONCE(memcg->memory.high));
4533 unsigned long used = page_counter_read(&memcg->memory);
4535 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4541 * Foreign dirty flushing
4543 * There's an inherent mismatch between memcg and writeback. The former
4544 * tracks ownership per-page while the latter per-inode. This was a
4545 * deliberate design decision because honoring per-page ownership in the
4546 * writeback path is complicated, may lead to higher CPU and IO overheads
4547 * and deemed unnecessary given that write-sharing an inode across
4548 * different cgroups isn't a common use-case.
4550 * Combined with inode majority-writer ownership switching, this works well
4551 * enough in most cases but there are some pathological cases. For
4552 * example, let's say there are two cgroups A and B which keep writing to
4553 * different but confined parts of the same inode. B owns the inode and
4554 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4555 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4556 * triggering background writeback. A will be slowed down without a way to
4557 * make writeback of the dirty pages happen.
4559 * Conditions like the above can lead to a cgroup getting repeatedly and
4560 * severely throttled after making some progress after each
4561 * dirty_expire_interval while the underlying IO device is almost
4564 * Solving this problem completely requires matching the ownership tracking
4565 * granularities between memcg and writeback in either direction. However,
4566 * the more egregious behaviors can be avoided by simply remembering the
4567 * most recent foreign dirtying events and initiating remote flushes on
4568 * them when local writeback isn't enough to keep the memory clean enough.
4570 * The following two functions implement such mechanism. When a foreign
4571 * page - a page whose memcg and writeback ownerships don't match - is
4572 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4573 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4574 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4575 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4576 * foreign bdi_writebacks which haven't expired. Both the numbers of
4577 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4578 * limited to MEMCG_CGWB_FRN_CNT.
4580 * The mechanism only remembers IDs and doesn't hold any object references.
4581 * As being wrong occasionally doesn't matter, updates and accesses to the
4582 * records are lockless and racy.
4584 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4585 struct bdi_writeback *wb)
4587 struct mem_cgroup *memcg = page_memcg(page);
4588 struct memcg_cgwb_frn *frn;
4589 u64 now = get_jiffies_64();
4590 u64 oldest_at = now;
4594 trace_track_foreign_dirty(page, wb);
4597 * Pick the slot to use. If there is already a slot for @wb, keep
4598 * using it. If not replace the oldest one which isn't being
4601 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4602 frn = &memcg->cgwb_frn[i];
4603 if (frn->bdi_id == wb->bdi->id &&
4604 frn->memcg_id == wb->memcg_css->id)
4606 if (time_before64(frn->at, oldest_at) &&
4607 atomic_read(&frn->done.cnt) == 1) {
4609 oldest_at = frn->at;
4613 if (i < MEMCG_CGWB_FRN_CNT) {
4615 * Re-using an existing one. Update timestamp lazily to
4616 * avoid making the cacheline hot. We want them to be
4617 * reasonably up-to-date and significantly shorter than
4618 * dirty_expire_interval as that's what expires the record.
4619 * Use the shorter of 1s and dirty_expire_interval / 8.
4621 unsigned long update_intv =
4622 min_t(unsigned long, HZ,
4623 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4625 if (time_before64(frn->at, now - update_intv))
4627 } else if (oldest >= 0) {
4628 /* replace the oldest free one */
4629 frn = &memcg->cgwb_frn[oldest];
4630 frn->bdi_id = wb->bdi->id;
4631 frn->memcg_id = wb->memcg_css->id;
4636 /* issue foreign writeback flushes for recorded foreign dirtying events */
4637 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4639 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4640 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4641 u64 now = jiffies_64;
4644 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4645 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4648 * If the record is older than dirty_expire_interval,
4649 * writeback on it has already started. No need to kick it
4650 * off again. Also, don't start a new one if there's
4651 * already one in flight.
4653 if (time_after64(frn->at, now - intv) &&
4654 atomic_read(&frn->done.cnt) == 1) {
4656 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4657 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4658 WB_REASON_FOREIGN_FLUSH,
4664 #else /* CONFIG_CGROUP_WRITEBACK */
4666 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4671 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4675 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4679 #endif /* CONFIG_CGROUP_WRITEBACK */
4682 * DO NOT USE IN NEW FILES.
4684 * "cgroup.event_control" implementation.
4686 * This is way over-engineered. It tries to support fully configurable
4687 * events for each user. Such level of flexibility is completely
4688 * unnecessary especially in the light of the planned unified hierarchy.
4690 * Please deprecate this and replace with something simpler if at all
4695 * Unregister event and free resources.
4697 * Gets called from workqueue.
4699 static void memcg_event_remove(struct work_struct *work)
4701 struct mem_cgroup_event *event =
4702 container_of(work, struct mem_cgroup_event, remove);
4703 struct mem_cgroup *memcg = event->memcg;
4705 remove_wait_queue(event->wqh, &event->wait);
4707 event->unregister_event(memcg, event->eventfd);
4709 /* Notify userspace the event is going away. */
4710 eventfd_signal(event->eventfd, 1);
4712 eventfd_ctx_put(event->eventfd);
4714 css_put(&memcg->css);
4718 * Gets called on EPOLLHUP on eventfd when user closes it.
4720 * Called with wqh->lock held and interrupts disabled.
4722 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4723 int sync, void *key)
4725 struct mem_cgroup_event *event =
4726 container_of(wait, struct mem_cgroup_event, wait);
4727 struct mem_cgroup *memcg = event->memcg;
4728 __poll_t flags = key_to_poll(key);
4730 if (flags & EPOLLHUP) {
4732 * If the event has been detached at cgroup removal, we
4733 * can simply return knowing the other side will cleanup
4736 * We can't race against event freeing since the other
4737 * side will require wqh->lock via remove_wait_queue(),
4740 spin_lock(&memcg->event_list_lock);
4741 if (!list_empty(&event->list)) {
4742 list_del_init(&event->list);
4744 * We are in atomic context, but cgroup_event_remove()
4745 * may sleep, so we have to call it in workqueue.
4747 schedule_work(&event->remove);
4749 spin_unlock(&memcg->event_list_lock);
4755 static void memcg_event_ptable_queue_proc(struct file *file,
4756 wait_queue_head_t *wqh, poll_table *pt)
4758 struct mem_cgroup_event *event =
4759 container_of(pt, struct mem_cgroup_event, pt);
4762 add_wait_queue(wqh, &event->wait);
4766 * DO NOT USE IN NEW FILES.
4768 * Parse input and register new cgroup event handler.
4770 * Input must be in format '<event_fd> <control_fd> <args>'.
4771 * Interpretation of args is defined by control file implementation.
4773 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4774 char *buf, size_t nbytes, loff_t off)
4776 struct cgroup_subsys_state *css = of_css(of);
4777 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4778 struct mem_cgroup_event *event;
4779 struct cgroup_subsys_state *cfile_css;
4780 unsigned int efd, cfd;
4787 buf = strstrip(buf);
4789 efd = simple_strtoul(buf, &endp, 10);
4794 cfd = simple_strtoul(buf, &endp, 10);
4795 if ((*endp != ' ') && (*endp != '\0'))
4799 event = kzalloc(sizeof(*event), GFP_KERNEL);
4803 event->memcg = memcg;
4804 INIT_LIST_HEAD(&event->list);
4805 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4806 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4807 INIT_WORK(&event->remove, memcg_event_remove);
4815 event->eventfd = eventfd_ctx_fileget(efile.file);
4816 if (IS_ERR(event->eventfd)) {
4817 ret = PTR_ERR(event->eventfd);
4824 goto out_put_eventfd;
4827 /* the process need read permission on control file */
4828 /* AV: shouldn't we check that it's been opened for read instead? */
4829 ret = file_permission(cfile.file, MAY_READ);
4834 * Determine the event callbacks and set them in @event. This used
4835 * to be done via struct cftype but cgroup core no longer knows
4836 * about these events. The following is crude but the whole thing
4837 * is for compatibility anyway.
4839 * DO NOT ADD NEW FILES.
4841 name = cfile.file->f_path.dentry->d_name.name;
4843 if (!strcmp(name, "memory.usage_in_bytes")) {
4844 event->register_event = mem_cgroup_usage_register_event;
4845 event->unregister_event = mem_cgroup_usage_unregister_event;
4846 } else if (!strcmp(name, "memory.oom_control")) {
4847 event->register_event = mem_cgroup_oom_register_event;
4848 event->unregister_event = mem_cgroup_oom_unregister_event;
4849 } else if (!strcmp(name, "memory.pressure_level")) {
4850 event->register_event = vmpressure_register_event;
4851 event->unregister_event = vmpressure_unregister_event;
4852 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4853 event->register_event = memsw_cgroup_usage_register_event;
4854 event->unregister_event = memsw_cgroup_usage_unregister_event;
4861 * Verify @cfile should belong to @css. Also, remaining events are
4862 * automatically removed on cgroup destruction but the removal is
4863 * asynchronous, so take an extra ref on @css.
4865 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4866 &memory_cgrp_subsys);
4868 if (IS_ERR(cfile_css))
4870 if (cfile_css != css) {
4875 ret = event->register_event(memcg, event->eventfd, buf);
4879 vfs_poll(efile.file, &event->pt);
4881 spin_lock(&memcg->event_list_lock);
4882 list_add(&event->list, &memcg->event_list);
4883 spin_unlock(&memcg->event_list_lock);
4895 eventfd_ctx_put(event->eventfd);
4904 static struct cftype mem_cgroup_legacy_files[] = {
4906 .name = "usage_in_bytes",
4907 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4908 .read_u64 = mem_cgroup_read_u64,
4911 .name = "max_usage_in_bytes",
4912 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4913 .write = mem_cgroup_reset,
4914 .read_u64 = mem_cgroup_read_u64,
4917 .name = "limit_in_bytes",
4918 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4919 .write = mem_cgroup_write,
4920 .read_u64 = mem_cgroup_read_u64,
4923 .name = "soft_limit_in_bytes",
4924 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4925 .write = mem_cgroup_write,
4926 .read_u64 = mem_cgroup_read_u64,
4930 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4931 .write = mem_cgroup_reset,
4932 .read_u64 = mem_cgroup_read_u64,
4936 .seq_show = memcg_stat_show,
4939 .name = "force_empty",
4940 .write = mem_cgroup_force_empty_write,
4943 .name = "use_hierarchy",
4944 .write_u64 = mem_cgroup_hierarchy_write,
4945 .read_u64 = mem_cgroup_hierarchy_read,
4948 .name = "cgroup.event_control", /* XXX: for compat */
4949 .write = memcg_write_event_control,
4950 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4953 .name = "swappiness",
4954 .read_u64 = mem_cgroup_swappiness_read,
4955 .write_u64 = mem_cgroup_swappiness_write,
4958 .name = "move_charge_at_immigrate",
4959 .read_u64 = mem_cgroup_move_charge_read,
4960 .write_u64 = mem_cgroup_move_charge_write,
4963 .name = "oom_control",
4964 .seq_show = mem_cgroup_oom_control_read,
4965 .write_u64 = mem_cgroup_oom_control_write,
4966 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4969 .name = "pressure_level",
4973 .name = "numa_stat",
4974 .seq_show = memcg_numa_stat_show,
4978 .name = "kmem.limit_in_bytes",
4979 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4980 .write = mem_cgroup_write,
4981 .read_u64 = mem_cgroup_read_u64,
4984 .name = "kmem.usage_in_bytes",
4985 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4986 .read_u64 = mem_cgroup_read_u64,
4989 .name = "kmem.failcnt",
4990 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4991 .write = mem_cgroup_reset,
4992 .read_u64 = mem_cgroup_read_u64,
4995 .name = "kmem.max_usage_in_bytes",
4996 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4997 .write = mem_cgroup_reset,
4998 .read_u64 = mem_cgroup_read_u64,
5000 #if defined(CONFIG_MEMCG_KMEM) && \
5001 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5003 .name = "kmem.slabinfo",
5004 .seq_show = memcg_slab_show,
5008 .name = "kmem.tcp.limit_in_bytes",
5009 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5010 .write = mem_cgroup_write,
5011 .read_u64 = mem_cgroup_read_u64,
5014 .name = "kmem.tcp.usage_in_bytes",
5015 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5016 .read_u64 = mem_cgroup_read_u64,
5019 .name = "kmem.tcp.failcnt",
5020 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5021 .write = mem_cgroup_reset,
5022 .read_u64 = mem_cgroup_read_u64,
5025 .name = "kmem.tcp.max_usage_in_bytes",
5026 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5027 .write = mem_cgroup_reset,
5028 .read_u64 = mem_cgroup_read_u64,
5030 { }, /* terminate */
5034 * Private memory cgroup IDR
5036 * Swap-out records and page cache shadow entries need to store memcg
5037 * references in constrained space, so we maintain an ID space that is
5038 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5039 * memory-controlled cgroups to 64k.
5041 * However, there usually are many references to the offline CSS after
5042 * the cgroup has been destroyed, such as page cache or reclaimable
5043 * slab objects, that don't need to hang on to the ID. We want to keep
5044 * those dead CSS from occupying IDs, or we might quickly exhaust the
5045 * relatively small ID space and prevent the creation of new cgroups
5046 * even when there are much fewer than 64k cgroups - possibly none.
5048 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5049 * be freed and recycled when it's no longer needed, which is usually
5050 * when the CSS is offlined.
5052 * The only exception to that are records of swapped out tmpfs/shmem
5053 * pages that need to be attributed to live ancestors on swapin. But
5054 * those references are manageable from userspace.
5057 static DEFINE_IDR(mem_cgroup_idr);
5059 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5061 if (memcg->id.id > 0) {
5062 idr_remove(&mem_cgroup_idr, memcg->id.id);
5067 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5070 refcount_add(n, &memcg->id.ref);
5073 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5075 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5076 mem_cgroup_id_remove(memcg);
5078 /* Memcg ID pins CSS */
5079 css_put(&memcg->css);
5083 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5085 mem_cgroup_id_put_many(memcg, 1);
5089 * mem_cgroup_from_id - look up a memcg from a memcg id
5090 * @id: the memcg id to look up
5092 * Caller must hold rcu_read_lock().
5094 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5096 WARN_ON_ONCE(!rcu_read_lock_held());
5097 return idr_find(&mem_cgroup_idr, id);
5100 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5102 struct mem_cgroup_per_node *pn;
5105 * This routine is called against possible nodes.
5106 * But it's BUG to call kmalloc() against offline node.
5108 * TODO: this routine can waste much memory for nodes which will
5109 * never be onlined. It's better to use memory hotplug callback
5112 if (!node_state(node, N_NORMAL_MEMORY))
5114 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5118 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5119 GFP_KERNEL_ACCOUNT);
5120 if (!pn->lruvec_stat_local) {
5125 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5126 GFP_KERNEL_ACCOUNT);
5127 if (!pn->lruvec_stat_cpu) {
5128 free_percpu(pn->lruvec_stat_local);
5133 lruvec_init(&pn->lruvec);
5134 pn->usage_in_excess = 0;
5135 pn->on_tree = false;
5138 memcg->nodeinfo[node] = pn;
5142 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5144 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5149 free_percpu(pn->lruvec_stat_cpu);
5150 free_percpu(pn->lruvec_stat_local);
5154 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5159 free_mem_cgroup_per_node_info(memcg, node);
5160 free_percpu(memcg->vmstats_percpu);
5164 static void mem_cgroup_free(struct mem_cgroup *memcg)
5168 memcg_wb_domain_exit(memcg);
5170 * Flush percpu lruvec stats to guarantee the value
5171 * correctness on parent's and all ancestor levels.
5173 for_each_online_cpu(cpu)
5174 memcg_flush_lruvec_page_state(memcg, cpu);
5175 __mem_cgroup_free(memcg);
5178 static struct mem_cgroup *mem_cgroup_alloc(void)
5180 struct mem_cgroup *memcg;
5183 int __maybe_unused i;
5184 long error = -ENOMEM;
5186 size = sizeof(struct mem_cgroup);
5187 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5189 memcg = kzalloc(size, GFP_KERNEL);
5191 return ERR_PTR(error);
5193 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5194 1, MEM_CGROUP_ID_MAX,
5196 if (memcg->id.id < 0) {
5197 error = memcg->id.id;
5201 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5202 GFP_KERNEL_ACCOUNT);
5203 if (!memcg->vmstats_percpu)
5207 if (alloc_mem_cgroup_per_node_info(memcg, node))
5210 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5213 INIT_WORK(&memcg->high_work, high_work_func);
5214 INIT_LIST_HEAD(&memcg->oom_notify);
5215 mutex_init(&memcg->thresholds_lock);
5216 spin_lock_init(&memcg->move_lock);
5217 vmpressure_init(&memcg->vmpressure);
5218 INIT_LIST_HEAD(&memcg->event_list);
5219 spin_lock_init(&memcg->event_list_lock);
5220 memcg->socket_pressure = jiffies;
5221 #ifdef CONFIG_MEMCG_KMEM
5222 memcg->kmemcg_id = -1;
5223 INIT_LIST_HEAD(&memcg->objcg_list);
5225 #ifdef CONFIG_CGROUP_WRITEBACK
5226 INIT_LIST_HEAD(&memcg->cgwb_list);
5227 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5228 memcg->cgwb_frn[i].done =
5229 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5231 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5232 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5233 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5234 memcg->deferred_split_queue.split_queue_len = 0;
5236 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5239 mem_cgroup_id_remove(memcg);
5240 __mem_cgroup_free(memcg);
5241 return ERR_PTR(error);
5244 static struct cgroup_subsys_state * __ref
5245 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5247 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5248 struct mem_cgroup *memcg, *old_memcg;
5249 long error = -ENOMEM;
5251 old_memcg = set_active_memcg(parent);
5252 memcg = mem_cgroup_alloc();
5253 set_active_memcg(old_memcg);
5255 return ERR_CAST(memcg);
5257 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5258 memcg->soft_limit = PAGE_COUNTER_MAX;
5259 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5261 memcg->swappiness = mem_cgroup_swappiness(parent);
5262 memcg->oom_kill_disable = parent->oom_kill_disable;
5264 page_counter_init(&memcg->memory, &parent->memory);
5265 page_counter_init(&memcg->swap, &parent->swap);
5266 page_counter_init(&memcg->kmem, &parent->kmem);
5267 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5269 page_counter_init(&memcg->memory, NULL);
5270 page_counter_init(&memcg->swap, NULL);
5271 page_counter_init(&memcg->kmem, NULL);
5272 page_counter_init(&memcg->tcpmem, NULL);
5274 root_mem_cgroup = memcg;
5278 /* The following stuff does not apply to the root */
5279 error = memcg_online_kmem(memcg);
5283 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5284 static_branch_inc(&memcg_sockets_enabled_key);
5288 mem_cgroup_id_remove(memcg);
5289 mem_cgroup_free(memcg);
5290 return ERR_PTR(error);
5293 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5295 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5298 * A memcg must be visible for expand_shrinker_info()
5299 * by the time the maps are allocated. So, we allocate maps
5300 * here, when for_each_mem_cgroup() can't skip it.
5302 if (alloc_shrinker_info(memcg)) {
5303 mem_cgroup_id_remove(memcg);
5307 /* Online state pins memcg ID, memcg ID pins CSS */
5308 refcount_set(&memcg->id.ref, 1);
5313 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5315 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5316 struct mem_cgroup_event *event, *tmp;
5319 * Unregister events and notify userspace.
5320 * Notify userspace about cgroup removing only after rmdir of cgroup
5321 * directory to avoid race between userspace and kernelspace.
5323 spin_lock(&memcg->event_list_lock);
5324 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5325 list_del_init(&event->list);
5326 schedule_work(&event->remove);
5328 spin_unlock(&memcg->event_list_lock);
5330 page_counter_set_min(&memcg->memory, 0);
5331 page_counter_set_low(&memcg->memory, 0);
5333 memcg_offline_kmem(memcg);
5334 reparent_shrinker_deferred(memcg);
5335 wb_memcg_offline(memcg);
5337 drain_all_stock(memcg);
5339 mem_cgroup_id_put(memcg);
5342 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5344 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5346 invalidate_reclaim_iterators(memcg);
5349 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5351 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5352 int __maybe_unused i;
5354 #ifdef CONFIG_CGROUP_WRITEBACK
5355 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5356 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5358 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5359 static_branch_dec(&memcg_sockets_enabled_key);
5361 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5362 static_branch_dec(&memcg_sockets_enabled_key);
5364 vmpressure_cleanup(&memcg->vmpressure);
5365 cancel_work_sync(&memcg->high_work);
5366 mem_cgroup_remove_from_trees(memcg);
5367 free_shrinker_info(memcg);
5368 memcg_free_kmem(memcg);
5369 mem_cgroup_free(memcg);
5373 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5374 * @css: the target css
5376 * Reset the states of the mem_cgroup associated with @css. This is
5377 * invoked when the userland requests disabling on the default hierarchy
5378 * but the memcg is pinned through dependency. The memcg should stop
5379 * applying policies and should revert to the vanilla state as it may be
5380 * made visible again.
5382 * The current implementation only resets the essential configurations.
5383 * This needs to be expanded to cover all the visible parts.
5385 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5387 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5389 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5390 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5391 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5392 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5393 page_counter_set_min(&memcg->memory, 0);
5394 page_counter_set_low(&memcg->memory, 0);
5395 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5396 memcg->soft_limit = PAGE_COUNTER_MAX;
5397 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5398 memcg_wb_domain_size_changed(memcg);
5401 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5403 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5404 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5405 struct memcg_vmstats_percpu *statc;
5409 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5411 for (i = 0; i < MEMCG_NR_STAT; i++) {
5413 * Collect the aggregated propagation counts of groups
5414 * below us. We're in a per-cpu loop here and this is
5415 * a global counter, so the first cycle will get them.
5417 delta = memcg->vmstats.state_pending[i];
5419 memcg->vmstats.state_pending[i] = 0;
5421 /* Add CPU changes on this level since the last flush */
5422 v = READ_ONCE(statc->state[i]);
5423 if (v != statc->state_prev[i]) {
5424 delta += v - statc->state_prev[i];
5425 statc->state_prev[i] = v;
5431 /* Aggregate counts on this level and propagate upwards */
5432 memcg->vmstats.state[i] += delta;
5434 parent->vmstats.state_pending[i] += delta;
5437 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5438 delta = memcg->vmstats.events_pending[i];
5440 memcg->vmstats.events_pending[i] = 0;
5442 v = READ_ONCE(statc->events[i]);
5443 if (v != statc->events_prev[i]) {
5444 delta += v - statc->events_prev[i];
5445 statc->events_prev[i] = v;
5451 memcg->vmstats.events[i] += delta;
5453 parent->vmstats.events_pending[i] += delta;
5458 /* Handlers for move charge at task migration. */
5459 static int mem_cgroup_do_precharge(unsigned long count)
5463 /* Try a single bulk charge without reclaim first, kswapd may wake */
5464 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5466 mc.precharge += count;
5470 /* Try charges one by one with reclaim, but do not retry */
5472 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5486 enum mc_target_type {
5493 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5494 unsigned long addr, pte_t ptent)
5496 struct page *page = vm_normal_page(vma, addr, ptent);
5498 if (!page || !page_mapped(page))
5500 if (PageAnon(page)) {
5501 if (!(mc.flags & MOVE_ANON))
5504 if (!(mc.flags & MOVE_FILE))
5507 if (!get_page_unless_zero(page))
5513 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5514 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5515 pte_t ptent, swp_entry_t *entry)
5517 struct page *page = NULL;
5518 swp_entry_t ent = pte_to_swp_entry(ptent);
5520 if (!(mc.flags & MOVE_ANON))
5524 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5525 * a device and because they are not accessible by CPU they are store
5526 * as special swap entry in the CPU page table.
5528 if (is_device_private_entry(ent)) {
5529 page = device_private_entry_to_page(ent);
5531 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5532 * a refcount of 1 when free (unlike normal page)
5534 if (!page_ref_add_unless(page, 1, 1))
5539 if (non_swap_entry(ent))
5543 * Because lookup_swap_cache() updates some statistics counter,
5544 * we call find_get_page() with swapper_space directly.
5546 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5547 entry->val = ent.val;
5552 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5553 pte_t ptent, swp_entry_t *entry)
5559 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5560 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5562 if (!vma->vm_file) /* anonymous vma */
5564 if (!(mc.flags & MOVE_FILE))
5567 /* page is moved even if it's not RSS of this task(page-faulted). */
5568 /* shmem/tmpfs may report page out on swap: account for that too. */
5569 return find_get_incore_page(vma->vm_file->f_mapping,
5570 linear_page_index(vma, addr));
5574 * mem_cgroup_move_account - move account of the page
5576 * @compound: charge the page as compound or small page
5577 * @from: mem_cgroup which the page is moved from.
5578 * @to: mem_cgroup which the page is moved to. @from != @to.
5580 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5582 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5585 static int mem_cgroup_move_account(struct page *page,
5587 struct mem_cgroup *from,
5588 struct mem_cgroup *to)
5590 struct lruvec *from_vec, *to_vec;
5591 struct pglist_data *pgdat;
5592 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5595 VM_BUG_ON(from == to);
5596 VM_BUG_ON_PAGE(PageLRU(page), page);
5597 VM_BUG_ON(compound && !PageTransHuge(page));
5600 * Prevent mem_cgroup_migrate() from looking at
5601 * page's memory cgroup of its source page while we change it.
5604 if (!trylock_page(page))
5608 if (page_memcg(page) != from)
5611 pgdat = page_pgdat(page);
5612 from_vec = mem_cgroup_lruvec(from, pgdat);
5613 to_vec = mem_cgroup_lruvec(to, pgdat);
5615 lock_page_memcg(page);
5617 if (PageAnon(page)) {
5618 if (page_mapped(page)) {
5619 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5620 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5621 if (PageTransHuge(page)) {
5622 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5624 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5629 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5630 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5632 if (PageSwapBacked(page)) {
5633 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5634 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5637 if (page_mapped(page)) {
5638 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5639 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5642 if (PageDirty(page)) {
5643 struct address_space *mapping = page_mapping(page);
5645 if (mapping_can_writeback(mapping)) {
5646 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5648 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5654 if (PageWriteback(page)) {
5655 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5656 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5660 * All state has been migrated, let's switch to the new memcg.
5662 * It is safe to change page's memcg here because the page
5663 * is referenced, charged, isolated, and locked: we can't race
5664 * with (un)charging, migration, LRU putback, or anything else
5665 * that would rely on a stable page's memory cgroup.
5667 * Note that lock_page_memcg is a memcg lock, not a page lock,
5668 * to save space. As soon as we switch page's memory cgroup to a
5669 * new memcg that isn't locked, the above state can change
5670 * concurrently again. Make sure we're truly done with it.
5675 css_put(&from->css);
5677 page->memcg_data = (unsigned long)to;
5679 __unlock_page_memcg(from);
5683 local_irq_disable();
5684 mem_cgroup_charge_statistics(to, page, nr_pages);
5685 memcg_check_events(to, page);
5686 mem_cgroup_charge_statistics(from, page, -nr_pages);
5687 memcg_check_events(from, page);
5696 * get_mctgt_type - get target type of moving charge
5697 * @vma: the vma the pte to be checked belongs
5698 * @addr: the address corresponding to the pte to be checked
5699 * @ptent: the pte to be checked
5700 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5703 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5704 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5705 * move charge. if @target is not NULL, the page is stored in target->page
5706 * with extra refcnt got(Callers should handle it).
5707 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5708 * target for charge migration. if @target is not NULL, the entry is stored
5710 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5711 * (so ZONE_DEVICE page and thus not on the lru).
5712 * For now we such page is charge like a regular page would be as for all
5713 * intent and purposes it is just special memory taking the place of a
5716 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5718 * Called with pte lock held.
5721 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5722 unsigned long addr, pte_t ptent, union mc_target *target)
5724 struct page *page = NULL;
5725 enum mc_target_type ret = MC_TARGET_NONE;
5726 swp_entry_t ent = { .val = 0 };
5728 if (pte_present(ptent))
5729 page = mc_handle_present_pte(vma, addr, ptent);
5730 else if (is_swap_pte(ptent))
5731 page = mc_handle_swap_pte(vma, ptent, &ent);
5732 else if (pte_none(ptent))
5733 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5735 if (!page && !ent.val)
5739 * Do only loose check w/o serialization.
5740 * mem_cgroup_move_account() checks the page is valid or
5741 * not under LRU exclusion.
5743 if (page_memcg(page) == mc.from) {
5744 ret = MC_TARGET_PAGE;
5745 if (is_device_private_page(page))
5746 ret = MC_TARGET_DEVICE;
5748 target->page = page;
5750 if (!ret || !target)
5754 * There is a swap entry and a page doesn't exist or isn't charged.
5755 * But we cannot move a tail-page in a THP.
5757 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5758 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5759 ret = MC_TARGET_SWAP;
5766 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5768 * We don't consider PMD mapped swapping or file mapped pages because THP does
5769 * not support them for now.
5770 * Caller should make sure that pmd_trans_huge(pmd) is true.
5772 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5773 unsigned long addr, pmd_t pmd, union mc_target *target)
5775 struct page *page = NULL;
5776 enum mc_target_type ret = MC_TARGET_NONE;
5778 if (unlikely(is_swap_pmd(pmd))) {
5779 VM_BUG_ON(thp_migration_supported() &&
5780 !is_pmd_migration_entry(pmd));
5783 page = pmd_page(pmd);
5784 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5785 if (!(mc.flags & MOVE_ANON))
5787 if (page_memcg(page) == mc.from) {
5788 ret = MC_TARGET_PAGE;
5791 target->page = page;
5797 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5798 unsigned long addr, pmd_t pmd, union mc_target *target)
5800 return MC_TARGET_NONE;
5804 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5805 unsigned long addr, unsigned long end,
5806 struct mm_walk *walk)
5808 struct vm_area_struct *vma = walk->vma;
5812 ptl = pmd_trans_huge_lock(pmd, vma);
5815 * Note their can not be MC_TARGET_DEVICE for now as we do not
5816 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5817 * this might change.
5819 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5820 mc.precharge += HPAGE_PMD_NR;
5825 if (pmd_trans_unstable(pmd))
5827 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5828 for (; addr != end; pte++, addr += PAGE_SIZE)
5829 if (get_mctgt_type(vma, addr, *pte, NULL))
5830 mc.precharge++; /* increment precharge temporarily */
5831 pte_unmap_unlock(pte - 1, ptl);
5837 static const struct mm_walk_ops precharge_walk_ops = {
5838 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5841 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5843 unsigned long precharge;
5846 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5847 mmap_read_unlock(mm);
5849 precharge = mc.precharge;
5855 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5857 unsigned long precharge = mem_cgroup_count_precharge(mm);
5859 VM_BUG_ON(mc.moving_task);
5860 mc.moving_task = current;
5861 return mem_cgroup_do_precharge(precharge);
5864 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5865 static void __mem_cgroup_clear_mc(void)
5867 struct mem_cgroup *from = mc.from;
5868 struct mem_cgroup *to = mc.to;
5870 /* we must uncharge all the leftover precharges from mc.to */
5872 cancel_charge(mc.to, mc.precharge);
5876 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5877 * we must uncharge here.
5879 if (mc.moved_charge) {
5880 cancel_charge(mc.from, mc.moved_charge);
5881 mc.moved_charge = 0;
5883 /* we must fixup refcnts and charges */
5884 if (mc.moved_swap) {
5885 /* uncharge swap account from the old cgroup */
5886 if (!mem_cgroup_is_root(mc.from))
5887 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5889 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5892 * we charged both to->memory and to->memsw, so we
5893 * should uncharge to->memory.
5895 if (!mem_cgroup_is_root(mc.to))
5896 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5900 memcg_oom_recover(from);
5901 memcg_oom_recover(to);
5902 wake_up_all(&mc.waitq);
5905 static void mem_cgroup_clear_mc(void)
5907 struct mm_struct *mm = mc.mm;
5910 * we must clear moving_task before waking up waiters at the end of
5913 mc.moving_task = NULL;
5914 __mem_cgroup_clear_mc();
5915 spin_lock(&mc.lock);
5919 spin_unlock(&mc.lock);
5924 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5926 struct cgroup_subsys_state *css;
5927 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5928 struct mem_cgroup *from;
5929 struct task_struct *leader, *p;
5930 struct mm_struct *mm;
5931 unsigned long move_flags;
5934 /* charge immigration isn't supported on the default hierarchy */
5935 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5939 * Multi-process migrations only happen on the default hierarchy
5940 * where charge immigration is not used. Perform charge
5941 * immigration if @tset contains a leader and whine if there are
5945 cgroup_taskset_for_each_leader(leader, css, tset) {
5948 memcg = mem_cgroup_from_css(css);
5954 * We are now committed to this value whatever it is. Changes in this
5955 * tunable will only affect upcoming migrations, not the current one.
5956 * So we need to save it, and keep it going.
5958 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5962 from = mem_cgroup_from_task(p);
5964 VM_BUG_ON(from == memcg);
5966 mm = get_task_mm(p);
5969 /* We move charges only when we move a owner of the mm */
5970 if (mm->owner == p) {
5973 VM_BUG_ON(mc.precharge);
5974 VM_BUG_ON(mc.moved_charge);
5975 VM_BUG_ON(mc.moved_swap);
5977 spin_lock(&mc.lock);
5981 mc.flags = move_flags;
5982 spin_unlock(&mc.lock);
5983 /* We set mc.moving_task later */
5985 ret = mem_cgroup_precharge_mc(mm);
5987 mem_cgroup_clear_mc();
5994 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5997 mem_cgroup_clear_mc();
6000 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6001 unsigned long addr, unsigned long end,
6002 struct mm_walk *walk)
6005 struct vm_area_struct *vma = walk->vma;
6008 enum mc_target_type target_type;
6009 union mc_target target;
6012 ptl = pmd_trans_huge_lock(pmd, vma);
6014 if (mc.precharge < HPAGE_PMD_NR) {
6018 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6019 if (target_type == MC_TARGET_PAGE) {
6021 if (!isolate_lru_page(page)) {
6022 if (!mem_cgroup_move_account(page, true,
6024 mc.precharge -= HPAGE_PMD_NR;
6025 mc.moved_charge += HPAGE_PMD_NR;
6027 putback_lru_page(page);
6030 } else if (target_type == MC_TARGET_DEVICE) {
6032 if (!mem_cgroup_move_account(page, true,
6034 mc.precharge -= HPAGE_PMD_NR;
6035 mc.moved_charge += HPAGE_PMD_NR;
6043 if (pmd_trans_unstable(pmd))
6046 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6047 for (; addr != end; addr += PAGE_SIZE) {
6048 pte_t ptent = *(pte++);
6049 bool device = false;
6055 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6056 case MC_TARGET_DEVICE:
6059 case MC_TARGET_PAGE:
6062 * We can have a part of the split pmd here. Moving it
6063 * can be done but it would be too convoluted so simply
6064 * ignore such a partial THP and keep it in original
6065 * memcg. There should be somebody mapping the head.
6067 if (PageTransCompound(page))
6069 if (!device && isolate_lru_page(page))
6071 if (!mem_cgroup_move_account(page, false,
6074 /* we uncharge from mc.from later. */
6078 putback_lru_page(page);
6079 put: /* get_mctgt_type() gets the page */
6082 case MC_TARGET_SWAP:
6084 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6086 mem_cgroup_id_get_many(mc.to, 1);
6087 /* we fixup other refcnts and charges later. */
6095 pte_unmap_unlock(pte - 1, ptl);
6100 * We have consumed all precharges we got in can_attach().
6101 * We try charge one by one, but don't do any additional
6102 * charges to mc.to if we have failed in charge once in attach()
6105 ret = mem_cgroup_do_precharge(1);
6113 static const struct mm_walk_ops charge_walk_ops = {
6114 .pmd_entry = mem_cgroup_move_charge_pte_range,
6117 static void mem_cgroup_move_charge(void)
6119 lru_add_drain_all();
6121 * Signal lock_page_memcg() to take the memcg's move_lock
6122 * while we're moving its pages to another memcg. Then wait
6123 * for already started RCU-only updates to finish.
6125 atomic_inc(&mc.from->moving_account);
6128 if (unlikely(!mmap_read_trylock(mc.mm))) {
6130 * Someone who are holding the mmap_lock might be waiting in
6131 * waitq. So we cancel all extra charges, wake up all waiters,
6132 * and retry. Because we cancel precharges, we might not be able
6133 * to move enough charges, but moving charge is a best-effort
6134 * feature anyway, so it wouldn't be a big problem.
6136 __mem_cgroup_clear_mc();
6141 * When we have consumed all precharges and failed in doing
6142 * additional charge, the page walk just aborts.
6144 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6147 mmap_read_unlock(mc.mm);
6148 atomic_dec(&mc.from->moving_account);
6151 static void mem_cgroup_move_task(void)
6154 mem_cgroup_move_charge();
6155 mem_cgroup_clear_mc();
6158 #else /* !CONFIG_MMU */
6159 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6163 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6166 static void mem_cgroup_move_task(void)
6171 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6173 if (value == PAGE_COUNTER_MAX)
6174 seq_puts(m, "max\n");
6176 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6181 static u64 memory_current_read(struct cgroup_subsys_state *css,
6184 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6186 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6189 static int memory_min_show(struct seq_file *m, void *v)
6191 return seq_puts_memcg_tunable(m,
6192 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6195 static ssize_t memory_min_write(struct kernfs_open_file *of,
6196 char *buf, size_t nbytes, loff_t off)
6198 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6202 buf = strstrip(buf);
6203 err = page_counter_memparse(buf, "max", &min);
6207 page_counter_set_min(&memcg->memory, min);
6212 static int memory_low_show(struct seq_file *m, void *v)
6214 return seq_puts_memcg_tunable(m,
6215 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6218 static ssize_t memory_low_write(struct kernfs_open_file *of,
6219 char *buf, size_t nbytes, loff_t off)
6221 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6225 buf = strstrip(buf);
6226 err = page_counter_memparse(buf, "max", &low);
6230 page_counter_set_low(&memcg->memory, low);
6235 static int memory_high_show(struct seq_file *m, void *v)
6237 return seq_puts_memcg_tunable(m,
6238 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6241 static ssize_t memory_high_write(struct kernfs_open_file *of,
6242 char *buf, size_t nbytes, loff_t off)
6244 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6245 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6246 bool drained = false;
6250 buf = strstrip(buf);
6251 err = page_counter_memparse(buf, "max", &high);
6255 page_counter_set_high(&memcg->memory, high);
6258 unsigned long nr_pages = page_counter_read(&memcg->memory);
6259 unsigned long reclaimed;
6261 if (nr_pages <= high)
6264 if (signal_pending(current))
6268 drain_all_stock(memcg);
6273 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6276 if (!reclaimed && !nr_retries--)
6280 memcg_wb_domain_size_changed(memcg);
6284 static int memory_max_show(struct seq_file *m, void *v)
6286 return seq_puts_memcg_tunable(m,
6287 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6290 static ssize_t memory_max_write(struct kernfs_open_file *of,
6291 char *buf, size_t nbytes, loff_t off)
6293 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6294 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6295 bool drained = false;
6299 buf = strstrip(buf);
6300 err = page_counter_memparse(buf, "max", &max);
6304 xchg(&memcg->memory.max, max);
6307 unsigned long nr_pages = page_counter_read(&memcg->memory);
6309 if (nr_pages <= max)
6312 if (signal_pending(current))
6316 drain_all_stock(memcg);
6322 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6328 memcg_memory_event(memcg, MEMCG_OOM);
6329 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6333 memcg_wb_domain_size_changed(memcg);
6337 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6339 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6340 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6341 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6342 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6343 seq_printf(m, "oom_kill %lu\n",
6344 atomic_long_read(&events[MEMCG_OOM_KILL]));
6347 static int memory_events_show(struct seq_file *m, void *v)
6349 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6351 __memory_events_show(m, memcg->memory_events);
6355 static int memory_events_local_show(struct seq_file *m, void *v)
6357 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6359 __memory_events_show(m, memcg->memory_events_local);
6363 static int memory_stat_show(struct seq_file *m, void *v)
6365 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6368 buf = memory_stat_format(memcg);
6377 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6380 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6383 static int memory_numa_stat_show(struct seq_file *m, void *v)
6386 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6388 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6391 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6394 seq_printf(m, "%s", memory_stats[i].name);
6395 for_each_node_state(nid, N_MEMORY) {
6397 struct lruvec *lruvec;
6399 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6400 size = lruvec_page_state_output(lruvec,
6401 memory_stats[i].idx);
6402 seq_printf(m, " N%d=%llu", nid, size);
6411 static int memory_oom_group_show(struct seq_file *m, void *v)
6413 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6415 seq_printf(m, "%d\n", memcg->oom_group);
6420 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6421 char *buf, size_t nbytes, loff_t off)
6423 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6426 buf = strstrip(buf);
6430 ret = kstrtoint(buf, 0, &oom_group);
6434 if (oom_group != 0 && oom_group != 1)
6437 memcg->oom_group = oom_group;
6442 static struct cftype memory_files[] = {
6445 .flags = CFTYPE_NOT_ON_ROOT,
6446 .read_u64 = memory_current_read,
6450 .flags = CFTYPE_NOT_ON_ROOT,
6451 .seq_show = memory_min_show,
6452 .write = memory_min_write,
6456 .flags = CFTYPE_NOT_ON_ROOT,
6457 .seq_show = memory_low_show,
6458 .write = memory_low_write,
6462 .flags = CFTYPE_NOT_ON_ROOT,
6463 .seq_show = memory_high_show,
6464 .write = memory_high_write,
6468 .flags = CFTYPE_NOT_ON_ROOT,
6469 .seq_show = memory_max_show,
6470 .write = memory_max_write,
6474 .flags = CFTYPE_NOT_ON_ROOT,
6475 .file_offset = offsetof(struct mem_cgroup, events_file),
6476 .seq_show = memory_events_show,
6479 .name = "events.local",
6480 .flags = CFTYPE_NOT_ON_ROOT,
6481 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6482 .seq_show = memory_events_local_show,
6486 .seq_show = memory_stat_show,
6490 .name = "numa_stat",
6491 .seq_show = memory_numa_stat_show,
6495 .name = "oom.group",
6496 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6497 .seq_show = memory_oom_group_show,
6498 .write = memory_oom_group_write,
6503 struct cgroup_subsys memory_cgrp_subsys = {
6504 .css_alloc = mem_cgroup_css_alloc,
6505 .css_online = mem_cgroup_css_online,
6506 .css_offline = mem_cgroup_css_offline,
6507 .css_released = mem_cgroup_css_released,
6508 .css_free = mem_cgroup_css_free,
6509 .css_reset = mem_cgroup_css_reset,
6510 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6511 .can_attach = mem_cgroup_can_attach,
6512 .cancel_attach = mem_cgroup_cancel_attach,
6513 .post_attach = mem_cgroup_move_task,
6514 .dfl_cftypes = memory_files,
6515 .legacy_cftypes = mem_cgroup_legacy_files,
6520 * This function calculates an individual cgroup's effective
6521 * protection which is derived from its own memory.min/low, its
6522 * parent's and siblings' settings, as well as the actual memory
6523 * distribution in the tree.
6525 * The following rules apply to the effective protection values:
6527 * 1. At the first level of reclaim, effective protection is equal to
6528 * the declared protection in memory.min and memory.low.
6530 * 2. To enable safe delegation of the protection configuration, at
6531 * subsequent levels the effective protection is capped to the
6532 * parent's effective protection.
6534 * 3. To make complex and dynamic subtrees easier to configure, the
6535 * user is allowed to overcommit the declared protection at a given
6536 * level. If that is the case, the parent's effective protection is
6537 * distributed to the children in proportion to how much protection
6538 * they have declared and how much of it they are utilizing.
6540 * This makes distribution proportional, but also work-conserving:
6541 * if one cgroup claims much more protection than it uses memory,
6542 * the unused remainder is available to its siblings.
6544 * 4. Conversely, when the declared protection is undercommitted at a
6545 * given level, the distribution of the larger parental protection
6546 * budget is NOT proportional. A cgroup's protection from a sibling
6547 * is capped to its own memory.min/low setting.
6549 * 5. However, to allow protecting recursive subtrees from each other
6550 * without having to declare each individual cgroup's fixed share
6551 * of the ancestor's claim to protection, any unutilized -
6552 * "floating" - protection from up the tree is distributed in
6553 * proportion to each cgroup's *usage*. This makes the protection
6554 * neutral wrt sibling cgroups and lets them compete freely over
6555 * the shared parental protection budget, but it protects the
6556 * subtree as a whole from neighboring subtrees.
6558 * Note that 4. and 5. are not in conflict: 4. is about protecting
6559 * against immediate siblings whereas 5. is about protecting against
6560 * neighboring subtrees.
6562 static unsigned long effective_protection(unsigned long usage,
6563 unsigned long parent_usage,
6564 unsigned long setting,
6565 unsigned long parent_effective,
6566 unsigned long siblings_protected)
6568 unsigned long protected;
6571 protected = min(usage, setting);
6573 * If all cgroups at this level combined claim and use more
6574 * protection then what the parent affords them, distribute
6575 * shares in proportion to utilization.
6577 * We are using actual utilization rather than the statically
6578 * claimed protection in order to be work-conserving: claimed
6579 * but unused protection is available to siblings that would
6580 * otherwise get a smaller chunk than what they claimed.
6582 if (siblings_protected > parent_effective)
6583 return protected * parent_effective / siblings_protected;
6586 * Ok, utilized protection of all children is within what the
6587 * parent affords them, so we know whatever this child claims
6588 * and utilizes is effectively protected.
6590 * If there is unprotected usage beyond this value, reclaim
6591 * will apply pressure in proportion to that amount.
6593 * If there is unutilized protection, the cgroup will be fully
6594 * shielded from reclaim, but we do return a smaller value for
6595 * protection than what the group could enjoy in theory. This
6596 * is okay. With the overcommit distribution above, effective
6597 * protection is always dependent on how memory is actually
6598 * consumed among the siblings anyway.
6603 * If the children aren't claiming (all of) the protection
6604 * afforded to them by the parent, distribute the remainder in
6605 * proportion to the (unprotected) memory of each cgroup. That
6606 * way, cgroups that aren't explicitly prioritized wrt each
6607 * other compete freely over the allowance, but they are
6608 * collectively protected from neighboring trees.
6610 * We're using unprotected memory for the weight so that if
6611 * some cgroups DO claim explicit protection, we don't protect
6612 * the same bytes twice.
6614 * Check both usage and parent_usage against the respective
6615 * protected values. One should imply the other, but they
6616 * aren't read atomically - make sure the division is sane.
6618 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6620 if (parent_effective > siblings_protected &&
6621 parent_usage > siblings_protected &&
6622 usage > protected) {
6623 unsigned long unclaimed;
6625 unclaimed = parent_effective - siblings_protected;
6626 unclaimed *= usage - protected;
6627 unclaimed /= parent_usage - siblings_protected;
6636 * mem_cgroup_protected - check if memory consumption is in the normal range
6637 * @root: the top ancestor of the sub-tree being checked
6638 * @memcg: the memory cgroup to check
6640 * WARNING: This function is not stateless! It can only be used as part
6641 * of a top-down tree iteration, not for isolated queries.
6643 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6644 struct mem_cgroup *memcg)
6646 unsigned long usage, parent_usage;
6647 struct mem_cgroup *parent;
6649 if (mem_cgroup_disabled())
6653 root = root_mem_cgroup;
6656 * Effective values of the reclaim targets are ignored so they
6657 * can be stale. Have a look at mem_cgroup_protection for more
6659 * TODO: calculation should be more robust so that we do not need
6660 * that special casing.
6665 usage = page_counter_read(&memcg->memory);
6669 parent = parent_mem_cgroup(memcg);
6670 /* No parent means a non-hierarchical mode on v1 memcg */
6674 if (parent == root) {
6675 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6676 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6680 parent_usage = page_counter_read(&parent->memory);
6682 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6683 READ_ONCE(memcg->memory.min),
6684 READ_ONCE(parent->memory.emin),
6685 atomic_long_read(&parent->memory.children_min_usage)));
6687 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6688 READ_ONCE(memcg->memory.low),
6689 READ_ONCE(parent->memory.elow),
6690 atomic_long_read(&parent->memory.children_low_usage)));
6693 static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6696 unsigned int nr_pages = thp_nr_pages(page);
6699 ret = try_charge(memcg, gfp, nr_pages);
6703 css_get(&memcg->css);
6704 commit_charge(page, memcg);
6706 local_irq_disable();
6707 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6708 memcg_check_events(memcg, page);
6715 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6716 * @page: page to charge
6717 * @mm: mm context of the victim
6718 * @gfp_mask: reclaim mode
6720 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6721 * pages according to @gfp_mask if necessary.
6723 * Do not use this for pages allocated for swapin.
6725 * Returns 0 on success. Otherwise, an error code is returned.
6727 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6729 struct mem_cgroup *memcg;
6732 if (mem_cgroup_disabled())
6735 memcg = get_mem_cgroup_from_mm(mm);
6736 ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6737 css_put(&memcg->css);
6743 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6744 * @page: page to charge
6745 * @mm: mm context of the victim
6746 * @gfp: reclaim mode
6747 * @entry: swap entry for which the page is allocated
6749 * This function charges a page allocated for swapin. Please call this before
6750 * adding the page to the swapcache.
6752 * Returns 0 on success. Otherwise, an error code is returned.
6754 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6755 gfp_t gfp, swp_entry_t entry)
6757 struct mem_cgroup *memcg;
6761 if (mem_cgroup_disabled())
6764 id = lookup_swap_cgroup_id(entry);
6766 memcg = mem_cgroup_from_id(id);
6767 if (!memcg || !css_tryget_online(&memcg->css))
6768 memcg = get_mem_cgroup_from_mm(mm);
6771 ret = __mem_cgroup_charge(page, memcg, gfp);
6773 css_put(&memcg->css);
6778 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6779 * @entry: swap entry for which the page is charged
6781 * Call this function after successfully adding the charged page to swapcache.
6783 * Note: This function assumes the page for which swap slot is being uncharged
6786 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6789 * Cgroup1's unified memory+swap counter has been charged with the
6790 * new swapcache page, finish the transfer by uncharging the swap
6791 * slot. The swap slot would also get uncharged when it dies, but
6792 * it can stick around indefinitely and we'd count the page twice
6795 * Cgroup2 has separate resource counters for memory and swap,
6796 * so this is a non-issue here. Memory and swap charge lifetimes
6797 * correspond 1:1 to page and swap slot lifetimes: we charge the
6798 * page to memory here, and uncharge swap when the slot is freed.
6800 if (!mem_cgroup_disabled() && do_memsw_account()) {
6802 * The swap entry might not get freed for a long time,
6803 * let's not wait for it. The page already received a
6804 * memory+swap charge, drop the swap entry duplicate.
6806 mem_cgroup_uncharge_swap(entry, 1);
6810 struct uncharge_gather {
6811 struct mem_cgroup *memcg;
6812 unsigned long nr_memory;
6813 unsigned long pgpgout;
6814 unsigned long nr_kmem;
6815 struct page *dummy_page;
6818 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6820 memset(ug, 0, sizeof(*ug));
6823 static void uncharge_batch(const struct uncharge_gather *ug)
6825 unsigned long flags;
6827 if (ug->nr_memory) {
6828 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6829 if (do_memsw_account())
6830 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6831 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6832 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6833 memcg_oom_recover(ug->memcg);
6836 local_irq_save(flags);
6837 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6838 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6839 memcg_check_events(ug->memcg, ug->dummy_page);
6840 local_irq_restore(flags);
6842 /* drop reference from uncharge_page */
6843 css_put(&ug->memcg->css);
6846 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6848 unsigned long nr_pages;
6849 struct mem_cgroup *memcg;
6850 struct obj_cgroup *objcg;
6851 bool use_objcg = PageMemcgKmem(page);
6853 VM_BUG_ON_PAGE(PageLRU(page), page);
6856 * Nobody should be changing or seriously looking at
6857 * page memcg or objcg at this point, we have fully
6858 * exclusive access to the page.
6861 objcg = __page_objcg(page);
6863 * This get matches the put at the end of the function and
6864 * kmem pages do not hold memcg references anymore.
6866 memcg = get_mem_cgroup_from_objcg(objcg);
6868 memcg = __page_memcg(page);
6874 if (ug->memcg != memcg) {
6877 uncharge_gather_clear(ug);
6880 ug->dummy_page = page;
6882 /* pairs with css_put in uncharge_batch */
6883 css_get(&memcg->css);
6886 nr_pages = compound_nr(page);
6889 ug->nr_memory += nr_pages;
6890 ug->nr_kmem += nr_pages;
6892 page->memcg_data = 0;
6893 obj_cgroup_put(objcg);
6895 /* LRU pages aren't accounted at the root level */
6896 if (!mem_cgroup_is_root(memcg))
6897 ug->nr_memory += nr_pages;
6900 page->memcg_data = 0;
6903 css_put(&memcg->css);
6907 * mem_cgroup_uncharge - uncharge a page
6908 * @page: page to uncharge
6910 * Uncharge a page previously charged with mem_cgroup_charge().
6912 void mem_cgroup_uncharge(struct page *page)
6914 struct uncharge_gather ug;
6916 if (mem_cgroup_disabled())
6919 /* Don't touch page->lru of any random page, pre-check: */
6920 if (!page_memcg(page))
6923 uncharge_gather_clear(&ug);
6924 uncharge_page(page, &ug);
6925 uncharge_batch(&ug);
6929 * mem_cgroup_uncharge_list - uncharge a list of page
6930 * @page_list: list of pages to uncharge
6932 * Uncharge a list of pages previously charged with
6933 * mem_cgroup_charge().
6935 void mem_cgroup_uncharge_list(struct list_head *page_list)
6937 struct uncharge_gather ug;
6940 if (mem_cgroup_disabled())
6943 uncharge_gather_clear(&ug);
6944 list_for_each_entry(page, page_list, lru)
6945 uncharge_page(page, &ug);
6947 uncharge_batch(&ug);
6951 * mem_cgroup_migrate - charge a page's replacement
6952 * @oldpage: currently circulating page
6953 * @newpage: replacement page
6955 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6956 * be uncharged upon free.
6958 * Both pages must be locked, @newpage->mapping must be set up.
6960 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6962 struct mem_cgroup *memcg;
6963 unsigned int nr_pages;
6964 unsigned long flags;
6966 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6967 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6968 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6969 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6972 if (mem_cgroup_disabled())
6975 /* Page cache replacement: new page already charged? */
6976 if (page_memcg(newpage))
6979 memcg = page_memcg(oldpage);
6980 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6984 /* Force-charge the new page. The old one will be freed soon */
6985 nr_pages = thp_nr_pages(newpage);
6987 if (!mem_cgroup_is_root(memcg)) {
6988 page_counter_charge(&memcg->memory, nr_pages);
6989 if (do_memsw_account())
6990 page_counter_charge(&memcg->memsw, nr_pages);
6993 css_get(&memcg->css);
6994 commit_charge(newpage, memcg);
6996 local_irq_save(flags);
6997 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6998 memcg_check_events(memcg, newpage);
6999 local_irq_restore(flags);
7002 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7003 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7005 void mem_cgroup_sk_alloc(struct sock *sk)
7007 struct mem_cgroup *memcg;
7009 if (!mem_cgroup_sockets_enabled)
7012 /* Do not associate the sock with unrelated interrupted task's memcg. */
7017 memcg = mem_cgroup_from_task(current);
7018 if (memcg == root_mem_cgroup)
7020 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7022 if (css_tryget(&memcg->css))
7023 sk->sk_memcg = memcg;
7028 void mem_cgroup_sk_free(struct sock *sk)
7031 css_put(&sk->sk_memcg->css);
7035 * mem_cgroup_charge_skmem - charge socket memory
7036 * @memcg: memcg to charge
7037 * @nr_pages: number of pages to charge
7039 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7040 * @memcg's configured limit, %false if the charge had to be forced.
7042 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7044 gfp_t gfp_mask = GFP_KERNEL;
7046 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7047 struct page_counter *fail;
7049 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7050 memcg->tcpmem_pressure = 0;
7053 page_counter_charge(&memcg->tcpmem, nr_pages);
7054 memcg->tcpmem_pressure = 1;
7058 /* Don't block in the packet receive path */
7060 gfp_mask = GFP_NOWAIT;
7062 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7064 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7067 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7072 * mem_cgroup_uncharge_skmem - uncharge socket memory
7073 * @memcg: memcg to uncharge
7074 * @nr_pages: number of pages to uncharge
7076 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7078 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7079 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7083 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7085 refill_stock(memcg, nr_pages);
7088 static int __init cgroup_memory(char *s)
7092 while ((token = strsep(&s, ",")) != NULL) {
7095 if (!strcmp(token, "nosocket"))
7096 cgroup_memory_nosocket = true;
7097 if (!strcmp(token, "nokmem"))
7098 cgroup_memory_nokmem = true;
7102 __setup("cgroup.memory=", cgroup_memory);
7105 * subsys_initcall() for memory controller.
7107 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7108 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7109 * basically everything that doesn't depend on a specific mem_cgroup structure
7110 * should be initialized from here.
7112 static int __init mem_cgroup_init(void)
7117 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7118 * used for per-memcg-per-cpu caching of per-node statistics. In order
7119 * to work fine, we should make sure that the overfill threshold can't
7120 * exceed S32_MAX / PAGE_SIZE.
7122 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7124 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7125 memcg_hotplug_cpu_dead);
7127 for_each_possible_cpu(cpu)
7128 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7131 for_each_node(node) {
7132 struct mem_cgroup_tree_per_node *rtpn;
7134 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7135 node_online(node) ? node : NUMA_NO_NODE);
7137 rtpn->rb_root = RB_ROOT;
7138 rtpn->rb_rightmost = NULL;
7139 spin_lock_init(&rtpn->lock);
7140 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7145 subsys_initcall(mem_cgroup_init);
7147 #ifdef CONFIG_MEMCG_SWAP
7148 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7150 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7152 * The root cgroup cannot be destroyed, so it's refcount must
7155 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7159 memcg = parent_mem_cgroup(memcg);
7161 memcg = root_mem_cgroup;
7167 * mem_cgroup_swapout - transfer a memsw charge to swap
7168 * @page: page whose memsw charge to transfer
7169 * @entry: swap entry to move the charge to
7171 * Transfer the memsw charge of @page to @entry.
7173 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7175 struct mem_cgroup *memcg, *swap_memcg;
7176 unsigned int nr_entries;
7177 unsigned short oldid;
7179 VM_BUG_ON_PAGE(PageLRU(page), page);
7180 VM_BUG_ON_PAGE(page_count(page), page);
7182 if (mem_cgroup_disabled())
7185 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7188 memcg = page_memcg(page);
7190 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7195 * In case the memcg owning these pages has been offlined and doesn't
7196 * have an ID allocated to it anymore, charge the closest online
7197 * ancestor for the swap instead and transfer the memory+swap charge.
7199 swap_memcg = mem_cgroup_id_get_online(memcg);
7200 nr_entries = thp_nr_pages(page);
7201 /* Get references for the tail pages, too */
7203 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7204 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7206 VM_BUG_ON_PAGE(oldid, page);
7207 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7209 page->memcg_data = 0;
7211 if (!mem_cgroup_is_root(memcg))
7212 page_counter_uncharge(&memcg->memory, nr_entries);
7214 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7215 if (!mem_cgroup_is_root(swap_memcg))
7216 page_counter_charge(&swap_memcg->memsw, nr_entries);
7217 page_counter_uncharge(&memcg->memsw, nr_entries);
7221 * Interrupts should be disabled here because the caller holds the
7222 * i_pages lock which is taken with interrupts-off. It is
7223 * important here to have the interrupts disabled because it is the
7224 * only synchronisation we have for updating the per-CPU variables.
7226 VM_BUG_ON(!irqs_disabled());
7227 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7228 memcg_check_events(memcg, page);
7230 css_put(&memcg->css);
7234 * mem_cgroup_try_charge_swap - try charging swap space for a page
7235 * @page: page being added to swap
7236 * @entry: swap entry to charge
7238 * Try to charge @page's memcg for the swap space at @entry.
7240 * Returns 0 on success, -ENOMEM on failure.
7242 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7244 unsigned int nr_pages = thp_nr_pages(page);
7245 struct page_counter *counter;
7246 struct mem_cgroup *memcg;
7247 unsigned short oldid;
7249 if (mem_cgroup_disabled())
7252 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7255 memcg = page_memcg(page);
7257 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7262 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7266 memcg = mem_cgroup_id_get_online(memcg);
7268 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7269 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7270 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7271 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7272 mem_cgroup_id_put(memcg);
7276 /* Get references for the tail pages, too */
7278 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7279 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7280 VM_BUG_ON_PAGE(oldid, page);
7281 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7287 * mem_cgroup_uncharge_swap - uncharge swap space
7288 * @entry: swap entry to uncharge
7289 * @nr_pages: the amount of swap space to uncharge
7291 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7293 struct mem_cgroup *memcg;
7296 id = swap_cgroup_record(entry, 0, nr_pages);
7298 memcg = mem_cgroup_from_id(id);
7300 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7301 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7302 page_counter_uncharge(&memcg->swap, nr_pages);
7304 page_counter_uncharge(&memcg->memsw, nr_pages);
7306 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7307 mem_cgroup_id_put_many(memcg, nr_pages);
7312 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7314 long nr_swap_pages = get_nr_swap_pages();
7316 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7317 return nr_swap_pages;
7318 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7319 nr_swap_pages = min_t(long, nr_swap_pages,
7320 READ_ONCE(memcg->swap.max) -
7321 page_counter_read(&memcg->swap));
7322 return nr_swap_pages;
7325 bool mem_cgroup_swap_full(struct page *page)
7327 struct mem_cgroup *memcg;
7329 VM_BUG_ON_PAGE(!PageLocked(page), page);
7333 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7336 memcg = page_memcg(page);
7340 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7341 unsigned long usage = page_counter_read(&memcg->swap);
7343 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7344 usage * 2 >= READ_ONCE(memcg->swap.max))
7351 static int __init setup_swap_account(char *s)
7353 if (!strcmp(s, "1"))
7354 cgroup_memory_noswap = false;
7355 else if (!strcmp(s, "0"))
7356 cgroup_memory_noswap = true;
7359 __setup("swapaccount=", setup_swap_account);
7361 static u64 swap_current_read(struct cgroup_subsys_state *css,
7364 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7366 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7369 static int swap_high_show(struct seq_file *m, void *v)
7371 return seq_puts_memcg_tunable(m,
7372 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7375 static ssize_t swap_high_write(struct kernfs_open_file *of,
7376 char *buf, size_t nbytes, loff_t off)
7378 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7382 buf = strstrip(buf);
7383 err = page_counter_memparse(buf, "max", &high);
7387 page_counter_set_high(&memcg->swap, high);
7392 static int swap_max_show(struct seq_file *m, void *v)
7394 return seq_puts_memcg_tunable(m,
7395 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7398 static ssize_t swap_max_write(struct kernfs_open_file *of,
7399 char *buf, size_t nbytes, loff_t off)
7401 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7405 buf = strstrip(buf);
7406 err = page_counter_memparse(buf, "max", &max);
7410 xchg(&memcg->swap.max, max);
7415 static int swap_events_show(struct seq_file *m, void *v)
7417 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7419 seq_printf(m, "high %lu\n",
7420 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7421 seq_printf(m, "max %lu\n",
7422 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7423 seq_printf(m, "fail %lu\n",
7424 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7429 static struct cftype swap_files[] = {
7431 .name = "swap.current",
7432 .flags = CFTYPE_NOT_ON_ROOT,
7433 .read_u64 = swap_current_read,
7436 .name = "swap.high",
7437 .flags = CFTYPE_NOT_ON_ROOT,
7438 .seq_show = swap_high_show,
7439 .write = swap_high_write,
7443 .flags = CFTYPE_NOT_ON_ROOT,
7444 .seq_show = swap_max_show,
7445 .write = swap_max_write,
7448 .name = "swap.events",
7449 .flags = CFTYPE_NOT_ON_ROOT,
7450 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7451 .seq_show = swap_events_show,
7456 static struct cftype memsw_files[] = {
7458 .name = "memsw.usage_in_bytes",
7459 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7460 .read_u64 = mem_cgroup_read_u64,
7463 .name = "memsw.max_usage_in_bytes",
7464 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7465 .write = mem_cgroup_reset,
7466 .read_u64 = mem_cgroup_read_u64,
7469 .name = "memsw.limit_in_bytes",
7470 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7471 .write = mem_cgroup_write,
7472 .read_u64 = mem_cgroup_read_u64,
7475 .name = "memsw.failcnt",
7476 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7477 .write = mem_cgroup_reset,
7478 .read_u64 = mem_cgroup_read_u64,
7480 { }, /* terminate */
7484 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7485 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7486 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7487 * boot parameter. This may result in premature OOPS inside
7488 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7490 static int __init mem_cgroup_swap_init(void)
7492 /* No memory control -> no swap control */
7493 if (mem_cgroup_disabled())
7494 cgroup_memory_noswap = true;
7496 if (cgroup_memory_noswap)
7499 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7500 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7504 core_initcall(mem_cgroup_swap_init);
7506 #endif /* CONFIG_MEMCG_SWAP */