2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
39 * RC6 is a special power stage which allows the GPU to enter an very
40 * low-voltage mode when idle, using down to 0V while at this stage. This
41 * stage is entered automatically when the GPU is idle when RC6 support is
42 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
44 * There are different RC6 modes available in Intel GPU, which differentiate
45 * among each other with the latency required to enter and leave RC6 and
46 * voltage consumed by the GPU in different states.
48 * The combination of the following flags define which states GPU is allowed
49 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50 * RC6pp is deepest RC6. Their support by hardware varies according to the
51 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52 * which brings the most power savings; deeper states save more power, but
53 * require higher latency to switch to and wake up.
56 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
58 if (HAS_LLC(dev_priv)) {
60 * WaCompressedResourceDisplayNewHashMode:skl,kbl
61 * Display WA #0390: skl,kbl
63 * Must match Sampler, Pixel Back End, and Media. See
64 * WaCompressedResourceSamplerPbeMediaNewHashMode.
66 I915_WRITE(CHICKEN_PAR1_1,
67 I915_READ(CHICKEN_PAR1_1) |
68 SKL_DE_COMPRESSED_HASH_MODE);
71 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
72 I915_WRITE(CHICKEN_PAR1_1,
73 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
75 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
76 I915_WRITE(GEN8_CHICKEN_DCPR_1,
77 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
79 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
80 /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
81 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
83 DISP_FBC_MEMORY_WAKE);
85 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
86 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
87 ILK_DPFC_DISABLE_DUMMY0);
89 if (IS_SKYLAKE(dev_priv)) {
90 /* WaDisableDopClockGating */
91 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
92 & ~GEN7_DOP_CLOCK_GATE_ENABLE);
96 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
98 gen9_init_clock_gating(dev_priv);
100 /* WaDisableSDEUnitClockGating:bxt */
101 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
102 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
106 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
108 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
109 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
112 * Wa: Backlight PWM may stop in the asserted state, causing backlight
115 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
116 PWM1_GATING_DIS | PWM2_GATING_DIS);
119 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
121 gen9_init_clock_gating(dev_priv);
124 * WaDisablePWMClockGating:glk
125 * Backlight PWM may stop in the asserted state, causing backlight
128 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
129 PWM1_GATING_DIS | PWM2_GATING_DIS);
131 /* WaDDIIOTimeout:glk */
132 if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
133 u32 val = I915_READ(CHICKEN_MISC_2);
134 val &= ~(GLK_CL0_PWR_DOWN |
137 I915_WRITE(CHICKEN_MISC_2, val);
142 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
146 tmp = I915_READ(CLKCFG);
148 switch (tmp & CLKCFG_FSB_MASK) {
150 dev_priv->fsb_freq = 533; /* 133*4 */
153 dev_priv->fsb_freq = 800; /* 200*4 */
156 dev_priv->fsb_freq = 667; /* 167*4 */
159 dev_priv->fsb_freq = 400; /* 100*4 */
163 switch (tmp & CLKCFG_MEM_MASK) {
165 dev_priv->mem_freq = 533;
168 dev_priv->mem_freq = 667;
171 dev_priv->mem_freq = 800;
175 /* detect pineview DDR3 setting */
176 tmp = I915_READ(CSHRDDR3CTL);
177 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
180 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
184 ddrpll = I915_READ16(DDRMPLL1);
185 csipll = I915_READ16(CSIPLL0);
187 switch (ddrpll & 0xff) {
189 dev_priv->mem_freq = 800;
192 dev_priv->mem_freq = 1066;
195 dev_priv->mem_freq = 1333;
198 dev_priv->mem_freq = 1600;
201 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
203 dev_priv->mem_freq = 0;
207 dev_priv->ips.r_t = dev_priv->mem_freq;
209 switch (csipll & 0x3ff) {
211 dev_priv->fsb_freq = 3200;
214 dev_priv->fsb_freq = 3733;
217 dev_priv->fsb_freq = 4266;
220 dev_priv->fsb_freq = 4800;
223 dev_priv->fsb_freq = 5333;
226 dev_priv->fsb_freq = 5866;
229 dev_priv->fsb_freq = 6400;
232 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
234 dev_priv->fsb_freq = 0;
238 if (dev_priv->fsb_freq == 3200) {
239 dev_priv->ips.c_m = 0;
240 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
241 dev_priv->ips.c_m = 1;
243 dev_priv->ips.c_m = 2;
247 static const struct cxsr_latency cxsr_latency_table[] = {
248 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
249 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
250 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
251 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
252 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
254 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
255 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
256 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
257 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
258 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
260 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
261 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
262 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
263 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
264 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
266 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
267 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
268 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
269 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
270 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
272 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
273 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
274 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
275 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
276 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
278 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
279 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
280 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
281 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
282 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
285 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
290 const struct cxsr_latency *latency;
293 if (fsb == 0 || mem == 0)
296 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
297 latency = &cxsr_latency_table[i];
298 if (is_desktop == latency->is_desktop &&
299 is_ddr3 == latency->is_ddr3 &&
300 fsb == latency->fsb_freq && mem == latency->mem_freq)
304 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
309 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
313 mutex_lock(&dev_priv->pcu_lock);
315 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
317 val &= ~FORCE_DDR_HIGH_FREQ;
319 val |= FORCE_DDR_HIGH_FREQ;
320 val &= ~FORCE_DDR_LOW_FREQ;
321 val |= FORCE_DDR_FREQ_REQ_ACK;
322 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
324 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
325 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
326 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
328 mutex_unlock(&dev_priv->pcu_lock);
331 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
335 mutex_lock(&dev_priv->pcu_lock);
337 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
339 val |= DSP_MAXFIFO_PM5_ENABLE;
341 val &= ~DSP_MAXFIFO_PM5_ENABLE;
342 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
344 mutex_unlock(&dev_priv->pcu_lock);
347 #define FW_WM(value, plane) \
348 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
350 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
355 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
356 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
357 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
358 POSTING_READ(FW_BLC_SELF_VLV);
359 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
360 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
362 POSTING_READ(FW_BLC_SELF);
363 } else if (IS_PINEVIEW(dev_priv)) {
364 val = I915_READ(DSPFW3);
365 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
367 val |= PINEVIEW_SELF_REFRESH_EN;
369 val &= ~PINEVIEW_SELF_REFRESH_EN;
370 I915_WRITE(DSPFW3, val);
371 POSTING_READ(DSPFW3);
372 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
373 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
374 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
375 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
376 I915_WRITE(FW_BLC_SELF, val);
377 POSTING_READ(FW_BLC_SELF);
378 } else if (IS_I915GM(dev_priv)) {
380 * FIXME can't find a bit like this for 915G, and
381 * and yet it does have the related watermark in
382 * FW_BLC_SELF. What's going on?
384 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
385 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
386 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
387 I915_WRITE(INSTPM, val);
388 POSTING_READ(INSTPM);
393 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
395 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
396 enableddisabled(enable),
397 enableddisabled(was_enabled));
403 * intel_set_memory_cxsr - Configure CxSR state
404 * @dev_priv: i915 device
405 * @enable: Allow vs. disallow CxSR
407 * Allow or disallow the system to enter a special CxSR
408 * (C-state self refresh) state. What typically happens in CxSR mode
409 * is that several display FIFOs may get combined into a single larger
410 * FIFO for a particular plane (so called max FIFO mode) to allow the
411 * system to defer memory fetches longer, and the memory will enter
414 * Note that enabling CxSR does not guarantee that the system enter
415 * this special mode, nor does it guarantee that the system stays
416 * in that mode once entered. So this just allows/disallows the system
417 * to autonomously utilize the CxSR mode. Other factors such as core
418 * C-states will affect when/if the system actually enters/exits the
421 * Note that on VLV/CHV this actually only controls the max FIFO mode,
422 * and the system is free to enter/exit memory self refresh at any time
423 * even when the use of CxSR has been disallowed.
425 * While the system is actually in the CxSR/max FIFO mode, some plane
426 * control registers will not get latched on vblank. Thus in order to
427 * guarantee the system will respond to changes in the plane registers
428 * we must always disallow CxSR prior to making changes to those registers.
429 * Unfortunately the system will re-evaluate the CxSR conditions at
430 * frame start which happens after vblank start (which is when the plane
431 * registers would get latched), so we can't proceed with the plane update
432 * during the same frame where we disallowed CxSR.
434 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
435 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
436 * the hardware w.r.t. HPLL SR when writing to plane registers.
437 * Disallowing just CxSR is sufficient.
439 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
443 mutex_lock(&dev_priv->wm.wm_mutex);
444 ret = _intel_set_memory_cxsr(dev_priv, enable);
445 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
446 dev_priv->wm.vlv.cxsr = enable;
447 else if (IS_G4X(dev_priv))
448 dev_priv->wm.g4x.cxsr = enable;
449 mutex_unlock(&dev_priv->wm.wm_mutex);
455 * Latency for FIFO fetches is dependent on several factors:
456 * - memory configuration (speed, channels)
458 * - current MCH state
459 * It can be fairly high in some situations, so here we assume a fairly
460 * pessimal value. It's a tradeoff between extra memory fetches (if we
461 * set this value too high, the FIFO will fetch frequently to stay full)
462 * and power consumption (set it too low to save power and we might see
463 * FIFO underruns and display "flicker").
465 * A value of 5us seems to be a good balance; safe for very low end
466 * platforms but not overly aggressive on lower latency configs.
468 static const int pessimal_latency_ns = 5000;
470 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
471 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
473 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
475 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
476 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
477 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
478 enum pipe pipe = crtc->pipe;
479 int sprite0_start, sprite1_start;
482 uint32_t dsparb, dsparb2, dsparb3;
484 dsparb = I915_READ(DSPARB);
485 dsparb2 = I915_READ(DSPARB2);
486 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
487 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
490 dsparb = I915_READ(DSPARB);
491 dsparb2 = I915_READ(DSPARB2);
492 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
493 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
496 dsparb2 = I915_READ(DSPARB2);
497 dsparb3 = I915_READ(DSPARB3);
498 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
499 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
506 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
507 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
508 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
509 fifo_state->plane[PLANE_CURSOR] = 63;
512 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
513 enum i9xx_plane_id i9xx_plane)
515 uint32_t dsparb = I915_READ(DSPARB);
518 size = dsparb & 0x7f;
519 if (i9xx_plane == PLANE_B)
520 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
522 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
523 dsparb, plane_name(i9xx_plane), size);
528 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
529 enum i9xx_plane_id i9xx_plane)
531 uint32_t dsparb = I915_READ(DSPARB);
534 size = dsparb & 0x1ff;
535 if (i9xx_plane == PLANE_B)
536 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
537 size >>= 1; /* Convert to cachelines */
539 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
540 dsparb, plane_name(i9xx_plane), size);
545 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
546 enum i9xx_plane_id i9xx_plane)
548 uint32_t dsparb = I915_READ(DSPARB);
551 size = dsparb & 0x7f;
552 size >>= 2; /* Convert to cachelines */
554 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
555 dsparb, plane_name(i9xx_plane), size);
560 /* Pineview has different values for various configs */
561 static const struct intel_watermark_params pineview_display_wm = {
562 .fifo_size = PINEVIEW_DISPLAY_FIFO,
563 .max_wm = PINEVIEW_MAX_WM,
564 .default_wm = PINEVIEW_DFT_WM,
565 .guard_size = PINEVIEW_GUARD_WM,
566 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
568 static const struct intel_watermark_params pineview_display_hplloff_wm = {
569 .fifo_size = PINEVIEW_DISPLAY_FIFO,
570 .max_wm = PINEVIEW_MAX_WM,
571 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
572 .guard_size = PINEVIEW_GUARD_WM,
573 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
575 static const struct intel_watermark_params pineview_cursor_wm = {
576 .fifo_size = PINEVIEW_CURSOR_FIFO,
577 .max_wm = PINEVIEW_CURSOR_MAX_WM,
578 .default_wm = PINEVIEW_CURSOR_DFT_WM,
579 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
580 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
582 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
583 .fifo_size = PINEVIEW_CURSOR_FIFO,
584 .max_wm = PINEVIEW_CURSOR_MAX_WM,
585 .default_wm = PINEVIEW_CURSOR_DFT_WM,
586 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
587 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
589 static const struct intel_watermark_params i965_cursor_wm_info = {
590 .fifo_size = I965_CURSOR_FIFO,
591 .max_wm = I965_CURSOR_MAX_WM,
592 .default_wm = I965_CURSOR_DFT_WM,
594 .cacheline_size = I915_FIFO_LINE_SIZE,
596 static const struct intel_watermark_params i945_wm_info = {
597 .fifo_size = I945_FIFO_SIZE,
598 .max_wm = I915_MAX_WM,
601 .cacheline_size = I915_FIFO_LINE_SIZE,
603 static const struct intel_watermark_params i915_wm_info = {
604 .fifo_size = I915_FIFO_SIZE,
605 .max_wm = I915_MAX_WM,
608 .cacheline_size = I915_FIFO_LINE_SIZE,
610 static const struct intel_watermark_params i830_a_wm_info = {
611 .fifo_size = I855GM_FIFO_SIZE,
612 .max_wm = I915_MAX_WM,
615 .cacheline_size = I830_FIFO_LINE_SIZE,
617 static const struct intel_watermark_params i830_bc_wm_info = {
618 .fifo_size = I855GM_FIFO_SIZE,
619 .max_wm = I915_MAX_WM/2,
622 .cacheline_size = I830_FIFO_LINE_SIZE,
624 static const struct intel_watermark_params i845_wm_info = {
625 .fifo_size = I830_FIFO_SIZE,
626 .max_wm = I915_MAX_WM,
629 .cacheline_size = I830_FIFO_LINE_SIZE,
633 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
634 * @pixel_rate: Pipe pixel rate in kHz
635 * @cpp: Plane bytes per pixel
636 * @latency: Memory wakeup latency in 0.1us units
638 * Compute the watermark using the method 1 or "small buffer"
639 * formula. The caller may additonally add extra cachelines
640 * to account for TLB misses and clock crossings.
642 * This method is concerned with the short term drain rate
643 * of the FIFO, ie. it does not account for blanking periods
644 * which would effectively reduce the average drain rate across
645 * a longer period. The name "small" refers to the fact the
646 * FIFO is relatively small compared to the amount of data
649 * The FIFO level vs. time graph might look something like:
653 * __---__---__ (- plane active, _ blanking)
656 * or perhaps like this:
659 * __----__----__ (- plane active, _ blanking)
663 * The watermark in bytes
665 static unsigned int intel_wm_method1(unsigned int pixel_rate,
667 unsigned int latency)
671 ret = (uint64_t) pixel_rate * cpp * latency;
672 ret = DIV_ROUND_UP_ULL(ret, 10000);
678 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
679 * @pixel_rate: Pipe pixel rate in kHz
680 * @htotal: Pipe horizontal total
681 * @width: Plane width in pixels
682 * @cpp: Plane bytes per pixel
683 * @latency: Memory wakeup latency in 0.1us units
685 * Compute the watermark using the method 2 or "large buffer"
686 * formula. The caller may additonally add extra cachelines
687 * to account for TLB misses and clock crossings.
689 * This method is concerned with the long term drain rate
690 * of the FIFO, ie. it does account for blanking periods
691 * which effectively reduce the average drain rate across
692 * a longer period. The name "large" refers to the fact the
693 * FIFO is relatively large compared to the amount of data
696 * The FIFO level vs. time graph might look something like:
701 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
705 * The watermark in bytes
707 static unsigned int intel_wm_method2(unsigned int pixel_rate,
711 unsigned int latency)
716 * FIXME remove once all users are computing
717 * watermarks in the correct place.
719 if (WARN_ON_ONCE(htotal == 0))
722 ret = (latency * pixel_rate) / (htotal * 10000);
723 ret = (ret + 1) * width * cpp;
729 * intel_calculate_wm - calculate watermark level
730 * @pixel_rate: pixel clock
731 * @wm: chip FIFO params
732 * @fifo_size: size of the FIFO buffer
733 * @cpp: bytes per pixel
734 * @latency_ns: memory latency for the platform
736 * Calculate the watermark level (the level at which the display plane will
737 * start fetching from memory again). Each chip has a different display
738 * FIFO size and allocation, so the caller needs to figure that out and pass
739 * in the correct intel_watermark_params structure.
741 * As the pixel clock runs, the FIFO will be drained at a rate that depends
742 * on the pixel size. When it reaches the watermark level, it'll start
743 * fetching FIFO line sized based chunks from memory until the FIFO fills
744 * past the watermark point. If the FIFO drains completely, a FIFO underrun
745 * will occur, and a display engine hang could result.
747 static unsigned int intel_calculate_wm(int pixel_rate,
748 const struct intel_watermark_params *wm,
749 int fifo_size, int cpp,
750 unsigned int latency_ns)
752 int entries, wm_size;
755 * Note: we need to make sure we don't overflow for various clock &
757 * clocks go from a few thousand to several hundred thousand.
758 * latency is usually a few thousand
760 entries = intel_wm_method1(pixel_rate, cpp,
762 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
764 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
766 wm_size = fifo_size - entries;
767 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
769 /* Don't promote wm_size to unsigned... */
770 if (wm_size > wm->max_wm)
771 wm_size = wm->max_wm;
773 wm_size = wm->default_wm;
776 * Bspec seems to indicate that the value shouldn't be lower than
777 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
778 * Lets go for 8 which is the burst size since certain platforms
779 * already use a hardcoded 8 (which is what the spec says should be
788 static bool is_disabling(int old, int new, int threshold)
790 return old >= threshold && new < threshold;
793 static bool is_enabling(int old, int new, int threshold)
795 return old < threshold && new >= threshold;
798 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
800 return dev_priv->wm.max_level + 1;
803 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
804 const struct intel_plane_state *plane_state)
806 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
808 /* FIXME check the 'enable' instead */
809 if (!crtc_state->base.active)
813 * Treat cursor with fb as always visible since cursor updates
814 * can happen faster than the vrefresh rate, and the current
815 * watermark code doesn't handle that correctly. Cursor updates
816 * which set/clear the fb or change the cursor size are going
817 * to get throttled by intel_legacy_cursor_update() to work
818 * around this problem with the watermark code.
820 if (plane->id == PLANE_CURSOR)
821 return plane_state->base.fb != NULL;
823 return plane_state->base.visible;
826 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
828 struct intel_crtc *crtc, *enabled = NULL;
830 for_each_intel_crtc(&dev_priv->drm, crtc) {
831 if (intel_crtc_active(crtc)) {
841 static void pineview_update_wm(struct intel_crtc *unused_crtc)
843 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
844 struct intel_crtc *crtc;
845 const struct cxsr_latency *latency;
849 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
854 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
855 intel_set_memory_cxsr(dev_priv, false);
859 crtc = single_enabled_crtc(dev_priv);
861 const struct drm_display_mode *adjusted_mode =
862 &crtc->config->base.adjusted_mode;
863 const struct drm_framebuffer *fb =
864 crtc->base.primary->state->fb;
865 int cpp = fb->format->cpp[0];
866 int clock = adjusted_mode->crtc_clock;
869 wm = intel_calculate_wm(clock, &pineview_display_wm,
870 pineview_display_wm.fifo_size,
871 cpp, latency->display_sr);
872 reg = I915_READ(DSPFW1);
873 reg &= ~DSPFW_SR_MASK;
874 reg |= FW_WM(wm, SR);
875 I915_WRITE(DSPFW1, reg);
876 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
879 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
880 pineview_display_wm.fifo_size,
881 4, latency->cursor_sr);
882 reg = I915_READ(DSPFW3);
883 reg &= ~DSPFW_CURSOR_SR_MASK;
884 reg |= FW_WM(wm, CURSOR_SR);
885 I915_WRITE(DSPFW3, reg);
887 /* Display HPLL off SR */
888 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
889 pineview_display_hplloff_wm.fifo_size,
890 cpp, latency->display_hpll_disable);
891 reg = I915_READ(DSPFW3);
892 reg &= ~DSPFW_HPLL_SR_MASK;
893 reg |= FW_WM(wm, HPLL_SR);
894 I915_WRITE(DSPFW3, reg);
896 /* cursor HPLL off SR */
897 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
898 pineview_display_hplloff_wm.fifo_size,
899 4, latency->cursor_hpll_disable);
900 reg = I915_READ(DSPFW3);
901 reg &= ~DSPFW_HPLL_CURSOR_MASK;
902 reg |= FW_WM(wm, HPLL_CURSOR);
903 I915_WRITE(DSPFW3, reg);
904 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
906 intel_set_memory_cxsr(dev_priv, true);
908 intel_set_memory_cxsr(dev_priv, false);
913 * Documentation says:
914 * "If the line size is small, the TLB fetches can get in the way of the
915 * data fetches, causing some lag in the pixel data return which is not
916 * accounted for in the above formulas. The following adjustment only
917 * needs to be applied if eight whole lines fit in the buffer at once.
918 * The WM is adjusted upwards by the difference between the FIFO size
919 * and the size of 8 whole lines. This adjustment is always performed
920 * in the actual pixel depth regardless of whether FBC is enabled or not."
922 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
924 int tlb_miss = fifo_size * 64 - width * cpp * 8;
926 return max(0, tlb_miss);
929 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
930 const struct g4x_wm_values *wm)
934 for_each_pipe(dev_priv, pipe)
935 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
938 FW_WM(wm->sr.plane, SR) |
939 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
940 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
941 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
943 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
944 FW_WM(wm->sr.fbc, FBC_SR) |
945 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
946 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
947 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
948 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
950 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
951 FW_WM(wm->sr.cursor, CURSOR_SR) |
952 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
953 FW_WM(wm->hpll.plane, HPLL_SR));
955 POSTING_READ(DSPFW1);
958 #define FW_WM_VLV(value, plane) \
959 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
961 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
962 const struct vlv_wm_values *wm)
966 for_each_pipe(dev_priv, pipe) {
967 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
969 I915_WRITE(VLV_DDL(pipe),
970 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
971 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
972 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
973 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
977 * Zero the (unused) WM1 watermarks, and also clear all the
978 * high order bits so that there are no out of bounds values
979 * present in the registers during the reprogramming.
981 I915_WRITE(DSPHOWM, 0);
982 I915_WRITE(DSPHOWM1, 0);
983 I915_WRITE(DSPFW4, 0);
984 I915_WRITE(DSPFW5, 0);
985 I915_WRITE(DSPFW6, 0);
988 FW_WM(wm->sr.plane, SR) |
989 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
990 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
991 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
993 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
994 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
995 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
997 FW_WM(wm->sr.cursor, CURSOR_SR));
999 if (IS_CHERRYVIEW(dev_priv)) {
1000 I915_WRITE(DSPFW7_CHV,
1001 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1002 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1003 I915_WRITE(DSPFW8_CHV,
1004 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1005 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1006 I915_WRITE(DSPFW9_CHV,
1007 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1008 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1010 FW_WM(wm->sr.plane >> 9, SR_HI) |
1011 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1012 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1013 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1014 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1015 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1016 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1017 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1018 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1019 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1022 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1023 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1025 FW_WM(wm->sr.plane >> 9, SR_HI) |
1026 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1027 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1028 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1029 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1030 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1031 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1034 POSTING_READ(DSPFW1);
1039 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1041 /* all latencies in usec */
1042 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1043 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1044 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1046 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1049 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1052 * DSPCNTR[13] supposedly controls whether the
1053 * primary plane can use the FIFO space otherwise
1054 * reserved for the sprite plane. It's not 100% clear
1055 * what the actual FIFO size is, but it looks like we
1056 * can happily set both primary and sprite watermarks
1057 * up to 127 cachelines. So that would seem to mean
1058 * that either DSPCNTR[13] doesn't do anything, or that
1059 * the total FIFO is >= 256 cachelines in size. Either
1060 * way, we don't seem to have to worry about this
1061 * repartitioning as the maximum watermark value the
1062 * register can hold for each plane is lower than the
1063 * minimum FIFO size.
1069 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1071 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1073 MISSING_CASE(plane_id);
1078 static int g4x_fbc_fifo_size(int level)
1081 case G4X_WM_LEVEL_SR:
1083 case G4X_WM_LEVEL_HPLL:
1086 MISSING_CASE(level);
1091 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1092 const struct intel_plane_state *plane_state,
1095 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1096 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1097 const struct drm_display_mode *adjusted_mode =
1098 &crtc_state->base.adjusted_mode;
1099 unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1100 unsigned int clock, htotal, cpp, width, wm;
1105 if (!intel_wm_plane_visible(crtc_state, plane_state))
1109 * Not 100% sure which way ELK should go here as the
1110 * spec only says CL/CTG should assume 32bpp and BW
1111 * doesn't need to. But as these things followed the
1112 * mobile vs. desktop lines on gen3 as well, let's
1113 * assume ELK doesn't need this.
1115 * The spec also fails to list such a restriction for
1116 * the HPLL watermark, which seems a little strange.
1117 * Let's use 32bpp for the HPLL watermark as well.
1119 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1120 level != G4X_WM_LEVEL_NORMAL)
1123 cpp = plane_state->base.fb->format->cpp[0];
1125 clock = adjusted_mode->crtc_clock;
1126 htotal = adjusted_mode->crtc_htotal;
1128 if (plane->id == PLANE_CURSOR)
1129 width = plane_state->base.crtc_w;
1131 width = drm_rect_width(&plane_state->base.dst);
1133 if (plane->id == PLANE_CURSOR) {
1134 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1135 } else if (plane->id == PLANE_PRIMARY &&
1136 level == G4X_WM_LEVEL_NORMAL) {
1137 wm = intel_wm_method1(clock, cpp, latency);
1139 unsigned int small, large;
1141 small = intel_wm_method1(clock, cpp, latency);
1142 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1144 wm = min(small, large);
1147 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1150 wm = DIV_ROUND_UP(wm, 64) + 2;
1152 return min_t(unsigned int, wm, USHRT_MAX);
1155 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1156 int level, enum plane_id plane_id, u16 value)
1158 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1161 for (; level < intel_wm_num_levels(dev_priv); level++) {
1162 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1164 dirty |= raw->plane[plane_id] != value;
1165 raw->plane[plane_id] = value;
1171 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1172 int level, u16 value)
1174 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1177 /* NORMAL level doesn't have an FBC watermark */
1178 level = max(level, G4X_WM_LEVEL_SR);
1180 for (; level < intel_wm_num_levels(dev_priv); level++) {
1181 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1183 dirty |= raw->fbc != value;
1190 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1191 const struct intel_plane_state *pstate,
1194 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1195 const struct intel_plane_state *plane_state)
1197 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1198 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1199 enum plane_id plane_id = plane->id;
1203 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1204 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1205 if (plane_id == PLANE_PRIMARY)
1206 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1210 for (level = 0; level < num_levels; level++) {
1211 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1214 wm = g4x_compute_wm(crtc_state, plane_state, level);
1215 max_wm = g4x_plane_fifo_size(plane_id, level);
1220 dirty |= raw->plane[plane_id] != wm;
1221 raw->plane[plane_id] = wm;
1223 if (plane_id != PLANE_PRIMARY ||
1224 level == G4X_WM_LEVEL_NORMAL)
1227 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1228 raw->plane[plane_id]);
1229 max_wm = g4x_fbc_fifo_size(level);
1232 * FBC wm is not mandatory as we
1233 * can always just disable its use.
1238 dirty |= raw->fbc != wm;
1242 /* mark watermarks as invalid */
1243 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1245 if (plane_id == PLANE_PRIMARY)
1246 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1250 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1252 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1253 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1254 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1256 if (plane_id == PLANE_PRIMARY)
1257 DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1258 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1259 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1265 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1266 enum plane_id plane_id, int level)
1268 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1270 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1273 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1276 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1278 if (level > dev_priv->wm.max_level)
1281 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1282 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1283 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1286 /* mark all levels starting from 'level' as invalid */
1287 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1288 struct g4x_wm_state *wm_state, int level)
1290 if (level <= G4X_WM_LEVEL_NORMAL) {
1291 enum plane_id plane_id;
1293 for_each_plane_id_on_crtc(crtc, plane_id)
1294 wm_state->wm.plane[plane_id] = USHRT_MAX;
1297 if (level <= G4X_WM_LEVEL_SR) {
1298 wm_state->cxsr = false;
1299 wm_state->sr.cursor = USHRT_MAX;
1300 wm_state->sr.plane = USHRT_MAX;
1301 wm_state->sr.fbc = USHRT_MAX;
1304 if (level <= G4X_WM_LEVEL_HPLL) {
1305 wm_state->hpll_en = false;
1306 wm_state->hpll.cursor = USHRT_MAX;
1307 wm_state->hpll.plane = USHRT_MAX;
1308 wm_state->hpll.fbc = USHRT_MAX;
1312 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1314 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1315 struct intel_atomic_state *state =
1316 to_intel_atomic_state(crtc_state->base.state);
1317 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1318 int num_active_planes = hweight32(crtc_state->active_planes &
1319 ~BIT(PLANE_CURSOR));
1320 const struct g4x_pipe_wm *raw;
1321 const struct intel_plane_state *old_plane_state;
1322 const struct intel_plane_state *new_plane_state;
1323 struct intel_plane *plane;
1324 enum plane_id plane_id;
1326 unsigned int dirty = 0;
1328 for_each_oldnew_intel_plane_in_state(state, plane,
1330 new_plane_state, i) {
1331 if (new_plane_state->base.crtc != &crtc->base &&
1332 old_plane_state->base.crtc != &crtc->base)
1335 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1336 dirty |= BIT(plane->id);
1342 level = G4X_WM_LEVEL_NORMAL;
1343 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1346 raw = &crtc_state->wm.g4x.raw[level];
1347 for_each_plane_id_on_crtc(crtc, plane_id)
1348 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1350 level = G4X_WM_LEVEL_SR;
1352 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1355 raw = &crtc_state->wm.g4x.raw[level];
1356 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1357 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1358 wm_state->sr.fbc = raw->fbc;
1360 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1362 level = G4X_WM_LEVEL_HPLL;
1364 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1367 raw = &crtc_state->wm.g4x.raw[level];
1368 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1369 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1370 wm_state->hpll.fbc = raw->fbc;
1372 wm_state->hpll_en = wm_state->cxsr;
1377 if (level == G4X_WM_LEVEL_NORMAL)
1380 /* invalidate the higher levels */
1381 g4x_invalidate_wms(crtc, wm_state, level);
1384 * Determine if the FBC watermark(s) can be used. IF
1385 * this isn't the case we prefer to disable the FBC
1386 ( watermark(s) rather than disable the SR/HPLL
1387 * level(s) entirely.
1389 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1391 if (level >= G4X_WM_LEVEL_SR &&
1392 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1393 wm_state->fbc_en = false;
1394 else if (level >= G4X_WM_LEVEL_HPLL &&
1395 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1396 wm_state->fbc_en = false;
1401 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1402 struct intel_crtc *crtc,
1403 struct intel_crtc_state *new_crtc_state)
1405 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1406 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1407 struct intel_atomic_state *intel_state =
1408 to_intel_atomic_state(new_crtc_state->base.state);
1409 const struct intel_crtc_state *old_crtc_state =
1410 intel_atomic_get_old_crtc_state(intel_state, crtc);
1411 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1412 enum plane_id plane_id;
1414 if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1415 *intermediate = *optimal;
1417 intermediate->cxsr = false;
1418 intermediate->hpll_en = false;
1422 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1423 !new_crtc_state->disable_cxsr;
1424 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1425 !new_crtc_state->disable_cxsr;
1426 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1428 for_each_plane_id_on_crtc(crtc, plane_id) {
1429 intermediate->wm.plane[plane_id] =
1430 max(optimal->wm.plane[plane_id],
1431 active->wm.plane[plane_id]);
1433 WARN_ON(intermediate->wm.plane[plane_id] >
1434 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1437 intermediate->sr.plane = max(optimal->sr.plane,
1439 intermediate->sr.cursor = max(optimal->sr.cursor,
1441 intermediate->sr.fbc = max(optimal->sr.fbc,
1444 intermediate->hpll.plane = max(optimal->hpll.plane,
1445 active->hpll.plane);
1446 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1447 active->hpll.cursor);
1448 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1451 WARN_ON((intermediate->sr.plane >
1452 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1453 intermediate->sr.cursor >
1454 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1455 intermediate->cxsr);
1456 WARN_ON((intermediate->sr.plane >
1457 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1458 intermediate->sr.cursor >
1459 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1460 intermediate->hpll_en);
1462 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1463 intermediate->fbc_en && intermediate->cxsr);
1464 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1465 intermediate->fbc_en && intermediate->hpll_en);
1469 * If our intermediate WM are identical to the final WM, then we can
1470 * omit the post-vblank programming; only update if it's different.
1472 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1473 new_crtc_state->wm.need_postvbl_update = true;
1478 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1479 struct g4x_wm_values *wm)
1481 struct intel_crtc *crtc;
1482 int num_active_crtcs = 0;
1488 for_each_intel_crtc(&dev_priv->drm, crtc) {
1489 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1494 if (!wm_state->cxsr)
1496 if (!wm_state->hpll_en)
1497 wm->hpll_en = false;
1498 if (!wm_state->fbc_en)
1504 if (num_active_crtcs != 1) {
1506 wm->hpll_en = false;
1510 for_each_intel_crtc(&dev_priv->drm, crtc) {
1511 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1512 enum pipe pipe = crtc->pipe;
1514 wm->pipe[pipe] = wm_state->wm;
1515 if (crtc->active && wm->cxsr)
1516 wm->sr = wm_state->sr;
1517 if (crtc->active && wm->hpll_en)
1518 wm->hpll = wm_state->hpll;
1522 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1524 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1525 struct g4x_wm_values new_wm = {};
1527 g4x_merge_wm(dev_priv, &new_wm);
1529 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1532 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1533 _intel_set_memory_cxsr(dev_priv, false);
1535 g4x_write_wm_values(dev_priv, &new_wm);
1537 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1538 _intel_set_memory_cxsr(dev_priv, true);
1543 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1544 struct intel_crtc_state *crtc_state)
1546 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1547 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1549 mutex_lock(&dev_priv->wm.wm_mutex);
1550 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1551 g4x_program_watermarks(dev_priv);
1552 mutex_unlock(&dev_priv->wm.wm_mutex);
1555 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1556 struct intel_crtc_state *crtc_state)
1558 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1559 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1561 if (!crtc_state->wm.need_postvbl_update)
1564 mutex_lock(&dev_priv->wm.wm_mutex);
1565 intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1566 g4x_program_watermarks(dev_priv);
1567 mutex_unlock(&dev_priv->wm.wm_mutex);
1570 /* latency must be in 0.1us units. */
1571 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1572 unsigned int htotal,
1575 unsigned int latency)
1579 ret = intel_wm_method2(pixel_rate, htotal,
1580 width, cpp, latency);
1581 ret = DIV_ROUND_UP(ret, 64);
1586 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1588 /* all latencies in usec */
1589 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1591 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1593 if (IS_CHERRYVIEW(dev_priv)) {
1594 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1595 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1597 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1601 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1602 const struct intel_plane_state *plane_state,
1605 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1606 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1607 const struct drm_display_mode *adjusted_mode =
1608 &crtc_state->base.adjusted_mode;
1609 unsigned int clock, htotal, cpp, width, wm;
1611 if (dev_priv->wm.pri_latency[level] == 0)
1614 if (!intel_wm_plane_visible(crtc_state, plane_state))
1617 cpp = plane_state->base.fb->format->cpp[0];
1618 clock = adjusted_mode->crtc_clock;
1619 htotal = adjusted_mode->crtc_htotal;
1620 width = crtc_state->pipe_src_w;
1622 if (plane->id == PLANE_CURSOR) {
1624 * FIXME the formula gives values that are
1625 * too big for the cursor FIFO, and hence we
1626 * would never be able to use cursors. For
1627 * now just hardcode the watermark.
1631 wm = vlv_wm_method2(clock, htotal, width, cpp,
1632 dev_priv->wm.pri_latency[level] * 10);
1635 return min_t(unsigned int, wm, USHRT_MAX);
1638 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1640 return (active_planes & (BIT(PLANE_SPRITE0) |
1641 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1644 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1646 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1647 const struct g4x_pipe_wm *raw =
1648 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1649 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1650 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1651 int num_active_planes = hweight32(active_planes);
1652 const int fifo_size = 511;
1653 int fifo_extra, fifo_left = fifo_size;
1654 int sprite0_fifo_extra = 0;
1655 unsigned int total_rate;
1656 enum plane_id plane_id;
1659 * When enabling sprite0 after sprite1 has already been enabled
1660 * we tend to get an underrun unless sprite0 already has some
1661 * FIFO space allcoated. Hence we always allocate at least one
1662 * cacheline for sprite0 whenever sprite1 is enabled.
1664 * All other plane enable sequences appear immune to this problem.
1666 if (vlv_need_sprite0_fifo_workaround(active_planes))
1667 sprite0_fifo_extra = 1;
1669 total_rate = raw->plane[PLANE_PRIMARY] +
1670 raw->plane[PLANE_SPRITE0] +
1671 raw->plane[PLANE_SPRITE1] +
1674 if (total_rate > fifo_size)
1677 if (total_rate == 0)
1680 for_each_plane_id_on_crtc(crtc, plane_id) {
1683 if ((active_planes & BIT(plane_id)) == 0) {
1684 fifo_state->plane[plane_id] = 0;
1688 rate = raw->plane[plane_id];
1689 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1690 fifo_left -= fifo_state->plane[plane_id];
1693 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1694 fifo_left -= sprite0_fifo_extra;
1696 fifo_state->plane[PLANE_CURSOR] = 63;
1698 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1700 /* spread the remainder evenly */
1701 for_each_plane_id_on_crtc(crtc, plane_id) {
1707 if ((active_planes & BIT(plane_id)) == 0)
1710 plane_extra = min(fifo_extra, fifo_left);
1711 fifo_state->plane[plane_id] += plane_extra;
1712 fifo_left -= plane_extra;
1715 WARN_ON(active_planes != 0 && fifo_left != 0);
1717 /* give it all to the first plane if none are active */
1718 if (active_planes == 0) {
1719 WARN_ON(fifo_left != fifo_size);
1720 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1726 /* mark all levels starting from 'level' as invalid */
1727 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1728 struct vlv_wm_state *wm_state, int level)
1730 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1732 for (; level < intel_wm_num_levels(dev_priv); level++) {
1733 enum plane_id plane_id;
1735 for_each_plane_id_on_crtc(crtc, plane_id)
1736 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1738 wm_state->sr[level].cursor = USHRT_MAX;
1739 wm_state->sr[level].plane = USHRT_MAX;
1743 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1748 return fifo_size - wm;
1752 * Starting from 'level' set all higher
1753 * levels to 'value' in the "raw" watermarks.
1755 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1756 int level, enum plane_id plane_id, u16 value)
1758 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1759 int num_levels = intel_wm_num_levels(dev_priv);
1762 for (; level < num_levels; level++) {
1763 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1765 dirty |= raw->plane[plane_id] != value;
1766 raw->plane[plane_id] = value;
1772 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1773 const struct intel_plane_state *plane_state)
1775 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1776 enum plane_id plane_id = plane->id;
1777 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1781 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1782 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1786 for (level = 0; level < num_levels; level++) {
1787 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1788 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1789 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1794 dirty |= raw->plane[plane_id] != wm;
1795 raw->plane[plane_id] = wm;
1798 /* mark all higher levels as invalid */
1799 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1803 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1805 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1806 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1807 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1812 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1813 enum plane_id plane_id, int level)
1815 const struct g4x_pipe_wm *raw =
1816 &crtc_state->wm.vlv.raw[level];
1817 const struct vlv_fifo_state *fifo_state =
1818 &crtc_state->wm.vlv.fifo_state;
1820 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1823 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1825 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1826 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1827 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1828 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1831 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1833 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1834 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1835 struct intel_atomic_state *state =
1836 to_intel_atomic_state(crtc_state->base.state);
1837 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1838 const struct vlv_fifo_state *fifo_state =
1839 &crtc_state->wm.vlv.fifo_state;
1840 int num_active_planes = hweight32(crtc_state->active_planes &
1841 ~BIT(PLANE_CURSOR));
1842 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1843 const struct intel_plane_state *old_plane_state;
1844 const struct intel_plane_state *new_plane_state;
1845 struct intel_plane *plane;
1846 enum plane_id plane_id;
1848 unsigned int dirty = 0;
1850 for_each_oldnew_intel_plane_in_state(state, plane,
1852 new_plane_state, i) {
1853 if (new_plane_state->base.crtc != &crtc->base &&
1854 old_plane_state->base.crtc != &crtc->base)
1857 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1858 dirty |= BIT(plane->id);
1862 * DSPARB registers may have been reset due to the
1863 * power well being turned off. Make sure we restore
1864 * them to a consistent state even if no primary/sprite
1865 * planes are initially active.
1868 crtc_state->fifo_changed = true;
1873 /* cursor changes don't warrant a FIFO recompute */
1874 if (dirty & ~BIT(PLANE_CURSOR)) {
1875 const struct intel_crtc_state *old_crtc_state =
1876 intel_atomic_get_old_crtc_state(state, crtc);
1877 const struct vlv_fifo_state *old_fifo_state =
1878 &old_crtc_state->wm.vlv.fifo_state;
1880 ret = vlv_compute_fifo(crtc_state);
1884 if (needs_modeset ||
1885 memcmp(old_fifo_state, fifo_state,
1886 sizeof(*fifo_state)) != 0)
1887 crtc_state->fifo_changed = true;
1890 /* initially allow all levels */
1891 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1893 * Note that enabling cxsr with no primary/sprite planes
1894 * enabled can wedge the pipe. Hence we only allow cxsr
1895 * with exactly one enabled primary/sprite plane.
1897 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1899 for (level = 0; level < wm_state->num_levels; level++) {
1900 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1901 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1903 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1906 for_each_plane_id_on_crtc(crtc, plane_id) {
1907 wm_state->wm[level].plane[plane_id] =
1908 vlv_invert_wm_value(raw->plane[plane_id],
1909 fifo_state->plane[plane_id]);
1912 wm_state->sr[level].plane =
1913 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1914 raw->plane[PLANE_SPRITE0],
1915 raw->plane[PLANE_SPRITE1]),
1918 wm_state->sr[level].cursor =
1919 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1926 /* limit to only levels we can actually handle */
1927 wm_state->num_levels = level;
1929 /* invalidate the higher levels */
1930 vlv_invalidate_wms(crtc, wm_state, level);
1935 #define VLV_FIFO(plane, value) \
1936 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1938 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1939 struct intel_crtc_state *crtc_state)
1941 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1942 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1943 const struct vlv_fifo_state *fifo_state =
1944 &crtc_state->wm.vlv.fifo_state;
1945 int sprite0_start, sprite1_start, fifo_size;
1947 if (!crtc_state->fifo_changed)
1950 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1951 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1952 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1954 WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1955 WARN_ON(fifo_size != 511);
1957 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1960 * uncore.lock serves a double purpose here. It allows us to
1961 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1962 * it protects the DSPARB registers from getting clobbered by
1963 * parallel updates from multiple pipes.
1965 * intel_pipe_update_start() has already disabled interrupts
1966 * for us, so a plain spin_lock() is sufficient here.
1968 spin_lock(&dev_priv->uncore.lock);
1970 switch (crtc->pipe) {
1971 uint32_t dsparb, dsparb2, dsparb3;
1973 dsparb = I915_READ_FW(DSPARB);
1974 dsparb2 = I915_READ_FW(DSPARB2);
1976 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1977 VLV_FIFO(SPRITEB, 0xff));
1978 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1979 VLV_FIFO(SPRITEB, sprite1_start));
1981 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1982 VLV_FIFO(SPRITEB_HI, 0x1));
1983 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1984 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1986 I915_WRITE_FW(DSPARB, dsparb);
1987 I915_WRITE_FW(DSPARB2, dsparb2);
1990 dsparb = I915_READ_FW(DSPARB);
1991 dsparb2 = I915_READ_FW(DSPARB2);
1993 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1994 VLV_FIFO(SPRITED, 0xff));
1995 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1996 VLV_FIFO(SPRITED, sprite1_start));
1998 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1999 VLV_FIFO(SPRITED_HI, 0xff));
2000 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2001 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2003 I915_WRITE_FW(DSPARB, dsparb);
2004 I915_WRITE_FW(DSPARB2, dsparb2);
2007 dsparb3 = I915_READ_FW(DSPARB3);
2008 dsparb2 = I915_READ_FW(DSPARB2);
2010 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2011 VLV_FIFO(SPRITEF, 0xff));
2012 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2013 VLV_FIFO(SPRITEF, sprite1_start));
2015 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2016 VLV_FIFO(SPRITEF_HI, 0xff));
2017 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2018 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2020 I915_WRITE_FW(DSPARB3, dsparb3);
2021 I915_WRITE_FW(DSPARB2, dsparb2);
2027 POSTING_READ_FW(DSPARB);
2029 spin_unlock(&dev_priv->uncore.lock);
2034 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2035 struct intel_crtc *crtc,
2036 struct intel_crtc_state *new_crtc_state)
2038 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2039 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2040 struct intel_atomic_state *intel_state =
2041 to_intel_atomic_state(new_crtc_state->base.state);
2042 const struct intel_crtc_state *old_crtc_state =
2043 intel_atomic_get_old_crtc_state(intel_state, crtc);
2044 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2047 if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2048 *intermediate = *optimal;
2050 intermediate->cxsr = false;
2054 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2055 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2056 !new_crtc_state->disable_cxsr;
2058 for (level = 0; level < intermediate->num_levels; level++) {
2059 enum plane_id plane_id;
2061 for_each_plane_id_on_crtc(crtc, plane_id) {
2062 intermediate->wm[level].plane[plane_id] =
2063 min(optimal->wm[level].plane[plane_id],
2064 active->wm[level].plane[plane_id]);
2067 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2068 active->sr[level].plane);
2069 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2070 active->sr[level].cursor);
2073 vlv_invalidate_wms(crtc, intermediate, level);
2077 * If our intermediate WM are identical to the final WM, then we can
2078 * omit the post-vblank programming; only update if it's different.
2080 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2081 new_crtc_state->wm.need_postvbl_update = true;
2086 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2087 struct vlv_wm_values *wm)
2089 struct intel_crtc *crtc;
2090 int num_active_crtcs = 0;
2092 wm->level = dev_priv->wm.max_level;
2095 for_each_intel_crtc(&dev_priv->drm, crtc) {
2096 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2101 if (!wm_state->cxsr)
2105 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2108 if (num_active_crtcs != 1)
2111 if (num_active_crtcs > 1)
2112 wm->level = VLV_WM_LEVEL_PM2;
2114 for_each_intel_crtc(&dev_priv->drm, crtc) {
2115 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2116 enum pipe pipe = crtc->pipe;
2118 wm->pipe[pipe] = wm_state->wm[wm->level];
2119 if (crtc->active && wm->cxsr)
2120 wm->sr = wm_state->sr[wm->level];
2122 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2123 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2124 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2125 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2129 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2131 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2132 struct vlv_wm_values new_wm = {};
2134 vlv_merge_wm(dev_priv, &new_wm);
2136 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2139 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2140 chv_set_memory_dvfs(dev_priv, false);
2142 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2143 chv_set_memory_pm5(dev_priv, false);
2145 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2146 _intel_set_memory_cxsr(dev_priv, false);
2148 vlv_write_wm_values(dev_priv, &new_wm);
2150 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2151 _intel_set_memory_cxsr(dev_priv, true);
2153 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2154 chv_set_memory_pm5(dev_priv, true);
2156 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2157 chv_set_memory_dvfs(dev_priv, true);
2162 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2163 struct intel_crtc_state *crtc_state)
2165 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2166 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2168 mutex_lock(&dev_priv->wm.wm_mutex);
2169 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2170 vlv_program_watermarks(dev_priv);
2171 mutex_unlock(&dev_priv->wm.wm_mutex);
2174 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2175 struct intel_crtc_state *crtc_state)
2177 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2178 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2180 if (!crtc_state->wm.need_postvbl_update)
2183 mutex_lock(&dev_priv->wm.wm_mutex);
2184 intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2185 vlv_program_watermarks(dev_priv);
2186 mutex_unlock(&dev_priv->wm.wm_mutex);
2189 static void i965_update_wm(struct intel_crtc *unused_crtc)
2191 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2192 struct intel_crtc *crtc;
2197 /* Calc sr entries for one plane configs */
2198 crtc = single_enabled_crtc(dev_priv);
2200 /* self-refresh has much higher latency */
2201 static const int sr_latency_ns = 12000;
2202 const struct drm_display_mode *adjusted_mode =
2203 &crtc->config->base.adjusted_mode;
2204 const struct drm_framebuffer *fb =
2205 crtc->base.primary->state->fb;
2206 int clock = adjusted_mode->crtc_clock;
2207 int htotal = adjusted_mode->crtc_htotal;
2208 int hdisplay = crtc->config->pipe_src_w;
2209 int cpp = fb->format->cpp[0];
2212 entries = intel_wm_method2(clock, htotal,
2213 hdisplay, cpp, sr_latency_ns / 100);
2214 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2215 srwm = I965_FIFO_SIZE - entries;
2219 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2222 entries = intel_wm_method2(clock, htotal,
2223 crtc->base.cursor->state->crtc_w, 4,
2224 sr_latency_ns / 100);
2225 entries = DIV_ROUND_UP(entries,
2226 i965_cursor_wm_info.cacheline_size) +
2227 i965_cursor_wm_info.guard_size;
2229 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2230 if (cursor_sr > i965_cursor_wm_info.max_wm)
2231 cursor_sr = i965_cursor_wm_info.max_wm;
2233 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2234 "cursor %d\n", srwm, cursor_sr);
2236 cxsr_enabled = true;
2238 cxsr_enabled = false;
2239 /* Turn off self refresh if both pipes are enabled */
2240 intel_set_memory_cxsr(dev_priv, false);
2243 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2246 /* 965 has limitations... */
2247 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2251 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2252 FW_WM(8, PLANEC_OLD));
2253 /* update cursor SR watermark */
2254 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2257 intel_set_memory_cxsr(dev_priv, true);
2262 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2264 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2265 const struct intel_watermark_params *wm_info;
2270 int planea_wm, planeb_wm;
2271 struct intel_crtc *crtc, *enabled = NULL;
2273 if (IS_I945GM(dev_priv))
2274 wm_info = &i945_wm_info;
2275 else if (!IS_GEN2(dev_priv))
2276 wm_info = &i915_wm_info;
2278 wm_info = &i830_a_wm_info;
2280 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2281 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2282 if (intel_crtc_active(crtc)) {
2283 const struct drm_display_mode *adjusted_mode =
2284 &crtc->config->base.adjusted_mode;
2285 const struct drm_framebuffer *fb =
2286 crtc->base.primary->state->fb;
2289 if (IS_GEN2(dev_priv))
2292 cpp = fb->format->cpp[0];
2294 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2295 wm_info, fifo_size, cpp,
2296 pessimal_latency_ns);
2299 planea_wm = fifo_size - wm_info->guard_size;
2300 if (planea_wm > (long)wm_info->max_wm)
2301 planea_wm = wm_info->max_wm;
2304 if (IS_GEN2(dev_priv))
2305 wm_info = &i830_bc_wm_info;
2307 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2308 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2309 if (intel_crtc_active(crtc)) {
2310 const struct drm_display_mode *adjusted_mode =
2311 &crtc->config->base.adjusted_mode;
2312 const struct drm_framebuffer *fb =
2313 crtc->base.primary->state->fb;
2316 if (IS_GEN2(dev_priv))
2319 cpp = fb->format->cpp[0];
2321 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2322 wm_info, fifo_size, cpp,
2323 pessimal_latency_ns);
2324 if (enabled == NULL)
2329 planeb_wm = fifo_size - wm_info->guard_size;
2330 if (planeb_wm > (long)wm_info->max_wm)
2331 planeb_wm = wm_info->max_wm;
2334 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2336 if (IS_I915GM(dev_priv) && enabled) {
2337 struct drm_i915_gem_object *obj;
2339 obj = intel_fb_obj(enabled->base.primary->state->fb);
2341 /* self-refresh seems busted with untiled */
2342 if (!i915_gem_object_is_tiled(obj))
2347 * Overlay gets an aggressive default since video jitter is bad.
2351 /* Play safe and disable self-refresh before adjusting watermarks. */
2352 intel_set_memory_cxsr(dev_priv, false);
2354 /* Calc sr entries for one plane configs */
2355 if (HAS_FW_BLC(dev_priv) && enabled) {
2356 /* self-refresh has much higher latency */
2357 static const int sr_latency_ns = 6000;
2358 const struct drm_display_mode *adjusted_mode =
2359 &enabled->config->base.adjusted_mode;
2360 const struct drm_framebuffer *fb =
2361 enabled->base.primary->state->fb;
2362 int clock = adjusted_mode->crtc_clock;
2363 int htotal = adjusted_mode->crtc_htotal;
2364 int hdisplay = enabled->config->pipe_src_w;
2368 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2371 cpp = fb->format->cpp[0];
2373 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2374 sr_latency_ns / 100);
2375 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2376 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2377 srwm = wm_info->fifo_size - entries;
2381 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2382 I915_WRITE(FW_BLC_SELF,
2383 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2385 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2388 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2389 planea_wm, planeb_wm, cwm, srwm);
2391 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2392 fwater_hi = (cwm & 0x1f);
2394 /* Set request length to 8 cachelines per fetch */
2395 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2396 fwater_hi = fwater_hi | (1 << 8);
2398 I915_WRITE(FW_BLC, fwater_lo);
2399 I915_WRITE(FW_BLC2, fwater_hi);
2402 intel_set_memory_cxsr(dev_priv, true);
2405 static void i845_update_wm(struct intel_crtc *unused_crtc)
2407 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2408 struct intel_crtc *crtc;
2409 const struct drm_display_mode *adjusted_mode;
2413 crtc = single_enabled_crtc(dev_priv);
2417 adjusted_mode = &crtc->config->base.adjusted_mode;
2418 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2420 dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2421 4, pessimal_latency_ns);
2422 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2423 fwater_lo |= (3<<8) | planea_wm;
2425 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2427 I915_WRITE(FW_BLC, fwater_lo);
2430 /* latency must be in 0.1us units. */
2431 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2433 unsigned int latency)
2437 ret = intel_wm_method1(pixel_rate, cpp, latency);
2438 ret = DIV_ROUND_UP(ret, 64) + 2;
2443 /* latency must be in 0.1us units. */
2444 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2445 unsigned int htotal,
2448 unsigned int latency)
2452 ret = intel_wm_method2(pixel_rate, htotal,
2453 width, cpp, latency);
2454 ret = DIV_ROUND_UP(ret, 64) + 2;
2459 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2463 * Neither of these should be possible since this function shouldn't be
2464 * called if the CRTC is off or the plane is invisible. But let's be
2465 * extra paranoid to avoid a potential divide-by-zero if we screw up
2466 * elsewhere in the driver.
2470 if (WARN_ON(!horiz_pixels))
2473 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2476 struct ilk_wm_maximums {
2484 * For both WM_PIPE and WM_LP.
2485 * mem_value must be in 0.1us units.
2487 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2488 const struct intel_plane_state *pstate,
2492 uint32_t method1, method2;
2495 if (!intel_wm_plane_visible(cstate, pstate))
2498 cpp = pstate->base.fb->format->cpp[0];
2500 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2505 method2 = ilk_wm_method2(cstate->pixel_rate,
2506 cstate->base.adjusted_mode.crtc_htotal,
2507 drm_rect_width(&pstate->base.dst),
2510 return min(method1, method2);
2514 * For both WM_PIPE and WM_LP.
2515 * mem_value must be in 0.1us units.
2517 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2518 const struct intel_plane_state *pstate,
2521 uint32_t method1, method2;
2524 if (!intel_wm_plane_visible(cstate, pstate))
2527 cpp = pstate->base.fb->format->cpp[0];
2529 method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2530 method2 = ilk_wm_method2(cstate->pixel_rate,
2531 cstate->base.adjusted_mode.crtc_htotal,
2532 drm_rect_width(&pstate->base.dst),
2534 return min(method1, method2);
2538 * For both WM_PIPE and WM_LP.
2539 * mem_value must be in 0.1us units.
2541 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2542 const struct intel_plane_state *pstate,
2547 if (!intel_wm_plane_visible(cstate, pstate))
2550 cpp = pstate->base.fb->format->cpp[0];
2552 return ilk_wm_method2(cstate->pixel_rate,
2553 cstate->base.adjusted_mode.crtc_htotal,
2554 pstate->base.crtc_w, cpp, mem_value);
2557 /* Only for WM_LP. */
2558 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2559 const struct intel_plane_state *pstate,
2564 if (!intel_wm_plane_visible(cstate, pstate))
2567 cpp = pstate->base.fb->format->cpp[0];
2569 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2573 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2575 if (INTEL_GEN(dev_priv) >= 8)
2577 else if (INTEL_GEN(dev_priv) >= 7)
2584 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2585 int level, bool is_sprite)
2587 if (INTEL_GEN(dev_priv) >= 8)
2588 /* BDW primary/sprite plane watermarks */
2589 return level == 0 ? 255 : 2047;
2590 else if (INTEL_GEN(dev_priv) >= 7)
2591 /* IVB/HSW primary/sprite plane watermarks */
2592 return level == 0 ? 127 : 1023;
2593 else if (!is_sprite)
2594 /* ILK/SNB primary plane watermarks */
2595 return level == 0 ? 127 : 511;
2597 /* ILK/SNB sprite plane watermarks */
2598 return level == 0 ? 63 : 255;
2602 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2604 if (INTEL_GEN(dev_priv) >= 7)
2605 return level == 0 ? 63 : 255;
2607 return level == 0 ? 31 : 63;
2610 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2612 if (INTEL_GEN(dev_priv) >= 8)
2618 /* Calculate the maximum primary/sprite plane watermark */
2619 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2621 const struct intel_wm_config *config,
2622 enum intel_ddb_partitioning ddb_partitioning,
2625 struct drm_i915_private *dev_priv = to_i915(dev);
2626 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2628 /* if sprites aren't enabled, sprites get nothing */
2629 if (is_sprite && !config->sprites_enabled)
2632 /* HSW allows LP1+ watermarks even with multiple pipes */
2633 if (level == 0 || config->num_pipes_active > 1) {
2634 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2637 * For some reason the non self refresh
2638 * FIFO size is only half of the self
2639 * refresh FIFO size on ILK/SNB.
2641 if (INTEL_GEN(dev_priv) <= 6)
2645 if (config->sprites_enabled) {
2646 /* level 0 is always calculated with 1:1 split */
2647 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2656 /* clamp to max that the registers can hold */
2657 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2660 /* Calculate the maximum cursor plane watermark */
2661 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2663 const struct intel_wm_config *config)
2665 /* HSW LP1+ watermarks w/ multiple pipes */
2666 if (level > 0 && config->num_pipes_active > 1)
2669 /* otherwise just report max that registers can hold */
2670 return ilk_cursor_wm_reg_max(to_i915(dev), level);
2673 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2675 const struct intel_wm_config *config,
2676 enum intel_ddb_partitioning ddb_partitioning,
2677 struct ilk_wm_maximums *max)
2679 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2680 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2681 max->cur = ilk_cursor_wm_max(dev, level, config);
2682 max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2685 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2687 struct ilk_wm_maximums *max)
2689 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2690 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2691 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2692 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2695 static bool ilk_validate_wm_level(int level,
2696 const struct ilk_wm_maximums *max,
2697 struct intel_wm_level *result)
2701 /* already determined to be invalid? */
2702 if (!result->enable)
2705 result->enable = result->pri_val <= max->pri &&
2706 result->spr_val <= max->spr &&
2707 result->cur_val <= max->cur;
2709 ret = result->enable;
2712 * HACK until we can pre-compute everything,
2713 * and thus fail gracefully if LP0 watermarks
2716 if (level == 0 && !result->enable) {
2717 if (result->pri_val > max->pri)
2718 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2719 level, result->pri_val, max->pri);
2720 if (result->spr_val > max->spr)
2721 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2722 level, result->spr_val, max->spr);
2723 if (result->cur_val > max->cur)
2724 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2725 level, result->cur_val, max->cur);
2727 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2728 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2729 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2730 result->enable = true;
2736 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2737 const struct intel_crtc *intel_crtc,
2739 struct intel_crtc_state *cstate,
2740 const struct intel_plane_state *pristate,
2741 const struct intel_plane_state *sprstate,
2742 const struct intel_plane_state *curstate,
2743 struct intel_wm_level *result)
2745 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2746 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2747 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2749 /* WM1+ latency values stored in 0.5us units */
2757 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2758 pri_latency, level);
2759 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2763 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2766 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2768 result->enable = true;
2772 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2774 const struct intel_atomic_state *intel_state =
2775 to_intel_atomic_state(cstate->base.state);
2776 const struct drm_display_mode *adjusted_mode =
2777 &cstate->base.adjusted_mode;
2778 u32 linetime, ips_linetime;
2780 if (!cstate->base.active)
2782 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2784 if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2787 /* The WM are computed with base on how long it takes to fill a single
2788 * row at the given clock rate, multiplied by 8.
2790 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2791 adjusted_mode->crtc_clock);
2792 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2793 intel_state->cdclk.logical.cdclk);
2795 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2796 PIPE_WM_LINETIME_TIME(linetime);
2799 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2802 if (INTEL_GEN(dev_priv) >= 9) {
2805 int level, max_level = ilk_wm_max_level(dev_priv);
2807 /* read the first set of memory latencies[0:3] */
2808 val = 0; /* data0 to be programmed to 0 for first set */
2809 mutex_lock(&dev_priv->pcu_lock);
2810 ret = sandybridge_pcode_read(dev_priv,
2811 GEN9_PCODE_READ_MEM_LATENCY,
2813 mutex_unlock(&dev_priv->pcu_lock);
2816 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2820 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2821 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2822 GEN9_MEM_LATENCY_LEVEL_MASK;
2823 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2824 GEN9_MEM_LATENCY_LEVEL_MASK;
2825 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2826 GEN9_MEM_LATENCY_LEVEL_MASK;
2828 /* read the second set of memory latencies[4:7] */
2829 val = 1; /* data0 to be programmed to 1 for second set */
2830 mutex_lock(&dev_priv->pcu_lock);
2831 ret = sandybridge_pcode_read(dev_priv,
2832 GEN9_PCODE_READ_MEM_LATENCY,
2834 mutex_unlock(&dev_priv->pcu_lock);
2836 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2840 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2841 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2842 GEN9_MEM_LATENCY_LEVEL_MASK;
2843 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2844 GEN9_MEM_LATENCY_LEVEL_MASK;
2845 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2846 GEN9_MEM_LATENCY_LEVEL_MASK;
2849 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2850 * need to be disabled. We make sure to sanitize the values out
2851 * of the punit to satisfy this requirement.
2853 for (level = 1; level <= max_level; level++) {
2854 if (wm[level] == 0) {
2855 for (i = level + 1; i <= max_level; i++)
2862 * WaWmMemoryReadLatency:skl+,glk
2864 * punit doesn't take into account the read latency so we need
2865 * to add 2us to the various latency levels we retrieve from the
2866 * punit when level 0 response data us 0us.
2870 for (level = 1; level <= max_level; level++) {
2877 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2878 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2880 wm[0] = (sskpd >> 56) & 0xFF;
2882 wm[0] = sskpd & 0xF;
2883 wm[1] = (sskpd >> 4) & 0xFF;
2884 wm[2] = (sskpd >> 12) & 0xFF;
2885 wm[3] = (sskpd >> 20) & 0x1FF;
2886 wm[4] = (sskpd >> 32) & 0x1FF;
2887 } else if (INTEL_GEN(dev_priv) >= 6) {
2888 uint32_t sskpd = I915_READ(MCH_SSKPD);
2890 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2891 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2892 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2893 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2894 } else if (INTEL_GEN(dev_priv) >= 5) {
2895 uint32_t mltr = I915_READ(MLTR_ILK);
2897 /* ILK primary LP0 latency is 700 ns */
2899 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2900 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2902 MISSING_CASE(INTEL_DEVID(dev_priv));
2906 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2909 /* ILK sprite LP0 latency is 1300 ns */
2910 if (IS_GEN5(dev_priv))
2914 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2917 /* ILK cursor LP0 latency is 1300 ns */
2918 if (IS_GEN5(dev_priv))
2922 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2924 /* how many WM levels are we expecting */
2925 if (INTEL_GEN(dev_priv) >= 9)
2927 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2929 else if (INTEL_GEN(dev_priv) >= 6)
2935 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2937 const uint16_t wm[8])
2939 int level, max_level = ilk_wm_max_level(dev_priv);
2941 for (level = 0; level <= max_level; level++) {
2942 unsigned int latency = wm[level];
2945 DRM_ERROR("%s WM%d latency not provided\n",
2951 * - latencies are in us on gen9.
2952 * - before then, WM1+ latency values are in 0.5us units
2954 if (INTEL_GEN(dev_priv) >= 9)
2959 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2960 name, level, wm[level],
2961 latency / 10, latency % 10);
2965 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2966 uint16_t wm[5], uint16_t min)
2968 int level, max_level = ilk_wm_max_level(dev_priv);
2973 wm[0] = max(wm[0], min);
2974 for (level = 1; level <= max_level; level++)
2975 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2980 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2985 * The BIOS provided WM memory latency values are often
2986 * inadequate for high resolution displays. Adjust them.
2988 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2989 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2990 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2995 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2996 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2997 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2998 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3001 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3003 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3005 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3006 sizeof(dev_priv->wm.pri_latency));
3007 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3008 sizeof(dev_priv->wm.pri_latency));
3010 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3011 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3013 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3014 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3015 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3017 if (IS_GEN6(dev_priv))
3018 snb_wm_latency_quirk(dev_priv);
3021 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3023 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3024 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3027 static bool ilk_validate_pipe_wm(struct drm_device *dev,
3028 struct intel_pipe_wm *pipe_wm)
3030 /* LP0 watermark maximums depend on this pipe alone */
3031 const struct intel_wm_config config = {
3032 .num_pipes_active = 1,
3033 .sprites_enabled = pipe_wm->sprites_enabled,
3034 .sprites_scaled = pipe_wm->sprites_scaled,
3036 struct ilk_wm_maximums max;
3038 /* LP0 watermarks always use 1/2 DDB partitioning */
3039 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3041 /* At least LP0 must be valid */
3042 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3043 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3050 /* Compute new watermarks for the pipe */
3051 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3053 struct drm_atomic_state *state = cstate->base.state;
3054 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3055 struct intel_pipe_wm *pipe_wm;
3056 struct drm_device *dev = state->dev;
3057 const struct drm_i915_private *dev_priv = to_i915(dev);
3058 struct drm_plane *plane;
3059 const struct drm_plane_state *plane_state;
3060 const struct intel_plane_state *pristate = NULL;
3061 const struct intel_plane_state *sprstate = NULL;
3062 const struct intel_plane_state *curstate = NULL;
3063 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3064 struct ilk_wm_maximums max;
3066 pipe_wm = &cstate->wm.ilk.optimal;
3068 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3069 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3071 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3073 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3075 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3079 pipe_wm->pipe_enabled = cstate->base.active;
3081 pipe_wm->sprites_enabled = sprstate->base.visible;
3082 pipe_wm->sprites_scaled = sprstate->base.visible &&
3083 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3084 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3087 usable_level = max_level;
3089 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3090 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3093 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3094 if (pipe_wm->sprites_scaled)
3097 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3098 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3099 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3101 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3102 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3104 if (!ilk_validate_pipe_wm(dev, pipe_wm))
3107 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3109 for (level = 1; level <= usable_level; level++) {
3110 struct intel_wm_level *wm = &pipe_wm->wm[level];
3112 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3113 pristate, sprstate, curstate, wm);
3116 * Disable any watermark level that exceeds the
3117 * register maximums since such watermarks are
3120 if (!ilk_validate_wm_level(level, &max, wm)) {
3121 memset(wm, 0, sizeof(*wm));
3130 * Build a set of 'intermediate' watermark values that satisfy both the old
3131 * state and the new state. These can be programmed to the hardware
3134 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3135 struct intel_crtc *intel_crtc,
3136 struct intel_crtc_state *newstate)
3138 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3139 struct intel_atomic_state *intel_state =
3140 to_intel_atomic_state(newstate->base.state);
3141 const struct intel_crtc_state *oldstate =
3142 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3143 const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3144 int level, max_level = ilk_wm_max_level(to_i915(dev));
3147 * Start with the final, target watermarks, then combine with the
3148 * currently active watermarks to get values that are safe both before
3149 * and after the vblank.
3151 *a = newstate->wm.ilk.optimal;
3152 if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
3155 a->pipe_enabled |= b->pipe_enabled;
3156 a->sprites_enabled |= b->sprites_enabled;
3157 a->sprites_scaled |= b->sprites_scaled;
3159 for (level = 0; level <= max_level; level++) {
3160 struct intel_wm_level *a_wm = &a->wm[level];
3161 const struct intel_wm_level *b_wm = &b->wm[level];
3163 a_wm->enable &= b_wm->enable;
3164 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3165 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3166 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3167 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3171 * We need to make sure that these merged watermark values are
3172 * actually a valid configuration themselves. If they're not,
3173 * there's no safe way to transition from the old state to
3174 * the new state, so we need to fail the atomic transaction.
3176 if (!ilk_validate_pipe_wm(dev, a))
3180 * If our intermediate WM are identical to the final WM, then we can
3181 * omit the post-vblank programming; only update if it's different.
3183 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3184 newstate->wm.need_postvbl_update = true;
3190 * Merge the watermarks from all active pipes for a specific level.
3192 static void ilk_merge_wm_level(struct drm_device *dev,
3194 struct intel_wm_level *ret_wm)
3196 const struct intel_crtc *intel_crtc;
3198 ret_wm->enable = true;
3200 for_each_intel_crtc(dev, intel_crtc) {
3201 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3202 const struct intel_wm_level *wm = &active->wm[level];
3204 if (!active->pipe_enabled)
3208 * The watermark values may have been used in the past,
3209 * so we must maintain them in the registers for some
3210 * time even if the level is now disabled.
3213 ret_wm->enable = false;
3215 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3216 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3217 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3218 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3223 * Merge all low power watermarks for all active pipes.
3225 static void ilk_wm_merge(struct drm_device *dev,
3226 const struct intel_wm_config *config,
3227 const struct ilk_wm_maximums *max,
3228 struct intel_pipe_wm *merged)
3230 struct drm_i915_private *dev_priv = to_i915(dev);
3231 int level, max_level = ilk_wm_max_level(dev_priv);
3232 int last_enabled_level = max_level;
3234 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3235 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3236 config->num_pipes_active > 1)
3237 last_enabled_level = 0;
3239 /* ILK: FBC WM must be disabled always */
3240 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3242 /* merge each WM1+ level */
3243 for (level = 1; level <= max_level; level++) {
3244 struct intel_wm_level *wm = &merged->wm[level];
3246 ilk_merge_wm_level(dev, level, wm);
3248 if (level > last_enabled_level)
3250 else if (!ilk_validate_wm_level(level, max, wm))
3251 /* make sure all following levels get disabled */
3252 last_enabled_level = level - 1;
3255 * The spec says it is preferred to disable
3256 * FBC WMs instead of disabling a WM level.
3258 if (wm->fbc_val > max->fbc) {
3260 merged->fbc_wm_enabled = false;
3265 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3267 * FIXME this is racy. FBC might get enabled later.
3268 * What we should check here is whether FBC can be
3269 * enabled sometime later.
3271 if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3272 intel_fbc_is_active(dev_priv)) {
3273 for (level = 2; level <= max_level; level++) {
3274 struct intel_wm_level *wm = &merged->wm[level];
3281 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3283 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3284 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3287 /* The value we need to program into the WM_LPx latency field */
3288 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3290 struct drm_i915_private *dev_priv = to_i915(dev);
3292 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3295 return dev_priv->wm.pri_latency[level];
3298 static void ilk_compute_wm_results(struct drm_device *dev,
3299 const struct intel_pipe_wm *merged,
3300 enum intel_ddb_partitioning partitioning,
3301 struct ilk_wm_values *results)
3303 struct drm_i915_private *dev_priv = to_i915(dev);
3304 struct intel_crtc *intel_crtc;
3307 results->enable_fbc_wm = merged->fbc_wm_enabled;
3308 results->partitioning = partitioning;
3310 /* LP1+ register values */
3311 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3312 const struct intel_wm_level *r;
3314 level = ilk_wm_lp_to_level(wm_lp, merged);
3316 r = &merged->wm[level];
3319 * Maintain the watermark values even if the level is
3320 * disabled. Doing otherwise could cause underruns.
3322 results->wm_lp[wm_lp - 1] =
3323 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3324 (r->pri_val << WM1_LP_SR_SHIFT) |
3328 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3330 if (INTEL_GEN(dev_priv) >= 8)
3331 results->wm_lp[wm_lp - 1] |=
3332 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3334 results->wm_lp[wm_lp - 1] |=
3335 r->fbc_val << WM1_LP_FBC_SHIFT;
3338 * Always set WM1S_LP_EN when spr_val != 0, even if the
3339 * level is disabled. Doing otherwise could cause underruns.
3341 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3342 WARN_ON(wm_lp != 1);
3343 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3345 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3348 /* LP0 register values */
3349 for_each_intel_crtc(dev, intel_crtc) {
3350 enum pipe pipe = intel_crtc->pipe;
3351 const struct intel_wm_level *r =
3352 &intel_crtc->wm.active.ilk.wm[0];
3354 if (WARN_ON(!r->enable))
3357 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3359 results->wm_pipe[pipe] =
3360 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3361 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3366 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3367 * case both are at the same level. Prefer r1 in case they're the same. */
3368 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3369 struct intel_pipe_wm *r1,
3370 struct intel_pipe_wm *r2)
3372 int level, max_level = ilk_wm_max_level(to_i915(dev));
3373 int level1 = 0, level2 = 0;
3375 for (level = 1; level <= max_level; level++) {
3376 if (r1->wm[level].enable)
3378 if (r2->wm[level].enable)
3382 if (level1 == level2) {
3383 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3387 } else if (level1 > level2) {
3394 /* dirty bits used to track which watermarks need changes */
3395 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3396 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3397 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3398 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3399 #define WM_DIRTY_FBC (1 << 24)
3400 #define WM_DIRTY_DDB (1 << 25)
3402 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3403 const struct ilk_wm_values *old,
3404 const struct ilk_wm_values *new)
3406 unsigned int dirty = 0;
3410 for_each_pipe(dev_priv, pipe) {
3411 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3412 dirty |= WM_DIRTY_LINETIME(pipe);
3413 /* Must disable LP1+ watermarks too */
3414 dirty |= WM_DIRTY_LP_ALL;
3417 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3418 dirty |= WM_DIRTY_PIPE(pipe);
3419 /* Must disable LP1+ watermarks too */
3420 dirty |= WM_DIRTY_LP_ALL;
3424 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3425 dirty |= WM_DIRTY_FBC;
3426 /* Must disable LP1+ watermarks too */
3427 dirty |= WM_DIRTY_LP_ALL;
3430 if (old->partitioning != new->partitioning) {
3431 dirty |= WM_DIRTY_DDB;
3432 /* Must disable LP1+ watermarks too */
3433 dirty |= WM_DIRTY_LP_ALL;
3436 /* LP1+ watermarks already deemed dirty, no need to continue */
3437 if (dirty & WM_DIRTY_LP_ALL)
3440 /* Find the lowest numbered LP1+ watermark in need of an update... */
3441 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3442 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3443 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3447 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3448 for (; wm_lp <= 3; wm_lp++)
3449 dirty |= WM_DIRTY_LP(wm_lp);
3454 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3457 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3458 bool changed = false;
3460 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3461 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3462 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3465 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3466 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3467 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3470 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3471 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3472 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3477 * Don't touch WM1S_LP_EN here.
3478 * Doing so could cause underruns.
3485 * The spec says we shouldn't write when we don't need, because every write
3486 * causes WMs to be re-evaluated, expending some power.
3488 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3489 struct ilk_wm_values *results)
3491 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3495 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3499 _ilk_disable_lp_wm(dev_priv, dirty);
3501 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3502 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3503 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3504 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3505 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3506 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3508 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3509 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3510 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3511 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3512 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3513 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3515 if (dirty & WM_DIRTY_DDB) {
3516 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3517 val = I915_READ(WM_MISC);
3518 if (results->partitioning == INTEL_DDB_PART_1_2)
3519 val &= ~WM_MISC_DATA_PARTITION_5_6;
3521 val |= WM_MISC_DATA_PARTITION_5_6;
3522 I915_WRITE(WM_MISC, val);
3524 val = I915_READ(DISP_ARB_CTL2);
3525 if (results->partitioning == INTEL_DDB_PART_1_2)
3526 val &= ~DISP_DATA_PARTITION_5_6;
3528 val |= DISP_DATA_PARTITION_5_6;
3529 I915_WRITE(DISP_ARB_CTL2, val);
3533 if (dirty & WM_DIRTY_FBC) {
3534 val = I915_READ(DISP_ARB_CTL);
3535 if (results->enable_fbc_wm)
3536 val &= ~DISP_FBC_WM_DIS;
3538 val |= DISP_FBC_WM_DIS;
3539 I915_WRITE(DISP_ARB_CTL, val);
3542 if (dirty & WM_DIRTY_LP(1) &&
3543 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3544 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3546 if (INTEL_GEN(dev_priv) >= 7) {
3547 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3548 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3549 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3550 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3553 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3554 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3555 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3556 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3557 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3558 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3560 dev_priv->wm.hw = *results;
3563 bool ilk_disable_lp_wm(struct drm_device *dev)
3565 struct drm_i915_private *dev_priv = to_i915(dev);
3567 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3570 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3574 /* Slice 1 will always be enabled */
3577 /* Gen prior to GEN11 have only one DBuf slice */
3578 if (INTEL_GEN(dev_priv) < 11)
3579 return enabled_slices;
3581 if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3584 return enabled_slices;
3588 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3589 * so assume we'll always need it in order to avoid underruns.
3591 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3593 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3595 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3602 intel_has_sagv(struct drm_i915_private *dev_priv)
3604 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3605 IS_CANNONLAKE(dev_priv))
3608 if (IS_SKYLAKE(dev_priv) &&
3609 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3616 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3617 * depending on power and performance requirements. The display engine access
3618 * to system memory is blocked during the adjustment time. Because of the
3619 * blocking time, having this enabled can cause full system hangs and/or pipe
3620 * underruns if we don't meet all of the following requirements:
3622 * - <= 1 pipe enabled
3623 * - All planes can enable watermarks for latencies >= SAGV engine block time
3624 * - We're not using an interlaced display configuration
3627 intel_enable_sagv(struct drm_i915_private *dev_priv)
3631 if (!intel_has_sagv(dev_priv))
3634 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3637 DRM_DEBUG_KMS("Enabling the SAGV\n");
3638 mutex_lock(&dev_priv->pcu_lock);
3640 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3643 /* We don't need to wait for the SAGV when enabling */
3644 mutex_unlock(&dev_priv->pcu_lock);
3647 * Some skl systems, pre-release machines in particular,
3648 * don't actually have an SAGV.
3650 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3651 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3652 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3654 } else if (ret < 0) {
3655 DRM_ERROR("Failed to enable the SAGV\n");
3659 dev_priv->sagv_status = I915_SAGV_ENABLED;
3664 intel_disable_sagv(struct drm_i915_private *dev_priv)
3668 if (!intel_has_sagv(dev_priv))
3671 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3674 DRM_DEBUG_KMS("Disabling the SAGV\n");
3675 mutex_lock(&dev_priv->pcu_lock);
3677 /* bspec says to keep retrying for at least 1 ms */
3678 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3680 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3682 mutex_unlock(&dev_priv->pcu_lock);
3685 * Some skl systems, pre-release machines in particular,
3686 * don't actually have an SAGV.
3688 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3689 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3690 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3692 } else if (ret < 0) {
3693 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3697 dev_priv->sagv_status = I915_SAGV_DISABLED;
3701 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3703 struct drm_device *dev = state->dev;
3704 struct drm_i915_private *dev_priv = to_i915(dev);
3705 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3706 struct intel_crtc *crtc;
3707 struct intel_plane *plane;
3708 struct intel_crtc_state *cstate;
3711 int sagv_block_time_us;
3713 if (!intel_has_sagv(dev_priv))
3716 if (IS_GEN9(dev_priv))
3717 sagv_block_time_us = 30;
3718 else if (IS_GEN10(dev_priv))
3719 sagv_block_time_us = 20;
3721 sagv_block_time_us = 10;
3724 * SKL+ workaround: bspec recommends we disable the SAGV when we have
3725 * more then one pipe enabled
3727 * If there are no active CRTCs, no additional checks need be performed
3729 if (hweight32(intel_state->active_crtcs) == 0)
3731 else if (hweight32(intel_state->active_crtcs) > 1)
3734 /* Since we're now guaranteed to only have one active CRTC... */
3735 pipe = ffs(intel_state->active_crtcs) - 1;
3736 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3737 cstate = to_intel_crtc_state(crtc->base.state);
3739 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3742 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3743 struct skl_plane_wm *wm =
3744 &cstate->wm.skl.optimal.planes[plane->id];
3746 /* Skip this plane if it's not enabled */
3747 if (!wm->wm[0].plane_en)
3750 /* Find the highest enabled wm level for this plane */
3751 for (level = ilk_wm_max_level(dev_priv);
3752 !wm->wm[level].plane_en; --level)
3755 latency = dev_priv->wm.skl_latency[level];
3757 if (skl_needs_memory_bw_wa(intel_state) &&
3758 plane->base.state->fb->modifier ==
3759 I915_FORMAT_MOD_X_TILED)
3763 * If any of the planes on this pipe don't enable wm levels that
3764 * incur memory latencies higher than sagv_block_time_us we
3765 * can't enable the SAGV.
3767 if (latency < sagv_block_time_us)
3774 static unsigned int intel_get_ddb_size(struct drm_i915_private *dev_priv,
3775 const struct intel_crtc_state *cstate,
3776 const unsigned int total_data_rate,
3777 const int num_active,
3778 struct skl_ddb_allocation *ddb)
3780 const struct drm_display_mode *adjusted_mode;
3782 u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3784 WARN_ON(ddb_size == 0);
3786 if (INTEL_GEN(dev_priv) < 11)
3787 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3789 adjusted_mode = &cstate->base.adjusted_mode;
3790 total_data_bw = (u64)total_data_rate * drm_mode_vrefresh(adjusted_mode);
3793 * 12GB/s is maximum BW supported by single DBuf slice.
3795 if (total_data_bw >= GBps(12) || num_active > 1) {
3796 ddb->enabled_slices = 2;
3798 ddb->enabled_slices = 1;
3806 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3807 const struct intel_crtc_state *cstate,
3808 const unsigned int total_data_rate,
3809 struct skl_ddb_allocation *ddb,
3810 struct skl_ddb_entry *alloc, /* out */
3811 int *num_active /* out */)
3813 struct drm_atomic_state *state = cstate->base.state;
3814 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3815 struct drm_i915_private *dev_priv = to_i915(dev);
3816 struct drm_crtc *for_crtc = cstate->base.crtc;
3817 unsigned int pipe_size, ddb_size;
3818 int nth_active_pipe;
3820 if (WARN_ON(!state) || !cstate->base.active) {
3823 *num_active = hweight32(dev_priv->active_crtcs);
3827 if (intel_state->active_pipe_changes)
3828 *num_active = hweight32(intel_state->active_crtcs);
3830 *num_active = hweight32(dev_priv->active_crtcs);
3832 ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
3836 * If the state doesn't change the active CRTC's, then there's
3837 * no need to recalculate; the existing pipe allocation limits
3838 * should remain unchanged. Note that we're safe from racing
3839 * commits since any racing commit that changes the active CRTC
3840 * list would need to grab _all_ crtc locks, including the one
3841 * we currently hold.
3843 if (!intel_state->active_pipe_changes) {
3845 * alloc may be cleared by clear_intel_crtc_state,
3846 * copy from old state to be sure
3848 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3852 nth_active_pipe = hweight32(intel_state->active_crtcs &
3853 (drm_crtc_mask(for_crtc) - 1));
3854 pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3855 alloc->start = nth_active_pipe * ddb_size / *num_active;
3856 alloc->end = alloc->start + pipe_size;
3859 static unsigned int skl_cursor_allocation(int num_active)
3861 if (num_active == 1)
3867 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3868 struct skl_ddb_entry *entry, u32 reg)
3872 if (INTEL_GEN(dev_priv) >= 11)
3873 mask = ICL_DDB_ENTRY_MASK;
3875 mask = SKL_DDB_ENTRY_MASK;
3876 entry->start = reg & mask;
3877 entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;
3884 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3885 const enum pipe pipe,
3886 const enum plane_id plane_id,
3887 struct skl_ddb_allocation *ddb /* out */)
3890 int fourcc, pixel_format;
3892 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
3893 if (plane_id == PLANE_CURSOR) {
3894 val = I915_READ(CUR_BUF_CFG(pipe));
3895 skl_ddb_entry_init_from_hw(dev_priv,
3896 &ddb->plane[pipe][plane_id], val);
3900 val = I915_READ(PLANE_CTL(pipe, plane_id));
3902 /* No DDB allocated for disabled planes */
3903 if (!(val & PLANE_CTL_ENABLE))
3906 pixel_format = val & PLANE_CTL_FORMAT_MASK;
3907 fourcc = skl_format_to_fourcc(pixel_format,
3908 val & PLANE_CTL_ORDER_RGBX,
3909 val & PLANE_CTL_ALPHA_MASK);
3911 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3912 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3914 if (fourcc == DRM_FORMAT_NV12) {
3915 skl_ddb_entry_init_from_hw(dev_priv,
3916 &ddb->plane[pipe][plane_id], val2);
3917 skl_ddb_entry_init_from_hw(dev_priv,
3918 &ddb->uv_plane[pipe][plane_id], val);
3920 skl_ddb_entry_init_from_hw(dev_priv,
3921 &ddb->plane[pipe][plane_id], val);
3925 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3926 struct skl_ddb_allocation *ddb /* out */)
3928 struct intel_crtc *crtc;
3930 memset(ddb, 0, sizeof(*ddb));
3932 ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
3934 for_each_intel_crtc(&dev_priv->drm, crtc) {
3935 enum intel_display_power_domain power_domain;
3936 enum plane_id plane_id;
3937 enum pipe pipe = crtc->pipe;
3939 power_domain = POWER_DOMAIN_PIPE(pipe);
3940 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3943 for_each_plane_id_on_crtc(crtc, plane_id)
3944 skl_ddb_get_hw_plane_state(dev_priv, pipe,
3947 intel_display_power_put(dev_priv, power_domain);
3952 * Determines the downscale amount of a plane for the purposes of watermark calculations.
3953 * The bspec defines downscale amount as:
3956 * Horizontal down scale amount = maximum[1, Horizontal source size /
3957 * Horizontal destination size]
3958 * Vertical down scale amount = maximum[1, Vertical source size /
3959 * Vertical destination size]
3960 * Total down scale amount = Horizontal down scale amount *
3961 * Vertical down scale amount
3964 * Return value is provided in 16.16 fixed point form to retain fractional part.
3965 * Caller should take care of dividing & rounding off the value.
3967 static uint_fixed_16_16_t
3968 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3969 const struct intel_plane_state *pstate)
3971 struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3972 uint32_t src_w, src_h, dst_w, dst_h;
3973 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3974 uint_fixed_16_16_t downscale_h, downscale_w;
3976 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3977 return u32_to_fixed16(0);
3979 /* n.b., src is 16.16 fixed point, dst is whole integer */
3980 if (plane->id == PLANE_CURSOR) {
3982 * Cursors only support 0/180 degree rotation,
3983 * hence no need to account for rotation here.
3985 src_w = pstate->base.src_w >> 16;
3986 src_h = pstate->base.src_h >> 16;
3987 dst_w = pstate->base.crtc_w;
3988 dst_h = pstate->base.crtc_h;
3991 * Src coordinates are already rotated by 270 degrees for
3992 * the 90/270 degree plane rotation cases (to match the
3993 * GTT mapping), hence no need to account for rotation here.
3995 src_w = drm_rect_width(&pstate->base.src) >> 16;
3996 src_h = drm_rect_height(&pstate->base.src) >> 16;
3997 dst_w = drm_rect_width(&pstate->base.dst);
3998 dst_h = drm_rect_height(&pstate->base.dst);
4001 fp_w_ratio = div_fixed16(src_w, dst_w);
4002 fp_h_ratio = div_fixed16(src_h, dst_h);
4003 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4004 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4006 return mul_fixed16(downscale_w, downscale_h);
4009 static uint_fixed_16_16_t
4010 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4012 uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4014 if (!crtc_state->base.enable)
4015 return pipe_downscale;
4017 if (crtc_state->pch_pfit.enabled) {
4018 uint32_t src_w, src_h, dst_w, dst_h;
4019 uint32_t pfit_size = crtc_state->pch_pfit.size;
4020 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4021 uint_fixed_16_16_t downscale_h, downscale_w;
4023 src_w = crtc_state->pipe_src_w;
4024 src_h = crtc_state->pipe_src_h;
4025 dst_w = pfit_size >> 16;
4026 dst_h = pfit_size & 0xffff;
4028 if (!dst_w || !dst_h)
4029 return pipe_downscale;
4031 fp_w_ratio = div_fixed16(src_w, dst_w);
4032 fp_h_ratio = div_fixed16(src_h, dst_h);
4033 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4034 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4036 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4039 return pipe_downscale;
4042 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4043 struct intel_crtc_state *cstate)
4045 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4046 struct drm_crtc_state *crtc_state = &cstate->base;
4047 struct drm_atomic_state *state = crtc_state->state;
4048 struct drm_plane *plane;
4049 const struct drm_plane_state *pstate;
4050 struct intel_plane_state *intel_pstate;
4051 int crtc_clock, dotclk;
4052 uint32_t pipe_max_pixel_rate;
4053 uint_fixed_16_16_t pipe_downscale;
4054 uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4056 if (!cstate->base.enable)
4059 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4060 uint_fixed_16_16_t plane_downscale;
4061 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4064 if (!intel_wm_plane_visible(cstate,
4065 to_intel_plane_state(pstate)))
4068 if (WARN_ON(!pstate->fb))
4071 intel_pstate = to_intel_plane_state(pstate);
4072 plane_downscale = skl_plane_downscale_amount(cstate,
4074 bpp = pstate->fb->format->cpp[0] * 8;
4076 plane_downscale = mul_fixed16(plane_downscale,
4079 max_downscale = max_fixed16(plane_downscale, max_downscale);
4081 pipe_downscale = skl_pipe_downscale_amount(cstate);
4083 pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4085 crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4086 dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4088 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4091 pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4093 if (pipe_max_pixel_rate < crtc_clock) {
4094 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4102 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4103 const struct drm_plane_state *pstate,
4106 struct intel_plane *intel_plane = to_intel_plane(pstate->plane);
4107 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4109 uint32_t width = 0, height = 0;
4110 struct drm_framebuffer *fb;
4112 uint_fixed_16_16_t down_scale_amount;
4114 if (!intel_pstate->base.visible)
4118 format = fb->format->format;
4120 if (intel_plane->id == PLANE_CURSOR)
4122 if (plane == 1 && format != DRM_FORMAT_NV12)
4126 * Src coordinates are already rotated by 270 degrees for
4127 * the 90/270 degree plane rotation cases (to match the
4128 * GTT mapping), hence no need to account for rotation here.
4130 width = drm_rect_width(&intel_pstate->base.src) >> 16;
4131 height = drm_rect_height(&intel_pstate->base.src) >> 16;
4133 /* UV plane does 1/2 pixel sub-sampling */
4134 if (plane == 1 && format == DRM_FORMAT_NV12) {
4139 data_rate = width * height * fb->format->cpp[plane];
4141 down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4143 return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4147 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4148 * a 8192x4096@32bpp framebuffer:
4149 * 3 * 4096 * 8192 * 4 < 2^32
4152 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4153 unsigned int *plane_data_rate,
4154 unsigned int *uv_plane_data_rate)
4156 struct drm_crtc_state *cstate = &intel_cstate->base;
4157 struct drm_atomic_state *state = cstate->state;
4158 struct drm_plane *plane;
4159 const struct drm_plane_state *pstate;
4160 unsigned int total_data_rate = 0;
4162 if (WARN_ON(!state))
4165 /* Calculate and cache data rate for each plane */
4166 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4167 enum plane_id plane_id = to_intel_plane(plane)->id;
4171 rate = skl_plane_relative_data_rate(intel_cstate,
4173 plane_data_rate[plane_id] = rate;
4175 total_data_rate += rate;
4178 rate = skl_plane_relative_data_rate(intel_cstate,
4180 uv_plane_data_rate[plane_id] = rate;
4182 total_data_rate += rate;
4185 return total_data_rate;
4189 skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int plane)
4191 struct drm_framebuffer *fb = pstate->fb;
4192 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4193 uint32_t src_w, src_h;
4194 uint32_t min_scanlines = 8;
4200 /* For packed formats, and uv-plane, return 0 */
4201 if (plane == 1 && fb->format->format != DRM_FORMAT_NV12)
4204 /* For Non Y-tile return 8-blocks */
4205 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4206 fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4207 fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4208 fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4212 * Src coordinates are already rotated by 270 degrees for
4213 * the 90/270 degree plane rotation cases (to match the
4214 * GTT mapping), hence no need to account for rotation here.
4216 src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4217 src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4219 /* Halve UV plane width and height for NV12 */
4225 plane_bpp = fb->format->cpp[plane];
4227 if (drm_rotation_90_or_270(pstate->rotation)) {
4228 switch (plane_bpp) {
4242 WARN(1, "Unsupported pixel depth %u for rotation",
4248 return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4252 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4253 uint16_t *minimum, uint16_t *uv_minimum)
4255 const struct drm_plane_state *pstate;
4256 struct drm_plane *plane;
4258 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4259 enum plane_id plane_id = to_intel_plane(plane)->id;
4261 if (plane_id == PLANE_CURSOR)
4264 if (!pstate->visible)
4267 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4268 uv_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4271 minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4275 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4276 struct skl_ddb_allocation *ddb /* out */)
4278 struct drm_atomic_state *state = cstate->base.state;
4279 struct drm_crtc *crtc = cstate->base.crtc;
4280 struct drm_device *dev = crtc->dev;
4281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4282 enum pipe pipe = intel_crtc->pipe;
4283 struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4284 uint16_t alloc_size, start;
4285 uint16_t minimum[I915_MAX_PLANES] = {};
4286 uint16_t uv_minimum[I915_MAX_PLANES] = {};
4287 unsigned int total_data_rate;
4288 enum plane_id plane_id;
4290 unsigned int plane_data_rate[I915_MAX_PLANES] = {};
4291 unsigned int uv_plane_data_rate[I915_MAX_PLANES] = {};
4292 uint16_t total_min_blocks = 0;
4294 /* Clear the partitioning for disabled planes. */
4295 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4296 memset(ddb->uv_plane[pipe], 0, sizeof(ddb->uv_plane[pipe]));
4298 if (WARN_ON(!state))
4301 if (!cstate->base.active) {
4302 alloc->start = alloc->end = 0;
4306 total_data_rate = skl_get_total_relative_data_rate(cstate,
4308 uv_plane_data_rate);
4309 skl_ddb_get_pipe_allocation_limits(dev, cstate, total_data_rate, ddb,
4310 alloc, &num_active);
4311 alloc_size = skl_ddb_entry_size(alloc);
4312 if (alloc_size == 0)
4315 skl_ddb_calc_min(cstate, num_active, minimum, uv_minimum);
4318 * 1. Allocate the mininum required blocks for each active plane
4319 * and allocate the cursor, it doesn't require extra allocation
4320 * proportional to the data rate.
4323 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4324 total_min_blocks += minimum[plane_id];
4325 total_min_blocks += uv_minimum[plane_id];
4328 if (total_min_blocks > alloc_size) {
4329 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4330 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4335 alloc_size -= total_min_blocks;
4336 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4337 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4340 * 2. Distribute the remaining space in proportion to the amount of
4341 * data each plane needs to fetch from memory.
4343 * FIXME: we may not allocate every single block here.
4345 if (total_data_rate == 0)
4348 start = alloc->start;
4349 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4350 unsigned int data_rate, uv_data_rate;
4351 uint16_t plane_blocks, uv_plane_blocks;
4353 if (plane_id == PLANE_CURSOR)
4356 data_rate = plane_data_rate[plane_id];
4359 * allocation for (packed formats) or (uv-plane part of planar format):
4360 * promote the expression to 64 bits to avoid overflowing, the
4361 * result is < available as data_rate / total_data_rate < 1
4363 plane_blocks = minimum[plane_id];
4364 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4367 /* Leave disabled planes at (0,0) */
4369 ddb->plane[pipe][plane_id].start = start;
4370 ddb->plane[pipe][plane_id].end = start + plane_blocks;
4373 start += plane_blocks;
4375 /* Allocate DDB for UV plane for planar format/NV12 */
4376 uv_data_rate = uv_plane_data_rate[plane_id];
4378 uv_plane_blocks = uv_minimum[plane_id];
4379 uv_plane_blocks += div_u64((uint64_t)alloc_size * uv_data_rate,
4383 ddb->uv_plane[pipe][plane_id].start = start;
4384 ddb->uv_plane[pipe][plane_id].end =
4385 start + uv_plane_blocks;
4388 start += uv_plane_blocks;
4395 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4396 * for the read latency) and cpp should always be <= 8, so that
4397 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4398 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4400 static uint_fixed_16_16_t
4401 skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4402 uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4404 uint32_t wm_intermediate_val;
4405 uint_fixed_16_16_t ret;
4408 return FP_16_16_MAX;
4410 wm_intermediate_val = latency * pixel_rate * cpp;
4411 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4413 if (INTEL_GEN(dev_priv) >= 10)
4414 ret = add_fixed16_u32(ret, 1);
4419 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4420 uint32_t pipe_htotal,
4422 uint_fixed_16_16_t plane_blocks_per_line)
4424 uint32_t wm_intermediate_val;
4425 uint_fixed_16_16_t ret;
4428 return FP_16_16_MAX;
4430 wm_intermediate_val = latency * pixel_rate;
4431 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4432 pipe_htotal * 1000);
4433 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4437 static uint_fixed_16_16_t
4438 intel_get_linetime_us(struct intel_crtc_state *cstate)
4440 uint32_t pixel_rate;
4441 uint32_t crtc_htotal;
4442 uint_fixed_16_16_t linetime_us;
4444 if (!cstate->base.active)
4445 return u32_to_fixed16(0);
4447 pixel_rate = cstate->pixel_rate;
4449 if (WARN_ON(pixel_rate == 0))
4450 return u32_to_fixed16(0);
4452 crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4453 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4459 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4460 const struct intel_plane_state *pstate)
4462 uint64_t adjusted_pixel_rate;
4463 uint_fixed_16_16_t downscale_amount;
4465 /* Shouldn't reach here on disabled planes... */
4466 if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4470 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4471 * with additional adjustments for plane-specific scaling.
4473 adjusted_pixel_rate = cstate->pixel_rate;
4474 downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4476 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4481 skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
4482 struct intel_crtc_state *cstate,
4483 const struct intel_plane_state *intel_pstate,
4484 struct skl_wm_params *wp, int plane_id)
4486 struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4487 const struct drm_plane_state *pstate = &intel_pstate->base;
4488 const struct drm_framebuffer *fb = pstate->fb;
4489 uint32_t interm_pbpl;
4490 struct intel_atomic_state *state =
4491 to_intel_atomic_state(cstate->base.state);
4492 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4494 if (!intel_wm_plane_visible(cstate, intel_pstate))
4497 /* only NV12 format has two planes */
4498 if (plane_id == 1 && fb->format->format != DRM_FORMAT_NV12) {
4499 DRM_DEBUG_KMS("Non NV12 format have single plane\n");
4503 wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4504 fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4505 fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4506 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4507 wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4508 wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4509 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4510 wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4512 if (plane->id == PLANE_CURSOR) {
4513 wp->width = intel_pstate->base.crtc_w;
4516 * Src coordinates are already rotated by 270 degrees for
4517 * the 90/270 degree plane rotation cases (to match the
4518 * GTT mapping), hence no need to account for rotation here.
4520 wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4523 if (plane_id == 1 && wp->is_planar)
4526 wp->cpp = fb->format->cpp[plane_id];
4527 wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4530 if (INTEL_GEN(dev_priv) >= 11 &&
4531 fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
4532 wp->dbuf_block_size = 256;
4534 wp->dbuf_block_size = 512;
4536 if (drm_rotation_90_or_270(pstate->rotation)) {
4540 wp->y_min_scanlines = 16;
4543 wp->y_min_scanlines = 8;
4546 wp->y_min_scanlines = 4;
4549 MISSING_CASE(wp->cpp);
4553 wp->y_min_scanlines = 4;
4556 if (apply_memory_bw_wa)
4557 wp->y_min_scanlines *= 2;
4559 wp->plane_bytes_per_line = wp->width * wp->cpp;
4561 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4562 wp->y_min_scanlines,
4563 wp->dbuf_block_size);
4565 if (INTEL_GEN(dev_priv) >= 10)
4568 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4569 wp->y_min_scanlines);
4570 } else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4571 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4572 wp->dbuf_block_size);
4573 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4575 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4576 wp->dbuf_block_size) + 1;
4577 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4580 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4581 wp->plane_blocks_per_line);
4582 wp->linetime_us = fixed16_to_u32_round_up(
4583 intel_get_linetime_us(cstate));
4588 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4589 struct intel_crtc_state *cstate,
4590 const struct intel_plane_state *intel_pstate,
4591 uint16_t ddb_allocation,
4593 const struct skl_wm_params *wp,
4594 const struct skl_wm_level *result_prev,
4595 struct skl_wm_level *result /* out */)
4597 const struct drm_plane_state *pstate = &intel_pstate->base;
4598 uint32_t latency = dev_priv->wm.skl_latency[level];
4599 uint_fixed_16_16_t method1, method2;
4600 uint_fixed_16_16_t selected_result;
4601 uint32_t res_blocks, res_lines;
4602 struct intel_atomic_state *state =
4603 to_intel_atomic_state(cstate->base.state);
4604 bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4605 uint32_t min_disp_buf_needed;
4608 !intel_wm_plane_visible(cstate, intel_pstate)) {
4609 result->plane_en = false;
4613 /* Display WA #1141: kbl,cfl */
4614 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4615 IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4616 dev_priv->ipc_enabled)
4619 if (apply_memory_bw_wa && wp->x_tiled)
4622 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4623 wp->cpp, latency, wp->dbuf_block_size);
4624 method2 = skl_wm_method2(wp->plane_pixel_rate,
4625 cstate->base.adjusted_mode.crtc_htotal,
4627 wp->plane_blocks_per_line);
4630 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4632 if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4633 wp->dbuf_block_size < 1) &&
4634 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
4635 selected_result = method2;
4636 else if (ddb_allocation >=
4637 fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4638 selected_result = min_fixed16(method1, method2);
4639 else if (latency >= wp->linetime_us)
4640 selected_result = min_fixed16(method1, method2);
4642 selected_result = method1;
4645 res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4646 res_lines = div_round_up_fixed16(selected_result,
4647 wp->plane_blocks_per_line);
4649 /* Display WA #1125: skl,bxt,kbl,glk */
4650 if (level == 0 && wp->rc_surface)
4651 res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4653 /* Display WA #1126: skl,bxt,kbl,glk */
4654 if (level >= 1 && level <= 7) {
4656 res_blocks += fixed16_to_u32_round_up(
4657 wp->y_tile_minimum);
4658 res_lines += wp->y_min_scanlines;
4664 * Make sure result blocks for higher latency levels are atleast
4665 * as high as level below the current level.
4666 * Assumption in DDB algorithm optimization for special cases.
4667 * Also covers Display WA #1125 for RC.
4669 if (result_prev->plane_res_b > res_blocks)
4670 res_blocks = result_prev->plane_res_b;
4673 if (INTEL_GEN(dev_priv) >= 11) {
4675 uint32_t extra_lines;
4676 uint_fixed_16_16_t fp_min_disp_buf_needed;
4678 if (res_lines % wp->y_min_scanlines == 0)
4679 extra_lines = wp->y_min_scanlines;
4681 extra_lines = wp->y_min_scanlines * 2 -
4682 res_lines % wp->y_min_scanlines;
4684 fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
4686 wp->plane_blocks_per_line);
4687 min_disp_buf_needed = fixed16_to_u32_round_up(
4688 fp_min_disp_buf_needed);
4690 min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
4693 min_disp_buf_needed = res_blocks;
4696 if ((level > 0 && res_lines > 31) ||
4697 res_blocks >= ddb_allocation ||
4698 min_disp_buf_needed >= ddb_allocation) {
4699 result->plane_en = false;
4702 * If there are no valid level 0 watermarks, then we can't
4703 * support this display configuration.
4708 struct drm_plane *plane = pstate->plane;
4710 DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4711 DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4712 plane->base.id, plane->name,
4713 res_blocks, ddb_allocation, res_lines);
4719 * Display WA #826 (SKL:ALL, BXT:ALL) & #1059 (CNL:A)
4720 * disable wm level 1-7 on NV12 planes
4722 if (wp->is_planar && level >= 1 &&
4723 (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
4724 IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))) {
4725 result->plane_en = false;
4729 /* The number of lines are ignored for the level 0 watermark. */
4730 result->plane_res_b = res_blocks;
4731 result->plane_res_l = res_lines;
4732 result->plane_en = true;
4738 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4739 struct skl_ddb_allocation *ddb,
4740 struct intel_crtc_state *cstate,
4741 const struct intel_plane_state *intel_pstate,
4742 const struct skl_wm_params *wm_params,
4743 struct skl_plane_wm *wm,
4746 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4747 struct drm_plane *plane = intel_pstate->base.plane;
4748 struct intel_plane *intel_plane = to_intel_plane(plane);
4749 uint16_t ddb_blocks;
4750 enum pipe pipe = intel_crtc->pipe;
4751 int level, max_level = ilk_wm_max_level(dev_priv);
4752 enum plane_id intel_plane_id = intel_plane->id;
4755 if (WARN_ON(!intel_pstate->base.fb))
4758 ddb_blocks = plane_id ?
4759 skl_ddb_entry_size(&ddb->uv_plane[pipe][intel_plane_id]) :
4760 skl_ddb_entry_size(&ddb->plane[pipe][intel_plane_id]);
4762 for (level = 0; level <= max_level; level++) {
4763 struct skl_wm_level *result = plane_id ? &wm->uv_wm[level] :
4765 struct skl_wm_level *result_prev;
4768 result_prev = plane_id ? &wm->uv_wm[level - 1] :
4771 result_prev = plane_id ? &wm->uv_wm[0] : &wm->wm[0];
4773 ret = skl_compute_plane_wm(dev_priv,
4785 if (intel_pstate->base.fb->format->format == DRM_FORMAT_NV12)
4786 wm->is_planar = true;
4792 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4794 struct drm_atomic_state *state = cstate->base.state;
4795 struct drm_i915_private *dev_priv = to_i915(state->dev);
4796 uint_fixed_16_16_t linetime_us;
4797 uint32_t linetime_wm;
4799 linetime_us = intel_get_linetime_us(cstate);
4801 if (is_fixed16_zero(linetime_us))
4804 linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4806 /* Display WA #1135: bxt:ALL GLK:ALL */
4807 if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
4808 dev_priv->ipc_enabled)
4814 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4815 struct skl_wm_params *wp,
4816 struct skl_wm_level *wm_l0,
4817 uint16_t ddb_allocation,
4818 struct skl_wm_level *trans_wm /* out */)
4820 struct drm_device *dev = cstate->base.crtc->dev;
4821 const struct drm_i915_private *dev_priv = to_i915(dev);
4822 uint16_t trans_min, trans_y_tile_min;
4823 const uint16_t trans_amount = 10; /* This is configurable amount */
4824 uint16_t trans_offset_b, res_blocks;
4826 if (!cstate->base.active)
4829 /* Transition WM are not recommended by HW team for GEN9 */
4830 if (INTEL_GEN(dev_priv) <= 9)
4833 /* Transition WM don't make any sense if ipc is disabled */
4834 if (!dev_priv->ipc_enabled)
4838 if (INTEL_GEN(dev_priv) >= 10)
4841 trans_offset_b = trans_min + trans_amount;
4844 trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
4845 wp->y_tile_minimum);
4846 res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
4849 res_blocks = wm_l0->plane_res_b + trans_offset_b;
4851 /* WA BUG:1938466 add one block for non y-tile planes */
4852 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4859 if (res_blocks < ddb_allocation) {
4860 trans_wm->plane_res_b = res_blocks;
4861 trans_wm->plane_en = true;
4866 trans_wm->plane_en = false;
4869 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4870 struct skl_ddb_allocation *ddb,
4871 struct skl_pipe_wm *pipe_wm)
4873 struct drm_device *dev = cstate->base.crtc->dev;
4874 struct drm_crtc_state *crtc_state = &cstate->base;
4875 const struct drm_i915_private *dev_priv = to_i915(dev);
4876 struct drm_plane *plane;
4877 const struct drm_plane_state *pstate;
4878 struct skl_plane_wm *wm;
4882 * We'll only calculate watermarks for planes that are actually
4883 * enabled, so make sure all other planes are set as disabled.
4885 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4887 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4888 const struct intel_plane_state *intel_pstate =
4889 to_intel_plane_state(pstate);
4890 enum plane_id plane_id = to_intel_plane(plane)->id;
4891 struct skl_wm_params wm_params;
4892 enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
4893 uint16_t ddb_blocks;
4895 wm = &pipe_wm->planes[plane_id];
4896 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4898 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4899 intel_pstate, &wm_params, 0);
4903 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4904 intel_pstate, &wm_params, wm, 0);
4908 skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
4909 ddb_blocks, &wm->trans_wm);
4911 /* uv plane watermarks must also be validated for NV12/Planar */
4912 if (wm_params.is_planar) {
4913 memset(&wm_params, 0, sizeof(struct skl_wm_params));
4914 wm->is_planar = true;
4916 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4922 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4923 intel_pstate, &wm_params,
4930 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4935 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4937 const struct skl_ddb_entry *entry)
4940 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4945 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4947 const struct skl_wm_level *level)
4951 if (level->plane_en) {
4953 val |= level->plane_res_b;
4954 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4957 I915_WRITE(reg, val);
4960 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4961 const struct skl_plane_wm *wm,
4962 const struct skl_ddb_allocation *ddb,
4963 enum plane_id plane_id)
4965 struct drm_crtc *crtc = &intel_crtc->base;
4966 struct drm_device *dev = crtc->dev;
4967 struct drm_i915_private *dev_priv = to_i915(dev);
4968 int level, max_level = ilk_wm_max_level(dev_priv);
4969 enum pipe pipe = intel_crtc->pipe;
4971 for (level = 0; level <= max_level; level++) {
4972 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4975 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4978 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4979 &ddb->plane[pipe][plane_id]);
4980 if (INTEL_GEN(dev_priv) >= 11)
4981 return skl_ddb_entry_write(dev_priv,
4982 PLANE_BUF_CFG(pipe, plane_id),
4983 &ddb->plane[pipe][plane_id]);
4984 if (wm->is_planar) {
4985 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4986 &ddb->uv_plane[pipe][plane_id]);
4987 skl_ddb_entry_write(dev_priv,
4988 PLANE_NV12_BUF_CFG(pipe, plane_id),
4989 &ddb->plane[pipe][plane_id]);
4991 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4992 &ddb->plane[pipe][plane_id]);
4993 I915_WRITE(PLANE_NV12_BUF_CFG(pipe, plane_id), 0x0);
4997 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4998 const struct skl_plane_wm *wm,
4999 const struct skl_ddb_allocation *ddb)
5001 struct drm_crtc *crtc = &intel_crtc->base;
5002 struct drm_device *dev = crtc->dev;
5003 struct drm_i915_private *dev_priv = to_i915(dev);
5004 int level, max_level = ilk_wm_max_level(dev_priv);
5005 enum pipe pipe = intel_crtc->pipe;
5007 for (level = 0; level <= max_level; level++) {
5008 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5011 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5013 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
5014 &ddb->plane[pipe][PLANE_CURSOR]);
5017 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5018 const struct skl_wm_level *l2)
5020 if (l1->plane_en != l2->plane_en)
5023 /* If both planes aren't enabled, the rest shouldn't matter */
5027 return (l1->plane_res_l == l2->plane_res_l &&
5028 l1->plane_res_b == l2->plane_res_b);
5031 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5032 const struct skl_ddb_entry *b)
5034 return a->start < b->end && b->start < a->end;
5037 bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
5038 const struct skl_ddb_entry **entries,
5039 const struct skl_ddb_entry *ddb,
5044 for_each_pipe(dev_priv, pipe) {
5045 if (pipe != ignore && entries[pipe] &&
5046 skl_ddb_entries_overlap(ddb, entries[pipe]))
5053 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
5054 const struct skl_pipe_wm *old_pipe_wm,
5055 struct skl_pipe_wm *pipe_wm, /* out */
5056 struct skl_ddb_allocation *ddb, /* out */
5057 bool *changed /* out */)
5059 struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
5062 ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
5066 if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
5075 pipes_modified(struct drm_atomic_state *state)
5077 struct drm_crtc *crtc;
5078 struct drm_crtc_state *cstate;
5079 uint32_t i, ret = 0;
5081 for_each_new_crtc_in_state(state, crtc, cstate, i)
5082 ret |= drm_crtc_mask(crtc);
5088 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
5090 struct drm_atomic_state *state = cstate->base.state;
5091 struct drm_device *dev = state->dev;
5092 struct drm_crtc *crtc = cstate->base.crtc;
5093 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5094 struct drm_i915_private *dev_priv = to_i915(dev);
5095 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5096 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5097 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
5098 struct drm_plane_state *plane_state;
5099 struct drm_plane *plane;
5100 enum pipe pipe = intel_crtc->pipe;
5102 drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
5103 enum plane_id plane_id = to_intel_plane(plane)->id;
5105 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
5106 &new_ddb->plane[pipe][plane_id]) &&
5107 skl_ddb_entry_equal(&cur_ddb->uv_plane[pipe][plane_id],
5108 &new_ddb->uv_plane[pipe][plane_id]))
5111 plane_state = drm_atomic_get_plane_state(state, plane);
5112 if (IS_ERR(plane_state))
5113 return PTR_ERR(plane_state);
5120 skl_compute_ddb(struct drm_atomic_state *state)
5122 const struct drm_i915_private *dev_priv = to_i915(state->dev);
5123 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5124 struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
5125 struct intel_crtc *crtc;
5126 struct intel_crtc_state *cstate;
5129 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5131 for_each_new_intel_crtc_in_state(intel_state, crtc, cstate, i) {
5132 ret = skl_allocate_pipe_ddb(cstate, ddb);
5136 ret = skl_ddb_add_affected_planes(cstate);
5145 skl_copy_ddb_for_pipe(struct skl_ddb_values *dst,
5146 struct skl_ddb_values *src,
5149 memcpy(dst->ddb.uv_plane[pipe], src->ddb.uv_plane[pipe],
5150 sizeof(dst->ddb.uv_plane[pipe]));
5151 memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
5152 sizeof(dst->ddb.plane[pipe]));
5153 dst->ddb.enabled_slices = src->ddb.enabled_slices;
5157 skl_print_wm_changes(const struct drm_atomic_state *state)
5159 const struct drm_device *dev = state->dev;
5160 const struct drm_i915_private *dev_priv = to_i915(dev);
5161 const struct intel_atomic_state *intel_state =
5162 to_intel_atomic_state(state);
5163 const struct drm_crtc *crtc;
5164 const struct drm_crtc_state *cstate;
5165 const struct intel_plane *intel_plane;
5166 const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
5167 const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5170 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5171 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5172 enum pipe pipe = intel_crtc->pipe;
5174 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5175 enum plane_id plane_id = intel_plane->id;
5176 const struct skl_ddb_entry *old, *new;
5178 old = &old_ddb->plane[pipe][plane_id];
5179 new = &new_ddb->plane[pipe][plane_id];
5181 if (skl_ddb_entry_equal(old, new))
5184 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5185 intel_plane->base.base.id,
5186 intel_plane->base.name,
5187 old->start, old->end,
5188 new->start, new->end);
5194 skl_ddb_add_affected_pipes(struct drm_atomic_state *state, bool *changed)
5196 struct drm_device *dev = state->dev;
5197 const struct drm_i915_private *dev_priv = to_i915(dev);
5198 const struct drm_crtc *crtc;
5199 const struct drm_crtc_state *cstate;
5200 struct intel_crtc *intel_crtc;
5201 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5202 uint32_t realloc_pipes = pipes_modified(state);
5206 * When we distrust bios wm we always need to recompute to set the
5207 * expected DDB allocations for each CRTC.
5209 if (dev_priv->wm.distrust_bios_wm)
5213 * If this transaction isn't actually touching any CRTC's, don't
5214 * bother with watermark calculation. Note that if we pass this
5215 * test, we're guaranteed to hold at least one CRTC state mutex,
5216 * which means we can safely use values like dev_priv->active_crtcs
5217 * since any racing commits that want to update them would need to
5218 * hold _all_ CRTC state mutexes.
5220 for_each_new_crtc_in_state(state, crtc, cstate, i)
5227 * If this is our first atomic update following hardware readout,
5228 * we can't trust the DDB that the BIOS programmed for us. Let's
5229 * pretend that all pipes switched active status so that we'll
5230 * ensure a full DDB recompute.
5232 if (dev_priv->wm.distrust_bios_wm) {
5233 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5234 state->acquire_ctx);
5238 intel_state->active_pipe_changes = ~0;
5241 * We usually only initialize intel_state->active_crtcs if we
5242 * we're doing a modeset; make sure this field is always
5243 * initialized during the sanitization process that happens
5244 * on the first commit too.
5246 if (!intel_state->modeset)
5247 intel_state->active_crtcs = dev_priv->active_crtcs;
5251 * If the modeset changes which CRTC's are active, we need to
5252 * recompute the DDB allocation for *all* active pipes, even
5253 * those that weren't otherwise being modified in any way by this
5254 * atomic commit. Due to the shrinking of the per-pipe allocations
5255 * when new active CRTC's are added, it's possible for a pipe that
5256 * we were already using and aren't changing at all here to suddenly
5257 * become invalid if its DDB needs exceeds its new allocation.
5259 * Note that if we wind up doing a full DDB recompute, we can't let
5260 * any other display updates race with this transaction, so we need
5261 * to grab the lock on *all* CRTC's.
5263 if (intel_state->active_pipe_changes) {
5265 intel_state->wm_results.dirty_pipes = ~0;
5269 * We're not recomputing for the pipes not included in the commit, so
5270 * make sure we start with the current state.
5272 for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
5273 struct intel_crtc_state *cstate;
5275 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
5277 return PTR_ERR(cstate);
5284 skl_compute_wm(struct drm_atomic_state *state)
5286 struct drm_crtc *crtc;
5287 struct drm_crtc_state *cstate;
5288 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5289 struct skl_ddb_values *results = &intel_state->wm_results;
5290 struct skl_pipe_wm *pipe_wm;
5291 bool changed = false;
5294 /* Clear all dirty flags */
5295 results->dirty_pipes = 0;
5297 ret = skl_ddb_add_affected_pipes(state, &changed);
5298 if (ret || !changed)
5301 ret = skl_compute_ddb(state);
5306 * Calculate WM's for all pipes that are part of this transaction.
5307 * Note that the DDB allocation above may have added more CRTC's that
5308 * weren't otherwise being modified (and set bits in dirty_pipes) if
5309 * pipe allocations had to change.
5311 * FIXME: Now that we're doing this in the atomic check phase, we
5312 * should allow skl_update_pipe_wm() to return failure in cases where
5313 * no suitable watermark values can be found.
5315 for_each_new_crtc_in_state(state, crtc, cstate, i) {
5316 struct intel_crtc_state *intel_cstate =
5317 to_intel_crtc_state(cstate);
5318 const struct skl_pipe_wm *old_pipe_wm =
5319 &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5321 pipe_wm = &intel_cstate->wm.skl.optimal;
5322 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5323 &results->ddb, &changed);
5328 results->dirty_pipes |= drm_crtc_mask(crtc);
5330 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5331 /* This pipe's WM's did not change */
5334 intel_cstate->update_wm_pre = true;
5337 skl_print_wm_changes(state);
5342 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5343 struct intel_crtc_state *cstate)
5345 struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5346 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5347 struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5348 const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5349 enum pipe pipe = crtc->pipe;
5350 enum plane_id plane_id;
5352 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5355 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5357 for_each_plane_id_on_crtc(crtc, plane_id) {
5358 if (plane_id != PLANE_CURSOR)
5359 skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5362 skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5367 static void skl_initial_wm(struct intel_atomic_state *state,
5368 struct intel_crtc_state *cstate)
5370 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5371 struct drm_device *dev = intel_crtc->base.dev;
5372 struct drm_i915_private *dev_priv = to_i915(dev);
5373 struct skl_ddb_values *results = &state->wm_results;
5374 struct skl_ddb_values *hw_vals = &dev_priv->wm.skl_hw;
5375 enum pipe pipe = intel_crtc->pipe;
5377 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5380 mutex_lock(&dev_priv->wm.wm_mutex);
5382 if (cstate->base.active_changed)
5383 skl_atomic_update_crtc_wm(state, cstate);
5385 skl_copy_ddb_for_pipe(hw_vals, results, pipe);
5387 mutex_unlock(&dev_priv->wm.wm_mutex);
5390 static void ilk_compute_wm_config(struct drm_device *dev,
5391 struct intel_wm_config *config)
5393 struct intel_crtc *crtc;
5395 /* Compute the currently _active_ config */
5396 for_each_intel_crtc(dev, crtc) {
5397 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5399 if (!wm->pipe_enabled)
5402 config->sprites_enabled |= wm->sprites_enabled;
5403 config->sprites_scaled |= wm->sprites_scaled;
5404 config->num_pipes_active++;
5408 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5410 struct drm_device *dev = &dev_priv->drm;
5411 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5412 struct ilk_wm_maximums max;
5413 struct intel_wm_config config = {};
5414 struct ilk_wm_values results = {};
5415 enum intel_ddb_partitioning partitioning;
5417 ilk_compute_wm_config(dev, &config);
5419 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5420 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5422 /* 5/6 split only in single pipe config on IVB+ */
5423 if (INTEL_GEN(dev_priv) >= 7 &&
5424 config.num_pipes_active == 1 && config.sprites_enabled) {
5425 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5426 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5428 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5430 best_lp_wm = &lp_wm_1_2;
5433 partitioning = (best_lp_wm == &lp_wm_1_2) ?
5434 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5436 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5438 ilk_write_wm_values(dev_priv, &results);
5441 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5442 struct intel_crtc_state *cstate)
5444 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5445 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5447 mutex_lock(&dev_priv->wm.wm_mutex);
5448 intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5449 ilk_program_watermarks(dev_priv);
5450 mutex_unlock(&dev_priv->wm.wm_mutex);
5453 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5454 struct intel_crtc_state *cstate)
5456 struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5457 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5459 mutex_lock(&dev_priv->wm.wm_mutex);
5460 if (cstate->wm.need_postvbl_update) {
5461 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5462 ilk_program_watermarks(dev_priv);
5464 mutex_unlock(&dev_priv->wm.wm_mutex);
5467 static inline void skl_wm_level_from_reg_val(uint32_t val,
5468 struct skl_wm_level *level)
5470 level->plane_en = val & PLANE_WM_EN;
5471 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5472 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5473 PLANE_WM_LINES_MASK;
5476 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5477 struct skl_pipe_wm *out)
5479 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5481 enum pipe pipe = intel_crtc->pipe;
5482 int level, max_level;
5483 enum plane_id plane_id;
5486 max_level = ilk_wm_max_level(dev_priv);
5488 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5489 struct skl_plane_wm *wm = &out->planes[plane_id];
5491 for (level = 0; level <= max_level; level++) {
5492 if (plane_id != PLANE_CURSOR)
5493 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5495 val = I915_READ(CUR_WM(pipe, level));
5497 skl_wm_level_from_reg_val(val, &wm->wm[level]);
5500 if (plane_id != PLANE_CURSOR)
5501 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5503 val = I915_READ(CUR_WM_TRANS(pipe));
5505 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5508 if (!intel_crtc->active)
5511 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5514 void skl_wm_get_hw_state(struct drm_device *dev)
5516 struct drm_i915_private *dev_priv = to_i915(dev);
5517 struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5518 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5519 struct drm_crtc *crtc;
5520 struct intel_crtc *intel_crtc;
5521 struct intel_crtc_state *cstate;
5523 skl_ddb_get_hw_state(dev_priv, ddb);
5524 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5525 intel_crtc = to_intel_crtc(crtc);
5526 cstate = to_intel_crtc_state(crtc->state);
5528 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5530 if (intel_crtc->active)
5531 hw->dirty_pipes |= drm_crtc_mask(crtc);
5534 if (dev_priv->active_crtcs) {
5535 /* Fully recompute DDB on first atomic commit */
5536 dev_priv->wm.distrust_bios_wm = true;
5539 * Easy/common case; just sanitize DDB now if everything off
5540 * Keep dbuf slice info intact
5542 memset(ddb->plane, 0, sizeof(ddb->plane));
5543 memset(ddb->uv_plane, 0, sizeof(ddb->uv_plane));
5547 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5549 struct drm_device *dev = crtc->dev;
5550 struct drm_i915_private *dev_priv = to_i915(dev);
5551 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5552 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5553 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5554 struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5555 enum pipe pipe = intel_crtc->pipe;
5556 static const i915_reg_t wm0_pipe_reg[] = {
5557 [PIPE_A] = WM0_PIPEA_ILK,
5558 [PIPE_B] = WM0_PIPEB_ILK,
5559 [PIPE_C] = WM0_PIPEC_IVB,
5562 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5563 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5564 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5566 memset(active, 0, sizeof(*active));
5568 active->pipe_enabled = intel_crtc->active;
5570 if (active->pipe_enabled) {
5571 u32 tmp = hw->wm_pipe[pipe];
5574 * For active pipes LP0 watermark is marked as
5575 * enabled, and LP1+ watermaks as disabled since
5576 * we can't really reverse compute them in case
5577 * multiple pipes are active.
5579 active->wm[0].enable = true;
5580 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5581 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5582 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5583 active->linetime = hw->wm_linetime[pipe];
5585 int level, max_level = ilk_wm_max_level(dev_priv);
5588 * For inactive pipes, all watermark levels
5589 * should be marked as enabled but zeroed,
5590 * which is what we'd compute them to.
5592 for (level = 0; level <= max_level; level++)
5593 active->wm[level].enable = true;
5596 intel_crtc->wm.active.ilk = *active;
5599 #define _FW_WM(value, plane) \
5600 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5601 #define _FW_WM_VLV(value, plane) \
5602 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5604 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5605 struct g4x_wm_values *wm)
5609 tmp = I915_READ(DSPFW1);
5610 wm->sr.plane = _FW_WM(tmp, SR);
5611 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5612 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5613 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5615 tmp = I915_READ(DSPFW2);
5616 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5617 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5618 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5619 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5620 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5621 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5623 tmp = I915_READ(DSPFW3);
5624 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5625 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5626 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5627 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5630 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5631 struct vlv_wm_values *wm)
5636 for_each_pipe(dev_priv, pipe) {
5637 tmp = I915_READ(VLV_DDL(pipe));
5639 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5640 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5641 wm->ddl[pipe].plane[PLANE_CURSOR] =
5642 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5643 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5644 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5645 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5646 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5649 tmp = I915_READ(DSPFW1);
5650 wm->sr.plane = _FW_WM(tmp, SR);
5651 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5652 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5653 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5655 tmp = I915_READ(DSPFW2);
5656 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5657 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5658 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5660 tmp = I915_READ(DSPFW3);
5661 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5663 if (IS_CHERRYVIEW(dev_priv)) {
5664 tmp = I915_READ(DSPFW7_CHV);
5665 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5666 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5668 tmp = I915_READ(DSPFW8_CHV);
5669 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5670 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5672 tmp = I915_READ(DSPFW9_CHV);
5673 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5674 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5676 tmp = I915_READ(DSPHOWM);
5677 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5678 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5679 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5680 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5681 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5682 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5683 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5684 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5685 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5686 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5688 tmp = I915_READ(DSPFW7);
5689 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5690 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5692 tmp = I915_READ(DSPHOWM);
5693 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5694 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5695 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5696 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5697 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5698 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5699 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5706 void g4x_wm_get_hw_state(struct drm_device *dev)
5708 struct drm_i915_private *dev_priv = to_i915(dev);
5709 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5710 struct intel_crtc *crtc;
5712 g4x_read_wm_values(dev_priv, wm);
5714 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5716 for_each_intel_crtc(dev, crtc) {
5717 struct intel_crtc_state *crtc_state =
5718 to_intel_crtc_state(crtc->base.state);
5719 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5720 struct g4x_pipe_wm *raw;
5721 enum pipe pipe = crtc->pipe;
5722 enum plane_id plane_id;
5723 int level, max_level;
5725 active->cxsr = wm->cxsr;
5726 active->hpll_en = wm->hpll_en;
5727 active->fbc_en = wm->fbc_en;
5729 active->sr = wm->sr;
5730 active->hpll = wm->hpll;
5732 for_each_plane_id_on_crtc(crtc, plane_id) {
5733 active->wm.plane[plane_id] =
5734 wm->pipe[pipe].plane[plane_id];
5737 if (wm->cxsr && wm->hpll_en)
5738 max_level = G4X_WM_LEVEL_HPLL;
5740 max_level = G4X_WM_LEVEL_SR;
5742 max_level = G4X_WM_LEVEL_NORMAL;
5744 level = G4X_WM_LEVEL_NORMAL;
5745 raw = &crtc_state->wm.g4x.raw[level];
5746 for_each_plane_id_on_crtc(crtc, plane_id)
5747 raw->plane[plane_id] = active->wm.plane[plane_id];
5749 if (++level > max_level)
5752 raw = &crtc_state->wm.g4x.raw[level];
5753 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5754 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5755 raw->plane[PLANE_SPRITE0] = 0;
5756 raw->fbc = active->sr.fbc;
5758 if (++level > max_level)
5761 raw = &crtc_state->wm.g4x.raw[level];
5762 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5763 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5764 raw->plane[PLANE_SPRITE0] = 0;
5765 raw->fbc = active->hpll.fbc;
5768 for_each_plane_id_on_crtc(crtc, plane_id)
5769 g4x_raw_plane_wm_set(crtc_state, level,
5770 plane_id, USHRT_MAX);
5771 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5773 crtc_state->wm.g4x.optimal = *active;
5774 crtc_state->wm.g4x.intermediate = *active;
5776 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5778 wm->pipe[pipe].plane[PLANE_PRIMARY],
5779 wm->pipe[pipe].plane[PLANE_CURSOR],
5780 wm->pipe[pipe].plane[PLANE_SPRITE0]);
5783 DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5784 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5785 DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5786 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5787 DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5788 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5791 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5793 struct intel_plane *plane;
5794 struct intel_crtc *crtc;
5796 mutex_lock(&dev_priv->wm.wm_mutex);
5798 for_each_intel_plane(&dev_priv->drm, plane) {
5799 struct intel_crtc *crtc =
5800 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5801 struct intel_crtc_state *crtc_state =
5802 to_intel_crtc_state(crtc->base.state);
5803 struct intel_plane_state *plane_state =
5804 to_intel_plane_state(plane->base.state);
5805 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5806 enum plane_id plane_id = plane->id;
5809 if (plane_state->base.visible)
5812 for (level = 0; level < 3; level++) {
5813 struct g4x_pipe_wm *raw =
5814 &crtc_state->wm.g4x.raw[level];
5816 raw->plane[plane_id] = 0;
5817 wm_state->wm.plane[plane_id] = 0;
5820 if (plane_id == PLANE_PRIMARY) {
5821 for (level = 0; level < 3; level++) {
5822 struct g4x_pipe_wm *raw =
5823 &crtc_state->wm.g4x.raw[level];
5827 wm_state->sr.fbc = 0;
5828 wm_state->hpll.fbc = 0;
5829 wm_state->fbc_en = false;
5833 for_each_intel_crtc(&dev_priv->drm, crtc) {
5834 struct intel_crtc_state *crtc_state =
5835 to_intel_crtc_state(crtc->base.state);
5837 crtc_state->wm.g4x.intermediate =
5838 crtc_state->wm.g4x.optimal;
5839 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5842 g4x_program_watermarks(dev_priv);
5844 mutex_unlock(&dev_priv->wm.wm_mutex);
5847 void vlv_wm_get_hw_state(struct drm_device *dev)
5849 struct drm_i915_private *dev_priv = to_i915(dev);
5850 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5851 struct intel_crtc *crtc;
5854 vlv_read_wm_values(dev_priv, wm);
5856 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5857 wm->level = VLV_WM_LEVEL_PM2;
5859 if (IS_CHERRYVIEW(dev_priv)) {
5860 mutex_lock(&dev_priv->pcu_lock);
5862 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5863 if (val & DSP_MAXFIFO_PM5_ENABLE)
5864 wm->level = VLV_WM_LEVEL_PM5;
5867 * If DDR DVFS is disabled in the BIOS, Punit
5868 * will never ack the request. So if that happens
5869 * assume we don't have to enable/disable DDR DVFS
5870 * dynamically. To test that just set the REQ_ACK
5871 * bit to poke the Punit, but don't change the
5872 * HIGH/LOW bits so that we don't actually change
5873 * the current state.
5875 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5876 val |= FORCE_DDR_FREQ_REQ_ACK;
5877 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5879 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5880 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5881 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5882 "assuming DDR DVFS is disabled\n");
5883 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5885 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5886 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5887 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5890 mutex_unlock(&dev_priv->pcu_lock);
5893 for_each_intel_crtc(dev, crtc) {
5894 struct intel_crtc_state *crtc_state =
5895 to_intel_crtc_state(crtc->base.state);
5896 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5897 const struct vlv_fifo_state *fifo_state =
5898 &crtc_state->wm.vlv.fifo_state;
5899 enum pipe pipe = crtc->pipe;
5900 enum plane_id plane_id;
5903 vlv_get_fifo_size(crtc_state);
5905 active->num_levels = wm->level + 1;
5906 active->cxsr = wm->cxsr;
5908 for (level = 0; level < active->num_levels; level++) {
5909 struct g4x_pipe_wm *raw =
5910 &crtc_state->wm.vlv.raw[level];
5912 active->sr[level].plane = wm->sr.plane;
5913 active->sr[level].cursor = wm->sr.cursor;
5915 for_each_plane_id_on_crtc(crtc, plane_id) {
5916 active->wm[level].plane[plane_id] =
5917 wm->pipe[pipe].plane[plane_id];
5919 raw->plane[plane_id] =
5920 vlv_invert_wm_value(active->wm[level].plane[plane_id],
5921 fifo_state->plane[plane_id]);
5925 for_each_plane_id_on_crtc(crtc, plane_id)
5926 vlv_raw_plane_wm_set(crtc_state, level,
5927 plane_id, USHRT_MAX);
5928 vlv_invalidate_wms(crtc, active, level);
5930 crtc_state->wm.vlv.optimal = *active;
5931 crtc_state->wm.vlv.intermediate = *active;
5933 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5935 wm->pipe[pipe].plane[PLANE_PRIMARY],
5936 wm->pipe[pipe].plane[PLANE_CURSOR],
5937 wm->pipe[pipe].plane[PLANE_SPRITE0],
5938 wm->pipe[pipe].plane[PLANE_SPRITE1]);
5941 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5942 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5945 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5947 struct intel_plane *plane;
5948 struct intel_crtc *crtc;
5950 mutex_lock(&dev_priv->wm.wm_mutex);
5952 for_each_intel_plane(&dev_priv->drm, plane) {
5953 struct intel_crtc *crtc =
5954 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5955 struct intel_crtc_state *crtc_state =
5956 to_intel_crtc_state(crtc->base.state);
5957 struct intel_plane_state *plane_state =
5958 to_intel_plane_state(plane->base.state);
5959 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5960 const struct vlv_fifo_state *fifo_state =
5961 &crtc_state->wm.vlv.fifo_state;
5962 enum plane_id plane_id = plane->id;
5965 if (plane_state->base.visible)
5968 for (level = 0; level < wm_state->num_levels; level++) {
5969 struct g4x_pipe_wm *raw =
5970 &crtc_state->wm.vlv.raw[level];
5972 raw->plane[plane_id] = 0;
5974 wm_state->wm[level].plane[plane_id] =
5975 vlv_invert_wm_value(raw->plane[plane_id],
5976 fifo_state->plane[plane_id]);
5980 for_each_intel_crtc(&dev_priv->drm, crtc) {
5981 struct intel_crtc_state *crtc_state =
5982 to_intel_crtc_state(crtc->base.state);
5984 crtc_state->wm.vlv.intermediate =
5985 crtc_state->wm.vlv.optimal;
5986 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5989 vlv_program_watermarks(dev_priv);
5991 mutex_unlock(&dev_priv->wm.wm_mutex);
5995 * FIXME should probably kill this and improve
5996 * the real watermark readout/sanitation instead
5998 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6000 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6001 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6002 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6005 * Don't touch WM1S_LP_EN here.
6006 * Doing so could cause underruns.
6010 void ilk_wm_get_hw_state(struct drm_device *dev)
6012 struct drm_i915_private *dev_priv = to_i915(dev);
6013 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6014 struct drm_crtc *crtc;
6016 ilk_init_lp_watermarks(dev_priv);
6018 for_each_crtc(dev, crtc)
6019 ilk_pipe_wm_get_hw_state(crtc);
6021 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6022 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6023 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6025 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6026 if (INTEL_GEN(dev_priv) >= 7) {
6027 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6028 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6031 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6032 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6033 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6034 else if (IS_IVYBRIDGE(dev_priv))
6035 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6036 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6039 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6043 * intel_update_watermarks - update FIFO watermark values based on current modes
6044 * @crtc: the #intel_crtc on which to compute the WM
6046 * Calculate watermark values for the various WM regs based on current mode
6047 * and plane configuration.
6049 * There are several cases to deal with here:
6050 * - normal (i.e. non-self-refresh)
6051 * - self-refresh (SR) mode
6052 * - lines are large relative to FIFO size (buffer can hold up to 2)
6053 * - lines are small relative to FIFO size (buffer can hold more than 2
6054 * lines), so need to account for TLB latency
6056 * The normal calculation is:
6057 * watermark = dotclock * bytes per pixel * latency
6058 * where latency is platform & configuration dependent (we assume pessimal
6061 * The SR calculation is:
6062 * watermark = (trunc(latency/line time)+1) * surface width *
6065 * line time = htotal / dotclock
6066 * surface width = hdisplay for normal plane and 64 for cursor
6067 * and latency is assumed to be high, as above.
6069 * The final value programmed to the register should always be rounded up,
6070 * and include an extra 2 entries to account for clock crossings.
6072 * We don't use the sprite, so we can ignore that. And on Crestline we have
6073 * to set the non-SR watermarks to 8.
6075 void intel_update_watermarks(struct intel_crtc *crtc)
6077 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6079 if (dev_priv->display.update_wm)
6080 dev_priv->display.update_wm(crtc);
6083 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6087 /* Display WA #0477 WaDisableIPC: skl */
6088 if (IS_SKYLAKE(dev_priv)) {
6089 dev_priv->ipc_enabled = false;
6093 val = I915_READ(DISP_ARB_CTL2);
6095 if (dev_priv->ipc_enabled)
6096 val |= DISP_IPC_ENABLE;
6098 val &= ~DISP_IPC_ENABLE;
6100 I915_WRITE(DISP_ARB_CTL2, val);
6103 void intel_init_ipc(struct drm_i915_private *dev_priv)
6105 dev_priv->ipc_enabled = false;
6106 if (!HAS_IPC(dev_priv))
6109 dev_priv->ipc_enabled = true;
6110 intel_enable_ipc(dev_priv);
6114 * Lock protecting IPS related data structures
6116 DEFINE_SPINLOCK(mchdev_lock);
6118 /* Global for IPS driver to get at the current i915 device. Protected by
6120 static struct drm_i915_private *i915_mch_dev;
6122 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6126 lockdep_assert_held(&mchdev_lock);
6128 rgvswctl = I915_READ16(MEMSWCTL);
6129 if (rgvswctl & MEMCTL_CMD_STS) {
6130 DRM_DEBUG("gpu busy, RCS change rejected\n");
6131 return false; /* still busy with another command */
6134 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6135 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6136 I915_WRITE16(MEMSWCTL, rgvswctl);
6137 POSTING_READ16(MEMSWCTL);
6139 rgvswctl |= MEMCTL_CMD_STS;
6140 I915_WRITE16(MEMSWCTL, rgvswctl);
6145 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6148 u8 fmax, fmin, fstart, vstart;
6150 spin_lock_irq(&mchdev_lock);
6152 rgvmodectl = I915_READ(MEMMODECTL);
6154 /* Enable temp reporting */
6155 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6156 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6158 /* 100ms RC evaluation intervals */
6159 I915_WRITE(RCUPEI, 100000);
6160 I915_WRITE(RCDNEI, 100000);
6162 /* Set max/min thresholds to 90ms and 80ms respectively */
6163 I915_WRITE(RCBMAXAVG, 90000);
6164 I915_WRITE(RCBMINAVG, 80000);
6166 I915_WRITE(MEMIHYST, 1);
6168 /* Set up min, max, and cur for interrupt handling */
6169 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6170 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6171 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6172 MEMMODE_FSTART_SHIFT;
6174 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6177 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6178 dev_priv->ips.fstart = fstart;
6180 dev_priv->ips.max_delay = fstart;
6181 dev_priv->ips.min_delay = fmin;
6182 dev_priv->ips.cur_delay = fstart;
6184 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6185 fmax, fmin, fstart);
6187 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6190 * Interrupts will be enabled in ironlake_irq_postinstall
6193 I915_WRITE(VIDSTART, vstart);
6194 POSTING_READ(VIDSTART);
6196 rgvmodectl |= MEMMODE_SWMODE_EN;
6197 I915_WRITE(MEMMODECTL, rgvmodectl);
6199 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6200 DRM_ERROR("stuck trying to change perf mode\n");
6203 ironlake_set_drps(dev_priv, fstart);
6205 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
6206 I915_READ(DDREC) + I915_READ(CSIEC);
6207 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6208 dev_priv->ips.last_count2 = I915_READ(GFXEC);
6209 dev_priv->ips.last_time2 = ktime_get_raw_ns();
6211 spin_unlock_irq(&mchdev_lock);
6214 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6218 spin_lock_irq(&mchdev_lock);
6220 rgvswctl = I915_READ16(MEMSWCTL);
6222 /* Ack interrupts, disable EFC interrupt */
6223 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6224 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6225 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6226 I915_WRITE(DEIIR, DE_PCU_EVENT);
6227 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6229 /* Go back to the starting frequency */
6230 ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6232 rgvswctl |= MEMCTL_CMD_STS;
6233 I915_WRITE(MEMSWCTL, rgvswctl);
6236 spin_unlock_irq(&mchdev_lock);
6239 /* There's a funny hw issue where the hw returns all 0 when reading from
6240 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6241 * ourselves, instead of doing a rmw cycle (which might result in us clearing
6242 * all limits and the gpu stuck at whatever frequency it is at atm).
6244 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6246 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6249 /* Only set the down limit when we've reached the lowest level to avoid
6250 * getting more interrupts, otherwise leave this clear. This prevents a
6251 * race in the hw when coming out of rc6: There's a tiny window where
6252 * the hw runs at the minimal clock before selecting the desired
6253 * frequency, if the down threshold expires in that window we will not
6254 * receive a down interrupt. */
6255 if (INTEL_GEN(dev_priv) >= 9) {
6256 limits = (rps->max_freq_softlimit) << 23;
6257 if (val <= rps->min_freq_softlimit)
6258 limits |= (rps->min_freq_softlimit) << 14;
6260 limits = rps->max_freq_softlimit << 24;
6261 if (val <= rps->min_freq_softlimit)
6262 limits |= rps->min_freq_softlimit << 16;
6268 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6270 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6272 u32 threshold_up = 0, threshold_down = 0; /* in % */
6273 u32 ei_up = 0, ei_down = 0;
6275 new_power = rps->power;
6276 switch (rps->power) {
6278 if (val > rps->efficient_freq + 1 &&
6279 val > rps->cur_freq)
6280 new_power = BETWEEN;
6284 if (val <= rps->efficient_freq &&
6285 val < rps->cur_freq)
6286 new_power = LOW_POWER;
6287 else if (val >= rps->rp0_freq &&
6288 val > rps->cur_freq)
6289 new_power = HIGH_POWER;
6293 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6294 val < rps->cur_freq)
6295 new_power = BETWEEN;
6298 /* Max/min bins are special */
6299 if (val <= rps->min_freq_softlimit)
6300 new_power = LOW_POWER;
6301 if (val >= rps->max_freq_softlimit)
6302 new_power = HIGH_POWER;
6303 if (new_power == rps->power)
6306 /* Note the units here are not exactly 1us, but 1280ns. */
6307 switch (new_power) {
6309 /* Upclock if more than 95% busy over 16ms */
6313 /* Downclock if less than 85% busy over 32ms */
6315 threshold_down = 85;
6319 /* Upclock if more than 90% busy over 13ms */
6323 /* Downclock if less than 75% busy over 32ms */
6325 threshold_down = 75;
6329 /* Upclock if more than 85% busy over 10ms */
6333 /* Downclock if less than 60% busy over 32ms */
6335 threshold_down = 60;
6339 /* When byt can survive without system hang with dynamic
6340 * sw freq adjustments, this restriction can be lifted.
6342 if (IS_VALLEYVIEW(dev_priv))
6345 I915_WRITE(GEN6_RP_UP_EI,
6346 GT_INTERVAL_FROM_US(dev_priv, ei_up));
6347 I915_WRITE(GEN6_RP_UP_THRESHOLD,
6348 GT_INTERVAL_FROM_US(dev_priv,
6349 ei_up * threshold_up / 100));
6351 I915_WRITE(GEN6_RP_DOWN_EI,
6352 GT_INTERVAL_FROM_US(dev_priv, ei_down));
6353 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6354 GT_INTERVAL_FROM_US(dev_priv,
6355 ei_down * threshold_down / 100));
6357 I915_WRITE(GEN6_RP_CONTROL,
6358 GEN6_RP_MEDIA_TURBO |
6359 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6360 GEN6_RP_MEDIA_IS_GFX |
6362 GEN6_RP_UP_BUSY_AVG |
6363 GEN6_RP_DOWN_IDLE_AVG);
6366 rps->power = new_power;
6367 rps->up_threshold = threshold_up;
6368 rps->down_threshold = threshold_down;
6372 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6374 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6377 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6378 if (val > rps->min_freq_softlimit)
6379 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6380 if (val < rps->max_freq_softlimit)
6381 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6383 mask &= dev_priv->pm_rps_events;
6385 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6388 /* gen6_set_rps is called to update the frequency request, but should also be
6389 * called when the range (min_delay and max_delay) is modified so that we can
6390 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6391 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6393 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6395 /* min/max delay may still have been modified so be sure to
6396 * write the limits value.
6398 if (val != rps->cur_freq) {
6399 gen6_set_rps_thresholds(dev_priv, val);
6401 if (INTEL_GEN(dev_priv) >= 9)
6402 I915_WRITE(GEN6_RPNSWREQ,
6403 GEN9_FREQUENCY(val));
6404 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6405 I915_WRITE(GEN6_RPNSWREQ,
6406 HSW_FREQUENCY(val));
6408 I915_WRITE(GEN6_RPNSWREQ,
6409 GEN6_FREQUENCY(val) |
6411 GEN6_AGGRESSIVE_TURBO);
6414 /* Make sure we continue to get interrupts
6415 * until we hit the minimum or maximum frequencies.
6417 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6418 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6420 rps->cur_freq = val;
6421 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6426 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6430 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6431 "Odd GPU freq value\n"))
6434 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6436 if (val != dev_priv->gt_pm.rps.cur_freq) {
6437 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6441 gen6_set_rps_thresholds(dev_priv, val);
6444 dev_priv->gt_pm.rps.cur_freq = val;
6445 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6450 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6452 * * If Gfx is Idle, then
6453 * 1. Forcewake Media well.
6454 * 2. Request idle freq.
6455 * 3. Release Forcewake of Media well.
6457 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6459 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6460 u32 val = rps->idle_freq;
6463 if (rps->cur_freq <= val)
6466 /* The punit delays the write of the frequency and voltage until it
6467 * determines the GPU is awake. During normal usage we don't want to
6468 * waste power changing the frequency if the GPU is sleeping (rc6).
6469 * However, the GPU and driver is now idle and we do not want to delay
6470 * switching to minimum voltage (reducing power whilst idle) as we do
6471 * not expect to be woken in the near future and so must flush the
6472 * change by waking the device.
6474 * We choose to take the media powerwell (either would do to trick the
6475 * punit into committing the voltage change) as that takes a lot less
6476 * power than the render powerwell.
6478 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6479 err = valleyview_set_rps(dev_priv, val);
6480 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6483 DRM_ERROR("Failed to set RPS for idle\n");
6486 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6488 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6490 mutex_lock(&dev_priv->pcu_lock);
6494 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6495 gen6_rps_reset_ei(dev_priv);
6496 I915_WRITE(GEN6_PMINTRMSK,
6497 gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6499 gen6_enable_rps_interrupts(dev_priv);
6501 /* Use the user's desired frequency as a guide, but for better
6502 * performance, jump directly to RPe as our starting frequency.
6504 freq = max(rps->cur_freq,
6505 rps->efficient_freq);
6507 if (intel_set_rps(dev_priv,
6509 rps->min_freq_softlimit,
6510 rps->max_freq_softlimit)))
6511 DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6513 mutex_unlock(&dev_priv->pcu_lock);
6516 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6518 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6520 /* Flush our bottom-half so that it does not race with us
6521 * setting the idle frequency and so that it is bounded by
6522 * our rpm wakeref. And then disable the interrupts to stop any
6523 * futher RPS reclocking whilst we are asleep.
6525 gen6_disable_rps_interrupts(dev_priv);
6527 mutex_lock(&dev_priv->pcu_lock);
6529 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6530 vlv_set_rps_idle(dev_priv);
6532 gen6_set_rps(dev_priv, rps->idle_freq);
6534 I915_WRITE(GEN6_PMINTRMSK,
6535 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6537 mutex_unlock(&dev_priv->pcu_lock);
6540 void gen6_rps_boost(struct i915_request *rq,
6541 struct intel_rps_client *rps_client)
6543 struct intel_rps *rps = &rq->i915->gt_pm.rps;
6544 unsigned long flags;
6547 /* This is intentionally racy! We peek at the state here, then
6548 * validate inside the RPS worker.
6553 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
6556 /* Serializes with i915_request_retire() */
6558 spin_lock_irqsave(&rq->lock, flags);
6559 if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
6560 boost = !atomic_fetch_inc(&rps->num_waiters);
6561 rq->waitboost = true;
6563 spin_unlock_irqrestore(&rq->lock, flags);
6567 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6568 schedule_work(&rps->work);
6570 atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6573 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6575 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6578 lockdep_assert_held(&dev_priv->pcu_lock);
6579 GEM_BUG_ON(val > rps->max_freq);
6580 GEM_BUG_ON(val < rps->min_freq);
6582 if (!rps->enabled) {
6583 rps->cur_freq = val;
6587 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6588 err = valleyview_set_rps(dev_priv, val);
6590 err = gen6_set_rps(dev_priv, val);
6595 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6597 I915_WRITE(GEN6_RC_CONTROL, 0);
6598 I915_WRITE(GEN9_PG_ENABLE, 0);
6601 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6603 I915_WRITE(GEN6_RP_CONTROL, 0);
6606 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6608 I915_WRITE(GEN6_RC_CONTROL, 0);
6611 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6613 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6614 I915_WRITE(GEN6_RP_CONTROL, 0);
6617 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6619 I915_WRITE(GEN6_RC_CONTROL, 0);
6622 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6624 I915_WRITE(GEN6_RP_CONTROL, 0);
6627 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6629 /* We're doing forcewake before Disabling RC6,
6630 * This what the BIOS expects when going into suspend */
6631 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6633 I915_WRITE(GEN6_RC_CONTROL, 0);
6635 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6638 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6640 I915_WRITE(GEN6_RP_CONTROL, 0);
6643 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6645 bool enable_rc6 = true;
6646 unsigned long rc6_ctx_base;
6650 rc_ctl = I915_READ(GEN6_RC_CONTROL);
6651 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6652 RC_SW_TARGET_STATE_SHIFT;
6653 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6654 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6655 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6656 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6659 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6660 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6665 * The exact context size is not known for BXT, so assume a page size
6668 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6669 if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
6670 (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6671 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6675 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6676 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6677 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6678 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6679 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6683 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6684 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6685 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6686 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6690 if (!I915_READ(GEN6_GFXPAUSE)) {
6691 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6695 if (!I915_READ(GEN8_MISC_CTRL0)) {
6696 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6703 static bool sanitize_rc6(struct drm_i915_private *i915)
6705 struct intel_device_info *info = mkwrite_device_info(i915);
6707 /* Powersaving is controlled by the host when inside a VM */
6708 if (intel_vgpu_active(i915))
6711 if (info->has_rc6 &&
6712 IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6713 DRM_INFO("RC6 disabled by BIOS\n");
6718 * We assume that we do not have any deep rc6 levels if we don't have
6719 * have the previous rc6 level supported, i.e. we use HAS_RC6()
6720 * as the initial coarse check for rc6 in general, moving on to
6721 * progressively finer/deeper levels.
6723 if (!info->has_rc6 && info->has_rc6p)
6726 return info->has_rc6;
6729 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6731 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6733 /* All of these values are in units of 50MHz */
6735 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6736 if (IS_GEN9_LP(dev_priv)) {
6737 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6738 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6739 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6740 rps->min_freq = (rp_state_cap >> 0) & 0xff;
6742 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6743 rps->rp0_freq = (rp_state_cap >> 0) & 0xff;
6744 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
6745 rps->min_freq = (rp_state_cap >> 16) & 0xff;
6747 /* hw_max = RP0 until we check for overclocking */
6748 rps->max_freq = rps->rp0_freq;
6750 rps->efficient_freq = rps->rp1_freq;
6751 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6752 IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6753 u32 ddcc_status = 0;
6755 if (sandybridge_pcode_read(dev_priv,
6756 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6758 rps->efficient_freq =
6760 ((ddcc_status >> 8) & 0xff),
6765 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6766 /* Store the frequency values in 16.66 MHZ units, which is
6767 * the natural hardware unit for SKL
6769 rps->rp0_freq *= GEN9_FREQ_SCALER;
6770 rps->rp1_freq *= GEN9_FREQ_SCALER;
6771 rps->min_freq *= GEN9_FREQ_SCALER;
6772 rps->max_freq *= GEN9_FREQ_SCALER;
6773 rps->efficient_freq *= GEN9_FREQ_SCALER;
6777 static void reset_rps(struct drm_i915_private *dev_priv,
6778 int (*set)(struct drm_i915_private *, u8))
6780 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6781 u8 freq = rps->cur_freq;
6787 if (set(dev_priv, freq))
6788 DRM_ERROR("Failed to reset RPS to initial values\n");
6791 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6792 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6794 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6796 /* Program defaults and thresholds for RPS */
6797 if (IS_GEN9(dev_priv))
6798 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6799 GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6801 /* 1 second timeout*/
6802 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6803 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6805 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6807 /* Leaning on the below call to gen6_set_rps to program/setup the
6808 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6809 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6810 reset_rps(dev_priv, gen6_set_rps);
6812 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6815 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6817 struct intel_engine_cs *engine;
6818 enum intel_engine_id id;
6821 /* 1a: Software RC state - RC0 */
6822 I915_WRITE(GEN6_RC_STATE, 0);
6824 /* 1b: Get forcewake during program sequence. Although the driver
6825 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6826 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6828 /* 2a: Disable RC states. */
6829 I915_WRITE(GEN6_RC_CONTROL, 0);
6831 /* 2b: Program RC6 thresholds.*/
6832 if (INTEL_GEN(dev_priv) >= 10) {
6833 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
6834 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
6835 } else if (IS_SKYLAKE(dev_priv)) {
6837 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
6838 * when CPG is enabled
6840 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6842 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6845 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6846 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6847 for_each_engine(engine, dev_priv, id)
6848 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6850 if (HAS_GUC(dev_priv))
6851 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6853 I915_WRITE(GEN6_RC_SLEEP, 0);
6856 * 2c: Program Coarse Power Gating Policies.
6858 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
6859 * use instead is a more conservative estimate for the maximum time
6860 * it takes us to service a CS interrupt and submit a new ELSP - that
6861 * is the time which the GPU is idle waiting for the CPU to select the
6862 * next request to execute. If the idle hysteresis is less than that
6863 * interrupt service latency, the hardware will automatically gate
6864 * the power well and we will then incur the wake up cost on top of
6865 * the service latency. A similar guide from intel_pstate is that we
6866 * do not want the enable hysteresis to less than the wakeup latency.
6868 * igt/gem_exec_nop/sequential provides a rough estimate for the
6869 * service latency, and puts it around 10us for Broadwell (and other
6870 * big core) and around 40us for Broxton (and other low power cores).
6871 * [Note that for legacy ringbuffer submission, this is less than 1us!]
6872 * However, the wakeup latency on Broxton is closer to 100us. To be
6873 * conservative, we have to factor in a context switch on top (due
6876 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
6877 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6879 /* 3a: Enable RC6 */
6880 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6882 /* WaRsUseTimeoutMode:cnl (pre-prod) */
6883 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
6884 rc6_mode = GEN7_RC_CTL_TO_MODE;
6886 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
6888 I915_WRITE(GEN6_RC_CONTROL,
6889 GEN6_RC_CTL_HW_ENABLE |
6890 GEN6_RC_CTL_RC6_ENABLE |
6894 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6895 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
6897 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6898 I915_WRITE(GEN9_PG_ENABLE, 0);
6900 I915_WRITE(GEN9_PG_ENABLE,
6901 GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
6903 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6906 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6908 struct intel_engine_cs *engine;
6909 enum intel_engine_id id;
6911 /* 1a: Software RC state - RC0 */
6912 I915_WRITE(GEN6_RC_STATE, 0);
6914 /* 1b: Get forcewake during program sequence. Although the driver
6915 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6916 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6918 /* 2a: Disable RC states. */
6919 I915_WRITE(GEN6_RC_CONTROL, 0);
6921 /* 2b: Program RC6 thresholds.*/
6922 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6923 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6924 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6925 for_each_engine(engine, dev_priv, id)
6926 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6927 I915_WRITE(GEN6_RC_SLEEP, 0);
6928 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6932 I915_WRITE(GEN6_RC_CONTROL,
6933 GEN6_RC_CTL_HW_ENABLE |
6934 GEN7_RC_CTL_TO_MODE |
6935 GEN6_RC_CTL_RC6_ENABLE);
6937 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6940 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6942 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6944 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6946 /* 1 Program defaults and thresholds for RPS*/
6947 I915_WRITE(GEN6_RPNSWREQ,
6948 HSW_FREQUENCY(rps->rp1_freq));
6949 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6950 HSW_FREQUENCY(rps->rp1_freq));
6951 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6952 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6954 /* Docs recommend 900MHz, and 300 MHz respectively */
6955 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6956 rps->max_freq_softlimit << 24 |
6957 rps->min_freq_softlimit << 16);
6959 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6960 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6961 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6962 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6964 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6967 I915_WRITE(GEN6_RP_CONTROL,
6968 GEN6_RP_MEDIA_TURBO |
6969 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6970 GEN6_RP_MEDIA_IS_GFX |
6972 GEN6_RP_UP_BUSY_AVG |
6973 GEN6_RP_DOWN_IDLE_AVG);
6975 reset_rps(dev_priv, gen6_set_rps);
6977 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6980 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
6982 struct intel_engine_cs *engine;
6983 enum intel_engine_id id;
6984 u32 rc6vids, rc6_mask;
6988 I915_WRITE(GEN6_RC_STATE, 0);
6990 /* Clear the DBG now so we don't confuse earlier errors */
6991 gtfifodbg = I915_READ(GTFIFODBG);
6993 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
6994 I915_WRITE(GTFIFODBG, gtfifodbg);
6997 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6999 /* disable the counters and set deterministic thresholds */
7000 I915_WRITE(GEN6_RC_CONTROL, 0);
7002 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7003 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7004 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7005 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7006 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7008 for_each_engine(engine, dev_priv, id)
7009 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7011 I915_WRITE(GEN6_RC_SLEEP, 0);
7012 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7013 if (IS_IVYBRIDGE(dev_priv))
7014 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7016 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7017 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7018 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7020 /* We don't use those on Haswell */
7021 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7022 if (HAS_RC6p(dev_priv))
7023 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7024 if (HAS_RC6pp(dev_priv))
7025 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7026 I915_WRITE(GEN6_RC_CONTROL,
7028 GEN6_RC_CTL_EI_MODE(1) |
7029 GEN6_RC_CTL_HW_ENABLE);
7032 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7033 if (IS_GEN6(dev_priv) && ret) {
7034 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7035 } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7036 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7037 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7038 rc6vids &= 0xffff00;
7039 rc6vids |= GEN6_ENCODE_RC6_VID(450);
7040 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7042 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7045 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7048 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7050 /* Here begins a magic sequence of register writes to enable
7051 * auto-downclocking.
7053 * Perhaps there might be some value in exposing these to
7056 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7058 /* Power down if completely idle for over 50ms */
7059 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7060 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7062 reset_rps(dev_priv, gen6_set_rps);
7064 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7067 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7069 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7070 const int min_freq = 15;
7071 const int scaling_factor = 180;
7072 unsigned int gpu_freq;
7073 unsigned int max_ia_freq, min_ring_freq;
7074 unsigned int max_gpu_freq, min_gpu_freq;
7075 struct cpufreq_policy *policy;
7077 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7079 if (rps->max_freq <= rps->min_freq)
7082 policy = cpufreq_cpu_get(0);
7084 max_ia_freq = policy->cpuinfo.max_freq;
7085 cpufreq_cpu_put(policy);
7088 * Default to measured freq if none found, PCU will ensure we
7091 max_ia_freq = tsc_khz;
7094 /* Convert from kHz to MHz */
7095 max_ia_freq /= 1000;
7097 min_ring_freq = I915_READ(DCLK) & 0xf;
7098 /* convert DDR frequency from units of 266.6MHz to bandwidth */
7099 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7101 min_gpu_freq = rps->min_freq;
7102 max_gpu_freq = rps->max_freq;
7103 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7104 /* Convert GT frequency to 50 HZ units */
7105 min_gpu_freq /= GEN9_FREQ_SCALER;
7106 max_gpu_freq /= GEN9_FREQ_SCALER;
7110 * For each potential GPU frequency, load a ring frequency we'd like
7111 * to use for memory access. We do this by specifying the IA frequency
7112 * the PCU should use as a reference to determine the ring frequency.
7114 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7115 const int diff = max_gpu_freq - gpu_freq;
7116 unsigned int ia_freq = 0, ring_freq = 0;
7118 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7120 * ring_freq = 2 * GT. ring_freq is in 100MHz units
7121 * No floor required for ring frequency on SKL.
7123 ring_freq = gpu_freq;
7124 } else if (INTEL_GEN(dev_priv) >= 8) {
7125 /* max(2 * GT, DDR). NB: GT is 50MHz units */
7126 ring_freq = max(min_ring_freq, gpu_freq);
7127 } else if (IS_HASWELL(dev_priv)) {
7128 ring_freq = mult_frac(gpu_freq, 5, 4);
7129 ring_freq = max(min_ring_freq, ring_freq);
7130 /* leave ia_freq as the default, chosen by cpufreq */
7132 /* On older processors, there is no separate ring
7133 * clock domain, so in order to boost the bandwidth
7134 * of the ring, we need to upclock the CPU (ia_freq).
7136 * For GPU frequencies less than 750MHz,
7137 * just use the lowest ring freq.
7139 if (gpu_freq < min_freq)
7142 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7143 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7146 sandybridge_pcode_write(dev_priv,
7147 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7148 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7149 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7154 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7158 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7160 switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
7162 /* (2 * 4) config */
7163 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7166 /* (2 * 6) config */
7167 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7170 /* (2 * 8) config */
7172 /* Setting (2 * 8) Min RP0 for any other combination */
7173 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7177 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7182 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7186 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7187 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7192 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7196 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7197 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7202 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7206 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7207 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7208 FB_GFX_FREQ_FUSE_MASK);
7213 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7217 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7219 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7224 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7228 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7230 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7232 rp0 = min_t(u32, rp0, 0xea);
7237 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7241 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7242 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7243 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7244 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7249 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7253 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7255 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7256 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7257 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7258 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7259 * to make sure it matches what Punit accepts.
7261 return max_t(u32, val, 0xc0);
7264 /* Check that the pctx buffer wasn't move under us. */
7265 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7267 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7269 WARN_ON(pctx_addr != dev_priv->dsm.start +
7270 dev_priv->vlv_pctx->stolen->start);
7274 /* Check that the pcbr address is not empty. */
7275 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7277 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7279 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7282 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7284 resource_size_t pctx_paddr, paddr;
7285 resource_size_t pctx_size = 32*1024;
7288 pcbr = I915_READ(VLV_PCBR);
7289 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7290 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7291 paddr = dev_priv->dsm.end + 1 - pctx_size;
7292 GEM_BUG_ON(paddr > U32_MAX);
7294 pctx_paddr = (paddr & (~4095));
7295 I915_WRITE(VLV_PCBR, pctx_paddr);
7298 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7301 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7303 struct drm_i915_gem_object *pctx;
7304 resource_size_t pctx_paddr;
7305 resource_size_t pctx_size = 24*1024;
7308 pcbr = I915_READ(VLV_PCBR);
7310 /* BIOS set it up already, grab the pre-alloc'd space */
7311 resource_size_t pcbr_offset;
7313 pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7314 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7316 I915_GTT_OFFSET_NONE,
7321 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7324 * From the Gunit register HAS:
7325 * The Gfx driver is expected to program this register and ensure
7326 * proper allocation within Gfx stolen memory. For example, this
7327 * register should be programmed such than the PCBR range does not
7328 * overlap with other ranges, such as the frame buffer, protected
7329 * memory, or any other relevant ranges.
7331 pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7333 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7337 GEM_BUG_ON(range_overflows_t(u64,
7338 dev_priv->dsm.start,
7339 pctx->stolen->start,
7341 pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7342 I915_WRITE(VLV_PCBR, pctx_paddr);
7345 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7346 dev_priv->vlv_pctx = pctx;
7349 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7351 if (WARN_ON(!dev_priv->vlv_pctx))
7354 i915_gem_object_put(dev_priv->vlv_pctx);
7355 dev_priv->vlv_pctx = NULL;
7358 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7360 dev_priv->gt_pm.rps.gpll_ref_freq =
7361 vlv_get_cck_clock(dev_priv, "GPLL ref",
7362 CCK_GPLL_CLOCK_CONTROL,
7363 dev_priv->czclk_freq);
7365 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7366 dev_priv->gt_pm.rps.gpll_ref_freq);
7369 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7371 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7374 valleyview_setup_pctx(dev_priv);
7376 vlv_init_gpll_ref_freq(dev_priv);
7378 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7379 switch ((val >> 6) & 3) {
7382 dev_priv->mem_freq = 800;
7385 dev_priv->mem_freq = 1066;
7388 dev_priv->mem_freq = 1333;
7391 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7393 rps->max_freq = valleyview_rps_max_freq(dev_priv);
7394 rps->rp0_freq = rps->max_freq;
7395 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7396 intel_gpu_freq(dev_priv, rps->max_freq),
7399 rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7400 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7401 intel_gpu_freq(dev_priv, rps->efficient_freq),
7402 rps->efficient_freq);
7404 rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7405 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7406 intel_gpu_freq(dev_priv, rps->rp1_freq),
7409 rps->min_freq = valleyview_rps_min_freq(dev_priv);
7410 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7411 intel_gpu_freq(dev_priv, rps->min_freq),
7415 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7417 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7420 cherryview_setup_pctx(dev_priv);
7422 vlv_init_gpll_ref_freq(dev_priv);
7424 mutex_lock(&dev_priv->sb_lock);
7425 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7426 mutex_unlock(&dev_priv->sb_lock);
7428 switch ((val >> 2) & 0x7) {
7430 dev_priv->mem_freq = 2000;
7433 dev_priv->mem_freq = 1600;
7436 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7438 rps->max_freq = cherryview_rps_max_freq(dev_priv);
7439 rps->rp0_freq = rps->max_freq;
7440 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7441 intel_gpu_freq(dev_priv, rps->max_freq),
7444 rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7445 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7446 intel_gpu_freq(dev_priv, rps->efficient_freq),
7447 rps->efficient_freq);
7449 rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7450 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7451 intel_gpu_freq(dev_priv, rps->rp1_freq),
7454 rps->min_freq = cherryview_rps_min_freq(dev_priv);
7455 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7456 intel_gpu_freq(dev_priv, rps->min_freq),
7459 WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7461 "Odd GPU freq values\n");
7464 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7466 valleyview_cleanup_pctx(dev_priv);
7469 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7471 struct intel_engine_cs *engine;
7472 enum intel_engine_id id;
7473 u32 gtfifodbg, rc6_mode, pcbr;
7475 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7476 GT_FIFO_FREE_ENTRIES_CHV);
7478 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7480 I915_WRITE(GTFIFODBG, gtfifodbg);
7483 cherryview_check_pctx(dev_priv);
7485 /* 1a & 1b: Get forcewake during program sequence. Although the driver
7486 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7487 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7489 /* Disable RC states. */
7490 I915_WRITE(GEN6_RC_CONTROL, 0);
7492 /* 2a: Program RC6 thresholds.*/
7493 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7494 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7495 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7497 for_each_engine(engine, dev_priv, id)
7498 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7499 I915_WRITE(GEN6_RC_SLEEP, 0);
7501 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7502 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7504 /* Allows RC6 residency counter to work */
7505 I915_WRITE(VLV_COUNTER_CONTROL,
7506 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7507 VLV_MEDIA_RC6_COUNT_EN |
7508 VLV_RENDER_RC6_COUNT_EN));
7510 /* For now we assume BIOS is allocating and populating the PCBR */
7511 pcbr = I915_READ(VLV_PCBR);
7515 if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7516 rc6_mode = GEN7_RC_CTL_TO_MODE;
7517 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7519 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7522 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7526 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7528 /* 1: Program defaults and thresholds for RPS*/
7529 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7530 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7531 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7532 I915_WRITE(GEN6_RP_UP_EI, 66000);
7533 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7535 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7538 I915_WRITE(GEN6_RP_CONTROL,
7539 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7540 GEN6_RP_MEDIA_IS_GFX |
7542 GEN6_RP_UP_BUSY_AVG |
7543 GEN6_RP_DOWN_IDLE_AVG);
7545 /* Setting Fixed Bias */
7546 val = VLV_OVERRIDE_EN |
7548 CHV_BIAS_CPU_50_SOC_50;
7549 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7551 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7553 /* RPS code assumes GPLL is used */
7554 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7556 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7557 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7559 reset_rps(dev_priv, valleyview_set_rps);
7561 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7564 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7566 struct intel_engine_cs *engine;
7567 enum intel_engine_id id;
7570 valleyview_check_pctx(dev_priv);
7572 gtfifodbg = I915_READ(GTFIFODBG);
7574 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7576 I915_WRITE(GTFIFODBG, gtfifodbg);
7579 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7581 /* Disable RC states. */
7582 I915_WRITE(GEN6_RC_CONTROL, 0);
7584 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7585 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7586 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7588 for_each_engine(engine, dev_priv, id)
7589 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7591 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7593 /* Allows RC6 residency counter to work */
7594 I915_WRITE(VLV_COUNTER_CONTROL,
7595 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7596 VLV_MEDIA_RC0_COUNT_EN |
7597 VLV_RENDER_RC0_COUNT_EN |
7598 VLV_MEDIA_RC6_COUNT_EN |
7599 VLV_RENDER_RC6_COUNT_EN));
7601 I915_WRITE(GEN6_RC_CONTROL,
7602 GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7604 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7607 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7611 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7613 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7614 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7615 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7616 I915_WRITE(GEN6_RP_UP_EI, 66000);
7617 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7619 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7621 I915_WRITE(GEN6_RP_CONTROL,
7622 GEN6_RP_MEDIA_TURBO |
7623 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7624 GEN6_RP_MEDIA_IS_GFX |
7626 GEN6_RP_UP_BUSY_AVG |
7627 GEN6_RP_DOWN_IDLE_CONT);
7629 /* Setting Fixed Bias */
7630 val = VLV_OVERRIDE_EN |
7632 VLV_BIAS_CPU_125_SOC_875;
7633 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7635 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7637 /* RPS code assumes GPLL is used */
7638 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7640 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7641 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7643 reset_rps(dev_priv, valleyview_set_rps);
7645 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7648 static unsigned long intel_pxfreq(u32 vidfreq)
7651 int div = (vidfreq & 0x3f0000) >> 16;
7652 int post = (vidfreq & 0x3000) >> 12;
7653 int pre = (vidfreq & 0x7);
7658 freq = ((div * 133333) / ((1<<post) * pre));
7663 static const struct cparams {
7669 { 1, 1333, 301, 28664 },
7670 { 1, 1066, 294, 24460 },
7671 { 1, 800, 294, 25192 },
7672 { 0, 1333, 276, 27605 },
7673 { 0, 1066, 276, 27605 },
7674 { 0, 800, 231, 23784 },
7677 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7679 u64 total_count, diff, ret;
7680 u32 count1, count2, count3, m = 0, c = 0;
7681 unsigned long now = jiffies_to_msecs(jiffies), diff1;
7684 lockdep_assert_held(&mchdev_lock);
7686 diff1 = now - dev_priv->ips.last_time1;
7688 /* Prevent division-by-zero if we are asking too fast.
7689 * Also, we don't get interesting results if we are polling
7690 * faster than once in 10ms, so just return the saved value
7694 return dev_priv->ips.chipset_power;
7696 count1 = I915_READ(DMIEC);
7697 count2 = I915_READ(DDREC);
7698 count3 = I915_READ(CSIEC);
7700 total_count = count1 + count2 + count3;
7702 /* FIXME: handle per-counter overflow */
7703 if (total_count < dev_priv->ips.last_count1) {
7704 diff = ~0UL - dev_priv->ips.last_count1;
7705 diff += total_count;
7707 diff = total_count - dev_priv->ips.last_count1;
7710 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7711 if (cparams[i].i == dev_priv->ips.c_m &&
7712 cparams[i].t == dev_priv->ips.r_t) {
7719 diff = div_u64(diff, diff1);
7720 ret = ((m * diff) + c);
7721 ret = div_u64(ret, 10);
7723 dev_priv->ips.last_count1 = total_count;
7724 dev_priv->ips.last_time1 = now;
7726 dev_priv->ips.chipset_power = ret;
7731 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7735 if (!IS_GEN5(dev_priv))
7738 spin_lock_irq(&mchdev_lock);
7740 val = __i915_chipset_val(dev_priv);
7742 spin_unlock_irq(&mchdev_lock);
7747 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7749 unsigned long m, x, b;
7752 tsfs = I915_READ(TSFS);
7754 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7755 x = I915_READ8(TR1);
7757 b = tsfs & TSFS_INTR_MASK;
7759 return ((m * x) / 127) - b;
7762 static int _pxvid_to_vd(u8 pxvid)
7767 if (pxvid >= 8 && pxvid < 31)
7770 return (pxvid + 2) * 125;
7773 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7775 const int vd = _pxvid_to_vd(pxvid);
7776 const int vm = vd - 1125;
7778 if (INTEL_INFO(dev_priv)->is_mobile)
7779 return vm > 0 ? vm : 0;
7784 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7786 u64 now, diff, diffms;
7789 lockdep_assert_held(&mchdev_lock);
7791 now = ktime_get_raw_ns();
7792 diffms = now - dev_priv->ips.last_time2;
7793 do_div(diffms, NSEC_PER_MSEC);
7795 /* Don't divide by 0 */
7799 count = I915_READ(GFXEC);
7801 if (count < dev_priv->ips.last_count2) {
7802 diff = ~0UL - dev_priv->ips.last_count2;
7805 diff = count - dev_priv->ips.last_count2;
7808 dev_priv->ips.last_count2 = count;
7809 dev_priv->ips.last_time2 = now;
7811 /* More magic constants... */
7813 diff = div_u64(diff, diffms * 10);
7814 dev_priv->ips.gfx_power = diff;
7817 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7819 if (!IS_GEN5(dev_priv))
7822 spin_lock_irq(&mchdev_lock);
7824 __i915_update_gfx_val(dev_priv);
7826 spin_unlock_irq(&mchdev_lock);
7829 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7831 unsigned long t, corr, state1, corr2, state2;
7834 lockdep_assert_held(&mchdev_lock);
7836 pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7837 pxvid = (pxvid >> 24) & 0x7f;
7838 ext_v = pvid_to_extvid(dev_priv, pxvid);
7842 t = i915_mch_val(dev_priv);
7844 /* Revel in the empirically derived constants */
7846 /* Correction factor in 1/100000 units */
7848 corr = ((t * 2349) + 135940);
7850 corr = ((t * 964) + 29317);
7852 corr = ((t * 301) + 1004);
7854 corr = corr * ((150142 * state1) / 10000 - 78642);
7856 corr2 = (corr * dev_priv->ips.corr);
7858 state2 = (corr2 * state1) / 10000;
7859 state2 /= 100; /* convert to mW */
7861 __i915_update_gfx_val(dev_priv);
7863 return dev_priv->ips.gfx_power + state2;
7866 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7870 if (!IS_GEN5(dev_priv))
7873 spin_lock_irq(&mchdev_lock);
7875 val = __i915_gfx_val(dev_priv);
7877 spin_unlock_irq(&mchdev_lock);
7883 * i915_read_mch_val - return value for IPS use
7885 * Calculate and return a value for the IPS driver to use when deciding whether
7886 * we have thermal and power headroom to increase CPU or GPU power budget.
7888 unsigned long i915_read_mch_val(void)
7890 struct drm_i915_private *dev_priv;
7891 unsigned long chipset_val, graphics_val, ret = 0;
7893 spin_lock_irq(&mchdev_lock);
7896 dev_priv = i915_mch_dev;
7898 chipset_val = __i915_chipset_val(dev_priv);
7899 graphics_val = __i915_gfx_val(dev_priv);
7901 ret = chipset_val + graphics_val;
7904 spin_unlock_irq(&mchdev_lock);
7908 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7911 * i915_gpu_raise - raise GPU frequency limit
7913 * Raise the limit; IPS indicates we have thermal headroom.
7915 bool i915_gpu_raise(void)
7917 struct drm_i915_private *dev_priv;
7920 spin_lock_irq(&mchdev_lock);
7921 if (!i915_mch_dev) {
7925 dev_priv = i915_mch_dev;
7927 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7928 dev_priv->ips.max_delay--;
7931 spin_unlock_irq(&mchdev_lock);
7935 EXPORT_SYMBOL_GPL(i915_gpu_raise);
7938 * i915_gpu_lower - lower GPU frequency limit
7940 * IPS indicates we're close to a thermal limit, so throttle back the GPU
7941 * frequency maximum.
7943 bool i915_gpu_lower(void)
7945 struct drm_i915_private *dev_priv;
7948 spin_lock_irq(&mchdev_lock);
7949 if (!i915_mch_dev) {
7953 dev_priv = i915_mch_dev;
7955 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7956 dev_priv->ips.max_delay++;
7959 spin_unlock_irq(&mchdev_lock);
7963 EXPORT_SYMBOL_GPL(i915_gpu_lower);
7966 * i915_gpu_busy - indicate GPU business to IPS
7968 * Tell the IPS driver whether or not the GPU is busy.
7970 bool i915_gpu_busy(void)
7974 spin_lock_irq(&mchdev_lock);
7976 ret = i915_mch_dev->gt.awake;
7977 spin_unlock_irq(&mchdev_lock);
7981 EXPORT_SYMBOL_GPL(i915_gpu_busy);
7984 * i915_gpu_turbo_disable - disable graphics turbo
7986 * Disable graphics turbo by resetting the max frequency and setting the
7987 * current frequency to the default.
7989 bool i915_gpu_turbo_disable(void)
7991 struct drm_i915_private *dev_priv;
7994 spin_lock_irq(&mchdev_lock);
7995 if (!i915_mch_dev) {
7999 dev_priv = i915_mch_dev;
8001 dev_priv->ips.max_delay = dev_priv->ips.fstart;
8003 if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
8007 spin_unlock_irq(&mchdev_lock);
8011 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8014 * Tells the intel_ips driver that the i915 driver is now loaded, if
8015 * IPS got loaded first.
8017 * This awkward dance is so that neither module has to depend on the
8018 * other in order for IPS to do the appropriate communication of
8019 * GPU turbo limits to i915.
8022 ips_ping_for_i915_load(void)
8026 link = symbol_get(ips_link_to_i915_driver);
8029 symbol_put(ips_link_to_i915_driver);
8033 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8035 /* We only register the i915 ips part with intel-ips once everything is
8036 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8037 spin_lock_irq(&mchdev_lock);
8038 i915_mch_dev = dev_priv;
8039 spin_unlock_irq(&mchdev_lock);
8041 ips_ping_for_i915_load();
8044 void intel_gpu_ips_teardown(void)
8046 spin_lock_irq(&mchdev_lock);
8047 i915_mch_dev = NULL;
8048 spin_unlock_irq(&mchdev_lock);
8051 static void intel_init_emon(struct drm_i915_private *dev_priv)
8057 /* Disable to program */
8061 /* Program energy weights for various events */
8062 I915_WRITE(SDEW, 0x15040d00);
8063 I915_WRITE(CSIEW0, 0x007f0000);
8064 I915_WRITE(CSIEW1, 0x1e220004);
8065 I915_WRITE(CSIEW2, 0x04000004);
8067 for (i = 0; i < 5; i++)
8068 I915_WRITE(PEW(i), 0);
8069 for (i = 0; i < 3; i++)
8070 I915_WRITE(DEW(i), 0);
8072 /* Program P-state weights to account for frequency power adjustment */
8073 for (i = 0; i < 16; i++) {
8074 u32 pxvidfreq = I915_READ(PXVFREQ(i));
8075 unsigned long freq = intel_pxfreq(pxvidfreq);
8076 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8081 val *= (freq / 1000);
8083 val /= (127*127*900);
8085 DRM_ERROR("bad pxval: %ld\n", val);
8088 /* Render standby states get 0 weight */
8092 for (i = 0; i < 4; i++) {
8093 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8094 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8095 I915_WRITE(PXW(i), val);
8098 /* Adjust magic regs to magic values (more experimental results) */
8099 I915_WRITE(OGW0, 0);
8100 I915_WRITE(OGW1, 0);
8101 I915_WRITE(EG0, 0x00007f00);
8102 I915_WRITE(EG1, 0x0000000e);
8103 I915_WRITE(EG2, 0x000e0000);
8104 I915_WRITE(EG3, 0x68000300);
8105 I915_WRITE(EG4, 0x42000000);
8106 I915_WRITE(EG5, 0x00140031);
8110 for (i = 0; i < 8; i++)
8111 I915_WRITE(PXWL(i), 0);
8113 /* Enable PMON + select events */
8114 I915_WRITE(ECR, 0x80000019);
8116 lcfuse = I915_READ(LCFUSE02);
8118 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8121 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8123 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8126 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8129 if (!sanitize_rc6(dev_priv)) {
8130 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8131 intel_runtime_pm_get(dev_priv);
8134 mutex_lock(&dev_priv->pcu_lock);
8136 /* Initialize RPS limits (for userspace) */
8137 if (IS_CHERRYVIEW(dev_priv))
8138 cherryview_init_gt_powersave(dev_priv);
8139 else if (IS_VALLEYVIEW(dev_priv))
8140 valleyview_init_gt_powersave(dev_priv);
8141 else if (INTEL_GEN(dev_priv) >= 6)
8142 gen6_init_rps_frequencies(dev_priv);
8144 /* Derive initial user preferences/limits from the hardware limits */
8145 rps->idle_freq = rps->min_freq;
8146 rps->cur_freq = rps->idle_freq;
8148 rps->max_freq_softlimit = rps->max_freq;
8149 rps->min_freq_softlimit = rps->min_freq;
8151 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8152 rps->min_freq_softlimit =
8154 rps->efficient_freq,
8155 intel_freq_opcode(dev_priv, 450));
8157 /* After setting max-softlimit, find the overclock max freq */
8158 if (IS_GEN6(dev_priv) ||
8159 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8162 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, ¶ms);
8163 if (params & BIT(31)) { /* OC supported */
8164 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8165 (rps->max_freq & 0xff) * 50,
8166 (params & 0xff) * 50);
8167 rps->max_freq = params & 0xff;
8171 /* Finally allow us to boost to max by default */
8172 rps->boost_freq = rps->max_freq;
8174 mutex_unlock(&dev_priv->pcu_lock);
8177 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8179 if (IS_VALLEYVIEW(dev_priv))
8180 valleyview_cleanup_gt_powersave(dev_priv);
8182 if (!HAS_RC6(dev_priv))
8183 intel_runtime_pm_put(dev_priv);
8187 * intel_suspend_gt_powersave - suspend PM work and helper threads
8188 * @dev_priv: i915 device
8190 * We don't want to disable RC6 or other features here, we just want
8191 * to make sure any work we've queued has finished and won't bother
8192 * us while we're suspended.
8194 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
8196 if (INTEL_GEN(dev_priv) < 6)
8199 /* gen6_rps_idle() will be called later to disable interrupts */
8202 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8204 dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8205 dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8206 intel_disable_gt_powersave(dev_priv);
8208 if (INTEL_GEN(dev_priv) >= 11)
8209 gen11_reset_rps_interrupts(dev_priv);
8211 gen6_reset_rps_interrupts(dev_priv);
8214 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8216 lockdep_assert_held(&i915->pcu_lock);
8218 if (!i915->gt_pm.llc_pstate.enabled)
8221 /* Currently there is no HW configuration to be done to disable. */
8223 i915->gt_pm.llc_pstate.enabled = false;
8226 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8228 lockdep_assert_held(&dev_priv->pcu_lock);
8230 if (!dev_priv->gt_pm.rc6.enabled)
8233 if (INTEL_GEN(dev_priv) >= 9)
8234 gen9_disable_rc6(dev_priv);
8235 else if (IS_CHERRYVIEW(dev_priv))
8236 cherryview_disable_rc6(dev_priv);
8237 else if (IS_VALLEYVIEW(dev_priv))
8238 valleyview_disable_rc6(dev_priv);
8239 else if (INTEL_GEN(dev_priv) >= 6)
8240 gen6_disable_rc6(dev_priv);
8242 dev_priv->gt_pm.rc6.enabled = false;
8245 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8247 lockdep_assert_held(&dev_priv->pcu_lock);
8249 if (!dev_priv->gt_pm.rps.enabled)
8252 if (INTEL_GEN(dev_priv) >= 9)
8253 gen9_disable_rps(dev_priv);
8254 else if (IS_CHERRYVIEW(dev_priv))
8255 cherryview_disable_rps(dev_priv);
8256 else if (IS_VALLEYVIEW(dev_priv))
8257 valleyview_disable_rps(dev_priv);
8258 else if (INTEL_GEN(dev_priv) >= 6)
8259 gen6_disable_rps(dev_priv);
8260 else if (IS_IRONLAKE_M(dev_priv))
8261 ironlake_disable_drps(dev_priv);
8263 dev_priv->gt_pm.rps.enabled = false;
8266 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8268 mutex_lock(&dev_priv->pcu_lock);
8270 intel_disable_rc6(dev_priv);
8271 intel_disable_rps(dev_priv);
8272 if (HAS_LLC(dev_priv))
8273 intel_disable_llc_pstate(dev_priv);
8275 mutex_unlock(&dev_priv->pcu_lock);
8278 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8280 lockdep_assert_held(&i915->pcu_lock);
8282 if (i915->gt_pm.llc_pstate.enabled)
8285 gen6_update_ring_freq(i915);
8287 i915->gt_pm.llc_pstate.enabled = true;
8290 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8292 lockdep_assert_held(&dev_priv->pcu_lock);
8294 if (dev_priv->gt_pm.rc6.enabled)
8297 if (IS_CHERRYVIEW(dev_priv))
8298 cherryview_enable_rc6(dev_priv);
8299 else if (IS_VALLEYVIEW(dev_priv))
8300 valleyview_enable_rc6(dev_priv);
8301 else if (INTEL_GEN(dev_priv) >= 9)
8302 gen9_enable_rc6(dev_priv);
8303 else if (IS_BROADWELL(dev_priv))
8304 gen8_enable_rc6(dev_priv);
8305 else if (INTEL_GEN(dev_priv) >= 6)
8306 gen6_enable_rc6(dev_priv);
8308 dev_priv->gt_pm.rc6.enabled = true;
8311 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8313 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8315 lockdep_assert_held(&dev_priv->pcu_lock);
8320 if (IS_CHERRYVIEW(dev_priv)) {
8321 cherryview_enable_rps(dev_priv);
8322 } else if (IS_VALLEYVIEW(dev_priv)) {
8323 valleyview_enable_rps(dev_priv);
8324 } else if (INTEL_GEN(dev_priv) >= 9) {
8325 gen9_enable_rps(dev_priv);
8326 } else if (IS_BROADWELL(dev_priv)) {
8327 gen8_enable_rps(dev_priv);
8328 } else if (INTEL_GEN(dev_priv) >= 6) {
8329 gen6_enable_rps(dev_priv);
8330 } else if (IS_IRONLAKE_M(dev_priv)) {
8331 ironlake_enable_drps(dev_priv);
8332 intel_init_emon(dev_priv);
8335 WARN_ON(rps->max_freq < rps->min_freq);
8336 WARN_ON(rps->idle_freq > rps->max_freq);
8338 WARN_ON(rps->efficient_freq < rps->min_freq);
8339 WARN_ON(rps->efficient_freq > rps->max_freq);
8341 rps->enabled = true;
8344 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8346 /* Powersaving is controlled by the host when inside a VM */
8347 if (intel_vgpu_active(dev_priv))
8350 mutex_lock(&dev_priv->pcu_lock);
8352 if (HAS_RC6(dev_priv))
8353 intel_enable_rc6(dev_priv);
8354 intel_enable_rps(dev_priv);
8355 if (HAS_LLC(dev_priv))
8356 intel_enable_llc_pstate(dev_priv);
8358 mutex_unlock(&dev_priv->pcu_lock);
8361 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8364 * On Ibex Peak and Cougar Point, we need to disable clock
8365 * gating for the panel power sequencer or it will fail to
8366 * start up when no ports are active.
8368 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8371 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8375 for_each_pipe(dev_priv, pipe) {
8376 I915_WRITE(DSPCNTR(pipe),
8377 I915_READ(DSPCNTR(pipe)) |
8378 DISPPLANE_TRICKLE_FEED_DISABLE);
8380 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8381 POSTING_READ(DSPSURF(pipe));
8385 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8387 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8391 * WaFbcDisableDpfcClockGating:ilk
8393 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8394 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8395 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8397 I915_WRITE(PCH_3DCGDIS0,
8398 MARIUNIT_CLOCK_GATE_DISABLE |
8399 SVSMUNIT_CLOCK_GATE_DISABLE);
8400 I915_WRITE(PCH_3DCGDIS1,
8401 VFMUNIT_CLOCK_GATE_DISABLE);
8404 * According to the spec the following bits should be set in
8405 * order to enable memory self-refresh
8406 * The bit 22/21 of 0x42004
8407 * The bit 5 of 0x42020
8408 * The bit 15 of 0x45000
8410 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8411 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8412 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8413 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8414 I915_WRITE(DISP_ARB_CTL,
8415 (I915_READ(DISP_ARB_CTL) |
8419 * Based on the document from hardware guys the following bits
8420 * should be set unconditionally in order to enable FBC.
8421 * The bit 22 of 0x42000
8422 * The bit 22 of 0x42004
8423 * The bit 7,8,9 of 0x42020.
8425 if (IS_IRONLAKE_M(dev_priv)) {
8426 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8427 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8428 I915_READ(ILK_DISPLAY_CHICKEN1) |
8430 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8431 I915_READ(ILK_DISPLAY_CHICKEN2) |
8435 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8437 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8438 I915_READ(ILK_DISPLAY_CHICKEN2) |
8439 ILK_ELPIN_409_SELECT);
8440 I915_WRITE(_3D_CHICKEN2,
8441 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8442 _3D_CHICKEN2_WM_READ_PIPELINED);
8444 /* WaDisableRenderCachePipelinedFlush:ilk */
8445 I915_WRITE(CACHE_MODE_0,
8446 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8448 /* WaDisable_RenderCache_OperationalFlush:ilk */
8449 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8451 g4x_disable_trickle_feed(dev_priv);
8453 ibx_init_clock_gating(dev_priv);
8456 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8462 * On Ibex Peak and Cougar Point, we need to disable clock
8463 * gating for the panel power sequencer or it will fail to
8464 * start up when no ports are active.
8466 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8467 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8468 PCH_CPUNIT_CLOCK_GATE_DISABLE);
8469 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8470 DPLS_EDP_PPS_FIX_DIS);
8471 /* The below fixes the weird display corruption, a few pixels shifted
8472 * downward, on (only) LVDS of some HP laptops with IVY.
8474 for_each_pipe(dev_priv, pipe) {
8475 val = I915_READ(TRANS_CHICKEN2(pipe));
8476 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8477 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8478 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8479 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8480 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8481 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8482 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8483 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8485 /* WADP0ClockGatingDisable */
8486 for_each_pipe(dev_priv, pipe) {
8487 I915_WRITE(TRANS_CHICKEN1(pipe),
8488 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8492 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8496 tmp = I915_READ(MCH_SSKPD);
8497 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8498 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8502 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8504 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8506 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8508 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8509 I915_READ(ILK_DISPLAY_CHICKEN2) |
8510 ILK_ELPIN_409_SELECT);
8512 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8513 I915_WRITE(_3D_CHICKEN,
8514 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8516 /* WaDisable_RenderCache_OperationalFlush:snb */
8517 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8520 * BSpec recoomends 8x4 when MSAA is used,
8521 * however in practice 16x4 seems fastest.
8523 * Note that PS/WM thread counts depend on the WIZ hashing
8524 * disable bit, which we don't touch here, but it's good
8525 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8527 I915_WRITE(GEN6_GT_MODE,
8528 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8530 I915_WRITE(CACHE_MODE_0,
8531 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8533 I915_WRITE(GEN6_UCGCTL1,
8534 I915_READ(GEN6_UCGCTL1) |
8535 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8536 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8538 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8539 * gating disable must be set. Failure to set it results in
8540 * flickering pixels due to Z write ordering failures after
8541 * some amount of runtime in the Mesa "fire" demo, and Unigine
8542 * Sanctuary and Tropics, and apparently anything else with
8543 * alpha test or pixel discard.
8545 * According to the spec, bit 11 (RCCUNIT) must also be set,
8546 * but we didn't debug actual testcases to find it out.
8548 * WaDisableRCCUnitClockGating:snb
8549 * WaDisableRCPBUnitClockGating:snb
8551 I915_WRITE(GEN6_UCGCTL2,
8552 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8553 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8555 /* WaStripsFansDisableFastClipPerformanceFix:snb */
8556 I915_WRITE(_3D_CHICKEN3,
8557 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8561 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8562 * 3DSTATE_SF number of SF output attributes is more than 16."
8564 I915_WRITE(_3D_CHICKEN3,
8565 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8568 * According to the spec the following bits should be
8569 * set in order to enable memory self-refresh and fbc:
8570 * The bit21 and bit22 of 0x42000
8571 * The bit21 and bit22 of 0x42004
8572 * The bit5 and bit7 of 0x42020
8573 * The bit14 of 0x70180
8574 * The bit14 of 0x71180
8576 * WaFbcAsynchFlipDisableFbcQueue:snb
8578 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8579 I915_READ(ILK_DISPLAY_CHICKEN1) |
8580 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8581 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8582 I915_READ(ILK_DISPLAY_CHICKEN2) |
8583 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8584 I915_WRITE(ILK_DSPCLK_GATE_D,
8585 I915_READ(ILK_DSPCLK_GATE_D) |
8586 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
8587 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8589 g4x_disable_trickle_feed(dev_priv);
8591 cpt_init_clock_gating(dev_priv);
8593 gen6_check_mch_setup(dev_priv);
8596 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8598 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8601 * WaVSThreadDispatchOverride:ivb,vlv
8603 * This actually overrides the dispatch
8604 * mode for all thread types.
8606 reg &= ~GEN7_FF_SCHED_MASK;
8607 reg |= GEN7_FF_TS_SCHED_HW;
8608 reg |= GEN7_FF_VS_SCHED_HW;
8609 reg |= GEN7_FF_DS_SCHED_HW;
8611 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8614 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8617 * TODO: this bit should only be enabled when really needed, then
8618 * disabled when not needed anymore in order to save power.
8620 if (HAS_PCH_LPT_LP(dev_priv))
8621 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8622 I915_READ(SOUTH_DSPCLK_GATE_D) |
8623 PCH_LP_PARTITION_LEVEL_DISABLE);
8625 /* WADPOClockGatingDisable:hsw */
8626 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8627 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8628 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8631 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8633 if (HAS_PCH_LPT_LP(dev_priv)) {
8634 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8636 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8637 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8641 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8642 int general_prio_credits,
8643 int high_prio_credits)
8648 /* WaTempDisableDOPClkGating:bdw */
8649 misccpctl = I915_READ(GEN7_MISCCPCTL);
8650 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8652 val = I915_READ(GEN8_L3SQCREG1);
8653 val &= ~L3_PRIO_CREDITS_MASK;
8654 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8655 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8656 I915_WRITE(GEN8_L3SQCREG1, val);
8659 * Wait at least 100 clocks before re-enabling clock gating.
8660 * See the definition of L3SQCREG1 in BSpec.
8662 POSTING_READ(GEN8_L3SQCREG1);
8664 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8667 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
8669 /* This is not an Wa. Enable to reduce Sampler power */
8670 I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
8671 I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8674 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8676 if (!HAS_PCH_CNP(dev_priv))
8679 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8680 I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8681 CNP_PWM_CGE_GATING_DISABLE);
8684 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8687 cnp_init_clock_gating(dev_priv);
8689 /* This is not an Wa. Enable for better image quality */
8690 I915_WRITE(_3D_CHICKEN3,
8691 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8693 /* WaEnableChickenDCPR:cnl */
8694 I915_WRITE(GEN8_CHICKEN_DCPR_1,
8695 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8697 /* WaFbcWakeMemOn:cnl */
8698 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8699 DISP_FBC_MEMORY_WAKE);
8701 val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
8702 /* ReadHitWriteOnlyDisable:cnl */
8703 val |= RCCUNIT_CLKGATE_DIS;
8704 /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8705 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8706 val |= SARBUNIT_CLKGATE_DIS;
8707 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8709 /* Wa_2201832410:cnl */
8710 val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
8711 val |= GWUNIT_CLKGATE_DIS;
8712 I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
8714 /* WaDisableVFclkgate:cnl */
8715 /* WaVFUnitClockGatingDisable:cnl */
8716 val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
8717 val |= VFUNIT_CLKGATE_DIS;
8718 I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8721 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8723 cnp_init_clock_gating(dev_priv);
8724 gen9_init_clock_gating(dev_priv);
8726 /* WaFbcNukeOnHostModify:cfl */
8727 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8728 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8731 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8733 gen9_init_clock_gating(dev_priv);
8735 /* WaDisableSDEUnitClockGating:kbl */
8736 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8737 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8738 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8740 /* WaDisableGamClockGating:kbl */
8741 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8742 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8743 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8745 /* WaFbcNukeOnHostModify:kbl */
8746 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8747 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8750 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8752 gen9_init_clock_gating(dev_priv);
8754 /* WAC6entrylatency:skl */
8755 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8756 FBC_LLC_FULLY_OPEN);
8758 /* WaFbcNukeOnHostModify:skl */
8759 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8760 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8763 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8765 /* The GTT cache must be disabled if the system is using 2M pages. */
8766 bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
8767 I915_GTT_PAGE_SIZE_2M);
8770 /* WaSwitchSolVfFArbitrationPriority:bdw */
8771 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8773 /* WaPsrDPAMaskVBlankInSRD:bdw */
8774 I915_WRITE(CHICKEN_PAR1_1,
8775 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8777 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8778 for_each_pipe(dev_priv, pipe) {
8779 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8780 I915_READ(CHICKEN_PIPESL_1(pipe)) |
8781 BDW_DPRS_MASK_VBLANK_SRD);
8784 /* WaVSRefCountFullforceMissDisable:bdw */
8785 /* WaDSRefCountFullforceMissDisable:bdw */
8786 I915_WRITE(GEN7_FF_THREAD_MODE,
8787 I915_READ(GEN7_FF_THREAD_MODE) &
8788 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8790 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8791 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8793 /* WaDisableSDEUnitClockGating:bdw */
8794 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8795 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8797 /* WaProgramL3SqcReg1Default:bdw */
8798 gen8_set_l3sqc_credits(dev_priv, 30, 2);
8800 /* WaGttCachingOffByDefault:bdw */
8801 I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8803 /* WaKVMNotificationOnConfigChange:bdw */
8804 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8805 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8807 lpt_init_clock_gating(dev_priv);
8809 /* WaDisableDopClockGating:bdw
8811 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8814 I915_WRITE(GEN6_UCGCTL1,
8815 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8818 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8820 /* L3 caching of data atomics doesn't work -- disable it. */
8821 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8822 I915_WRITE(HSW_ROW_CHICKEN3,
8823 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8825 /* This is required by WaCatErrorRejectionIssue:hsw */
8826 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8827 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8828 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8830 /* WaVSRefCountFullforceMissDisable:hsw */
8831 I915_WRITE(GEN7_FF_THREAD_MODE,
8832 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8834 /* WaDisable_RenderCache_OperationalFlush:hsw */
8835 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8837 /* enable HiZ Raw Stall Optimization */
8838 I915_WRITE(CACHE_MODE_0_GEN7,
8839 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8841 /* WaDisable4x2SubspanOptimization:hsw */
8842 I915_WRITE(CACHE_MODE_1,
8843 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8846 * BSpec recommends 8x4 when MSAA is used,
8847 * however in practice 16x4 seems fastest.
8849 * Note that PS/WM thread counts depend on the WIZ hashing
8850 * disable bit, which we don't touch here, but it's good
8851 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8853 I915_WRITE(GEN7_GT_MODE,
8854 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8856 /* WaSampleCChickenBitEnable:hsw */
8857 I915_WRITE(HALF_SLICE_CHICKEN3,
8858 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8860 /* WaSwitchSolVfFArbitrationPriority:hsw */
8861 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8863 lpt_init_clock_gating(dev_priv);
8866 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8870 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8872 /* WaDisableEarlyCull:ivb */
8873 I915_WRITE(_3D_CHICKEN3,
8874 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8876 /* WaDisableBackToBackFlipFix:ivb */
8877 I915_WRITE(IVB_CHICKEN3,
8878 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8879 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8881 /* WaDisablePSDDualDispatchEnable:ivb */
8882 if (IS_IVB_GT1(dev_priv))
8883 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8884 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8886 /* WaDisable_RenderCache_OperationalFlush:ivb */
8887 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8889 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8890 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8891 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8893 /* WaApplyL3ControlAndL3ChickenMode:ivb */
8894 I915_WRITE(GEN7_L3CNTLREG1,
8895 GEN7_WA_FOR_GEN7_L3_CONTROL);
8896 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8897 GEN7_WA_L3_CHICKEN_MODE);
8898 if (IS_IVB_GT1(dev_priv))
8899 I915_WRITE(GEN7_ROW_CHICKEN2,
8900 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8902 /* must write both registers */
8903 I915_WRITE(GEN7_ROW_CHICKEN2,
8904 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8905 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8906 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8909 /* WaForceL3Serialization:ivb */
8910 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8911 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8914 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8915 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8917 I915_WRITE(GEN6_UCGCTL2,
8918 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8920 /* This is required by WaCatErrorRejectionIssue:ivb */
8921 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8922 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8923 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8925 g4x_disable_trickle_feed(dev_priv);
8927 gen7_setup_fixed_func_scheduler(dev_priv);
8929 if (0) { /* causes HiZ corruption on ivb:gt1 */
8930 /* enable HiZ Raw Stall Optimization */
8931 I915_WRITE(CACHE_MODE_0_GEN7,
8932 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8935 /* WaDisable4x2SubspanOptimization:ivb */
8936 I915_WRITE(CACHE_MODE_1,
8937 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8940 * BSpec recommends 8x4 when MSAA is used,
8941 * however in practice 16x4 seems fastest.
8943 * Note that PS/WM thread counts depend on the WIZ hashing
8944 * disable bit, which we don't touch here, but it's good
8945 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8947 I915_WRITE(GEN7_GT_MODE,
8948 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8950 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8951 snpcr &= ~GEN6_MBC_SNPCR_MASK;
8952 snpcr |= GEN6_MBC_SNPCR_MED;
8953 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8955 if (!HAS_PCH_NOP(dev_priv))
8956 cpt_init_clock_gating(dev_priv);
8958 gen6_check_mch_setup(dev_priv);
8961 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8963 /* WaDisableEarlyCull:vlv */
8964 I915_WRITE(_3D_CHICKEN3,
8965 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8967 /* WaDisableBackToBackFlipFix:vlv */
8968 I915_WRITE(IVB_CHICKEN3,
8969 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8970 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8972 /* WaPsdDispatchEnable:vlv */
8973 /* WaDisablePSDDualDispatchEnable:vlv */
8974 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8975 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
8976 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8978 /* WaDisable_RenderCache_OperationalFlush:vlv */
8979 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8981 /* WaForceL3Serialization:vlv */
8982 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8983 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8985 /* WaDisableDopClockGating:vlv */
8986 I915_WRITE(GEN7_ROW_CHICKEN2,
8987 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8989 /* This is required by WaCatErrorRejectionIssue:vlv */
8990 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8991 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8992 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8994 gen7_setup_fixed_func_scheduler(dev_priv);
8997 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8998 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9000 I915_WRITE(GEN6_UCGCTL2,
9001 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9003 /* WaDisableL3Bank2xClockGate:vlv
9004 * Disabling L3 clock gating- MMIO 940c[25] = 1
9005 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9006 I915_WRITE(GEN7_UCGCTL4,
9007 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9010 * BSpec says this must be set, even though
9011 * WaDisable4x2SubspanOptimization isn't listed for VLV.
9013 I915_WRITE(CACHE_MODE_1,
9014 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9017 * BSpec recommends 8x4 when MSAA is used,
9018 * however in practice 16x4 seems fastest.
9020 * Note that PS/WM thread counts depend on the WIZ hashing
9021 * disable bit, which we don't touch here, but it's good
9022 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9024 I915_WRITE(GEN7_GT_MODE,
9025 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9028 * WaIncreaseL3CreditsForVLVB0:vlv
9029 * This is the hardware default actually.
9031 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9034 * WaDisableVLVClockGating_VBIIssue:vlv
9035 * Disable clock gating on th GCFG unit to prevent a delay
9036 * in the reporting of vblank events.
9038 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9041 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9043 /* WaVSRefCountFullforceMissDisable:chv */
9044 /* WaDSRefCountFullforceMissDisable:chv */
9045 I915_WRITE(GEN7_FF_THREAD_MODE,
9046 I915_READ(GEN7_FF_THREAD_MODE) &
9047 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9049 /* WaDisableSemaphoreAndSyncFlipWait:chv */
9050 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9051 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9053 /* WaDisableCSUnitClockGating:chv */
9054 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9055 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9057 /* WaDisableSDEUnitClockGating:chv */
9058 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9059 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9062 * WaProgramL3SqcReg1Default:chv
9063 * See gfxspecs/Related Documents/Performance Guide/
9064 * LSQC Setting Recommendations.
9066 gen8_set_l3sqc_credits(dev_priv, 38, 2);
9069 * GTT cache may not work with big pages, so if those
9070 * are ever enabled GTT cache may need to be disabled.
9072 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9075 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9077 uint32_t dspclk_gate;
9079 I915_WRITE(RENCLK_GATE_D1, 0);
9080 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9081 GS_UNIT_CLOCK_GATE_DISABLE |
9082 CL_UNIT_CLOCK_GATE_DISABLE);
9083 I915_WRITE(RAMCLK_GATE_D, 0);
9084 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9085 OVRUNIT_CLOCK_GATE_DISABLE |
9086 OVCUNIT_CLOCK_GATE_DISABLE;
9087 if (IS_GM45(dev_priv))
9088 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9089 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9091 /* WaDisableRenderCachePipelinedFlush */
9092 I915_WRITE(CACHE_MODE_0,
9093 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9095 /* WaDisable_RenderCache_OperationalFlush:g4x */
9096 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9098 g4x_disable_trickle_feed(dev_priv);
9101 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9103 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9104 I915_WRITE(RENCLK_GATE_D2, 0);
9105 I915_WRITE(DSPCLK_GATE_D, 0);
9106 I915_WRITE(RAMCLK_GATE_D, 0);
9107 I915_WRITE16(DEUC, 0);
9108 I915_WRITE(MI_ARB_STATE,
9109 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9111 /* WaDisable_RenderCache_OperationalFlush:gen4 */
9112 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9115 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9117 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9118 I965_RCC_CLOCK_GATE_DISABLE |
9119 I965_RCPB_CLOCK_GATE_DISABLE |
9120 I965_ISC_CLOCK_GATE_DISABLE |
9121 I965_FBC_CLOCK_GATE_DISABLE);
9122 I915_WRITE(RENCLK_GATE_D2, 0);
9123 I915_WRITE(MI_ARB_STATE,
9124 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9126 /* WaDisable_RenderCache_OperationalFlush:gen4 */
9127 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9130 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9132 u32 dstate = I915_READ(D_STATE);
9134 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9135 DSTATE_DOT_CLOCK_GATING;
9136 I915_WRITE(D_STATE, dstate);
9138 if (IS_PINEVIEW(dev_priv))
9139 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9141 /* IIR "flip pending" means done if this bit is set */
9142 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9144 /* interrupts should cause a wake up from C3 */
9145 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9147 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9148 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9150 I915_WRITE(MI_ARB_STATE,
9151 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9154 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9156 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9158 /* interrupts should cause a wake up from C3 */
9159 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9160 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9162 I915_WRITE(MEM_MODE,
9163 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9166 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9168 I915_WRITE(MEM_MODE,
9169 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9170 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9173 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9175 dev_priv->display.init_clock_gating(dev_priv);
9178 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9180 if (HAS_PCH_LPT(dev_priv))
9181 lpt_suspend_hw(dev_priv);
9184 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9186 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9190 * intel_init_clock_gating_hooks - setup the clock gating hooks
9191 * @dev_priv: device private
9193 * Setup the hooks that configure which clocks of a given platform can be
9194 * gated and also apply various GT and display specific workarounds for these
9195 * platforms. Note that some GT specific workarounds are applied separately
9196 * when GPU contexts or batchbuffers start their execution.
9198 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9200 if (IS_ICELAKE(dev_priv))
9201 dev_priv->display.init_clock_gating = icl_init_clock_gating;
9202 else if (IS_CANNONLAKE(dev_priv))
9203 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9204 else if (IS_COFFEELAKE(dev_priv))
9205 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9206 else if (IS_SKYLAKE(dev_priv))
9207 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9208 else if (IS_KABYLAKE(dev_priv))
9209 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9210 else if (IS_BROXTON(dev_priv))
9211 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9212 else if (IS_GEMINILAKE(dev_priv))
9213 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9214 else if (IS_BROADWELL(dev_priv))
9215 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9216 else if (IS_CHERRYVIEW(dev_priv))
9217 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9218 else if (IS_HASWELL(dev_priv))
9219 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9220 else if (IS_IVYBRIDGE(dev_priv))
9221 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9222 else if (IS_VALLEYVIEW(dev_priv))
9223 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9224 else if (IS_GEN6(dev_priv))
9225 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9226 else if (IS_GEN5(dev_priv))
9227 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9228 else if (IS_G4X(dev_priv))
9229 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9230 else if (IS_I965GM(dev_priv))
9231 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9232 else if (IS_I965G(dev_priv))
9233 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9234 else if (IS_GEN3(dev_priv))
9235 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9236 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9237 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9238 else if (IS_GEN2(dev_priv))
9239 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9241 MISSING_CASE(INTEL_DEVID(dev_priv));
9242 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9246 /* Set up chip specific power management-related functions */
9247 void intel_init_pm(struct drm_i915_private *dev_priv)
9249 intel_fbc_init(dev_priv);
9252 if (IS_PINEVIEW(dev_priv))
9253 i915_pineview_get_mem_freq(dev_priv);
9254 else if (IS_GEN5(dev_priv))
9255 i915_ironlake_get_mem_freq(dev_priv);
9257 /* For FIFO watermark updates */
9258 if (INTEL_GEN(dev_priv) >= 9) {
9259 skl_setup_wm_latency(dev_priv);
9260 dev_priv->display.initial_watermarks = skl_initial_wm;
9261 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9262 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9263 } else if (HAS_PCH_SPLIT(dev_priv)) {
9264 ilk_setup_wm_latency(dev_priv);
9266 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9267 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9268 (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9269 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9270 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9271 dev_priv->display.compute_intermediate_wm =
9272 ilk_compute_intermediate_wm;
9273 dev_priv->display.initial_watermarks =
9274 ilk_initial_watermarks;
9275 dev_priv->display.optimize_watermarks =
9276 ilk_optimize_watermarks;
9278 DRM_DEBUG_KMS("Failed to read display plane latency. "
9281 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9282 vlv_setup_wm_latency(dev_priv);
9283 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9284 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9285 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9286 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9287 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9288 } else if (IS_G4X(dev_priv)) {
9289 g4x_setup_wm_latency(dev_priv);
9290 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9291 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9292 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9293 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9294 } else if (IS_PINEVIEW(dev_priv)) {
9295 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9298 dev_priv->mem_freq)) {
9299 DRM_INFO("failed to find known CxSR latency "
9300 "(found ddr%s fsb freq %d, mem freq %d), "
9302 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9303 dev_priv->fsb_freq, dev_priv->mem_freq);
9304 /* Disable CxSR and never update its watermark again */
9305 intel_set_memory_cxsr(dev_priv, false);
9306 dev_priv->display.update_wm = NULL;
9308 dev_priv->display.update_wm = pineview_update_wm;
9309 } else if (IS_GEN4(dev_priv)) {
9310 dev_priv->display.update_wm = i965_update_wm;
9311 } else if (IS_GEN3(dev_priv)) {
9312 dev_priv->display.update_wm = i9xx_update_wm;
9313 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9314 } else if (IS_GEN2(dev_priv)) {
9315 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9316 dev_priv->display.update_wm = i845_update_wm;
9317 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9319 dev_priv->display.update_wm = i9xx_update_wm;
9320 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9323 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9327 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9330 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9333 case GEN6_PCODE_SUCCESS:
9335 case GEN6_PCODE_UNIMPLEMENTED_CMD:
9337 case GEN6_PCODE_ILLEGAL_CMD:
9339 case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9340 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9342 case GEN6_PCODE_TIMEOUT:
9345 MISSING_CASE(flags);
9350 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9353 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9356 case GEN6_PCODE_SUCCESS:
9358 case GEN6_PCODE_ILLEGAL_CMD:
9360 case GEN7_PCODE_TIMEOUT:
9362 case GEN7_PCODE_ILLEGAL_DATA:
9364 case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9367 MISSING_CASE(flags);
9372 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9376 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9378 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9379 * use te fw I915_READ variants to reduce the amount of work
9380 * required when reading/writing.
9383 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9384 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9385 mbox, __builtin_return_address(0));
9389 I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9390 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9391 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9393 if (__intel_wait_for_register_fw(dev_priv,
9394 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9396 DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9397 mbox, __builtin_return_address(0));
9401 *val = I915_READ_FW(GEN6_PCODE_DATA);
9402 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9404 if (INTEL_GEN(dev_priv) > 6)
9405 status = gen7_check_mailbox_status(dev_priv);
9407 status = gen6_check_mailbox_status(dev_priv);
9410 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9411 mbox, __builtin_return_address(0), status);
9418 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9420 int fast_timeout_us, int slow_timeout_ms)
9424 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9426 /* GEN6_PCODE_* are outside of the forcewake domain, we can
9427 * use te fw I915_READ variants to reduce the amount of work
9428 * required when reading/writing.
9431 if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9432 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9433 val, mbox, __builtin_return_address(0));
9437 I915_WRITE_FW(GEN6_PCODE_DATA, val);
9438 I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9439 I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9441 if (__intel_wait_for_register_fw(dev_priv,
9442 GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9443 fast_timeout_us, slow_timeout_ms,
9445 DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9446 val, mbox, __builtin_return_address(0));
9450 I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9452 if (INTEL_GEN(dev_priv) > 6)
9453 status = gen7_check_mailbox_status(dev_priv);
9455 status = gen6_check_mailbox_status(dev_priv);
9458 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9459 val, mbox, __builtin_return_address(0), status);
9466 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9467 u32 request, u32 reply_mask, u32 reply,
9472 *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9474 return *status || ((val & reply_mask) == reply);
9478 * skl_pcode_request - send PCODE request until acknowledgment
9479 * @dev_priv: device private
9480 * @mbox: PCODE mailbox ID the request is targeted for
9481 * @request: request ID
9482 * @reply_mask: mask used to check for request acknowledgment
9483 * @reply: value used to check for request acknowledgment
9484 * @timeout_base_ms: timeout for polling with preemption enabled
9486 * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9487 * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9488 * The request is acknowledged once the PCODE reply dword equals @reply after
9489 * applying @reply_mask. Polling is first attempted with preemption enabled
9490 * for @timeout_base_ms and if this times out for another 50 ms with
9491 * preemption disabled.
9493 * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9494 * other error as reported by PCODE.
9496 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9497 u32 reply_mask, u32 reply, int timeout_base_ms)
9502 WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9504 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9508 * Prime the PCODE by doing a request first. Normally it guarantees
9509 * that a subsequent request, at most @timeout_base_ms later, succeeds.
9510 * _wait_for() doesn't guarantee when its passed condition is evaluated
9511 * first, so send the first request explicitly.
9517 ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9522 * The above can time out if the number of requests was low (2 in the
9523 * worst case) _and_ PCODE was busy for some reason even after a
9524 * (queued) request and @timeout_base_ms delay. As a workaround retry
9525 * the poll with preemption disabled to maximize the number of
9526 * requests. Increase the timeout from @timeout_base_ms to 50ms to
9527 * account for interrupts that could reduce the number of these
9528 * requests, and for any quirks of the PCODE firmware that delays
9529 * the request completion.
9531 DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9532 WARN_ON_ONCE(timeout_base_ms > 3);
9534 ret = wait_for_atomic(COND, 50);
9538 return ret ? ret : status;
9542 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9544 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9548 * Slow = Fast = GPLL ref * N
9550 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9553 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9555 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9557 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9560 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9562 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9566 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9568 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9571 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9573 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9575 /* CHV needs even values */
9576 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9579 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9581 if (INTEL_GEN(dev_priv) >= 9)
9582 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9584 else if (IS_CHERRYVIEW(dev_priv))
9585 return chv_gpu_freq(dev_priv, val);
9586 else if (IS_VALLEYVIEW(dev_priv))
9587 return byt_gpu_freq(dev_priv, val);
9589 return val * GT_FREQUENCY_MULTIPLIER;
9592 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9594 if (INTEL_GEN(dev_priv) >= 9)
9595 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9596 GT_FREQUENCY_MULTIPLIER);
9597 else if (IS_CHERRYVIEW(dev_priv))
9598 return chv_freq_opcode(dev_priv, val);
9599 else if (IS_VALLEYVIEW(dev_priv))
9600 return byt_freq_opcode(dev_priv, val);
9602 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9605 void intel_pm_setup(struct drm_i915_private *dev_priv)
9607 mutex_init(&dev_priv->pcu_lock);
9609 atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9611 dev_priv->runtime_pm.suspended = false;
9612 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9615 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9616 const i915_reg_t reg)
9618 u32 lower, upper, tmp;
9622 * The register accessed do not need forcewake. We borrow
9623 * uncore lock to prevent concurrent access to range reg.
9625 lockdep_assert_held(&dev_priv->uncore.lock);
9628 * vlv and chv residency counters are 40 bits in width.
9629 * With a control bit, we can choose between upper or lower
9630 * 32bit window into this counter.
9632 * Although we always use the counter in high-range mode elsewhere,
9633 * userspace may attempt to read the value before rc6 is initialised,
9634 * before we have set the default VLV_COUNTER_CONTROL value. So always
9635 * set the high bit to be safe.
9637 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9638 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9639 upper = I915_READ_FW(reg);
9643 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9644 _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9645 lower = I915_READ_FW(reg);
9647 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9648 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9649 upper = I915_READ_FW(reg);
9650 } while (upper != tmp && --loop);
9653 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9654 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9658 return lower | (u64)upper << 8;
9661 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9662 const i915_reg_t reg)
9664 u64 time_hw, prev_hw, overflow_hw;
9665 unsigned int fw_domains;
9666 unsigned long flags;
9670 if (!HAS_RC6(dev_priv))
9674 * Store previous hw counter values for counter wrap-around handling.
9676 * There are only four interesting registers and they live next to each
9677 * other so we can use the relative address, compared to the smallest
9678 * one as the index into driver storage.
9680 i = (i915_mmio_reg_offset(reg) -
9681 i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9682 if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9685 fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);
9687 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
9688 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
9690 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9691 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9693 div = dev_priv->czclk_freq;
9694 overflow_hw = BIT_ULL(40);
9695 time_hw = vlv_residency_raw(dev_priv, reg);
9697 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
9698 if (IS_GEN9_LP(dev_priv)) {
9706 overflow_hw = BIT_ULL(32);
9707 time_hw = I915_READ_FW(reg);
9711 * Counter wrap handling.
9713 * But relying on a sufficient frequency of queries otherwise counters
9716 prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
9717 dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
9719 /* RC6 delta from last sample. */
9720 if (time_hw >= prev_hw)
9723 time_hw += overflow_hw - prev_hw;
9725 /* Add delta to RC6 extended raw driver copy. */
9726 time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
9727 dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
9729 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
9730 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
9732 return mul_u64_u32_div(time_hw, mul, div);
9735 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
9739 if (INTEL_GEN(dev_priv) >= 9)
9740 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
9741 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
9742 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
9744 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;