2 * Copyright © 2008,2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/sync_file.h>
32 #include <linux/uaccess.h>
35 #include <drm/drm_syncobj.h>
36 #include <drm/i915_drm.h>
39 #include "i915_gem_clflush.h"
40 #include "i915_trace.h"
41 #include "intel_drv.h"
42 #include "intel_frontbuffer.h"
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
51 #define __EXEC_OBJECT_HAS_REF BIT(31)
52 #define __EXEC_OBJECT_HAS_PIN BIT(30)
53 #define __EXEC_OBJECT_HAS_FENCE BIT(29)
54 #define __EXEC_OBJECT_NEEDS_MAP BIT(28)
55 #define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
56 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
57 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
59 #define __EXEC_HAS_RELOC BIT(31)
60 #define __EXEC_VALIDATED BIT(30)
61 #define __EXEC_INTERNAL_FLAGS (~0u << 30)
62 #define UPDATE PIN_OFFSET_FIXED
64 #define BATCH_OFFSET_BIAS (256*1024)
66 #define __I915_EXEC_ILLEGAL_FLAGS \
67 (__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
70 * DOC: User command execution
72 * Userspace submits commands to be executed on the GPU as an instruction
73 * stream within a GEM object we call a batchbuffer. This instructions may
74 * refer to other GEM objects containing auxiliary state such as kernels,
75 * samplers, render targets and even secondary batchbuffers. Userspace does
76 * not know where in the GPU memory these objects reside and so before the
77 * batchbuffer is passed to the GPU for execution, those addresses in the
78 * batchbuffer and auxiliary objects are updated. This is known as relocation,
79 * or patching. To try and avoid having to relocate each object on the next
80 * execution, userspace is told the location of those objects in this pass,
81 * but this remains just a hint as the kernel may choose a new location for
82 * any object in the future.
84 * At the level of talking to the hardware, submitting a batchbuffer for the
85 * GPU to execute is to add content to a buffer from which the HW
86 * command streamer is reading.
88 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
89 * Execlists, this command is not placed on the same buffer as the
92 * 2. Add a command to invalidate caches to the buffer.
94 * 3. Add a batchbuffer start command to the buffer; the start command is
95 * essentially a token together with the GPU address of the batchbuffer
98 * 4. Add a pipeline flush to the buffer.
100 * 5. Add a memory write command to the buffer to record when the GPU
101 * is done executing the batchbuffer. The memory write writes the
102 * global sequence number of the request, ``i915_request::global_seqno``;
103 * the i915 driver uses the current value in the register to determine
104 * if the GPU has completed the batchbuffer.
106 * 6. Add a user interrupt command to the buffer. This command instructs
107 * the GPU to issue an interrupt when the command, pipeline flush and
108 * memory write are completed.
110 * 7. Inform the hardware of the additional commands added to the buffer
111 * (by updating the tail pointer).
113 * Processing an execbuf ioctl is conceptually split up into a few phases.
115 * 1. Validation - Ensure all the pointers, handles and flags are valid.
116 * 2. Reservation - Assign GPU address space for every object
117 * 3. Relocation - Update any addresses to point to the final locations
118 * 4. Serialisation - Order the request with respect to its dependencies
119 * 5. Construction - Construct a request to execute the batchbuffer
120 * 6. Submission (at some point in the future execution)
122 * Reserving resources for the execbuf is the most complicated phase. We
123 * neither want to have to migrate the object in the address space, nor do
124 * we want to have to update any relocations pointing to this object. Ideally,
125 * we want to leave the object where it is and for all the existing relocations
126 * to match. If the object is given a new address, or if userspace thinks the
127 * object is elsewhere, we have to parse all the relocation entries and update
128 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
129 * all the target addresses in all of its objects match the value in the
130 * relocation entries and that they all match the presumed offsets given by the
131 * list of execbuffer objects. Using this knowledge, we know that if we haven't
132 * moved any buffers, all the relocation entries are valid and we can skip
133 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
134 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
136 * The addresses written in the objects must match the corresponding
137 * reloc.presumed_offset which in turn must match the corresponding
140 * Any render targets written to in the batch must be flagged with
143 * To avoid stalling, execobject.offset should match the current
144 * address of that object within the active context.
146 * The reservation is done is multiple phases. First we try and keep any
147 * object already bound in its current location - so as long as meets the
148 * constraints imposed by the new execbuffer. Any object left unbound after the
149 * first pass is then fitted into any available idle space. If an object does
150 * not fit, all objects are removed from the reservation and the process rerun
151 * after sorting the objects into a priority order (more difficult to fit
152 * objects are tried first). Failing that, the entire VM is cleared and we try
153 * to fit the execbuf once last time before concluding that it simply will not
156 * A small complication to all of this is that we allow userspace not only to
157 * specify an alignment and a size for the object in the address space, but
158 * we also allow userspace to specify the exact offset. This objects are
159 * simpler to place (the location is known a priori) all we have to do is make
160 * sure the space is available.
162 * Once all the objects are in place, patching up the buried pointers to point
163 * to the final locations is a fairly simple job of walking over the relocation
164 * entry arrays, looking up the right address and rewriting the value into
165 * the object. Simple! ... The relocation entries are stored in user memory
166 * and so to access them we have to copy them into a local buffer. That copy
167 * has to avoid taking any pagefaults as they may lead back to a GEM object
168 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
169 * the relocation into multiple passes. First we try to do everything within an
170 * atomic context (avoid the pagefaults) which requires that we never wait. If
171 * we detect that we may wait, or if we need to fault, then we have to fallback
172 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
173 * bells yet?) Dropping the mutex means that we lose all the state we have
174 * built up so far for the execbuf and we must reset any global data. However,
175 * we do leave the objects pinned in their final locations - which is a
176 * potential issue for concurrent execbufs. Once we have left the mutex, we can
177 * allocate and copy all the relocation entries into a large array at our
178 * leisure, reacquire the mutex, reclaim all the objects and other state and
179 * then proceed to update any incorrect addresses with the objects.
181 * As we process the relocation entries, we maintain a record of whether the
182 * object is being written to. Using NORELOC, we expect userspace to provide
183 * this information instead. We also check whether we can skip the relocation
184 * by comparing the expected value inside the relocation entry with the target's
185 * final address. If they differ, we have to map the current object and rewrite
186 * the 4 or 8 byte pointer within.
188 * Serialising an execbuf is quite simple according to the rules of the GEM
189 * ABI. Execution within each context is ordered by the order of submission.
190 * Writes to any GEM object are in order of submission and are exclusive. Reads
191 * from a GEM object are unordered with respect to other reads, but ordered by
192 * writes. A write submitted after a read cannot occur before the read, and
193 * similarly any read submitted after a write cannot occur before the write.
194 * Writes are ordered between engines such that only one write occurs at any
195 * time (completing any reads beforehand) - using semaphores where available
196 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
197 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
198 * reads before starting, and any read (either using set-domain or pread) must
199 * flush all GPU writes before starting. (Note we only employ a barrier before,
200 * we currently rely on userspace not concurrently starting a new execution
201 * whilst reading or writing to an object. This may be an advantage or not
202 * depending on how much you trust userspace not to shoot themselves in the
203 * foot.) Serialisation may just result in the request being inserted into
204 * a DAG awaiting its turn, but most simple is to wait on the CPU until
205 * all dependencies are resolved.
207 * After all of that, is just a matter of closing the request and handing it to
208 * the hardware (well, leaving it in a queue to be executed). However, we also
209 * offer the ability for batchbuffers to be run with elevated privileges so
210 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
211 * Before any batch is given extra privileges we first must check that it
212 * contains no nefarious instructions, we check that each instruction is from
213 * our whitelist and all registers are also from an allowed list. We first
214 * copy the user's batchbuffer to a shadow (so that the user doesn't have
215 * access to it, either by the CPU or GPU as we scan it) and then parse each
216 * instruction. If everything is ok, we set a flag telling the hardware to run
217 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
220 struct i915_execbuffer {
221 struct drm_i915_private *i915; /** i915 backpointer */
222 struct drm_file *file; /** per-file lookup tables and limits */
223 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
224 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
225 struct i915_vma **vma;
228 struct intel_engine_cs *engine; /** engine to queue the request to */
229 struct i915_gem_context *ctx; /** context for building the request */
230 struct i915_address_space *vm; /** GTT and vma for the request */
232 struct i915_request *request; /** our request to build */
233 struct i915_vma *batch; /** identity of the batch obj/vma */
235 /** actual size of execobj[] as we may extend it for the cmdparser */
236 unsigned int buffer_count;
238 /** list of vma not yet bound during reservation phase */
239 struct list_head unbound;
241 /** list of vma that have execobj.relocation_count */
242 struct list_head relocs;
245 * Track the most recently used object for relocations, as we
246 * frequently have to perform multiple relocations within the same
250 struct drm_mm_node node; /** temporary GTT binding */
251 unsigned long vaddr; /** Current kmap address */
252 unsigned long page; /** Currently mapped page index */
253 unsigned int gen; /** Cached value of INTEL_GEN */
254 bool use_64bit_reloc : 1;
257 bool needs_unfenced : 1;
259 struct i915_request *rq;
261 unsigned int rq_size;
264 u64 invalid_flags; /** Set of execobj.flags that are invalid */
265 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
267 u32 batch_start_offset; /** Location within object of batch */
268 u32 batch_len; /** Length of batch within object */
269 u32 batch_flags; /** Flags composed for emit_bb_start() */
272 * Indicate either the size of the hastable used to resolve
273 * relocation handles, or if negative that we are using a direct
274 * index into the execobj[].
277 struct hlist_head *buckets; /** ht for relocation handles */
280 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
283 * Used to convert any address to canonical form.
284 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
285 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
286 * addresses to be in a canonical form:
287 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
288 * canonical form [63:48] == [47]."
290 #define GEN8_HIGH_ADDRESS_BIT 47
291 static inline u64 gen8_canonical_addr(u64 address)
293 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
296 static inline u64 gen8_noncanonical_addr(u64 address)
298 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
301 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
303 return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
306 static int eb_create(struct i915_execbuffer *eb)
308 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
309 unsigned int size = 1 + ilog2(eb->buffer_count);
312 * Without a 1:1 association between relocation handles and
313 * the execobject[] index, we instead create a hashtable.
314 * We size it dynamically based on available memory, starting
315 * first with 1:1 assocative hash and scaling back until
316 * the allocation succeeds.
318 * Later on we use a positive lut_size to indicate we are
319 * using this hashtable, and a negative value to indicate a
325 /* While we can still reduce the allocation size, don't
326 * raise a warning and allow the allocation to fail.
327 * On the last pass though, we want to try as hard
328 * as possible to perform the allocation and warn
333 flags |= __GFP_NORETRY | __GFP_NOWARN;
335 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
346 eb->lut_size = -eb->buffer_count;
353 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
354 const struct i915_vma *vma,
357 if (vma->node.size < entry->pad_to_size)
360 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
363 if (flags & EXEC_OBJECT_PINNED &&
364 vma->node.start != entry->offset)
367 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
368 vma->node.start < BATCH_OFFSET_BIAS)
371 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
372 (vma->node.start + vma->node.size - 1) >> 32)
375 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
376 !i915_vma_is_map_and_fenceable(vma))
383 eb_pin_vma(struct i915_execbuffer *eb,
384 const struct drm_i915_gem_exec_object2 *entry,
385 struct i915_vma *vma)
387 unsigned int exec_flags = *vma->exec_flags;
391 pin_flags = vma->node.start;
393 pin_flags = entry->offset & PIN_OFFSET_MASK;
395 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
396 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
397 pin_flags |= PIN_GLOBAL;
399 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
402 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
403 if (unlikely(i915_vma_pin_fence(vma))) {
409 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
412 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
413 return !eb_vma_misplaced(entry, vma, exec_flags);
416 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
418 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
420 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
421 __i915_vma_unpin_fence(vma);
423 __i915_vma_unpin(vma);
427 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
429 if (!(*flags & __EXEC_OBJECT_HAS_PIN))
432 __eb_unreserve_vma(vma, *flags);
433 *flags &= ~__EXEC_OBJECT_RESERVED;
437 eb_validate_vma(struct i915_execbuffer *eb,
438 struct drm_i915_gem_exec_object2 *entry,
439 struct i915_vma *vma)
441 if (unlikely(entry->flags & eb->invalid_flags))
444 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
448 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
449 * any non-page-aligned or non-canonical addresses.
451 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
452 entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
455 /* pad_to_size was once a reserved field, so sanitize it */
456 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
457 if (unlikely(offset_in_page(entry->pad_to_size)))
460 entry->pad_to_size = 0;
463 if (unlikely(vma->exec_flags)) {
464 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
465 entry->handle, (int)(entry - eb->exec));
470 * From drm_mm perspective address space is continuous,
471 * so from this point we're always using non-canonical
474 entry->offset = gen8_noncanonical_addr(entry->offset);
476 if (!eb->reloc_cache.has_fence) {
477 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
479 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
480 eb->reloc_cache.needs_unfenced) &&
481 i915_gem_object_is_tiled(vma->obj))
482 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
485 if (!(entry->flags & EXEC_OBJECT_PINNED))
486 entry->flags |= eb->context_flags;
492 eb_add_vma(struct i915_execbuffer *eb, unsigned int i, struct i915_vma *vma)
494 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
497 GEM_BUG_ON(i915_vma_is_closed(vma));
499 if (!(eb->args->flags & __EXEC_VALIDATED)) {
500 err = eb_validate_vma(eb, entry, vma);
505 if (eb->lut_size > 0) {
506 vma->exec_handle = entry->handle;
507 hlist_add_head(&vma->exec_node,
508 &eb->buckets[hash_32(entry->handle,
512 if (entry->relocation_count)
513 list_add_tail(&vma->reloc_link, &eb->relocs);
516 * Stash a pointer from the vma to execobj, so we can query its flags,
517 * size, alignment etc as provided by the user. Also we stash a pointer
518 * to the vma inside the execobj so that we can use a direct lookup
519 * to find the right target VMA when doing relocations.
522 eb->flags[i] = entry->flags;
523 vma->exec_flags = &eb->flags[i];
526 if (eb_pin_vma(eb, entry, vma)) {
527 if (entry->offset != vma->node.start) {
528 entry->offset = vma->node.start | UPDATE;
529 eb->args->flags |= __EXEC_HAS_RELOC;
532 eb_unreserve_vma(vma, vma->exec_flags);
534 list_add_tail(&vma->exec_link, &eb->unbound);
535 if (drm_mm_node_allocated(&vma->node))
536 err = i915_vma_unbind(vma);
538 vma->exec_flags = NULL;
543 static inline int use_cpu_reloc(const struct reloc_cache *cache,
544 const struct drm_i915_gem_object *obj)
546 if (!i915_gem_object_has_struct_page(obj))
549 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
552 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
555 return (cache->has_llc ||
557 obj->cache_level != I915_CACHE_NONE);
560 static int eb_reserve_vma(const struct i915_execbuffer *eb,
561 struct i915_vma *vma)
563 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
564 unsigned int exec_flags = *vma->exec_flags;
568 pin_flags = PIN_USER | PIN_NONBLOCK;
569 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
570 pin_flags |= PIN_GLOBAL;
573 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
574 * limit address to the first 4GBs for unflagged objects.
576 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
577 pin_flags |= PIN_ZONE_4G;
579 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
580 pin_flags |= PIN_MAPPABLE;
582 if (exec_flags & EXEC_OBJECT_PINNED) {
583 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
584 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
585 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
586 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
589 err = i915_vma_pin(vma,
590 entry->pad_to_size, entry->alignment,
595 if (entry->offset != vma->node.start) {
596 entry->offset = vma->node.start | UPDATE;
597 eb->args->flags |= __EXEC_HAS_RELOC;
600 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
601 err = i915_vma_pin_fence(vma);
608 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
611 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
612 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
617 static int eb_reserve(struct i915_execbuffer *eb)
619 const unsigned int count = eb->buffer_count;
620 struct list_head last;
621 struct i915_vma *vma;
622 unsigned int i, pass;
626 * Attempt to pin all of the buffers into the GTT.
627 * This is done in 3 phases:
629 * 1a. Unbind all objects that do not match the GTT constraints for
630 * the execbuffer (fenceable, mappable, alignment etc).
631 * 1b. Increment pin count for already bound objects.
632 * 2. Bind new objects.
633 * 3. Decrement pin count.
635 * This avoid unnecessary unbinding of later objects in order to make
636 * room for the earlier objects *unless* we need to defragment.
642 list_for_each_entry(vma, &eb->unbound, exec_link) {
643 err = eb_reserve_vma(eb, vma);
650 /* Resort *all* the objects into priority order */
651 INIT_LIST_HEAD(&eb->unbound);
652 INIT_LIST_HEAD(&last);
653 for (i = 0; i < count; i++) {
654 unsigned int flags = eb->flags[i];
655 struct i915_vma *vma = eb->vma[i];
657 if (flags & EXEC_OBJECT_PINNED &&
658 flags & __EXEC_OBJECT_HAS_PIN)
661 eb_unreserve_vma(vma, &eb->flags[i]);
663 if (flags & EXEC_OBJECT_PINNED)
664 list_add(&vma->exec_link, &eb->unbound);
665 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
666 list_add_tail(&vma->exec_link, &eb->unbound);
668 list_add_tail(&vma->exec_link, &last);
670 list_splice_tail(&last, &eb->unbound);
677 /* Too fragmented, unbind everything and retry */
678 err = i915_gem_evict_vm(eb->vm);
689 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
691 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
694 return eb->buffer_count - 1;
697 static int eb_select_context(struct i915_execbuffer *eb)
699 struct i915_gem_context *ctx;
701 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
706 eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;
708 eb->context_flags = 0;
709 if (ctx->flags & CONTEXT_NO_ZEROMAP)
710 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
715 static int eb_lookup_vmas(struct i915_execbuffer *eb)
717 struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
718 struct drm_i915_gem_object *obj;
722 if (unlikely(i915_gem_context_is_closed(eb->ctx)))
725 if (unlikely(i915_gem_context_is_banned(eb->ctx)))
728 INIT_LIST_HEAD(&eb->relocs);
729 INIT_LIST_HEAD(&eb->unbound);
731 for (i = 0; i < eb->buffer_count; i++) {
732 u32 handle = eb->exec[i].handle;
733 struct i915_lut_handle *lut;
734 struct i915_vma *vma;
736 vma = radix_tree_lookup(handles_vma, handle);
740 obj = i915_gem_object_lookup(eb->file, handle);
741 if (unlikely(!obj)) {
746 vma = i915_vma_instance(obj, eb->vm, NULL);
747 if (unlikely(IS_ERR(vma))) {
752 lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
753 if (unlikely(!lut)) {
758 err = radix_tree_insert(handles_vma, handle, vma);
760 kmem_cache_free(eb->i915->luts, lut);
764 /* transfer ref to ctx */
765 if (!vma->open_count++)
766 i915_vma_reopen(vma);
767 list_add(&lut->obj_link, &obj->lut_list);
768 list_add(&lut->ctx_link, &eb->ctx->handles_list);
770 lut->handle = handle;
773 err = eb_add_vma(eb, i, vma);
777 GEM_BUG_ON(vma != eb->vma[i]);
778 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
781 /* take note of the batch buffer before we might reorder the lists */
782 i = eb_batch_index(eb);
783 eb->batch = eb->vma[i];
784 GEM_BUG_ON(eb->batch->exec_flags != &eb->flags[i]);
787 * SNA is doing fancy tricks with compressing batch buffers, which leads
788 * to negative relocation deltas. Usually that works out ok since the
789 * relocate address is still positive, except when the batch is placed
790 * very low in the GTT. Ensure this doesn't happen.
792 * Note that actual hangs have only been observed on gen7, but for
793 * paranoia do it everywhere.
795 if (!(eb->flags[i] & EXEC_OBJECT_PINNED))
796 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
797 if (eb->reloc_cache.has_fence)
798 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
800 eb->args->flags |= __EXEC_VALIDATED;
801 return eb_reserve(eb);
804 i915_gem_object_put(obj);
810 static struct i915_vma *
811 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
813 if (eb->lut_size < 0) {
814 if (handle >= -eb->lut_size)
816 return eb->vma[handle];
818 struct hlist_head *head;
819 struct i915_vma *vma;
821 head = &eb->buckets[hash_32(handle, eb->lut_size)];
822 hlist_for_each_entry(vma, head, exec_node) {
823 if (vma->exec_handle == handle)
830 static void eb_release_vmas(const struct i915_execbuffer *eb)
832 const unsigned int count = eb->buffer_count;
835 for (i = 0; i < count; i++) {
836 struct i915_vma *vma = eb->vma[i];
837 unsigned int flags = eb->flags[i];
842 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
843 vma->exec_flags = NULL;
846 if (flags & __EXEC_OBJECT_HAS_PIN)
847 __eb_unreserve_vma(vma, flags);
849 if (flags & __EXEC_OBJECT_HAS_REF)
854 static void eb_reset_vmas(const struct i915_execbuffer *eb)
857 if (eb->lut_size > 0)
858 memset(eb->buckets, 0,
859 sizeof(struct hlist_head) << eb->lut_size);
862 static void eb_destroy(const struct i915_execbuffer *eb)
864 GEM_BUG_ON(eb->reloc_cache.rq);
866 if (eb->lut_size > 0)
871 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
872 const struct i915_vma *target)
874 return gen8_canonical_addr((int)reloc->delta + target->node.start);
877 static void reloc_cache_init(struct reloc_cache *cache,
878 struct drm_i915_private *i915)
882 /* Must be a variable in the struct to allow GCC to unroll. */
883 cache->gen = INTEL_GEN(i915);
884 cache->has_llc = HAS_LLC(i915);
885 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
886 cache->has_fence = cache->gen < 4;
887 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
888 cache->node.allocated = false;
893 static inline void *unmask_page(unsigned long p)
895 return (void *)(uintptr_t)(p & PAGE_MASK);
898 static inline unsigned int unmask_flags(unsigned long p)
900 return p & ~PAGE_MASK;
903 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
905 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
907 struct drm_i915_private *i915 =
908 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
912 static void reloc_gpu_flush(struct reloc_cache *cache)
914 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
915 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
916 i915_gem_object_unpin_map(cache->rq->batch->obj);
917 i915_gem_chipset_flush(cache->rq->i915);
919 __i915_request_add(cache->rq, true);
923 static void reloc_cache_reset(struct reloc_cache *cache)
928 reloc_gpu_flush(cache);
933 vaddr = unmask_page(cache->vaddr);
934 if (cache->vaddr & KMAP) {
935 if (cache->vaddr & CLFLUSH_AFTER)
938 kunmap_atomic(vaddr);
939 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
942 io_mapping_unmap_atomic((void __iomem *)vaddr);
943 if (cache->node.allocated) {
944 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
946 ggtt->base.clear_range(&ggtt->base,
949 drm_mm_remove_node(&cache->node);
951 i915_vma_unpin((struct i915_vma *)cache->node.mm);
959 static void *reloc_kmap(struct drm_i915_gem_object *obj,
960 struct reloc_cache *cache,
966 kunmap_atomic(unmask_page(cache->vaddr));
968 unsigned int flushes;
971 err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
975 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
976 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
978 cache->vaddr = flushes | KMAP;
979 cache->node.mm = (void *)obj;
984 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
985 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
991 static void *reloc_iomap(struct drm_i915_gem_object *obj,
992 struct reloc_cache *cache,
995 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
996 unsigned long offset;
1000 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1002 struct i915_vma *vma;
1005 if (use_cpu_reloc(cache, obj))
1008 err = i915_gem_object_set_to_gtt_domain(obj, true);
1010 return ERR_PTR(err);
1012 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1017 memset(&cache->node, 0, sizeof(cache->node));
1018 err = drm_mm_insert_node_in_range
1019 (&ggtt->base.mm, &cache->node,
1020 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1021 0, ggtt->mappable_end,
1023 if (err) /* no inactive aperture space, use cpu reloc */
1026 err = i915_vma_put_fence(vma);
1028 i915_vma_unpin(vma);
1029 return ERR_PTR(err);
1032 cache->node.start = vma->node.start;
1033 cache->node.mm = (void *)vma;
1037 offset = cache->node.start;
1038 if (cache->node.allocated) {
1040 ggtt->base.insert_page(&ggtt->base,
1041 i915_gem_object_get_dma_address(obj, page),
1042 offset, I915_CACHE_NONE, 0);
1044 offset += page << PAGE_SHIFT;
1047 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1050 cache->vaddr = (unsigned long)vaddr;
1055 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1056 struct reloc_cache *cache,
1061 if (cache->page == page) {
1062 vaddr = unmask_page(cache->vaddr);
1065 if ((cache->vaddr & KMAP) == 0)
1066 vaddr = reloc_iomap(obj, cache, page);
1068 vaddr = reloc_kmap(obj, cache, page);
1074 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1076 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1077 if (flushes & CLFLUSH_BEFORE) {
1085 * Writes to the same cacheline are serialised by the CPU
1086 * (including clflush). On the write path, we only require
1087 * that it hits memory in an orderly fashion and place
1088 * mb barriers at the start and end of the relocation phase
1089 * to ensure ordering of clflush wrt to the system.
1091 if (flushes & CLFLUSH_AFTER)
1097 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1098 struct i915_vma *vma,
1101 struct reloc_cache *cache = &eb->reloc_cache;
1102 struct drm_i915_gem_object *obj;
1103 struct i915_request *rq;
1104 struct i915_vma *batch;
1108 GEM_BUG_ON(vma->obj->write_domain & I915_GEM_DOMAIN_CPU);
1110 obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
1112 return PTR_ERR(obj);
1114 cmd = i915_gem_object_pin_map(obj,
1118 i915_gem_object_unpin_pages(obj);
1120 return PTR_ERR(cmd);
1122 err = i915_gem_object_set_to_wc_domain(obj, false);
1126 batch = i915_vma_instance(obj, vma->vm, NULL);
1127 if (IS_ERR(batch)) {
1128 err = PTR_ERR(batch);
1132 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1136 rq = i915_request_alloc(eb->engine, eb->ctx);
1142 err = i915_request_await_object(rq, vma->obj, true);
1146 err = eb->engine->emit_bb_start(rq,
1147 batch->node.start, PAGE_SIZE,
1148 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1152 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1153 i915_vma_move_to_active(batch, rq, 0);
1154 reservation_object_lock(batch->resv, NULL);
1155 reservation_object_add_excl_fence(batch->resv, &rq->fence);
1156 reservation_object_unlock(batch->resv);
1157 i915_vma_unpin(batch);
1159 i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1160 reservation_object_lock(vma->resv, NULL);
1161 reservation_object_add_excl_fence(vma->resv, &rq->fence);
1162 reservation_object_unlock(vma->resv);
1167 cache->rq_cmd = cmd;
1170 /* Return with batch mapping (cmd) still pinned */
1174 i915_request_add(rq);
1176 i915_vma_unpin(batch);
1178 i915_gem_object_unpin_map(obj);
1182 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1183 struct i915_vma *vma,
1186 struct reloc_cache *cache = &eb->reloc_cache;
1189 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1190 reloc_gpu_flush(cache);
1192 if (unlikely(!cache->rq)) {
1195 /* If we need to copy for the cmdparser, we will stall anyway */
1196 if (eb_use_cmdparser(eb))
1197 return ERR_PTR(-EWOULDBLOCK);
1199 if (!intel_engine_can_store_dword(eb->engine))
1200 return ERR_PTR(-ENODEV);
1202 err = __reloc_gpu_alloc(eb, vma, len);
1204 return ERR_PTR(err);
1207 cmd = cache->rq_cmd + cache->rq_size;
1208 cache->rq_size += len;
1214 relocate_entry(struct i915_vma *vma,
1215 const struct drm_i915_gem_relocation_entry *reloc,
1216 struct i915_execbuffer *eb,
1217 const struct i915_vma *target)
1219 u64 offset = reloc->offset;
1220 u64 target_offset = relocation_target(reloc, target);
1221 bool wide = eb->reloc_cache.use_64bit_reloc;
1224 if (!eb->reloc_cache.vaddr &&
1225 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1226 !reservation_object_test_signaled_rcu(vma->resv, true))) {
1227 const unsigned int gen = eb->reloc_cache.gen;
1233 len = offset & 7 ? 8 : 5;
1239 batch = reloc_gpu(eb, vma, len);
1243 addr = gen8_canonical_addr(vma->node.start + offset);
1246 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1247 *batch++ = lower_32_bits(addr);
1248 *batch++ = upper_32_bits(addr);
1249 *batch++ = lower_32_bits(target_offset);
1251 addr = gen8_canonical_addr(addr + 4);
1253 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1254 *batch++ = lower_32_bits(addr);
1255 *batch++ = upper_32_bits(addr);
1256 *batch++ = upper_32_bits(target_offset);
1258 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1259 *batch++ = lower_32_bits(addr);
1260 *batch++ = upper_32_bits(addr);
1261 *batch++ = lower_32_bits(target_offset);
1262 *batch++ = upper_32_bits(target_offset);
1264 } else if (gen >= 6) {
1265 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1268 *batch++ = target_offset;
1269 } else if (gen >= 4) {
1270 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1273 *batch++ = target_offset;
1275 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1277 *batch++ = target_offset;
1284 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1286 return PTR_ERR(vaddr);
1288 clflush_write32(vaddr + offset_in_page(offset),
1289 lower_32_bits(target_offset),
1290 eb->reloc_cache.vaddr);
1293 offset += sizeof(u32);
1294 target_offset >>= 32;
1300 return target->node.start | UPDATE;
1304 eb_relocate_entry(struct i915_execbuffer *eb,
1305 struct i915_vma *vma,
1306 const struct drm_i915_gem_relocation_entry *reloc)
1308 struct i915_vma *target;
1311 /* we've already hold a reference to all valid objects */
1312 target = eb_get_vma(eb, reloc->target_handle);
1313 if (unlikely(!target))
1316 /* Validate that the target is in a valid r/w GPU domain */
1317 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1318 DRM_DEBUG("reloc with multiple write domains: "
1319 "target %d offset %d "
1320 "read %08x write %08x",
1321 reloc->target_handle,
1322 (int) reloc->offset,
1323 reloc->read_domains,
1324 reloc->write_domain);
1327 if (unlikely((reloc->write_domain | reloc->read_domains)
1328 & ~I915_GEM_GPU_DOMAINS)) {
1329 DRM_DEBUG("reloc with read/write non-GPU domains: "
1330 "target %d offset %d "
1331 "read %08x write %08x",
1332 reloc->target_handle,
1333 (int) reloc->offset,
1334 reloc->read_domains,
1335 reloc->write_domain);
1339 if (reloc->write_domain) {
1340 *target->exec_flags |= EXEC_OBJECT_WRITE;
1343 * Sandybridge PPGTT errata: We need a global gtt mapping
1344 * for MI and pipe_control writes because the gpu doesn't
1345 * properly redirect them through the ppgtt for non_secure
1348 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1349 IS_GEN6(eb->i915)) {
1350 err = i915_vma_bind(target, target->obj->cache_level,
1353 "Unexpected failure to bind target VMA!"))
1359 * If the relocation already has the right value in it, no
1360 * more work needs to be done.
1362 if (!DBG_FORCE_RELOC &&
1363 gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1366 /* Check that the relocation address is valid... */
1367 if (unlikely(reloc->offset >
1368 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1369 DRM_DEBUG("Relocation beyond object bounds: "
1370 "target %d offset %d size %d.\n",
1371 reloc->target_handle,
1376 if (unlikely(reloc->offset & 3)) {
1377 DRM_DEBUG("Relocation not 4-byte aligned: "
1378 "target %d offset %d.\n",
1379 reloc->target_handle,
1380 (int)reloc->offset);
1385 * If we write into the object, we need to force the synchronisation
1386 * barrier, either with an asynchronous clflush or if we executed the
1387 * patching using the GPU (though that should be serialised by the
1388 * timeline). To be completely sure, and since we are required to
1389 * do relocations we are already stalling, disable the user's opt
1390 * out of our synchronisation.
1392 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1394 /* and update the user's relocation entry */
1395 return relocate_entry(vma, reloc, eb, target);
1398 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1400 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1401 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1402 struct drm_i915_gem_relocation_entry __user *urelocs;
1403 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1404 unsigned int remain;
1406 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1407 remain = entry->relocation_count;
1408 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1412 * We must check that the entire relocation array is safe
1413 * to read. However, if the array is not writable the user loses
1414 * the updated relocation values.
1416 if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1420 struct drm_i915_gem_relocation_entry *r = stack;
1421 unsigned int count =
1422 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1423 unsigned int copied;
1426 * This is the fast path and we cannot handle a pagefault
1427 * whilst holding the struct mutex lest the user pass in the
1428 * relocations contained within a mmaped bo. For in such a case
1429 * we, the page fault handler would call i915_gem_fault() and
1430 * we would try to acquire the struct mutex again. Obviously
1431 * this is bad and so lockdep complains vehemently.
1433 pagefault_disable();
1434 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1436 if (unlikely(copied)) {
1443 u64 offset = eb_relocate_entry(eb, vma, r);
1445 if (likely(offset == 0)) {
1446 } else if ((s64)offset < 0) {
1447 remain = (int)offset;
1451 * Note that reporting an error now
1452 * leaves everything in an inconsistent
1453 * state as we have *already* changed
1454 * the relocation value inside the
1455 * object. As we have not changed the
1456 * reloc.presumed_offset or will not
1457 * change the execobject.offset, on the
1458 * call we may not rewrite the value
1459 * inside the object, leaving it
1460 * dangling and causing a GPU hang. Unless
1461 * userspace dynamically rebuilds the
1462 * relocations on each execbuf rather than
1463 * presume a static tree.
1465 * We did previously check if the relocations
1466 * were writable (access_ok), an error now
1467 * would be a strange race with mprotect,
1468 * having already demonstrated that we
1469 * can read from this userspace address.
1471 offset = gen8_canonical_addr(offset & ~UPDATE);
1473 &urelocs[r-stack].presumed_offset);
1475 } while (r++, --count);
1476 urelocs += ARRAY_SIZE(stack);
1479 reloc_cache_reset(&eb->reloc_cache);
1484 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1486 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1487 struct drm_i915_gem_relocation_entry *relocs =
1488 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1492 for (i = 0; i < entry->relocation_count; i++) {
1493 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1495 if ((s64)offset < 0) {
1502 reloc_cache_reset(&eb->reloc_cache);
1506 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1508 const char __user *addr, *end;
1510 char __maybe_unused c;
1512 size = entry->relocation_count;
1516 if (size > N_RELOC(ULONG_MAX))
1519 addr = u64_to_user_ptr(entry->relocs_ptr);
1520 size *= sizeof(struct drm_i915_gem_relocation_entry);
1521 if (!access_ok(VERIFY_READ, addr, size))
1525 for (; addr < end; addr += PAGE_SIZE) {
1526 int err = __get_user(c, addr);
1530 return __get_user(c, end - 1);
1533 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1535 const unsigned int count = eb->buffer_count;
1539 for (i = 0; i < count; i++) {
1540 const unsigned int nreloc = eb->exec[i].relocation_count;
1541 struct drm_i915_gem_relocation_entry __user *urelocs;
1542 struct drm_i915_gem_relocation_entry *relocs;
1544 unsigned long copied;
1549 err = check_relocations(&eb->exec[i]);
1553 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1554 size = nreloc * sizeof(*relocs);
1556 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1563 /* copy_from_user is limited to < 4GiB */
1567 min_t(u64, BIT_ULL(31), size - copied);
1569 if (__copy_from_user((char *)relocs + copied,
1570 (char __user *)urelocs + copied,
1578 } while (copied < size);
1581 * As we do not update the known relocation offsets after
1582 * relocating (due to the complexities in lock handling),
1583 * we need to mark them as invalid now so that we force the
1584 * relocation processing next time. Just in case the target
1585 * object is evicted and then rebound into its old
1586 * presumed_offset before the next execbuffer - if that
1587 * happened we would make the mistake of assuming that the
1588 * relocations were valid.
1590 user_access_begin();
1591 for (copied = 0; copied < nreloc; copied++)
1593 &urelocs[copied].presumed_offset,
1598 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1605 struct drm_i915_gem_relocation_entry *relocs =
1606 u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1607 if (eb->exec[i].relocation_count)
1613 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1615 const unsigned int count = eb->buffer_count;
1618 if (unlikely(i915_modparams.prefault_disable))
1621 for (i = 0; i < count; i++) {
1624 err = check_relocations(&eb->exec[i]);
1632 static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1634 struct drm_device *dev = &eb->i915->drm;
1635 bool have_copy = false;
1636 struct i915_vma *vma;
1640 if (signal_pending(current)) {
1645 /* We may process another execbuffer during the unlock... */
1647 mutex_unlock(&dev->struct_mutex);
1650 * We take 3 passes through the slowpatch.
1652 * 1 - we try to just prefault all the user relocation entries and
1653 * then attempt to reuse the atomic pagefault disabled fast path again.
1655 * 2 - we copy the user entries to a local buffer here outside of the
1656 * local and allow ourselves to wait upon any rendering before
1659 * 3 - we already have a local copy of the relocation entries, but
1660 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1663 err = eb_prefault_relocations(eb);
1664 } else if (!have_copy) {
1665 err = eb_copy_relocations(eb);
1666 have_copy = err == 0;
1672 mutex_lock(&dev->struct_mutex);
1676 /* A frequent cause for EAGAIN are currently unavailable client pages */
1677 flush_workqueue(eb->i915->mm.userptr_wq);
1679 err = i915_mutex_lock_interruptible(dev);
1681 mutex_lock(&dev->struct_mutex);
1685 /* reacquire the objects */
1686 err = eb_lookup_vmas(eb);
1690 GEM_BUG_ON(!eb->batch);
1692 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1694 pagefault_disable();
1695 err = eb_relocate_vma(eb, vma);
1700 err = eb_relocate_vma_slow(eb, vma);
1707 * Leave the user relocations as are, this is the painfully slow path,
1708 * and we want to avoid the complication of dropping the lock whilst
1709 * having buffers reserved in the aperture and so causing spurious
1710 * ENOSPC for random operations.
1719 const unsigned int count = eb->buffer_count;
1722 for (i = 0; i < count; i++) {
1723 const struct drm_i915_gem_exec_object2 *entry =
1725 struct drm_i915_gem_relocation_entry *relocs;
1727 if (!entry->relocation_count)
1730 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1738 static int eb_relocate(struct i915_execbuffer *eb)
1740 if (eb_lookup_vmas(eb))
1743 /* The objects are in their final locations, apply the relocations. */
1744 if (eb->args->flags & __EXEC_HAS_RELOC) {
1745 struct i915_vma *vma;
1747 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1748 if (eb_relocate_vma(eb, vma))
1756 return eb_relocate_slow(eb);
1759 static void eb_export_fence(struct i915_vma *vma,
1760 struct i915_request *rq,
1763 struct reservation_object *resv = vma->resv;
1766 * Ignore errors from failing to allocate the new fence, we can't
1767 * handle an error right now. Worst case should be missed
1768 * synchronisation leading to rendering corruption.
1770 reservation_object_lock(resv, NULL);
1771 if (flags & EXEC_OBJECT_WRITE)
1772 reservation_object_add_excl_fence(resv, &rq->fence);
1773 else if (reservation_object_reserve_shared(resv) == 0)
1774 reservation_object_add_shared_fence(resv, &rq->fence);
1775 reservation_object_unlock(resv);
1778 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1780 const unsigned int count = eb->buffer_count;
1784 for (i = 0; i < count; i++) {
1785 unsigned int flags = eb->flags[i];
1786 struct i915_vma *vma = eb->vma[i];
1787 struct drm_i915_gem_object *obj = vma->obj;
1789 if (flags & EXEC_OBJECT_CAPTURE) {
1790 struct i915_capture_list *capture;
1792 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1793 if (unlikely(!capture))
1796 capture->next = eb->request->capture_list;
1797 capture->vma = eb->vma[i];
1798 eb->request->capture_list = capture;
1802 * If the GPU is not _reading_ through the CPU cache, we need
1803 * to make sure that any writes (both previous GPU writes from
1804 * before a change in snooping levels and normal CPU writes)
1805 * caught in that cache are flushed to main memory.
1808 * obj->cache_dirty &&
1809 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1810 * but gcc's optimiser doesn't handle that as well and emits
1811 * two jumps instead of one. Maybe one day...
1813 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1814 if (i915_gem_clflush_object(obj, 0))
1815 flags &= ~EXEC_OBJECT_ASYNC;
1818 if (flags & EXEC_OBJECT_ASYNC)
1821 err = i915_request_await_object
1822 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1827 for (i = 0; i < count; i++) {
1828 unsigned int flags = eb->flags[i];
1829 struct i915_vma *vma = eb->vma[i];
1831 i915_vma_move_to_active(vma, eb->request, flags);
1832 eb_export_fence(vma, eb->request, flags);
1834 __eb_unreserve_vma(vma, flags);
1835 vma->exec_flags = NULL;
1837 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1842 /* Unconditionally flush any chipset caches (for streaming writes). */
1843 i915_gem_chipset_flush(eb->i915);
1848 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1850 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1853 /* Kernel clipping was a DRI1 misfeature */
1854 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1855 if (exec->num_cliprects || exec->cliprects_ptr)
1859 if (exec->DR4 == 0xffffffff) {
1860 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1863 if (exec->DR1 || exec->DR4)
1866 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1872 void i915_vma_move_to_active(struct i915_vma *vma,
1873 struct i915_request *rq,
1876 struct drm_i915_gem_object *obj = vma->obj;
1877 const unsigned int idx = rq->engine->id;
1879 lockdep_assert_held(&rq->i915->drm.struct_mutex);
1880 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1883 * Add a reference if we're newly entering the active list.
1884 * The order in which we add operations to the retirement queue is
1885 * vital here: mark_active adds to the start of the callback list,
1886 * such that subsequent callbacks are called first. Therefore we
1887 * add the active reference first and queue for it to be dropped
1890 if (!i915_vma_is_active(vma))
1891 obj->active_count++;
1892 i915_vma_set_active(vma, idx);
1893 i915_gem_active_set(&vma->last_read[idx], rq);
1894 list_move_tail(&vma->vm_link, &vma->vm->active_list);
1896 obj->write_domain = 0;
1897 if (flags & EXEC_OBJECT_WRITE) {
1898 obj->write_domain = I915_GEM_DOMAIN_RENDER;
1900 if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1901 i915_gem_active_set(&obj->frontbuffer_write, rq);
1903 obj->read_domains = 0;
1905 obj->read_domains |= I915_GEM_GPU_DOMAINS;
1907 if (flags & EXEC_OBJECT_NEEDS_FENCE)
1908 i915_gem_active_set(&vma->last_fence, rq);
1911 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1916 if (!IS_GEN7(rq->i915) || rq->engine->id != RCS) {
1917 DRM_DEBUG("sol reset is gen7/rcs only\n");
1921 cs = intel_ring_begin(rq, 4 * 2 + 2);
1925 *cs++ = MI_LOAD_REGISTER_IMM(4);
1926 for (i = 0; i < 4; i++) {
1927 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1931 intel_ring_advance(rq, cs);
1936 static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1938 struct drm_i915_gem_object *shadow_batch_obj;
1939 struct i915_vma *vma;
1942 shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
1943 PAGE_ALIGN(eb->batch_len));
1944 if (IS_ERR(shadow_batch_obj))
1945 return ERR_CAST(shadow_batch_obj);
1947 err = intel_engine_cmd_parser(eb->engine,
1950 eb->batch_start_offset,
1954 if (err == -EACCES) /* unhandled chained batch */
1961 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1965 eb->vma[eb->buffer_count] = i915_vma_get(vma);
1966 eb->flags[eb->buffer_count] =
1967 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1968 vma->exec_flags = &eb->flags[eb->buffer_count];
1972 i915_gem_object_unpin_pages(shadow_batch_obj);
1977 add_to_client(struct i915_request *rq, struct drm_file *file)
1979 rq->file_priv = file->driver_priv;
1980 list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list);
1983 static int eb_submit(struct i915_execbuffer *eb)
1987 err = eb_move_to_gpu(eb);
1991 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1992 err = i915_reset_gen7_sol_offsets(eb->request);
1997 err = eb->engine->emit_bb_start(eb->request,
1998 eb->batch->node.start +
1999 eb->batch_start_offset,
2009 * Find one BSD ring to dispatch the corresponding BSD command.
2010 * The engine index is returned.
2013 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2014 struct drm_file *file)
2016 struct drm_i915_file_private *file_priv = file->driver_priv;
2018 /* Check whether the file_priv has already selected one ring. */
2019 if ((int)file_priv->bsd_engine < 0)
2020 file_priv->bsd_engine = atomic_fetch_xor(1,
2021 &dev_priv->mm.bsd_engine_dispatch_index);
2023 return file_priv->bsd_engine;
2026 #define I915_USER_RINGS (4)
2028 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
2029 [I915_EXEC_DEFAULT] = RCS,
2030 [I915_EXEC_RENDER] = RCS,
2031 [I915_EXEC_BLT] = BCS,
2032 [I915_EXEC_BSD] = VCS,
2033 [I915_EXEC_VEBOX] = VECS
2036 static struct intel_engine_cs *
2037 eb_select_engine(struct drm_i915_private *dev_priv,
2038 struct drm_file *file,
2039 struct drm_i915_gem_execbuffer2 *args)
2041 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2042 struct intel_engine_cs *engine;
2044 if (user_ring_id > I915_USER_RINGS) {
2045 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2049 if ((user_ring_id != I915_EXEC_BSD) &&
2050 ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
2051 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2052 "bsd dispatch flags: %d\n", (int)(args->flags));
2056 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
2057 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2059 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2060 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2061 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2062 bsd_idx <= I915_EXEC_BSD_RING2) {
2063 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2066 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2071 engine = dev_priv->engine[_VCS(bsd_idx)];
2073 engine = dev_priv->engine[user_ring_map[user_ring_id]];
2077 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2085 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2088 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2092 static struct drm_syncobj **
2093 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2094 struct drm_file *file)
2096 const unsigned long nfences = args->num_cliprects;
2097 struct drm_i915_gem_exec_fence __user *user;
2098 struct drm_syncobj **fences;
2102 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2105 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2106 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2107 if (nfences > min_t(unsigned long,
2108 ULONG_MAX / sizeof(*user),
2109 SIZE_MAX / sizeof(*fences)))
2110 return ERR_PTR(-EINVAL);
2112 user = u64_to_user_ptr(args->cliprects_ptr);
2113 if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2114 return ERR_PTR(-EFAULT);
2116 fences = kvmalloc_array(nfences, sizeof(*fences),
2117 __GFP_NOWARN | GFP_KERNEL);
2119 return ERR_PTR(-ENOMEM);
2121 for (n = 0; n < nfences; n++) {
2122 struct drm_i915_gem_exec_fence fence;
2123 struct drm_syncobj *syncobj;
2125 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2130 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2135 syncobj = drm_syncobj_find(file, fence.handle);
2137 DRM_DEBUG("Invalid syncobj handle provided\n");
2142 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2143 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2145 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2151 __free_fence_array(fences, n);
2152 return ERR_PTR(err);
2156 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2157 struct drm_syncobj **fences)
2160 __free_fence_array(fences, args->num_cliprects);
2164 await_fence_array(struct i915_execbuffer *eb,
2165 struct drm_syncobj **fences)
2167 const unsigned int nfences = eb->args->num_cliprects;
2171 for (n = 0; n < nfences; n++) {
2172 struct drm_syncobj *syncobj;
2173 struct dma_fence *fence;
2176 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2177 if (!(flags & I915_EXEC_FENCE_WAIT))
2180 fence = drm_syncobj_fence_get(syncobj);
2184 err = i915_request_await_dma_fence(eb->request, fence);
2185 dma_fence_put(fence);
2194 signal_fence_array(struct i915_execbuffer *eb,
2195 struct drm_syncobj **fences)
2197 const unsigned int nfences = eb->args->num_cliprects;
2198 struct dma_fence * const fence = &eb->request->fence;
2201 for (n = 0; n < nfences; n++) {
2202 struct drm_syncobj *syncobj;
2205 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2206 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2209 drm_syncobj_replace_fence(syncobj, fence);
2214 i915_gem_do_execbuffer(struct drm_device *dev,
2215 struct drm_file *file,
2216 struct drm_i915_gem_execbuffer2 *args,
2217 struct drm_i915_gem_exec_object2 *exec,
2218 struct drm_syncobj **fences)
2220 struct i915_execbuffer eb;
2221 struct dma_fence *in_fence = NULL;
2222 struct sync_file *out_fence = NULL;
2223 int out_fence_fd = -1;
2226 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2227 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2228 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2230 eb.i915 = to_i915(dev);
2233 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2234 args->flags |= __EXEC_HAS_RELOC;
2237 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2239 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2241 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2242 if (USES_FULL_PPGTT(eb.i915))
2243 eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2244 reloc_cache_init(&eb.reloc_cache, eb.i915);
2246 eb.buffer_count = args->buffer_count;
2247 eb.batch_start_offset = args->batch_start_offset;
2248 eb.batch_len = args->batch_len;
2251 if (args->flags & I915_EXEC_SECURE) {
2252 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2255 eb.batch_flags |= I915_DISPATCH_SECURE;
2257 if (args->flags & I915_EXEC_IS_PINNED)
2258 eb.batch_flags |= I915_DISPATCH_PINNED;
2260 eb.engine = eb_select_engine(eb.i915, file, args);
2264 if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2265 if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2266 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
2269 if (eb.engine->id != RCS) {
2270 DRM_DEBUG("RS is not available on %s\n",
2275 eb.batch_flags |= I915_DISPATCH_RS;
2278 if (args->flags & I915_EXEC_FENCE_IN) {
2279 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2284 if (args->flags & I915_EXEC_FENCE_OUT) {
2285 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2286 if (out_fence_fd < 0) {
2292 err = eb_create(&eb);
2296 GEM_BUG_ON(!eb.lut_size);
2298 err = eb_select_context(&eb);
2303 * Take a local wakeref for preparing to dispatch the execbuf as
2304 * we expect to access the hardware fairly frequently in the
2305 * process. Upon first dispatch, we acquire another prolonged
2306 * wakeref that we hold until the GPU has been idle for at least
2309 intel_runtime_pm_get(eb.i915);
2311 err = i915_mutex_lock_interruptible(dev);
2315 err = eb_relocate(&eb);
2318 * If the user expects the execobject.offset and
2319 * reloc.presumed_offset to be an exact match,
2320 * as for using NO_RELOC, then we cannot update
2321 * the execobject.offset until we have completed
2324 args->flags &= ~__EXEC_HAS_RELOC;
2328 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2329 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2333 if (eb.batch_start_offset > eb.batch->size ||
2334 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2335 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2340 if (eb_use_cmdparser(&eb)) {
2341 struct i915_vma *vma;
2343 vma = eb_parse(&eb, drm_is_current_master(file));
2351 * Batch parsed and accepted:
2353 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2354 * bit from MI_BATCH_BUFFER_START commands issued in
2355 * the dispatch_execbuffer implementations. We
2356 * specifically don't want that set on batches the
2357 * command parser has accepted.
2359 eb.batch_flags |= I915_DISPATCH_SECURE;
2360 eb.batch_start_offset = 0;
2365 if (eb.batch_len == 0)
2366 eb.batch_len = eb.batch->size - eb.batch_start_offset;
2369 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2370 * batch" bit. Hence we need to pin secure batches into the global gtt.
2371 * hsw should have this fixed, but bdw mucks it up again. */
2372 if (eb.batch_flags & I915_DISPATCH_SECURE) {
2373 struct i915_vma *vma;
2376 * So on first glance it looks freaky that we pin the batch here
2377 * outside of the reservation loop. But:
2378 * - The batch is already pinned into the relevant ppgtt, so we
2379 * already have the backing storage fully allocated.
2380 * - No other BO uses the global gtt (well contexts, but meh),
2381 * so we don't really have issues with multiple objects not
2382 * fitting due to fragmentation.
2383 * So this is actually safe.
2385 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2394 /* All GPU relocation batches must be submitted prior to the user rq */
2395 GEM_BUG_ON(eb.reloc_cache.rq);
2397 /* Allocate a request for this batch buffer nice and early. */
2398 eb.request = i915_request_alloc(eb.engine, eb.ctx);
2399 if (IS_ERR(eb.request)) {
2400 err = PTR_ERR(eb.request);
2401 goto err_batch_unpin;
2405 err = i915_request_await_dma_fence(eb.request, in_fence);
2411 err = await_fence_array(&eb, fences);
2416 if (out_fence_fd != -1) {
2417 out_fence = sync_file_create(&eb.request->fence);
2425 * Whilst this request exists, batch_obj will be on the
2426 * active_list, and so will hold the active reference. Only when this
2427 * request is retired will the the batch_obj be moved onto the
2428 * inactive_list and lose its active reference. Hence we do not need
2429 * to explicitly hold another reference here.
2431 eb.request->batch = eb.batch;
2433 trace_i915_request_queue(eb.request, eb.batch_flags);
2434 err = eb_submit(&eb);
2436 __i915_request_add(eb.request, err == 0);
2437 add_to_client(eb.request, file);
2440 signal_fence_array(&eb, fences);
2444 fd_install(out_fence_fd, out_fence->file);
2445 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2446 args->rsvd2 |= (u64)out_fence_fd << 32;
2449 fput(out_fence->file);
2454 if (eb.batch_flags & I915_DISPATCH_SECURE)
2455 i915_vma_unpin(eb.batch);
2458 eb_release_vmas(&eb);
2459 mutex_unlock(&dev->struct_mutex);
2461 intel_runtime_pm_put(eb.i915);
2462 i915_gem_context_put(eb.ctx);
2466 if (out_fence_fd != -1)
2467 put_unused_fd(out_fence_fd);
2469 dma_fence_put(in_fence);
2473 static size_t eb_element_size(void)
2475 return (sizeof(struct drm_i915_gem_exec_object2) +
2476 sizeof(struct i915_vma *) +
2477 sizeof(unsigned int));
2480 static bool check_buffer_count(size_t count)
2482 const size_t sz = eb_element_size();
2485 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2486 * array size (see eb_create()). Otherwise, we can accept an array as
2487 * large as can be addressed (though use large arrays at your peril)!
2490 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2494 * Legacy execbuffer just creates an exec2 list from the original exec object
2495 * list array and passes it to the real function.
2498 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2499 struct drm_file *file)
2501 struct drm_i915_gem_execbuffer *args = data;
2502 struct drm_i915_gem_execbuffer2 exec2;
2503 struct drm_i915_gem_exec_object *exec_list = NULL;
2504 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2505 const size_t count = args->buffer_count;
2509 if (!check_buffer_count(count)) {
2510 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2514 exec2.buffers_ptr = args->buffers_ptr;
2515 exec2.buffer_count = args->buffer_count;
2516 exec2.batch_start_offset = args->batch_start_offset;
2517 exec2.batch_len = args->batch_len;
2518 exec2.DR1 = args->DR1;
2519 exec2.DR4 = args->DR4;
2520 exec2.num_cliprects = args->num_cliprects;
2521 exec2.cliprects_ptr = args->cliprects_ptr;
2522 exec2.flags = I915_EXEC_RENDER;
2523 i915_execbuffer2_set_context_id(exec2, 0);
2525 if (!i915_gem_check_execbuffer(&exec2))
2528 /* Copy in the exec list from userland */
2529 exec_list = kvmalloc_array(count, sizeof(*exec_list),
2530 __GFP_NOWARN | GFP_KERNEL);
2531 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2532 __GFP_NOWARN | GFP_KERNEL);
2533 if (exec_list == NULL || exec2_list == NULL) {
2534 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2535 args->buffer_count);
2540 err = copy_from_user(exec_list,
2541 u64_to_user_ptr(args->buffers_ptr),
2542 sizeof(*exec_list) * count);
2544 DRM_DEBUG("copy %d exec entries failed %d\n",
2545 args->buffer_count, err);
2551 for (i = 0; i < args->buffer_count; i++) {
2552 exec2_list[i].handle = exec_list[i].handle;
2553 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2554 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2555 exec2_list[i].alignment = exec_list[i].alignment;
2556 exec2_list[i].offset = exec_list[i].offset;
2557 if (INTEL_GEN(to_i915(dev)) < 4)
2558 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2560 exec2_list[i].flags = 0;
2563 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2564 if (exec2.flags & __EXEC_HAS_RELOC) {
2565 struct drm_i915_gem_exec_object __user *user_exec_list =
2566 u64_to_user_ptr(args->buffers_ptr);
2568 /* Copy the new buffer offsets back to the user's exec list. */
2569 for (i = 0; i < args->buffer_count; i++) {
2570 if (!(exec2_list[i].offset & UPDATE))
2573 exec2_list[i].offset =
2574 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2575 exec2_list[i].offset &= PIN_OFFSET_MASK;
2576 if (__copy_to_user(&user_exec_list[i].offset,
2577 &exec2_list[i].offset,
2578 sizeof(user_exec_list[i].offset)))
2589 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2590 struct drm_file *file)
2592 struct drm_i915_gem_execbuffer2 *args = data;
2593 struct drm_i915_gem_exec_object2 *exec2_list;
2594 struct drm_syncobj **fences = NULL;
2595 const size_t count = args->buffer_count;
2598 if (!check_buffer_count(count)) {
2599 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2603 if (!i915_gem_check_execbuffer(args))
2606 /* Allocate an extra slot for use by the command parser */
2607 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2608 __GFP_NOWARN | GFP_KERNEL);
2609 if (exec2_list == NULL) {
2610 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2614 if (copy_from_user(exec2_list,
2615 u64_to_user_ptr(args->buffers_ptr),
2616 sizeof(*exec2_list) * count)) {
2617 DRM_DEBUG("copy %zd exec entries failed\n", count);
2622 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2623 fences = get_fence_array(args, file);
2624 if (IS_ERR(fences)) {
2626 return PTR_ERR(fences);
2630 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2633 * Now that we have begun execution of the batchbuffer, we ignore
2634 * any new error after this point. Also given that we have already
2635 * updated the associated relocations, we try to write out the current
2636 * object locations irrespective of any error.
2638 if (args->flags & __EXEC_HAS_RELOC) {
2639 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2640 u64_to_user_ptr(args->buffers_ptr);
2643 /* Copy the new buffer offsets back to the user's exec list. */
2644 user_access_begin();
2645 for (i = 0; i < args->buffer_count; i++) {
2646 if (!(exec2_list[i].offset & UPDATE))
2649 exec2_list[i].offset =
2650 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2651 unsafe_put_user(exec2_list[i].offset,
2652 &user_exec_list[i].offset,
2659 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2660 put_fence_array(args, fences);