2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
41 * The timeline struct (as part of the ppgtt underneath a context)
42 * may be freed when the request is no longer in use by the GPU.
43 * We could extend the life of a context to beyond that of all
44 * fences, possibly keeping the hw resource around indefinitely,
45 * or we just give them a false name. Since
46 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
47 * lie seems justifiable.
49 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
52 return to_request(fence)->timeline->name;
55 static bool i915_fence_signaled(struct dma_fence *fence)
57 return i915_request_completed(to_request(fence));
60 static bool i915_fence_enable_signaling(struct dma_fence *fence)
62 return intel_engine_enable_signaling(to_request(fence), true);
65 static signed long i915_fence_wait(struct dma_fence *fence,
69 return i915_request_wait(to_request(fence), interruptible, timeout);
72 static void i915_fence_release(struct dma_fence *fence)
74 struct i915_request *rq = to_request(fence);
77 * The request is put onto a RCU freelist (i.e. the address
78 * is immediately reused), mark the fences as being freed now.
79 * Otherwise the debugobjects for the fences are only marked as
80 * freed when the slab cache itself is freed, and so we would get
81 * caught trying to reuse dead objects.
83 i915_sw_fence_fini(&rq->submit);
85 kmem_cache_free(rq->i915->requests, rq);
88 const struct dma_fence_ops i915_fence_ops = {
89 .get_driver_name = i915_fence_get_driver_name,
90 .get_timeline_name = i915_fence_get_timeline_name,
91 .enable_signaling = i915_fence_enable_signaling,
92 .signaled = i915_fence_signaled,
93 .wait = i915_fence_wait,
94 .release = i915_fence_release,
98 i915_request_remove_from_client(struct i915_request *request)
100 struct drm_i915_file_private *file_priv;
102 file_priv = request->file_priv;
106 spin_lock(&file_priv->mm.lock);
107 if (request->file_priv) {
108 list_del(&request->client_link);
109 request->file_priv = NULL;
111 spin_unlock(&file_priv->mm.lock);
114 static struct i915_dependency *
115 i915_dependency_alloc(struct drm_i915_private *i915)
117 return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
121 i915_dependency_free(struct drm_i915_private *i915,
122 struct i915_dependency *dep)
124 kmem_cache_free(i915->dependencies, dep);
128 __i915_sched_node_add_dependency(struct i915_sched_node *node,
129 struct i915_sched_node *signal,
130 struct i915_dependency *dep,
133 INIT_LIST_HEAD(&dep->dfs_link);
134 list_add(&dep->wait_link, &signal->waiters_list);
135 list_add(&dep->signal_link, &node->signalers_list);
136 dep->signaler = signal;
141 i915_sched_node_add_dependency(struct drm_i915_private *i915,
142 struct i915_sched_node *node,
143 struct i915_sched_node *signal)
145 struct i915_dependency *dep;
147 dep = i915_dependency_alloc(i915);
151 __i915_sched_node_add_dependency(node, signal, dep,
152 I915_DEPENDENCY_ALLOC);
157 i915_sched_node_fini(struct drm_i915_private *i915,
158 struct i915_sched_node *node)
160 struct i915_dependency *dep, *tmp;
162 GEM_BUG_ON(!list_empty(&node->link));
165 * Everyone we depended upon (the fences we wait to be signaled)
166 * should retire before us and remove themselves from our list.
167 * However, retirement is run independently on each timeline and
168 * so we may be called out-of-order.
170 list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
171 GEM_BUG_ON(!i915_sched_node_signaled(dep->signaler));
172 GEM_BUG_ON(!list_empty(&dep->dfs_link));
174 list_del(&dep->wait_link);
175 if (dep->flags & I915_DEPENDENCY_ALLOC)
176 i915_dependency_free(i915, dep);
179 /* Remove ourselves from everyone who depends upon us */
180 list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
181 GEM_BUG_ON(dep->signaler != node);
182 GEM_BUG_ON(!list_empty(&dep->dfs_link));
184 list_del(&dep->signal_link);
185 if (dep->flags & I915_DEPENDENCY_ALLOC)
186 i915_dependency_free(i915, dep);
191 i915_sched_node_init(struct i915_sched_node *node)
193 INIT_LIST_HEAD(&node->signalers_list);
194 INIT_LIST_HEAD(&node->waiters_list);
195 INIT_LIST_HEAD(&node->link);
196 node->attr.priority = I915_PRIORITY_INVALID;
199 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
201 struct intel_engine_cs *engine;
202 struct i915_timeline *timeline;
203 enum intel_engine_id id;
206 /* Carefully retire all requests without writing to the rings */
207 ret = i915_gem_wait_for_idle(i915,
208 I915_WAIT_INTERRUPTIBLE |
213 GEM_BUG_ON(i915->gt.active_requests);
215 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
216 for_each_engine(engine, i915, id) {
217 GEM_TRACE("%s seqno %d (current %d) -> %d\n",
219 engine->timeline.seqno,
220 intel_engine_get_seqno(engine),
223 if (!i915_seqno_passed(seqno, engine->timeline.seqno)) {
224 /* Flush any waiters before we reuse the seqno */
225 intel_engine_disarm_breadcrumbs(engine);
226 intel_engine_init_hangcheck(engine);
227 GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals));
230 /* Check we are idle before we fiddle with hw state! */
231 GEM_BUG_ON(!intel_engine_is_idle(engine));
232 GEM_BUG_ON(i915_gem_active_isset(&engine->timeline.last_request));
234 /* Finally reset hw state */
235 intel_engine_init_global_seqno(engine, seqno);
236 engine->timeline.seqno = seqno;
239 list_for_each_entry(timeline, &i915->gt.timelines, link)
240 memset(timeline->global_sync, 0, sizeof(timeline->global_sync));
242 i915->gt.request_serial = seqno;
247 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
249 struct drm_i915_private *i915 = to_i915(dev);
251 lockdep_assert_held(&i915->drm.struct_mutex);
256 /* HWS page needs to be set less than what we will inject to ring */
257 return reset_all_global_seqno(i915, seqno - 1);
260 static int reserve_gt(struct drm_i915_private *i915)
265 * Reservation is fine until we may need to wrap around
267 * By incrementing the serial for every request, we know that no
268 * individual engine may exceed that serial (as each is reset to 0
269 * on any wrap). This protects even the most pessimistic of migrations
270 * of every request from all engines onto just one.
272 while (unlikely(++i915->gt.request_serial == 0)) {
273 ret = reset_all_global_seqno(i915, 0);
275 i915->gt.request_serial--;
280 if (!i915->gt.active_requests++)
281 i915_gem_unpark(i915);
286 static void unreserve_gt(struct drm_i915_private *i915)
288 GEM_BUG_ON(!i915->gt.active_requests);
289 if (!--i915->gt.active_requests)
293 void i915_gem_retire_noop(struct i915_gem_active *active,
294 struct i915_request *request)
296 /* Space left intentionally blank */
299 static void advance_ring(struct i915_request *request)
301 struct intel_ring *ring = request->ring;
305 * We know the GPU must have read the request to have
306 * sent us the seqno + interrupt, so use the position
307 * of tail of the request to update the last known position
310 * Note this requires that we are always called in request
313 GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
314 if (list_is_last(&request->ring_link, &ring->request_list)) {
316 * We may race here with execlists resubmitting this request
317 * as we retire it. The resubmission will move the ring->tail
318 * forwards (to request->wa_tail). We either read the
319 * current value that was written to hw, or the value that
320 * is just about to be. Either works, if we miss the last two
321 * noops - they are safe to be replayed on a reset.
323 tail = READ_ONCE(request->tail);
324 list_del(&ring->active_link);
326 tail = request->postfix;
328 list_del_init(&request->ring_link);
333 static void free_capture_list(struct i915_request *request)
335 struct i915_capture_list *capture;
337 capture = request->capture_list;
339 struct i915_capture_list *next = capture->next;
346 static void __retire_engine_request(struct intel_engine_cs *engine,
347 struct i915_request *rq)
349 GEM_TRACE("%s(%s) fence %llx:%d, global=%d, current %d\n",
350 __func__, engine->name,
351 rq->fence.context, rq->fence.seqno,
353 intel_engine_get_seqno(engine));
355 GEM_BUG_ON(!i915_request_completed(rq));
359 spin_lock(&engine->timeline.lock);
360 GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests));
361 list_del_init(&rq->link);
362 spin_unlock(&engine->timeline.lock);
364 spin_lock(&rq->lock);
365 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
366 dma_fence_signal_locked(&rq->fence);
367 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
368 intel_engine_cancel_signaling(rq);
370 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
371 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
373 spin_unlock(&rq->lock);
378 * The backing object for the context is done after switching to the
379 * *next* context. Therefore we cannot retire the previous context until
380 * the next context has already started running. However, since we
381 * cannot take the required locks at i915_request_submit() we
382 * defer the unpinning of the active context to now, retirement of
383 * the subsequent request.
385 if (engine->last_retired_context)
386 intel_context_unpin(engine->last_retired_context, engine);
387 engine->last_retired_context = rq->ctx;
390 static void __retire_engine_upto(struct intel_engine_cs *engine,
391 struct i915_request *rq)
393 struct i915_request *tmp;
395 if (list_empty(&rq->link))
399 tmp = list_first_entry(&engine->timeline.requests,
402 GEM_BUG_ON(tmp->engine != engine);
403 __retire_engine_request(engine, tmp);
407 static void i915_request_retire(struct i915_request *request)
409 struct i915_gem_active *active, *next;
411 GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
412 request->engine->name,
413 request->fence.context, request->fence.seqno,
414 request->global_seqno,
415 intel_engine_get_seqno(request->engine));
417 lockdep_assert_held(&request->i915->drm.struct_mutex);
418 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
419 GEM_BUG_ON(!i915_request_completed(request));
421 trace_i915_request_retire(request);
423 advance_ring(request);
424 free_capture_list(request);
427 * Walk through the active list, calling retire on each. This allows
428 * objects to track their GPU activity and mark themselves as idle
429 * when their *last* active request is completed (updating state
430 * tracking lists for eviction, active references for GEM, etc).
432 * As the ->retire() may free the node, we decouple it first and
433 * pass along the auxiliary information (to avoid dereferencing
434 * the node after the callback).
436 list_for_each_entry_safe(active, next, &request->active_list, link) {
438 * In microbenchmarks or focusing upon time inside the kernel,
439 * we may spend an inordinate amount of time simply handling
440 * the retirement of requests and processing their callbacks.
441 * Of which, this loop itself is particularly hot due to the
442 * cache misses when jumping around the list of i915_gem_active.
443 * So we try to keep this loop as streamlined as possible and
444 * also prefetch the next i915_gem_active to try and hide
445 * the likely cache miss.
449 INIT_LIST_HEAD(&active->link);
450 RCU_INIT_POINTER(active->request, NULL);
452 active->retire(active, request);
455 i915_request_remove_from_client(request);
457 /* Retirement decays the ban score as it is a sign of ctx progress */
458 atomic_dec_if_positive(&request->ctx->ban_score);
459 intel_context_unpin(request->ctx, request->engine);
461 __retire_engine_upto(request->engine, request);
463 unreserve_gt(request->i915);
465 i915_sched_node_fini(request->i915, &request->sched);
466 i915_request_put(request);
469 void i915_request_retire_upto(struct i915_request *rq)
471 struct intel_ring *ring = rq->ring;
472 struct i915_request *tmp;
474 GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
476 rq->fence.context, rq->fence.seqno,
478 intel_engine_get_seqno(rq->engine));
480 lockdep_assert_held(&rq->i915->drm.struct_mutex);
481 GEM_BUG_ON(!i915_request_completed(rq));
483 if (list_empty(&rq->ring_link))
487 tmp = list_first_entry(&ring->request_list,
488 typeof(*tmp), ring_link);
490 i915_request_retire(tmp);
494 static u32 timeline_get_seqno(struct i915_timeline *tl)
499 static void move_to_timeline(struct i915_request *request,
500 struct i915_timeline *timeline)
502 GEM_BUG_ON(request->timeline == &request->engine->timeline);
503 lockdep_assert_held(&request->engine->timeline.lock);
505 spin_lock_nested(&request->timeline->lock, SINGLE_DEPTH_NESTING);
506 list_move_tail(&request->link, &timeline->requests);
507 spin_unlock(&request->timeline->lock);
510 void __i915_request_submit(struct i915_request *request)
512 struct intel_engine_cs *engine = request->engine;
515 GEM_TRACE("%s fence %llx:%d -> global=%d, current %d\n",
517 request->fence.context, request->fence.seqno,
518 engine->timeline.seqno + 1,
519 intel_engine_get_seqno(engine));
521 GEM_BUG_ON(!irqs_disabled());
522 lockdep_assert_held(&engine->timeline.lock);
524 GEM_BUG_ON(request->global_seqno);
526 seqno = timeline_get_seqno(&engine->timeline);
528 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
530 /* We may be recursing from the signal callback of another i915 fence */
531 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
532 request->global_seqno = seqno;
533 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
534 intel_engine_enable_signaling(request, false);
535 spin_unlock(&request->lock);
537 engine->emit_breadcrumb(request,
538 request->ring->vaddr + request->postfix);
540 /* Transfer from per-context onto the global per-engine timeline */
541 move_to_timeline(request, &engine->timeline);
543 trace_i915_request_execute(request);
545 wake_up_all(&request->execute);
548 void i915_request_submit(struct i915_request *request)
550 struct intel_engine_cs *engine = request->engine;
553 /* Will be called from irq-context when using foreign fences. */
554 spin_lock_irqsave(&engine->timeline.lock, flags);
556 __i915_request_submit(request);
558 spin_unlock_irqrestore(&engine->timeline.lock, flags);
561 void __i915_request_unsubmit(struct i915_request *request)
563 struct intel_engine_cs *engine = request->engine;
565 GEM_TRACE("%s fence %llx:%d <- global=%d, current %d\n",
567 request->fence.context, request->fence.seqno,
568 request->global_seqno,
569 intel_engine_get_seqno(engine));
571 GEM_BUG_ON(!irqs_disabled());
572 lockdep_assert_held(&engine->timeline.lock);
575 * Only unwind in reverse order, required so that the per-context list
576 * is kept in seqno/ring order.
578 GEM_BUG_ON(!request->global_seqno);
579 GEM_BUG_ON(request->global_seqno != engine->timeline.seqno);
580 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine),
581 request->global_seqno));
582 engine->timeline.seqno--;
584 /* We may be recursing from the signal callback of another i915 fence */
585 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
586 request->global_seqno = 0;
587 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
588 intel_engine_cancel_signaling(request);
589 spin_unlock(&request->lock);
591 /* Transfer back from the global per-engine timeline to per-context */
592 move_to_timeline(request, request->timeline);
595 * We don't need to wake_up any waiters on request->execute, they
596 * will get woken by any other event or us re-adding this request
597 * to the engine timeline (__i915_request_submit()). The waiters
598 * should be quite adapt at finding that the request now has a new
599 * global_seqno to the one they went to sleep on.
603 void i915_request_unsubmit(struct i915_request *request)
605 struct intel_engine_cs *engine = request->engine;
608 /* Will be called from irq-context when using foreign fences. */
609 spin_lock_irqsave(&engine->timeline.lock, flags);
611 __i915_request_unsubmit(request);
613 spin_unlock_irqrestore(&engine->timeline.lock, flags);
616 static int __i915_sw_fence_call
617 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
619 struct i915_request *request =
620 container_of(fence, typeof(*request), submit);
624 trace_i915_request_submit(request);
626 * We need to serialize use of the submit_request() callback
627 * with its hotplugging performed during an emergency
628 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
629 * critical section in order to force i915_gem_set_wedged() to
630 * wait until the submit_request() is completed before
634 request->engine->submit_request(request);
639 i915_request_put(request);
647 * i915_request_alloc - allocate a request structure
649 * @engine: engine that we wish to issue the request on.
650 * @ctx: context that the request will be associated with.
652 * Returns a pointer to the allocated request if successful,
653 * or an error code if not.
655 struct i915_request *
656 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
658 struct drm_i915_private *i915 = engine->i915;
659 struct i915_request *rq;
660 struct intel_ring *ring;
663 lockdep_assert_held(&i915->drm.struct_mutex);
666 * Preempt contexts are reserved for exclusive use to inject a
667 * preemption context switch. They are never to be used for any trivial
670 GEM_BUG_ON(ctx == i915->preempt_context);
673 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
674 * EIO if the GPU is already wedged.
676 if (i915_terminally_wedged(&i915->gpu_error))
677 return ERR_PTR(-EIO);
680 * Pinning the contexts may generate requests in order to acquire
681 * GGTT space, so do this first before we reserve a seqno for
684 ring = intel_context_pin(ctx, engine);
686 return ERR_CAST(ring);
689 ret = reserve_gt(i915);
693 ret = intel_ring_wait_for_space(ring, MIN_SPACE_FOR_ADD_REQUEST);
697 /* Move our oldest request to the slab-cache (if not in use!) */
698 rq = list_first_entry(&ring->request_list, typeof(*rq), ring_link);
699 if (!list_is_last(&rq->ring_link, &ring->request_list) &&
700 i915_request_completed(rq))
701 i915_request_retire(rq);
704 * Beware: Dragons be flying overhead.
706 * We use RCU to look up requests in flight. The lookups may
707 * race with the request being allocated from the slab freelist.
708 * That is the request we are writing to here, may be in the process
709 * of being read by __i915_gem_active_get_rcu(). As such,
710 * we have to be very careful when overwriting the contents. During
711 * the RCU lookup, we change chase the request->engine pointer,
712 * read the request->global_seqno and increment the reference count.
714 * The reference count is incremented atomically. If it is zero,
715 * the lookup knows the request is unallocated and complete. Otherwise,
716 * it is either still in use, or has been reallocated and reset
717 * with dma_fence_init(). This increment is safe for release as we
718 * check that the request we have a reference to and matches the active
721 * Before we increment the refcount, we chase the request->engine
722 * pointer. We must not call kmem_cache_zalloc() or else we set
723 * that pointer to NULL and cause a crash during the lookup. If
724 * we see the request is completed (based on the value of the
725 * old engine and seqno), the lookup is complete and reports NULL.
726 * If we decide the request is not completed (new engine or seqno),
727 * then we grab a reference and double check that it is still the
728 * active request - which it won't be and restart the lookup.
730 * Do not use kmem_cache_zalloc() here!
732 rq = kmem_cache_alloc(i915->requests,
733 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
735 /* Ratelimit ourselves to prevent oom from malicious clients */
736 ret = i915_gem_wait_for_idle(i915,
738 I915_WAIT_INTERRUPTIBLE);
743 * We've forced the client to stall and catch up with whatever
744 * backlog there might have been. As we are assuming that we
745 * caused the mempressure, now is an opportune time to
746 * recover as much memory from the request pool as is possible.
747 * Having already penalized the client to stall, we spend
748 * a little extra time to re-optimise page allocation.
750 kmem_cache_shrink(i915->requests);
751 rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */
753 rq = kmem_cache_alloc(i915->requests, GFP_KERNEL);
760 INIT_LIST_HEAD(&rq->active_list);
765 rq->timeline = ring->timeline;
766 GEM_BUG_ON(rq->timeline == &engine->timeline);
768 spin_lock_init(&rq->lock);
769 dma_fence_init(&rq->fence,
772 rq->timeline->fence_context,
773 timeline_get_seqno(rq->timeline));
775 /* We bump the ref for the fence chain */
776 i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
777 init_waitqueue_head(&rq->execute);
779 i915_sched_node_init(&rq->sched);
781 /* No zalloc, must clear what we need by hand */
782 rq->global_seqno = 0;
783 rq->signaling.wait.seqno = 0;
784 rq->file_priv = NULL;
786 rq->capture_list = NULL;
787 rq->waitboost = false;
790 * Reserve space in the ring buffer for all the commands required to
791 * eventually emit this request. This is to guarantee that the
792 * i915_request_add() call can't fail. Note that the reserve may need
793 * to be redone if the request is not actually submitted straight
794 * away, e.g. because a GPU scheduler has deferred it.
796 rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
797 GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz);
800 * Record the position of the start of the request so that
801 * should we detect the updated seqno part-way through the
802 * GPU processing the request, we never over-estimate the
803 * position of the head.
805 rq->head = rq->ring->emit;
807 /* Unconditionally invalidate GPU caches and TLBs. */
808 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
812 ret = engine->request_alloc(rq);
816 /* Keep a second pin for the dual retirement along engine and ring */
817 __intel_context_pin(rq->ctx, engine);
819 /* Check that we didn't interrupt ourselves with a new request */
820 GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
824 rq->ring->emit = rq->head;
826 /* Make sure we didn't add ourselves to external state before freeing */
827 GEM_BUG_ON(!list_empty(&rq->active_list));
828 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
829 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
831 kmem_cache_free(i915->requests, rq);
835 intel_context_unpin(ctx, engine);
840 i915_request_await_request(struct i915_request *to, struct i915_request *from)
844 GEM_BUG_ON(to == from);
845 GEM_BUG_ON(to->timeline == from->timeline);
847 if (i915_request_completed(from))
850 if (to->engine->schedule) {
851 ret = i915_sched_node_add_dependency(to->i915,
858 if (to->engine == from->engine) {
859 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
862 return ret < 0 ? ret : 0;
865 if (to->engine->semaphore.sync_to) {
868 GEM_BUG_ON(!from->engine->semaphore.signal);
870 seqno = i915_request_global_seqno(from);
872 goto await_dma_fence;
874 if (seqno <= to->timeline->global_sync[from->engine->id])
877 trace_i915_gem_ring_sync_to(to, from);
878 ret = to->engine->semaphore.sync_to(to, from);
882 to->timeline->global_sync[from->engine->id] = seqno;
887 ret = i915_sw_fence_await_dma_fence(&to->submit,
890 return ret < 0 ? ret : 0;
894 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
896 struct dma_fence **child = &fence;
897 unsigned int nchild = 1;
901 * Note that if the fence-array was created in signal-on-any mode,
902 * we should *not* decompose it into its individual fences. However,
903 * we don't currently store which mode the fence-array is operating
904 * in. Fortunately, the only user of signal-on-any is private to
905 * amdgpu and we should not see any incoming fence-array from
906 * sync-file being in signal-on-any mode.
908 if (dma_fence_is_array(fence)) {
909 struct dma_fence_array *array = to_dma_fence_array(fence);
911 child = array->fences;
912 nchild = array->num_fences;
918 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
922 * Requests on the same timeline are explicitly ordered, along
923 * with their dependencies, by i915_request_add() which ensures
924 * that requests are submitted in-order through each ring.
926 if (fence->context == rq->fence.context)
929 /* Squash repeated waits to the same timelines */
930 if (fence->context != rq->i915->mm.unordered_timeline &&
931 i915_timeline_sync_is_later(rq->timeline, fence))
934 if (dma_fence_is_i915(fence))
935 ret = i915_request_await_request(rq, to_request(fence));
937 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
943 /* Record the latest fence used against each timeline */
944 if (fence->context != rq->i915->mm.unordered_timeline)
945 i915_timeline_sync_set(rq->timeline, fence);
952 * i915_request_await_object - set this request to (async) wait upon a bo
953 * @to: request we are wishing to use
954 * @obj: object which may be in use on another ring.
955 * @write: whether the wait is on behalf of a writer
957 * This code is meant to abstract object synchronization with the GPU.
958 * Conceptually we serialise writes between engines inside the GPU.
959 * We only allow one engine to write into a buffer at any time, but
960 * multiple readers. To ensure each has a coherent view of memory, we must:
962 * - If there is an outstanding write request to the object, the new
963 * request must wait for it to complete (either CPU or in hw, requests
964 * on the same ring will be naturally ordered).
966 * - If we are a write request (pending_write_domain is set), the new
967 * request must wait for outstanding read requests to complete.
969 * Returns 0 if successful, else propagates up the lower layer error.
972 i915_request_await_object(struct i915_request *to,
973 struct drm_i915_gem_object *obj,
976 struct dma_fence *excl;
980 struct dma_fence **shared;
981 unsigned int count, i;
983 ret = reservation_object_get_fences_rcu(obj->resv,
984 &excl, &count, &shared);
988 for (i = 0; i < count; i++) {
989 ret = i915_request_await_dma_fence(to, shared[i]);
993 dma_fence_put(shared[i]);
996 for (; i < count; i++)
997 dma_fence_put(shared[i]);
1000 excl = reservation_object_get_excl_rcu(obj->resv);
1005 ret = i915_request_await_dma_fence(to, excl);
1007 dma_fence_put(excl);
1014 * NB: This function is not allowed to fail. Doing so would mean the the
1015 * request is not being tracked for completion but the work itself is
1016 * going to happen on the hardware. This would be a Bad Thing(tm).
1018 void __i915_request_add(struct i915_request *request, bool flush_caches)
1020 struct intel_engine_cs *engine = request->engine;
1021 struct intel_ring *ring = request->ring;
1022 struct i915_timeline *timeline = request->timeline;
1023 struct i915_request *prev;
1027 GEM_TRACE("%s fence %llx:%d\n",
1028 engine->name, request->fence.context, request->fence.seqno);
1030 lockdep_assert_held(&request->i915->drm.struct_mutex);
1031 trace_i915_request_add(request);
1034 * Make sure that no request gazumped us - if it was allocated after
1035 * our i915_request_alloc() and called __i915_request_add() before
1036 * us, the timeline will hold its seqno which is later than ours.
1038 GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1041 * To ensure that this call will not fail, space for its emissions
1042 * should already have been reserved in the ring buffer. Let the ring
1043 * know that it is time to use that space up.
1045 request->reserved_space = 0;
1048 * Emit any outstanding flushes - execbuf can fail to emit the flush
1049 * after having emitted the batchbuffer command. Hence we need to fix
1050 * things up similar to emitting the lazy request. The difference here
1051 * is that the flush _must_ happen before the next request, no matter
1055 err = engine->emit_flush(request, EMIT_FLUSH);
1057 /* Not allowed to fail! */
1058 WARN(err, "engine->emit_flush() failed: %d!\n", err);
1062 * Record the position of the start of the breadcrumb so that
1063 * should we detect the updated seqno part-way through the
1064 * GPU processing the request, we never over-estimate the
1065 * position of the ring's HEAD.
1067 cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
1068 GEM_BUG_ON(IS_ERR(cs));
1069 request->postfix = intel_ring_offset(request, cs);
1072 * Seal the request and mark it as pending execution. Note that
1073 * we may inspect this state, without holding any locks, during
1074 * hangcheck. Hence we apply the barrier to ensure that we do not
1075 * see a more recent value in the hws than we are tracking.
1078 prev = i915_gem_active_raw(&timeline->last_request,
1079 &request->i915->drm.struct_mutex);
1080 if (prev && !i915_request_completed(prev)) {
1081 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
1083 if (engine->schedule)
1084 __i915_sched_node_add_dependency(&request->sched,
1090 spin_lock_irq(&timeline->lock);
1091 list_add_tail(&request->link, &timeline->requests);
1092 spin_unlock_irq(&timeline->lock);
1094 GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1095 i915_gem_active_set(&timeline->last_request, request);
1097 list_add_tail(&request->ring_link, &ring->request_list);
1098 if (list_is_first(&request->ring_link, &ring->request_list))
1099 list_add(&ring->active_link, &request->i915->gt.active_rings);
1100 request->emitted_jiffies = jiffies;
1103 * Let the backend know a new request has arrived that may need
1104 * to adjust the existing execution schedule due to a high priority
1105 * request - i.e. we may want to preempt the current request in order
1106 * to run a high priority dependency chain *before* we can execute this
1109 * This is called before the request is ready to run so that we can
1110 * decide whether to preempt the entire chain so that it is ready to
1111 * run at the earliest possible convenience.
1114 rcu_read_lock(); /* RCU serialisation for set-wedged protection */
1115 if (engine->schedule)
1116 engine->schedule(request, &request->ctx->sched);
1118 i915_sw_fence_commit(&request->submit);
1119 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1122 * In typical scenarios, we do not expect the previous request on
1123 * the timeline to be still tracked by timeline->last_request if it
1124 * has been completed. If the completed request is still here, that
1125 * implies that request retirement is a long way behind submission,
1126 * suggesting that we haven't been retiring frequently enough from
1127 * the combination of retire-before-alloc, waiters and the background
1128 * retirement worker. So if the last request on this timeline was
1129 * already completed, do a catch up pass, flushing the retirement queue
1130 * up to this client. Since we have now moved the heaviest operations
1131 * during retirement onto secondary workers, such as freeing objects
1132 * or contexts, retiring a bunch of requests is mostly list management
1133 * (and cache misses), and so we should not be overly penalizing this
1134 * client by performing excess work, though we may still performing
1135 * work on behalf of others -- but instead we should benefit from
1136 * improved resource management. (Well, that's the theory at least.)
1138 if (prev && i915_request_completed(prev))
1139 i915_request_retire_upto(prev);
1142 static unsigned long local_clock_us(unsigned int *cpu)
1147 * Cheaply and approximately convert from nanoseconds to microseconds.
1148 * The result and subsequent calculations are also defined in the same
1149 * approximate microseconds units. The principal source of timing
1150 * error here is from the simple truncation.
1152 * Note that local_clock() is only defined wrt to the current CPU;
1153 * the comparisons are no longer valid if we switch CPUs. Instead of
1154 * blocking preemption for the entire busywait, we can detect the CPU
1155 * switch and use that as indicator of system load and a reason to
1156 * stop busywaiting, see busywait_stop().
1159 t = local_clock() >> 10;
1165 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1167 unsigned int this_cpu;
1169 if (time_after(local_clock_us(&this_cpu), timeout))
1172 return this_cpu != cpu;
1175 static bool __i915_spin_request(const struct i915_request *rq,
1176 u32 seqno, int state, unsigned long timeout_us)
1178 struct intel_engine_cs *engine = rq->engine;
1179 unsigned int irq, cpu;
1184 * Only wait for the request if we know it is likely to complete.
1186 * We don't track the timestamps around requests, nor the average
1187 * request length, so we do not have a good indicator that this
1188 * request will complete within the timeout. What we do know is the
1189 * order in which requests are executed by the engine and so we can
1190 * tell if the request has started. If the request hasn't started yet,
1191 * it is a fair assumption that it will not complete within our
1192 * relatively short timeout.
1194 if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
1198 * When waiting for high frequency requests, e.g. during synchronous
1199 * rendering split between the CPU and GPU, the finite amount of time
1200 * required to set up the irq and wait upon it limits the response
1201 * rate. By busywaiting on the request completion for a short while we
1202 * can service the high frequency waits as quick as possible. However,
1203 * if it is a slow request, we want to sleep as quickly as possible.
1204 * The tradeoff between waiting and sleeping is roughly the time it
1205 * takes to sleep on a request, on the order of a microsecond.
1208 irq = atomic_read(&engine->irq_count);
1209 timeout_us += local_clock_us(&cpu);
1211 if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
1212 return seqno == i915_request_global_seqno(rq);
1215 * Seqno are meant to be ordered *before* the interrupt. If
1216 * we see an interrupt without a corresponding seqno advance,
1217 * assume we won't see one in the near future but require
1218 * the engine->seqno_barrier() to fixup coherency.
1220 if (atomic_read(&engine->irq_count) != irq)
1223 if (signal_pending_state(state, current))
1226 if (busywait_stop(timeout_us, cpu))
1230 } while (!need_resched());
1235 static bool __i915_wait_request_check_and_reset(struct i915_request *request)
1237 struct i915_gpu_error *error = &request->i915->gpu_error;
1239 if (likely(!i915_reset_handoff(error)))
1242 __set_current_state(TASK_RUNNING);
1243 i915_reset(request->i915, error->stalled_mask, error->reason);
1248 * i915_request_wait - wait until execution of request has finished
1249 * @rq: the request to wait upon
1250 * @flags: how to wait
1251 * @timeout: how long to wait in jiffies
1253 * i915_request_wait() waits for the request to be completed, for a
1254 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1257 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1258 * in via the flags, and vice versa if the struct_mutex is not held, the caller
1259 * must not specify that the wait is locked.
1261 * Returns the remaining time (in jiffies) if the request completed, which may
1262 * be zero or -ETIME if the request is unfinished after the timeout expires.
1263 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1264 * pending before the request completes.
1266 long i915_request_wait(struct i915_request *rq,
1270 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1271 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1272 wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue;
1273 DEFINE_WAIT_FUNC(reset, default_wake_function);
1274 DEFINE_WAIT_FUNC(exec, default_wake_function);
1275 struct intel_wait wait;
1278 #if IS_ENABLED(CONFIG_LOCKDEP)
1279 GEM_BUG_ON(debug_locks &&
1280 !!lockdep_is_held(&rq->i915->drm.struct_mutex) !=
1281 !!(flags & I915_WAIT_LOCKED));
1283 GEM_BUG_ON(timeout < 0);
1285 if (i915_request_completed(rq))
1291 trace_i915_request_wait_begin(rq, flags);
1293 add_wait_queue(&rq->execute, &exec);
1294 if (flags & I915_WAIT_LOCKED)
1295 add_wait_queue(errq, &reset);
1297 intel_wait_init(&wait, rq);
1301 set_current_state(state);
1302 if (intel_wait_update_request(&wait, rq))
1305 if (flags & I915_WAIT_LOCKED &&
1306 __i915_wait_request_check_and_reset(rq))
1309 if (signal_pending_state(state, current)) {
1310 timeout = -ERESTARTSYS;
1319 timeout = io_schedule_timeout(timeout);
1322 GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1323 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
1325 /* Optimistic short spin before touching IRQs */
1326 if (__i915_spin_request(rq, wait.seqno, state, 5))
1329 set_current_state(state);
1330 if (intel_engine_add_wait(rq->engine, &wait))
1332 * In order to check that we haven't missed the interrupt
1333 * as we enabled it, we need to kick ourselves to do a
1334 * coherent check on the seqno before we sleep.
1338 if (flags & I915_WAIT_LOCKED)
1339 __i915_wait_request_check_and_reset(rq);
1342 if (signal_pending_state(state, current)) {
1343 timeout = -ERESTARTSYS;
1352 timeout = io_schedule_timeout(timeout);
1354 if (intel_wait_complete(&wait) &&
1355 intel_wait_check_request(&wait, rq))
1358 set_current_state(state);
1362 * Carefully check if the request is complete, giving time
1363 * for the seqno to be visible following the interrupt.
1364 * We also have to check in case we are kicked by the GPU
1365 * reset in order to drop the struct_mutex.
1367 if (__i915_request_irq_complete(rq))
1371 * If the GPU is hung, and we hold the lock, reset the GPU
1372 * and then check for completion. On a full reset, the engine's
1373 * HW seqno will be advanced passed us and we are complete.
1374 * If we do a partial reset, we have to wait for the GPU to
1375 * resume and update the breadcrumb.
1377 * If we don't hold the mutex, we can just wait for the worker
1378 * to come along and update the breadcrumb (either directly
1379 * itself, or indirectly by recovering the GPU).
1381 if (flags & I915_WAIT_LOCKED &&
1382 __i915_wait_request_check_and_reset(rq))
1385 /* Only spin if we know the GPU is processing this request */
1386 if (__i915_spin_request(rq, wait.seqno, state, 2))
1389 if (!intel_wait_check_request(&wait, rq)) {
1390 intel_engine_remove_wait(rq->engine, &wait);
1395 intel_engine_remove_wait(rq->engine, &wait);
1397 __set_current_state(TASK_RUNNING);
1398 if (flags & I915_WAIT_LOCKED)
1399 remove_wait_queue(errq, &reset);
1400 remove_wait_queue(&rq->execute, &exec);
1401 trace_i915_request_wait_end(rq);
1406 static void ring_retire_requests(struct intel_ring *ring)
1408 struct i915_request *request, *next;
1410 list_for_each_entry_safe(request, next,
1411 &ring->request_list, ring_link) {
1412 if (!i915_request_completed(request))
1415 i915_request_retire(request);
1419 void i915_retire_requests(struct drm_i915_private *i915)
1421 struct intel_ring *ring, *tmp;
1423 lockdep_assert_held(&i915->drm.struct_mutex);
1425 if (!i915->gt.active_requests)
1428 list_for_each_entry_safe(ring, tmp, &i915->gt.active_rings, active_link)
1429 ring_retire_requests(ring);
1432 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1433 #include "selftests/mock_request.c"
1434 #include "selftests/i915_request.c"