2 * Copyright (c) Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
28 /* simple list based uncached page pool
29 * - Pool collects resently freed pages for reuse
30 * - Use page->lru to keep a free list
31 * - doesn't track currently in use pages
34 #define pr_fmt(fmt) "[TTM] " fmt
36 #include <linux/list.h>
37 #include <linux/spinlock.h>
38 #include <linux/highmem.h>
39 #include <linux/mm_types.h>
40 #include <linux/module.h>
42 #include <linux/seq_file.h> /* for seq_printf */
43 #include <linux/slab.h>
44 #include <linux/dma-mapping.h>
46 #include <linux/atomic.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_page_alloc.h>
51 #if IS_ENABLED(CONFIG_AGP)
55 #include <asm/set_memory.h>
58 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
59 #define SMALL_ALLOCATION 16
60 #define FREE_ALL_PAGES (~0U)
61 /* times are in msecs */
62 #define PAGE_FREE_INTERVAL 1000
65 * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
67 * @lock: Protects the shared pool from concurrnet access. Must be used with
68 * irqsave/irqrestore variants because pool allocator maybe called from
70 * @fill_lock: Prevent concurrent calls to fill.
71 * @list: Pool of free uc/wc pages for fast reuse.
72 * @gfp_flags: Flags to pass for alloc_page.
73 * @npages: Number of pages in pool.
75 struct ttm_page_pool {
78 struct list_head list;
83 unsigned long nrefills;
88 * Limits for the pool. They are handled without locks because only place where
89 * they may change is in sysfs store. They won't have immediate effect anyway
90 * so forcing serialization to access them is pointless.
93 struct ttm_pool_opts {
102 * struct ttm_pool_manager - Holds memory pools for fst allocation
104 * Manager is read only object for pool code so it doesn't need locking.
106 * @free_interval: minimum number of jiffies between freeing pages from pool.
107 * @page_alloc_inited: reference counting for pool allocation.
108 * @work: Work that is used to shrink the pool. Work is only run when there is
109 * some pages to free.
110 * @small_allocation: Limit in number of pages what is small allocation.
112 * @pools: All pool objects in use.
114 struct ttm_pool_manager {
116 struct shrinker mm_shrink;
117 struct ttm_pool_opts options;
120 struct ttm_page_pool pools[NUM_POOLS];
122 struct ttm_page_pool wc_pool;
123 struct ttm_page_pool uc_pool;
124 struct ttm_page_pool wc_pool_dma32;
125 struct ttm_page_pool uc_pool_dma32;
126 struct ttm_page_pool wc_pool_huge;
127 struct ttm_page_pool uc_pool_huge;
132 static struct attribute ttm_page_pool_max = {
133 .name = "pool_max_size",
134 .mode = S_IRUGO | S_IWUSR
136 static struct attribute ttm_page_pool_small = {
137 .name = "pool_small_allocation",
138 .mode = S_IRUGO | S_IWUSR
140 static struct attribute ttm_page_pool_alloc_size = {
141 .name = "pool_allocation_size",
142 .mode = S_IRUGO | S_IWUSR
145 static struct attribute *ttm_pool_attrs[] = {
147 &ttm_page_pool_small,
148 &ttm_page_pool_alloc_size,
152 static void ttm_pool_kobj_release(struct kobject *kobj)
154 struct ttm_pool_manager *m =
155 container_of(kobj, struct ttm_pool_manager, kobj);
159 static ssize_t ttm_pool_store(struct kobject *kobj,
160 struct attribute *attr, const char *buffer, size_t size)
162 struct ttm_pool_manager *m =
163 container_of(kobj, struct ttm_pool_manager, kobj);
166 chars = sscanf(buffer, "%u", &val);
170 /* Convert kb to number of pages */
171 val = val / (PAGE_SIZE >> 10);
173 if (attr == &ttm_page_pool_max)
174 m->options.max_size = val;
175 else if (attr == &ttm_page_pool_small)
176 m->options.small = val;
177 else if (attr == &ttm_page_pool_alloc_size) {
178 if (val > NUM_PAGES_TO_ALLOC*8) {
179 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
180 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
181 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
183 } else if (val > NUM_PAGES_TO_ALLOC) {
184 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
185 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
187 m->options.alloc_size = val;
193 static ssize_t ttm_pool_show(struct kobject *kobj,
194 struct attribute *attr, char *buffer)
196 struct ttm_pool_manager *m =
197 container_of(kobj, struct ttm_pool_manager, kobj);
200 if (attr == &ttm_page_pool_max)
201 val = m->options.max_size;
202 else if (attr == &ttm_page_pool_small)
203 val = m->options.small;
204 else if (attr == &ttm_page_pool_alloc_size)
205 val = m->options.alloc_size;
207 val = val * (PAGE_SIZE >> 10);
209 return snprintf(buffer, PAGE_SIZE, "%u\n", val);
212 static const struct sysfs_ops ttm_pool_sysfs_ops = {
213 .show = &ttm_pool_show,
214 .store = &ttm_pool_store,
217 static struct kobj_type ttm_pool_kobj_type = {
218 .release = &ttm_pool_kobj_release,
219 .sysfs_ops = &ttm_pool_sysfs_ops,
220 .default_attrs = ttm_pool_attrs,
223 static struct ttm_pool_manager *_manager;
226 static int set_pages_wb(struct page *page, int numpages)
228 #if IS_ENABLED(CONFIG_AGP)
231 for (i = 0; i < numpages; i++)
232 unmap_page_from_agp(page++);
237 static int set_pages_array_wb(struct page **pages, int addrinarray)
239 #if IS_ENABLED(CONFIG_AGP)
242 for (i = 0; i < addrinarray; i++)
243 unmap_page_from_agp(pages[i]);
248 static int set_pages_array_wc(struct page **pages, int addrinarray)
250 #if IS_ENABLED(CONFIG_AGP)
253 for (i = 0; i < addrinarray; i++)
254 map_page_into_agp(pages[i]);
259 static int set_pages_array_uc(struct page **pages, int addrinarray)
261 #if IS_ENABLED(CONFIG_AGP)
264 for (i = 0; i < addrinarray; i++)
265 map_page_into_agp(pages[i]);
272 * Select the right pool or requested caching state and ttm flags. */
273 static struct ttm_page_pool *ttm_get_pool(int flags, bool huge,
274 enum ttm_caching_state cstate)
278 if (cstate == tt_cached)
286 if (flags & TTM_PAGE_FLAG_DMA32) {
295 return &_manager->pools[pool_index];
298 /* set memory back to wb and free the pages. */
299 static void ttm_pages_put(struct page *pages[], unsigned npages,
302 unsigned int i, pages_nr = (1 << order);
305 if (set_pages_array_wb(pages, npages))
306 pr_err("Failed to set %d pages to wb!\n", npages);
309 for (i = 0; i < npages; ++i) {
311 if (set_pages_wb(pages[i], pages_nr))
312 pr_err("Failed to set %d pages to wb!\n", pages_nr);
314 __free_pages(pages[i], order);
318 static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
319 unsigned freed_pages)
321 pool->npages -= freed_pages;
322 pool->nfrees += freed_pages;
326 * Free pages from pool.
328 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
329 * number of pages in one go.
331 * @pool: to free the pages from
332 * @free_all: If set to true will free all pages in pool
333 * @use_static: Safe to use static buffer
335 static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free,
338 static struct page *static_buf[NUM_PAGES_TO_ALLOC];
339 unsigned long irq_flags;
341 struct page **pages_to_free;
342 unsigned freed_pages = 0,
343 npages_to_free = nr_free;
345 if (NUM_PAGES_TO_ALLOC < nr_free)
346 npages_to_free = NUM_PAGES_TO_ALLOC;
349 pages_to_free = static_buf;
351 pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
353 if (!pages_to_free) {
354 pr_debug("Failed to allocate memory for pool free operation\n");
359 spin_lock_irqsave(&pool->lock, irq_flags);
361 list_for_each_entry_reverse(p, &pool->list, lru) {
362 if (freed_pages >= npages_to_free)
365 pages_to_free[freed_pages++] = p;
366 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
367 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
368 /* remove range of pages from the pool */
369 __list_del(p->lru.prev, &pool->list);
371 ttm_pool_update_free_locked(pool, freed_pages);
373 * Because changing page caching is costly
374 * we unlock the pool to prevent stalling.
376 spin_unlock_irqrestore(&pool->lock, irq_flags);
378 ttm_pages_put(pages_to_free, freed_pages, pool->order);
379 if (likely(nr_free != FREE_ALL_PAGES))
380 nr_free -= freed_pages;
382 if (NUM_PAGES_TO_ALLOC >= nr_free)
383 npages_to_free = nr_free;
385 npages_to_free = NUM_PAGES_TO_ALLOC;
389 /* free all so restart the processing */
393 /* Not allowed to fall through or break because
394 * following context is inside spinlock while we are
402 /* remove range of pages from the pool */
404 __list_del(&p->lru, &pool->list);
406 ttm_pool_update_free_locked(pool, freed_pages);
407 nr_free -= freed_pages;
410 spin_unlock_irqrestore(&pool->lock, irq_flags);
413 ttm_pages_put(pages_to_free, freed_pages, pool->order);
415 if (pages_to_free != static_buf)
416 kfree(pages_to_free);
421 * Callback for mm to request pool to reduce number of page held.
423 * XXX: (dchinner) Deadlock warning!
425 * This code is crying out for a shrinker per pool....
428 ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
430 static DEFINE_MUTEX(lock);
431 static unsigned start_pool;
433 unsigned pool_offset;
434 struct ttm_page_pool *pool;
435 int shrink_pages = sc->nr_to_scan;
436 unsigned long freed = 0;
437 unsigned int nr_free_pool;
439 if (!mutex_trylock(&lock))
441 pool_offset = ++start_pool % NUM_POOLS;
442 /* select start pool in round robin fashion */
443 for (i = 0; i < NUM_POOLS; ++i) {
444 unsigned nr_free = shrink_pages;
447 if (shrink_pages == 0)
450 pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
451 page_nr = (1 << pool->order);
452 /* OK to use static buffer since global mutex is held. */
453 nr_free_pool = roundup(nr_free, page_nr) >> pool->order;
454 shrink_pages = ttm_page_pool_free(pool, nr_free_pool, true);
455 freed += (nr_free_pool - shrink_pages) << pool->order;
456 if (freed >= sc->nr_to_scan)
458 shrink_pages <<= pool->order;
466 ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
469 unsigned long count = 0;
470 struct ttm_page_pool *pool;
472 for (i = 0; i < NUM_POOLS; ++i) {
473 pool = &_manager->pools[i];
474 count += (pool->npages << pool->order);
480 static int ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
482 manager->mm_shrink.count_objects = ttm_pool_shrink_count;
483 manager->mm_shrink.scan_objects = ttm_pool_shrink_scan;
484 manager->mm_shrink.seeks = 1;
485 return register_shrinker(&manager->mm_shrink);
488 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
490 unregister_shrinker(&manager->mm_shrink);
493 static int ttm_set_pages_caching(struct page **pages,
494 enum ttm_caching_state cstate, unsigned cpages)
497 /* Set page caching */
500 r = set_pages_array_uc(pages, cpages);
502 pr_err("Failed to set %d pages to uc!\n", cpages);
505 r = set_pages_array_wc(pages, cpages);
507 pr_err("Failed to set %d pages to wc!\n", cpages);
516 * Free pages the pages that failed to change the caching state. If there is
517 * any pages that have changed their caching state already put them to the
520 static void ttm_handle_caching_state_failure(struct list_head *pages,
521 int ttm_flags, enum ttm_caching_state cstate,
522 struct page **failed_pages, unsigned cpages)
525 /* Failed pages have to be freed */
526 for (i = 0; i < cpages; ++i) {
527 list_del(&failed_pages[i]->lru);
528 __free_page(failed_pages[i]);
533 * Allocate new pages with correct caching.
535 * This function is reentrant if caller updates count depending on number of
536 * pages returned in pages array.
538 static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
539 int ttm_flags, enum ttm_caching_state cstate,
540 unsigned count, unsigned order)
542 struct page **caching_array;
545 unsigned i, j, cpages;
546 unsigned npages = 1 << order;
547 unsigned max_cpages = min(count << order, (unsigned)NUM_PAGES_TO_ALLOC);
549 /* allocate array for page caching change */
550 caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
552 if (!caching_array) {
553 pr_debug("Unable to allocate table for new pages\n");
557 for (i = 0, cpages = 0; i < count; ++i) {
558 p = alloc_pages(gfp_flags, order);
561 pr_debug("Unable to get page %u\n", i);
563 /* store already allocated pages in the pool after
564 * setting the caching state */
566 r = ttm_set_pages_caching(caching_array,
569 ttm_handle_caching_state_failure(pages,
571 caching_array, cpages);
577 list_add(&p->lru, pages);
579 #ifdef CONFIG_HIGHMEM
580 /* gfp flags of highmem page should never be dma32 so we
581 * we should be fine in such case
587 for (j = 0; j < npages; ++j) {
588 caching_array[cpages++] = p++;
589 if (cpages == max_cpages) {
591 r = ttm_set_pages_caching(caching_array,
594 ttm_handle_caching_state_failure(pages,
596 caching_array, cpages);
605 r = ttm_set_pages_caching(caching_array, cstate, cpages);
607 ttm_handle_caching_state_failure(pages,
609 caching_array, cpages);
612 kfree(caching_array);
618 * Fill the given pool if there aren't enough pages and the requested number of
621 static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool, int ttm_flags,
622 enum ttm_caching_state cstate,
623 unsigned count, unsigned long *irq_flags)
629 * Only allow one pool fill operation at a time.
630 * If pool doesn't have enough pages for the allocation new pages are
631 * allocated from outside of pool.
636 pool->fill_lock = true;
638 /* If allocation request is small and there are not enough
639 * pages in a pool we fill the pool up first. */
640 if (count < _manager->options.small
641 && count > pool->npages) {
642 struct list_head new_pages;
643 unsigned alloc_size = _manager->options.alloc_size;
646 * Can't change page caching if in irqsave context. We have to
647 * drop the pool->lock.
649 spin_unlock_irqrestore(&pool->lock, *irq_flags);
651 INIT_LIST_HEAD(&new_pages);
652 r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
653 cstate, alloc_size, 0);
654 spin_lock_irqsave(&pool->lock, *irq_flags);
657 list_splice(&new_pages, &pool->list);
659 pool->npages += alloc_size;
661 pr_debug("Failed to fill pool (%p)\n", pool);
662 /* If we have any pages left put them to the pool. */
663 list_for_each_entry(p, &new_pages, lru) {
666 list_splice(&new_pages, &pool->list);
667 pool->npages += cpages;
671 pool->fill_lock = false;
675 * Allocate pages from the pool and put them on the return list.
677 * @return zero for success or negative error code.
679 static int ttm_page_pool_get_pages(struct ttm_page_pool *pool,
680 struct list_head *pages,
682 enum ttm_caching_state cstate,
683 unsigned count, unsigned order)
685 unsigned long irq_flags;
690 spin_lock_irqsave(&pool->lock, irq_flags);
692 ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count,
695 if (count >= pool->npages) {
696 /* take all pages from the pool */
697 list_splice_init(&pool->list, pages);
698 count -= pool->npages;
702 /* find the last pages to include for requested number of pages. Split
703 * pool to begin and halve it to reduce search space. */
704 if (count <= pool->npages/2) {
706 list_for_each(p, &pool->list) {
711 i = pool->npages + 1;
712 list_for_each_prev(p, &pool->list) {
717 /* Cut 'count' number of pages from the pool */
718 list_cut_position(pages, &pool->list, p);
719 pool->npages -= count;
722 spin_unlock_irqrestore(&pool->lock, irq_flags);
724 /* clear the pages coming from the pool if requested */
725 if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
728 list_for_each_entry(page, pages, lru) {
729 if (PageHighMem(page))
730 clear_highpage(page);
732 clear_page(page_address(page));
736 /* If pool didn't have enough pages allocate new one. */
738 gfp_t gfp_flags = pool->gfp_flags;
740 /* set zero flag for page allocation if required */
741 if (ttm_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
742 gfp_flags |= __GFP_ZERO;
744 if (ttm_flags & TTM_PAGE_FLAG_NO_RETRY)
745 gfp_flags |= __GFP_RETRY_MAYFAIL;
747 /* ttm_alloc_new_pages doesn't reference pool so we can run
748 * multiple requests in parallel.
750 r = ttm_alloc_new_pages(pages, gfp_flags, ttm_flags, cstate,
757 /* Put all pages in pages list to correct pool to wait for reuse */
758 static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
759 enum ttm_caching_state cstate)
761 struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
763 struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
765 unsigned long irq_flags;
769 /* No pool for this memory type so free the pages */
772 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
773 struct page *p = pages[i];
775 unsigned order = 0, j;
782 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
783 if (!(flags & TTM_PAGE_FLAG_DMA32)) {
784 for (j = 0; j < HPAGE_PMD_NR; ++j)
785 if (p++ != pages[i + j])
788 if (j == HPAGE_PMD_NR)
789 order = HPAGE_PMD_ORDER;
793 if (page_count(pages[i]) != 1)
794 pr_err("Erroneous page count. Leaking pages.\n");
795 __free_pages(pages[i], order);
807 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
809 unsigned max_size, n2free;
811 spin_lock_irqsave(&huge->lock, irq_flags);
813 struct page *p = pages[i];
819 for (j = 0; j < HPAGE_PMD_NR; ++j)
820 if (p++ != pages[i + j])
823 if (j != HPAGE_PMD_NR)
826 list_add_tail(&pages[i]->lru, &huge->list);
828 for (j = 0; j < HPAGE_PMD_NR; ++j)
833 /* Check that we don't go over the pool limit */
834 max_size = _manager->options.max_size;
835 max_size /= HPAGE_PMD_NR;
836 if (huge->npages > max_size)
837 n2free = huge->npages - max_size;
840 spin_unlock_irqrestore(&huge->lock, irq_flags);
842 ttm_page_pool_free(huge, n2free, false);
846 spin_lock_irqsave(&pool->lock, irq_flags);
849 if (page_count(pages[i]) != 1)
850 pr_err("Erroneous page count. Leaking pages.\n");
851 list_add_tail(&pages[i]->lru, &pool->list);
857 /* Check that we don't go over the pool limit */
859 if (pool->npages > _manager->options.max_size) {
860 npages = pool->npages - _manager->options.max_size;
861 /* free at least NUM_PAGES_TO_ALLOC number of pages
862 * to reduce calls to set_memory_wb */
863 if (npages < NUM_PAGES_TO_ALLOC)
864 npages = NUM_PAGES_TO_ALLOC;
866 spin_unlock_irqrestore(&pool->lock, irq_flags);
868 ttm_page_pool_free(pool, npages, false);
872 * On success pages list will hold count number of correctly
875 static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
876 enum ttm_caching_state cstate)
878 struct ttm_page_pool *pool = ttm_get_pool(flags, false, cstate);
879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
880 struct ttm_page_pool *huge = ttm_get_pool(flags, true, cstate);
882 struct list_head plist;
883 struct page *p = NULL;
884 unsigned count, first;
887 /* No pool for cached pages */
889 gfp_t gfp_flags = GFP_USER;
891 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
895 /* set zero flag for page allocation if required */
896 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
897 gfp_flags |= __GFP_ZERO;
899 if (flags & TTM_PAGE_FLAG_NO_RETRY)
900 gfp_flags |= __GFP_RETRY_MAYFAIL;
902 if (flags & TTM_PAGE_FLAG_DMA32)
903 gfp_flags |= GFP_DMA32;
905 gfp_flags |= GFP_HIGHUSER;
908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
909 if (!(gfp_flags & GFP_DMA32)) {
910 while (npages >= HPAGE_PMD_NR) {
911 gfp_t huge_flags = gfp_flags;
913 huge_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
914 __GFP_KSWAPD_RECLAIM;
915 huge_flags &= ~__GFP_MOVABLE;
916 huge_flags &= ~__GFP_COMP;
917 p = alloc_pages(huge_flags, HPAGE_PMD_ORDER);
921 for (j = 0; j < HPAGE_PMD_NR; ++j)
924 npages -= HPAGE_PMD_NR;
931 p = alloc_page(gfp_flags);
933 pr_debug("Unable to allocate page\n");
937 /* Swap the pages if we detect consecutive order */
938 if (i > first && pages[i - 1] == p - 1)
939 swap(p, pages[i - 1]);
949 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
950 if (huge && npages >= HPAGE_PMD_NR) {
951 INIT_LIST_HEAD(&plist);
952 ttm_page_pool_get_pages(huge, &plist, flags, cstate,
953 npages / HPAGE_PMD_NR,
956 list_for_each_entry(p, &plist, lru) {
959 for (j = 0; j < HPAGE_PMD_NR; ++j)
960 pages[count++] = &p[j];
965 INIT_LIST_HEAD(&plist);
966 r = ttm_page_pool_get_pages(pool, &plist, flags, cstate,
970 list_for_each_entry(p, &plist, lru) {
971 struct page *tmp = p;
973 /* Swap the pages if we detect consecutive order */
974 if (count > first && pages[count - 1] == tmp - 1)
975 swap(tmp, pages[count - 1]);
976 pages[count++] = tmp;
980 /* If there is any pages in the list put them back to
983 pr_debug("Failed to allocate extra pages for large request\n");
984 ttm_put_pages(pages, count, flags, cstate);
991 static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags,
992 char *name, unsigned int order)
994 spin_lock_init(&pool->lock);
995 pool->fill_lock = false;
996 INIT_LIST_HEAD(&pool->list);
997 pool->npages = pool->nfrees = 0;
998 pool->gfp_flags = flags;
1000 pool->order = order;
1003 int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1006 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1007 unsigned order = HPAGE_PMD_ORDER;
1014 pr_info("Initializing pool allocator\n");
1016 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1020 ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc", 0);
1022 ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc", 0);
1024 ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
1025 GFP_USER | GFP_DMA32, "wc dma", 0);
1027 ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
1028 GFP_USER | GFP_DMA32, "uc dma", 0);
1030 ttm_page_pool_init_locked(&_manager->wc_pool_huge,
1031 (GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
1032 __GFP_KSWAPD_RECLAIM) &
1033 ~(__GFP_MOVABLE | __GFP_COMP),
1036 ttm_page_pool_init_locked(&_manager->uc_pool_huge,
1037 (GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
1038 __GFP_KSWAPD_RECLAIM) &
1039 ~(__GFP_MOVABLE | __GFP_COMP)
1040 , "uc huge", order);
1042 _manager->options.max_size = max_pages;
1043 _manager->options.small = SMALL_ALLOCATION;
1044 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1046 ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1047 &glob->kobj, "pool");
1048 if (unlikely(ret != 0))
1051 ret = ttm_pool_mm_shrink_init(_manager);
1052 if (unlikely(ret != 0))
1057 kobject_put(&_manager->kobj);
1062 void ttm_page_alloc_fini(void)
1066 pr_info("Finalizing pool allocator\n");
1067 ttm_pool_mm_shrink_fini(_manager);
1069 /* OK to use static buffer since global mutex is no longer used. */
1070 for (i = 0; i < NUM_POOLS; ++i)
1071 ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES, true);
1073 kobject_put(&_manager->kobj);
1078 ttm_pool_unpopulate_helper(struct ttm_tt *ttm, unsigned mem_count_update)
1080 struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
1083 if (mem_count_update == 0)
1086 for (i = 0; i < mem_count_update; ++i) {
1090 ttm_mem_global_free_page(mem_glob, ttm->pages[i], PAGE_SIZE);
1094 ttm_put_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
1095 ttm->caching_state);
1096 ttm->state = tt_unpopulated;
1099 int ttm_pool_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
1101 struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
1105 if (ttm->state != tt_unpopulated)
1108 if (ttm_check_under_lowerlimit(mem_glob, ttm->num_pages, ctx))
1111 ret = ttm_get_pages(ttm->pages, ttm->num_pages, ttm->page_flags,
1112 ttm->caching_state);
1113 if (unlikely(ret != 0)) {
1114 ttm_pool_unpopulate_helper(ttm, 0);
1118 for (i = 0; i < ttm->num_pages; ++i) {
1119 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
1121 if (unlikely(ret != 0)) {
1122 ttm_pool_unpopulate_helper(ttm, i);
1127 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
1128 ret = ttm_tt_swapin(ttm);
1129 if (unlikely(ret != 0)) {
1130 ttm_pool_unpopulate(ttm);
1135 ttm->state = tt_unbound;
1138 EXPORT_SYMBOL(ttm_pool_populate);
1140 void ttm_pool_unpopulate(struct ttm_tt *ttm)
1142 ttm_pool_unpopulate_helper(ttm, ttm->num_pages);
1144 EXPORT_SYMBOL(ttm_pool_unpopulate);
1146 int ttm_populate_and_map_pages(struct device *dev, struct ttm_dma_tt *tt,
1147 struct ttm_operation_ctx *ctx)
1152 r = ttm_pool_populate(&tt->ttm, ctx);
1156 for (i = 0; i < tt->ttm.num_pages; ++i) {
1157 struct page *p = tt->ttm.pages[i];
1158 size_t num_pages = 1;
1160 for (j = i + 1; j < tt->ttm.num_pages; ++j) {
1161 if (++p != tt->ttm.pages[j])
1167 tt->dma_address[i] = dma_map_page(dev, tt->ttm.pages[i],
1168 0, num_pages * PAGE_SIZE,
1170 if (dma_mapping_error(dev, tt->dma_address[i])) {
1172 dma_unmap_page(dev, tt->dma_address[i],
1173 PAGE_SIZE, DMA_BIDIRECTIONAL);
1174 tt->dma_address[i] = 0;
1176 ttm_pool_unpopulate(&tt->ttm);
1180 for (j = 1; j < num_pages; ++j) {
1181 tt->dma_address[i + 1] = tt->dma_address[i] + PAGE_SIZE;
1187 EXPORT_SYMBOL(ttm_populate_and_map_pages);
1189 void ttm_unmap_and_unpopulate_pages(struct device *dev, struct ttm_dma_tt *tt)
1193 for (i = 0; i < tt->ttm.num_pages;) {
1194 struct page *p = tt->ttm.pages[i];
1195 size_t num_pages = 1;
1197 if (!tt->dma_address[i] || !tt->ttm.pages[i]) {
1202 for (j = i + 1; j < tt->ttm.num_pages; ++j) {
1203 if (++p != tt->ttm.pages[j])
1209 dma_unmap_page(dev, tt->dma_address[i], num_pages * PAGE_SIZE,
1214 ttm_pool_unpopulate(&tt->ttm);
1216 EXPORT_SYMBOL(ttm_unmap_and_unpopulate_pages);
1218 int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
1220 struct ttm_page_pool *p;
1222 char *h[] = {"pool", "refills", "pages freed", "size"};
1224 seq_printf(m, "No pool allocator running.\n");
1227 seq_printf(m, "%7s %12s %13s %8s\n",
1228 h[0], h[1], h[2], h[3]);
1229 for (i = 0; i < NUM_POOLS; ++i) {
1230 p = &_manager->pools[i];
1232 seq_printf(m, "%7s %12ld %13ld %8d\n",
1233 p->name, p->nrefills,
1234 p->nfrees, p->npages);
1238 EXPORT_SYMBOL(ttm_page_alloc_debugfs);