2 * An async IO implementation for Linux
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/uio.h>
24 #include <linux/sched/signal.h>
26 #include <linux/file.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_context.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
45 #include <asm/kmap_types.h>
46 #include <linux/uaccess.h>
52 #define AIO_RING_MAGIC 0xa10a10a1
53 #define AIO_RING_COMPAT_FEATURES 1
54 #define AIO_RING_INCOMPAT_FEATURES 0
56 unsigned id; /* kernel internal index number */
57 unsigned nr; /* number of io_events */
58 unsigned head; /* Written to by userland or under ring_lock
59 * mutex by aio_read_events_ring(). */
63 unsigned compat_features;
64 unsigned incompat_features;
65 unsigned header_length; /* size of aio_ring */
68 struct io_event io_events[0];
69 }; /* 128 bytes + ring size */
71 #define AIO_RING_PAGES 8
76 struct kioctx __rcu *table[];
80 unsigned reqs_available;
84 struct completion comp;
89 struct percpu_ref users;
92 struct percpu_ref reqs;
94 unsigned long user_id;
96 struct __percpu kioctx_cpu *cpu;
99 * For percpu reqs_available, number of slots we move to/from global
104 * This is what userspace passed to io_setup(), it's not used for
105 * anything but counting against the global max_reqs quota.
107 * The real limit is nr_events - 1, which will be larger (see
112 /* Size of ringbuffer, in units of struct io_event */
115 unsigned long mmap_base;
116 unsigned long mmap_size;
118 struct page **ring_pages;
121 struct rcu_work free_rwork; /* see free_ioctx() */
124 * signals when all in-flight requests are done
126 struct ctx_rq_wait *rq_wait;
130 * This counts the number of available slots in the ringbuffer,
131 * so we avoid overflowing it: it's decremented (if positive)
132 * when allocating a kiocb and incremented when the resulting
133 * io_event is pulled off the ringbuffer.
135 * We batch accesses to it with a percpu version.
137 atomic_t reqs_available;
138 } ____cacheline_aligned_in_smp;
142 struct list_head active_reqs; /* used for cancellation */
143 } ____cacheline_aligned_in_smp;
146 struct mutex ring_lock;
147 wait_queue_head_t wait;
148 } ____cacheline_aligned_in_smp;
152 unsigned completed_events;
153 spinlock_t completion_lock;
154 } ____cacheline_aligned_in_smp;
156 struct page *internal_pages[AIO_RING_PAGES];
157 struct file *aio_ring_file;
163 struct work_struct work;
171 struct wait_queue_head *head;
174 struct wait_queue_entry wait;
175 struct work_struct work;
182 struct fsync_iocb fsync;
183 struct poll_iocb poll;
186 struct kioctx *ki_ctx;
187 kiocb_cancel_fn *ki_cancel;
189 struct iocb __user *ki_user_iocb; /* user's aiocb */
190 __u64 ki_user_data; /* user's data for completion */
192 struct list_head ki_list; /* the aio core uses this
193 * for cancellation */
196 * If the aio_resfd field of the userspace iocb is not zero,
197 * this is the underlying eventfd context to deliver events to.
199 struct eventfd_ctx *ki_eventfd;
202 /*------ sysctl variables----*/
203 static DEFINE_SPINLOCK(aio_nr_lock);
204 unsigned long aio_nr; /* current system wide number of aio requests */
205 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
206 /*----end sysctl variables---*/
208 static struct kmem_cache *kiocb_cachep;
209 static struct kmem_cache *kioctx_cachep;
211 static struct vfsmount *aio_mnt;
213 static const struct file_operations aio_ring_fops;
214 static const struct address_space_operations aio_ctx_aops;
216 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
218 struct qstr this = QSTR_INIT("[aio]", 5);
221 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
223 return ERR_CAST(inode);
225 inode->i_mapping->a_ops = &aio_ctx_aops;
226 inode->i_mapping->private_data = ctx;
227 inode->i_size = PAGE_SIZE * nr_pages;
229 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
232 return ERR_PTR(-ENOMEM);
234 path.mnt = mntget(aio_mnt);
236 d_instantiate(path.dentry, inode);
237 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
243 file->f_flags = O_RDWR;
247 static struct dentry *aio_mount(struct file_system_type *fs_type,
248 int flags, const char *dev_name, void *data)
250 static const struct dentry_operations ops = {
251 .d_dname = simple_dname,
253 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
257 root->d_sb->s_iflags |= SB_I_NOEXEC;
262 * Creates the slab caches used by the aio routines, panic on
263 * failure as this is done early during the boot sequence.
265 static int __init aio_setup(void)
267 static struct file_system_type aio_fs = {
270 .kill_sb = kill_anon_super,
272 aio_mnt = kern_mount(&aio_fs);
274 panic("Failed to create aio fs mount.");
276 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
277 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
280 __initcall(aio_setup);
282 static void put_aio_ring_file(struct kioctx *ctx)
284 struct file *aio_ring_file = ctx->aio_ring_file;
285 struct address_space *i_mapping;
288 truncate_setsize(file_inode(aio_ring_file), 0);
290 /* Prevent further access to the kioctx from migratepages */
291 i_mapping = aio_ring_file->f_mapping;
292 spin_lock(&i_mapping->private_lock);
293 i_mapping->private_data = NULL;
294 ctx->aio_ring_file = NULL;
295 spin_unlock(&i_mapping->private_lock);
301 static void aio_free_ring(struct kioctx *ctx)
305 /* Disconnect the kiotx from the ring file. This prevents future
306 * accesses to the kioctx from page migration.
308 put_aio_ring_file(ctx);
310 for (i = 0; i < ctx->nr_pages; i++) {
312 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
313 page_count(ctx->ring_pages[i]));
314 page = ctx->ring_pages[i];
317 ctx->ring_pages[i] = NULL;
321 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
322 kfree(ctx->ring_pages);
323 ctx->ring_pages = NULL;
327 static int aio_ring_mremap(struct vm_area_struct *vma)
329 struct file *file = vma->vm_file;
330 struct mm_struct *mm = vma->vm_mm;
331 struct kioctx_table *table;
332 int i, res = -EINVAL;
334 spin_lock(&mm->ioctx_lock);
336 table = rcu_dereference(mm->ioctx_table);
337 for (i = 0; i < table->nr; i++) {
340 ctx = rcu_dereference(table->table[i]);
341 if (ctx && ctx->aio_ring_file == file) {
342 if (!atomic_read(&ctx->dead)) {
343 ctx->user_id = ctx->mmap_base = vma->vm_start;
351 spin_unlock(&mm->ioctx_lock);
355 static const struct vm_operations_struct aio_ring_vm_ops = {
356 .mremap = aio_ring_mremap,
357 #if IS_ENABLED(CONFIG_MMU)
358 .fault = filemap_fault,
359 .map_pages = filemap_map_pages,
360 .page_mkwrite = filemap_page_mkwrite,
364 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
366 vma->vm_flags |= VM_DONTEXPAND;
367 vma->vm_ops = &aio_ring_vm_ops;
371 static const struct file_operations aio_ring_fops = {
372 .mmap = aio_ring_mmap,
375 #if IS_ENABLED(CONFIG_MIGRATION)
376 static int aio_migratepage(struct address_space *mapping, struct page *new,
377 struct page *old, enum migrate_mode mode)
385 * We cannot support the _NO_COPY case here, because copy needs to
386 * happen under the ctx->completion_lock. That does not work with the
387 * migration workflow of MIGRATE_SYNC_NO_COPY.
389 if (mode == MIGRATE_SYNC_NO_COPY)
394 /* mapping->private_lock here protects against the kioctx teardown. */
395 spin_lock(&mapping->private_lock);
396 ctx = mapping->private_data;
402 /* The ring_lock mutex. The prevents aio_read_events() from writing
403 * to the ring's head, and prevents page migration from mucking in
404 * a partially initialized kiotx.
406 if (!mutex_trylock(&ctx->ring_lock)) {
412 if (idx < (pgoff_t)ctx->nr_pages) {
413 /* Make sure the old page hasn't already been changed */
414 if (ctx->ring_pages[idx] != old)
422 /* Writeback must be complete */
423 BUG_ON(PageWriteback(old));
426 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
427 if (rc != MIGRATEPAGE_SUCCESS) {
432 /* Take completion_lock to prevent other writes to the ring buffer
433 * while the old page is copied to the new. This prevents new
434 * events from being lost.
436 spin_lock_irqsave(&ctx->completion_lock, flags);
437 migrate_page_copy(new, old);
438 BUG_ON(ctx->ring_pages[idx] != old);
439 ctx->ring_pages[idx] = new;
440 spin_unlock_irqrestore(&ctx->completion_lock, flags);
442 /* The old page is no longer accessible. */
446 mutex_unlock(&ctx->ring_lock);
448 spin_unlock(&mapping->private_lock);
453 static const struct address_space_operations aio_ctx_aops = {
454 .set_page_dirty = __set_page_dirty_no_writeback,
455 #if IS_ENABLED(CONFIG_MIGRATION)
456 .migratepage = aio_migratepage,
460 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
462 struct aio_ring *ring;
463 struct mm_struct *mm = current->mm;
464 unsigned long size, unused;
469 /* Compensate for the ring buffer's head/tail overlap entry */
470 nr_events += 2; /* 1 is required, 2 for good luck */
472 size = sizeof(struct aio_ring);
473 size += sizeof(struct io_event) * nr_events;
475 nr_pages = PFN_UP(size);
479 file = aio_private_file(ctx, nr_pages);
481 ctx->aio_ring_file = NULL;
485 ctx->aio_ring_file = file;
486 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
487 / sizeof(struct io_event);
489 ctx->ring_pages = ctx->internal_pages;
490 if (nr_pages > AIO_RING_PAGES) {
491 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
493 if (!ctx->ring_pages) {
494 put_aio_ring_file(ctx);
499 for (i = 0; i < nr_pages; i++) {
501 page = find_or_create_page(file->f_mapping,
502 i, GFP_HIGHUSER | __GFP_ZERO);
505 pr_debug("pid(%d) page[%d]->count=%d\n",
506 current->pid, i, page_count(page));
507 SetPageUptodate(page);
510 ctx->ring_pages[i] = page;
514 if (unlikely(i != nr_pages)) {
519 ctx->mmap_size = nr_pages * PAGE_SIZE;
520 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
522 if (down_write_killable(&mm->mmap_sem)) {
528 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
529 PROT_READ | PROT_WRITE,
530 MAP_SHARED, 0, &unused, NULL);
531 up_write(&mm->mmap_sem);
532 if (IS_ERR((void *)ctx->mmap_base)) {
538 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
540 ctx->user_id = ctx->mmap_base;
541 ctx->nr_events = nr_events; /* trusted copy */
543 ring = kmap_atomic(ctx->ring_pages[0]);
544 ring->nr = nr_events; /* user copy */
546 ring->head = ring->tail = 0;
547 ring->magic = AIO_RING_MAGIC;
548 ring->compat_features = AIO_RING_COMPAT_FEATURES;
549 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
550 ring->header_length = sizeof(struct aio_ring);
552 flush_dcache_page(ctx->ring_pages[0]);
557 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
558 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
559 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
561 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
563 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
564 struct kioctx *ctx = req->ki_ctx;
567 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
570 spin_lock_irqsave(&ctx->ctx_lock, flags);
571 list_add_tail(&req->ki_list, &ctx->active_reqs);
572 req->ki_cancel = cancel;
573 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
575 EXPORT_SYMBOL(kiocb_set_cancel_fn);
578 * free_ioctx() should be RCU delayed to synchronize against the RCU
579 * protected lookup_ioctx() and also needs process context to call
580 * aio_free_ring(). Use rcu_work.
582 static void free_ioctx(struct work_struct *work)
584 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
586 pr_debug("freeing %p\n", ctx);
589 free_percpu(ctx->cpu);
590 percpu_ref_exit(&ctx->reqs);
591 percpu_ref_exit(&ctx->users);
592 kmem_cache_free(kioctx_cachep, ctx);
595 static void free_ioctx_reqs(struct percpu_ref *ref)
597 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
599 /* At this point we know that there are no any in-flight requests */
600 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
601 complete(&ctx->rq_wait->comp);
603 /* Synchronize against RCU protected table->table[] dereferences */
604 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
605 queue_rcu_work(system_wq, &ctx->free_rwork);
609 * When this function runs, the kioctx has been removed from the "hash table"
610 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
611 * now it's safe to cancel any that need to be.
613 static void free_ioctx_users(struct percpu_ref *ref)
615 struct kioctx *ctx = container_of(ref, struct kioctx, users);
616 struct aio_kiocb *req;
618 spin_lock_irq(&ctx->ctx_lock);
620 while (!list_empty(&ctx->active_reqs)) {
621 req = list_first_entry(&ctx->active_reqs,
622 struct aio_kiocb, ki_list);
623 req->ki_cancel(&req->rw);
624 list_del_init(&req->ki_list);
627 spin_unlock_irq(&ctx->ctx_lock);
629 percpu_ref_kill(&ctx->reqs);
630 percpu_ref_put(&ctx->reqs);
633 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
636 struct kioctx_table *table, *old;
637 struct aio_ring *ring;
639 spin_lock(&mm->ioctx_lock);
640 table = rcu_dereference_raw(mm->ioctx_table);
644 for (i = 0; i < table->nr; i++)
645 if (!rcu_access_pointer(table->table[i])) {
647 rcu_assign_pointer(table->table[i], ctx);
648 spin_unlock(&mm->ioctx_lock);
650 /* While kioctx setup is in progress,
651 * we are protected from page migration
652 * changes ring_pages by ->ring_lock.
654 ring = kmap_atomic(ctx->ring_pages[0]);
660 new_nr = (table ? table->nr : 1) * 4;
661 spin_unlock(&mm->ioctx_lock);
663 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
670 spin_lock(&mm->ioctx_lock);
671 old = rcu_dereference_raw(mm->ioctx_table);
674 rcu_assign_pointer(mm->ioctx_table, table);
675 } else if (table->nr > old->nr) {
676 memcpy(table->table, old->table,
677 old->nr * sizeof(struct kioctx *));
679 rcu_assign_pointer(mm->ioctx_table, table);
688 static void aio_nr_sub(unsigned nr)
690 spin_lock(&aio_nr_lock);
691 if (WARN_ON(aio_nr - nr > aio_nr))
695 spin_unlock(&aio_nr_lock);
699 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
701 static struct kioctx *ioctx_alloc(unsigned nr_events)
703 struct mm_struct *mm = current->mm;
708 * Store the original nr_events -- what userspace passed to io_setup(),
709 * for counting against the global limit -- before it changes.
711 unsigned int max_reqs = nr_events;
714 * We keep track of the number of available ringbuffer slots, to prevent
715 * overflow (reqs_available), and we also use percpu counters for this.
717 * So since up to half the slots might be on other cpu's percpu counters
718 * and unavailable, double nr_events so userspace sees what they
719 * expected: additionally, we move req_batch slots to/from percpu
720 * counters at a time, so make sure that isn't 0:
722 nr_events = max(nr_events, num_possible_cpus() * 4);
725 /* Prevent overflows */
726 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
727 pr_debug("ENOMEM: nr_events too high\n");
728 return ERR_PTR(-EINVAL);
731 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
732 return ERR_PTR(-EAGAIN);
734 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
736 return ERR_PTR(-ENOMEM);
738 ctx->max_reqs = max_reqs;
740 spin_lock_init(&ctx->ctx_lock);
741 spin_lock_init(&ctx->completion_lock);
742 mutex_init(&ctx->ring_lock);
743 /* Protect against page migration throughout kiotx setup by keeping
744 * the ring_lock mutex held until setup is complete. */
745 mutex_lock(&ctx->ring_lock);
746 init_waitqueue_head(&ctx->wait);
748 INIT_LIST_HEAD(&ctx->active_reqs);
750 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
753 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
756 ctx->cpu = alloc_percpu(struct kioctx_cpu);
760 err = aio_setup_ring(ctx, nr_events);
764 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
765 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
766 if (ctx->req_batch < 1)
769 /* limit the number of system wide aios */
770 spin_lock(&aio_nr_lock);
771 if (aio_nr + ctx->max_reqs > aio_max_nr ||
772 aio_nr + ctx->max_reqs < aio_nr) {
773 spin_unlock(&aio_nr_lock);
777 aio_nr += ctx->max_reqs;
778 spin_unlock(&aio_nr_lock);
780 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
781 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
783 err = ioctx_add_table(ctx, mm);
787 /* Release the ring_lock mutex now that all setup is complete. */
788 mutex_unlock(&ctx->ring_lock);
790 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
791 ctx, ctx->user_id, mm, ctx->nr_events);
795 aio_nr_sub(ctx->max_reqs);
797 atomic_set(&ctx->dead, 1);
799 vm_munmap(ctx->mmap_base, ctx->mmap_size);
802 mutex_unlock(&ctx->ring_lock);
803 free_percpu(ctx->cpu);
804 percpu_ref_exit(&ctx->reqs);
805 percpu_ref_exit(&ctx->users);
806 kmem_cache_free(kioctx_cachep, ctx);
807 pr_debug("error allocating ioctx %d\n", err);
812 * Cancels all outstanding aio requests on an aio context. Used
813 * when the processes owning a context have all exited to encourage
814 * the rapid destruction of the kioctx.
816 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
817 struct ctx_rq_wait *wait)
819 struct kioctx_table *table;
821 spin_lock(&mm->ioctx_lock);
822 if (atomic_xchg(&ctx->dead, 1)) {
823 spin_unlock(&mm->ioctx_lock);
827 table = rcu_dereference_raw(mm->ioctx_table);
828 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
829 RCU_INIT_POINTER(table->table[ctx->id], NULL);
830 spin_unlock(&mm->ioctx_lock);
832 /* free_ioctx_reqs() will do the necessary RCU synchronization */
833 wake_up_all(&ctx->wait);
836 * It'd be more correct to do this in free_ioctx(), after all
837 * the outstanding kiocbs have finished - but by then io_destroy
838 * has already returned, so io_setup() could potentially return
839 * -EAGAIN with no ioctxs actually in use (as far as userspace
842 aio_nr_sub(ctx->max_reqs);
845 vm_munmap(ctx->mmap_base, ctx->mmap_size);
848 percpu_ref_kill(&ctx->users);
853 * exit_aio: called when the last user of mm goes away. At this point, there is
854 * no way for any new requests to be submited or any of the io_* syscalls to be
855 * called on the context.
857 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
860 void exit_aio(struct mm_struct *mm)
862 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
863 struct ctx_rq_wait wait;
869 atomic_set(&wait.count, table->nr);
870 init_completion(&wait.comp);
873 for (i = 0; i < table->nr; ++i) {
875 rcu_dereference_protected(table->table[i], true);
883 * We don't need to bother with munmap() here - exit_mmap(mm)
884 * is coming and it'll unmap everything. And we simply can't,
885 * this is not necessarily our ->mm.
886 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
887 * that it needs to unmap the area, just set it to 0.
890 kill_ioctx(mm, ctx, &wait);
893 if (!atomic_sub_and_test(skipped, &wait.count)) {
894 /* Wait until all IO for the context are done. */
895 wait_for_completion(&wait.comp);
898 RCU_INIT_POINTER(mm->ioctx_table, NULL);
902 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
904 struct kioctx_cpu *kcpu;
907 local_irq_save(flags);
908 kcpu = this_cpu_ptr(ctx->cpu);
909 kcpu->reqs_available += nr;
911 while (kcpu->reqs_available >= ctx->req_batch * 2) {
912 kcpu->reqs_available -= ctx->req_batch;
913 atomic_add(ctx->req_batch, &ctx->reqs_available);
916 local_irq_restore(flags);
919 static bool get_reqs_available(struct kioctx *ctx)
921 struct kioctx_cpu *kcpu;
925 local_irq_save(flags);
926 kcpu = this_cpu_ptr(ctx->cpu);
927 if (!kcpu->reqs_available) {
928 int old, avail = atomic_read(&ctx->reqs_available);
931 if (avail < ctx->req_batch)
935 avail = atomic_cmpxchg(&ctx->reqs_available,
936 avail, avail - ctx->req_batch);
937 } while (avail != old);
939 kcpu->reqs_available += ctx->req_batch;
943 kcpu->reqs_available--;
945 local_irq_restore(flags);
949 /* refill_reqs_available
950 * Updates the reqs_available reference counts used for tracking the
951 * number of free slots in the completion ring. This can be called
952 * from aio_complete() (to optimistically update reqs_available) or
953 * from aio_get_req() (the we're out of events case). It must be
954 * called holding ctx->completion_lock.
956 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
959 unsigned events_in_ring, completed;
961 /* Clamp head since userland can write to it. */
962 head %= ctx->nr_events;
964 events_in_ring = tail - head;
966 events_in_ring = ctx->nr_events - (head - tail);
968 completed = ctx->completed_events;
969 if (events_in_ring < completed)
970 completed -= events_in_ring;
977 ctx->completed_events -= completed;
978 put_reqs_available(ctx, completed);
981 /* user_refill_reqs_available
982 * Called to refill reqs_available when aio_get_req() encounters an
983 * out of space in the completion ring.
985 static void user_refill_reqs_available(struct kioctx *ctx)
987 spin_lock_irq(&ctx->completion_lock);
988 if (ctx->completed_events) {
989 struct aio_ring *ring;
992 /* Access of ring->head may race with aio_read_events_ring()
993 * here, but that's okay since whether we read the old version
994 * or the new version, and either will be valid. The important
995 * part is that head cannot pass tail since we prevent
996 * aio_complete() from updating tail by holding
997 * ctx->completion_lock. Even if head is invalid, the check
998 * against ctx->completed_events below will make sure we do the
1001 ring = kmap_atomic(ctx->ring_pages[0]);
1003 kunmap_atomic(ring);
1005 refill_reqs_available(ctx, head, ctx->tail);
1008 spin_unlock_irq(&ctx->completion_lock);
1012 * Allocate a slot for an aio request.
1013 * Returns NULL if no requests are free.
1015 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1017 struct aio_kiocb *req;
1019 if (!get_reqs_available(ctx)) {
1020 user_refill_reqs_available(ctx);
1021 if (!get_reqs_available(ctx))
1025 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1029 percpu_ref_get(&ctx->reqs);
1030 INIT_LIST_HEAD(&req->ki_list);
1034 put_reqs_available(ctx, 1);
1038 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1040 struct aio_ring __user *ring = (void __user *)ctx_id;
1041 struct mm_struct *mm = current->mm;
1042 struct kioctx *ctx, *ret = NULL;
1043 struct kioctx_table *table;
1046 if (get_user(id, &ring->id))
1050 table = rcu_dereference(mm->ioctx_table);
1052 if (!table || id >= table->nr)
1055 ctx = rcu_dereference(table->table[id]);
1056 if (ctx && ctx->user_id == ctx_id) {
1057 if (percpu_ref_tryget_live(&ctx->users))
1066 * Called when the io request on the given iocb is complete.
1068 static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1070 struct kioctx *ctx = iocb->ki_ctx;
1071 struct aio_ring *ring;
1072 struct io_event *ev_page, *event;
1073 unsigned tail, pos, head;
1074 unsigned long flags;
1077 * Add a completion event to the ring buffer. Must be done holding
1078 * ctx->completion_lock to prevent other code from messing with the tail
1079 * pointer since we might be called from irq context.
1081 spin_lock_irqsave(&ctx->completion_lock, flags);
1084 pos = tail + AIO_EVENTS_OFFSET;
1086 if (++tail >= ctx->nr_events)
1089 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1090 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1092 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1093 event->data = iocb->ki_user_data;
1097 kunmap_atomic(ev_page);
1098 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1100 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1101 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1104 /* after flagging the request as done, we
1105 * must never even look at it again
1107 smp_wmb(); /* make event visible before updating tail */
1111 ring = kmap_atomic(ctx->ring_pages[0]);
1114 kunmap_atomic(ring);
1115 flush_dcache_page(ctx->ring_pages[0]);
1117 ctx->completed_events++;
1118 if (ctx->completed_events > 1)
1119 refill_reqs_available(ctx, head, tail);
1120 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1122 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1125 * Check if the user asked us to deliver the result through an
1126 * eventfd. The eventfd_signal() function is safe to be called
1129 if (iocb->ki_eventfd) {
1130 eventfd_signal(iocb->ki_eventfd, 1);
1131 eventfd_ctx_put(iocb->ki_eventfd);
1134 kmem_cache_free(kiocb_cachep, iocb);
1137 * We have to order our ring_info tail store above and test
1138 * of the wait list below outside the wait lock. This is
1139 * like in wake_up_bit() where clearing a bit has to be
1140 * ordered with the unlocked test.
1144 if (waitqueue_active(&ctx->wait))
1145 wake_up(&ctx->wait);
1147 percpu_ref_put(&ctx->reqs);
1150 /* aio_read_events_ring
1151 * Pull an event off of the ioctx's event ring. Returns the number of
1154 static long aio_read_events_ring(struct kioctx *ctx,
1155 struct io_event __user *event, long nr)
1157 struct aio_ring *ring;
1158 unsigned head, tail, pos;
1163 * The mutex can block and wake us up and that will cause
1164 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1165 * and repeat. This should be rare enough that it doesn't cause
1166 * peformance issues. See the comment in read_events() for more detail.
1168 sched_annotate_sleep();
1169 mutex_lock(&ctx->ring_lock);
1171 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1172 ring = kmap_atomic(ctx->ring_pages[0]);
1175 kunmap_atomic(ring);
1178 * Ensure that once we've read the current tail pointer, that
1179 * we also see the events that were stored up to the tail.
1183 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1188 head %= ctx->nr_events;
1189 tail %= ctx->nr_events;
1193 struct io_event *ev;
1196 avail = (head <= tail ? tail : ctx->nr_events) - head;
1200 pos = head + AIO_EVENTS_OFFSET;
1201 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1202 pos %= AIO_EVENTS_PER_PAGE;
1204 avail = min(avail, nr - ret);
1205 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1208 copy_ret = copy_to_user(event + ret, ev + pos,
1209 sizeof(*ev) * avail);
1212 if (unlikely(copy_ret)) {
1219 head %= ctx->nr_events;
1222 ring = kmap_atomic(ctx->ring_pages[0]);
1224 kunmap_atomic(ring);
1225 flush_dcache_page(ctx->ring_pages[0]);
1227 pr_debug("%li h%u t%u\n", ret, head, tail);
1229 mutex_unlock(&ctx->ring_lock);
1234 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1235 struct io_event __user *event, long *i)
1237 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1242 if (unlikely(atomic_read(&ctx->dead)))
1248 return ret < 0 || *i >= min_nr;
1251 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1252 struct io_event __user *event,
1258 * Note that aio_read_events() is being called as the conditional - i.e.
1259 * we're calling it after prepare_to_wait() has set task state to
1260 * TASK_INTERRUPTIBLE.
1262 * But aio_read_events() can block, and if it blocks it's going to flip
1263 * the task state back to TASK_RUNNING.
1265 * This should be ok, provided it doesn't flip the state back to
1266 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1267 * will only happen if the mutex_lock() call blocks, and we then find
1268 * the ringbuffer empty. So in practice we should be ok, but it's
1269 * something to be aware of when touching this code.
1272 aio_read_events(ctx, min_nr, nr, event, &ret);
1274 wait_event_interruptible_hrtimeout(ctx->wait,
1275 aio_read_events(ctx, min_nr, nr, event, &ret),
1281 * Create an aio_context capable of receiving at least nr_events.
1282 * ctxp must not point to an aio_context that already exists, and
1283 * must be initialized to 0 prior to the call. On successful
1284 * creation of the aio_context, *ctxp is filled in with the resulting
1285 * handle. May fail with -EINVAL if *ctxp is not initialized,
1286 * if the specified nr_events exceeds internal limits. May fail
1287 * with -EAGAIN if the specified nr_events exceeds the user's limit
1288 * of available events. May fail with -ENOMEM if insufficient kernel
1289 * resources are available. May fail with -EFAULT if an invalid
1290 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1293 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1295 struct kioctx *ioctx = NULL;
1299 ret = get_user(ctx, ctxp);
1304 if (unlikely(ctx || nr_events == 0)) {
1305 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1310 ioctx = ioctx_alloc(nr_events);
1311 ret = PTR_ERR(ioctx);
1312 if (!IS_ERR(ioctx)) {
1313 ret = put_user(ioctx->user_id, ctxp);
1315 kill_ioctx(current->mm, ioctx, NULL);
1316 percpu_ref_put(&ioctx->users);
1323 #ifdef CONFIG_COMPAT
1324 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1326 struct kioctx *ioctx = NULL;
1330 ret = get_user(ctx, ctx32p);
1335 if (unlikely(ctx || nr_events == 0)) {
1336 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1341 ioctx = ioctx_alloc(nr_events);
1342 ret = PTR_ERR(ioctx);
1343 if (!IS_ERR(ioctx)) {
1344 /* truncating is ok because it's a user address */
1345 ret = put_user((u32)ioctx->user_id, ctx32p);
1347 kill_ioctx(current->mm, ioctx, NULL);
1348 percpu_ref_put(&ioctx->users);
1357 * Destroy the aio_context specified. May cancel any outstanding
1358 * AIOs and block on completion. Will fail with -ENOSYS if not
1359 * implemented. May fail with -EINVAL if the context pointed to
1362 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1364 struct kioctx *ioctx = lookup_ioctx(ctx);
1365 if (likely(NULL != ioctx)) {
1366 struct ctx_rq_wait wait;
1369 init_completion(&wait.comp);
1370 atomic_set(&wait.count, 1);
1372 /* Pass requests_done to kill_ioctx() where it can be set
1373 * in a thread-safe way. If we try to set it here then we have
1374 * a race condition if two io_destroy() called simultaneously.
1376 ret = kill_ioctx(current->mm, ioctx, &wait);
1377 percpu_ref_put(&ioctx->users);
1379 /* Wait until all IO for the context are done. Otherwise kernel
1380 * keep using user-space buffers even if user thinks the context
1384 wait_for_completion(&wait.comp);
1388 pr_debug("EINVAL: invalid context id\n");
1392 static void aio_remove_iocb(struct aio_kiocb *iocb)
1394 struct kioctx *ctx = iocb->ki_ctx;
1395 unsigned long flags;
1397 spin_lock_irqsave(&ctx->ctx_lock, flags);
1398 list_del(&iocb->ki_list);
1399 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1402 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1404 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1406 if (!list_empty_careful(&iocb->ki_list))
1407 aio_remove_iocb(iocb);
1409 if (kiocb->ki_flags & IOCB_WRITE) {
1410 struct inode *inode = file_inode(kiocb->ki_filp);
1413 * Tell lockdep we inherited freeze protection from submission
1416 if (S_ISREG(inode->i_mode))
1417 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1418 file_end_write(kiocb->ki_filp);
1421 fput(kiocb->ki_filp);
1422 aio_complete(iocb, res, res2);
1425 static int aio_prep_rw(struct kiocb *req, struct iocb *iocb)
1429 req->ki_filp = fget(iocb->aio_fildes);
1430 if (unlikely(!req->ki_filp))
1432 req->ki_complete = aio_complete_rw;
1433 req->ki_pos = iocb->aio_offset;
1434 req->ki_flags = iocb_flags(req->ki_filp);
1435 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1436 req->ki_flags |= IOCB_EVENTFD;
1437 req->ki_hint = file_write_hint(req->ki_filp);
1438 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1444 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1445 bool vectored, bool compat, struct iov_iter *iter)
1447 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1448 size_t len = iocb->aio_nbytes;
1451 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1455 #ifdef CONFIG_COMPAT
1457 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1460 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1463 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1469 case -ERESTARTNOINTR:
1470 case -ERESTARTNOHAND:
1471 case -ERESTART_RESTARTBLOCK:
1473 * There's no easy way to restart the syscall since other AIO's
1474 * may be already running. Just fail this IO with EINTR.
1479 aio_complete_rw(req, ret, 0);
1483 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1486 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1487 struct iov_iter iter;
1491 ret = aio_prep_rw(req, iocb);
1494 file = req->ki_filp;
1497 if (unlikely(!(file->f_mode & FMODE_READ)))
1500 if (unlikely(!file->f_op->read_iter))
1503 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1506 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1508 aio_rw_done(req, call_read_iter(file, req, &iter));
1516 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1519 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1520 struct iov_iter iter;
1524 ret = aio_prep_rw(req, iocb);
1527 file = req->ki_filp;
1530 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1533 if (unlikely(!file->f_op->write_iter))
1536 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1539 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1542 * Open-code file_start_write here to grab freeze protection,
1543 * which will be released by another thread in
1544 * aio_complete_rw(). Fool lockdep by telling it the lock got
1545 * released so that it doesn't complain about the held lock when
1546 * we return to userspace.
1548 if (S_ISREG(file_inode(file)->i_mode)) {
1549 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1550 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1552 req->ki_flags |= IOCB_WRITE;
1553 aio_rw_done(req, call_write_iter(file, req, &iter));
1562 static void aio_fsync_work(struct work_struct *work)
1564 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1567 ret = vfs_fsync(req->file, req->datasync);
1569 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1572 static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync)
1574 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1575 iocb->aio_rw_flags))
1577 req->file = fget(iocb->aio_fildes);
1578 if (unlikely(!req->file))
1580 if (unlikely(!req->file->f_op->fsync)) {
1585 req->datasync = datasync;
1586 INIT_WORK(&req->work, aio_fsync_work);
1587 schedule_work(&req->work);
1591 /* need to use list_del_init so we can check if item was present */
1592 static inline bool __aio_poll_remove(struct poll_iocb *req)
1594 if (list_empty(&req->wait.entry))
1596 list_del_init(&req->wait.entry);
1600 static inline void __aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask)
1602 fput(iocb->poll.file);
1603 aio_complete(iocb, mangle_poll(mask), 0);
1606 static void aio_poll_work(struct work_struct *work)
1608 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, poll.work);
1610 if (!list_empty_careful(&iocb->ki_list))
1611 aio_remove_iocb(iocb);
1612 __aio_poll_complete(iocb, iocb->poll.events);
1615 static int aio_poll_cancel(struct kiocb *iocb)
1617 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1618 struct poll_iocb *req = &aiocb->poll;
1619 struct wait_queue_head *head = req->head;
1622 spin_lock(&head->lock);
1623 found = __aio_poll_remove(req);
1624 spin_unlock(&head->lock);
1628 INIT_WORK(&req->work, aio_poll_work);
1629 schedule_work(&req->work);
1634 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1637 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1638 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1639 struct file *file = req->file;
1640 __poll_t mask = key_to_poll(key);
1642 assert_spin_locked(&req->head->lock);
1644 /* for instances that support it check for an event match first: */
1645 if (mask && !(mask & req->events))
1648 mask = file->f_op->poll_mask(file, req->events);
1652 __aio_poll_remove(req);
1655 * Try completing without a context switch if we can acquire ctx_lock
1656 * without spinning. Otherwise we need to defer to a workqueue to
1657 * avoid a deadlock due to the lock order.
1659 if (spin_trylock(&iocb->ki_ctx->ctx_lock)) {
1660 list_del_init(&iocb->ki_list);
1661 spin_unlock(&iocb->ki_ctx->ctx_lock);
1663 __aio_poll_complete(iocb, mask);
1666 INIT_WORK(&req->work, aio_poll_work);
1667 schedule_work(&req->work);
1673 static ssize_t aio_poll(struct aio_kiocb *aiocb, struct iocb *iocb)
1675 struct kioctx *ctx = aiocb->ki_ctx;
1676 struct poll_iocb *req = &aiocb->poll;
1679 /* reject any unknown events outside the normal event mask. */
1680 if ((u16)iocb->aio_buf != iocb->aio_buf)
1682 /* reject fields that are not defined for poll */
1683 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1686 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1687 req->file = fget(iocb->aio_fildes);
1688 if (unlikely(!req->file))
1690 if (!file_has_poll_mask(req->file))
1693 req->head = req->file->f_op->get_poll_head(req->file, req->events);
1696 if (IS_ERR(req->head)) {
1701 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1702 aiocb->ki_cancel = aio_poll_cancel;
1704 spin_lock_irq(&ctx->ctx_lock);
1705 spin_lock(&req->head->lock);
1706 mask = req->file->f_op->poll_mask(req->file, req->events);
1708 __add_wait_queue(req->head, &req->wait);
1709 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1711 spin_unlock(&req->head->lock);
1712 spin_unlock_irq(&ctx->ctx_lock);
1715 __aio_poll_complete(aiocb, mask);
1719 return -EINVAL; /* same as no support for IOCB_CMD_POLL */
1722 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1725 struct aio_kiocb *req;
1729 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1732 /* enforce forwards compatibility on users */
1733 if (unlikely(iocb.aio_reserved2)) {
1734 pr_debug("EINVAL: reserve field set\n");
1738 /* prevent overflows */
1740 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1741 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1742 ((ssize_t)iocb.aio_nbytes < 0)
1744 pr_debug("EINVAL: overflow check\n");
1748 req = aio_get_req(ctx);
1752 if (iocb.aio_flags & IOCB_FLAG_RESFD) {
1754 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1755 * instance of the file* now. The file descriptor must be
1756 * an eventfd() fd, and will be signaled for each completed
1757 * event using the eventfd_signal() function.
1759 req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd);
1760 if (IS_ERR(req->ki_eventfd)) {
1761 ret = PTR_ERR(req->ki_eventfd);
1762 req->ki_eventfd = NULL;
1767 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1768 if (unlikely(ret)) {
1769 pr_debug("EFAULT: aio_key\n");
1773 req->ki_user_iocb = user_iocb;
1774 req->ki_user_data = iocb.aio_data;
1776 switch (iocb.aio_lio_opcode) {
1777 case IOCB_CMD_PREAD:
1778 ret = aio_read(&req->rw, &iocb, false, compat);
1780 case IOCB_CMD_PWRITE:
1781 ret = aio_write(&req->rw, &iocb, false, compat);
1783 case IOCB_CMD_PREADV:
1784 ret = aio_read(&req->rw, &iocb, true, compat);
1786 case IOCB_CMD_PWRITEV:
1787 ret = aio_write(&req->rw, &iocb, true, compat);
1789 case IOCB_CMD_FSYNC:
1790 ret = aio_fsync(&req->fsync, &iocb, false);
1792 case IOCB_CMD_FDSYNC:
1793 ret = aio_fsync(&req->fsync, &iocb, true);
1796 ret = aio_poll(req, &iocb);
1799 pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode);
1805 * If ret is 0, we'd either done aio_complete() ourselves or have
1806 * arranged for that to be done asynchronously. Anything non-zero
1807 * means that we need to destroy req ourselves.
1813 put_reqs_available(ctx, 1);
1814 percpu_ref_put(&ctx->reqs);
1815 if (req->ki_eventfd)
1816 eventfd_ctx_put(req->ki_eventfd);
1817 kmem_cache_free(kiocb_cachep, req);
1822 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1823 * the number of iocbs queued. May return -EINVAL if the aio_context
1824 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1825 * *iocbpp[0] is not properly initialized, if the operation specified
1826 * is invalid for the file descriptor in the iocb. May fail with
1827 * -EFAULT if any of the data structures point to invalid data. May
1828 * fail with -EBADF if the file descriptor specified in the first
1829 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1830 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1831 * fail with -ENOSYS if not implemented.
1833 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1834 struct iocb __user * __user *, iocbpp)
1839 struct blk_plug plug;
1841 if (unlikely(nr < 0))
1844 ctx = lookup_ioctx(ctx_id);
1845 if (unlikely(!ctx)) {
1846 pr_debug("EINVAL: invalid context id\n");
1850 if (nr > ctx->nr_events)
1851 nr = ctx->nr_events;
1853 blk_start_plug(&plug);
1854 for (i = 0; i < nr; i++) {
1855 struct iocb __user *user_iocb;
1857 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1862 ret = io_submit_one(ctx, user_iocb, false);
1866 blk_finish_plug(&plug);
1868 percpu_ref_put(&ctx->users);
1872 #ifdef CONFIG_COMPAT
1873 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1874 int, nr, compat_uptr_t __user *, iocbpp)
1879 struct blk_plug plug;
1881 if (unlikely(nr < 0))
1884 ctx = lookup_ioctx(ctx_id);
1885 if (unlikely(!ctx)) {
1886 pr_debug("EINVAL: invalid context id\n");
1890 if (nr > ctx->nr_events)
1891 nr = ctx->nr_events;
1893 blk_start_plug(&plug);
1894 for (i = 0; i < nr; i++) {
1895 compat_uptr_t user_iocb;
1897 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1902 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1906 blk_finish_plug(&plug);
1908 percpu_ref_put(&ctx->users);
1914 * Finds a given iocb for cancellation.
1916 static struct aio_kiocb *
1917 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1919 struct aio_kiocb *kiocb;
1921 assert_spin_locked(&ctx->ctx_lock);
1923 /* TODO: use a hash or array, this sucks. */
1924 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1925 if (kiocb->ki_user_iocb == iocb)
1932 * Attempts to cancel an iocb previously passed to io_submit. If
1933 * the operation is successfully cancelled, the resulting event is
1934 * copied into the memory pointed to by result without being placed
1935 * into the completion queue and 0 is returned. May fail with
1936 * -EFAULT if any of the data structures pointed to are invalid.
1937 * May fail with -EINVAL if aio_context specified by ctx_id is
1938 * invalid. May fail with -EAGAIN if the iocb specified was not
1939 * cancelled. Will fail with -ENOSYS if not implemented.
1941 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1942 struct io_event __user *, result)
1945 struct aio_kiocb *kiocb;
1949 if (unlikely(get_user(key, &iocb->aio_key)))
1951 if (unlikely(key != KIOCB_KEY))
1954 ctx = lookup_ioctx(ctx_id);
1958 spin_lock_irq(&ctx->ctx_lock);
1959 kiocb = lookup_kiocb(ctx, iocb);
1961 ret = kiocb->ki_cancel(&kiocb->rw);
1962 list_del_init(&kiocb->ki_list);
1964 spin_unlock_irq(&ctx->ctx_lock);
1968 * The result argument is no longer used - the io_event is
1969 * always delivered via the ring buffer. -EINPROGRESS indicates
1970 * cancellation is progress:
1975 percpu_ref_put(&ctx->users);
1980 static long do_io_getevents(aio_context_t ctx_id,
1983 struct io_event __user *events,
1984 struct timespec64 *ts)
1986 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1987 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1990 if (likely(ioctx)) {
1991 if (likely(min_nr <= nr && min_nr >= 0))
1992 ret = read_events(ioctx, min_nr, nr, events, until);
1993 percpu_ref_put(&ioctx->users);
2000 * Attempts to read at least min_nr events and up to nr events from
2001 * the completion queue for the aio_context specified by ctx_id. If
2002 * it succeeds, the number of read events is returned. May fail with
2003 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2004 * out of range, if timeout is out of range. May fail with -EFAULT
2005 * if any of the memory specified is invalid. May return 0 or
2006 * < min_nr if the timeout specified by timeout has elapsed
2007 * before sufficient events are available, where timeout == NULL
2008 * specifies an infinite timeout. Note that the timeout pointed to by
2009 * timeout is relative. Will fail with -ENOSYS if not implemented.
2011 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2014 struct io_event __user *, events,
2015 struct timespec __user *, timeout)
2017 struct timespec64 ts;
2020 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2023 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2024 if (!ret && signal_pending(current))
2029 SYSCALL_DEFINE6(io_pgetevents,
2030 aio_context_t, ctx_id,
2033 struct io_event __user *, events,
2034 struct timespec __user *, timeout,
2035 const struct __aio_sigset __user *, usig)
2037 struct __aio_sigset ksig = { NULL, };
2038 sigset_t ksigmask, sigsaved;
2039 struct timespec64 ts;
2042 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2045 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2049 if (ksig.sigsetsize != sizeof(sigset_t))
2051 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
2053 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2054 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2057 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2058 if (signal_pending(current)) {
2060 current->saved_sigmask = sigsaved;
2061 set_restore_sigmask();
2065 ret = -ERESTARTNOHAND;
2068 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2074 #ifdef CONFIG_COMPAT
2075 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2076 compat_long_t, min_nr,
2078 struct io_event __user *, events,
2079 struct compat_timespec __user *, timeout)
2081 struct timespec64 t;
2084 if (timeout && compat_get_timespec64(&t, timeout))
2087 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2088 if (!ret && signal_pending(current))
2094 struct __compat_aio_sigset {
2095 compat_sigset_t __user *sigmask;
2096 compat_size_t sigsetsize;
2099 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2100 compat_aio_context_t, ctx_id,
2101 compat_long_t, min_nr,
2103 struct io_event __user *, events,
2104 struct compat_timespec __user *, timeout,
2105 const struct __compat_aio_sigset __user *, usig)
2107 struct __compat_aio_sigset ksig = { NULL, };
2108 sigset_t ksigmask, sigsaved;
2109 struct timespec64 t;
2112 if (timeout && compat_get_timespec64(&t, timeout))
2115 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2119 if (ksig.sigsetsize != sizeof(compat_sigset_t))
2121 if (get_compat_sigset(&ksigmask, ksig.sigmask))
2123 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2124 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2127 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2128 if (signal_pending(current)) {
2130 current->saved_sigmask = sigsaved;
2131 set_restore_sigmask();
2134 ret = -ERESTARTNOHAND;
2137 sigprocmask(SIG_SETMASK, &sigsaved, NULL);