1 // SPDX-License-Identifier: GPL-2.0-only
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 struct vm_area_struct *next, unsigned long start,
82 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
92 unsigned long vm_flags = vma->vm_flags;
93 pgprot_t vm_page_prot;
95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 if (vma_wants_writenotify(vma, vm_page_prot)) {
97 vm_flags &= ~VM_SHARED;
98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
105 * Requires inode->i_mapping->i_mmap_rwsem
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 struct address_space *mapping)
110 if (vma_is_shared_maywrite(vma))
111 mapping_unmap_writable(mapping);
113 flush_dcache_mmap_lock(mapping);
114 vma_interval_tree_remove(vma, &mapping->i_mmap);
115 flush_dcache_mmap_unlock(mapping);
119 * Unlink a file-based vm structure from its interval tree, to hide
120 * vma from rmap and vmtruncate before freeing its page tables.
122 void unlink_file_vma(struct vm_area_struct *vma)
124 struct file *file = vma->vm_file;
127 struct address_space *mapping = file->f_mapping;
128 i_mmap_lock_write(mapping);
129 __remove_shared_vm_struct(vma, mapping);
130 i_mmap_unlock_write(mapping);
135 * Close a vm structure and free it.
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
140 if (vma->vm_ops && vma->vm_ops->close)
141 vma->vm_ops->close(vma);
144 mpol_put(vma_policy(vma));
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
154 return mas_prev(&vmi->mas, min);
158 * check_brk_limits() - Use platform specific check of range & verify mlock
160 * @addr: The address to check
161 * @len: The size of increase.
163 * Return: 0 on success.
165 static int check_brk_limits(unsigned long addr, unsigned long len)
167 unsigned long mapped_addr;
169 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170 if (IS_ERR_VALUE(mapped_addr))
173 return mlock_future_ok(current->mm, current->mm->def_flags, len)
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177 unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
180 unsigned long newbrk, oldbrk, origbrk;
181 struct mm_struct *mm = current->mm;
182 struct vm_area_struct *brkvma, *next = NULL;
183 unsigned long min_brk;
184 bool populate = false;
186 struct vma_iterator vmi;
188 if (mmap_write_lock_killable(mm))
193 #ifdef CONFIG_COMPAT_BRK
195 * CONFIG_COMPAT_BRK can still be overridden by setting
196 * randomize_va_space to 2, which will still cause mm->start_brk
197 * to be arbitrarily shifted
199 if (current->brk_randomized)
200 min_brk = mm->start_brk;
202 min_brk = mm->end_data;
204 min_brk = mm->start_brk;
210 * Check against rlimit here. If this check is done later after the test
211 * of oldbrk with newbrk then it can escape the test and let the data
212 * segment grow beyond its set limit the in case where the limit is
213 * not page aligned -Ram Gupta
215 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 mm->end_data, mm->start_data))
219 newbrk = PAGE_ALIGN(brk);
220 oldbrk = PAGE_ALIGN(mm->brk);
221 if (oldbrk == newbrk) {
226 /* Always allow shrinking brk. */
227 if (brk <= mm->brk) {
228 /* Search one past newbrk */
229 vma_iter_init(&vmi, mm, newbrk);
230 brkvma = vma_find(&vmi, oldbrk);
231 if (!brkvma || brkvma->vm_start >= oldbrk)
232 goto out; /* mapping intersects with an existing non-brk vma. */
234 * mm->brk must be protected by write mmap_lock.
235 * do_vma_munmap() will drop the lock on success, so update it
236 * before calling do_vma_munmap().
239 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
242 goto success_unlocked;
245 if (check_brk_limits(oldbrk, newbrk - oldbrk))
249 * Only check if the next VMA is within the stack_guard_gap of the
252 vma_iter_init(&vmi, mm, oldbrk);
253 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
257 brkvma = vma_prev_limit(&vmi, mm->start_brk);
258 /* Ok, looks good - let it rip. */
259 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
263 if (mm->def_flags & VM_LOCKED)
267 mmap_write_unlock(mm);
269 userfaultfd_unmap_complete(mm, &uf);
271 mm_populate(oldbrk, newbrk - oldbrk);
276 mmap_write_unlock(mm);
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
285 struct vm_area_struct *vma;
286 VMA_ITERATOR(vmi, mm, 0);
288 mt_validate(&mm->mm_mt);
289 for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291 struct anon_vma *anon_vma = vma->anon_vma;
292 struct anon_vma_chain *avc;
294 unsigned long vmi_start, vmi_end;
297 vmi_start = vma_iter_addr(&vmi);
298 vmi_end = vma_iter_end(&vmi);
299 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
302 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
306 pr_emerg("issue in %s\n", current->comm);
309 pr_emerg("tree range: %px start %lx end %lx\n", vma,
310 vmi_start, vmi_end - 1);
311 vma_iter_dump_tree(&vmi);
314 #ifdef CONFIG_DEBUG_VM_RB
316 anon_vma_lock_read(anon_vma);
317 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318 anon_vma_interval_tree_verify(avc);
319 anon_vma_unlock_read(anon_vma);
324 if (i != mm->map_count) {
325 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
328 VM_BUG_ON_MM(bug, mm);
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
336 * vma has some anon_vma assigned, and is already inserted on that
337 * anon_vma's interval trees.
339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340 * vma must be removed from the anon_vma's interval trees using
341 * anon_vma_interval_tree_pre_update_vma().
343 * After the update, the vma will be reinserted using
344 * anon_vma_interval_tree_post_update_vma().
346 * The entire update must be protected by exclusive mmap_lock and by
347 * the root anon_vma's mutex.
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
352 struct anon_vma_chain *avc;
354 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
361 struct anon_vma_chain *avc;
363 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368 unsigned long addr, unsigned long end)
370 VMA_ITERATOR(vmi, mm, addr);
371 struct vm_area_struct *vma;
372 unsigned long nr_pages = 0;
374 for_each_vma_range(vmi, vma, end) {
375 unsigned long vm_start = max(addr, vma->vm_start);
376 unsigned long vm_end = min(end, vma->vm_end);
378 nr_pages += PHYS_PFN(vm_end - vm_start);
384 static void __vma_link_file(struct vm_area_struct *vma,
385 struct address_space *mapping)
387 if (vma_is_shared_maywrite(vma))
388 mapping_allow_writable(mapping);
390 flush_dcache_mmap_lock(mapping);
391 vma_interval_tree_insert(vma, &mapping->i_mmap);
392 flush_dcache_mmap_unlock(mapping);
395 static void vma_link_file(struct vm_area_struct *vma)
397 struct file *file = vma->vm_file;
398 struct address_space *mapping;
401 mapping = file->f_mapping;
402 i_mmap_lock_write(mapping);
403 __vma_link_file(vma, mapping);
404 i_mmap_unlock_write(mapping);
408 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
410 VMA_ITERATOR(vmi, mm, 0);
412 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
413 if (vma_iter_prealloc(&vmi, vma))
416 vma_start_write(vma);
417 vma_iter_store(&vmi, vma);
425 * init_multi_vma_prep() - Initializer for struct vma_prepare
426 * @vp: The vma_prepare struct
427 * @vma: The vma that will be altered once locked
428 * @next: The next vma if it is to be adjusted
429 * @remove: The first vma to be removed
430 * @remove2: The second vma to be removed
432 static inline void init_multi_vma_prep(struct vma_prepare *vp,
433 struct vm_area_struct *vma, struct vm_area_struct *next,
434 struct vm_area_struct *remove, struct vm_area_struct *remove2)
436 memset(vp, 0, sizeof(struct vma_prepare));
438 vp->anon_vma = vma->anon_vma;
440 vp->remove2 = remove2;
442 if (!vp->anon_vma && next)
443 vp->anon_vma = next->anon_vma;
445 vp->file = vma->vm_file;
447 vp->mapping = vma->vm_file->f_mapping;
452 * init_vma_prep() - Initializer wrapper for vma_prepare struct
453 * @vp: The vma_prepare struct
454 * @vma: The vma that will be altered once locked
456 static inline void init_vma_prep(struct vma_prepare *vp,
457 struct vm_area_struct *vma)
459 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
464 * vma_prepare() - Helper function for handling locking VMAs prior to altering
465 * @vp: The initialized vma_prepare struct
467 static inline void vma_prepare(struct vma_prepare *vp)
470 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
473 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
474 vp->adj_next->vm_end);
476 i_mmap_lock_write(vp->mapping);
477 if (vp->insert && vp->insert->vm_file) {
479 * Put into interval tree now, so instantiated pages
480 * are visible to arm/parisc __flush_dcache_page
481 * throughout; but we cannot insert into address
482 * space until vma start or end is updated.
484 __vma_link_file(vp->insert,
485 vp->insert->vm_file->f_mapping);
490 anon_vma_lock_write(vp->anon_vma);
491 anon_vma_interval_tree_pre_update_vma(vp->vma);
493 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
497 flush_dcache_mmap_lock(vp->mapping);
498 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
500 vma_interval_tree_remove(vp->adj_next,
501 &vp->mapping->i_mmap);
507 * vma_complete- Helper function for handling the unlocking after altering VMAs,
508 * or for inserting a VMA.
510 * @vp: The vma_prepare struct
511 * @vmi: The vma iterator
514 static inline void vma_complete(struct vma_prepare *vp,
515 struct vma_iterator *vmi, struct mm_struct *mm)
519 vma_interval_tree_insert(vp->adj_next,
520 &vp->mapping->i_mmap);
521 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
522 flush_dcache_mmap_unlock(vp->mapping);
525 if (vp->remove && vp->file) {
526 __remove_shared_vm_struct(vp->remove, vp->mapping);
528 __remove_shared_vm_struct(vp->remove2, vp->mapping);
529 } else if (vp->insert) {
531 * split_vma has split insert from vma, and needs
532 * us to insert it before dropping the locks
533 * (it may either follow vma or precede it).
535 vma_iter_store(vmi, vp->insert);
540 anon_vma_interval_tree_post_update_vma(vp->vma);
542 anon_vma_interval_tree_post_update_vma(vp->adj_next);
543 anon_vma_unlock_write(vp->anon_vma);
547 i_mmap_unlock_write(vp->mapping);
548 uprobe_mmap(vp->vma);
551 uprobe_mmap(vp->adj_next);
556 vma_mark_detached(vp->remove, true);
558 uprobe_munmap(vp->remove, vp->remove->vm_start,
562 if (vp->remove->anon_vma)
563 anon_vma_merge(vp->vma, vp->remove);
565 mpol_put(vma_policy(vp->remove));
567 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
568 vm_area_free(vp->remove);
571 * In mprotect's case 6 (see comments on vma_merge),
572 * we are removing both mid and next vmas
575 vp->remove = vp->remove2;
580 if (vp->insert && vp->file)
581 uprobe_mmap(vp->insert);
586 * dup_anon_vma() - Helper function to duplicate anon_vma
587 * @dst: The destination VMA
588 * @src: The source VMA
589 * @dup: Pointer to the destination VMA when successful.
591 * Returns: 0 on success.
593 static inline int dup_anon_vma(struct vm_area_struct *dst,
594 struct vm_area_struct *src, struct vm_area_struct **dup)
597 * Easily overlooked: when mprotect shifts the boundary, make sure the
598 * expanding vma has anon_vma set if the shrinking vma had, to cover any
599 * anon pages imported.
601 if (src->anon_vma && !dst->anon_vma) {
604 vma_assert_write_locked(dst);
605 dst->anon_vma = src->anon_vma;
606 ret = anon_vma_clone(dst, src);
617 * vma_expand - Expand an existing VMA
619 * @vmi: The vma iterator
620 * @vma: The vma to expand
621 * @start: The start of the vma
622 * @end: The exclusive end of the vma
623 * @pgoff: The page offset of vma
624 * @next: The current of next vma.
626 * Expand @vma to @start and @end. Can expand off the start and end. Will
627 * expand over @next if it's different from @vma and @end == @next->vm_end.
628 * Checking if the @vma can expand and merge with @next needs to be handled by
631 * Returns: 0 on success
633 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
634 unsigned long start, unsigned long end, pgoff_t pgoff,
635 struct vm_area_struct *next)
637 struct vm_area_struct *anon_dup = NULL;
638 bool remove_next = false;
639 struct vma_prepare vp;
641 vma_start_write(vma);
642 if (next && (vma != next) && (end == next->vm_end)) {
646 vma_start_write(next);
647 ret = dup_anon_vma(vma, next, &anon_dup);
652 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
653 /* Not merging but overwriting any part of next is not handled. */
654 VM_WARN_ON(next && !vp.remove &&
655 next != vma && end > next->vm_start);
656 /* Only handles expanding */
657 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
659 /* Note: vma iterator must be pointing to 'start' */
660 vma_iter_config(vmi, start, end);
661 if (vma_iter_prealloc(vmi, vma))
665 vma_adjust_trans_huge(vma, start, end, 0);
666 vma_set_range(vma, start, end, pgoff);
667 vma_iter_store(vmi, vma);
669 vma_complete(&vp, vmi, vma->vm_mm);
674 unlink_anon_vmas(anon_dup);
679 * vma_shrink() - Reduce an existing VMAs memory area
680 * @vmi: The vma iterator
681 * @vma: The VMA to modify
682 * @start: The new start
685 * Returns: 0 on success, -ENOMEM otherwise
687 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
688 unsigned long start, unsigned long end, pgoff_t pgoff)
690 struct vma_prepare vp;
692 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
694 if (vma->vm_start < start)
695 vma_iter_config(vmi, vma->vm_start, start);
697 vma_iter_config(vmi, end, vma->vm_end);
699 if (vma_iter_prealloc(vmi, NULL))
702 vma_start_write(vma);
704 init_vma_prep(&vp, vma);
706 vma_adjust_trans_huge(vma, start, end, 0);
709 vma_set_range(vma, start, end, pgoff);
710 vma_complete(&vp, vmi, vma->vm_mm);
715 * If the vma has a ->close operation then the driver probably needs to release
716 * per-vma resources, so we don't attempt to merge those if the caller indicates
717 * the current vma may be removed as part of the merge.
719 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
720 struct file *file, unsigned long vm_flags,
721 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
722 struct anon_vma_name *anon_name, bool may_remove_vma)
725 * VM_SOFTDIRTY should not prevent from VMA merging, if we
726 * match the flags but dirty bit -- the caller should mark
727 * merged VMA as dirty. If dirty bit won't be excluded from
728 * comparison, we increase pressure on the memory system forcing
729 * the kernel to generate new VMAs when old one could be
732 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
734 if (vma->vm_file != file)
736 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
738 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
740 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
745 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
746 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
749 * The list_is_singular() test is to avoid merging VMA cloned from
750 * parents. This can improve scalability caused by anon_vma lock.
752 if ((!anon_vma1 || !anon_vma2) && (!vma ||
753 list_is_singular(&vma->anon_vma_chain)))
755 return anon_vma1 == anon_vma2;
759 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
760 * in front of (at a lower virtual address and file offset than) the vma.
762 * We cannot merge two vmas if they have differently assigned (non-NULL)
763 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
765 * We don't check here for the merged mmap wrapping around the end of pagecache
766 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
767 * wrap, nor mmaps which cover the final page at index -1UL.
769 * We assume the vma may be removed as part of the merge.
772 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
773 struct anon_vma *anon_vma, struct file *file,
774 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
775 struct anon_vma_name *anon_name)
777 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
778 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
779 if (vma->vm_pgoff == vm_pgoff)
786 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
787 * beyond (at a higher virtual address and file offset than) the vma.
789 * We cannot merge two vmas if they have differently assigned (non-NULL)
790 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
792 * We assume that vma is not removed as part of the merge.
795 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
796 struct anon_vma *anon_vma, struct file *file,
797 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
798 struct anon_vma_name *anon_name)
800 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
801 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
803 vm_pglen = vma_pages(vma);
804 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
811 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
812 * figure out whether that can be merged with its predecessor or its
813 * successor. Or both (it neatly fills a hole).
815 * In most cases - when called for mmap, brk or mremap - [addr,end) is
816 * certain not to be mapped by the time vma_merge is called; but when
817 * called for mprotect, it is certain to be already mapped (either at
818 * an offset within prev, or at the start of next), and the flags of
819 * this area are about to be changed to vm_flags - and the no-change
820 * case has already been eliminated.
822 * The following mprotect cases have to be considered, where **** is
823 * the area passed down from mprotect_fixup, never extending beyond one
824 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
825 * at the same address as **** and is of the same or larger span, and
826 * NNNN the next vma after ****:
829 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC
830 * cannot merge might become might become
831 * PPNNNNNNNNNN PPPPPPPPPPCC
832 * mmap, brk or case 4 below case 5 below
835 * PPPP NNNN PPPPCCCCNNNN
836 * might become might become
837 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
838 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or
839 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8
841 * It is important for case 8 that the vma CCCC overlapping the
842 * region **** is never going to extended over NNNN. Instead NNNN must
843 * be extended in region **** and CCCC must be removed. This way in
844 * all cases where vma_merge succeeds, the moment vma_merge drops the
845 * rmap_locks, the properties of the merged vma will be already
846 * correct for the whole merged range. Some of those properties like
847 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
848 * be correct for the whole merged range immediately after the
849 * rmap_locks are released. Otherwise if NNNN would be removed and
850 * CCCC would be extended over the NNNN range, remove_migration_ptes
851 * or other rmap walkers (if working on addresses beyond the "end"
852 * parameter) may establish ptes with the wrong permissions of CCCC
853 * instead of the right permissions of NNNN.
856 * PPPP is represented by *prev
857 * CCCC is represented by *curr or not represented at all (NULL)
858 * NNNN is represented by *next or not represented at all (NULL)
859 * **** is not represented - it will be merged and the vma containing the
860 * area is returned, or the function will return NULL
862 static struct vm_area_struct
863 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
864 struct vm_area_struct *src, unsigned long addr, unsigned long end,
865 unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
866 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
867 struct anon_vma_name *anon_name)
869 struct mm_struct *mm = src->vm_mm;
870 struct anon_vma *anon_vma = src->anon_vma;
871 struct file *file = src->vm_file;
872 struct vm_area_struct *curr, *next, *res;
873 struct vm_area_struct *vma, *adjust, *remove, *remove2;
874 struct vm_area_struct *anon_dup = NULL;
875 struct vma_prepare vp;
878 bool merge_prev = false;
879 bool merge_next = false;
880 bool vma_expanded = false;
881 unsigned long vma_start = addr;
882 unsigned long vma_end = end;
883 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
887 * We later require that vma->vm_flags == vm_flags,
888 * so this tests vma->vm_flags & VM_SPECIAL, too.
890 if (vm_flags & VM_SPECIAL)
893 /* Does the input range span an existing VMA? (cases 5 - 8) */
894 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
896 if (!curr || /* cases 1 - 4 */
897 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */
898 next = vma_lookup(mm, end);
900 next = NULL; /* case 5 */
903 vma_start = prev->vm_start;
904 vma_pgoff = prev->vm_pgoff;
906 /* Can we merge the predecessor? */
907 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
908 && can_vma_merge_after(prev, vm_flags, anon_vma, file,
909 pgoff, vm_userfaultfd_ctx, anon_name)) {
915 /* Can we merge the successor? */
916 if (next && mpol_equal(policy, vma_policy(next)) &&
917 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
918 vm_userfaultfd_ctx, anon_name)) {
922 /* Verify some invariant that must be enforced by the caller. */
923 VM_WARN_ON(prev && addr <= prev->vm_start);
924 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
925 VM_WARN_ON(addr >= end);
927 if (!merge_prev && !merge_next)
928 return NULL; /* Not mergeable. */
931 vma_start_write(prev);
934 remove = remove2 = adjust = NULL;
936 /* Can we merge both the predecessor and the successor? */
937 if (merge_prev && merge_next &&
938 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
939 vma_start_write(next);
940 remove = next; /* case 1 */
941 vma_end = next->vm_end;
942 err = dup_anon_vma(prev, next, &anon_dup);
943 if (curr) { /* case 6 */
944 vma_start_write(curr);
948 * Note that the dup_anon_vma below cannot overwrite err
949 * since the first caller would do nothing unless next
953 err = dup_anon_vma(prev, curr, &anon_dup);
955 } else if (merge_prev) { /* case 2 */
957 vma_start_write(curr);
958 if (end == curr->vm_end) { /* case 7 */
960 * can_vma_merge_after() assumed we would not be
961 * removing prev vma, so it skipped the check
962 * for vm_ops->close, but we are removing curr
964 if (curr->vm_ops && curr->vm_ops->close)
967 } else { /* case 5 */
969 adj_start = (end - curr->vm_start);
972 err = dup_anon_vma(prev, curr, &anon_dup);
974 } else { /* merge_next */
975 vma_start_write(next);
977 if (prev && addr < prev->vm_end) { /* case 4 */
978 vma_start_write(prev);
981 adj_start = -(prev->vm_end - addr);
982 err = dup_anon_vma(next, prev, &anon_dup);
985 * Note that cases 3 and 8 are the ONLY ones where prev
986 * is permitted to be (but is not necessarily) NULL.
988 vma = next; /* case 3 */
990 vma_end = next->vm_end;
991 vma_pgoff = next->vm_pgoff - pglen;
992 if (curr) { /* case 8 */
993 vma_pgoff = curr->vm_pgoff;
994 vma_start_write(curr);
996 err = dup_anon_vma(next, curr, &anon_dup);
1001 /* Error in anon_vma clone. */
1005 if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1006 vma_expanded = true;
1009 vma_iter_config(vmi, vma_start, vma_end);
1011 vma_iter_config(vmi, adjust->vm_start + adj_start,
1015 if (vma_iter_prealloc(vmi, vma))
1018 init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1019 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1020 vp.anon_vma != adjust->anon_vma);
1023 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1024 vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1027 vma_iter_store(vmi, vma);
1030 adjust->vm_start += adj_start;
1031 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1032 if (adj_start < 0) {
1033 WARN_ON(vma_expanded);
1034 vma_iter_store(vmi, next);
1038 vma_complete(&vp, vmi, mm);
1039 khugepaged_enter_vma(res, vm_flags);
1044 unlink_anon_vmas(anon_dup);
1047 vma_iter_set(vmi, addr);
1053 * Rough compatibility check to quickly see if it's even worth looking
1054 * at sharing an anon_vma.
1056 * They need to have the same vm_file, and the flags can only differ
1057 * in things that mprotect may change.
1059 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1060 * we can merge the two vma's. For example, we refuse to merge a vma if
1061 * there is a vm_ops->close() function, because that indicates that the
1062 * driver is doing some kind of reference counting. But that doesn't
1063 * really matter for the anon_vma sharing case.
1065 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1067 return a->vm_end == b->vm_start &&
1068 mpol_equal(vma_policy(a), vma_policy(b)) &&
1069 a->vm_file == b->vm_file &&
1070 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1071 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1075 * Do some basic sanity checking to see if we can re-use the anon_vma
1076 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1077 * the same as 'old', the other will be the new one that is trying
1078 * to share the anon_vma.
1080 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1081 * the anon_vma of 'old' is concurrently in the process of being set up
1082 * by another page fault trying to merge _that_. But that's ok: if it
1083 * is being set up, that automatically means that it will be a singleton
1084 * acceptable for merging, so we can do all of this optimistically. But
1085 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1087 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1088 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1089 * is to return an anon_vma that is "complex" due to having gone through
1092 * We also make sure that the two vma's are compatible (adjacent,
1093 * and with the same memory policies). That's all stable, even with just
1094 * a read lock on the mmap_lock.
1096 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1098 if (anon_vma_compatible(a, b)) {
1099 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1101 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1108 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1109 * neighbouring vmas for a suitable anon_vma, before it goes off
1110 * to allocate a new anon_vma. It checks because a repetitive
1111 * sequence of mprotects and faults may otherwise lead to distinct
1112 * anon_vmas being allocated, preventing vma merge in subsequent
1115 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1117 struct anon_vma *anon_vma = NULL;
1118 struct vm_area_struct *prev, *next;
1119 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1121 /* Try next first. */
1122 next = vma_iter_load(&vmi);
1124 anon_vma = reusable_anon_vma(next, vma, next);
1129 prev = vma_prev(&vmi);
1130 VM_BUG_ON_VMA(prev != vma, vma);
1131 prev = vma_prev(&vmi);
1132 /* Try prev next. */
1134 anon_vma = reusable_anon_vma(prev, prev, vma);
1137 * We might reach here with anon_vma == NULL if we can't find
1138 * any reusable anon_vma.
1139 * There's no absolute need to look only at touching neighbours:
1140 * we could search further afield for "compatible" anon_vmas.
1141 * But it would probably just be a waste of time searching,
1142 * or lead to too many vmas hanging off the same anon_vma.
1143 * We're trying to allow mprotect remerging later on,
1144 * not trying to minimize memory used for anon_vmas.
1150 * If a hint addr is less than mmap_min_addr change hint to be as
1151 * low as possible but still greater than mmap_min_addr
1153 static inline unsigned long round_hint_to_min(unsigned long hint)
1156 if (((void *)hint != NULL) &&
1157 (hint < mmap_min_addr))
1158 return PAGE_ALIGN(mmap_min_addr);
1162 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1163 unsigned long bytes)
1165 unsigned long locked_pages, limit_pages;
1167 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1170 locked_pages = bytes >> PAGE_SHIFT;
1171 locked_pages += mm->locked_vm;
1173 limit_pages = rlimit(RLIMIT_MEMLOCK);
1174 limit_pages >>= PAGE_SHIFT;
1176 return locked_pages <= limit_pages;
1179 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1181 if (S_ISREG(inode->i_mode))
1182 return MAX_LFS_FILESIZE;
1184 if (S_ISBLK(inode->i_mode))
1185 return MAX_LFS_FILESIZE;
1187 if (S_ISSOCK(inode->i_mode))
1188 return MAX_LFS_FILESIZE;
1190 /* Special "we do even unsigned file positions" case */
1191 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1194 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1198 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1199 unsigned long pgoff, unsigned long len)
1201 u64 maxsize = file_mmap_size_max(file, inode);
1203 if (maxsize && len > maxsize)
1206 if (pgoff > maxsize >> PAGE_SHIFT)
1212 * The caller must write-lock current->mm->mmap_lock.
1214 unsigned long do_mmap(struct file *file, unsigned long addr,
1215 unsigned long len, unsigned long prot,
1216 unsigned long flags, vm_flags_t vm_flags,
1217 unsigned long pgoff, unsigned long *populate,
1218 struct list_head *uf)
1220 struct mm_struct *mm = current->mm;
1229 * Does the application expect PROT_READ to imply PROT_EXEC?
1231 * (the exception is when the underlying filesystem is noexec
1232 * mounted, in which case we don't add PROT_EXEC.)
1234 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1235 if (!(file && path_noexec(&file->f_path)))
1238 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1239 if (flags & MAP_FIXED_NOREPLACE)
1242 if (!(flags & MAP_FIXED))
1243 addr = round_hint_to_min(addr);
1245 /* Careful about overflows.. */
1246 len = PAGE_ALIGN(len);
1250 /* offset overflow? */
1251 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1254 /* Too many mappings? */
1255 if (mm->map_count > sysctl_max_map_count)
1258 if (prot == PROT_EXEC) {
1259 pkey = execute_only_pkey(mm);
1264 /* Do simple checking here so the lower-level routines won't have
1265 * to. we assume access permissions have been handled by the open
1266 * of the memory object, so we don't do any here.
1268 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1269 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1271 /* Obtain the address to map to. we verify (or select) it and ensure
1272 * that it represents a valid section of the address space.
1274 addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
1275 if (IS_ERR_VALUE(addr))
1278 if (flags & MAP_FIXED_NOREPLACE) {
1279 if (find_vma_intersection(mm, addr, addr + len))
1283 if (flags & MAP_LOCKED)
1284 if (!can_do_mlock())
1287 if (!mlock_future_ok(mm, vm_flags, len))
1291 struct inode *inode = file_inode(file);
1292 unsigned long flags_mask;
1294 if (!file_mmap_ok(file, inode, pgoff, len))
1297 flags_mask = LEGACY_MAP_MASK;
1298 if (file->f_op->fop_flags & FOP_MMAP_SYNC)
1299 flags_mask |= MAP_SYNC;
1301 switch (flags & MAP_TYPE) {
1304 * Force use of MAP_SHARED_VALIDATE with non-legacy
1305 * flags. E.g. MAP_SYNC is dangerous to use with
1306 * MAP_SHARED as you don't know which consistency model
1307 * you will get. We silently ignore unsupported flags
1308 * with MAP_SHARED to preserve backward compatibility.
1310 flags &= LEGACY_MAP_MASK;
1312 case MAP_SHARED_VALIDATE:
1313 if (flags & ~flags_mask)
1315 if (prot & PROT_WRITE) {
1316 if (!(file->f_mode & FMODE_WRITE))
1318 if (IS_SWAPFILE(file->f_mapping->host))
1323 * Make sure we don't allow writing to an append-only
1326 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1329 vm_flags |= VM_SHARED | VM_MAYSHARE;
1330 if (!(file->f_mode & FMODE_WRITE))
1331 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1334 if (!(file->f_mode & FMODE_READ))
1336 if (path_noexec(&file->f_path)) {
1337 if (vm_flags & VM_EXEC)
1339 vm_flags &= ~VM_MAYEXEC;
1342 if (!file->f_op->mmap)
1344 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1352 switch (flags & MAP_TYPE) {
1354 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1360 vm_flags |= VM_SHARED | VM_MAYSHARE;
1364 * Set pgoff according to addr for anon_vma.
1366 pgoff = addr >> PAGE_SHIFT;
1374 * Set 'VM_NORESERVE' if we should not account for the
1375 * memory use of this mapping.
1377 if (flags & MAP_NORESERVE) {
1378 /* We honor MAP_NORESERVE if allowed to overcommit */
1379 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1380 vm_flags |= VM_NORESERVE;
1382 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1383 if (file && is_file_hugepages(file))
1384 vm_flags |= VM_NORESERVE;
1387 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1388 if (!IS_ERR_VALUE(addr) &&
1389 ((vm_flags & VM_LOCKED) ||
1390 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1395 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1396 unsigned long prot, unsigned long flags,
1397 unsigned long fd, unsigned long pgoff)
1399 struct file *file = NULL;
1400 unsigned long retval;
1402 if (!(flags & MAP_ANONYMOUS)) {
1403 audit_mmap_fd(fd, flags);
1407 if (is_file_hugepages(file)) {
1408 len = ALIGN(len, huge_page_size(hstate_file(file)));
1409 } else if (unlikely(flags & MAP_HUGETLB)) {
1413 } else if (flags & MAP_HUGETLB) {
1416 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1420 len = ALIGN(len, huge_page_size(hs));
1422 * VM_NORESERVE is used because the reservations will be
1423 * taken when vm_ops->mmap() is called
1425 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1427 HUGETLB_ANONHUGE_INODE,
1428 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1430 return PTR_ERR(file);
1433 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1440 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1441 unsigned long, prot, unsigned long, flags,
1442 unsigned long, fd, unsigned long, pgoff)
1444 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1447 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1448 struct mmap_arg_struct {
1452 unsigned long flags;
1454 unsigned long offset;
1457 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1459 struct mmap_arg_struct a;
1461 if (copy_from_user(&a, arg, sizeof(a)))
1463 if (offset_in_page(a.offset))
1466 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1467 a.offset >> PAGE_SHIFT);
1469 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1471 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1473 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1476 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1478 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1479 (VM_WRITE | VM_SHARED);
1482 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1484 /* No managed pages to writeback. */
1485 if (vma->vm_flags & VM_PFNMAP)
1488 return vma->vm_file && vma->vm_file->f_mapping &&
1489 mapping_can_writeback(vma->vm_file->f_mapping);
1493 * Does this VMA require the underlying folios to have their dirty state
1496 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1498 /* Only shared, writable VMAs require dirty tracking. */
1499 if (!vma_is_shared_writable(vma))
1502 /* Does the filesystem need to be notified? */
1503 if (vm_ops_needs_writenotify(vma->vm_ops))
1507 * Even if the filesystem doesn't indicate a need for writenotify, if it
1508 * can writeback, dirty tracking is still required.
1510 return vma_fs_can_writeback(vma);
1514 * Some shared mappings will want the pages marked read-only
1515 * to track write events. If so, we'll downgrade vm_page_prot
1516 * to the private version (using protection_map[] without the
1519 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1521 /* If it was private or non-writable, the write bit is already clear */
1522 if (!vma_is_shared_writable(vma))
1525 /* The backer wishes to know when pages are first written to? */
1526 if (vm_ops_needs_writenotify(vma->vm_ops))
1529 /* The open routine did something to the protections that pgprot_modify
1530 * won't preserve? */
1531 if (pgprot_val(vm_page_prot) !=
1532 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1536 * Do we need to track softdirty? hugetlb does not support softdirty
1539 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1542 /* Do we need write faults for uffd-wp tracking? */
1543 if (userfaultfd_wp(vma))
1546 /* Can the mapping track the dirty pages? */
1547 return vma_fs_can_writeback(vma);
1551 * We account for memory if it's a private writeable mapping,
1552 * not hugepages and VM_NORESERVE wasn't set.
1554 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
1557 * hugetlb has its own accounting separate from the core VM
1558 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1560 if (file && is_file_hugepages(file))
1563 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1567 * unmapped_area() - Find an area between the low_limit and the high_limit with
1568 * the correct alignment and offset, all from @info. Note: current->mm is used
1571 * @info: The unmapped area information including the range [low_limit -
1572 * high_limit), the alignment offset and mask.
1574 * Return: A memory address or -ENOMEM.
1576 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1578 unsigned long length, gap;
1579 unsigned long low_limit, high_limit;
1580 struct vm_area_struct *tmp;
1581 VMA_ITERATOR(vmi, current->mm, 0);
1583 /* Adjust search length to account for worst case alignment overhead */
1584 length = info->length + info->align_mask + info->start_gap;
1585 if (length < info->length)
1588 low_limit = info->low_limit;
1589 if (low_limit < mmap_min_addr)
1590 low_limit = mmap_min_addr;
1591 high_limit = info->high_limit;
1593 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
1597 * Adjust for the gap first so it doesn't interfere with the
1598 * later alignment. The first step is the minimum needed to
1599 * fulill the start gap, the next steps is the minimum to align
1600 * that. It is the minimum needed to fulill both.
1602 gap = vma_iter_addr(&vmi) + info->start_gap;
1603 gap += (info->align_offset - gap) & info->align_mask;
1604 tmp = vma_next(&vmi);
1605 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1606 if (vm_start_gap(tmp) < gap + length - 1) {
1607 low_limit = tmp->vm_end;
1608 vma_iter_reset(&vmi);
1612 tmp = vma_prev(&vmi);
1613 if (tmp && vm_end_gap(tmp) > gap) {
1614 low_limit = vm_end_gap(tmp);
1615 vma_iter_reset(&vmi);
1624 * unmapped_area_topdown() - Find an area between the low_limit and the
1625 * high_limit with the correct alignment and offset at the highest available
1626 * address, all from @info. Note: current->mm is used for the search.
1628 * @info: The unmapped area information including the range [low_limit -
1629 * high_limit), the alignment offset and mask.
1631 * Return: A memory address or -ENOMEM.
1633 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1635 unsigned long length, gap, gap_end;
1636 unsigned long low_limit, high_limit;
1637 struct vm_area_struct *tmp;
1638 VMA_ITERATOR(vmi, current->mm, 0);
1640 /* Adjust search length to account for worst case alignment overhead */
1641 length = info->length + info->align_mask + info->start_gap;
1642 if (length < info->length)
1645 low_limit = info->low_limit;
1646 if (low_limit < mmap_min_addr)
1647 low_limit = mmap_min_addr;
1648 high_limit = info->high_limit;
1650 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
1653 gap = vma_iter_end(&vmi) - info->length;
1654 gap -= (gap - info->align_offset) & info->align_mask;
1655 gap_end = vma_iter_end(&vmi);
1656 tmp = vma_next(&vmi);
1657 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1658 if (vm_start_gap(tmp) < gap_end) {
1659 high_limit = vm_start_gap(tmp);
1660 vma_iter_reset(&vmi);
1664 tmp = vma_prev(&vmi);
1665 if (tmp && vm_end_gap(tmp) > gap) {
1666 high_limit = tmp->vm_start;
1667 vma_iter_reset(&vmi);
1676 * Search for an unmapped address range.
1678 * We are looking for a range that:
1679 * - does not intersect with any VMA;
1680 * - is contained within the [low_limit, high_limit) interval;
1681 * - is at least the desired size.
1682 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1684 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1688 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1689 addr = unmapped_area_topdown(info);
1691 addr = unmapped_area(info);
1693 trace_vm_unmapped_area(addr, info);
1697 /* Get an address range which is currently unmapped.
1698 * For shmat() with addr=0.
1700 * Ugly calling convention alert:
1701 * Return value with the low bits set means error value,
1703 * if (ret & ~PAGE_MASK)
1706 * This function "knows" that -ENOMEM has the bits set.
1709 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1710 unsigned long len, unsigned long pgoff,
1711 unsigned long flags)
1713 struct mm_struct *mm = current->mm;
1714 struct vm_area_struct *vma, *prev;
1715 struct vm_unmapped_area_info info = {};
1716 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1718 if (len > mmap_end - mmap_min_addr)
1721 if (flags & MAP_FIXED)
1725 addr = PAGE_ALIGN(addr);
1726 vma = find_vma_prev(mm, addr, &prev);
1727 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1728 (!vma || addr + len <= vm_start_gap(vma)) &&
1729 (!prev || addr >= vm_end_gap(prev)))
1734 info.low_limit = mm->mmap_base;
1735 info.high_limit = mmap_end;
1736 return vm_unmapped_area(&info);
1739 #ifndef HAVE_ARCH_UNMAPPED_AREA
1741 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1742 unsigned long len, unsigned long pgoff,
1743 unsigned long flags)
1745 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1750 * This mmap-allocator allocates new areas top-down from below the
1751 * stack's low limit (the base):
1754 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1755 unsigned long len, unsigned long pgoff,
1756 unsigned long flags)
1758 struct vm_area_struct *vma, *prev;
1759 struct mm_struct *mm = current->mm;
1760 struct vm_unmapped_area_info info = {};
1761 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1763 /* requested length too big for entire address space */
1764 if (len > mmap_end - mmap_min_addr)
1767 if (flags & MAP_FIXED)
1770 /* requesting a specific address */
1772 addr = PAGE_ALIGN(addr);
1773 vma = find_vma_prev(mm, addr, &prev);
1774 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1775 (!vma || addr + len <= vm_start_gap(vma)) &&
1776 (!prev || addr >= vm_end_gap(prev)))
1780 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1782 info.low_limit = PAGE_SIZE;
1783 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1784 addr = vm_unmapped_area(&info);
1787 * A failed mmap() very likely causes application failure,
1788 * so fall back to the bottom-up function here. This scenario
1789 * can happen with large stack limits and large mmap()
1792 if (offset_in_page(addr)) {
1793 VM_BUG_ON(addr != -ENOMEM);
1795 info.low_limit = TASK_UNMAPPED_BASE;
1796 info.high_limit = mmap_end;
1797 addr = vm_unmapped_area(&info);
1803 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1805 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1806 unsigned long len, unsigned long pgoff,
1807 unsigned long flags)
1809 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1813 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS
1815 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len,
1816 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1818 return arch_get_unmapped_area(filp, addr, len, pgoff, flags);
1822 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr,
1823 unsigned long len, unsigned long pgoff,
1824 unsigned long flags, vm_flags_t vm_flags)
1826 return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1830 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
1831 unsigned long addr, unsigned long len,
1832 unsigned long pgoff, unsigned long flags,
1833 vm_flags_t vm_flags)
1835 if (test_bit(MMF_TOPDOWN, &mm->flags))
1836 return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff,
1838 return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags);
1842 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1843 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1845 unsigned long (*get_area)(struct file *, unsigned long,
1846 unsigned long, unsigned long, unsigned long)
1849 unsigned long error = arch_mmap_check(addr, len, flags);
1853 /* Careful about overflows.. */
1854 if (len > TASK_SIZE)
1858 if (file->f_op->get_unmapped_area)
1859 get_area = file->f_op->get_unmapped_area;
1860 } else if (flags & MAP_SHARED) {
1862 * mmap_region() will call shmem_zero_setup() to create a file,
1863 * so use shmem's get_unmapped_area in case it can be huge.
1865 get_area = shmem_get_unmapped_area;
1868 /* Always treat pgoff as zero for anonymous memory. */
1873 addr = get_area(file, addr, len, pgoff, flags);
1874 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1875 /* Ensures that larger anonymous mappings are THP aligned. */
1876 addr = thp_get_unmapped_area_vmflags(file, addr, len,
1877 pgoff, flags, vm_flags);
1879 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
1880 pgoff, flags, vm_flags);
1882 if (IS_ERR_VALUE(addr))
1885 if (addr > TASK_SIZE - len)
1887 if (offset_in_page(addr))
1890 error = security_mmap_addr(addr);
1891 return error ? error : addr;
1895 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
1896 unsigned long addr, unsigned long len,
1897 unsigned long pgoff, unsigned long flags)
1899 if (test_bit(MMF_TOPDOWN, &mm->flags))
1900 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags);
1901 return arch_get_unmapped_area(file, addr, len, pgoff, flags);
1903 EXPORT_SYMBOL(mm_get_unmapped_area);
1906 * find_vma_intersection() - Look up the first VMA which intersects the interval
1907 * @mm: The process address space.
1908 * @start_addr: The inclusive start user address.
1909 * @end_addr: The exclusive end user address.
1911 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1912 * start_addr < end_addr.
1914 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1915 unsigned long start_addr,
1916 unsigned long end_addr)
1918 unsigned long index = start_addr;
1920 mmap_assert_locked(mm);
1921 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1923 EXPORT_SYMBOL(find_vma_intersection);
1926 * find_vma() - Find the VMA for a given address, or the next VMA.
1927 * @mm: The mm_struct to check
1928 * @addr: The address
1930 * Returns: The VMA associated with addr, or the next VMA.
1931 * May return %NULL in the case of no VMA at addr or above.
1933 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1935 unsigned long index = addr;
1937 mmap_assert_locked(mm);
1938 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1940 EXPORT_SYMBOL(find_vma);
1943 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1944 * set %pprev to the previous VMA, if any.
1945 * @mm: The mm_struct to check
1946 * @addr: The address
1947 * @pprev: The pointer to set to the previous VMA
1949 * Note that RCU lock is missing here since the external mmap_lock() is used
1952 * Returns: The VMA associated with @addr, or the next vma.
1953 * May return %NULL in the case of no vma at addr or above.
1955 struct vm_area_struct *
1956 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1957 struct vm_area_struct **pprev)
1959 struct vm_area_struct *vma;
1960 VMA_ITERATOR(vmi, mm, addr);
1962 vma = vma_iter_load(&vmi);
1963 *pprev = vma_prev(&vmi);
1965 vma = vma_next(&vmi);
1970 * Verify that the stack growth is acceptable and
1971 * update accounting. This is shared with both the
1972 * grow-up and grow-down cases.
1974 static int acct_stack_growth(struct vm_area_struct *vma,
1975 unsigned long size, unsigned long grow)
1977 struct mm_struct *mm = vma->vm_mm;
1978 unsigned long new_start;
1980 /* address space limit tests */
1981 if (!may_expand_vm(mm, vma->vm_flags, grow))
1984 /* Stack limit test */
1985 if (size > rlimit(RLIMIT_STACK))
1988 /* mlock limit tests */
1989 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1992 /* Check to ensure the stack will not grow into a hugetlb-only region */
1993 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1995 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1999 * Overcommit.. This must be the final test, as it will
2000 * update security statistics.
2002 if (security_vm_enough_memory_mm(mm, grow))
2008 #if defined(CONFIG_STACK_GROWSUP)
2010 * PA-RISC uses this for its stack.
2011 * vma is the last one with address > vma->vm_end. Have to extend vma.
2013 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2015 struct mm_struct *mm = vma->vm_mm;
2016 struct vm_area_struct *next;
2017 unsigned long gap_addr;
2019 VMA_ITERATOR(vmi, mm, vma->vm_start);
2021 if (!(vma->vm_flags & VM_GROWSUP))
2024 /* Guard against exceeding limits of the address space. */
2025 address &= PAGE_MASK;
2026 if (address >= (TASK_SIZE & PAGE_MASK))
2028 address += PAGE_SIZE;
2030 /* Enforce stack_guard_gap */
2031 gap_addr = address + stack_guard_gap;
2033 /* Guard against overflow */
2034 if (gap_addr < address || gap_addr > TASK_SIZE)
2035 gap_addr = TASK_SIZE;
2037 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2038 if (next && vma_is_accessible(next)) {
2039 if (!(next->vm_flags & VM_GROWSUP))
2041 /* Check that both stack segments have the same anon_vma? */
2045 vma_iter_prev_range_limit(&vmi, address);
2047 vma_iter_config(&vmi, vma->vm_start, address);
2048 if (vma_iter_prealloc(&vmi, vma))
2051 /* We must make sure the anon_vma is allocated. */
2052 if (unlikely(anon_vma_prepare(vma))) {
2053 vma_iter_free(&vmi);
2057 /* Lock the VMA before expanding to prevent concurrent page faults */
2058 vma_start_write(vma);
2060 * vma->vm_start/vm_end cannot change under us because the caller
2061 * is required to hold the mmap_lock in read mode. We need the
2062 * anon_vma lock to serialize against concurrent expand_stacks.
2064 anon_vma_lock_write(vma->anon_vma);
2066 /* Somebody else might have raced and expanded it already */
2067 if (address > vma->vm_end) {
2068 unsigned long size, grow;
2070 size = address - vma->vm_start;
2071 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2074 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2075 error = acct_stack_growth(vma, size, grow);
2078 * We only hold a shared mmap_lock lock here, so
2079 * we need to protect against concurrent vma
2080 * expansions. anon_vma_lock_write() doesn't
2081 * help here, as we don't guarantee that all
2082 * growable vmas in a mm share the same root
2083 * anon vma. So, we reuse mm->page_table_lock
2084 * to guard against concurrent vma expansions.
2086 spin_lock(&mm->page_table_lock);
2087 if (vma->vm_flags & VM_LOCKED)
2088 mm->locked_vm += grow;
2089 vm_stat_account(mm, vma->vm_flags, grow);
2090 anon_vma_interval_tree_pre_update_vma(vma);
2091 vma->vm_end = address;
2092 /* Overwrite old entry in mtree. */
2093 vma_iter_store(&vmi, vma);
2094 anon_vma_interval_tree_post_update_vma(vma);
2095 spin_unlock(&mm->page_table_lock);
2097 perf_event_mmap(vma);
2101 anon_vma_unlock_write(vma->anon_vma);
2102 vma_iter_free(&vmi);
2106 #endif /* CONFIG_STACK_GROWSUP */
2109 * vma is the first one with address < vma->vm_start. Have to extend vma.
2110 * mmap_lock held for writing.
2112 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2114 struct mm_struct *mm = vma->vm_mm;
2115 struct vm_area_struct *prev;
2117 VMA_ITERATOR(vmi, mm, vma->vm_start);
2119 if (!(vma->vm_flags & VM_GROWSDOWN))
2122 address &= PAGE_MASK;
2123 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2126 /* Enforce stack_guard_gap */
2127 prev = vma_prev(&vmi);
2128 /* Check that both stack segments have the same anon_vma? */
2130 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2131 vma_is_accessible(prev) &&
2132 (address - prev->vm_end < stack_guard_gap))
2137 vma_iter_next_range_limit(&vmi, vma->vm_start);
2139 vma_iter_config(&vmi, address, vma->vm_end);
2140 if (vma_iter_prealloc(&vmi, vma))
2143 /* We must make sure the anon_vma is allocated. */
2144 if (unlikely(anon_vma_prepare(vma))) {
2145 vma_iter_free(&vmi);
2149 /* Lock the VMA before expanding to prevent concurrent page faults */
2150 vma_start_write(vma);
2152 * vma->vm_start/vm_end cannot change under us because the caller
2153 * is required to hold the mmap_lock in read mode. We need the
2154 * anon_vma lock to serialize against concurrent expand_stacks.
2156 anon_vma_lock_write(vma->anon_vma);
2158 /* Somebody else might have raced and expanded it already */
2159 if (address < vma->vm_start) {
2160 unsigned long size, grow;
2162 size = vma->vm_end - address;
2163 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2166 if (grow <= vma->vm_pgoff) {
2167 error = acct_stack_growth(vma, size, grow);
2170 * We only hold a shared mmap_lock lock here, so
2171 * we need to protect against concurrent vma
2172 * expansions. anon_vma_lock_write() doesn't
2173 * help here, as we don't guarantee that all
2174 * growable vmas in a mm share the same root
2175 * anon vma. So, we reuse mm->page_table_lock
2176 * to guard against concurrent vma expansions.
2178 spin_lock(&mm->page_table_lock);
2179 if (vma->vm_flags & VM_LOCKED)
2180 mm->locked_vm += grow;
2181 vm_stat_account(mm, vma->vm_flags, grow);
2182 anon_vma_interval_tree_pre_update_vma(vma);
2183 vma->vm_start = address;
2184 vma->vm_pgoff -= grow;
2185 /* Overwrite old entry in mtree. */
2186 vma_iter_store(&vmi, vma);
2187 anon_vma_interval_tree_post_update_vma(vma);
2188 spin_unlock(&mm->page_table_lock);
2190 perf_event_mmap(vma);
2194 anon_vma_unlock_write(vma->anon_vma);
2195 vma_iter_free(&vmi);
2200 /* enforced gap between the expanding stack and other mappings. */
2201 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2203 static int __init cmdline_parse_stack_guard_gap(char *p)
2208 val = simple_strtoul(p, &endptr, 10);
2210 stack_guard_gap = val << PAGE_SHIFT;
2214 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2216 #ifdef CONFIG_STACK_GROWSUP
2217 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2219 return expand_upwards(vma, address);
2222 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2224 struct vm_area_struct *vma, *prev;
2227 vma = find_vma_prev(mm, addr, &prev);
2228 if (vma && (vma->vm_start <= addr))
2232 if (expand_stack_locked(prev, addr))
2234 if (prev->vm_flags & VM_LOCKED)
2235 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2239 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2241 return expand_downwards(vma, address);
2244 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2246 struct vm_area_struct *vma;
2247 unsigned long start;
2250 vma = find_vma(mm, addr);
2253 if (vma->vm_start <= addr)
2255 start = vma->vm_start;
2256 if (expand_stack_locked(vma, addr))
2258 if (vma->vm_flags & VM_LOCKED)
2259 populate_vma_page_range(vma, addr, start, NULL);
2264 #if defined(CONFIG_STACK_GROWSUP)
2266 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2267 #define vma_expand_down(vma, addr) (-EFAULT)
2271 #define vma_expand_up(vma,addr) (-EFAULT)
2272 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2277 * expand_stack(): legacy interface for page faulting. Don't use unless
2280 * This is called with the mm locked for reading, drops the lock, takes
2281 * the lock for writing, tries to look up a vma again, expands it if
2282 * necessary, and downgrades the lock to reading again.
2284 * If no vma is found or it can't be expanded, it returns NULL and has
2287 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2289 struct vm_area_struct *vma, *prev;
2291 mmap_read_unlock(mm);
2292 if (mmap_write_lock_killable(mm))
2295 vma = find_vma_prev(mm, addr, &prev);
2296 if (vma && vma->vm_start <= addr)
2299 if (prev && !vma_expand_up(prev, addr)) {
2304 if (vma && !vma_expand_down(vma, addr))
2307 mmap_write_unlock(mm);
2311 mmap_write_downgrade(mm);
2316 * Ok - we have the memory areas we should free on a maple tree so release them,
2317 * and do the vma updates.
2319 * Called with the mm semaphore held.
2321 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2323 unsigned long nr_accounted = 0;
2324 struct vm_area_struct *vma;
2326 /* Update high watermark before we lower total_vm */
2327 update_hiwater_vm(mm);
2328 mas_for_each(mas, vma, ULONG_MAX) {
2329 long nrpages = vma_pages(vma);
2331 if (vma->vm_flags & VM_ACCOUNT)
2332 nr_accounted += nrpages;
2333 vm_stat_account(mm, vma->vm_flags, -nrpages);
2334 remove_vma(vma, false);
2336 vm_unacct_memory(nr_accounted);
2340 * Get rid of page table information in the indicated region.
2342 * Called with the mm semaphore held.
2344 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2345 struct vm_area_struct *vma, struct vm_area_struct *prev,
2346 struct vm_area_struct *next, unsigned long start,
2347 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2349 struct mmu_gather tlb;
2350 unsigned long mt_start = mas->index;
2353 tlb_gather_mmu(&tlb, mm);
2354 update_hiwater_rss(mm);
2355 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2356 mas_set(mas, mt_start);
2357 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2358 next ? next->vm_start : USER_PGTABLES_CEILING,
2360 tlb_finish_mmu(&tlb);
2364 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2365 * has already been checked or doesn't make sense to fail.
2366 * VMA Iterator will point to the end VMA.
2368 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2369 unsigned long addr, int new_below)
2371 struct vma_prepare vp;
2372 struct vm_area_struct *new;
2375 WARN_ON(vma->vm_start >= addr);
2376 WARN_ON(vma->vm_end <= addr);
2378 if (vma->vm_ops && vma->vm_ops->may_split) {
2379 err = vma->vm_ops->may_split(vma, addr);
2384 new = vm_area_dup(vma);
2391 new->vm_start = addr;
2392 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2396 vma_iter_config(vmi, new->vm_start, new->vm_end);
2397 if (vma_iter_prealloc(vmi, new))
2400 err = vma_dup_policy(vma, new);
2404 err = anon_vma_clone(new, vma);
2409 get_file(new->vm_file);
2411 if (new->vm_ops && new->vm_ops->open)
2412 new->vm_ops->open(new);
2414 vma_start_write(vma);
2415 vma_start_write(new);
2417 init_vma_prep(&vp, vma);
2420 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2423 vma->vm_start = addr;
2424 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2429 /* vma_complete stores the new vma */
2430 vma_complete(&vp, vmi, vma->vm_mm);
2438 mpol_put(vma_policy(new));
2447 * Split a vma into two pieces at address 'addr', a new vma is allocated
2448 * either for the first part or the tail.
2450 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2451 unsigned long addr, int new_below)
2453 if (vma->vm_mm->map_count >= sysctl_max_map_count)
2456 return __split_vma(vmi, vma, addr, new_below);
2460 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2461 * context and anonymous VMA name within the range [start, end).
2463 * As a result, we might be able to merge the newly modified VMA range with an
2464 * adjacent VMA with identical properties.
2466 * If no merge is possible and the range does not span the entirety of the VMA,
2467 * we then need to split the VMA to accommodate the change.
2469 * The function returns either the merged VMA, the original VMA if a split was
2470 * required instead, or an error if the split failed.
2472 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2473 struct vm_area_struct *prev,
2474 struct vm_area_struct *vma,
2475 unsigned long start, unsigned long end,
2476 unsigned long vm_flags,
2477 struct mempolicy *policy,
2478 struct vm_userfaultfd_ctx uffd_ctx,
2479 struct anon_vma_name *anon_name)
2481 pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2482 struct vm_area_struct *merged;
2484 merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2485 pgoff, policy, uffd_ctx, anon_name);
2489 if (vma->vm_start < start) {
2490 int err = split_vma(vmi, vma, start, 1);
2493 return ERR_PTR(err);
2496 if (vma->vm_end > end) {
2497 int err = split_vma(vmi, vma, end, 0);
2500 return ERR_PTR(err);
2507 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2508 * must ensure that [start, end) does not overlap any existing VMA.
2510 static struct vm_area_struct
2511 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2512 struct vm_area_struct *vma, unsigned long start,
2513 unsigned long end, pgoff_t pgoff)
2515 return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2516 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2520 * Expand vma by delta bytes, potentially merging with an immediately adjacent
2521 * VMA with identical properties.
2523 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2524 struct vm_area_struct *vma,
2525 unsigned long delta)
2527 pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2529 /* vma is specified as prev, so case 1 or 2 will apply. */
2530 return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2531 vma->vm_flags, pgoff, vma_policy(vma),
2532 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2536 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2537 * @vmi: The vma iterator
2538 * @vma: The starting vm_area_struct
2539 * @mm: The mm_struct
2540 * @start: The aligned start address to munmap.
2541 * @end: The aligned end address to munmap.
2542 * @uf: The userfaultfd list_head
2543 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
2546 * Return: 0 on success and drops the lock if so directed, error and leaves the
2547 * lock held otherwise.
2550 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2551 struct mm_struct *mm, unsigned long start,
2552 unsigned long end, struct list_head *uf, bool unlock)
2554 struct vm_area_struct *prev, *next = NULL;
2555 struct maple_tree mt_detach;
2557 int error = -ENOMEM;
2558 unsigned long locked_vm = 0;
2559 MA_STATE(mas_detach, &mt_detach, 0, 0);
2560 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2561 mt_on_stack(mt_detach);
2564 * If we need to split any vma, do it now to save pain later.
2566 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2567 * unmapped vm_area_struct will remain in use: so lower split_vma
2568 * places tmp vma above, and higher split_vma places tmp vma below.
2571 /* Does it split the first one? */
2572 if (start > vma->vm_start) {
2575 * Make sure that map_count on return from munmap() will
2576 * not exceed its limit; but let map_count go just above
2577 * its limit temporarily, to help free resources as expected.
2579 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2580 goto map_count_exceeded;
2582 error = __split_vma(vmi, vma, start, 1);
2584 goto start_split_failed;
2588 * Detach a range of VMAs from the mm. Using next as a temp variable as
2589 * it is always overwritten.
2593 /* Does it split the end? */
2594 if (next->vm_end > end) {
2595 error = __split_vma(vmi, next, end, 0);
2597 goto end_split_failed;
2599 vma_start_write(next);
2600 mas_set(&mas_detach, count);
2601 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2603 goto munmap_gather_failed;
2604 vma_mark_detached(next, true);
2605 if (next->vm_flags & VM_LOCKED)
2606 locked_vm += vma_pages(next);
2611 * If userfaultfd_unmap_prep returns an error the vmas
2612 * will remain split, but userland will get a
2613 * highly unexpected error anyway. This is no
2614 * different than the case where the first of the two
2615 * __split_vma fails, but we don't undo the first
2616 * split, despite we could. This is unlikely enough
2617 * failure that it's not worth optimizing it for.
2619 error = userfaultfd_unmap_prep(next, start, end, uf);
2622 goto userfaultfd_error;
2624 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2625 BUG_ON(next->vm_start < start);
2626 BUG_ON(next->vm_start > end);
2628 } for_each_vma_range(*vmi, next, end);
2630 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2631 /* Make sure no VMAs are about to be lost. */
2633 MA_STATE(test, &mt_detach, 0, 0);
2634 struct vm_area_struct *vma_mas, *vma_test;
2637 vma_iter_set(vmi, start);
2639 vma_test = mas_find(&test, count - 1);
2640 for_each_vma_range(*vmi, vma_mas, end) {
2641 BUG_ON(vma_mas != vma_test);
2643 vma_test = mas_next(&test, count - 1);
2646 BUG_ON(count != test_count);
2650 while (vma_iter_addr(vmi) > start)
2651 vma_iter_prev_range(vmi);
2653 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2655 goto clear_tree_failed;
2657 /* Point of no return */
2658 mm->locked_vm -= locked_vm;
2659 mm->map_count -= count;
2661 mmap_write_downgrade(mm);
2663 prev = vma_iter_prev_range(vmi);
2664 next = vma_next(vmi);
2666 vma_iter_prev_range(vmi);
2669 * We can free page tables without write-locking mmap_lock because VMAs
2670 * were isolated before we downgraded mmap_lock.
2672 mas_set(&mas_detach, 1);
2673 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2675 /* Statistics and freeing VMAs */
2676 mas_set(&mas_detach, 0);
2677 remove_mt(mm, &mas_detach);
2680 mmap_read_unlock(mm);
2682 __mt_destroy(&mt_detach);
2687 munmap_gather_failed:
2689 mas_set(&mas_detach, 0);
2690 mas_for_each(&mas_detach, next, end)
2691 vma_mark_detached(next, false);
2693 __mt_destroy(&mt_detach);
2701 * do_vmi_munmap() - munmap a given range.
2702 * @vmi: The vma iterator
2703 * @mm: The mm_struct
2704 * @start: The start address to munmap
2705 * @len: The length of the range to munmap
2706 * @uf: The userfaultfd list_head
2707 * @unlock: set to true if the user wants to drop the mmap_lock on success
2709 * This function takes a @mas that is either pointing to the previous VMA or set
2710 * to MA_START and sets it up to remove the mapping(s). The @len will be
2711 * aligned and any arch_unmap work will be preformed.
2713 * Return: 0 on success and drops the lock if so directed, error and leaves the
2714 * lock held otherwise.
2716 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2717 unsigned long start, size_t len, struct list_head *uf,
2721 struct vm_area_struct *vma;
2723 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2726 end = start + PAGE_ALIGN(len);
2730 /* arch_unmap() might do unmaps itself. */
2731 arch_unmap(mm, start, end);
2733 /* Find the first overlapping VMA */
2734 vma = vma_find(vmi, end);
2737 mmap_write_unlock(mm);
2741 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2744 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2745 * @mm: The mm_struct
2746 * @start: The start address to munmap
2747 * @len: The length to be munmapped.
2748 * @uf: The userfaultfd list_head
2750 * Return: 0 on success, error otherwise.
2752 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2753 struct list_head *uf)
2755 VMA_ITERATOR(vmi, mm, start);
2757 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2760 unsigned long mmap_region(struct file *file, unsigned long addr,
2761 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2762 struct list_head *uf)
2764 struct mm_struct *mm = current->mm;
2765 struct vm_area_struct *vma = NULL;
2766 struct vm_area_struct *next, *prev, *merge;
2767 pgoff_t pglen = len >> PAGE_SHIFT;
2768 unsigned long charged = 0;
2769 unsigned long end = addr + len;
2770 unsigned long merge_start = addr, merge_end = end;
2771 bool writable_file_mapping = false;
2774 VMA_ITERATOR(vmi, mm, addr);
2776 /* Check against address space limit. */
2777 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2778 unsigned long nr_pages;
2781 * MAP_FIXED may remove pages of mappings that intersects with
2782 * requested mapping. Account for the pages it would unmap.
2784 nr_pages = count_vma_pages_range(mm, addr, end);
2786 if (!may_expand_vm(mm, vm_flags,
2787 (len >> PAGE_SHIFT) - nr_pages))
2791 /* Unmap any existing mapping in the area */
2792 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2796 * Private writable mapping: check memory availability
2798 if (accountable_mapping(file, vm_flags)) {
2799 charged = len >> PAGE_SHIFT;
2800 if (security_vm_enough_memory_mm(mm, charged))
2802 vm_flags |= VM_ACCOUNT;
2805 next = vma_next(&vmi);
2806 prev = vma_prev(&vmi);
2807 if (vm_flags & VM_SPECIAL) {
2809 vma_iter_next_range(&vmi);
2813 /* Attempt to expand an old mapping */
2815 if (next && next->vm_start == end && !vma_policy(next) &&
2816 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2817 NULL_VM_UFFD_CTX, NULL)) {
2818 merge_end = next->vm_end;
2820 vm_pgoff = next->vm_pgoff - pglen;
2824 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2825 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2826 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2827 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2828 NULL_VM_UFFD_CTX, NULL))) {
2829 merge_start = prev->vm_start;
2831 vm_pgoff = prev->vm_pgoff;
2833 vma_iter_next_range(&vmi);
2836 /* Actually expand, if possible */
2838 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2839 khugepaged_enter_vma(vma, vm_flags);
2844 vma_iter_set(&vmi, addr);
2848 * Determine the object being mapped and call the appropriate
2849 * specific mapper. the address has already been validated, but
2850 * not unmapped, but the maps are removed from the list.
2852 vma = vm_area_alloc(mm);
2858 vma_iter_config(&vmi, addr, end);
2859 vma_set_range(vma, addr, end, pgoff);
2860 vm_flags_init(vma, vm_flags);
2861 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2864 vma->vm_file = get_file(file);
2865 error = call_mmap(file, vma);
2867 goto unmap_and_free_vma;
2869 if (vma_is_shared_maywrite(vma)) {
2870 error = mapping_map_writable(file->f_mapping);
2872 goto close_and_free_vma;
2874 writable_file_mapping = true;
2878 * Expansion is handled above, merging is handled below.
2879 * Drivers should not alter the address of the VMA.
2882 if (WARN_ON((addr != vma->vm_start)))
2883 goto close_and_free_vma;
2885 vma_iter_config(&vmi, addr, end);
2887 * If vm_flags changed after call_mmap(), we should try merge
2888 * vma again as we may succeed this time.
2890 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2891 merge = vma_merge_new_vma(&vmi, prev, vma,
2892 vma->vm_start, vma->vm_end,
2896 * ->mmap() can change vma->vm_file and fput
2897 * the original file. So fput the vma->vm_file
2898 * here or we would add an extra fput for file
2899 * and cause general protection fault
2905 /* Update vm_flags to pick up the change. */
2906 vm_flags = vma->vm_flags;
2907 goto unmap_writable;
2911 vm_flags = vma->vm_flags;
2912 } else if (vm_flags & VM_SHARED) {
2913 error = shmem_zero_setup(vma);
2917 vma_set_anonymous(vma);
2920 if (map_deny_write_exec(vma, vma->vm_flags)) {
2922 goto close_and_free_vma;
2925 /* Allow architectures to sanity-check the vm_flags */
2927 if (!arch_validate_flags(vma->vm_flags))
2928 goto close_and_free_vma;
2931 if (vma_iter_prealloc(&vmi, vma))
2932 goto close_and_free_vma;
2934 /* Lock the VMA since it is modified after insertion into VMA tree */
2935 vma_start_write(vma);
2936 vma_iter_store(&vmi, vma);
2941 * vma_merge() calls khugepaged_enter_vma() either, the below
2942 * call covers the non-merge case.
2944 khugepaged_enter_vma(vma, vma->vm_flags);
2946 /* Once vma denies write, undo our temporary denial count */
2948 if (writable_file_mapping)
2949 mapping_unmap_writable(file->f_mapping);
2950 file = vma->vm_file;
2953 perf_event_mmap(vma);
2955 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2956 if (vm_flags & VM_LOCKED) {
2957 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2958 is_vm_hugetlb_page(vma) ||
2959 vma == get_gate_vma(current->mm))
2960 vm_flags_clear(vma, VM_LOCKED_MASK);
2962 mm->locked_vm += (len >> PAGE_SHIFT);
2969 * New (or expanded) vma always get soft dirty status.
2970 * Otherwise user-space soft-dirty page tracker won't
2971 * be able to distinguish situation when vma area unmapped,
2972 * then new mapped in-place (which must be aimed as
2973 * a completely new data area).
2975 vm_flags_set(vma, VM_SOFTDIRTY);
2977 vma_set_page_prot(vma);
2983 if (file && vma->vm_ops && vma->vm_ops->close)
2984 vma->vm_ops->close(vma);
2986 if (file || vma->vm_file) {
2989 vma->vm_file = NULL;
2991 vma_iter_set(&vmi, vma->vm_end);
2992 /* Undo any partial mapping done by a device driver. */
2993 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2994 vma->vm_end, vma->vm_end, true);
2996 if (writable_file_mapping)
2997 mapping_unmap_writable(file->f_mapping);
3002 vm_unacct_memory(charged);
3007 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
3010 struct mm_struct *mm = current->mm;
3012 VMA_ITERATOR(vmi, mm, start);
3014 if (mmap_write_lock_killable(mm))
3017 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3019 mmap_write_unlock(mm);
3021 userfaultfd_unmap_complete(mm, &uf);
3025 int vm_munmap(unsigned long start, size_t len)
3027 return __vm_munmap(start, len, false);
3029 EXPORT_SYMBOL(vm_munmap);
3031 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3033 addr = untagged_addr(addr);
3034 return __vm_munmap(addr, len, true);
3039 * Emulation of deprecated remap_file_pages() syscall.
3041 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3042 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3045 struct mm_struct *mm = current->mm;
3046 struct vm_area_struct *vma;
3047 unsigned long populate = 0;
3048 unsigned long ret = -EINVAL;
3051 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3052 current->comm, current->pid);
3056 start = start & PAGE_MASK;
3057 size = size & PAGE_MASK;
3059 if (start + size <= start)
3062 /* Does pgoff wrap? */
3063 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3066 if (mmap_write_lock_killable(mm))
3069 vma = vma_lookup(mm, start);
3071 if (!vma || !(vma->vm_flags & VM_SHARED))
3074 if (start + size > vma->vm_end) {
3075 VMA_ITERATOR(vmi, mm, vma->vm_end);
3076 struct vm_area_struct *next, *prev = vma;
3078 for_each_vma_range(vmi, next, start + size) {
3079 /* hole between vmas ? */
3080 if (next->vm_start != prev->vm_end)
3083 if (next->vm_file != vma->vm_file)
3086 if (next->vm_flags != vma->vm_flags)
3089 if (start + size <= next->vm_end)
3099 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3100 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3101 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3103 flags &= MAP_NONBLOCK;
3104 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3105 if (vma->vm_flags & VM_LOCKED)
3106 flags |= MAP_LOCKED;
3108 file = get_file(vma->vm_file);
3109 ret = do_mmap(vma->vm_file, start, size,
3110 prot, flags, 0, pgoff, &populate, NULL);
3113 mmap_write_unlock(mm);
3115 mm_populate(ret, populate);
3116 if (!IS_ERR_VALUE(ret))
3122 * do_vma_munmap() - Unmap a full or partial vma.
3123 * @vmi: The vma iterator pointing at the vma
3124 * @vma: The first vma to be munmapped
3125 * @start: the start of the address to unmap
3126 * @end: The end of the address to unmap
3127 * @uf: The userfaultfd list_head
3128 * @unlock: Drop the lock on success
3130 * unmaps a VMA mapping when the vma iterator is already in position.
3131 * Does not handle alignment.
3133 * Return: 0 on success drops the lock of so directed, error on failure and will
3134 * still hold the lock.
3136 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3137 unsigned long start, unsigned long end, struct list_head *uf,
3140 struct mm_struct *mm = vma->vm_mm;
3142 arch_unmap(mm, start, end);
3143 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3147 * do_brk_flags() - Increase the brk vma if the flags match.
3148 * @vmi: The vma iterator
3149 * @addr: The start address
3150 * @len: The length of the increase
3152 * @flags: The VMA Flags
3154 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
3155 * do not match then create a new anonymous VMA. Eventually we may be able to
3156 * do some brk-specific accounting here.
3158 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3159 unsigned long addr, unsigned long len, unsigned long flags)
3161 struct mm_struct *mm = current->mm;
3162 struct vma_prepare vp;
3165 * Check against address space limits by the changed size
3166 * Note: This happens *after* clearing old mappings in some code paths.
3168 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3169 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3172 if (mm->map_count > sysctl_max_map_count)
3175 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3179 * Expand the existing vma if possible; Note that singular lists do not
3180 * occur after forking, so the expand will only happen on new VMAs.
3182 if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3183 can_vma_merge_after(vma, flags, NULL, NULL,
3184 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3185 vma_iter_config(vmi, vma->vm_start, addr + len);
3186 if (vma_iter_prealloc(vmi, vma))
3189 vma_start_write(vma);
3191 init_vma_prep(&vp, vma);
3193 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3194 vma->vm_end = addr + len;
3195 vm_flags_set(vma, VM_SOFTDIRTY);
3196 vma_iter_store(vmi, vma);
3198 vma_complete(&vp, vmi, mm);
3199 khugepaged_enter_vma(vma, flags);
3204 vma_iter_next_range(vmi);
3205 /* create a vma struct for an anonymous mapping */
3206 vma = vm_area_alloc(mm);
3210 vma_set_anonymous(vma);
3211 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3212 vm_flags_init(vma, flags);
3213 vma->vm_page_prot = vm_get_page_prot(flags);
3214 vma_start_write(vma);
3215 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3216 goto mas_store_fail;
3222 perf_event_mmap(vma);
3223 mm->total_vm += len >> PAGE_SHIFT;
3224 mm->data_vm += len >> PAGE_SHIFT;
3225 if (flags & VM_LOCKED)
3226 mm->locked_vm += (len >> PAGE_SHIFT);
3227 vm_flags_set(vma, VM_SOFTDIRTY);
3233 vm_unacct_memory(len >> PAGE_SHIFT);
3237 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3239 struct mm_struct *mm = current->mm;
3240 struct vm_area_struct *vma = NULL;
3245 VMA_ITERATOR(vmi, mm, addr);
3247 len = PAGE_ALIGN(request);
3253 /* Until we need other flags, refuse anything except VM_EXEC. */
3254 if ((flags & (~VM_EXEC)) != 0)
3257 if (mmap_write_lock_killable(mm))
3260 ret = check_brk_limits(addr, len);
3264 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3268 vma = vma_prev(&vmi);
3269 ret = do_brk_flags(&vmi, vma, addr, len, flags);
3270 populate = ((mm->def_flags & VM_LOCKED) != 0);
3271 mmap_write_unlock(mm);
3272 userfaultfd_unmap_complete(mm, &uf);
3273 if (populate && !ret)
3274 mm_populate(addr, len);
3279 mmap_write_unlock(mm);
3282 EXPORT_SYMBOL(vm_brk_flags);
3284 /* Release all mmaps. */
3285 void exit_mmap(struct mm_struct *mm)
3287 struct mmu_gather tlb;
3288 struct vm_area_struct *vma;
3289 unsigned long nr_accounted = 0;
3290 VMA_ITERATOR(vmi, mm, 0);
3293 /* mm's last user has gone, and its about to be pulled down */
3294 mmu_notifier_release(mm);
3299 vma = vma_next(&vmi);
3300 if (!vma || unlikely(xa_is_zero(vma))) {
3301 /* Can happen if dup_mmap() received an OOM */
3302 mmap_read_unlock(mm);
3303 mmap_write_lock(mm);
3309 tlb_gather_mmu_fullmm(&tlb, mm);
3310 /* update_hiwater_rss(mm) here? but nobody should be looking */
3311 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3312 unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3313 mmap_read_unlock(mm);
3316 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3317 * because the memory has been already freed.
3319 set_bit(MMF_OOM_SKIP, &mm->flags);
3320 mmap_write_lock(mm);
3321 mt_clear_in_rcu(&mm->mm_mt);
3322 vma_iter_set(&vmi, vma->vm_end);
3323 free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
3324 USER_PGTABLES_CEILING, true);
3325 tlb_finish_mmu(&tlb);
3328 * Walk the list again, actually closing and freeing it, with preemption
3329 * enabled, without holding any MM locks besides the unreachable
3332 vma_iter_set(&vmi, vma->vm_end);
3334 if (vma->vm_flags & VM_ACCOUNT)
3335 nr_accounted += vma_pages(vma);
3336 remove_vma(vma, true);
3339 vma = vma_next(&vmi);
3340 } while (vma && likely(!xa_is_zero(vma)));
3342 BUG_ON(count != mm->map_count);
3344 trace_exit_mmap(mm);
3346 __mt_destroy(&mm->mm_mt);
3347 mmap_write_unlock(mm);
3348 vm_unacct_memory(nr_accounted);
3351 /* Insert vm structure into process list sorted by address
3352 * and into the inode's i_mmap tree. If vm_file is non-NULL
3353 * then i_mmap_rwsem is taken here.
3355 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3357 unsigned long charged = vma_pages(vma);
3360 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3363 if ((vma->vm_flags & VM_ACCOUNT) &&
3364 security_vm_enough_memory_mm(mm, charged))
3368 * The vm_pgoff of a purely anonymous vma should be irrelevant
3369 * until its first write fault, when page's anon_vma and index
3370 * are set. But now set the vm_pgoff it will almost certainly
3371 * end up with (unless mremap moves it elsewhere before that
3372 * first wfault), so /proc/pid/maps tells a consistent story.
3374 * By setting it to reflect the virtual start address of the
3375 * vma, merges and splits can happen in a seamless way, just
3376 * using the existing file pgoff checks and manipulations.
3377 * Similarly in do_mmap and in do_brk_flags.
3379 if (vma_is_anonymous(vma)) {
3380 BUG_ON(vma->anon_vma);
3381 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3384 if (vma_link(mm, vma)) {
3385 if (vma->vm_flags & VM_ACCOUNT)
3386 vm_unacct_memory(charged);
3394 * Copy the vma structure to a new location in the same mm,
3395 * prior to moving page table entries, to effect an mremap move.
3397 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3398 unsigned long addr, unsigned long len, pgoff_t pgoff,
3399 bool *need_rmap_locks)
3401 struct vm_area_struct *vma = *vmap;
3402 unsigned long vma_start = vma->vm_start;
3403 struct mm_struct *mm = vma->vm_mm;
3404 struct vm_area_struct *new_vma, *prev;
3405 bool faulted_in_anon_vma = true;
3406 VMA_ITERATOR(vmi, mm, addr);
3409 * If anonymous vma has not yet been faulted, update new pgoff
3410 * to match new location, to increase its chance of merging.
3412 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3413 pgoff = addr >> PAGE_SHIFT;
3414 faulted_in_anon_vma = false;
3417 new_vma = find_vma_prev(mm, addr, &prev);
3418 if (new_vma && new_vma->vm_start < addr + len)
3419 return NULL; /* should never get here */
3421 new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3424 * Source vma may have been merged into new_vma
3426 if (unlikely(vma_start >= new_vma->vm_start &&
3427 vma_start < new_vma->vm_end)) {
3429 * The only way we can get a vma_merge with
3430 * self during an mremap is if the vma hasn't
3431 * been faulted in yet and we were allowed to
3432 * reset the dst vma->vm_pgoff to the
3433 * destination address of the mremap to allow
3434 * the merge to happen. mremap must change the
3435 * vm_pgoff linearity between src and dst vmas
3436 * (in turn preventing a vma_merge) to be
3437 * safe. It is only safe to keep the vm_pgoff
3438 * linear if there are no pages mapped yet.
3440 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3441 *vmap = vma = new_vma;
3443 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3445 new_vma = vm_area_dup(vma);
3448 vma_set_range(new_vma, addr, addr + len, pgoff);
3449 if (vma_dup_policy(vma, new_vma))
3451 if (anon_vma_clone(new_vma, vma))
3452 goto out_free_mempol;
3453 if (new_vma->vm_file)
3454 get_file(new_vma->vm_file);
3455 if (new_vma->vm_ops && new_vma->vm_ops->open)
3456 new_vma->vm_ops->open(new_vma);
3457 if (vma_link(mm, new_vma))
3459 *need_rmap_locks = false;
3464 if (new_vma->vm_ops && new_vma->vm_ops->close)
3465 new_vma->vm_ops->close(new_vma);
3467 if (new_vma->vm_file)
3468 fput(new_vma->vm_file);
3470 unlink_anon_vmas(new_vma);
3472 mpol_put(vma_policy(new_vma));
3474 vm_area_free(new_vma);
3480 * Return true if the calling process may expand its vm space by the passed
3483 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3485 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3488 if (is_data_mapping(flags) &&
3489 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3490 /* Workaround for Valgrind */
3491 if (rlimit(RLIMIT_DATA) == 0 &&
3492 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3495 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3496 current->comm, current->pid,
3497 (mm->data_vm + npages) << PAGE_SHIFT,
3498 rlimit(RLIMIT_DATA),
3499 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3501 if (!ignore_rlimit_data)
3508 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3510 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3512 if (is_exec_mapping(flags))
3513 mm->exec_vm += npages;
3514 else if (is_stack_mapping(flags))
3515 mm->stack_vm += npages;
3516 else if (is_data_mapping(flags))
3517 mm->data_vm += npages;
3520 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3523 * Having a close hook prevents vma merging regardless of flags.
3525 static void special_mapping_close(struct vm_area_struct *vma)
3529 static const char *special_mapping_name(struct vm_area_struct *vma)
3531 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3534 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3536 struct vm_special_mapping *sm = new_vma->vm_private_data;
3538 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3542 return sm->mremap(sm, new_vma);
3547 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3550 * Forbid splitting special mappings - kernel has expectations over
3551 * the number of pages in mapping. Together with VM_DONTEXPAND
3552 * the size of vma should stay the same over the special mapping's
3558 static const struct vm_operations_struct special_mapping_vmops = {
3559 .close = special_mapping_close,
3560 .fault = special_mapping_fault,
3561 .mremap = special_mapping_mremap,
3562 .name = special_mapping_name,
3563 /* vDSO code relies that VVAR can't be accessed remotely */
3565 .may_split = special_mapping_split,
3568 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3569 .close = special_mapping_close,
3570 .fault = special_mapping_fault,
3573 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3575 struct vm_area_struct *vma = vmf->vma;
3577 struct page **pages;
3579 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3580 pages = vma->vm_private_data;
3582 struct vm_special_mapping *sm = vma->vm_private_data;
3585 return sm->fault(sm, vmf->vma, vmf);
3590 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3594 struct page *page = *pages;
3600 return VM_FAULT_SIGBUS;
3603 static struct vm_area_struct *__install_special_mapping(
3604 struct mm_struct *mm,
3605 unsigned long addr, unsigned long len,
3606 unsigned long vm_flags, void *priv,
3607 const struct vm_operations_struct *ops)
3610 struct vm_area_struct *vma;
3612 vma = vm_area_alloc(mm);
3613 if (unlikely(vma == NULL))
3614 return ERR_PTR(-ENOMEM);
3616 vma_set_range(vma, addr, addr + len, 0);
3617 vm_flags_init(vma, (vm_flags | mm->def_flags |
3618 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3619 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3622 vma->vm_private_data = priv;
3624 ret = insert_vm_struct(mm, vma);
3628 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3630 perf_event_mmap(vma);
3636 return ERR_PTR(ret);
3639 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3640 const struct vm_special_mapping *sm)
3642 return vma->vm_private_data == sm &&
3643 (vma->vm_ops == &special_mapping_vmops ||
3644 vma->vm_ops == &legacy_special_mapping_vmops);
3648 * Called with mm->mmap_lock held for writing.
3649 * Insert a new vma covering the given region, with the given flags.
3650 * Its pages are supplied by the given array of struct page *.
3651 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3652 * The region past the last page supplied will always produce SIGBUS.
3653 * The array pointer and the pages it points to are assumed to stay alive
3654 * for as long as this mapping might exist.
3656 struct vm_area_struct *_install_special_mapping(
3657 struct mm_struct *mm,
3658 unsigned long addr, unsigned long len,
3659 unsigned long vm_flags, const struct vm_special_mapping *spec)
3661 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3662 &special_mapping_vmops);
3665 int install_special_mapping(struct mm_struct *mm,
3666 unsigned long addr, unsigned long len,
3667 unsigned long vm_flags, struct page **pages)
3669 struct vm_area_struct *vma = __install_special_mapping(
3670 mm, addr, len, vm_flags, (void *)pages,
3671 &legacy_special_mapping_vmops);
3673 return PTR_ERR_OR_ZERO(vma);
3676 static DEFINE_MUTEX(mm_all_locks_mutex);
3678 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3680 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3682 * The LSB of head.next can't change from under us
3683 * because we hold the mm_all_locks_mutex.
3685 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3687 * We can safely modify head.next after taking the
3688 * anon_vma->root->rwsem. If some other vma in this mm shares
3689 * the same anon_vma we won't take it again.
3691 * No need of atomic instructions here, head.next
3692 * can't change from under us thanks to the
3693 * anon_vma->root->rwsem.
3695 if (__test_and_set_bit(0, (unsigned long *)
3696 &anon_vma->root->rb_root.rb_root.rb_node))
3701 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3703 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3705 * AS_MM_ALL_LOCKS can't change from under us because
3706 * we hold the mm_all_locks_mutex.
3708 * Operations on ->flags have to be atomic because
3709 * even if AS_MM_ALL_LOCKS is stable thanks to the
3710 * mm_all_locks_mutex, there may be other cpus
3711 * changing other bitflags in parallel to us.
3713 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3715 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3720 * This operation locks against the VM for all pte/vma/mm related
3721 * operations that could ever happen on a certain mm. This includes
3722 * vmtruncate, try_to_unmap, and all page faults.
3724 * The caller must take the mmap_lock in write mode before calling
3725 * mm_take_all_locks(). The caller isn't allowed to release the
3726 * mmap_lock until mm_drop_all_locks() returns.
3728 * mmap_lock in write mode is required in order to block all operations
3729 * that could modify pagetables and free pages without need of
3730 * altering the vma layout. It's also needed in write mode to avoid new
3731 * anon_vmas to be associated with existing vmas.
3733 * A single task can't take more than one mm_take_all_locks() in a row
3734 * or it would deadlock.
3736 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3737 * mapping->flags avoid to take the same lock twice, if more than one
3738 * vma in this mm is backed by the same anon_vma or address_space.
3740 * We take locks in following order, accordingly to comment at beginning
3742 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3744 * - all vmas marked locked
3745 * - all i_mmap_rwsem locks;
3746 * - all anon_vma->rwseml
3748 * We can take all locks within these types randomly because the VM code
3749 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3750 * mm_all_locks_mutex.
3752 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3753 * that may have to take thousand of locks.
3755 * mm_take_all_locks() can fail if it's interrupted by signals.
3757 int mm_take_all_locks(struct mm_struct *mm)
3759 struct vm_area_struct *vma;
3760 struct anon_vma_chain *avc;
3761 VMA_ITERATOR(vmi, mm, 0);
3763 mmap_assert_write_locked(mm);
3765 mutex_lock(&mm_all_locks_mutex);
3768 * vma_start_write() does not have a complement in mm_drop_all_locks()
3769 * because vma_start_write() is always asymmetrical; it marks a VMA as
3770 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3773 for_each_vma(vmi, vma) {
3774 if (signal_pending(current))
3776 vma_start_write(vma);
3779 vma_iter_init(&vmi, mm, 0);
3780 for_each_vma(vmi, vma) {
3781 if (signal_pending(current))
3783 if (vma->vm_file && vma->vm_file->f_mapping &&
3784 is_vm_hugetlb_page(vma))
3785 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3788 vma_iter_init(&vmi, mm, 0);
3789 for_each_vma(vmi, vma) {
3790 if (signal_pending(current))
3792 if (vma->vm_file && vma->vm_file->f_mapping &&
3793 !is_vm_hugetlb_page(vma))
3794 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3797 vma_iter_init(&vmi, mm, 0);
3798 for_each_vma(vmi, vma) {
3799 if (signal_pending(current))
3802 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3803 vm_lock_anon_vma(mm, avc->anon_vma);
3809 mm_drop_all_locks(mm);
3813 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3815 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3817 * The LSB of head.next can't change to 0 from under
3818 * us because we hold the mm_all_locks_mutex.
3820 * We must however clear the bitflag before unlocking
3821 * the vma so the users using the anon_vma->rb_root will
3822 * never see our bitflag.
3824 * No need of atomic instructions here, head.next
3825 * can't change from under us until we release the
3826 * anon_vma->root->rwsem.
3828 if (!__test_and_clear_bit(0, (unsigned long *)
3829 &anon_vma->root->rb_root.rb_root.rb_node))
3831 anon_vma_unlock_write(anon_vma);
3835 static void vm_unlock_mapping(struct address_space *mapping)
3837 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3839 * AS_MM_ALL_LOCKS can't change to 0 from under us
3840 * because we hold the mm_all_locks_mutex.
3842 i_mmap_unlock_write(mapping);
3843 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3850 * The mmap_lock cannot be released by the caller until
3851 * mm_drop_all_locks() returns.
3853 void mm_drop_all_locks(struct mm_struct *mm)
3855 struct vm_area_struct *vma;
3856 struct anon_vma_chain *avc;
3857 VMA_ITERATOR(vmi, mm, 0);
3859 mmap_assert_write_locked(mm);
3860 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3862 for_each_vma(vmi, vma) {
3864 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3865 vm_unlock_anon_vma(avc->anon_vma);
3866 if (vma->vm_file && vma->vm_file->f_mapping)
3867 vm_unlock_mapping(vma->vm_file->f_mapping);
3870 mutex_unlock(&mm_all_locks_mutex);
3874 * initialise the percpu counter for VM
3876 void __init mmap_init(void)
3880 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3885 * Initialise sysctl_user_reserve_kbytes.
3887 * This is intended to prevent a user from starting a single memory hogging
3888 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3891 * The default value is min(3% of free memory, 128MB)
3892 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3894 static int init_user_reserve(void)
3896 unsigned long free_kbytes;
3898 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3900 sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
3903 subsys_initcall(init_user_reserve);
3906 * Initialise sysctl_admin_reserve_kbytes.
3908 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3909 * to log in and kill a memory hogging process.
3911 * Systems with more than 256MB will reserve 8MB, enough to recover
3912 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3913 * only reserve 3% of free pages by default.
3915 static int init_admin_reserve(void)
3917 unsigned long free_kbytes;
3919 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3921 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
3924 subsys_initcall(init_admin_reserve);
3927 * Reinititalise user and admin reserves if memory is added or removed.
3929 * The default user reserve max is 128MB, and the default max for the
3930 * admin reserve is 8MB. These are usually, but not always, enough to
3931 * enable recovery from a memory hogging process using login/sshd, a shell,
3932 * and tools like top. It may make sense to increase or even disable the
3933 * reserve depending on the existence of swap or variations in the recovery
3934 * tools. So, the admin may have changed them.
3936 * If memory is added and the reserves have been eliminated or increased above
3937 * the default max, then we'll trust the admin.
3939 * If memory is removed and there isn't enough free memory, then we
3940 * need to reset the reserves.
3942 * Otherwise keep the reserve set by the admin.
3944 static int reserve_mem_notifier(struct notifier_block *nb,
3945 unsigned long action, void *data)
3947 unsigned long tmp, free_kbytes;
3951 /* Default max is 128MB. Leave alone if modified by operator. */
3952 tmp = sysctl_user_reserve_kbytes;
3953 if (tmp > 0 && tmp < SZ_128K)
3954 init_user_reserve();
3956 /* Default max is 8MB. Leave alone if modified by operator. */
3957 tmp = sysctl_admin_reserve_kbytes;
3958 if (tmp > 0 && tmp < SZ_8K)
3959 init_admin_reserve();
3963 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3965 if (sysctl_user_reserve_kbytes > free_kbytes) {
3966 init_user_reserve();
3967 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3968 sysctl_user_reserve_kbytes);
3971 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3972 init_admin_reserve();
3973 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3974 sysctl_admin_reserve_kbytes);
3983 static int __meminit init_reserve_notifier(void)
3985 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3986 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3990 subsys_initcall(init_reserve_notifier);