2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
60 * Regarding the creation of contexts, we have:
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
134 #include <linux/interrupt.h>
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "intel_lrc_reg.h"
141 #include "intel_mocs.h"
142 #include "intel_workarounds.h"
144 #define RING_EXECLIST_QFULL (1 << 0x2)
145 #define RING_EXECLIST1_VALID (1 << 0x3)
146 #define RING_EXECLIST0_VALID (1 << 0x4)
147 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
149 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
151 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158 #define GEN8_CTX_STATUS_COMPLETED_MASK \
159 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
162 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
163 #define WA_TAIL_DWORDS 2
164 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
167 struct intel_engine_cs *engine);
168 static void execlists_init_reg_state(u32 *reg_state,
169 struct i915_gem_context *ctx,
170 struct intel_engine_cs *engine,
171 struct intel_ring *ring);
173 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
175 return rb_entry(rb, struct i915_priolist, node);
178 static inline int rq_prio(const struct i915_request *rq)
180 return rq->sched.attr.priority;
183 static inline bool need_preempt(const struct intel_engine_cs *engine,
184 const struct i915_request *last,
187 return (intel_engine_has_preemption(engine) &&
188 __execlists_need_preempt(prio, rq_prio(last)) &&
189 !i915_request_completed(last));
193 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
194 * descriptor for a pinned context
195 * @ctx: Context to work on
196 * @engine: Engine the descriptor will be used with
198 * The context descriptor encodes various attributes of a context,
199 * including its GTT address and some flags. Because it's fairly
200 * expensive to calculate, we'll just do it once and cache the result,
201 * which remains valid until the context is unpinned.
203 * This is what a descriptor looks like, from LSB to MSB::
205 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
206 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
207 * bits 32-52: ctx ID, a globally unique tag
208 * bits 53-54: mbz, reserved for use by hardware
209 * bits 55-63: group ID, currently unused and set to 0
211 * Starting from Gen11, the upper dword of the descriptor has a new format:
213 * bits 32-36: reserved
214 * bits 37-47: SW context ID
215 * bits 48:53: engine instance
216 * bit 54: mbz, reserved for use by hardware
217 * bits 55-60: SW counter
218 * bits 61-63: engine class
220 * engine info, SW context ID and SW counter need to form a unique number
221 * (Context ID) per lrc.
224 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
225 struct intel_engine_cs *engine)
227 struct intel_context *ce = to_intel_context(ctx, engine);
230 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
231 BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
233 desc = ctx->desc_template; /* bits 0-11 */
234 GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
236 desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
238 GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
240 if (INTEL_GEN(ctx->i915) >= 11) {
241 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
242 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
245 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
248 /* TODO: decide what to do with SW counter (bits 55-60) */
250 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
253 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
254 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
260 static struct i915_priolist *
261 lookup_priolist(struct intel_engine_cs *engine, int prio)
263 struct intel_engine_execlists * const execlists = &engine->execlists;
264 struct i915_priolist *p;
265 struct rb_node **parent, *rb;
268 if (unlikely(execlists->no_priolist))
269 prio = I915_PRIORITY_NORMAL;
272 /* most positive priority is scheduled first, equal priorities fifo */
274 parent = &execlists->queue.rb_node;
278 if (prio > p->priority) {
279 parent = &rb->rb_left;
280 } else if (prio < p->priority) {
281 parent = &rb->rb_right;
288 if (prio == I915_PRIORITY_NORMAL) {
289 p = &execlists->default_priolist;
291 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
292 /* Convert an allocation failure to a priority bump */
294 prio = I915_PRIORITY_NORMAL; /* recurses just once */
296 /* To maintain ordering with all rendering, after an
297 * allocation failure we have to disable all scheduling.
298 * Requests will then be executed in fifo, and schedule
299 * will ensure that dependencies are emitted in fifo.
300 * There will be still some reordering with existing
301 * requests, so if userspace lied about their
302 * dependencies that reordering may be visible.
304 execlists->no_priolist = true;
310 INIT_LIST_HEAD(&p->requests);
311 rb_link_node(&p->node, rb, parent);
312 rb_insert_color(&p->node, &execlists->queue);
315 execlists->first = &p->node;
320 static void unwind_wa_tail(struct i915_request *rq)
322 rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
323 assert_ring_tail_valid(rq->ring, rq->tail);
326 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
328 struct i915_request *rq, *rn;
329 struct i915_priolist *uninitialized_var(p);
330 int last_prio = I915_PRIORITY_INVALID;
332 lockdep_assert_held(&engine->timeline.lock);
334 list_for_each_entry_safe_reverse(rq, rn,
335 &engine->timeline.requests,
337 if (i915_request_completed(rq))
340 __i915_request_unsubmit(rq);
343 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
344 if (rq_prio(rq) != last_prio) {
345 last_prio = rq_prio(rq);
346 p = lookup_priolist(engine, last_prio);
349 GEM_BUG_ON(p->priority != rq_prio(rq));
350 list_add(&rq->sched.link, &p->requests);
355 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
357 struct intel_engine_cs *engine =
358 container_of(execlists, typeof(*engine), execlists);
361 spin_lock_irqsave(&engine->timeline.lock, flags);
363 __unwind_incomplete_requests(engine);
365 spin_unlock_irqrestore(&engine->timeline.lock, flags);
369 execlists_context_status_change(struct i915_request *rq, unsigned long status)
372 * Only used when GVT-g is enabled now. When GVT-g is disabled,
373 * The compiler should eliminate this function as dead-code.
375 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
378 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
383 execlists_user_begin(struct intel_engine_execlists *execlists,
384 const struct execlist_port *port)
386 execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
390 execlists_user_end(struct intel_engine_execlists *execlists)
392 execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
396 execlists_context_schedule_in(struct i915_request *rq)
398 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
399 intel_engine_context_in(rq->engine);
403 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
405 intel_engine_context_out(rq->engine);
406 execlists_context_status_change(rq, status);
407 trace_i915_request_out(rq);
411 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
413 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
414 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
415 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
416 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
419 static u64 execlists_update_context(struct i915_request *rq)
421 struct intel_context *ce = to_intel_context(rq->ctx, rq->engine);
422 struct i915_hw_ppgtt *ppgtt =
423 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
424 u32 *reg_state = ce->lrc_reg_state;
426 reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
428 /* True 32b PPGTT with dynamic page allocation: update PDP
429 * registers and point the unallocated PDPs to scratch page.
430 * PML4 is allocated during ppgtt init, so this is not needed
433 if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
434 execlists_update_context_pdps(ppgtt, reg_state);
439 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
441 if (execlists->ctrl_reg) {
442 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
443 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
445 writel(upper_32_bits(desc), execlists->submit_reg);
446 writel(lower_32_bits(desc), execlists->submit_reg);
450 static void execlists_submit_ports(struct intel_engine_cs *engine)
452 struct intel_engine_execlists *execlists = &engine->execlists;
453 struct execlist_port *port = execlists->port;
457 * ELSQ note: the submit queue is not cleared after being submitted
458 * to the HW so we need to make sure we always clean it up. This is
459 * currently ensured by the fact that we always write the same number
460 * of elsq entries, keep this in mind before changing the loop below.
462 for (n = execlists_num_ports(execlists); n--; ) {
463 struct i915_request *rq;
467 rq = port_unpack(&port[n], &count);
469 GEM_BUG_ON(count > !n);
471 execlists_context_schedule_in(rq);
472 port_set(&port[n], port_pack(rq, count));
473 desc = execlists_update_context(rq);
474 GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
476 GEM_TRACE("%s in[%d]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
478 port[n].context_id, count,
480 rq->fence.context, rq->fence.seqno,
481 intel_engine_get_seqno(engine),
488 write_desc(execlists, desc, n);
491 /* we need to manually load the submit queue */
492 if (execlists->ctrl_reg)
493 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
495 execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
498 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
500 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
501 i915_gem_context_force_single_submission(ctx));
504 static bool can_merge_ctx(const struct i915_gem_context *prev,
505 const struct i915_gem_context *next)
510 if (ctx_single_port_submission(prev))
516 static void port_assign(struct execlist_port *port, struct i915_request *rq)
518 GEM_BUG_ON(rq == port_request(port));
520 if (port_isset(port))
521 i915_request_put(port_request(port));
523 port_set(port, port_pack(i915_request_get(rq), port_count(port)));
526 static void inject_preempt_context(struct intel_engine_cs *engine)
528 struct intel_engine_execlists *execlists = &engine->execlists;
529 struct intel_context *ce =
530 to_intel_context(engine->i915->preempt_context, engine);
533 GEM_BUG_ON(execlists->preempt_complete_status !=
534 upper_32_bits(ce->lrc_desc));
535 GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
536 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
537 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
538 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
539 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
542 * Switch to our empty preempt context so
543 * the state of the GPU is known (idle).
545 GEM_TRACE("%s\n", engine->name);
546 for (n = execlists_num_ports(execlists); --n; )
547 write_desc(execlists, 0, n);
549 write_desc(execlists, ce->lrc_desc, n);
551 /* we need to manually load the submit queue */
552 if (execlists->ctrl_reg)
553 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
555 execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
556 execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
559 static bool __execlists_dequeue(struct intel_engine_cs *engine)
561 struct intel_engine_execlists * const execlists = &engine->execlists;
562 struct execlist_port *port = execlists->port;
563 const struct execlist_port * const last_port =
564 &execlists->port[execlists->port_mask];
565 struct i915_request *last = port_request(port);
569 lockdep_assert_held(&engine->timeline.lock);
571 /* Hardware submission is through 2 ports. Conceptually each port
572 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
573 * static for a context, and unique to each, so we only execute
574 * requests belonging to a single context from each ring. RING_HEAD
575 * is maintained by the CS in the context image, it marks the place
576 * where it got up to last time, and through RING_TAIL we tell the CS
577 * where we want to execute up to this time.
579 * In this list the requests are in order of execution. Consecutive
580 * requests from the same context are adjacent in the ringbuffer. We
581 * can combine these requests into a single RING_TAIL update:
583 * RING_HEAD...req1...req2
585 * since to execute req2 the CS must first execute req1.
587 * Our goal then is to point each port to the end of a consecutive
588 * sequence of requests as being the most optimal (fewest wake ups
589 * and context switches) submission.
592 rb = execlists->first;
593 GEM_BUG_ON(rb_first(&execlists->queue) != rb);
597 * Don't resubmit or switch until all outstanding
598 * preemptions (lite-restore) are seen. Then we
599 * know the next preemption status we see corresponds
600 * to this ELSP update.
602 GEM_BUG_ON(!execlists_is_active(execlists,
603 EXECLISTS_ACTIVE_USER));
604 GEM_BUG_ON(!port_count(&port[0]));
605 if (port_count(&port[0]) > 1)
609 * If we write to ELSP a second time before the HW has had
610 * a chance to respond to the previous write, we can confuse
611 * the HW and hit "undefined behaviour". After writing to ELSP,
612 * we must then wait until we see a context-switch event from
613 * the HW to indicate that it has had a chance to respond.
615 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
618 if (need_preempt(engine, last, execlists->queue_priority)) {
619 inject_preempt_context(engine);
624 * In theory, we could coalesce more requests onto
625 * the second port (the first port is active, with
626 * no preemptions pending). However, that means we
627 * then have to deal with the possible lite-restore
628 * of the second port (as we submit the ELSP, there
629 * may be a context-switch) but also we may complete
630 * the resubmission before the context-switch. Ergo,
631 * coalescing onto the second port will cause a
632 * preemption event, but we cannot predict whether
633 * that will affect port[0] or port[1].
635 * If the second port is already active, we can wait
636 * until the next context-switch before contemplating
637 * new requests. The GPU will be busy and we should be
638 * able to resubmit the new ELSP before it idles,
639 * avoiding pipeline bubbles (momentary pauses where
640 * the driver is unable to keep up the supply of new
641 * work). However, we have to double check that the
642 * priorities of the ports haven't been switch.
644 if (port_count(&port[1]))
648 * WaIdleLiteRestore:bdw,skl
649 * Apply the wa NOOPs to prevent
650 * ring:HEAD == rq:TAIL as we resubmit the
651 * request. See gen8_emit_breadcrumb() for
652 * where we prepare the padding after the
653 * end of the request.
655 last->tail = last->wa_tail;
659 struct i915_priolist *p = to_priolist(rb);
660 struct i915_request *rq, *rn;
662 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
664 * Can we combine this request with the current port?
665 * It has to be the same context/ringbuffer and not
666 * have any exceptions (e.g. GVT saying never to
669 * If we can combine the requests, we can execute both
670 * by updating the RING_TAIL to point to the end of the
671 * second request, and so we never need to tell the
672 * hardware about the first.
674 if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
676 * If we are on the second port and cannot
677 * combine this request with the last, then we
680 if (port == last_port) {
681 __list_del_many(&p->requests,
687 * If GVT overrides us we only ever submit
688 * port[0], leaving port[1] empty. Note that we
689 * also have to be careful that we don't queue
690 * the same context (even though a different
691 * request) to the second port.
693 if (ctx_single_port_submission(last->ctx) ||
694 ctx_single_port_submission(rq->ctx)) {
695 __list_del_many(&p->requests,
700 GEM_BUG_ON(last->ctx == rq->ctx);
703 port_assign(port, last);
706 GEM_BUG_ON(port_isset(port));
709 INIT_LIST_HEAD(&rq->sched.link);
710 __i915_request_submit(rq);
711 trace_i915_request_in(rq, port_index(port, execlists));
717 rb_erase(&p->node, &execlists->queue);
718 INIT_LIST_HEAD(&p->requests);
719 if (p->priority != I915_PRIORITY_NORMAL)
720 kmem_cache_free(engine->i915->priorities, p);
725 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
727 * We choose queue_priority such that if we add a request of greater
728 * priority than this, we kick the submission tasklet to decide on
729 * the right order of submitting the requests to hardware. We must
730 * also be prepared to reorder requests as they are in-flight on the
731 * HW. We derive the queue_priority then as the first "hole" in
732 * the HW submission ports and if there are no available slots,
733 * the priority of the lowest executing request, i.e. last.
735 * When we do receive a higher priority request ready to run from the
736 * user, see queue_request(), the queue_priority is bumped to that
737 * request triggering preemption on the next dequeue (or subsequent
738 * interrupt for secondary ports).
740 execlists->queue_priority =
741 port != execlists->port ? rq_prio(last) : INT_MIN;
743 execlists->first = rb;
745 port_assign(port, last);
747 /* We must always keep the beast fed if we have work piled up */
748 GEM_BUG_ON(execlists->first && !port_isset(execlists->port));
750 /* Re-evaluate the executing context setup after each preemptive kick */
752 execlists_user_begin(execlists, execlists->port);
757 static void execlists_dequeue(struct intel_engine_cs *engine)
759 struct intel_engine_execlists * const execlists = &engine->execlists;
763 spin_lock_irqsave(&engine->timeline.lock, flags);
764 submit = __execlists_dequeue(engine);
765 spin_unlock_irqrestore(&engine->timeline.lock, flags);
768 execlists_submit_ports(engine);
770 GEM_BUG_ON(port_isset(execlists->port) &&
771 !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
775 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
777 struct execlist_port *port = execlists->port;
778 unsigned int num_ports = execlists_num_ports(execlists);
780 while (num_ports-- && port_isset(port)) {
781 struct i915_request *rq = port_request(port);
783 GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
785 (unsigned int)(port - execlists->port),
787 rq->fence.context, rq->fence.seqno,
788 intel_engine_get_seqno(rq->engine));
790 GEM_BUG_ON(!execlists->active);
791 execlists_context_schedule_out(rq,
792 i915_request_completed(rq) ?
793 INTEL_CONTEXT_SCHEDULE_OUT :
794 INTEL_CONTEXT_SCHEDULE_PREEMPTED);
796 i915_request_put(rq);
798 memset(port, 0, sizeof(*port));
802 execlists_user_end(execlists);
805 static void clear_gtiir(struct intel_engine_cs *engine)
807 struct drm_i915_private *dev_priv = engine->i915;
811 * Clear any pending interrupt state.
813 * We do it twice out of paranoia that some of the IIR are
814 * double buffered, and so if we only reset it once there may
815 * still be an interrupt pending.
817 if (INTEL_GEN(dev_priv) >= 11) {
818 static const struct {
822 [RCS] = {0, GEN11_RCS0},
823 [BCS] = {0, GEN11_BCS},
824 [_VCS(0)] = {1, GEN11_VCS(0)},
825 [_VCS(1)] = {1, GEN11_VCS(1)},
826 [_VCS(2)] = {1, GEN11_VCS(2)},
827 [_VCS(3)] = {1, GEN11_VCS(3)},
828 [_VECS(0)] = {1, GEN11_VECS(0)},
829 [_VECS(1)] = {1, GEN11_VECS(1)},
831 unsigned long irqflags;
833 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gen11_gtiir));
835 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
836 for (i = 0; i < 2; i++) {
837 gen11_reset_one_iir(dev_priv,
838 gen11_gtiir[engine->id].bank,
839 gen11_gtiir[engine->id].bit);
841 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
843 static const u8 gtiir[] = {
851 GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
853 for (i = 0; i < 2; i++) {
854 I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
855 engine->irq_keep_mask);
856 POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
858 GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
859 engine->irq_keep_mask);
863 static void reset_irq(struct intel_engine_cs *engine)
865 /* Mark all CS interrupts as complete */
866 smp_store_mb(engine->execlists.active, 0);
867 synchronize_hardirq(engine->i915->drm.irq);
872 * The port is checked prior to scheduling a tasklet, but
873 * just in case we have suspended the tasklet to do the
874 * wedging make sure that when it wakes, it decides there
875 * is no work to do by clearing the irq_posted bit.
877 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
880 static void execlists_cancel_requests(struct intel_engine_cs *engine)
882 struct intel_engine_execlists * const execlists = &engine->execlists;
883 struct i915_request *rq, *rn;
887 GEM_TRACE("%s current %d\n",
888 engine->name, intel_engine_get_seqno(engine));
891 * Before we call engine->cancel_requests(), we should have exclusive
892 * access to the submission state. This is arranged for us by the
893 * caller disabling the interrupt generation, the tasklet and other
894 * threads that may then access the same state, giving us a free hand
895 * to reset state. However, we still need to let lockdep be aware that
896 * we know this state may be accessed in hardirq context, so we
897 * disable the irq around this manipulation and we want to keep
898 * the spinlock focused on its duties and not accidentally conflate
899 * coverage to the submission's irq state. (Similarly, although we
900 * shouldn't need to disable irq around the manipulation of the
901 * submission's irq state, we also wish to remind ourselves that
904 local_irq_save(flags);
906 /* Cancel the requests on the HW and clear the ELSP tracker. */
907 execlists_cancel_port_requests(execlists);
910 spin_lock(&engine->timeline.lock);
912 /* Mark all executing requests as skipped. */
913 list_for_each_entry(rq, &engine->timeline.requests, link) {
914 GEM_BUG_ON(!rq->global_seqno);
915 if (!i915_request_completed(rq))
916 dma_fence_set_error(&rq->fence, -EIO);
919 /* Flush the queued requests to the timeline list (for retiring). */
920 rb = execlists->first;
922 struct i915_priolist *p = to_priolist(rb);
924 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
925 INIT_LIST_HEAD(&rq->sched.link);
927 dma_fence_set_error(&rq->fence, -EIO);
928 __i915_request_submit(rq);
932 rb_erase(&p->node, &execlists->queue);
933 INIT_LIST_HEAD(&p->requests);
934 if (p->priority != I915_PRIORITY_NORMAL)
935 kmem_cache_free(engine->i915->priorities, p);
938 /* Remaining _unready_ requests will be nop'ed when submitted */
940 execlists->queue_priority = INT_MIN;
941 execlists->queue = RB_ROOT;
942 execlists->first = NULL;
943 GEM_BUG_ON(port_isset(execlists->port));
945 spin_unlock(&engine->timeline.lock);
947 local_irq_restore(flags);
951 * Check the unread Context Status Buffers and manage the submission of new
952 * contexts to the ELSP accordingly.
954 static void execlists_submission_tasklet(unsigned long data)
956 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
957 struct intel_engine_execlists * const execlists = &engine->execlists;
958 struct execlist_port *port = execlists->port;
959 struct drm_i915_private *dev_priv = engine->i915;
963 * We can skip acquiring intel_runtime_pm_get() here as it was taken
964 * on our behalf by the request (see i915_gem_mark_busy()) and it will
965 * not be relinquished until the device is idle (see
966 * i915_gem_idle_work_handler()). As a precaution, we make sure
967 * that all ELSP are drained i.e. we have processed the CSB,
968 * before allowing ourselves to idle and calling intel_runtime_pm_put().
970 GEM_BUG_ON(!dev_priv->gt.awake);
973 * Prefer doing test_and_clear_bit() as a two stage operation to avoid
974 * imposing the cost of a locked atomic transaction when submitting a
975 * new request (outside of the context-switch interrupt).
977 while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
978 /* The HWSP contains a (cacheable) mirror of the CSB */
980 &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
981 unsigned int head, tail;
983 if (unlikely(execlists->csb_use_mmio)) {
984 buf = (u32 * __force)
985 (dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
986 execlists->csb_head = -1; /* force mmio read of CSB ptrs */
989 /* Clear before reading to catch new interrupts */
990 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
991 smp_mb__after_atomic();
993 if (unlikely(execlists->csb_head == -1)) { /* following a reset */
995 intel_uncore_forcewake_get(dev_priv,
996 execlists->fw_domains);
1000 head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1001 tail = GEN8_CSB_WRITE_PTR(head);
1002 head = GEN8_CSB_READ_PTR(head);
1003 execlists->csb_head = head;
1005 const int write_idx =
1006 intel_hws_csb_write_index(dev_priv) -
1007 I915_HWS_CSB_BUF0_INDEX;
1009 head = execlists->csb_head;
1010 tail = READ_ONCE(buf[write_idx]);
1011 rmb(); /* Hopefully paired with a wmb() in HW */
1013 GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
1015 head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
1016 tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
1018 while (head != tail) {
1019 struct i915_request *rq;
1020 unsigned int status;
1023 if (++head == GEN8_CSB_ENTRIES)
1026 /* We are flying near dragons again.
1028 * We hold a reference to the request in execlist_port[]
1029 * but no more than that. We are operating in softirq
1030 * context and so cannot hold any mutex or sleep. That
1031 * prevents us stopping the requests we are processing
1032 * in port[] from being retired simultaneously (the
1033 * breadcrumb will be complete before we see the
1034 * context-switch). As we only hold the reference to the
1035 * request, any pointer chasing underneath the request
1036 * is subject to a potential use-after-free. Thus we
1037 * store all of the bookkeeping within port[] as
1038 * required, and avoid using unguarded pointers beneath
1039 * request itself. The same applies to the atomic
1043 status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
1044 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1046 status, buf[2*head + 1],
1049 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
1050 GEN8_CTX_STATUS_PREEMPTED))
1051 execlists_set_active(execlists,
1052 EXECLISTS_ACTIVE_HWACK);
1053 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
1054 execlists_clear_active(execlists,
1055 EXECLISTS_ACTIVE_HWACK);
1057 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
1060 /* We should never get a COMPLETED | IDLE_ACTIVE! */
1061 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
1063 if (status & GEN8_CTX_STATUS_COMPLETE &&
1064 buf[2*head + 1] == execlists->preempt_complete_status) {
1065 GEM_TRACE("%s preempt-idle\n", engine->name);
1067 execlists_cancel_port_requests(execlists);
1068 execlists_unwind_incomplete_requests(execlists);
1070 GEM_BUG_ON(!execlists_is_active(execlists,
1071 EXECLISTS_ACTIVE_PREEMPT));
1072 execlists_clear_active(execlists,
1073 EXECLISTS_ACTIVE_PREEMPT);
1077 if (status & GEN8_CTX_STATUS_PREEMPTED &&
1078 execlists_is_active(execlists,
1079 EXECLISTS_ACTIVE_PREEMPT))
1082 GEM_BUG_ON(!execlists_is_active(execlists,
1083 EXECLISTS_ACTIVE_USER));
1085 rq = port_unpack(port, &count);
1086 GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
1088 port->context_id, count,
1089 rq ? rq->global_seqno : 0,
1090 rq ? rq->fence.context : 0,
1091 rq ? rq->fence.seqno : 0,
1092 intel_engine_get_seqno(engine),
1093 rq ? rq_prio(rq) : 0);
1095 /* Check the context/desc id for this event matches */
1096 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1098 GEM_BUG_ON(count == 0);
1101 * On the final event corresponding to the
1102 * submission of this context, we expect either
1103 * an element-switch event or a completion
1104 * event (and on completion, the active-idle
1105 * marker). No more preemptions, lite-restore
1108 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1109 GEM_BUG_ON(port_isset(&port[1]) &&
1110 !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1111 GEM_BUG_ON(!port_isset(&port[1]) &&
1112 !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1115 * We rely on the hardware being strongly
1116 * ordered, that the breadcrumb write is
1117 * coherent (visible from the CPU) before the
1118 * user interrupt and CSB is processed.
1120 GEM_BUG_ON(!i915_request_completed(rq));
1122 execlists_context_schedule_out(rq,
1123 INTEL_CONTEXT_SCHEDULE_OUT);
1124 i915_request_put(rq);
1126 GEM_TRACE("%s completed ctx=%d\n",
1127 engine->name, port->context_id);
1129 port = execlists_port_complete(execlists, port);
1130 if (port_isset(port))
1131 execlists_user_begin(execlists, port);
1133 execlists_user_end(execlists);
1135 port_set(port, port_pack(rq, count));
1139 if (head != execlists->csb_head) {
1140 execlists->csb_head = head;
1141 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
1142 dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1146 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1147 execlists_dequeue(engine);
1150 intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
1152 /* If the engine is now idle, so should be the flag; and vice versa. */
1153 GEM_BUG_ON(execlists_is_active(&engine->execlists,
1154 EXECLISTS_ACTIVE_USER) ==
1155 !port_isset(engine->execlists.port));
1158 static void queue_request(struct intel_engine_cs *engine,
1159 struct i915_sched_node *node,
1162 list_add_tail(&node->link,
1163 &lookup_priolist(engine, prio)->requests);
1166 static void __submit_queue(struct intel_engine_cs *engine, int prio)
1168 engine->execlists.queue_priority = prio;
1169 tasklet_hi_schedule(&engine->execlists.tasklet);
1172 static void submit_queue(struct intel_engine_cs *engine, int prio)
1174 if (prio > engine->execlists.queue_priority)
1175 __submit_queue(engine, prio);
1178 static void execlists_submit_request(struct i915_request *request)
1180 struct intel_engine_cs *engine = request->engine;
1181 unsigned long flags;
1183 /* Will be called from irq-context when using foreign fences. */
1184 spin_lock_irqsave(&engine->timeline.lock, flags);
1186 queue_request(engine, &request->sched, rq_prio(request));
1187 submit_queue(engine, rq_prio(request));
1189 GEM_BUG_ON(!engine->execlists.first);
1190 GEM_BUG_ON(list_empty(&request->sched.link));
1192 spin_unlock_irqrestore(&engine->timeline.lock, flags);
1195 static struct i915_request *sched_to_request(struct i915_sched_node *node)
1197 return container_of(node, struct i915_request, sched);
1200 static struct intel_engine_cs *
1201 sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1203 struct intel_engine_cs *engine = sched_to_request(node)->engine;
1205 GEM_BUG_ON(!locked);
1207 if (engine != locked) {
1208 spin_unlock(&locked->timeline.lock);
1209 spin_lock(&engine->timeline.lock);
1215 static void execlists_schedule(struct i915_request *request,
1216 const struct i915_sched_attr *attr)
1218 struct i915_priolist *uninitialized_var(pl);
1219 struct intel_engine_cs *engine, *last;
1220 struct i915_dependency *dep, *p;
1221 struct i915_dependency stack;
1222 const int prio = attr->priority;
1225 GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1227 if (i915_request_completed(request))
1230 if (prio <= READ_ONCE(request->sched.attr.priority))
1233 /* Need BKL in order to use the temporary link inside i915_dependency */
1234 lockdep_assert_held(&request->i915->drm.struct_mutex);
1236 stack.signaler = &request->sched;
1237 list_add(&stack.dfs_link, &dfs);
1240 * Recursively bump all dependent priorities to match the new request.
1242 * A naive approach would be to use recursion:
1243 * static void update_priorities(struct i915_sched_node *node, prio) {
1244 * list_for_each_entry(dep, &node->signalers_list, signal_link)
1245 * update_priorities(dep->signal, prio)
1246 * queue_request(node);
1248 * but that may have unlimited recursion depth and so runs a very
1249 * real risk of overunning the kernel stack. Instead, we build
1250 * a flat list of all dependencies starting with the current request.
1251 * As we walk the list of dependencies, we add all of its dependencies
1252 * to the end of the list (this may include an already visited
1253 * request) and continue to walk onwards onto the new dependencies. The
1254 * end result is a topological list of requests in reverse order, the
1255 * last element in the list is the request we must execute first.
1257 list_for_each_entry(dep, &dfs, dfs_link) {
1258 struct i915_sched_node *node = dep->signaler;
1261 * Within an engine, there can be no cycle, but we may
1262 * refer to the same dependency chain multiple times
1263 * (redundant dependencies are not eliminated) and across
1266 list_for_each_entry(p, &node->signalers_list, signal_link) {
1267 GEM_BUG_ON(p == dep); /* no cycles! */
1269 if (i915_sched_node_signaled(p->signaler))
1272 GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
1273 if (prio > READ_ONCE(p->signaler->attr.priority))
1274 list_move_tail(&p->dfs_link, &dfs);
1279 * If we didn't need to bump any existing priorities, and we haven't
1280 * yet submitted this request (i.e. there is no potential race with
1281 * execlists_submit_request()), we can set our own priority and skip
1282 * acquiring the engine locks.
1284 if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1285 GEM_BUG_ON(!list_empty(&request->sched.link));
1286 request->sched.attr = *attr;
1287 if (stack.dfs_link.next == stack.dfs_link.prev)
1289 __list_del_entry(&stack.dfs_link);
1293 engine = request->engine;
1294 spin_lock_irq(&engine->timeline.lock);
1296 /* Fifo and depth-first replacement ensure our deps execute before us */
1297 list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1298 struct i915_sched_node *node = dep->signaler;
1300 INIT_LIST_HEAD(&dep->dfs_link);
1302 engine = sched_lock_engine(node, engine);
1304 if (prio <= node->attr.priority)
1307 node->attr.priority = prio;
1308 if (!list_empty(&node->link)) {
1309 if (last != engine) {
1310 pl = lookup_priolist(engine, prio);
1313 GEM_BUG_ON(pl->priority != prio);
1314 list_move_tail(&node->link, &pl->requests);
1317 if (prio > engine->execlists.queue_priority &&
1318 i915_sw_fence_done(&sched_to_request(node)->submit))
1319 __submit_queue(engine, prio);
1322 spin_unlock_irq(&engine->timeline.lock);
1325 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1331 * Clear this page out of any CPU caches for coherent swap-in/out.
1332 * We only want to do this on the first bind so that we do not stall
1333 * on an active context (which by nature is already on the GPU).
1335 if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1336 err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1341 flags = PIN_GLOBAL | PIN_HIGH;
1342 if (ctx->ggtt_offset_bias)
1343 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1345 return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1348 static struct intel_ring *
1349 execlists_context_pin(struct intel_engine_cs *engine,
1350 struct i915_gem_context *ctx)
1352 struct intel_context *ce = to_intel_context(ctx, engine);
1356 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1358 if (likely(ce->pin_count++))
1360 GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1362 ret = execlists_context_deferred_alloc(ctx, engine);
1365 GEM_BUG_ON(!ce->state);
1367 ret = __context_pin(ctx, ce->state);
1371 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1372 if (IS_ERR(vaddr)) {
1373 ret = PTR_ERR(vaddr);
1377 ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1381 intel_lr_context_descriptor_update(ctx, engine);
1383 ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1384 ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1385 i915_ggtt_offset(ce->ring->vma);
1386 ce->lrc_reg_state[CTX_RING_HEAD+1] = ce->ring->head;
1388 ce->state->obj->pin_global++;
1389 i915_gem_context_get(ctx);
1394 i915_gem_object_unpin_map(ce->state->obj);
1396 __i915_vma_unpin(ce->state);
1399 return ERR_PTR(ret);
1402 static void execlists_context_unpin(struct intel_engine_cs *engine,
1403 struct i915_gem_context *ctx)
1405 struct intel_context *ce = to_intel_context(ctx, engine);
1407 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1408 GEM_BUG_ON(ce->pin_count == 0);
1410 if (--ce->pin_count)
1413 intel_ring_unpin(ce->ring);
1415 ce->state->obj->pin_global--;
1416 i915_gem_object_unpin_map(ce->state->obj);
1417 i915_vma_unpin(ce->state);
1419 i915_gem_context_put(ctx);
1422 static int execlists_request_alloc(struct i915_request *request)
1424 struct intel_context *ce =
1425 to_intel_context(request->ctx, request->engine);
1428 GEM_BUG_ON(!ce->pin_count);
1430 /* Flush enough space to reduce the likelihood of waiting after
1431 * we start building the request - in which case we will just
1432 * have to repeat work.
1434 request->reserved_space += EXECLISTS_REQUEST_SIZE;
1436 ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1440 /* Note that after this point, we have committed to using
1441 * this request as it is being used to both track the
1442 * state of engine initialisation and liveness of the
1443 * golden renderstate above. Think twice before you try
1444 * to cancel/unwind this request now.
1447 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1452 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1453 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1454 * but there is a slight complication as this is applied in WA batch where the
1455 * values are only initialized once so we cannot take register value at the
1456 * beginning and reuse it further; hence we save its value to memory, upload a
1457 * constant value with bit21 set and then we restore it back with the saved value.
1458 * To simplify the WA, a constant value is formed by using the default value
1459 * of this register. This shouldn't be a problem because we are only modifying
1460 * it for a short period and this batch in non-premptible. We can ofcourse
1461 * use additional instructions that read the actual value of the register
1462 * at that time and set our bit of interest but it makes the WA complicated.
1464 * This WA is also required for Gen9 so extracting as a function avoids
1468 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1470 *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1471 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1472 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1475 *batch++ = MI_LOAD_REGISTER_IMM(1);
1476 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1477 *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1479 batch = gen8_emit_pipe_control(batch,
1480 PIPE_CONTROL_CS_STALL |
1481 PIPE_CONTROL_DC_FLUSH_ENABLE,
1484 *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1485 *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1486 *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1493 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1494 * initialized at the beginning and shared across all contexts but this field
1495 * helps us to have multiple batches at different offsets and select them based
1496 * on a criteria. At the moment this batch always start at the beginning of the page
1497 * and at this point we don't have multiple wa_ctx batch buffers.
1499 * The number of WA applied are not known at the beginning; we use this field
1500 * to return the no of DWORDS written.
1502 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1503 * so it adds NOOPs as padding to make it cacheline aligned.
1504 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1505 * makes a complete batch buffer.
1507 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1509 /* WaDisableCtxRestoreArbitration:bdw,chv */
1510 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1512 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1513 if (IS_BROADWELL(engine->i915))
1514 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1516 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1517 /* Actual scratch location is at 128 bytes offset */
1518 batch = gen8_emit_pipe_control(batch,
1519 PIPE_CONTROL_FLUSH_L3 |
1520 PIPE_CONTROL_GLOBAL_GTT_IVB |
1521 PIPE_CONTROL_CS_STALL |
1522 PIPE_CONTROL_QW_WRITE,
1523 i915_ggtt_offset(engine->scratch) +
1524 2 * CACHELINE_BYTES);
1526 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1528 /* Pad to end of cacheline */
1529 while ((unsigned long)batch % CACHELINE_BYTES)
1533 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1534 * execution depends on the length specified in terms of cache lines
1535 * in the register CTX_RCS_INDIRECT_CTX
1541 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1543 *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1545 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1546 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1548 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1549 *batch++ = MI_LOAD_REGISTER_IMM(1);
1550 *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1551 *batch++ = _MASKED_BIT_DISABLE(
1552 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1555 /* WaClearSlmSpaceAtContextSwitch:kbl */
1556 /* Actual scratch location is at 128 bytes offset */
1557 if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1558 batch = gen8_emit_pipe_control(batch,
1559 PIPE_CONTROL_FLUSH_L3 |
1560 PIPE_CONTROL_GLOBAL_GTT_IVB |
1561 PIPE_CONTROL_CS_STALL |
1562 PIPE_CONTROL_QW_WRITE,
1563 i915_ggtt_offset(engine->scratch)
1564 + 2 * CACHELINE_BYTES);
1567 /* WaMediaPoolStateCmdInWABB:bxt,glk */
1568 if (HAS_POOLED_EU(engine->i915)) {
1570 * EU pool configuration is setup along with golden context
1571 * during context initialization. This value depends on
1572 * device type (2x6 or 3x6) and needs to be updated based
1573 * on which subslice is disabled especially for 2x6
1574 * devices, however it is safe to load default
1575 * configuration of 3x6 device instead of masking off
1576 * corresponding bits because HW ignores bits of a disabled
1577 * subslice and drops down to appropriate config. Please
1578 * see render_state_setup() in i915_gem_render_state.c for
1579 * possible configurations, to avoid duplication they are
1580 * not shown here again.
1582 *batch++ = GEN9_MEDIA_POOL_STATE;
1583 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1584 *batch++ = 0x00777000;
1590 *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1592 /* Pad to end of cacheline */
1593 while ((unsigned long)batch % CACHELINE_BYTES)
1600 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1605 * WaPipeControlBefore3DStateSamplePattern: cnl
1607 * Ensure the engine is idle prior to programming a
1608 * 3DSTATE_SAMPLE_PATTERN during a context restore.
1610 batch = gen8_emit_pipe_control(batch,
1611 PIPE_CONTROL_CS_STALL,
1614 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1615 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1616 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1617 * confusing. Since gen8_emit_pipe_control() already advances the
1618 * batch by 6 dwords, we advance the other 10 here, completing a
1619 * cacheline. It's not clear if the workaround requires this padding
1620 * before other commands, or if it's just the regular padding we would
1621 * already have for the workaround bb, so leave it here for now.
1623 for (i = 0; i < 10; i++)
1626 /* Pad to end of cacheline */
1627 while ((unsigned long)batch % CACHELINE_BYTES)
1633 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1635 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1637 struct drm_i915_gem_object *obj;
1638 struct i915_vma *vma;
1641 obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1643 return PTR_ERR(obj);
1645 vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1651 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1655 engine->wa_ctx.vma = vma;
1659 i915_gem_object_put(obj);
1663 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1665 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1668 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1670 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1672 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1673 struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1675 wa_bb_func_t wa_bb_fn[2];
1677 void *batch, *batch_ptr;
1681 if (GEM_WARN_ON(engine->id != RCS))
1684 switch (INTEL_GEN(engine->i915)) {
1688 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1692 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1696 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1700 MISSING_CASE(INTEL_GEN(engine->i915));
1704 ret = lrc_setup_wa_ctx(engine);
1706 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1710 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1711 batch = batch_ptr = kmap_atomic(page);
1714 * Emit the two workaround batch buffers, recording the offset from the
1715 * start of the workaround batch buffer object for each and their
1718 for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1719 wa_bb[i]->offset = batch_ptr - batch;
1720 if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1721 CACHELINE_BYTES))) {
1726 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1727 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1730 BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1732 kunmap_atomic(batch);
1734 lrc_destroy_wa_ctx(engine);
1739 static void enable_execlists(struct intel_engine_cs *engine)
1741 struct drm_i915_private *dev_priv = engine->i915;
1743 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1746 * Make sure we're not enabling the new 12-deep CSB
1747 * FIFO as that requires a slightly updated handling
1748 * in the ctx switch irq. Since we're currently only
1749 * using only 2 elements of the enhanced execlists the
1750 * deeper FIFO it's not needed and it's not worth adding
1751 * more statements to the irq handler to support it.
1753 if (INTEL_GEN(dev_priv) >= 11)
1754 I915_WRITE(RING_MODE_GEN7(engine),
1755 _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1757 I915_WRITE(RING_MODE_GEN7(engine),
1758 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1760 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1761 engine->status_page.ggtt_offset);
1762 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1764 /* Following the reset, we need to reload the CSB read/write pointers */
1765 engine->execlists.csb_head = -1;
1768 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1770 struct intel_engine_execlists * const execlists = &engine->execlists;
1773 ret = intel_mocs_init_engine(engine);
1777 intel_engine_reset_breadcrumbs(engine);
1778 intel_engine_init_hangcheck(engine);
1780 enable_execlists(engine);
1782 /* After a GPU reset, we may have requests to replay */
1783 if (execlists->first)
1784 tasklet_schedule(&execlists->tasklet);
1789 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1791 struct drm_i915_private *dev_priv = engine->i915;
1794 ret = gen8_init_common_ring(engine);
1798 intel_whitelist_workarounds_apply(engine);
1800 /* We need to disable the AsyncFlip performance optimisations in order
1801 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1802 * programmed to '1' on all products.
1804 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1806 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1808 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1813 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1817 ret = gen8_init_common_ring(engine);
1821 intel_whitelist_workarounds_apply(engine);
1826 static void reset_common_ring(struct intel_engine_cs *engine,
1827 struct i915_request *request)
1829 struct intel_engine_execlists * const execlists = &engine->execlists;
1830 unsigned long flags;
1833 GEM_TRACE("%s request global=%x, current=%d\n",
1834 engine->name, request ? request->global_seqno : 0,
1835 intel_engine_get_seqno(engine));
1837 /* See execlists_cancel_requests() for the irq/spinlock split. */
1838 local_irq_save(flags);
1841 * Catch up with any missed context-switch interrupts.
1843 * Ideally we would just read the remaining CSB entries now that we
1844 * know the gpu is idle. However, the CSB registers are sometimes^W
1845 * often trashed across a GPU reset! Instead we have to rely on
1846 * guessing the missed context-switch events by looking at what
1847 * requests were completed.
1849 execlists_cancel_port_requests(execlists);
1852 /* Push back any incomplete requests for replay after the reset. */
1853 spin_lock(&engine->timeline.lock);
1854 __unwind_incomplete_requests(engine);
1855 spin_unlock(&engine->timeline.lock);
1857 local_irq_restore(flags);
1860 * If the request was innocent, we leave the request in the ELSP
1861 * and will try to replay it on restarting. The context image may
1862 * have been corrupted by the reset, in which case we may have
1863 * to service a new GPU hang, but more likely we can continue on
1866 * If the request was guilty, we presume the context is corrupt
1867 * and have to at least restore the RING register in the context
1868 * image back to the expected values to skip over the guilty request.
1870 if (!request || request->fence.error != -EIO)
1874 * We want a simple context + ring to execute the breadcrumb update.
1875 * We cannot rely on the context being intact across the GPU hang,
1876 * so clear it and rebuild just what we need for the breadcrumb.
1877 * All pending requests for this context will be zapped, and any
1878 * future request will be after userspace has had the opportunity
1879 * to recreate its own state.
1881 regs = to_intel_context(request->ctx, engine)->lrc_reg_state;
1882 if (engine->default_state) {
1885 defaults = i915_gem_object_pin_map(engine->default_state,
1887 if (!IS_ERR(defaults)) {
1888 memcpy(regs, /* skip restoring the vanilla PPHWSP */
1889 defaults + LRC_STATE_PN * PAGE_SIZE,
1890 engine->context_size - PAGE_SIZE);
1891 i915_gem_object_unpin_map(engine->default_state);
1894 execlists_init_reg_state(regs, request->ctx, engine, request->ring);
1896 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1897 regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1898 regs[CTX_RING_HEAD + 1] = request->postfix;
1900 request->ring->head = request->postfix;
1901 intel_ring_update_space(request->ring);
1903 /* Reset WaIdleLiteRestore:bdw,skl as well */
1904 unwind_wa_tail(request);
1907 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1909 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
1910 struct intel_engine_cs *engine = rq->engine;
1911 const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1915 cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1919 *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1920 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1921 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1923 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1924 *cs++ = upper_32_bits(pd_daddr);
1925 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1926 *cs++ = lower_32_bits(pd_daddr);
1930 intel_ring_advance(rq, cs);
1935 static int gen8_emit_bb_start(struct i915_request *rq,
1936 u64 offset, u32 len,
1937 const unsigned int flags)
1942 /* Don't rely in hw updating PDPs, specially in lite-restore.
1943 * Ideally, we should set Force PD Restore in ctx descriptor,
1944 * but we can't. Force Restore would be a second option, but
1945 * it is unsafe in case of lite-restore (because the ctx is
1946 * not idle). PML4 is allocated during ppgtt init so this is
1947 * not needed in 48-bit.*/
1948 if (rq->ctx->ppgtt &&
1949 (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
1950 !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
1951 !intel_vgpu_active(rq->i915)) {
1952 ret = intel_logical_ring_emit_pdps(rq);
1956 rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1959 cs = intel_ring_begin(rq, 6);
1964 * WaDisableCtxRestoreArbitration:bdw,chv
1966 * We don't need to perform MI_ARB_ENABLE as often as we do (in
1967 * particular all the gen that do not need the w/a at all!), if we
1968 * took care to make sure that on every switch into this context
1969 * (both ordinary and for preemption) that arbitrartion was enabled
1970 * we would be fine. However, there doesn't seem to be a downside to
1971 * being paranoid and making sure it is set before each batch and
1972 * every context-switch.
1974 * Note that if we fail to enable arbitration before the request
1975 * is complete, then we do not see the context-switch interrupt and
1976 * the engine hangs (with RING_HEAD == RING_TAIL).
1978 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1980 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1982 /* FIXME(BDW): Address space and security selectors. */
1983 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1984 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1985 (flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1986 *cs++ = lower_32_bits(offset);
1987 *cs++ = upper_32_bits(offset);
1989 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1991 intel_ring_advance(rq, cs);
1996 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1998 struct drm_i915_private *dev_priv = engine->i915;
1999 I915_WRITE_IMR(engine,
2000 ~(engine->irq_enable_mask | engine->irq_keep_mask));
2001 POSTING_READ_FW(RING_IMR(engine->mmio_base));
2004 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2006 struct drm_i915_private *dev_priv = engine->i915;
2007 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2010 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2014 cs = intel_ring_begin(request, 4);
2018 cmd = MI_FLUSH_DW + 1;
2020 /* We always require a command barrier so that subsequent
2021 * commands, such as breadcrumb interrupts, are strictly ordered
2022 * wrt the contents of the write cache being flushed to memory
2023 * (and thus being coherent from the CPU).
2025 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2027 if (mode & EMIT_INVALIDATE) {
2028 cmd |= MI_INVALIDATE_TLB;
2029 if (request->engine->id == VCS)
2030 cmd |= MI_INVALIDATE_BSD;
2034 *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2035 *cs++ = 0; /* upper addr */
2036 *cs++ = 0; /* value */
2037 intel_ring_advance(request, cs);
2042 static int gen8_emit_flush_render(struct i915_request *request,
2045 struct intel_engine_cs *engine = request->engine;
2047 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
2048 bool vf_flush_wa = false, dc_flush_wa = false;
2052 flags |= PIPE_CONTROL_CS_STALL;
2054 if (mode & EMIT_FLUSH) {
2055 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2056 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2057 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2058 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2061 if (mode & EMIT_INVALIDATE) {
2062 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2063 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2064 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2065 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2066 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2067 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2068 flags |= PIPE_CONTROL_QW_WRITE;
2069 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2072 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2075 if (IS_GEN9(request->i915))
2078 /* WaForGAMHang:kbl */
2079 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2091 cs = intel_ring_begin(request, len);
2096 cs = gen8_emit_pipe_control(cs, 0, 0);
2099 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2102 cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2105 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2107 intel_ring_advance(request, cs);
2113 * Reserve space for 2 NOOPs at the end of each request to be
2114 * used as a workaround for not being allowed to do lite
2115 * restore with HEAD==TAIL (WaIdleLiteRestore).
2117 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2119 /* Ensure there's always at least one preemption point per-request. */
2120 *cs++ = MI_ARB_CHECK;
2122 request->wa_tail = intel_ring_offset(request, cs);
2125 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
2127 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2128 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2130 cs = gen8_emit_ggtt_write(cs, request->global_seqno,
2131 intel_hws_seqno_address(request->engine));
2132 *cs++ = MI_USER_INTERRUPT;
2133 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2134 request->tail = intel_ring_offset(request, cs);
2135 assert_ring_tail_valid(request->ring, request->tail);
2137 gen8_emit_wa_tail(request, cs);
2139 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
2141 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2143 /* We're using qword write, seqno should be aligned to 8 bytes. */
2144 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2146 cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2147 intel_hws_seqno_address(request->engine));
2148 *cs++ = MI_USER_INTERRUPT;
2149 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2150 request->tail = intel_ring_offset(request, cs);
2151 assert_ring_tail_valid(request->ring, request->tail);
2153 gen8_emit_wa_tail(request, cs);
2155 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2157 static int gen8_init_rcs_context(struct i915_request *rq)
2161 ret = intel_ctx_workarounds_emit(rq);
2165 ret = intel_rcs_context_init_mocs(rq);
2167 * Failing to program the MOCS is non-fatal.The system will not
2168 * run at peak performance. So generate an error and carry on.
2171 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2173 return i915_gem_render_state_emit(rq);
2177 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2178 * @engine: Engine Command Streamer.
2180 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2182 struct drm_i915_private *dev_priv;
2185 * Tasklet cannot be active at this point due intel_mark_active/idle
2186 * so this is just for documentation.
2188 if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2189 &engine->execlists.tasklet.state)))
2190 tasklet_kill(&engine->execlists.tasklet);
2192 dev_priv = engine->i915;
2194 if (engine->buffer) {
2195 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2198 if (engine->cleanup)
2199 engine->cleanup(engine);
2201 intel_engine_cleanup_common(engine);
2203 lrc_destroy_wa_ctx(engine);
2205 engine->i915 = NULL;
2206 dev_priv->engine[engine->id] = NULL;
2210 static void execlists_set_default_submission(struct intel_engine_cs *engine)
2212 engine->submit_request = execlists_submit_request;
2213 engine->cancel_requests = execlists_cancel_requests;
2214 engine->schedule = execlists_schedule;
2215 engine->execlists.tasklet.func = execlists_submission_tasklet;
2217 engine->park = NULL;
2218 engine->unpark = NULL;
2220 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2221 if (engine->i915->preempt_context)
2222 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2224 engine->i915->caps.scheduler =
2225 I915_SCHEDULER_CAP_ENABLED |
2226 I915_SCHEDULER_CAP_PRIORITY;
2227 if (intel_engine_has_preemption(engine))
2228 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2232 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2234 /* Default vfuncs which can be overriden by each engine. */
2235 engine->init_hw = gen8_init_common_ring;
2236 engine->reset_hw = reset_common_ring;
2238 engine->context_pin = execlists_context_pin;
2239 engine->context_unpin = execlists_context_unpin;
2241 engine->request_alloc = execlists_request_alloc;
2243 engine->emit_flush = gen8_emit_flush;
2244 engine->emit_breadcrumb = gen8_emit_breadcrumb;
2245 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2247 engine->set_default_submission = execlists_set_default_submission;
2249 if (INTEL_GEN(engine->i915) < 11) {
2250 engine->irq_enable = gen8_logical_ring_enable_irq;
2251 engine->irq_disable = gen8_logical_ring_disable_irq;
2254 * TODO: On Gen11 interrupt masks need to be clear
2255 * to allow C6 entry. Keep interrupts enabled at
2256 * and take the hit of generating extra interrupts
2257 * until a more refined solution exists.
2260 engine->emit_bb_start = gen8_emit_bb_start;
2264 logical_ring_default_irqs(struct intel_engine_cs *engine)
2266 unsigned int shift = 0;
2268 if (INTEL_GEN(engine->i915) < 11) {
2269 const u8 irq_shifts[] = {
2270 [RCS] = GEN8_RCS_IRQ_SHIFT,
2271 [BCS] = GEN8_BCS_IRQ_SHIFT,
2272 [VCS] = GEN8_VCS1_IRQ_SHIFT,
2273 [VCS2] = GEN8_VCS2_IRQ_SHIFT,
2274 [VECS] = GEN8_VECS_IRQ_SHIFT,
2277 shift = irq_shifts[engine->id];
2280 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2281 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2285 logical_ring_setup(struct intel_engine_cs *engine)
2287 struct drm_i915_private *dev_priv = engine->i915;
2288 enum forcewake_domains fw_domains;
2290 intel_engine_setup_common(engine);
2292 /* Intentionally left blank. */
2293 engine->buffer = NULL;
2295 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2299 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2300 RING_CONTEXT_STATUS_PTR(engine),
2301 FW_REG_READ | FW_REG_WRITE);
2303 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2304 RING_CONTEXT_STATUS_BUF_BASE(engine),
2307 engine->execlists.fw_domains = fw_domains;
2309 tasklet_init(&engine->execlists.tasklet,
2310 execlists_submission_tasklet, (unsigned long)engine);
2312 logical_ring_default_vfuncs(engine);
2313 logical_ring_default_irqs(engine);
2316 static int logical_ring_init(struct intel_engine_cs *engine)
2320 ret = intel_engine_init_common(engine);
2324 if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
2325 engine->execlists.submit_reg = engine->i915->regs +
2326 i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2327 engine->execlists.ctrl_reg = engine->i915->regs +
2328 i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2330 engine->execlists.submit_reg = engine->i915->regs +
2331 i915_mmio_reg_offset(RING_ELSP(engine));
2334 engine->execlists.preempt_complete_status = ~0u;
2335 if (engine->i915->preempt_context) {
2336 struct intel_context *ce =
2337 to_intel_context(engine->i915->preempt_context, engine);
2339 engine->execlists.preempt_complete_status =
2340 upper_32_bits(ce->lrc_desc);
2346 intel_logical_ring_cleanup(engine);
2350 int logical_render_ring_init(struct intel_engine_cs *engine)
2352 struct drm_i915_private *dev_priv = engine->i915;
2355 logical_ring_setup(engine);
2357 if (HAS_L3_DPF(dev_priv))
2358 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2360 /* Override some for render ring. */
2361 if (INTEL_GEN(dev_priv) >= 9)
2362 engine->init_hw = gen9_init_render_ring;
2364 engine->init_hw = gen8_init_render_ring;
2365 engine->init_context = gen8_init_rcs_context;
2366 engine->emit_flush = gen8_emit_flush_render;
2367 engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2368 engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2370 ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2374 ret = intel_init_workaround_bb(engine);
2377 * We continue even if we fail to initialize WA batch
2378 * because we only expect rare glitches but nothing
2379 * critical to prevent us from using GPU
2381 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2385 return logical_ring_init(engine);
2388 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2390 logical_ring_setup(engine);
2392 return logical_ring_init(engine);
2396 make_rpcs(struct drm_i915_private *dev_priv)
2401 * No explicit RPCS request is needed to ensure full
2402 * slice/subslice/EU enablement prior to Gen9.
2404 if (INTEL_GEN(dev_priv) < 9)
2408 * Starting in Gen9, render power gating can leave
2409 * slice/subslice/EU in a partially enabled state. We
2410 * must make an explicit request through RPCS for full
2413 if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2414 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2415 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2416 GEN8_RPCS_S_CNT_SHIFT;
2417 rpcs |= GEN8_RPCS_ENABLE;
2420 if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2421 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2422 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2423 GEN8_RPCS_SS_CNT_SHIFT;
2424 rpcs |= GEN8_RPCS_ENABLE;
2427 if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2428 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2429 GEN8_RPCS_EU_MIN_SHIFT;
2430 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2431 GEN8_RPCS_EU_MAX_SHIFT;
2432 rpcs |= GEN8_RPCS_ENABLE;
2438 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2440 u32 indirect_ctx_offset;
2442 switch (INTEL_GEN(engine->i915)) {
2444 MISSING_CASE(INTEL_GEN(engine->i915));
2447 indirect_ctx_offset =
2448 GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2451 indirect_ctx_offset =
2452 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2455 indirect_ctx_offset =
2456 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2459 indirect_ctx_offset =
2460 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2464 return indirect_ctx_offset;
2467 static void execlists_init_reg_state(u32 *regs,
2468 struct i915_gem_context *ctx,
2469 struct intel_engine_cs *engine,
2470 struct intel_ring *ring)
2472 struct drm_i915_private *dev_priv = engine->i915;
2473 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2474 u32 base = engine->mmio_base;
2475 bool rcs = engine->id == RCS;
2477 /* A context is actually a big batch buffer with several
2478 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2479 * values we are setting here are only for the first context restore:
2480 * on a subsequent save, the GPU will recreate this batchbuffer with new
2481 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2482 * we are not initializing here).
2484 regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2485 MI_LRI_FORCE_POSTED;
2487 CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2488 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2489 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2490 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2491 (HAS_RESOURCE_STREAMER(dev_priv) ?
2492 CTX_CTRL_RS_CTX_ENABLE : 0)));
2493 CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2494 CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2495 CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2496 CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2497 RING_CTL_SIZE(ring->size) | RING_VALID);
2498 CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2499 CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2500 CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2501 CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2502 CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2503 CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2505 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2507 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2508 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2509 RING_INDIRECT_CTX_OFFSET(base), 0);
2510 if (wa_ctx->indirect_ctx.size) {
2511 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2513 regs[CTX_RCS_INDIRECT_CTX + 1] =
2514 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2515 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2517 regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2518 intel_lr_indirect_ctx_offset(engine) << 6;
2521 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2522 if (wa_ctx->per_ctx.size) {
2523 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2525 regs[CTX_BB_PER_CTX_PTR + 1] =
2526 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2530 regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2532 CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2533 /* PDP values well be assigned later if needed */
2534 CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2535 CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2536 CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2537 CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2538 CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2539 CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2540 CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2541 CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2543 if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2544 /* 64b PPGTT (48bit canonical)
2545 * PDP0_DESCRIPTOR contains the base address to PML4 and
2546 * other PDP Descriptors are ignored.
2548 ASSIGN_CTX_PML4(ppgtt, regs);
2552 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2553 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2554 make_rpcs(dev_priv));
2556 i915_oa_init_reg_state(engine, ctx, regs);
2561 populate_lr_context(struct i915_gem_context *ctx,
2562 struct drm_i915_gem_object *ctx_obj,
2563 struct intel_engine_cs *engine,
2564 struct intel_ring *ring)
2570 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2572 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2576 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2577 if (IS_ERR(vaddr)) {
2578 ret = PTR_ERR(vaddr);
2579 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2582 ctx_obj->mm.dirty = true;
2584 if (engine->default_state) {
2586 * We only want to copy over the template context state;
2587 * skipping over the headers reserved for GuC communication,
2588 * leaving those as zero.
2590 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2593 defaults = i915_gem_object_pin_map(engine->default_state,
2595 if (IS_ERR(defaults)) {
2596 ret = PTR_ERR(defaults);
2600 memcpy(vaddr + start, defaults + start, engine->context_size);
2601 i915_gem_object_unpin_map(engine->default_state);
2604 /* The second page of the context object contains some fields which must
2605 * be set up prior to the first execution. */
2606 regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2607 execlists_init_reg_state(regs, ctx, engine, ring);
2608 if (!engine->default_state)
2609 regs[CTX_CONTEXT_CONTROL + 1] |=
2610 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2611 if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2612 regs[CTX_CONTEXT_CONTROL + 1] |=
2613 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2614 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2617 i915_gem_object_unpin_map(ctx_obj);
2621 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2622 struct intel_engine_cs *engine)
2624 struct drm_i915_gem_object *ctx_obj;
2625 struct intel_context *ce = to_intel_context(ctx, engine);
2626 struct i915_vma *vma;
2627 uint32_t context_size;
2628 struct intel_ring *ring;
2629 struct i915_timeline *timeline;
2635 context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2638 * Before the actual start of the context image, we insert a few pages
2639 * for our own use and for sharing with the GuC.
2641 context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2643 ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2644 if (IS_ERR(ctx_obj)) {
2645 ret = PTR_ERR(ctx_obj);
2646 goto error_deref_obj;
2649 vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2652 goto error_deref_obj;
2655 timeline = i915_timeline_create(ctx->i915, ctx->name);
2656 if (IS_ERR(timeline)) {
2657 ret = PTR_ERR(timeline);
2658 goto error_deref_obj;
2661 ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2662 i915_timeline_put(timeline);
2664 ret = PTR_ERR(ring);
2665 goto error_deref_obj;
2668 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2670 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2671 goto error_ring_free;
2680 intel_ring_free(ring);
2682 i915_gem_object_put(ctx_obj);
2686 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2688 struct intel_engine_cs *engine;
2689 struct i915_gem_context *ctx;
2690 enum intel_engine_id id;
2692 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2693 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2694 * that stored in context. As we only write new commands from
2695 * ce->ring->tail onwards, everything before that is junk. If the GPU
2696 * starts reading from its RING_HEAD from the context, it may try to
2697 * execute that junk and die.
2699 * So to avoid that we reset the context images upon resume. For
2700 * simplicity, we just zero everything out.
2702 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2703 for_each_engine(engine, dev_priv, id) {
2704 struct intel_context *ce =
2705 to_intel_context(ctx, engine);
2711 reg = i915_gem_object_pin_map(ce->state->obj,
2713 if (WARN_ON(IS_ERR(reg)))
2716 reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2717 reg[CTX_RING_HEAD+1] = 0;
2718 reg[CTX_RING_TAIL+1] = 0;
2720 ce->state->obj->mm.dirty = true;
2721 i915_gem_object_unpin_map(ce->state->obj);
2723 intel_ring_reset(ce->ring, 0);
2728 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2729 #include "selftests/intel_lrc.c"