2 * Kernel Debugger Architecture Independent Main Code
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
14 #include <linux/ctype.h>
15 #include <linux/types.h>
16 #include <linux/string.h>
17 #include <linux/kernel.h>
18 #include <linux/kmsg_dump.h>
19 #include <linux/reboot.h>
20 #include <linux/sched.h>
21 #include <linux/sched/loadavg.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sysrq.h>
25 #include <linux/smp.h>
26 #include <linux/utsname.h>
27 #include <linux/vmalloc.h>
28 #include <linux/atomic.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
32 #include <linux/init.h>
33 #include <linux/kallsyms.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdb.h>
36 #include <linux/notifier.h>
37 #include <linux/interrupt.h>
38 #include <linux/delay.h>
39 #include <linux/nmi.h>
40 #include <linux/time.h>
41 #include <linux/ptrace.h>
42 #include <linux/sysctl.h>
43 #include <linux/cpu.h>
44 #include <linux/kdebug.h>
45 #include <linux/proc_fs.h>
46 #include <linux/uaccess.h>
47 #include <linux/slab.h>
48 #include "kdb_private.h"
50 #undef MODULE_PARAM_PREFIX
51 #define MODULE_PARAM_PREFIX "kdb."
53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
56 char kdb_grep_string[KDB_GREP_STRLEN];
57 int kdb_grepping_flag;
58 EXPORT_SYMBOL(kdb_grepping_flag);
60 int kdb_grep_trailing;
63 * Kernel debugger state flags
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
71 int kdb_initial_cpu = -1; /* cpu number that owns kdb */
73 int kdb_state; /* General KDB state */
75 struct task_struct *kdb_current_task;
76 EXPORT_SYMBOL(kdb_current_task);
77 struct pt_regs *kdb_current_regs;
79 const char *kdb_diemsg;
80 static int kdb_go_count;
81 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
82 static unsigned int kdb_continue_catastrophic =
83 CONFIG_KDB_CONTINUE_CATASTROPHIC;
85 static unsigned int kdb_continue_catastrophic;
88 /* kdb_commands describes the available commands. */
89 static kdbtab_t *kdb_commands;
90 #define KDB_BASE_CMD_MAX 50
91 static int kdb_max_commands = KDB_BASE_CMD_MAX;
92 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
93 #define for_each_kdbcmd(cmd, num) \
94 for ((cmd) = kdb_base_commands, (num) = 0; \
95 num < kdb_max_commands; \
96 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
98 typedef struct _kdbmsg {
99 int km_diag; /* kdb diagnostic */
100 char *km_msg; /* Corresponding message text */
103 #define KDBMSG(msgnum, text) \
104 { KDB_##msgnum, text }
106 static kdbmsg_t kdbmsgs[] = {
107 KDBMSG(NOTFOUND, "Command Not Found"),
108 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
109 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
110 "8 is only allowed on 64 bit systems"),
111 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
112 KDBMSG(NOTENV, "Cannot find environment variable"),
113 KDBMSG(NOENVVALUE, "Environment variable should have value"),
114 KDBMSG(NOTIMP, "Command not implemented"),
115 KDBMSG(ENVFULL, "Environment full"),
116 KDBMSG(ENVBUFFULL, "Environment buffer full"),
117 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
118 #ifdef CONFIG_CPU_XSCALE
119 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
121 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
123 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
124 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
125 KDBMSG(BADMODE, "Invalid IDMODE"),
126 KDBMSG(BADINT, "Illegal numeric value"),
127 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
128 KDBMSG(BADREG, "Invalid register name"),
129 KDBMSG(BADCPUNUM, "Invalid cpu number"),
130 KDBMSG(BADLENGTH, "Invalid length field"),
131 KDBMSG(NOBP, "No Breakpoint exists"),
132 KDBMSG(BADADDR, "Invalid address"),
133 KDBMSG(NOPERM, "Permission denied"),
137 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
141 * Initial environment. This is all kept static and local to
142 * this file. We don't want to rely on the memory allocation
143 * mechanisms in the kernel, so we use a very limited allocate-only
144 * heap for new and altered environment variables. The entire
145 * environment is limited to a fixed number of entries (add more
146 * to __env[] if required) and a fixed amount of heap (add more to
147 * KDB_ENVBUFSIZE if required).
150 static char *__env[] = {
151 #if defined(CONFIG_SMP)
158 "MDCOUNT=8", /* lines of md output */
188 static const int __nenv = ARRAY_SIZE(__env);
190 struct task_struct *kdb_curr_task(int cpu)
192 struct task_struct *p = curr_task(cpu);
194 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
201 * Check whether the flags of the current command and the permissions
202 * of the kdb console has allow a command to be run.
204 static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
207 /* permissions comes from userspace so needs massaging slightly */
208 permissions &= KDB_ENABLE_MASK;
209 permissions |= KDB_ENABLE_ALWAYS_SAFE;
211 /* some commands change group when launched with no arguments */
213 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
215 flags |= KDB_ENABLE_ALL;
217 return permissions & flags;
221 * kdbgetenv - This function will return the character string value of
222 * an environment variable.
224 * match A character string representing an environment variable.
226 * NULL No environment variable matches 'match'
227 * char* Pointer to string value of environment variable.
229 char *kdbgetenv(const char *match)
232 int matchlen = strlen(match);
235 for (i = 0; i < __nenv; i++) {
241 if ((strncmp(match, e, matchlen) == 0)
242 && ((e[matchlen] == '\0')
243 || (e[matchlen] == '='))) {
244 char *cp = strchr(e, '=');
245 return cp ? ++cp : "";
252 * kdballocenv - This function is used to allocate bytes for
253 * environment entries.
255 * match A character string representing a numeric value
257 * *value the unsigned long representation of the env variable 'match'
259 * Zero on success, a kdb diagnostic on failure.
261 * We use a static environment buffer (envbuffer) to hold the values
262 * of dynamically generated environment variables (see kdb_set). Buffer
263 * space once allocated is never free'd, so over time, the amount of space
264 * (currently 512 bytes) will be exhausted if env variables are changed
267 static char *kdballocenv(size_t bytes)
269 #define KDB_ENVBUFSIZE 512
270 static char envbuffer[KDB_ENVBUFSIZE];
271 static int envbufsize;
274 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
275 ep = &envbuffer[envbufsize];
282 * kdbgetulenv - This function will return the value of an unsigned
283 * long-valued environment variable.
285 * match A character string representing a numeric value
287 * *value the unsigned long represntation of the env variable 'match'
289 * Zero on success, a kdb diagnostic on failure.
291 static int kdbgetulenv(const char *match, unsigned long *value)
295 ep = kdbgetenv(match);
299 return KDB_NOENVVALUE;
301 *value = simple_strtoul(ep, NULL, 0);
307 * kdbgetintenv - This function will return the value of an
308 * integer-valued environment variable.
310 * match A character string representing an integer-valued env variable
312 * *value the integer representation of the environment variable 'match'
314 * Zero on success, a kdb diagnostic on failure.
316 int kdbgetintenv(const char *match, int *value)
321 diag = kdbgetulenv(match, &val);
328 * kdbgetularg - This function will convert a numeric string into an
329 * unsigned long value.
331 * arg A character string representing a numeric value
333 * *value the unsigned long represntation of arg.
335 * Zero on success, a kdb diagnostic on failure.
337 int kdbgetularg(const char *arg, unsigned long *value)
342 val = simple_strtoul(arg, &endp, 0);
346 * Also try base 16, for us folks too lazy to type the
349 val = simple_strtoul(arg, &endp, 16);
359 int kdbgetu64arg(const char *arg, u64 *value)
364 val = simple_strtoull(arg, &endp, 0);
368 val = simple_strtoull(arg, &endp, 16);
379 * kdb_set - This function implements the 'set' command. Alter an
380 * existing environment variable or create a new one.
382 int kdb_set(int argc, const char **argv)
386 size_t varlen, vallen;
389 * we can be invoked two ways:
390 * set var=value argv[1]="var", argv[2]="value"
391 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
392 * - if the latter, shift 'em down.
403 * Check for internal variables
405 if (strcmp(argv[1], "KDBDEBUG") == 0) {
406 unsigned int debugflags;
409 debugflags = simple_strtoul(argv[2], &cp, 0);
410 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
411 kdb_printf("kdb: illegal debug flags '%s'\n",
415 kdb_flags = (kdb_flags &
416 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
417 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
423 * Tokenizer squashed the '=' sign. argv[1] is variable
424 * name, argv[2] = value.
426 varlen = strlen(argv[1]);
427 vallen = strlen(argv[2]);
428 ep = kdballocenv(varlen + vallen + 2);
430 return KDB_ENVBUFFULL;
432 sprintf(ep, "%s=%s", argv[1], argv[2]);
434 ep[varlen+vallen+1] = '\0';
436 for (i = 0; i < __nenv; i++) {
438 && ((strncmp(__env[i], argv[1], varlen) == 0)
439 && ((__env[i][varlen] == '\0')
440 || (__env[i][varlen] == '=')))) {
447 * Wasn't existing variable. Fit into slot.
449 for (i = 0; i < __nenv-1; i++) {
450 if (__env[i] == (char *)0) {
459 static int kdb_check_regs(void)
461 if (!kdb_current_regs) {
462 kdb_printf("No current kdb registers."
463 " You may need to select another task\n");
470 * kdbgetaddrarg - This function is responsible for parsing an
471 * address-expression and returning the value of the expression,
472 * symbol name, and offset to the caller.
474 * The argument may consist of a numeric value (decimal or
475 * hexidecimal), a symbol name, a register name (preceded by the
476 * percent sign), an environment variable with a numeric value
477 * (preceded by a dollar sign) or a simple arithmetic expression
478 * consisting of a symbol name, +/-, and a numeric constant value
481 * argc - count of arguments in argv
482 * argv - argument vector
483 * *nextarg - index to next unparsed argument in argv[]
484 * regs - Register state at time of KDB entry
486 * *value - receives the value of the address-expression
487 * *offset - receives the offset specified, if any
488 * *name - receives the symbol name, if any
489 * *nextarg - index to next unparsed argument in argv[]
491 * zero is returned on success, a kdb diagnostic code is
494 int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
495 unsigned long *value, long *offset,
499 unsigned long off = 0;
509 * If the enable flags prohibit both arbitrary memory access
510 * and flow control then there are no reasonable grounds to
511 * provide symbol lookup.
513 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
514 kdb_cmd_enabled, false))
518 * Process arguments which follow the following syntax:
520 * symbol | numeric-address [+/- numeric-offset]
522 * $environment-variable
528 symname = (char *)argv[*nextarg];
531 * If there is no whitespace between the symbol
532 * or address and the '+' or '-' symbols, we
533 * remember the character and replace it with a
534 * null so the symbol/value can be properly parsed
536 cp = strpbrk(symname, "+-");
542 if (symname[0] == '$') {
543 diag = kdbgetulenv(&symname[1], &addr);
546 } else if (symname[0] == '%') {
547 diag = kdb_check_regs();
550 /* Implement register values with % at a later time as it is
555 found = kdbgetsymval(symname, &symtab);
557 addr = symtab.sym_start;
559 diag = kdbgetularg(argv[*nextarg], &addr);
566 found = kdbnearsym(addr, &symtab);
574 if (offset && name && *name)
575 *offset = addr - symtab.sym_start;
577 if ((*nextarg > argc)
582 * check for +/- and offset
585 if (symbol == '\0') {
586 if ((argv[*nextarg][0] != '+')
587 && (argv[*nextarg][0] != '-')) {
589 * Not our argument. Return.
593 positive = (argv[*nextarg][0] == '+');
597 positive = (symbol == '+');
600 * Now there must be an offset!
602 if ((*nextarg > argc)
603 && (symbol == '\0')) {
604 return KDB_INVADDRFMT;
608 cp = (char *)argv[*nextarg];
612 diag = kdbgetularg(cp, &off);
628 static void kdb_cmderror(int diag)
633 kdb_printf("no error detected (diagnostic is %d)\n", diag);
637 for (i = 0; i < __nkdb_err; i++) {
638 if (kdbmsgs[i].km_diag == diag) {
639 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
644 kdb_printf("Unknown diag %d\n", -diag);
648 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
649 * command which defines one command as a set of other commands,
650 * terminated by endefcmd. kdb_defcmd processes the initial
651 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
652 * the following commands until 'endefcmd'.
654 * argc argument count
655 * argv argument vector
657 * zero for success, a kdb diagnostic if error
667 static struct defcmd_set *defcmd_set;
668 static int defcmd_set_count;
669 static int defcmd_in_progress;
671 /* Forward references */
672 static int kdb_exec_defcmd(int argc, const char **argv);
674 static int kdb_defcmd2(const char *cmdstr, const char *argv0)
676 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
677 char **save_command = s->command;
678 if (strcmp(argv0, "endefcmd") == 0) {
679 defcmd_in_progress = 0;
683 /* macros are always safe because when executed each
684 * internal command re-enters kdb_parse() and is
685 * safety checked individually.
687 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
689 KDB_ENABLE_ALWAYS_SAFE);
694 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
696 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
701 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
702 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
707 static int kdb_defcmd(int argc, const char **argv)
709 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
710 if (defcmd_in_progress) {
711 kdb_printf("kdb: nested defcmd detected, assuming missing "
713 kdb_defcmd2("endefcmd", "endefcmd");
717 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
718 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
720 for (i = 0; i < s->count; ++i)
721 kdb_printf("%s", s->command[i]);
722 kdb_printf("endefcmd\n");
728 if (in_dbg_master()) {
729 kdb_printf("Command only available during kdb_init()\n");
732 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
736 memcpy(defcmd_set, save_defcmd_set,
737 defcmd_set_count * sizeof(*defcmd_set));
738 s = defcmd_set + defcmd_set_count;
739 memset(s, 0, sizeof(*s));
741 s->name = kdb_strdup(argv[1], GFP_KDB);
744 s->usage = kdb_strdup(argv[2], GFP_KDB);
747 s->help = kdb_strdup(argv[3], GFP_KDB);
750 if (s->usage[0] == '"') {
751 strcpy(s->usage, argv[2]+1);
752 s->usage[strlen(s->usage)-1] = '\0';
754 if (s->help[0] == '"') {
755 strcpy(s->help, argv[3]+1);
756 s->help[strlen(s->help)-1] = '\0';
759 defcmd_in_progress = 1;
760 kfree(save_defcmd_set);
769 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
770 defcmd_set = save_defcmd_set;
775 * kdb_exec_defcmd - Execute the set of commands associated with this
778 * argc argument count
779 * argv argument vector
781 * zero for success, a kdb diagnostic if error
783 static int kdb_exec_defcmd(int argc, const char **argv)
786 struct defcmd_set *s;
789 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
790 if (strcmp(s->name, argv[0]) == 0)
793 if (i == defcmd_set_count) {
794 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
798 for (i = 0; i < s->count; ++i) {
799 /* Recursive use of kdb_parse, do not use argv after
802 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
803 ret = kdb_parse(s->command[i]);
810 /* Command history */
811 #define KDB_CMD_HISTORY_COUNT 32
812 #define CMD_BUFLEN 200 /* kdb_printf: max printline
814 static unsigned int cmd_head, cmd_tail;
815 static unsigned int cmdptr;
816 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
817 static char cmd_cur[CMD_BUFLEN];
820 * The "str" argument may point to something like | grep xyz
822 static void parse_grep(const char *str)
825 char *cp = (char *)str, *cp2;
827 /* sanity check: we should have been called with the \ first */
833 if (strncmp(cp, "grep ", 5)) {
834 kdb_printf("invalid 'pipe', see grephelp\n");
840 cp2 = strchr(cp, '\n');
842 *cp2 = '\0'; /* remove the trailing newline */
845 kdb_printf("invalid 'pipe', see grephelp\n");
848 /* now cp points to a nonzero length search string */
850 /* allow it be "x y z" by removing the "'s - there must
853 cp2 = strchr(cp, '"');
855 kdb_printf("invalid quoted string, see grephelp\n");
858 *cp2 = '\0'; /* end the string where the 2nd " was */
860 kdb_grep_leading = 0;
862 kdb_grep_leading = 1;
866 kdb_grep_trailing = 0;
867 if (*(cp+len-1) == '$') {
868 kdb_grep_trailing = 1;
874 if (len >= KDB_GREP_STRLEN) {
875 kdb_printf("search string too long\n");
878 strcpy(kdb_grep_string, cp);
884 * kdb_parse - Parse the command line, search the command table for a
885 * matching command and invoke the command function. This
886 * function may be called recursively, if it is, the second call
887 * will overwrite argv and cbuf. It is the caller's
888 * responsibility to save their argv if they recursively call
891 * cmdstr The input command line to be parsed.
892 * regs The registers at the time kdb was entered.
894 * Zero for success, a kdb diagnostic if failure.
896 * Limited to 20 tokens.
898 * Real rudimentary tokenization. Basically only whitespace
899 * is considered a token delimeter (but special consideration
900 * is taken of the '=' sign as used by the 'set' command).
902 * The algorithm used to tokenize the input string relies on
903 * there being at least one whitespace (or otherwise useless)
904 * character between tokens as the character immediately following
905 * the token is altered in-place to a null-byte to terminate the
911 int kdb_parse(const char *cmdstr)
913 static char *argv[MAXARGC];
915 static char cbuf[CMD_BUFLEN+2];
919 int i, escaped, ignore_errors = 0, check_grep = 0;
922 * First tokenize the command string.
926 if (KDB_FLAG(CMD_INTERRUPT)) {
927 /* Previous command was interrupted, newline must not
928 * repeat the command */
929 KDB_FLAG_CLEAR(CMD_INTERRUPT);
930 KDB_STATE_SET(PAGER);
931 argc = 0; /* no repeat */
934 if (*cp != '\n' && *cp != '\0') {
938 /* skip whitespace */
941 if ((*cp == '\0') || (*cp == '\n') ||
942 (*cp == '#' && !defcmd_in_progress))
944 /* special case: check for | grep pattern */
949 if (cpp >= cbuf + CMD_BUFLEN) {
950 kdb_printf("kdb_parse: command buffer "
951 "overflow, command ignored\n%s\n",
955 if (argc >= MAXARGC - 1) {
956 kdb_printf("kdb_parse: too many arguments, "
957 "command ignored\n%s\n", cmdstr);
963 /* Copy to next unquoted and unescaped
964 * whitespace or '=' */
965 while (*cp && *cp != '\n' &&
966 (escaped || quoted || !isspace(*cp))) {
967 if (cpp >= cbuf + CMD_BUFLEN)
981 else if (*cp == '\'' || *cp == '"')
984 if (*cpp == '=' && !quoted)
988 *cpp++ = '\0'; /* Squash a ws or '=' character */
995 if (defcmd_in_progress) {
996 int result = kdb_defcmd2(cmdstr, argv[0]);
997 if (!defcmd_in_progress) {
998 argc = 0; /* avoid repeat on endefcmd */
1003 if (argv[0][0] == '-' && argv[0][1] &&
1004 (argv[0][1] < '0' || argv[0][1] > '9')) {
1009 for_each_kdbcmd(tp, i) {
1012 * If this command is allowed to be abbreviated,
1013 * check to see if this is it.
1017 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018 if (strncmp(argv[0],
1020 tp->cmd_minlen) == 0) {
1025 if (strcmp(argv[0], tp->cmd_name) == 0)
1031 * If we don't find a command by this name, see if the first
1032 * few characters of this match any of the known commands.
1033 * e.g., md1c20 should match md.
1035 if (i == kdb_max_commands) {
1036 for_each_kdbcmd(tp, i) {
1038 if (strncmp(argv[0],
1040 strlen(tp->cmd_name)) == 0) {
1047 if (i < kdb_max_commands) {
1050 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1054 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055 if (result && ignore_errors && result > KDB_CMD_GO)
1057 KDB_STATE_CLEAR(CMD);
1059 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1062 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1064 *(argv[argc]) = '\0';
1069 * If the input with which we were presented does not
1070 * map to an existing command, attempt to parse it as an
1071 * address argument and display the result. Useful for
1072 * obtaining the address of a variable, or the nearest symbol
1073 * to an address contained in a register.
1076 unsigned long value;
1081 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082 &value, &offset, &name)) {
1083 return KDB_NOTFOUND;
1086 kdb_printf("%s = ", argv[0]);
1087 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1094 static int handle_ctrl_cmd(char *cmd)
1099 /* initial situation */
1100 if (cmd_head == cmd_tail)
1104 if (cmdptr != cmd_tail)
1105 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1109 if (cmdptr != cmd_head)
1110 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1118 * kdb_reboot - This function implements the 'reboot' command. Reboot
1119 * the system immediately, or loop for ever on failure.
1121 static int kdb_reboot(int argc, const char **argv)
1123 emergency_restart();
1124 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1131 static void kdb_dumpregs(struct pt_regs *regs)
1133 int old_lvl = console_loglevel;
1134 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1139 console_loglevel = old_lvl;
1142 void kdb_set_current_task(struct task_struct *p)
1144 kdb_current_task = p;
1146 if (kdb_task_has_cpu(p)) {
1147 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1150 kdb_current_regs = NULL;
1154 * kdb_local - The main code for kdb. This routine is invoked on a
1155 * specific processor, it is not global. The main kdb() routine
1156 * ensures that only one processor at a time is in this routine.
1157 * This code is called with the real reason code on the first
1158 * entry to a kdb session, thereafter it is called with reason
1159 * SWITCH, even if the user goes back to the original cpu.
1161 * reason The reason KDB was invoked
1162 * error The hardware-defined error code
1163 * regs The exception frame at time of fault/breakpoint.
1164 * db_result Result code from the break or debug point.
1166 * 0 KDB was invoked for an event which it wasn't responsible
1167 * 1 KDB handled the event for which it was invoked.
1168 * KDB_CMD_GO User typed 'go'.
1169 * KDB_CMD_CPU User switched to another cpu.
1170 * KDB_CMD_SS Single step.
1172 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1173 kdb_dbtrap_t db_result)
1177 struct task_struct *kdb_current =
1178 kdb_curr_task(raw_smp_processor_id());
1180 KDB_DEBUG_STATE("kdb_local 1", reason);
1182 if (reason == KDB_REASON_DEBUG) {
1183 /* special case below */
1185 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1186 kdb_current, kdb_current ? kdb_current->pid : 0);
1187 #if defined(CONFIG_SMP)
1188 kdb_printf("on processor %d ", raw_smp_processor_id());
1193 case KDB_REASON_DEBUG:
1196 * If re-entering kdb after a single step
1197 * command, don't print the message.
1199 switch (db_result) {
1201 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1202 kdb_current, kdb_current->pid);
1203 #if defined(CONFIG_SMP)
1204 kdb_printf("on processor %d ", raw_smp_processor_id());
1206 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1207 instruction_pointer(regs));
1212 KDB_DEBUG_STATE("kdb_local 4", reason);
1213 return 1; /* kdba_db_trap did the work */
1215 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1222 case KDB_REASON_ENTER:
1223 if (KDB_STATE(KEYBOARD))
1224 kdb_printf("due to Keyboard Entry\n");
1226 kdb_printf("due to KDB_ENTER()\n");
1228 case KDB_REASON_KEYBOARD:
1229 KDB_STATE_SET(KEYBOARD);
1230 kdb_printf("due to Keyboard Entry\n");
1232 case KDB_REASON_ENTER_SLAVE:
1233 /* drop through, slaves only get released via cpu switch */
1234 case KDB_REASON_SWITCH:
1235 kdb_printf("due to cpu switch\n");
1237 case KDB_REASON_OOPS:
1238 kdb_printf("Oops: %s\n", kdb_diemsg);
1239 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1240 instruction_pointer(regs));
1243 case KDB_REASON_SYSTEM_NMI:
1244 kdb_printf("due to System NonMaskable Interrupt\n");
1246 case KDB_REASON_NMI:
1247 kdb_printf("due to NonMaskable Interrupt @ "
1248 kdb_machreg_fmt "\n",
1249 instruction_pointer(regs));
1251 case KDB_REASON_SSTEP:
1252 case KDB_REASON_BREAK:
1253 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1254 reason == KDB_REASON_BREAK ?
1255 "Breakpoint" : "SS trap", instruction_pointer(regs));
1257 * Determine if this breakpoint is one that we
1258 * are interested in.
1260 if (db_result != KDB_DB_BPT) {
1261 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1263 KDB_DEBUG_STATE("kdb_local 6", reason);
1264 return 0; /* Not for us, dismiss it */
1267 case KDB_REASON_RECURSE:
1268 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1269 instruction_pointer(regs));
1272 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1273 KDB_DEBUG_STATE("kdb_local 8", reason);
1274 return 0; /* Not for us, dismiss it */
1279 * Initialize pager context.
1282 KDB_STATE_CLEAR(SUPPRESS);
1283 kdb_grepping_flag = 0;
1284 /* ensure the old search does not leak into '/' commands */
1285 kdb_grep_string[0] = '\0';
1289 *(cmd_hist[cmd_head]) = '\0';
1292 #if defined(CONFIG_SMP)
1293 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1294 raw_smp_processor_id());
1296 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1298 if (defcmd_in_progress)
1299 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1302 * Fetch command from keyboard
1304 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1305 if (*cmdbuf != '\n') {
1307 if (cmdptr == cmd_head) {
1308 strncpy(cmd_hist[cmd_head], cmd_cur,
1310 *(cmd_hist[cmd_head] +
1311 strlen(cmd_hist[cmd_head])-1) = '\0';
1313 if (!handle_ctrl_cmd(cmdbuf))
1314 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1316 goto do_full_getstr;
1318 strncpy(cmd_hist[cmd_head], cmd_cur,
1322 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1323 if (cmd_head == cmd_tail)
1324 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1328 diag = kdb_parse(cmdbuf);
1329 if (diag == KDB_NOTFOUND) {
1330 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1333 if (diag == KDB_CMD_GO
1334 || diag == KDB_CMD_CPU
1335 || diag == KDB_CMD_SS
1336 || diag == KDB_CMD_KGDB)
1342 KDB_DEBUG_STATE("kdb_local 9", diag);
1348 * kdb_print_state - Print the state data for the current processor
1351 * text Identifies the debug point
1352 * value Any integer value to be printed, e.g. reason code.
1354 void kdb_print_state(const char *text, int value)
1356 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1357 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1362 * kdb_main_loop - After initial setup and assignment of the
1363 * controlling cpu, all cpus are in this loop. One cpu is in
1364 * control and will issue the kdb prompt, the others will spin
1365 * until 'go' or cpu switch.
1367 * To get a consistent view of the kernel stacks for all
1368 * processes, this routine is invoked from the main kdb code via
1369 * an architecture specific routine. kdba_main_loop is
1370 * responsible for making the kernel stacks consistent for all
1371 * processes, there should be no difference between a blocked
1372 * process and a running process as far as kdb is concerned.
1374 * reason The reason KDB was invoked
1375 * error The hardware-defined error code
1376 * reason2 kdb's current reason code.
1377 * Initially error but can change
1378 * according to kdb state.
1379 * db_result Result code from break or debug point.
1380 * regs The exception frame at time of fault/breakpoint.
1381 * should always be valid.
1383 * 0 KDB was invoked for an event which it wasn't responsible
1384 * 1 KDB handled the event for which it was invoked.
1386 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1387 kdb_dbtrap_t db_result, struct pt_regs *regs)
1390 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1393 * All processors except the one that is in control
1396 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1397 while (KDB_STATE(HOLD_CPU)) {
1398 /* state KDB is turned off by kdb_cpu to see if the
1399 * other cpus are still live, each cpu in this loop
1402 if (!KDB_STATE(KDB))
1406 KDB_STATE_CLEAR(SUPPRESS);
1407 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1408 if (KDB_STATE(LEAVING))
1409 break; /* Another cpu said 'go' */
1410 /* Still using kdb, this processor is in control */
1411 result = kdb_local(reason2, error, regs, db_result);
1412 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1414 if (result == KDB_CMD_CPU)
1417 if (result == KDB_CMD_SS) {
1418 KDB_STATE_SET(DOING_SS);
1422 if (result == KDB_CMD_KGDB) {
1423 if (!KDB_STATE(DOING_KGDB))
1424 kdb_printf("Entering please attach debugger "
1425 "or use $D#44+ or $3#33\n");
1428 if (result && result != 1 && result != KDB_CMD_GO)
1429 kdb_printf("\nUnexpected kdb_local return code %d\n",
1431 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1434 if (KDB_STATE(DOING_SS))
1435 KDB_STATE_CLEAR(SSBPT);
1437 /* Clean up any keyboard devices before leaving */
1438 kdb_kbd_cleanup_state();
1444 * kdb_mdr - This function implements the guts of the 'mdr', memory
1446 * mdr <addr arg>,<byte count>
1448 * addr Start address
1449 * count Number of bytes
1451 * Always 0. Any errors are detected and printed by kdb_getarea.
1453 static int kdb_mdr(unsigned long addr, unsigned int count)
1457 if (kdb_getarea(c, addr))
1459 kdb_printf("%02x", c);
1467 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1468 * 'md8' 'mdr' and 'mds' commands.
1470 * md|mds [<addr arg> [<line count> [<radix>]]]
1471 * mdWcN [<addr arg> [<line count> [<radix>]]]
1472 * where W = is the width (1, 2, 4 or 8) and N is the count.
1473 * for eg., md1c20 reads 20 bytes, 1 at a time.
1474 * mdr <addr arg>,<byte count>
1476 static void kdb_md_line(const char *fmtstr, unsigned long addr,
1477 int symbolic, int nosect, int bytesperword,
1478 int num, int repeat, int phys)
1480 /* print just one line of data */
1481 kdb_symtab_t symtab;
1487 memset(cbuf, '\0', sizeof(cbuf));
1489 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1491 kdb_printf(kdb_machreg_fmt0 " ", addr);
1493 for (i = 0; i < num && repeat--; i++) {
1495 if (kdb_getphysword(&word, addr, bytesperword))
1497 } else if (kdb_getword(&word, addr, bytesperword))
1499 kdb_printf(fmtstr, word);
1501 kdbnearsym(word, &symtab);
1503 memset(&symtab, 0, sizeof(symtab));
1504 if (symtab.sym_name) {
1505 kdb_symbol_print(word, &symtab, 0);
1508 kdb_printf(" %s %s "
1511 kdb_machreg_fmt, symtab.mod_name,
1512 symtab.sec_name, symtab.sec_start,
1513 symtab.sym_start, symtab.sym_end);
1515 addr += bytesperword;
1523 cp = wc.c + 8 - bytesperword;
1528 #define printable_char(c) \
1529 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1530 switch (bytesperword) {
1532 *c++ = printable_char(*cp++);
1533 *c++ = printable_char(*cp++);
1534 *c++ = printable_char(*cp++);
1535 *c++ = printable_char(*cp++);
1538 *c++ = printable_char(*cp++);
1539 *c++ = printable_char(*cp++);
1542 *c++ = printable_char(*cp++);
1545 *c++ = printable_char(*cp++);
1549 #undef printable_char
1552 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1556 static int kdb_md(int argc, const char **argv)
1558 static unsigned long last_addr;
1559 static int last_radix, last_bytesperword, last_repeat;
1560 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1562 char fmtchar, fmtstr[64];
1570 kdbgetintenv("MDCOUNT", &mdcount);
1571 kdbgetintenv("RADIX", &radix);
1572 kdbgetintenv("BYTESPERWORD", &bytesperword);
1574 /* Assume 'md <addr>' and start with environment values */
1575 repeat = mdcount * 16 / bytesperword;
1577 if (strcmp(argv[0], "mdr") == 0) {
1579 return KDB_ARGCOUNT;
1581 } else if (isdigit(argv[0][2])) {
1582 bytesperword = (int)(argv[0][2] - '0');
1583 if (bytesperword == 0) {
1584 bytesperword = last_bytesperword;
1585 if (bytesperword == 0)
1588 last_bytesperword = bytesperword;
1589 repeat = mdcount * 16 / bytesperword;
1592 else if (argv[0][3] == 'c' && argv[0][4]) {
1594 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1595 mdcount = ((repeat * bytesperword) + 15) / 16;
1598 last_repeat = repeat;
1599 } else if (strcmp(argv[0], "md") == 0)
1601 else if (strcmp(argv[0], "mds") == 0)
1603 else if (strcmp(argv[0], "mdp") == 0) {
1607 return KDB_NOTFOUND;
1611 return KDB_ARGCOUNT;
1614 bytesperword = last_bytesperword;
1615 repeat = last_repeat;
1616 mdcount = ((repeat * bytesperword) + 15) / 16;
1621 int diag, nextarg = 1;
1622 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1626 if (argc > nextarg+2)
1627 return KDB_ARGCOUNT;
1629 if (argc >= nextarg) {
1630 diag = kdbgetularg(argv[nextarg], &val);
1632 mdcount = (int) val;
1633 repeat = mdcount * 16 / bytesperword;
1636 if (argc >= nextarg+1) {
1637 diag = kdbgetularg(argv[nextarg+1], &val);
1643 if (strcmp(argv[0], "mdr") == 0)
1644 return kdb_mdr(addr, mdcount);
1657 return KDB_BADRADIX;
1662 if (bytesperword > KDB_WORD_SIZE)
1663 return KDB_BADWIDTH;
1665 switch (bytesperword) {
1667 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1670 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1673 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1676 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1679 return KDB_BADWIDTH;
1682 last_repeat = repeat;
1683 last_bytesperword = bytesperword;
1685 if (strcmp(argv[0], "mds") == 0) {
1687 /* Do not save these changes as last_*, they are temporary mds
1690 bytesperword = KDB_WORD_SIZE;
1692 kdbgetintenv("NOSECT", &nosect);
1695 /* Round address down modulo BYTESPERWORD */
1697 addr &= ~(bytesperword-1);
1699 while (repeat > 0) {
1701 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1703 if (KDB_FLAG(CMD_INTERRUPT))
1705 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1707 if (kdb_getphysword(&word, a, bytesperword)
1710 } else if (kdb_getword(&word, a, bytesperword) || word)
1713 n = min(num, repeat);
1714 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1716 addr += bytesperword * n;
1718 z = (z + num - 1) / num;
1720 int s = num * (z-2);
1721 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1722 " zero suppressed\n",
1723 addr, addr + bytesperword * s - 1);
1724 addr += bytesperword * s;
1734 * kdb_mm - This function implements the 'mm' command.
1735 * mm address-expression new-value
1737 * mm works on machine words, mmW works on bytes.
1739 static int kdb_mm(int argc, const char **argv)
1744 unsigned long contents;
1748 if (argv[0][2] && !isdigit(argv[0][2]))
1749 return KDB_NOTFOUND;
1752 return KDB_ARGCOUNT;
1755 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1760 return KDB_ARGCOUNT;
1761 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1765 if (nextarg != argc + 1)
1766 return KDB_ARGCOUNT;
1768 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1769 diag = kdb_putword(addr, contents, width);
1773 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1779 * kdb_go - This function implements the 'go' command.
1780 * go [address-expression]
1782 static int kdb_go(int argc, const char **argv)
1789 if (raw_smp_processor_id() != kdb_initial_cpu) {
1790 kdb_printf("go must execute on the entry cpu, "
1791 "please use \"cpu %d\" and then execute go\n",
1793 return KDB_BADCPUNUM;
1797 diag = kdbgetaddrarg(argc, argv, &nextarg,
1798 &addr, &offset, NULL);
1802 return KDB_ARGCOUNT;
1806 if (KDB_FLAG(CATASTROPHIC)) {
1807 kdb_printf("Catastrophic error detected\n");
1808 kdb_printf("kdb_continue_catastrophic=%d, ",
1809 kdb_continue_catastrophic);
1810 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1811 kdb_printf("type go a second time if you really want "
1815 if (kdb_continue_catastrophic == 2) {
1816 kdb_printf("forcing reboot\n");
1817 kdb_reboot(0, NULL);
1819 kdb_printf("attempting to continue\n");
1825 * kdb_rd - This function implements the 'rd' command.
1827 static int kdb_rd(int argc, const char **argv)
1829 int len = kdb_check_regs();
1830 #if DBG_MAX_REG_NUM > 0
1842 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1843 rsize = dbg_reg_def[i].size * 2;
1846 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1851 len += kdb_printf(" ");
1852 switch(dbg_reg_def[i].size * 8) {
1854 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1857 len += kdb_printf("%s: %02x", rname, reg8);
1860 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1863 len += kdb_printf("%s: %04x", rname, reg16);
1866 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1869 len += kdb_printf("%s: %08x", rname, reg32);
1872 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1875 len += kdb_printf("%s: %016llx", rname, reg64);
1878 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1886 kdb_dumpregs(kdb_current_regs);
1892 * kdb_rm - This function implements the 'rm' (register modify) command.
1893 * rm register-name new-contents
1895 * Allows register modification with the same restrictions as gdb
1897 static int kdb_rm(int argc, const char **argv)
1899 #if DBG_MAX_REG_NUM > 0
1909 return KDB_ARGCOUNT;
1911 * Allow presence or absence of leading '%' symbol.
1917 diag = kdbgetu64arg(argv[2], ®64);
1921 diag = kdb_check_regs();
1926 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1927 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1933 switch(dbg_reg_def[i].size * 8) {
1936 dbg_set_reg(i, ®8, kdb_current_regs);
1940 dbg_set_reg(i, ®16, kdb_current_regs);
1944 dbg_set_reg(i, ®32, kdb_current_regs);
1947 dbg_set_reg(i, ®64, kdb_current_regs);
1953 kdb_printf("ERROR: Register set currently not implemented\n");
1958 #if defined(CONFIG_MAGIC_SYSRQ)
1960 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1961 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1962 * sr <magic-sysrq-code>
1964 static int kdb_sr(int argc, const char **argv)
1967 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1970 return KDB_ARGCOUNT;
1973 __handle_sysrq(*argv[1], check_mask);
1978 #endif /* CONFIG_MAGIC_SYSRQ */
1981 * kdb_ef - This function implements the 'regs' (display exception
1982 * frame) command. This command takes an address and expects to
1983 * find an exception frame at that address, formats and prints
1985 * regs address-expression
1989 static int kdb_ef(int argc, const char **argv)
1997 return KDB_ARGCOUNT;
2000 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2003 show_regs((struct pt_regs *)addr);
2007 #if defined(CONFIG_MODULES)
2009 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2010 * currently loaded kernel modules.
2011 * Mostly taken from userland lsmod.
2013 static int kdb_lsmod(int argc, const char **argv)
2018 return KDB_ARGCOUNT;
2020 kdb_printf("Module Size modstruct Used by\n");
2021 list_for_each_entry(mod, kdb_modules, list) {
2022 if (mod->state == MODULE_STATE_UNFORMED)
2025 kdb_printf("%-20s%8u 0x%p ", mod->name,
2026 mod->core_layout.size, (void *)mod);
2027 #ifdef CONFIG_MODULE_UNLOAD
2028 kdb_printf("%4d ", module_refcount(mod));
2030 if (mod->state == MODULE_STATE_GOING)
2031 kdb_printf(" (Unloading)");
2032 else if (mod->state == MODULE_STATE_COMING)
2033 kdb_printf(" (Loading)");
2035 kdb_printf(" (Live)");
2036 kdb_printf(" 0x%p", mod->core_layout.base);
2038 #ifdef CONFIG_MODULE_UNLOAD
2040 struct module_use *use;
2042 list_for_each_entry(use, &mod->source_list,
2044 kdb_printf("%s ", use->target->name);
2053 #endif /* CONFIG_MODULES */
2056 * kdb_env - This function implements the 'env' command. Display the
2057 * current environment variables.
2060 static int kdb_env(int argc, const char **argv)
2064 for (i = 0; i < __nenv; i++) {
2066 kdb_printf("%s\n", __env[i]);
2069 if (KDB_DEBUG(MASK))
2070 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2075 #ifdef CONFIG_PRINTK
2077 * kdb_dmesg - This function implements the 'dmesg' command to display
2078 * the contents of the syslog buffer.
2079 * dmesg [lines] [adjust]
2081 static int kdb_dmesg(int argc, const char **argv)
2089 struct kmsg_dumper dumper = { .active = 1 };
2094 return KDB_ARGCOUNT;
2097 lines = simple_strtol(argv[1], &cp, 0);
2101 adjust = simple_strtoul(argv[2], &cp, 0);
2102 if (*cp || adjust < 0)
2107 /* disable LOGGING if set */
2108 diag = kdbgetintenv("LOGGING", &logging);
2109 if (!diag && logging) {
2110 const char *setargs[] = { "set", "LOGGING", "0" };
2111 kdb_set(2, setargs);
2114 kmsg_dump_rewind_nolock(&dumper);
2115 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2120 kdb_printf("buffer only contains %d lines, nothing "
2122 else if (adjust - lines >= n)
2123 kdb_printf("buffer only contains %d lines, last %d "
2124 "lines printed\n", n, n - adjust);
2127 } else if (lines > 0) {
2128 skip = n - lines - adjust;
2131 kdb_printf("buffer only contains %d lines, "
2132 "nothing printed\n", n);
2134 } else if (skip < 0) {
2137 kdb_printf("buffer only contains %d lines, first "
2138 "%d lines printed\n", n, lines);
2144 if (skip >= n || skip < 0)
2147 kmsg_dump_rewind_nolock(&dumper);
2148 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2155 if (KDB_FLAG(CMD_INTERRUPT))
2158 kdb_printf("%.*s\n", (int)len - 1, buf);
2163 #endif /* CONFIG_PRINTK */
2165 /* Make sure we balance enable/disable calls, must disable first. */
2166 static atomic_t kdb_nmi_disabled;
2168 static int kdb_disable_nmi(int argc, const char *argv[])
2170 if (atomic_read(&kdb_nmi_disabled))
2172 atomic_set(&kdb_nmi_disabled, 1);
2173 arch_kgdb_ops.enable_nmi(0);
2177 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2179 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2181 arch_kgdb_ops.enable_nmi(1);
2185 static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2186 .set = kdb_param_enable_nmi,
2188 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2191 * kdb_cpu - This function implements the 'cpu' command.
2194 * KDB_CMD_CPU for success, a kdb diagnostic if error
2196 static void kdb_cpu_status(void)
2198 int i, start_cpu, first_print = 1;
2199 char state, prev_state = '?';
2201 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2202 kdb_printf("Available cpus: ");
2203 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2204 if (!cpu_online(i)) {
2205 state = 'F'; /* cpu is offline */
2206 } else if (!kgdb_info[i].enter_kgdb) {
2207 state = 'D'; /* cpu is online but unresponsive */
2209 state = ' '; /* cpu is responding to kdb */
2210 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2211 state = 'I'; /* idle task */
2213 if (state != prev_state) {
2214 if (prev_state != '?') {
2218 kdb_printf("%d", start_cpu);
2219 if (start_cpu < i-1)
2220 kdb_printf("-%d", i-1);
2221 if (prev_state != ' ')
2222 kdb_printf("(%c)", prev_state);
2228 /* print the trailing cpus, ignoring them if they are all offline */
2229 if (prev_state != 'F') {
2232 kdb_printf("%d", start_cpu);
2233 if (start_cpu < i-1)
2234 kdb_printf("-%d", i-1);
2235 if (prev_state != ' ')
2236 kdb_printf("(%c)", prev_state);
2241 static int kdb_cpu(int argc, const char **argv)
2243 unsigned long cpunum;
2252 return KDB_ARGCOUNT;
2254 diag = kdbgetularg(argv[1], &cpunum);
2261 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2262 return KDB_BADCPUNUM;
2264 dbg_switch_cpu = cpunum;
2267 * Switch to other cpu
2272 /* The user may not realize that ps/bta with no parameters does not print idle
2273 * or sleeping system daemon processes, so tell them how many were suppressed.
2275 void kdb_ps_suppressed(void)
2277 int idle = 0, daemon = 0;
2278 unsigned long mask_I = kdb_task_state_string("I"),
2279 mask_M = kdb_task_state_string("M");
2281 const struct task_struct *p, *g;
2282 for_each_online_cpu(cpu) {
2283 p = kdb_curr_task(cpu);
2284 if (kdb_task_state(p, mask_I))
2287 kdb_do_each_thread(g, p) {
2288 if (kdb_task_state(p, mask_M))
2290 } kdb_while_each_thread(g, p);
2291 if (idle || daemon) {
2293 kdb_printf("%d idle process%s (state I)%s\n",
2294 idle, idle == 1 ? "" : "es",
2295 daemon ? " and " : "");
2297 kdb_printf("%d sleeping system daemon (state M) "
2298 "process%s", daemon,
2299 daemon == 1 ? "" : "es");
2300 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2305 * kdb_ps - This function implements the 'ps' command which shows a
2306 * list of the active processes.
2307 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2309 void kdb_ps1(const struct task_struct *p)
2314 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2317 cpu = kdb_process_cpu(p);
2318 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2319 (void *)p, p->pid, p->parent->pid,
2320 kdb_task_has_cpu(p), kdb_process_cpu(p),
2321 kdb_task_state_char(p),
2322 (void *)(&p->thread),
2323 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2325 if (kdb_task_has_cpu(p)) {
2326 if (!KDB_TSK(cpu)) {
2327 kdb_printf(" Error: no saved data for this cpu\n");
2329 if (KDB_TSK(cpu) != p)
2330 kdb_printf(" Error: does not match running "
2331 "process table (0x%p)\n", KDB_TSK(cpu));
2336 static int kdb_ps(int argc, const char **argv)
2338 struct task_struct *g, *p;
2339 unsigned long mask, cpu;
2342 kdb_ps_suppressed();
2343 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2344 (int)(2*sizeof(void *))+2, "Task Addr",
2345 (int)(2*sizeof(void *))+2, "Thread");
2346 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2347 /* Run the active tasks first */
2348 for_each_online_cpu(cpu) {
2349 if (KDB_FLAG(CMD_INTERRUPT))
2351 p = kdb_curr_task(cpu);
2352 if (kdb_task_state(p, mask))
2356 /* Now the real tasks */
2357 kdb_do_each_thread(g, p) {
2358 if (KDB_FLAG(CMD_INTERRUPT))
2360 if (kdb_task_state(p, mask))
2362 } kdb_while_each_thread(g, p);
2368 * kdb_pid - This function implements the 'pid' command which switches
2369 * the currently active process.
2372 static int kdb_pid(int argc, const char **argv)
2374 struct task_struct *p;
2379 return KDB_ARGCOUNT;
2382 if (strcmp(argv[1], "R") == 0) {
2383 p = KDB_TSK(kdb_initial_cpu);
2385 diag = kdbgetularg(argv[1], &val);
2389 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2391 kdb_printf("No task with pid=%d\n", (pid_t)val);
2395 kdb_set_current_task(p);
2397 kdb_printf("KDB current process is %s(pid=%d)\n",
2398 kdb_current_task->comm,
2399 kdb_current_task->pid);
2404 static int kdb_kgdb(int argc, const char **argv)
2406 return KDB_CMD_KGDB;
2410 * kdb_help - This function implements the 'help' and '?' commands.
2412 static int kdb_help(int argc, const char **argv)
2417 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2418 kdb_printf("-----------------------------"
2419 "-----------------------------\n");
2420 for_each_kdbcmd(kt, i) {
2422 if (KDB_FLAG(CMD_INTERRUPT))
2426 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2428 if (strlen(kt->cmd_usage) > 20)
2430 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2431 kt->cmd_usage, space, kt->cmd_help);
2437 * kdb_kill - This function implements the 'kill' commands.
2439 static int kdb_kill(int argc, const char **argv)
2443 struct task_struct *p;
2444 struct siginfo info;
2447 return KDB_ARGCOUNT;
2449 sig = simple_strtol(argv[1], &endp, 0);
2453 kdb_printf("Invalid signal parameter.<-signal>\n");
2458 pid = simple_strtol(argv[2], &endp, 0);
2462 kdb_printf("Process ID must be large than 0.\n");
2466 /* Find the process. */
2467 p = find_task_by_pid_ns(pid, &init_pid_ns);
2469 kdb_printf("The specified process isn't found.\n");
2472 p = p->group_leader;
2473 info.si_signo = sig;
2475 info.si_code = SI_USER;
2476 info.si_pid = pid; /* same capabilities as process being signalled */
2477 info.si_uid = 0; /* kdb has root authority */
2478 kdb_send_sig_info(p, &info);
2483 int tm_sec; /* seconds */
2484 int tm_min; /* minutes */
2485 int tm_hour; /* hours */
2486 int tm_mday; /* day of the month */
2487 int tm_mon; /* month */
2488 int tm_year; /* year */
2491 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2493 /* This will work from 1970-2099, 2100 is not a leap year */
2494 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2495 31, 30, 31, 30, 31 };
2496 memset(tm, 0, sizeof(*tm));
2497 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2498 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2499 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2500 tm->tm_min = tm->tm_sec / 60 % 60;
2501 tm->tm_hour = tm->tm_sec / 60 / 60;
2502 tm->tm_sec = tm->tm_sec % 60;
2503 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2504 tm->tm_mday %= (4*365+1);
2506 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2507 tm->tm_mday -= mon_day[tm->tm_mon];
2508 if (++tm->tm_mon == 12) {
2518 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2519 * I cannot call that code directly from kdb, it has an unconditional
2520 * cli()/sti() and calls routines that take locks which can stop the debugger.
2522 static void kdb_sysinfo(struct sysinfo *val)
2524 struct timespec uptime;
2525 ktime_get_ts(&uptime);
2526 memset(val, 0, sizeof(*val));
2527 val->uptime = uptime.tv_sec;
2528 val->loads[0] = avenrun[0];
2529 val->loads[1] = avenrun[1];
2530 val->loads[2] = avenrun[2];
2531 val->procs = nr_threads-1;
2538 * kdb_summary - This function implements the 'summary' command.
2540 static int kdb_summary(int argc, const char **argv)
2542 struct timespec now;
2547 return KDB_ARGCOUNT;
2549 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2550 kdb_printf("release %s\n", init_uts_ns.name.release);
2551 kdb_printf("version %s\n", init_uts_ns.name.version);
2552 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2553 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2554 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2555 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2557 now = __current_kernel_time();
2558 kdb_gmtime(&now, &tm);
2559 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2560 "tz_minuteswest %d\n",
2561 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2562 tm.tm_hour, tm.tm_min, tm.tm_sec,
2563 sys_tz.tz_minuteswest);
2566 kdb_printf("uptime ");
2567 if (val.uptime > (24*60*60)) {
2568 int days = val.uptime / (24*60*60);
2569 val.uptime %= (24*60*60);
2570 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2572 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2574 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2576 #define LOAD_INT(x) ((x) >> FSHIFT)
2577 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2578 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2579 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2580 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2581 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2584 /* Display in kilobytes */
2585 #define K(x) ((x) << (PAGE_SHIFT - 10))
2586 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2587 "Buffers: %8lu kB\n",
2588 K(val.totalram), K(val.freeram), K(val.bufferram));
2593 * kdb_per_cpu - This function implements the 'per_cpu' command.
2595 static int kdb_per_cpu(int argc, const char **argv)
2598 int cpu, diag, nextarg = 1;
2599 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2601 if (argc < 1 || argc > 3)
2602 return KDB_ARGCOUNT;
2604 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2609 diag = kdbgetularg(argv[2], &bytesperword);
2614 bytesperword = KDB_WORD_SIZE;
2615 else if (bytesperword > KDB_WORD_SIZE)
2616 return KDB_BADWIDTH;
2617 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2619 diag = kdbgetularg(argv[3], &whichcpu);
2622 if (!cpu_online(whichcpu)) {
2623 kdb_printf("cpu %ld is not online\n", whichcpu);
2624 return KDB_BADCPUNUM;
2628 /* Most architectures use __per_cpu_offset[cpu], some use
2629 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2631 #ifdef __per_cpu_offset
2632 #define KDB_PCU(cpu) __per_cpu_offset(cpu)
2635 #define KDB_PCU(cpu) __per_cpu_offset[cpu]
2637 #define KDB_PCU(cpu) 0
2640 for_each_online_cpu(cpu) {
2641 if (KDB_FLAG(CMD_INTERRUPT))
2644 if (whichcpu != ~0UL && whichcpu != cpu)
2646 addr = symaddr + KDB_PCU(cpu);
2647 diag = kdb_getword(&val, addr, bytesperword);
2649 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2650 "read, diag=%d\n", cpu, addr, diag);
2653 kdb_printf("%5d ", cpu);
2654 kdb_md_line(fmtstr, addr,
2655 bytesperword == KDB_WORD_SIZE,
2656 1, bytesperword, 1, 1, 0);
2663 * display help for the use of cmd | grep pattern
2665 static int kdb_grep_help(int argc, const char **argv)
2667 kdb_printf("Usage of cmd args | grep pattern:\n");
2668 kdb_printf(" Any command's output may be filtered through an ");
2669 kdb_printf("emulated 'pipe'.\n");
2670 kdb_printf(" 'grep' is just a key word.\n");
2671 kdb_printf(" The pattern may include a very limited set of "
2672 "metacharacters:\n");
2673 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2674 kdb_printf(" And if there are spaces in the pattern, you may "
2676 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2677 " or \"^pat tern$\"\n");
2682 * kdb_register_flags - This function is used to register a kernel
2686 * func Function to execute the command
2687 * usage A simple usage string showing arguments
2688 * help A simple help string describing command
2689 * repeat Does the command auto repeat on enter?
2691 * zero for success, one if a duplicate command.
2693 #define kdb_command_extend 50 /* arbitrary */
2694 int kdb_register_flags(char *cmd,
2699 kdb_cmdflags_t flags)
2705 * Brute force method to determine duplicates
2707 for_each_kdbcmd(kp, i) {
2708 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2709 kdb_printf("Duplicate kdb command registered: "
2710 "%s, func %p help %s\n", cmd, func, help);
2716 * Insert command into first available location in table
2718 for_each_kdbcmd(kp, i) {
2719 if (kp->cmd_name == NULL)
2723 if (i >= kdb_max_commands) {
2724 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2725 kdb_command_extend) * sizeof(*new), GFP_KDB);
2727 kdb_printf("Could not allocate new kdb_command "
2732 memcpy(new, kdb_commands,
2733 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2734 kfree(kdb_commands);
2736 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2737 kdb_command_extend * sizeof(*new));
2739 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2740 kdb_max_commands += kdb_command_extend;
2744 kp->cmd_func = func;
2745 kp->cmd_usage = usage;
2746 kp->cmd_help = help;
2747 kp->cmd_minlen = minlen;
2748 kp->cmd_flags = flags;
2752 EXPORT_SYMBOL_GPL(kdb_register_flags);
2756 * kdb_register - Compatibility register function for commands that do
2757 * not need to specify a repeat state. Equivalent to
2758 * kdb_register_flags with flags set to 0.
2761 * func Function to execute the command
2762 * usage A simple usage string showing arguments
2763 * help A simple help string describing command
2765 * zero for success, one if a duplicate command.
2767 int kdb_register(char *cmd,
2773 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2775 EXPORT_SYMBOL_GPL(kdb_register);
2778 * kdb_unregister - This function is used to unregister a kernel
2779 * debugger command. It is generally called when a module which
2780 * implements kdb commands is unloaded.
2784 * zero for success, one command not registered.
2786 int kdb_unregister(char *cmd)
2794 for_each_kdbcmd(kp, i) {
2795 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2796 kp->cmd_name = NULL;
2801 /* Couldn't find it. */
2804 EXPORT_SYMBOL_GPL(kdb_unregister);
2806 /* Initialize the kdb command table. */
2807 static void __init kdb_inittab(void)
2812 for_each_kdbcmd(kp, i)
2813 kp->cmd_name = NULL;
2815 kdb_register_flags("md", kdb_md, "<vaddr>",
2816 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2817 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2818 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2819 "Display Raw Memory", 0,
2820 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2821 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2822 "Display Physical Memory", 0,
2823 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2824 kdb_register_flags("mds", kdb_md, "<vaddr>",
2825 "Display Memory Symbolically", 0,
2826 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2827 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2828 "Modify Memory Contents", 0,
2829 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2830 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2831 "Continue Execution", 1,
2832 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2833 kdb_register_flags("rd", kdb_rd, "",
2834 "Display Registers", 0,
2835 KDB_ENABLE_REG_READ);
2836 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2837 "Modify Registers", 0,
2838 KDB_ENABLE_REG_WRITE);
2839 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2840 "Display exception frame", 0,
2841 KDB_ENABLE_MEM_READ);
2842 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2843 "Stack traceback", 1,
2844 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2845 kdb_register_flags("btp", kdb_bt, "<pid>",
2846 "Display stack for process <pid>", 0,
2847 KDB_ENABLE_INSPECT);
2848 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2849 "Backtrace all processes matching state flag", 0,
2850 KDB_ENABLE_INSPECT);
2851 kdb_register_flags("btc", kdb_bt, "",
2852 "Backtrace current process on each cpu", 0,
2853 KDB_ENABLE_INSPECT);
2854 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2855 "Backtrace process given its struct task address", 0,
2856 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2857 kdb_register_flags("env", kdb_env, "",
2858 "Show environment variables", 0,
2859 KDB_ENABLE_ALWAYS_SAFE);
2860 kdb_register_flags("set", kdb_set, "",
2861 "Set environment variables", 0,
2862 KDB_ENABLE_ALWAYS_SAFE);
2863 kdb_register_flags("help", kdb_help, "",
2864 "Display Help Message", 1,
2865 KDB_ENABLE_ALWAYS_SAFE);
2866 kdb_register_flags("?", kdb_help, "",
2867 "Display Help Message", 0,
2868 KDB_ENABLE_ALWAYS_SAFE);
2869 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2870 "Switch to new cpu", 0,
2871 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2872 kdb_register_flags("kgdb", kdb_kgdb, "",
2873 "Enter kgdb mode", 0, 0);
2874 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2875 "Display active task list", 0,
2876 KDB_ENABLE_INSPECT);
2877 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2878 "Switch to another task", 0,
2879 KDB_ENABLE_INSPECT);
2880 kdb_register_flags("reboot", kdb_reboot, "",
2881 "Reboot the machine immediately", 0,
2883 #if defined(CONFIG_MODULES)
2884 kdb_register_flags("lsmod", kdb_lsmod, "",
2885 "List loaded kernel modules", 0,
2886 KDB_ENABLE_INSPECT);
2888 #if defined(CONFIG_MAGIC_SYSRQ)
2889 kdb_register_flags("sr", kdb_sr, "<key>",
2890 "Magic SysRq key", 0,
2891 KDB_ENABLE_ALWAYS_SAFE);
2893 #if defined(CONFIG_PRINTK)
2894 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2895 "Display syslog buffer", 0,
2896 KDB_ENABLE_ALWAYS_SAFE);
2898 if (arch_kgdb_ops.enable_nmi) {
2899 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2900 "Disable NMI entry to KDB", 0,
2901 KDB_ENABLE_ALWAYS_SAFE);
2903 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2904 "Define a set of commands, down to endefcmd", 0,
2905 KDB_ENABLE_ALWAYS_SAFE);
2906 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2907 "Send a signal to a process", 0,
2909 kdb_register_flags("summary", kdb_summary, "",
2910 "Summarize the system", 4,
2911 KDB_ENABLE_ALWAYS_SAFE);
2912 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2913 "Display per_cpu variables", 3,
2914 KDB_ENABLE_MEM_READ);
2915 kdb_register_flags("grephelp", kdb_grep_help, "",
2916 "Display help on | grep", 0,
2917 KDB_ENABLE_ALWAYS_SAFE);
2920 /* Execute any commands defined in kdb_cmds. */
2921 static void __init kdb_cmd_init(void)
2924 for (i = 0; kdb_cmds[i]; ++i) {
2925 diag = kdb_parse(kdb_cmds[i]);
2927 kdb_printf("kdb command %s failed, kdb diag %d\n",
2930 if (defcmd_in_progress) {
2931 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2932 kdb_parse("endefcmd");
2936 /* Initialize kdb_printf, breakpoint tables and kdb state */
2937 void __init kdb_init(int lvl)
2939 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2942 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2944 for (i = kdb_init_lvl; i < lvl; i++) {
2946 case KDB_NOT_INITIALIZED:
2947 kdb_inittab(); /* Initialize Command Table */
2948 kdb_initbptab(); /* Initialize Breakpoints */
2950 case KDB_INIT_EARLY:
2951 kdb_cmd_init(); /* Build kdb_cmds tables */