]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/i915_request.c
Merge tag 'for-linus-4.18-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30
31 #include "i915_drv.h"
32
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35         return "i915";
36 }
37
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40         /*
41          * The timeline struct (as part of the ppgtt underneath a context)
42          * may be freed when the request is no longer in use by the GPU.
43          * We could extend the life of a context to beyond that of all
44          * fences, possibly keeping the hw resource around indefinitely,
45          * or we just give them a false name. Since
46          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
47          * lie seems justifiable.
48          */
49         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
50                 return "signaled";
51
52         return to_request(fence)->timeline->name;
53 }
54
55 static bool i915_fence_signaled(struct dma_fence *fence)
56 {
57         return i915_request_completed(to_request(fence));
58 }
59
60 static bool i915_fence_enable_signaling(struct dma_fence *fence)
61 {
62         return intel_engine_enable_signaling(to_request(fence), true);
63 }
64
65 static signed long i915_fence_wait(struct dma_fence *fence,
66                                    bool interruptible,
67                                    signed long timeout)
68 {
69         return i915_request_wait(to_request(fence), interruptible, timeout);
70 }
71
72 static void i915_fence_release(struct dma_fence *fence)
73 {
74         struct i915_request *rq = to_request(fence);
75
76         /*
77          * The request is put onto a RCU freelist (i.e. the address
78          * is immediately reused), mark the fences as being freed now.
79          * Otherwise the debugobjects for the fences are only marked as
80          * freed when the slab cache itself is freed, and so we would get
81          * caught trying to reuse dead objects.
82          */
83         i915_sw_fence_fini(&rq->submit);
84
85         kmem_cache_free(rq->i915->requests, rq);
86 }
87
88 const struct dma_fence_ops i915_fence_ops = {
89         .get_driver_name = i915_fence_get_driver_name,
90         .get_timeline_name = i915_fence_get_timeline_name,
91         .enable_signaling = i915_fence_enable_signaling,
92         .signaled = i915_fence_signaled,
93         .wait = i915_fence_wait,
94         .release = i915_fence_release,
95 };
96
97 static inline void
98 i915_request_remove_from_client(struct i915_request *request)
99 {
100         struct drm_i915_file_private *file_priv;
101
102         file_priv = request->file_priv;
103         if (!file_priv)
104                 return;
105
106         spin_lock(&file_priv->mm.lock);
107         if (request->file_priv) {
108                 list_del(&request->client_link);
109                 request->file_priv = NULL;
110         }
111         spin_unlock(&file_priv->mm.lock);
112 }
113
114 static struct i915_dependency *
115 i915_dependency_alloc(struct drm_i915_private *i915)
116 {
117         return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
118 }
119
120 static void
121 i915_dependency_free(struct drm_i915_private *i915,
122                      struct i915_dependency *dep)
123 {
124         kmem_cache_free(i915->dependencies, dep);
125 }
126
127 static void
128 __i915_sched_node_add_dependency(struct i915_sched_node *node,
129                                  struct i915_sched_node *signal,
130                                  struct i915_dependency *dep,
131                                  unsigned long flags)
132 {
133         INIT_LIST_HEAD(&dep->dfs_link);
134         list_add(&dep->wait_link, &signal->waiters_list);
135         list_add(&dep->signal_link, &node->signalers_list);
136         dep->signaler = signal;
137         dep->flags = flags;
138 }
139
140 static int
141 i915_sched_node_add_dependency(struct drm_i915_private *i915,
142                                struct i915_sched_node *node,
143                                struct i915_sched_node *signal)
144 {
145         struct i915_dependency *dep;
146
147         dep = i915_dependency_alloc(i915);
148         if (!dep)
149                 return -ENOMEM;
150
151         __i915_sched_node_add_dependency(node, signal, dep,
152                                          I915_DEPENDENCY_ALLOC);
153         return 0;
154 }
155
156 static void
157 i915_sched_node_fini(struct drm_i915_private *i915,
158                      struct i915_sched_node *node)
159 {
160         struct i915_dependency *dep, *tmp;
161
162         GEM_BUG_ON(!list_empty(&node->link));
163
164         /*
165          * Everyone we depended upon (the fences we wait to be signaled)
166          * should retire before us and remove themselves from our list.
167          * However, retirement is run independently on each timeline and
168          * so we may be called out-of-order.
169          */
170         list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
171                 GEM_BUG_ON(!i915_sched_node_signaled(dep->signaler));
172                 GEM_BUG_ON(!list_empty(&dep->dfs_link));
173
174                 list_del(&dep->wait_link);
175                 if (dep->flags & I915_DEPENDENCY_ALLOC)
176                         i915_dependency_free(i915, dep);
177         }
178
179         /* Remove ourselves from everyone who depends upon us */
180         list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
181                 GEM_BUG_ON(dep->signaler != node);
182                 GEM_BUG_ON(!list_empty(&dep->dfs_link));
183
184                 list_del(&dep->signal_link);
185                 if (dep->flags & I915_DEPENDENCY_ALLOC)
186                         i915_dependency_free(i915, dep);
187         }
188 }
189
190 static void
191 i915_sched_node_init(struct i915_sched_node *node)
192 {
193         INIT_LIST_HEAD(&node->signalers_list);
194         INIT_LIST_HEAD(&node->waiters_list);
195         INIT_LIST_HEAD(&node->link);
196         node->attr.priority = I915_PRIORITY_INVALID;
197 }
198
199 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
200 {
201         struct intel_engine_cs *engine;
202         struct i915_timeline *timeline;
203         enum intel_engine_id id;
204         int ret;
205
206         /* Carefully retire all requests without writing to the rings */
207         ret = i915_gem_wait_for_idle(i915,
208                                      I915_WAIT_INTERRUPTIBLE |
209                                      I915_WAIT_LOCKED);
210         if (ret)
211                 return ret;
212
213         GEM_BUG_ON(i915->gt.active_requests);
214
215         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
216         for_each_engine(engine, i915, id) {
217                 GEM_TRACE("%s seqno %d (current %d) -> %d\n",
218                           engine->name,
219                           engine->timeline.seqno,
220                           intel_engine_get_seqno(engine),
221                           seqno);
222
223                 if (!i915_seqno_passed(seqno, engine->timeline.seqno)) {
224                         /* Flush any waiters before we reuse the seqno */
225                         intel_engine_disarm_breadcrumbs(engine);
226                         intel_engine_init_hangcheck(engine);
227                         GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals));
228                 }
229
230                 /* Check we are idle before we fiddle with hw state! */
231                 GEM_BUG_ON(!intel_engine_is_idle(engine));
232                 GEM_BUG_ON(i915_gem_active_isset(&engine->timeline.last_request));
233
234                 /* Finally reset hw state */
235                 intel_engine_init_global_seqno(engine, seqno);
236                 engine->timeline.seqno = seqno;
237         }
238
239         list_for_each_entry(timeline, &i915->gt.timelines, link)
240                 memset(timeline->global_sync, 0, sizeof(timeline->global_sync));
241
242         i915->gt.request_serial = seqno;
243
244         return 0;
245 }
246
247 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
248 {
249         struct drm_i915_private *i915 = to_i915(dev);
250
251         lockdep_assert_held(&i915->drm.struct_mutex);
252
253         if (seqno == 0)
254                 return -EINVAL;
255
256         /* HWS page needs to be set less than what we will inject to ring */
257         return reset_all_global_seqno(i915, seqno - 1);
258 }
259
260 static int reserve_gt(struct drm_i915_private *i915)
261 {
262         int ret;
263
264         /*
265          * Reservation is fine until we may need to wrap around
266          *
267          * By incrementing the serial for every request, we know that no
268          * individual engine may exceed that serial (as each is reset to 0
269          * on any wrap). This protects even the most pessimistic of migrations
270          * of every request from all engines onto just one.
271          */
272         while (unlikely(++i915->gt.request_serial == 0)) {
273                 ret = reset_all_global_seqno(i915, 0);
274                 if (ret) {
275                         i915->gt.request_serial--;
276                         return ret;
277                 }
278         }
279
280         if (!i915->gt.active_requests++)
281                 i915_gem_unpark(i915);
282
283         return 0;
284 }
285
286 static void unreserve_gt(struct drm_i915_private *i915)
287 {
288         GEM_BUG_ON(!i915->gt.active_requests);
289         if (!--i915->gt.active_requests)
290                 i915_gem_park(i915);
291 }
292
293 void i915_gem_retire_noop(struct i915_gem_active *active,
294                           struct i915_request *request)
295 {
296         /* Space left intentionally blank */
297 }
298
299 static void advance_ring(struct i915_request *request)
300 {
301         struct intel_ring *ring = request->ring;
302         unsigned int tail;
303
304         /*
305          * We know the GPU must have read the request to have
306          * sent us the seqno + interrupt, so use the position
307          * of tail of the request to update the last known position
308          * of the GPU head.
309          *
310          * Note this requires that we are always called in request
311          * completion order.
312          */
313         GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
314         if (list_is_last(&request->ring_link, &ring->request_list)) {
315                 /*
316                  * We may race here with execlists resubmitting this request
317                  * as we retire it. The resubmission will move the ring->tail
318                  * forwards (to request->wa_tail). We either read the
319                  * current value that was written to hw, or the value that
320                  * is just about to be. Either works, if we miss the last two
321                  * noops - they are safe to be replayed on a reset.
322                  */
323                 tail = READ_ONCE(request->tail);
324                 list_del(&ring->active_link);
325         } else {
326                 tail = request->postfix;
327         }
328         list_del_init(&request->ring_link);
329
330         ring->head = tail;
331 }
332
333 static void free_capture_list(struct i915_request *request)
334 {
335         struct i915_capture_list *capture;
336
337         capture = request->capture_list;
338         while (capture) {
339                 struct i915_capture_list *next = capture->next;
340
341                 kfree(capture);
342                 capture = next;
343         }
344 }
345
346 static void __retire_engine_request(struct intel_engine_cs *engine,
347                                     struct i915_request *rq)
348 {
349         GEM_TRACE("%s(%s) fence %llx:%d, global=%d, current %d\n",
350                   __func__, engine->name,
351                   rq->fence.context, rq->fence.seqno,
352                   rq->global_seqno,
353                   intel_engine_get_seqno(engine));
354
355         GEM_BUG_ON(!i915_request_completed(rq));
356
357         local_irq_disable();
358
359         spin_lock(&engine->timeline.lock);
360         GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests));
361         list_del_init(&rq->link);
362         spin_unlock(&engine->timeline.lock);
363
364         spin_lock(&rq->lock);
365         if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
366                 dma_fence_signal_locked(&rq->fence);
367         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
368                 intel_engine_cancel_signaling(rq);
369         if (rq->waitboost) {
370                 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
371                 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
372         }
373         spin_unlock(&rq->lock);
374
375         local_irq_enable();
376
377         /*
378          * The backing object for the context is done after switching to the
379          * *next* context. Therefore we cannot retire the previous context until
380          * the next context has already started running. However, since we
381          * cannot take the required locks at i915_request_submit() we
382          * defer the unpinning of the active context to now, retirement of
383          * the subsequent request.
384          */
385         if (engine->last_retired_context)
386                 intel_context_unpin(engine->last_retired_context, engine);
387         engine->last_retired_context = rq->ctx;
388 }
389
390 static void __retire_engine_upto(struct intel_engine_cs *engine,
391                                  struct i915_request *rq)
392 {
393         struct i915_request *tmp;
394
395         if (list_empty(&rq->link))
396                 return;
397
398         do {
399                 tmp = list_first_entry(&engine->timeline.requests,
400                                        typeof(*tmp), link);
401
402                 GEM_BUG_ON(tmp->engine != engine);
403                 __retire_engine_request(engine, tmp);
404         } while (tmp != rq);
405 }
406
407 static void i915_request_retire(struct i915_request *request)
408 {
409         struct i915_gem_active *active, *next;
410
411         GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
412                   request->engine->name,
413                   request->fence.context, request->fence.seqno,
414                   request->global_seqno,
415                   intel_engine_get_seqno(request->engine));
416
417         lockdep_assert_held(&request->i915->drm.struct_mutex);
418         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
419         GEM_BUG_ON(!i915_request_completed(request));
420
421         trace_i915_request_retire(request);
422
423         advance_ring(request);
424         free_capture_list(request);
425
426         /*
427          * Walk through the active list, calling retire on each. This allows
428          * objects to track their GPU activity and mark themselves as idle
429          * when their *last* active request is completed (updating state
430          * tracking lists for eviction, active references for GEM, etc).
431          *
432          * As the ->retire() may free the node, we decouple it first and
433          * pass along the auxiliary information (to avoid dereferencing
434          * the node after the callback).
435          */
436         list_for_each_entry_safe(active, next, &request->active_list, link) {
437                 /*
438                  * In microbenchmarks or focusing upon time inside the kernel,
439                  * we may spend an inordinate amount of time simply handling
440                  * the retirement of requests and processing their callbacks.
441                  * Of which, this loop itself is particularly hot due to the
442                  * cache misses when jumping around the list of i915_gem_active.
443                  * So we try to keep this loop as streamlined as possible and
444                  * also prefetch the next i915_gem_active to try and hide
445                  * the likely cache miss.
446                  */
447                 prefetchw(next);
448
449                 INIT_LIST_HEAD(&active->link);
450                 RCU_INIT_POINTER(active->request, NULL);
451
452                 active->retire(active, request);
453         }
454
455         i915_request_remove_from_client(request);
456
457         /* Retirement decays the ban score as it is a sign of ctx progress */
458         atomic_dec_if_positive(&request->ctx->ban_score);
459         intel_context_unpin(request->ctx, request->engine);
460
461         __retire_engine_upto(request->engine, request);
462
463         unreserve_gt(request->i915);
464
465         i915_sched_node_fini(request->i915, &request->sched);
466         i915_request_put(request);
467 }
468
469 void i915_request_retire_upto(struct i915_request *rq)
470 {
471         struct intel_ring *ring = rq->ring;
472         struct i915_request *tmp;
473
474         GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
475                   rq->engine->name,
476                   rq->fence.context, rq->fence.seqno,
477                   rq->global_seqno,
478                   intel_engine_get_seqno(rq->engine));
479
480         lockdep_assert_held(&rq->i915->drm.struct_mutex);
481         GEM_BUG_ON(!i915_request_completed(rq));
482
483         if (list_empty(&rq->ring_link))
484                 return;
485
486         do {
487                 tmp = list_first_entry(&ring->request_list,
488                                        typeof(*tmp), ring_link);
489
490                 i915_request_retire(tmp);
491         } while (tmp != rq);
492 }
493
494 static u32 timeline_get_seqno(struct i915_timeline *tl)
495 {
496         return ++tl->seqno;
497 }
498
499 static void move_to_timeline(struct i915_request *request,
500                              struct i915_timeline *timeline)
501 {
502         GEM_BUG_ON(request->timeline == &request->engine->timeline);
503         lockdep_assert_held(&request->engine->timeline.lock);
504
505         spin_lock_nested(&request->timeline->lock, SINGLE_DEPTH_NESTING);
506         list_move_tail(&request->link, &timeline->requests);
507         spin_unlock(&request->timeline->lock);
508 }
509
510 void __i915_request_submit(struct i915_request *request)
511 {
512         struct intel_engine_cs *engine = request->engine;
513         u32 seqno;
514
515         GEM_TRACE("%s fence %llx:%d -> global=%d, current %d\n",
516                   engine->name,
517                   request->fence.context, request->fence.seqno,
518                   engine->timeline.seqno + 1,
519                   intel_engine_get_seqno(engine));
520
521         GEM_BUG_ON(!irqs_disabled());
522         lockdep_assert_held(&engine->timeline.lock);
523
524         GEM_BUG_ON(request->global_seqno);
525
526         seqno = timeline_get_seqno(&engine->timeline);
527         GEM_BUG_ON(!seqno);
528         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
529
530         /* We may be recursing from the signal callback of another i915 fence */
531         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
532         request->global_seqno = seqno;
533         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
534                 intel_engine_enable_signaling(request, false);
535         spin_unlock(&request->lock);
536
537         engine->emit_breadcrumb(request,
538                                 request->ring->vaddr + request->postfix);
539
540         /* Transfer from per-context onto the global per-engine timeline */
541         move_to_timeline(request, &engine->timeline);
542
543         trace_i915_request_execute(request);
544
545         wake_up_all(&request->execute);
546 }
547
548 void i915_request_submit(struct i915_request *request)
549 {
550         struct intel_engine_cs *engine = request->engine;
551         unsigned long flags;
552
553         /* Will be called from irq-context when using foreign fences. */
554         spin_lock_irqsave(&engine->timeline.lock, flags);
555
556         __i915_request_submit(request);
557
558         spin_unlock_irqrestore(&engine->timeline.lock, flags);
559 }
560
561 void __i915_request_unsubmit(struct i915_request *request)
562 {
563         struct intel_engine_cs *engine = request->engine;
564
565         GEM_TRACE("%s fence %llx:%d <- global=%d, current %d\n",
566                   engine->name,
567                   request->fence.context, request->fence.seqno,
568                   request->global_seqno,
569                   intel_engine_get_seqno(engine));
570
571         GEM_BUG_ON(!irqs_disabled());
572         lockdep_assert_held(&engine->timeline.lock);
573
574         /*
575          * Only unwind in reverse order, required so that the per-context list
576          * is kept in seqno/ring order.
577          */
578         GEM_BUG_ON(!request->global_seqno);
579         GEM_BUG_ON(request->global_seqno != engine->timeline.seqno);
580         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine),
581                                      request->global_seqno));
582         engine->timeline.seqno--;
583
584         /* We may be recursing from the signal callback of another i915 fence */
585         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
586         request->global_seqno = 0;
587         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
588                 intel_engine_cancel_signaling(request);
589         spin_unlock(&request->lock);
590
591         /* Transfer back from the global per-engine timeline to per-context */
592         move_to_timeline(request, request->timeline);
593
594         /*
595          * We don't need to wake_up any waiters on request->execute, they
596          * will get woken by any other event or us re-adding this request
597          * to the engine timeline (__i915_request_submit()). The waiters
598          * should be quite adapt at finding that the request now has a new
599          * global_seqno to the one they went to sleep on.
600          */
601 }
602
603 void i915_request_unsubmit(struct i915_request *request)
604 {
605         struct intel_engine_cs *engine = request->engine;
606         unsigned long flags;
607
608         /* Will be called from irq-context when using foreign fences. */
609         spin_lock_irqsave(&engine->timeline.lock, flags);
610
611         __i915_request_unsubmit(request);
612
613         spin_unlock_irqrestore(&engine->timeline.lock, flags);
614 }
615
616 static int __i915_sw_fence_call
617 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
618 {
619         struct i915_request *request =
620                 container_of(fence, typeof(*request), submit);
621
622         switch (state) {
623         case FENCE_COMPLETE:
624                 trace_i915_request_submit(request);
625                 /*
626                  * We need to serialize use of the submit_request() callback
627                  * with its hotplugging performed during an emergency
628                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
629                  * critical section in order to force i915_gem_set_wedged() to
630                  * wait until the submit_request() is completed before
631                  * proceeding.
632                  */
633                 rcu_read_lock();
634                 request->engine->submit_request(request);
635                 rcu_read_unlock();
636                 break;
637
638         case FENCE_FREE:
639                 i915_request_put(request);
640                 break;
641         }
642
643         return NOTIFY_DONE;
644 }
645
646 /**
647  * i915_request_alloc - allocate a request structure
648  *
649  * @engine: engine that we wish to issue the request on.
650  * @ctx: context that the request will be associated with.
651  *
652  * Returns a pointer to the allocated request if successful,
653  * or an error code if not.
654  */
655 struct i915_request *
656 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
657 {
658         struct drm_i915_private *i915 = engine->i915;
659         struct i915_request *rq;
660         struct intel_ring *ring;
661         int ret;
662
663         lockdep_assert_held(&i915->drm.struct_mutex);
664
665         /*
666          * Preempt contexts are reserved for exclusive use to inject a
667          * preemption context switch. They are never to be used for any trivial
668          * request!
669          */
670         GEM_BUG_ON(ctx == i915->preempt_context);
671
672         /*
673          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
674          * EIO if the GPU is already wedged.
675          */
676         if (i915_terminally_wedged(&i915->gpu_error))
677                 return ERR_PTR(-EIO);
678
679         /*
680          * Pinning the contexts may generate requests in order to acquire
681          * GGTT space, so do this first before we reserve a seqno for
682          * ourselves.
683          */
684         ring = intel_context_pin(ctx, engine);
685         if (IS_ERR(ring))
686                 return ERR_CAST(ring);
687         GEM_BUG_ON(!ring);
688
689         ret = reserve_gt(i915);
690         if (ret)
691                 goto err_unpin;
692
693         ret = intel_ring_wait_for_space(ring, MIN_SPACE_FOR_ADD_REQUEST);
694         if (ret)
695                 goto err_unreserve;
696
697         /* Move our oldest request to the slab-cache (if not in use!) */
698         rq = list_first_entry(&ring->request_list, typeof(*rq), ring_link);
699         if (!list_is_last(&rq->ring_link, &ring->request_list) &&
700             i915_request_completed(rq))
701                 i915_request_retire(rq);
702
703         /*
704          * Beware: Dragons be flying overhead.
705          *
706          * We use RCU to look up requests in flight. The lookups may
707          * race with the request being allocated from the slab freelist.
708          * That is the request we are writing to here, may be in the process
709          * of being read by __i915_gem_active_get_rcu(). As such,
710          * we have to be very careful when overwriting the contents. During
711          * the RCU lookup, we change chase the request->engine pointer,
712          * read the request->global_seqno and increment the reference count.
713          *
714          * The reference count is incremented atomically. If it is zero,
715          * the lookup knows the request is unallocated and complete. Otherwise,
716          * it is either still in use, or has been reallocated and reset
717          * with dma_fence_init(). This increment is safe for release as we
718          * check that the request we have a reference to and matches the active
719          * request.
720          *
721          * Before we increment the refcount, we chase the request->engine
722          * pointer. We must not call kmem_cache_zalloc() or else we set
723          * that pointer to NULL and cause a crash during the lookup. If
724          * we see the request is completed (based on the value of the
725          * old engine and seqno), the lookup is complete and reports NULL.
726          * If we decide the request is not completed (new engine or seqno),
727          * then we grab a reference and double check that it is still the
728          * active request - which it won't be and restart the lookup.
729          *
730          * Do not use kmem_cache_zalloc() here!
731          */
732         rq = kmem_cache_alloc(i915->requests,
733                               GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
734         if (unlikely(!rq)) {
735                 /* Ratelimit ourselves to prevent oom from malicious clients */
736                 ret = i915_gem_wait_for_idle(i915,
737                                              I915_WAIT_LOCKED |
738                                              I915_WAIT_INTERRUPTIBLE);
739                 if (ret)
740                         goto err_unreserve;
741
742                 /*
743                  * We've forced the client to stall and catch up with whatever
744                  * backlog there might have been. As we are assuming that we
745                  * caused the mempressure, now is an opportune time to
746                  * recover as much memory from the request pool as is possible.
747                  * Having already penalized the client to stall, we spend
748                  * a little extra time to re-optimise page allocation.
749                  */
750                 kmem_cache_shrink(i915->requests);
751                 rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */
752
753                 rq = kmem_cache_alloc(i915->requests, GFP_KERNEL);
754                 if (!rq) {
755                         ret = -ENOMEM;
756                         goto err_unreserve;
757                 }
758         }
759
760         INIT_LIST_HEAD(&rq->active_list);
761         rq->i915 = i915;
762         rq->engine = engine;
763         rq->ctx = ctx;
764         rq->ring = ring;
765         rq->timeline = ring->timeline;
766         GEM_BUG_ON(rq->timeline == &engine->timeline);
767
768         spin_lock_init(&rq->lock);
769         dma_fence_init(&rq->fence,
770                        &i915_fence_ops,
771                        &rq->lock,
772                        rq->timeline->fence_context,
773                        timeline_get_seqno(rq->timeline));
774
775         /* We bump the ref for the fence chain */
776         i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
777         init_waitqueue_head(&rq->execute);
778
779         i915_sched_node_init(&rq->sched);
780
781         /* No zalloc, must clear what we need by hand */
782         rq->global_seqno = 0;
783         rq->signaling.wait.seqno = 0;
784         rq->file_priv = NULL;
785         rq->batch = NULL;
786         rq->capture_list = NULL;
787         rq->waitboost = false;
788
789         /*
790          * Reserve space in the ring buffer for all the commands required to
791          * eventually emit this request. This is to guarantee that the
792          * i915_request_add() call can't fail. Note that the reserve may need
793          * to be redone if the request is not actually submitted straight
794          * away, e.g. because a GPU scheduler has deferred it.
795          */
796         rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
797         GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz);
798
799         /*
800          * Record the position of the start of the request so that
801          * should we detect the updated seqno part-way through the
802          * GPU processing the request, we never over-estimate the
803          * position of the head.
804          */
805         rq->head = rq->ring->emit;
806
807         /* Unconditionally invalidate GPU caches and TLBs. */
808         ret = engine->emit_flush(rq, EMIT_INVALIDATE);
809         if (ret)
810                 goto err_unwind;
811
812         ret = engine->request_alloc(rq);
813         if (ret)
814                 goto err_unwind;
815
816         /* Keep a second pin for the dual retirement along engine and ring */
817         __intel_context_pin(rq->ctx, engine);
818
819         /* Check that we didn't interrupt ourselves with a new request */
820         GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
821         return rq;
822
823 err_unwind:
824         rq->ring->emit = rq->head;
825
826         /* Make sure we didn't add ourselves to external state before freeing */
827         GEM_BUG_ON(!list_empty(&rq->active_list));
828         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
829         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
830
831         kmem_cache_free(i915->requests, rq);
832 err_unreserve:
833         unreserve_gt(i915);
834 err_unpin:
835         intel_context_unpin(ctx, engine);
836         return ERR_PTR(ret);
837 }
838
839 static int
840 i915_request_await_request(struct i915_request *to, struct i915_request *from)
841 {
842         int ret;
843
844         GEM_BUG_ON(to == from);
845         GEM_BUG_ON(to->timeline == from->timeline);
846
847         if (i915_request_completed(from))
848                 return 0;
849
850         if (to->engine->schedule) {
851                 ret = i915_sched_node_add_dependency(to->i915,
852                                                      &to->sched,
853                                                      &from->sched);
854                 if (ret < 0)
855                         return ret;
856         }
857
858         if (to->engine == from->engine) {
859                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
860                                                        &from->submit,
861                                                        I915_FENCE_GFP);
862                 return ret < 0 ? ret : 0;
863         }
864
865         if (to->engine->semaphore.sync_to) {
866                 u32 seqno;
867
868                 GEM_BUG_ON(!from->engine->semaphore.signal);
869
870                 seqno = i915_request_global_seqno(from);
871                 if (!seqno)
872                         goto await_dma_fence;
873
874                 if (seqno <= to->timeline->global_sync[from->engine->id])
875                         return 0;
876
877                 trace_i915_gem_ring_sync_to(to, from);
878                 ret = to->engine->semaphore.sync_to(to, from);
879                 if (ret)
880                         return ret;
881
882                 to->timeline->global_sync[from->engine->id] = seqno;
883                 return 0;
884         }
885
886 await_dma_fence:
887         ret = i915_sw_fence_await_dma_fence(&to->submit,
888                                             &from->fence, 0,
889                                             I915_FENCE_GFP);
890         return ret < 0 ? ret : 0;
891 }
892
893 int
894 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
895 {
896         struct dma_fence **child = &fence;
897         unsigned int nchild = 1;
898         int ret;
899
900         /*
901          * Note that if the fence-array was created in signal-on-any mode,
902          * we should *not* decompose it into its individual fences. However,
903          * we don't currently store which mode the fence-array is operating
904          * in. Fortunately, the only user of signal-on-any is private to
905          * amdgpu and we should not see any incoming fence-array from
906          * sync-file being in signal-on-any mode.
907          */
908         if (dma_fence_is_array(fence)) {
909                 struct dma_fence_array *array = to_dma_fence_array(fence);
910
911                 child = array->fences;
912                 nchild = array->num_fences;
913                 GEM_BUG_ON(!nchild);
914         }
915
916         do {
917                 fence = *child++;
918                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
919                         continue;
920
921                 /*
922                  * Requests on the same timeline are explicitly ordered, along
923                  * with their dependencies, by i915_request_add() which ensures
924                  * that requests are submitted in-order through each ring.
925                  */
926                 if (fence->context == rq->fence.context)
927                         continue;
928
929                 /* Squash repeated waits to the same timelines */
930                 if (fence->context != rq->i915->mm.unordered_timeline &&
931                     i915_timeline_sync_is_later(rq->timeline, fence))
932                         continue;
933
934                 if (dma_fence_is_i915(fence))
935                         ret = i915_request_await_request(rq, to_request(fence));
936                 else
937                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
938                                                             I915_FENCE_TIMEOUT,
939                                                             I915_FENCE_GFP);
940                 if (ret < 0)
941                         return ret;
942
943                 /* Record the latest fence used against each timeline */
944                 if (fence->context != rq->i915->mm.unordered_timeline)
945                         i915_timeline_sync_set(rq->timeline, fence);
946         } while (--nchild);
947
948         return 0;
949 }
950
951 /**
952  * i915_request_await_object - set this request to (async) wait upon a bo
953  * @to: request we are wishing to use
954  * @obj: object which may be in use on another ring.
955  * @write: whether the wait is on behalf of a writer
956  *
957  * This code is meant to abstract object synchronization with the GPU.
958  * Conceptually we serialise writes between engines inside the GPU.
959  * We only allow one engine to write into a buffer at any time, but
960  * multiple readers. To ensure each has a coherent view of memory, we must:
961  *
962  * - If there is an outstanding write request to the object, the new
963  *   request must wait for it to complete (either CPU or in hw, requests
964  *   on the same ring will be naturally ordered).
965  *
966  * - If we are a write request (pending_write_domain is set), the new
967  *   request must wait for outstanding read requests to complete.
968  *
969  * Returns 0 if successful, else propagates up the lower layer error.
970  */
971 int
972 i915_request_await_object(struct i915_request *to,
973                           struct drm_i915_gem_object *obj,
974                           bool write)
975 {
976         struct dma_fence *excl;
977         int ret = 0;
978
979         if (write) {
980                 struct dma_fence **shared;
981                 unsigned int count, i;
982
983                 ret = reservation_object_get_fences_rcu(obj->resv,
984                                                         &excl, &count, &shared);
985                 if (ret)
986                         return ret;
987
988                 for (i = 0; i < count; i++) {
989                         ret = i915_request_await_dma_fence(to, shared[i]);
990                         if (ret)
991                                 break;
992
993                         dma_fence_put(shared[i]);
994                 }
995
996                 for (; i < count; i++)
997                         dma_fence_put(shared[i]);
998                 kfree(shared);
999         } else {
1000                 excl = reservation_object_get_excl_rcu(obj->resv);
1001         }
1002
1003         if (excl) {
1004                 if (ret == 0)
1005                         ret = i915_request_await_dma_fence(to, excl);
1006
1007                 dma_fence_put(excl);
1008         }
1009
1010         return ret;
1011 }
1012
1013 /*
1014  * NB: This function is not allowed to fail. Doing so would mean the the
1015  * request is not being tracked for completion but the work itself is
1016  * going to happen on the hardware. This would be a Bad Thing(tm).
1017  */
1018 void __i915_request_add(struct i915_request *request, bool flush_caches)
1019 {
1020         struct intel_engine_cs *engine = request->engine;
1021         struct intel_ring *ring = request->ring;
1022         struct i915_timeline *timeline = request->timeline;
1023         struct i915_request *prev;
1024         u32 *cs;
1025         int err;
1026
1027         GEM_TRACE("%s fence %llx:%d\n",
1028                   engine->name, request->fence.context, request->fence.seqno);
1029
1030         lockdep_assert_held(&request->i915->drm.struct_mutex);
1031         trace_i915_request_add(request);
1032
1033         /*
1034          * Make sure that no request gazumped us - if it was allocated after
1035          * our i915_request_alloc() and called __i915_request_add() before
1036          * us, the timeline will hold its seqno which is later than ours.
1037          */
1038         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1039
1040         /*
1041          * To ensure that this call will not fail, space for its emissions
1042          * should already have been reserved in the ring buffer. Let the ring
1043          * know that it is time to use that space up.
1044          */
1045         request->reserved_space = 0;
1046
1047         /*
1048          * Emit any outstanding flushes - execbuf can fail to emit the flush
1049          * after having emitted the batchbuffer command. Hence we need to fix
1050          * things up similar to emitting the lazy request. The difference here
1051          * is that the flush _must_ happen before the next request, no matter
1052          * what.
1053          */
1054         if (flush_caches) {
1055                 err = engine->emit_flush(request, EMIT_FLUSH);
1056
1057                 /* Not allowed to fail! */
1058                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
1059         }
1060
1061         /*
1062          * Record the position of the start of the breadcrumb so that
1063          * should we detect the updated seqno part-way through the
1064          * GPU processing the request, we never over-estimate the
1065          * position of the ring's HEAD.
1066          */
1067         cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
1068         GEM_BUG_ON(IS_ERR(cs));
1069         request->postfix = intel_ring_offset(request, cs);
1070
1071         /*
1072          * Seal the request and mark it as pending execution. Note that
1073          * we may inspect this state, without holding any locks, during
1074          * hangcheck. Hence we apply the barrier to ensure that we do not
1075          * see a more recent value in the hws than we are tracking.
1076          */
1077
1078         prev = i915_gem_active_raw(&timeline->last_request,
1079                                    &request->i915->drm.struct_mutex);
1080         if (prev && !i915_request_completed(prev)) {
1081                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
1082                                              &request->submitq);
1083                 if (engine->schedule)
1084                         __i915_sched_node_add_dependency(&request->sched,
1085                                                          &prev->sched,
1086                                                          &request->dep,
1087                                                          0);
1088         }
1089
1090         spin_lock_irq(&timeline->lock);
1091         list_add_tail(&request->link, &timeline->requests);
1092         spin_unlock_irq(&timeline->lock);
1093
1094         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1095         i915_gem_active_set(&timeline->last_request, request);
1096
1097         list_add_tail(&request->ring_link, &ring->request_list);
1098         if (list_is_first(&request->ring_link, &ring->request_list))
1099                 list_add(&ring->active_link, &request->i915->gt.active_rings);
1100         request->emitted_jiffies = jiffies;
1101
1102         /*
1103          * Let the backend know a new request has arrived that may need
1104          * to adjust the existing execution schedule due to a high priority
1105          * request - i.e. we may want to preempt the current request in order
1106          * to run a high priority dependency chain *before* we can execute this
1107          * request.
1108          *
1109          * This is called before the request is ready to run so that we can
1110          * decide whether to preempt the entire chain so that it is ready to
1111          * run at the earliest possible convenience.
1112          */
1113         local_bh_disable();
1114         rcu_read_lock(); /* RCU serialisation for set-wedged protection */
1115         if (engine->schedule)
1116                 engine->schedule(request, &request->ctx->sched);
1117         rcu_read_unlock();
1118         i915_sw_fence_commit(&request->submit);
1119         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1120
1121         /*
1122          * In typical scenarios, we do not expect the previous request on
1123          * the timeline to be still tracked by timeline->last_request if it
1124          * has been completed. If the completed request is still here, that
1125          * implies that request retirement is a long way behind submission,
1126          * suggesting that we haven't been retiring frequently enough from
1127          * the combination of retire-before-alloc, waiters and the background
1128          * retirement worker. So if the last request on this timeline was
1129          * already completed, do a catch up pass, flushing the retirement queue
1130          * up to this client. Since we have now moved the heaviest operations
1131          * during retirement onto secondary workers, such as freeing objects
1132          * or contexts, retiring a bunch of requests is mostly list management
1133          * (and cache misses), and so we should not be overly penalizing this
1134          * client by performing excess work, though we may still performing
1135          * work on behalf of others -- but instead we should benefit from
1136          * improved resource management. (Well, that's the theory at least.)
1137          */
1138         if (prev && i915_request_completed(prev))
1139                 i915_request_retire_upto(prev);
1140 }
1141
1142 static unsigned long local_clock_us(unsigned int *cpu)
1143 {
1144         unsigned long t;
1145
1146         /*
1147          * Cheaply and approximately convert from nanoseconds to microseconds.
1148          * The result and subsequent calculations are also defined in the same
1149          * approximate microseconds units. The principal source of timing
1150          * error here is from the simple truncation.
1151          *
1152          * Note that local_clock() is only defined wrt to the current CPU;
1153          * the comparisons are no longer valid if we switch CPUs. Instead of
1154          * blocking preemption for the entire busywait, we can detect the CPU
1155          * switch and use that as indicator of system load and a reason to
1156          * stop busywaiting, see busywait_stop().
1157          */
1158         *cpu = get_cpu();
1159         t = local_clock() >> 10;
1160         put_cpu();
1161
1162         return t;
1163 }
1164
1165 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1166 {
1167         unsigned int this_cpu;
1168
1169         if (time_after(local_clock_us(&this_cpu), timeout))
1170                 return true;
1171
1172         return this_cpu != cpu;
1173 }
1174
1175 static bool __i915_spin_request(const struct i915_request *rq,
1176                                 u32 seqno, int state, unsigned long timeout_us)
1177 {
1178         struct intel_engine_cs *engine = rq->engine;
1179         unsigned int irq, cpu;
1180
1181         GEM_BUG_ON(!seqno);
1182
1183         /*
1184          * Only wait for the request if we know it is likely to complete.
1185          *
1186          * We don't track the timestamps around requests, nor the average
1187          * request length, so we do not have a good indicator that this
1188          * request will complete within the timeout. What we do know is the
1189          * order in which requests are executed by the engine and so we can
1190          * tell if the request has started. If the request hasn't started yet,
1191          * it is a fair assumption that it will not complete within our
1192          * relatively short timeout.
1193          */
1194         if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
1195                 return false;
1196
1197         /*
1198          * When waiting for high frequency requests, e.g. during synchronous
1199          * rendering split between the CPU and GPU, the finite amount of time
1200          * required to set up the irq and wait upon it limits the response
1201          * rate. By busywaiting on the request completion for a short while we
1202          * can service the high frequency waits as quick as possible. However,
1203          * if it is a slow request, we want to sleep as quickly as possible.
1204          * The tradeoff between waiting and sleeping is roughly the time it
1205          * takes to sleep on a request, on the order of a microsecond.
1206          */
1207
1208         irq = atomic_read(&engine->irq_count);
1209         timeout_us += local_clock_us(&cpu);
1210         do {
1211                 if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
1212                         return seqno == i915_request_global_seqno(rq);
1213
1214                 /*
1215                  * Seqno are meant to be ordered *before* the interrupt. If
1216                  * we see an interrupt without a corresponding seqno advance,
1217                  * assume we won't see one in the near future but require
1218                  * the engine->seqno_barrier() to fixup coherency.
1219                  */
1220                 if (atomic_read(&engine->irq_count) != irq)
1221                         break;
1222
1223                 if (signal_pending_state(state, current))
1224                         break;
1225
1226                 if (busywait_stop(timeout_us, cpu))
1227                         break;
1228
1229                 cpu_relax();
1230         } while (!need_resched());
1231
1232         return false;
1233 }
1234
1235 static bool __i915_wait_request_check_and_reset(struct i915_request *request)
1236 {
1237         struct i915_gpu_error *error = &request->i915->gpu_error;
1238
1239         if (likely(!i915_reset_handoff(error)))
1240                 return false;
1241
1242         __set_current_state(TASK_RUNNING);
1243         i915_reset(request->i915, error->stalled_mask, error->reason);
1244         return true;
1245 }
1246
1247 /**
1248  * i915_request_wait - wait until execution of request has finished
1249  * @rq: the request to wait upon
1250  * @flags: how to wait
1251  * @timeout: how long to wait in jiffies
1252  *
1253  * i915_request_wait() waits for the request to be completed, for a
1254  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1255  * unbounded wait).
1256  *
1257  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1258  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1259  * must not specify that the wait is locked.
1260  *
1261  * Returns the remaining time (in jiffies) if the request completed, which may
1262  * be zero or -ETIME if the request is unfinished after the timeout expires.
1263  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1264  * pending before the request completes.
1265  */
1266 long i915_request_wait(struct i915_request *rq,
1267                        unsigned int flags,
1268                        long timeout)
1269 {
1270         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1271                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1272         wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue;
1273         DEFINE_WAIT_FUNC(reset, default_wake_function);
1274         DEFINE_WAIT_FUNC(exec, default_wake_function);
1275         struct intel_wait wait;
1276
1277         might_sleep();
1278 #if IS_ENABLED(CONFIG_LOCKDEP)
1279         GEM_BUG_ON(debug_locks &&
1280                    !!lockdep_is_held(&rq->i915->drm.struct_mutex) !=
1281                    !!(flags & I915_WAIT_LOCKED));
1282 #endif
1283         GEM_BUG_ON(timeout < 0);
1284
1285         if (i915_request_completed(rq))
1286                 return timeout;
1287
1288         if (!timeout)
1289                 return -ETIME;
1290
1291         trace_i915_request_wait_begin(rq, flags);
1292
1293         add_wait_queue(&rq->execute, &exec);
1294         if (flags & I915_WAIT_LOCKED)
1295                 add_wait_queue(errq, &reset);
1296
1297         intel_wait_init(&wait, rq);
1298
1299 restart:
1300         do {
1301                 set_current_state(state);
1302                 if (intel_wait_update_request(&wait, rq))
1303                         break;
1304
1305                 if (flags & I915_WAIT_LOCKED &&
1306                     __i915_wait_request_check_and_reset(rq))
1307                         continue;
1308
1309                 if (signal_pending_state(state, current)) {
1310                         timeout = -ERESTARTSYS;
1311                         goto complete;
1312                 }
1313
1314                 if (!timeout) {
1315                         timeout = -ETIME;
1316                         goto complete;
1317                 }
1318
1319                 timeout = io_schedule_timeout(timeout);
1320         } while (1);
1321
1322         GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1323         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
1324
1325         /* Optimistic short spin before touching IRQs */
1326         if (__i915_spin_request(rq, wait.seqno, state, 5))
1327                 goto complete;
1328
1329         set_current_state(state);
1330         if (intel_engine_add_wait(rq->engine, &wait))
1331                 /*
1332                  * In order to check that we haven't missed the interrupt
1333                  * as we enabled it, we need to kick ourselves to do a
1334                  * coherent check on the seqno before we sleep.
1335                  */
1336                 goto wakeup;
1337
1338         if (flags & I915_WAIT_LOCKED)
1339                 __i915_wait_request_check_and_reset(rq);
1340
1341         for (;;) {
1342                 if (signal_pending_state(state, current)) {
1343                         timeout = -ERESTARTSYS;
1344                         break;
1345                 }
1346
1347                 if (!timeout) {
1348                         timeout = -ETIME;
1349                         break;
1350                 }
1351
1352                 timeout = io_schedule_timeout(timeout);
1353
1354                 if (intel_wait_complete(&wait) &&
1355                     intel_wait_check_request(&wait, rq))
1356                         break;
1357
1358                 set_current_state(state);
1359
1360 wakeup:
1361                 /*
1362                  * Carefully check if the request is complete, giving time
1363                  * for the seqno to be visible following the interrupt.
1364                  * We also have to check in case we are kicked by the GPU
1365                  * reset in order to drop the struct_mutex.
1366                  */
1367                 if (__i915_request_irq_complete(rq))
1368                         break;
1369
1370                 /*
1371                  * If the GPU is hung, and we hold the lock, reset the GPU
1372                  * and then check for completion. On a full reset, the engine's
1373                  * HW seqno will be advanced passed us and we are complete.
1374                  * If we do a partial reset, we have to wait for the GPU to
1375                  * resume and update the breadcrumb.
1376                  *
1377                  * If we don't hold the mutex, we can just wait for the worker
1378                  * to come along and update the breadcrumb (either directly
1379                  * itself, or indirectly by recovering the GPU).
1380                  */
1381                 if (flags & I915_WAIT_LOCKED &&
1382                     __i915_wait_request_check_and_reset(rq))
1383                         continue;
1384
1385                 /* Only spin if we know the GPU is processing this request */
1386                 if (__i915_spin_request(rq, wait.seqno, state, 2))
1387                         break;
1388
1389                 if (!intel_wait_check_request(&wait, rq)) {
1390                         intel_engine_remove_wait(rq->engine, &wait);
1391                         goto restart;
1392                 }
1393         }
1394
1395         intel_engine_remove_wait(rq->engine, &wait);
1396 complete:
1397         __set_current_state(TASK_RUNNING);
1398         if (flags & I915_WAIT_LOCKED)
1399                 remove_wait_queue(errq, &reset);
1400         remove_wait_queue(&rq->execute, &exec);
1401         trace_i915_request_wait_end(rq);
1402
1403         return timeout;
1404 }
1405
1406 static void ring_retire_requests(struct intel_ring *ring)
1407 {
1408         struct i915_request *request, *next;
1409
1410         list_for_each_entry_safe(request, next,
1411                                  &ring->request_list, ring_link) {
1412                 if (!i915_request_completed(request))
1413                         break;
1414
1415                 i915_request_retire(request);
1416         }
1417 }
1418
1419 void i915_retire_requests(struct drm_i915_private *i915)
1420 {
1421         struct intel_ring *ring, *tmp;
1422
1423         lockdep_assert_held(&i915->drm.struct_mutex);
1424
1425         if (!i915->gt.active_requests)
1426                 return;
1427
1428         list_for_each_entry_safe(ring, tmp, &i915->gt.active_rings, active_link)
1429                 ring_retire_requests(ring);
1430 }
1431
1432 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1433 #include "selftests/mock_request.c"
1434 #include "selftests/i915_request.c"
1435 #endif
This page took 0.124912 seconds and 4 git commands to generate.