]> Git Repo - linux.git/blob - drivers/scsi/sd.c
Merge tag 'libata-5.16-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/dlemoal...
[linux.git] / drivers / scsi / sd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *      Modification history:
10  *       - Drew Eckhardt <[email protected]> original
11  *       - Eric Youngdale <[email protected]> add scatter-gather, multiple 
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <[email protected]> support more scsi disks using 
15  *         eight major numbers.
16  *       - Richard Gooch <[email protected]> support devfs.
17  *       - Torben Mathiasen <[email protected]> Resource allocation fixes in 
18  *         sd_init and cleanups.
19  *       - Alex Davis <[email protected]> Fix problem where partition info
20  *         not being read in sd_open. Fix problem where removable media 
21  *         could be ejected after sd_open.
22  *       - Douglas Gilbert <[email protected]> cleanup for lk 2.5.x
23  *       - Badari Pulavarty <[email protected]>, Matthew Wilcox 
24  *         <[email protected]>, Kurt Garloff <[email protected]>: 
25  *         Support 32k/1M disks.
26  *
27  *      Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *       - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *       - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *       - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *       - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *      Note: when the logging level is set by the user, it must be greater
33  *      than the level indicated above to trigger output.       
34  */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/major.h>
52 #include <linux/mutex.h>
53 #include <linux/string_helpers.h>
54 #include <linux/async.h>
55 #include <linux/slab.h>
56 #include <linux/sed-opal.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/pr.h>
59 #include <linux/t10-pi.h>
60 #include <linux/uaccess.h>
61 #include <asm/unaligned.h>
62
63 #include <scsi/scsi.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_dbg.h>
66 #include <scsi/scsi_device.h>
67 #include <scsi/scsi_driver.h>
68 #include <scsi/scsi_eh.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_ioctl.h>
71 #include <scsi/scsicam.h>
72
73 #include "sd.h"
74 #include "scsi_priv.h"
75 #include "scsi_logging.h"
76
77 MODULE_AUTHOR("Eric Youngdale");
78 MODULE_DESCRIPTION("SCSI disk (sd) driver");
79 MODULE_LICENSE("GPL");
80
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
96 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
100 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
101
102 #define SD_MINORS       16
103
104 static void sd_config_discard(struct scsi_disk *, unsigned int);
105 static void sd_config_write_same(struct scsi_disk *);
106 static int  sd_revalidate_disk(struct gendisk *);
107 static void sd_unlock_native_capacity(struct gendisk *disk);
108 static int  sd_probe(struct device *);
109 static int  sd_remove(struct device *);
110 static void sd_shutdown(struct device *);
111 static int sd_suspend_system(struct device *);
112 static int sd_suspend_runtime(struct device *);
113 static int sd_resume_system(struct device *);
114 static int sd_resume_runtime(struct device *);
115 static void sd_rescan(struct device *);
116 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
117 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
118 static int sd_done(struct scsi_cmnd *);
119 static void sd_eh_reset(struct scsi_cmnd *);
120 static int sd_eh_action(struct scsi_cmnd *, int);
121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
122 static void scsi_disk_release(struct device *cdev);
123
124 static DEFINE_IDA(sd_index_ida);
125
126 /* This semaphore is used to mediate the 0->1 reference get in the
127  * face of object destruction (i.e. we can't allow a get on an
128  * object after last put) */
129 static DEFINE_MUTEX(sd_ref_mutex);
130
131 static struct kmem_cache *sd_cdb_cache;
132 static mempool_t *sd_cdb_pool;
133 static mempool_t *sd_page_pool;
134 static struct lock_class_key sd_bio_compl_lkclass;
135
136 static const char *sd_cache_types[] = {
137         "write through", "none", "write back",
138         "write back, no read (daft)"
139 };
140
141 static void sd_set_flush_flag(struct scsi_disk *sdkp)
142 {
143         bool wc = false, fua = false;
144
145         if (sdkp->WCE) {
146                 wc = true;
147                 if (sdkp->DPOFUA)
148                         fua = true;
149         }
150
151         blk_queue_write_cache(sdkp->disk->queue, wc, fua);
152 }
153
154 static ssize_t
155 cache_type_store(struct device *dev, struct device_attribute *attr,
156                  const char *buf, size_t count)
157 {
158         int ct, rcd, wce, sp;
159         struct scsi_disk *sdkp = to_scsi_disk(dev);
160         struct scsi_device *sdp = sdkp->device;
161         char buffer[64];
162         char *buffer_data;
163         struct scsi_mode_data data;
164         struct scsi_sense_hdr sshdr;
165         static const char temp[] = "temporary ";
166         int len;
167
168         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
169                 /* no cache control on RBC devices; theoretically they
170                  * can do it, but there's probably so many exceptions
171                  * it's not worth the risk */
172                 return -EINVAL;
173
174         if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
175                 buf += sizeof(temp) - 1;
176                 sdkp->cache_override = 1;
177         } else {
178                 sdkp->cache_override = 0;
179         }
180
181         ct = sysfs_match_string(sd_cache_types, buf);
182         if (ct < 0)
183                 return -EINVAL;
184
185         rcd = ct & 0x01 ? 1 : 0;
186         wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
187
188         if (sdkp->cache_override) {
189                 sdkp->WCE = wce;
190                 sdkp->RCD = rcd;
191                 sd_set_flush_flag(sdkp);
192                 return count;
193         }
194
195         if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
196                             sdkp->max_retries, &data, NULL))
197                 return -EINVAL;
198         len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
199                   data.block_descriptor_length);
200         buffer_data = buffer + data.header_length +
201                 data.block_descriptor_length;
202         buffer_data[2] &= ~0x05;
203         buffer_data[2] |= wce << 2 | rcd;
204         sp = buffer_data[0] & 0x80 ? 1 : 0;
205         buffer_data[0] &= ~0x80;
206
207         /*
208          * Ensure WP, DPOFUA, and RESERVED fields are cleared in
209          * received mode parameter buffer before doing MODE SELECT.
210          */
211         data.device_specific = 0;
212
213         if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
214                              sdkp->max_retries, &data, &sshdr)) {
215                 if (scsi_sense_valid(&sshdr))
216                         sd_print_sense_hdr(sdkp, &sshdr);
217                 return -EINVAL;
218         }
219         sd_revalidate_disk(sdkp->disk);
220         return count;
221 }
222
223 static ssize_t
224 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
225                        char *buf)
226 {
227         struct scsi_disk *sdkp = to_scsi_disk(dev);
228         struct scsi_device *sdp = sdkp->device;
229
230         return sprintf(buf, "%u\n", sdp->manage_start_stop);
231 }
232
233 static ssize_t
234 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
235                         const char *buf, size_t count)
236 {
237         struct scsi_disk *sdkp = to_scsi_disk(dev);
238         struct scsi_device *sdp = sdkp->device;
239         bool v;
240
241         if (!capable(CAP_SYS_ADMIN))
242                 return -EACCES;
243
244         if (kstrtobool(buf, &v))
245                 return -EINVAL;
246
247         sdp->manage_start_stop = v;
248
249         return count;
250 }
251 static DEVICE_ATTR_RW(manage_start_stop);
252
253 static ssize_t
254 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
255 {
256         struct scsi_disk *sdkp = to_scsi_disk(dev);
257
258         return sprintf(buf, "%u\n", sdkp->device->allow_restart);
259 }
260
261 static ssize_t
262 allow_restart_store(struct device *dev, struct device_attribute *attr,
263                     const char *buf, size_t count)
264 {
265         bool v;
266         struct scsi_disk *sdkp = to_scsi_disk(dev);
267         struct scsi_device *sdp = sdkp->device;
268
269         if (!capable(CAP_SYS_ADMIN))
270                 return -EACCES;
271
272         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
273                 return -EINVAL;
274
275         if (kstrtobool(buf, &v))
276                 return -EINVAL;
277
278         sdp->allow_restart = v;
279
280         return count;
281 }
282 static DEVICE_ATTR_RW(allow_restart);
283
284 static ssize_t
285 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
286 {
287         struct scsi_disk *sdkp = to_scsi_disk(dev);
288         int ct = sdkp->RCD + 2*sdkp->WCE;
289
290         return sprintf(buf, "%s\n", sd_cache_types[ct]);
291 }
292 static DEVICE_ATTR_RW(cache_type);
293
294 static ssize_t
295 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
296 {
297         struct scsi_disk *sdkp = to_scsi_disk(dev);
298
299         return sprintf(buf, "%u\n", sdkp->DPOFUA);
300 }
301 static DEVICE_ATTR_RO(FUA);
302
303 static ssize_t
304 protection_type_show(struct device *dev, struct device_attribute *attr,
305                      char *buf)
306 {
307         struct scsi_disk *sdkp = to_scsi_disk(dev);
308
309         return sprintf(buf, "%u\n", sdkp->protection_type);
310 }
311
312 static ssize_t
313 protection_type_store(struct device *dev, struct device_attribute *attr,
314                       const char *buf, size_t count)
315 {
316         struct scsi_disk *sdkp = to_scsi_disk(dev);
317         unsigned int val;
318         int err;
319
320         if (!capable(CAP_SYS_ADMIN))
321                 return -EACCES;
322
323         err = kstrtouint(buf, 10, &val);
324
325         if (err)
326                 return err;
327
328         if (val <= T10_PI_TYPE3_PROTECTION)
329                 sdkp->protection_type = val;
330
331         return count;
332 }
333 static DEVICE_ATTR_RW(protection_type);
334
335 static ssize_t
336 protection_mode_show(struct device *dev, struct device_attribute *attr,
337                      char *buf)
338 {
339         struct scsi_disk *sdkp = to_scsi_disk(dev);
340         struct scsi_device *sdp = sdkp->device;
341         unsigned int dif, dix;
342
343         dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
344         dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
345
346         if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
347                 dif = 0;
348                 dix = 1;
349         }
350
351         if (!dif && !dix)
352                 return sprintf(buf, "none\n");
353
354         return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
355 }
356 static DEVICE_ATTR_RO(protection_mode);
357
358 static ssize_t
359 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
360 {
361         struct scsi_disk *sdkp = to_scsi_disk(dev);
362
363         return sprintf(buf, "%u\n", sdkp->ATO);
364 }
365 static DEVICE_ATTR_RO(app_tag_own);
366
367 static ssize_t
368 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
369                        char *buf)
370 {
371         struct scsi_disk *sdkp = to_scsi_disk(dev);
372
373         return sprintf(buf, "%u\n", sdkp->lbpme);
374 }
375 static DEVICE_ATTR_RO(thin_provisioning);
376
377 /* sysfs_match_string() requires dense arrays */
378 static const char *lbp_mode[] = {
379         [SD_LBP_FULL]           = "full",
380         [SD_LBP_UNMAP]          = "unmap",
381         [SD_LBP_WS16]           = "writesame_16",
382         [SD_LBP_WS10]           = "writesame_10",
383         [SD_LBP_ZERO]           = "writesame_zero",
384         [SD_LBP_DISABLE]        = "disabled",
385 };
386
387 static ssize_t
388 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
389                        char *buf)
390 {
391         struct scsi_disk *sdkp = to_scsi_disk(dev);
392
393         return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
394 }
395
396 static ssize_t
397 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
398                         const char *buf, size_t count)
399 {
400         struct scsi_disk *sdkp = to_scsi_disk(dev);
401         struct scsi_device *sdp = sdkp->device;
402         int mode;
403
404         if (!capable(CAP_SYS_ADMIN))
405                 return -EACCES;
406
407         if (sd_is_zoned(sdkp)) {
408                 sd_config_discard(sdkp, SD_LBP_DISABLE);
409                 return count;
410         }
411
412         if (sdp->type != TYPE_DISK)
413                 return -EINVAL;
414
415         mode = sysfs_match_string(lbp_mode, buf);
416         if (mode < 0)
417                 return -EINVAL;
418
419         sd_config_discard(sdkp, mode);
420
421         return count;
422 }
423 static DEVICE_ATTR_RW(provisioning_mode);
424
425 /* sysfs_match_string() requires dense arrays */
426 static const char *zeroing_mode[] = {
427         [SD_ZERO_WRITE]         = "write",
428         [SD_ZERO_WS]            = "writesame",
429         [SD_ZERO_WS16_UNMAP]    = "writesame_16_unmap",
430         [SD_ZERO_WS10_UNMAP]    = "writesame_10_unmap",
431 };
432
433 static ssize_t
434 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
435                   char *buf)
436 {
437         struct scsi_disk *sdkp = to_scsi_disk(dev);
438
439         return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
440 }
441
442 static ssize_t
443 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
444                    const char *buf, size_t count)
445 {
446         struct scsi_disk *sdkp = to_scsi_disk(dev);
447         int mode;
448
449         if (!capable(CAP_SYS_ADMIN))
450                 return -EACCES;
451
452         mode = sysfs_match_string(zeroing_mode, buf);
453         if (mode < 0)
454                 return -EINVAL;
455
456         sdkp->zeroing_mode = mode;
457
458         return count;
459 }
460 static DEVICE_ATTR_RW(zeroing_mode);
461
462 static ssize_t
463 max_medium_access_timeouts_show(struct device *dev,
464                                 struct device_attribute *attr, char *buf)
465 {
466         struct scsi_disk *sdkp = to_scsi_disk(dev);
467
468         return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
469 }
470
471 static ssize_t
472 max_medium_access_timeouts_store(struct device *dev,
473                                  struct device_attribute *attr, const char *buf,
474                                  size_t count)
475 {
476         struct scsi_disk *sdkp = to_scsi_disk(dev);
477         int err;
478
479         if (!capable(CAP_SYS_ADMIN))
480                 return -EACCES;
481
482         err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
483
484         return err ? err : count;
485 }
486 static DEVICE_ATTR_RW(max_medium_access_timeouts);
487
488 static ssize_t
489 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
490                            char *buf)
491 {
492         struct scsi_disk *sdkp = to_scsi_disk(dev);
493
494         return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
495 }
496
497 static ssize_t
498 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
499                             const char *buf, size_t count)
500 {
501         struct scsi_disk *sdkp = to_scsi_disk(dev);
502         struct scsi_device *sdp = sdkp->device;
503         unsigned long max;
504         int err;
505
506         if (!capable(CAP_SYS_ADMIN))
507                 return -EACCES;
508
509         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
510                 return -EINVAL;
511
512         err = kstrtoul(buf, 10, &max);
513
514         if (err)
515                 return err;
516
517         if (max == 0)
518                 sdp->no_write_same = 1;
519         else if (max <= SD_MAX_WS16_BLOCKS) {
520                 sdp->no_write_same = 0;
521                 sdkp->max_ws_blocks = max;
522         }
523
524         sd_config_write_same(sdkp);
525
526         return count;
527 }
528 static DEVICE_ATTR_RW(max_write_same_blocks);
529
530 static ssize_t
531 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
532 {
533         struct scsi_disk *sdkp = to_scsi_disk(dev);
534
535         if (sdkp->device->type == TYPE_ZBC)
536                 return sprintf(buf, "host-managed\n");
537         if (sdkp->zoned == 1)
538                 return sprintf(buf, "host-aware\n");
539         if (sdkp->zoned == 2)
540                 return sprintf(buf, "drive-managed\n");
541         return sprintf(buf, "none\n");
542 }
543 static DEVICE_ATTR_RO(zoned_cap);
544
545 static ssize_t
546 max_retries_store(struct device *dev, struct device_attribute *attr,
547                   const char *buf, size_t count)
548 {
549         struct scsi_disk *sdkp = to_scsi_disk(dev);
550         struct scsi_device *sdev = sdkp->device;
551         int retries, err;
552
553         err = kstrtoint(buf, 10, &retries);
554         if (err)
555                 return err;
556
557         if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
558                 sdkp->max_retries = retries;
559                 return count;
560         }
561
562         sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
563                     SD_MAX_RETRIES);
564         return -EINVAL;
565 }
566
567 static ssize_t
568 max_retries_show(struct device *dev, struct device_attribute *attr,
569                  char *buf)
570 {
571         struct scsi_disk *sdkp = to_scsi_disk(dev);
572
573         return sprintf(buf, "%d\n", sdkp->max_retries);
574 }
575
576 static DEVICE_ATTR_RW(max_retries);
577
578 static struct attribute *sd_disk_attrs[] = {
579         &dev_attr_cache_type.attr,
580         &dev_attr_FUA.attr,
581         &dev_attr_allow_restart.attr,
582         &dev_attr_manage_start_stop.attr,
583         &dev_attr_protection_type.attr,
584         &dev_attr_protection_mode.attr,
585         &dev_attr_app_tag_own.attr,
586         &dev_attr_thin_provisioning.attr,
587         &dev_attr_provisioning_mode.attr,
588         &dev_attr_zeroing_mode.attr,
589         &dev_attr_max_write_same_blocks.attr,
590         &dev_attr_max_medium_access_timeouts.attr,
591         &dev_attr_zoned_cap.attr,
592         &dev_attr_max_retries.attr,
593         NULL,
594 };
595 ATTRIBUTE_GROUPS(sd_disk);
596
597 static struct class sd_disk_class = {
598         .name           = "scsi_disk",
599         .owner          = THIS_MODULE,
600         .dev_release    = scsi_disk_release,
601         .dev_groups     = sd_disk_groups,
602 };
603
604 static const struct dev_pm_ops sd_pm_ops = {
605         .suspend                = sd_suspend_system,
606         .resume                 = sd_resume_system,
607         .poweroff               = sd_suspend_system,
608         .restore                = sd_resume_system,
609         .runtime_suspend        = sd_suspend_runtime,
610         .runtime_resume         = sd_resume_runtime,
611 };
612
613 static struct scsi_driver sd_template = {
614         .gendrv = {
615                 .name           = "sd",
616                 .owner          = THIS_MODULE,
617                 .probe          = sd_probe,
618                 .probe_type     = PROBE_PREFER_ASYNCHRONOUS,
619                 .remove         = sd_remove,
620                 .shutdown       = sd_shutdown,
621                 .pm             = &sd_pm_ops,
622         },
623         .rescan                 = sd_rescan,
624         .init_command           = sd_init_command,
625         .uninit_command         = sd_uninit_command,
626         .done                   = sd_done,
627         .eh_action              = sd_eh_action,
628         .eh_reset               = sd_eh_reset,
629 };
630
631 /*
632  * Don't request a new module, as that could deadlock in multipath
633  * environment.
634  */
635 static void sd_default_probe(dev_t devt)
636 {
637 }
638
639 /*
640  * Device no to disk mapping:
641  * 
642  *       major         disc2     disc  p1
643  *   |............|.............|....|....| <- dev_t
644  *    31        20 19          8 7  4 3  0
645  * 
646  * Inside a major, we have 16k disks, however mapped non-
647  * contiguously. The first 16 disks are for major0, the next
648  * ones with major1, ... Disk 256 is for major0 again, disk 272 
649  * for major1, ... 
650  * As we stay compatible with our numbering scheme, we can reuse 
651  * the well-know SCSI majors 8, 65--71, 136--143.
652  */
653 static int sd_major(int major_idx)
654 {
655         switch (major_idx) {
656         case 0:
657                 return SCSI_DISK0_MAJOR;
658         case 1 ... 7:
659                 return SCSI_DISK1_MAJOR + major_idx - 1;
660         case 8 ... 15:
661                 return SCSI_DISK8_MAJOR + major_idx - 8;
662         default:
663                 BUG();
664                 return 0;       /* shut up gcc */
665         }
666 }
667
668 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
669 {
670         struct scsi_disk *sdkp = NULL;
671
672         mutex_lock(&sd_ref_mutex);
673
674         if (disk->private_data) {
675                 sdkp = scsi_disk(disk);
676                 if (scsi_device_get(sdkp->device) == 0)
677                         get_device(&sdkp->dev);
678                 else
679                         sdkp = NULL;
680         }
681         mutex_unlock(&sd_ref_mutex);
682         return sdkp;
683 }
684
685 static void scsi_disk_put(struct scsi_disk *sdkp)
686 {
687         struct scsi_device *sdev = sdkp->device;
688
689         mutex_lock(&sd_ref_mutex);
690         put_device(&sdkp->dev);
691         scsi_device_put(sdev);
692         mutex_unlock(&sd_ref_mutex);
693 }
694
695 #ifdef CONFIG_BLK_SED_OPAL
696 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
697                 size_t len, bool send)
698 {
699         struct scsi_disk *sdkp = data;
700         struct scsi_device *sdev = sdkp->device;
701         u8 cdb[12] = { 0, };
702         int ret;
703
704         cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
705         cdb[1] = secp;
706         put_unaligned_be16(spsp, &cdb[2]);
707         put_unaligned_be32(len, &cdb[6]);
708
709         ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
710                 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
711                 RQF_PM, NULL);
712         return ret <= 0 ? ret : -EIO;
713 }
714 #endif /* CONFIG_BLK_SED_OPAL */
715
716 /*
717  * Look up the DIX operation based on whether the command is read or
718  * write and whether dix and dif are enabled.
719  */
720 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
721 {
722         /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
723         static const unsigned int ops[] = {     /* wrt dix dif */
724                 SCSI_PROT_NORMAL,               /*  0   0   0  */
725                 SCSI_PROT_READ_STRIP,           /*  0   0   1  */
726                 SCSI_PROT_READ_INSERT,          /*  0   1   0  */
727                 SCSI_PROT_READ_PASS,            /*  0   1   1  */
728                 SCSI_PROT_NORMAL,               /*  1   0   0  */
729                 SCSI_PROT_WRITE_INSERT,         /*  1   0   1  */
730                 SCSI_PROT_WRITE_STRIP,          /*  1   1   0  */
731                 SCSI_PROT_WRITE_PASS,           /*  1   1   1  */
732         };
733
734         return ops[write << 2 | dix << 1 | dif];
735 }
736
737 /*
738  * Returns a mask of the protection flags that are valid for a given DIX
739  * operation.
740  */
741 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
742 {
743         static const unsigned int flag_mask[] = {
744                 [SCSI_PROT_NORMAL]              = 0,
745
746                 [SCSI_PROT_READ_STRIP]          = SCSI_PROT_TRANSFER_PI |
747                                                   SCSI_PROT_GUARD_CHECK |
748                                                   SCSI_PROT_REF_CHECK |
749                                                   SCSI_PROT_REF_INCREMENT,
750
751                 [SCSI_PROT_READ_INSERT]         = SCSI_PROT_REF_INCREMENT |
752                                                   SCSI_PROT_IP_CHECKSUM,
753
754                 [SCSI_PROT_READ_PASS]           = SCSI_PROT_TRANSFER_PI |
755                                                   SCSI_PROT_GUARD_CHECK |
756                                                   SCSI_PROT_REF_CHECK |
757                                                   SCSI_PROT_REF_INCREMENT |
758                                                   SCSI_PROT_IP_CHECKSUM,
759
760                 [SCSI_PROT_WRITE_INSERT]        = SCSI_PROT_TRANSFER_PI |
761                                                   SCSI_PROT_REF_INCREMENT,
762
763                 [SCSI_PROT_WRITE_STRIP]         = SCSI_PROT_GUARD_CHECK |
764                                                   SCSI_PROT_REF_CHECK |
765                                                   SCSI_PROT_REF_INCREMENT |
766                                                   SCSI_PROT_IP_CHECKSUM,
767
768                 [SCSI_PROT_WRITE_PASS]          = SCSI_PROT_TRANSFER_PI |
769                                                   SCSI_PROT_GUARD_CHECK |
770                                                   SCSI_PROT_REF_CHECK |
771                                                   SCSI_PROT_REF_INCREMENT |
772                                                   SCSI_PROT_IP_CHECKSUM,
773         };
774
775         return flag_mask[prot_op];
776 }
777
778 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
779                                            unsigned int dix, unsigned int dif)
780 {
781         struct request *rq = scsi_cmd_to_rq(scmd);
782         struct bio *bio = rq->bio;
783         unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
784         unsigned int protect = 0;
785
786         if (dix) {                              /* DIX Type 0, 1, 2, 3 */
787                 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
788                         scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
789
790                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
791                         scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
792         }
793
794         if (dif != T10_PI_TYPE3_PROTECTION) {   /* DIX/DIF Type 0, 1, 2 */
795                 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
796
797                 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
798                         scmd->prot_flags |= SCSI_PROT_REF_CHECK;
799         }
800
801         if (dif) {                              /* DIX/DIF Type 1, 2, 3 */
802                 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
803
804                 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
805                         protect = 3 << 5;       /* Disable target PI checking */
806                 else
807                         protect = 1 << 5;       /* Enable target PI checking */
808         }
809
810         scsi_set_prot_op(scmd, prot_op);
811         scsi_set_prot_type(scmd, dif);
812         scmd->prot_flags &= sd_prot_flag_mask(prot_op);
813
814         return protect;
815 }
816
817 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
818 {
819         struct request_queue *q = sdkp->disk->queue;
820         unsigned int logical_block_size = sdkp->device->sector_size;
821         unsigned int max_blocks = 0;
822
823         q->limits.discard_alignment =
824                 sdkp->unmap_alignment * logical_block_size;
825         q->limits.discard_granularity =
826                 max(sdkp->physical_block_size,
827                     sdkp->unmap_granularity * logical_block_size);
828         sdkp->provisioning_mode = mode;
829
830         switch (mode) {
831
832         case SD_LBP_FULL:
833         case SD_LBP_DISABLE:
834                 blk_queue_max_discard_sectors(q, 0);
835                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
836                 return;
837
838         case SD_LBP_UNMAP:
839                 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
840                                           (u32)SD_MAX_WS16_BLOCKS);
841                 break;
842
843         case SD_LBP_WS16:
844                 if (sdkp->device->unmap_limit_for_ws)
845                         max_blocks = sdkp->max_unmap_blocks;
846                 else
847                         max_blocks = sdkp->max_ws_blocks;
848
849                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
850                 break;
851
852         case SD_LBP_WS10:
853                 if (sdkp->device->unmap_limit_for_ws)
854                         max_blocks = sdkp->max_unmap_blocks;
855                 else
856                         max_blocks = sdkp->max_ws_blocks;
857
858                 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
859                 break;
860
861         case SD_LBP_ZERO:
862                 max_blocks = min_not_zero(sdkp->max_ws_blocks,
863                                           (u32)SD_MAX_WS10_BLOCKS);
864                 break;
865         }
866
867         blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
868         blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
869 }
870
871 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
872 {
873         struct scsi_device *sdp = cmd->device;
874         struct request *rq = scsi_cmd_to_rq(cmd);
875         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
876         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
877         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
878         unsigned int data_len = 24;
879         char *buf;
880
881         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
882         if (!rq->special_vec.bv_page)
883                 return BLK_STS_RESOURCE;
884         clear_highpage(rq->special_vec.bv_page);
885         rq->special_vec.bv_offset = 0;
886         rq->special_vec.bv_len = data_len;
887         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
888
889         cmd->cmd_len = 10;
890         cmd->cmnd[0] = UNMAP;
891         cmd->cmnd[8] = 24;
892
893         buf = bvec_virt(&rq->special_vec);
894         put_unaligned_be16(6 + 16, &buf[0]);
895         put_unaligned_be16(16, &buf[2]);
896         put_unaligned_be64(lba, &buf[8]);
897         put_unaligned_be32(nr_blocks, &buf[16]);
898
899         cmd->allowed = sdkp->max_retries;
900         cmd->transfersize = data_len;
901         rq->timeout = SD_TIMEOUT;
902
903         return scsi_alloc_sgtables(cmd);
904 }
905
906 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
907                 bool unmap)
908 {
909         struct scsi_device *sdp = cmd->device;
910         struct request *rq = scsi_cmd_to_rq(cmd);
911         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
912         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
913         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
914         u32 data_len = sdp->sector_size;
915
916         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
917         if (!rq->special_vec.bv_page)
918                 return BLK_STS_RESOURCE;
919         clear_highpage(rq->special_vec.bv_page);
920         rq->special_vec.bv_offset = 0;
921         rq->special_vec.bv_len = data_len;
922         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
923
924         cmd->cmd_len = 16;
925         cmd->cmnd[0] = WRITE_SAME_16;
926         if (unmap)
927                 cmd->cmnd[1] = 0x8; /* UNMAP */
928         put_unaligned_be64(lba, &cmd->cmnd[2]);
929         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
930
931         cmd->allowed = sdkp->max_retries;
932         cmd->transfersize = data_len;
933         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
934
935         return scsi_alloc_sgtables(cmd);
936 }
937
938 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
939                 bool unmap)
940 {
941         struct scsi_device *sdp = cmd->device;
942         struct request *rq = scsi_cmd_to_rq(cmd);
943         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
944         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
945         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
946         u32 data_len = sdp->sector_size;
947
948         rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
949         if (!rq->special_vec.bv_page)
950                 return BLK_STS_RESOURCE;
951         clear_highpage(rq->special_vec.bv_page);
952         rq->special_vec.bv_offset = 0;
953         rq->special_vec.bv_len = data_len;
954         rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
955
956         cmd->cmd_len = 10;
957         cmd->cmnd[0] = WRITE_SAME;
958         if (unmap)
959                 cmd->cmnd[1] = 0x8; /* UNMAP */
960         put_unaligned_be32(lba, &cmd->cmnd[2]);
961         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
962
963         cmd->allowed = sdkp->max_retries;
964         cmd->transfersize = data_len;
965         rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
966
967         return scsi_alloc_sgtables(cmd);
968 }
969
970 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
971 {
972         struct request *rq = scsi_cmd_to_rq(cmd);
973         struct scsi_device *sdp = cmd->device;
974         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
975         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
976         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
977
978         if (!(rq->cmd_flags & REQ_NOUNMAP)) {
979                 switch (sdkp->zeroing_mode) {
980                 case SD_ZERO_WS16_UNMAP:
981                         return sd_setup_write_same16_cmnd(cmd, true);
982                 case SD_ZERO_WS10_UNMAP:
983                         return sd_setup_write_same10_cmnd(cmd, true);
984                 }
985         }
986
987         if (sdp->no_write_same) {
988                 rq->rq_flags |= RQF_QUIET;
989                 return BLK_STS_TARGET;
990         }
991
992         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
993                 return sd_setup_write_same16_cmnd(cmd, false);
994
995         return sd_setup_write_same10_cmnd(cmd, false);
996 }
997
998 static void sd_config_write_same(struct scsi_disk *sdkp)
999 {
1000         struct request_queue *q = sdkp->disk->queue;
1001         unsigned int logical_block_size = sdkp->device->sector_size;
1002
1003         if (sdkp->device->no_write_same) {
1004                 sdkp->max_ws_blocks = 0;
1005                 goto out;
1006         }
1007
1008         /* Some devices can not handle block counts above 0xffff despite
1009          * supporting WRITE SAME(16). Consequently we default to 64k
1010          * blocks per I/O unless the device explicitly advertises a
1011          * bigger limit.
1012          */
1013         if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1014                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1015                                                    (u32)SD_MAX_WS16_BLOCKS);
1016         else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1017                 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018                                                    (u32)SD_MAX_WS10_BLOCKS);
1019         else {
1020                 sdkp->device->no_write_same = 1;
1021                 sdkp->max_ws_blocks = 0;
1022         }
1023
1024         if (sdkp->lbprz && sdkp->lbpws)
1025                 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1026         else if (sdkp->lbprz && sdkp->lbpws10)
1027                 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1028         else if (sdkp->max_ws_blocks)
1029                 sdkp->zeroing_mode = SD_ZERO_WS;
1030         else
1031                 sdkp->zeroing_mode = SD_ZERO_WRITE;
1032
1033         if (sdkp->max_ws_blocks &&
1034             sdkp->physical_block_size > logical_block_size) {
1035                 /*
1036                  * Reporting a maximum number of blocks that is not aligned
1037                  * on the device physical size would cause a large write same
1038                  * request to be split into physically unaligned chunks by
1039                  * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1040                  * even if the caller of these functions took care to align the
1041                  * large request. So make sure the maximum reported is aligned
1042                  * to the device physical block size. This is only an optional
1043                  * optimization for regular disks, but this is mandatory to
1044                  * avoid failure of large write same requests directed at
1045                  * sequential write required zones of host-managed ZBC disks.
1046                  */
1047                 sdkp->max_ws_blocks =
1048                         round_down(sdkp->max_ws_blocks,
1049                                    bytes_to_logical(sdkp->device,
1050                                                     sdkp->physical_block_size));
1051         }
1052
1053 out:
1054         blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1055                                          (logical_block_size >> 9));
1056         blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1057                                          (logical_block_size >> 9));
1058 }
1059
1060 /**
1061  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1062  * @cmd: command to prepare
1063  *
1064  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1065  * the preference indicated by the target device.
1066  **/
1067 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1068 {
1069         struct request *rq = scsi_cmd_to_rq(cmd);
1070         struct scsi_device *sdp = cmd->device;
1071         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1072         struct bio *bio = rq->bio;
1073         u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1074         u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1075         blk_status_t ret;
1076
1077         if (sdkp->device->no_write_same)
1078                 return BLK_STS_TARGET;
1079
1080         BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1081
1082         rq->timeout = SD_WRITE_SAME_TIMEOUT;
1083
1084         if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1085                 cmd->cmd_len = 16;
1086                 cmd->cmnd[0] = WRITE_SAME_16;
1087                 put_unaligned_be64(lba, &cmd->cmnd[2]);
1088                 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1089         } else {
1090                 cmd->cmd_len = 10;
1091                 cmd->cmnd[0] = WRITE_SAME;
1092                 put_unaligned_be32(lba, &cmd->cmnd[2]);
1093                 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1094         }
1095
1096         cmd->transfersize = sdp->sector_size;
1097         cmd->allowed = sdkp->max_retries;
1098
1099         /*
1100          * For WRITE SAME the data transferred via the DATA OUT buffer is
1101          * different from the amount of data actually written to the target.
1102          *
1103          * We set up __data_len to the amount of data transferred via the
1104          * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1105          * to transfer a single sector of data first, but then reset it to
1106          * the amount of data to be written right after so that the I/O path
1107          * knows how much to actually write.
1108          */
1109         rq->__data_len = sdp->sector_size;
1110         ret = scsi_alloc_sgtables(cmd);
1111         rq->__data_len = blk_rq_bytes(rq);
1112
1113         return ret;
1114 }
1115
1116 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1117 {
1118         struct request *rq = scsi_cmd_to_rq(cmd);
1119         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1120
1121         /* flush requests don't perform I/O, zero the S/G table */
1122         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1123
1124         cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1125         cmd->cmd_len = 10;
1126         cmd->transfersize = 0;
1127         cmd->allowed = sdkp->max_retries;
1128
1129         rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1130         return BLK_STS_OK;
1131 }
1132
1133 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1134                                        sector_t lba, unsigned int nr_blocks,
1135                                        unsigned char flags)
1136 {
1137         cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1138         if (unlikely(cmd->cmnd == NULL))
1139                 return BLK_STS_RESOURCE;
1140
1141         cmd->cmd_len = SD_EXT_CDB_SIZE;
1142         memset(cmd->cmnd, 0, cmd->cmd_len);
1143
1144         cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1145         cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1146         cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1147         cmd->cmnd[10] = flags;
1148         put_unaligned_be64(lba, &cmd->cmnd[12]);
1149         put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1150         put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1151
1152         return BLK_STS_OK;
1153 }
1154
1155 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1156                                        sector_t lba, unsigned int nr_blocks,
1157                                        unsigned char flags)
1158 {
1159         cmd->cmd_len  = 16;
1160         cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1161         cmd->cmnd[1]  = flags;
1162         cmd->cmnd[14] = 0;
1163         cmd->cmnd[15] = 0;
1164         put_unaligned_be64(lba, &cmd->cmnd[2]);
1165         put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1166
1167         return BLK_STS_OK;
1168 }
1169
1170 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1171                                        sector_t lba, unsigned int nr_blocks,
1172                                        unsigned char flags)
1173 {
1174         cmd->cmd_len = 10;
1175         cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1176         cmd->cmnd[1] = flags;
1177         cmd->cmnd[6] = 0;
1178         cmd->cmnd[9] = 0;
1179         put_unaligned_be32(lba, &cmd->cmnd[2]);
1180         put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1181
1182         return BLK_STS_OK;
1183 }
1184
1185 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1186                                       sector_t lba, unsigned int nr_blocks,
1187                                       unsigned char flags)
1188 {
1189         /* Avoid that 0 blocks gets translated into 256 blocks. */
1190         if (WARN_ON_ONCE(nr_blocks == 0))
1191                 return BLK_STS_IOERR;
1192
1193         if (unlikely(flags & 0x8)) {
1194                 /*
1195                  * This happens only if this drive failed 10byte rw
1196                  * command with ILLEGAL_REQUEST during operation and
1197                  * thus turned off use_10_for_rw.
1198                  */
1199                 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1200                 return BLK_STS_IOERR;
1201         }
1202
1203         cmd->cmd_len = 6;
1204         cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1205         cmd->cmnd[1] = (lba >> 16) & 0x1f;
1206         cmd->cmnd[2] = (lba >> 8) & 0xff;
1207         cmd->cmnd[3] = lba & 0xff;
1208         cmd->cmnd[4] = nr_blocks;
1209         cmd->cmnd[5] = 0;
1210
1211         return BLK_STS_OK;
1212 }
1213
1214 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1215 {
1216         struct request *rq = scsi_cmd_to_rq(cmd);
1217         struct scsi_device *sdp = cmd->device;
1218         struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1219         sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1220         sector_t threshold;
1221         unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1222         unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1223         bool write = rq_data_dir(rq) == WRITE;
1224         unsigned char protect, fua;
1225         blk_status_t ret;
1226         unsigned int dif;
1227         bool dix;
1228
1229         ret = scsi_alloc_sgtables(cmd);
1230         if (ret != BLK_STS_OK)
1231                 return ret;
1232
1233         ret = BLK_STS_IOERR;
1234         if (!scsi_device_online(sdp) || sdp->changed) {
1235                 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1236                 goto fail;
1237         }
1238
1239         if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1240                 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1241                 goto fail;
1242         }
1243
1244         if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1245                 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1246                 goto fail;
1247         }
1248
1249         /*
1250          * Some SD card readers can't handle accesses which touch the
1251          * last one or two logical blocks. Split accesses as needed.
1252          */
1253         threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1254
1255         if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1256                 if (lba < threshold) {
1257                         /* Access up to the threshold but not beyond */
1258                         nr_blocks = threshold - lba;
1259                 } else {
1260                         /* Access only a single logical block */
1261                         nr_blocks = 1;
1262                 }
1263         }
1264
1265         if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1266                 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1267                 if (ret)
1268                         goto fail;
1269         }
1270
1271         fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1272         dix = scsi_prot_sg_count(cmd);
1273         dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1274
1275         if (dif || dix)
1276                 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1277         else
1278                 protect = 0;
1279
1280         if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1281                 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1282                                          protect | fua);
1283         } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1284                 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1285                                          protect | fua);
1286         } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1287                    sdp->use_10_for_rw || protect) {
1288                 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1289                                          protect | fua);
1290         } else {
1291                 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1292                                         protect | fua);
1293         }
1294
1295         if (unlikely(ret != BLK_STS_OK))
1296                 goto fail;
1297
1298         /*
1299          * We shouldn't disconnect in the middle of a sector, so with a dumb
1300          * host adapter, it's safe to assume that we can at least transfer
1301          * this many bytes between each connect / disconnect.
1302          */
1303         cmd->transfersize = sdp->sector_size;
1304         cmd->underflow = nr_blocks << 9;
1305         cmd->allowed = sdkp->max_retries;
1306         cmd->sdb.length = nr_blocks * sdp->sector_size;
1307
1308         SCSI_LOG_HLQUEUE(1,
1309                          scmd_printk(KERN_INFO, cmd,
1310                                      "%s: block=%llu, count=%d\n", __func__,
1311                                      (unsigned long long)blk_rq_pos(rq),
1312                                      blk_rq_sectors(rq)));
1313         SCSI_LOG_HLQUEUE(2,
1314                          scmd_printk(KERN_INFO, cmd,
1315                                      "%s %d/%u 512 byte blocks.\n",
1316                                      write ? "writing" : "reading", nr_blocks,
1317                                      blk_rq_sectors(rq)));
1318
1319         /*
1320          * This indicates that the command is ready from our end to be queued.
1321          */
1322         return BLK_STS_OK;
1323 fail:
1324         scsi_free_sgtables(cmd);
1325         return ret;
1326 }
1327
1328 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1329 {
1330         struct request *rq = scsi_cmd_to_rq(cmd);
1331
1332         switch (req_op(rq)) {
1333         case REQ_OP_DISCARD:
1334                 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1335                 case SD_LBP_UNMAP:
1336                         return sd_setup_unmap_cmnd(cmd);
1337                 case SD_LBP_WS16:
1338                         return sd_setup_write_same16_cmnd(cmd, true);
1339                 case SD_LBP_WS10:
1340                         return sd_setup_write_same10_cmnd(cmd, true);
1341                 case SD_LBP_ZERO:
1342                         return sd_setup_write_same10_cmnd(cmd, false);
1343                 default:
1344                         return BLK_STS_TARGET;
1345                 }
1346         case REQ_OP_WRITE_ZEROES:
1347                 return sd_setup_write_zeroes_cmnd(cmd);
1348         case REQ_OP_WRITE_SAME:
1349                 return sd_setup_write_same_cmnd(cmd);
1350         case REQ_OP_FLUSH:
1351                 return sd_setup_flush_cmnd(cmd);
1352         case REQ_OP_READ:
1353         case REQ_OP_WRITE:
1354         case REQ_OP_ZONE_APPEND:
1355                 return sd_setup_read_write_cmnd(cmd);
1356         case REQ_OP_ZONE_RESET:
1357                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1358                                                    false);
1359         case REQ_OP_ZONE_RESET_ALL:
1360                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1361                                                    true);
1362         case REQ_OP_ZONE_OPEN:
1363                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1364         case REQ_OP_ZONE_CLOSE:
1365                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1366         case REQ_OP_ZONE_FINISH:
1367                 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1368         default:
1369                 WARN_ON_ONCE(1);
1370                 return BLK_STS_NOTSUPP;
1371         }
1372 }
1373
1374 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1375 {
1376         struct request *rq = scsi_cmd_to_rq(SCpnt);
1377         u8 *cmnd;
1378
1379         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1380                 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1381
1382         if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1383                 cmnd = SCpnt->cmnd;
1384                 SCpnt->cmnd = NULL;
1385                 SCpnt->cmd_len = 0;
1386                 mempool_free(cmnd, sd_cdb_pool);
1387         }
1388 }
1389
1390 static bool sd_need_revalidate(struct block_device *bdev,
1391                 struct scsi_disk *sdkp)
1392 {
1393         if (sdkp->device->removable || sdkp->write_prot) {
1394                 if (bdev_check_media_change(bdev))
1395                         return true;
1396         }
1397
1398         /*
1399          * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1400          * nothing to do with partitions, BLKRRPART is used to force a full
1401          * revalidate after things like a format for historical reasons.
1402          */
1403         return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1404 }
1405
1406 /**
1407  *      sd_open - open a scsi disk device
1408  *      @bdev: Block device of the scsi disk to open
1409  *      @mode: FMODE_* mask
1410  *
1411  *      Returns 0 if successful. Returns a negated errno value in case 
1412  *      of error.
1413  *
1414  *      Note: This can be called from a user context (e.g. fsck(1) )
1415  *      or from within the kernel (e.g. as a result of a mount(1) ).
1416  *      In the latter case @inode and @filp carry an abridged amount
1417  *      of information as noted above.
1418  *
1419  *      Locking: called with bdev->bd_disk->open_mutex held.
1420  **/
1421 static int sd_open(struct block_device *bdev, fmode_t mode)
1422 {
1423         struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1424         struct scsi_device *sdev;
1425         int retval;
1426
1427         if (!sdkp)
1428                 return -ENXIO;
1429
1430         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1431
1432         sdev = sdkp->device;
1433
1434         /*
1435          * If the device is in error recovery, wait until it is done.
1436          * If the device is offline, then disallow any access to it.
1437          */
1438         retval = -ENXIO;
1439         if (!scsi_block_when_processing_errors(sdev))
1440                 goto error_out;
1441
1442         if (sd_need_revalidate(bdev, sdkp))
1443                 sd_revalidate_disk(bdev->bd_disk);
1444
1445         /*
1446          * If the drive is empty, just let the open fail.
1447          */
1448         retval = -ENOMEDIUM;
1449         if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1450                 goto error_out;
1451
1452         /*
1453          * If the device has the write protect tab set, have the open fail
1454          * if the user expects to be able to write to the thing.
1455          */
1456         retval = -EROFS;
1457         if (sdkp->write_prot && (mode & FMODE_WRITE))
1458                 goto error_out;
1459
1460         /*
1461          * It is possible that the disk changing stuff resulted in
1462          * the device being taken offline.  If this is the case,
1463          * report this to the user, and don't pretend that the
1464          * open actually succeeded.
1465          */
1466         retval = -ENXIO;
1467         if (!scsi_device_online(sdev))
1468                 goto error_out;
1469
1470         if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1471                 if (scsi_block_when_processing_errors(sdev))
1472                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1473         }
1474
1475         return 0;
1476
1477 error_out:
1478         scsi_disk_put(sdkp);
1479         return retval;  
1480 }
1481
1482 /**
1483  *      sd_release - invoked when the (last) close(2) is called on this
1484  *      scsi disk.
1485  *      @disk: disk to release
1486  *      @mode: FMODE_* mask
1487  *
1488  *      Returns 0. 
1489  *
1490  *      Note: may block (uninterruptible) if error recovery is underway
1491  *      on this disk.
1492  *
1493  *      Locking: called with bdev->bd_disk->open_mutex held.
1494  **/
1495 static void sd_release(struct gendisk *disk, fmode_t mode)
1496 {
1497         struct scsi_disk *sdkp = scsi_disk(disk);
1498         struct scsi_device *sdev = sdkp->device;
1499
1500         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1501
1502         if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1503                 if (scsi_block_when_processing_errors(sdev))
1504                         scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1505         }
1506
1507         scsi_disk_put(sdkp);
1508 }
1509
1510 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1511 {
1512         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1513         struct scsi_device *sdp = sdkp->device;
1514         struct Scsi_Host *host = sdp->host;
1515         sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1516         int diskinfo[4];
1517
1518         /* default to most commonly used values */
1519         diskinfo[0] = 0x40;     /* 1 << 6 */
1520         diskinfo[1] = 0x20;     /* 1 << 5 */
1521         diskinfo[2] = capacity >> 11;
1522
1523         /* override with calculated, extended default, or driver values */
1524         if (host->hostt->bios_param)
1525                 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1526         else
1527                 scsicam_bios_param(bdev, capacity, diskinfo);
1528
1529         geo->heads = diskinfo[0];
1530         geo->sectors = diskinfo[1];
1531         geo->cylinders = diskinfo[2];
1532         return 0;
1533 }
1534
1535 /**
1536  *      sd_ioctl - process an ioctl
1537  *      @bdev: target block device
1538  *      @mode: FMODE_* mask
1539  *      @cmd: ioctl command number
1540  *      @arg: this is third argument given to ioctl(2) system call.
1541  *      Often contains a pointer.
1542  *
1543  *      Returns 0 if successful (some ioctls return positive numbers on
1544  *      success as well). Returns a negated errno value in case of error.
1545  *
1546  *      Note: most ioctls are forward onto the block subsystem or further
1547  *      down in the scsi subsystem.
1548  **/
1549 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1550                     unsigned int cmd, unsigned long arg)
1551 {
1552         struct gendisk *disk = bdev->bd_disk;
1553         struct scsi_disk *sdkp = scsi_disk(disk);
1554         struct scsi_device *sdp = sdkp->device;
1555         void __user *p = (void __user *)arg;
1556         int error;
1557     
1558         SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1559                                     "cmd=0x%x\n", disk->disk_name, cmd));
1560
1561         if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1562                 return -ENOIOCTLCMD;
1563
1564         /*
1565          * If we are in the middle of error recovery, don't let anyone
1566          * else try and use this device.  Also, if error recovery fails, it
1567          * may try and take the device offline, in which case all further
1568          * access to the device is prohibited.
1569          */
1570         error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1571                         (mode & FMODE_NDELAY) != 0);
1572         if (error)
1573                 return error;
1574
1575         if (is_sed_ioctl(cmd))
1576                 return sed_ioctl(sdkp->opal_dev, cmd, p);
1577         return scsi_ioctl(sdp, disk, mode, cmd, p);
1578 }
1579
1580 static void set_media_not_present(struct scsi_disk *sdkp)
1581 {
1582         if (sdkp->media_present)
1583                 sdkp->device->changed = 1;
1584
1585         if (sdkp->device->removable) {
1586                 sdkp->media_present = 0;
1587                 sdkp->capacity = 0;
1588         }
1589 }
1590
1591 static int media_not_present(struct scsi_disk *sdkp,
1592                              struct scsi_sense_hdr *sshdr)
1593 {
1594         if (!scsi_sense_valid(sshdr))
1595                 return 0;
1596
1597         /* not invoked for commands that could return deferred errors */
1598         switch (sshdr->sense_key) {
1599         case UNIT_ATTENTION:
1600         case NOT_READY:
1601                 /* medium not present */
1602                 if (sshdr->asc == 0x3A) {
1603                         set_media_not_present(sdkp);
1604                         return 1;
1605                 }
1606         }
1607         return 0;
1608 }
1609
1610 /**
1611  *      sd_check_events - check media events
1612  *      @disk: kernel device descriptor
1613  *      @clearing: disk events currently being cleared
1614  *
1615  *      Returns mask of DISK_EVENT_*.
1616  *
1617  *      Note: this function is invoked from the block subsystem.
1618  **/
1619 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1620 {
1621         struct scsi_disk *sdkp = scsi_disk_get(disk);
1622         struct scsi_device *sdp;
1623         int retval;
1624         bool disk_changed;
1625
1626         if (!sdkp)
1627                 return 0;
1628
1629         sdp = sdkp->device;
1630         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1631
1632         /*
1633          * If the device is offline, don't send any commands - just pretend as
1634          * if the command failed.  If the device ever comes back online, we
1635          * can deal with it then.  It is only because of unrecoverable errors
1636          * that we would ever take a device offline in the first place.
1637          */
1638         if (!scsi_device_online(sdp)) {
1639                 set_media_not_present(sdkp);
1640                 goto out;
1641         }
1642
1643         /*
1644          * Using TEST_UNIT_READY enables differentiation between drive with
1645          * no cartridge loaded - NOT READY, drive with changed cartridge -
1646          * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1647          *
1648          * Drives that auto spin down. eg iomega jaz 1G, will be started
1649          * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1650          * sd_revalidate() is called.
1651          */
1652         if (scsi_block_when_processing_errors(sdp)) {
1653                 struct scsi_sense_hdr sshdr = { 0, };
1654
1655                 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1656                                               &sshdr);
1657
1658                 /* failed to execute TUR, assume media not present */
1659                 if (retval < 0 || host_byte(retval)) {
1660                         set_media_not_present(sdkp);
1661                         goto out;
1662                 }
1663
1664                 if (media_not_present(sdkp, &sshdr))
1665                         goto out;
1666         }
1667
1668         /*
1669          * For removable scsi disk we have to recognise the presence
1670          * of a disk in the drive.
1671          */
1672         if (!sdkp->media_present)
1673                 sdp->changed = 1;
1674         sdkp->media_present = 1;
1675 out:
1676         /*
1677          * sdp->changed is set under the following conditions:
1678          *
1679          *      Medium present state has changed in either direction.
1680          *      Device has indicated UNIT_ATTENTION.
1681          */
1682         disk_changed = sdp->changed;
1683         sdp->changed = 0;
1684         scsi_disk_put(sdkp);
1685         return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1686 }
1687
1688 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1689 {
1690         int retries, res;
1691         struct scsi_device *sdp = sdkp->device;
1692         const int timeout = sdp->request_queue->rq_timeout
1693                 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1694         struct scsi_sense_hdr my_sshdr;
1695
1696         if (!scsi_device_online(sdp))
1697                 return -ENODEV;
1698
1699         /* caller might not be interested in sense, but we need it */
1700         if (!sshdr)
1701                 sshdr = &my_sshdr;
1702
1703         for (retries = 3; retries > 0; --retries) {
1704                 unsigned char cmd[10] = { 0 };
1705
1706                 cmd[0] = SYNCHRONIZE_CACHE;
1707                 /*
1708                  * Leave the rest of the command zero to indicate
1709                  * flush everything.
1710                  */
1711                 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1712                                 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1713                 if (res == 0)
1714                         break;
1715         }
1716
1717         if (res) {
1718                 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1719
1720                 if (res < 0)
1721                         return res;
1722
1723                 if (scsi_status_is_check_condition(res) &&
1724                     scsi_sense_valid(sshdr)) {
1725                         sd_print_sense_hdr(sdkp, sshdr);
1726
1727                         /* we need to evaluate the error return  */
1728                         if (sshdr->asc == 0x3a ||       /* medium not present */
1729                             sshdr->asc == 0x20 ||       /* invalid command */
1730                             (sshdr->asc == 0x74 && sshdr->ascq == 0x71))        /* drive is password locked */
1731                                 /* this is no error here */
1732                                 return 0;
1733                 }
1734
1735                 switch (host_byte(res)) {
1736                 /* ignore errors due to racing a disconnection */
1737                 case DID_BAD_TARGET:
1738                 case DID_NO_CONNECT:
1739                         return 0;
1740                 /* signal the upper layer it might try again */
1741                 case DID_BUS_BUSY:
1742                 case DID_IMM_RETRY:
1743                 case DID_REQUEUE:
1744                 case DID_SOFT_ERROR:
1745                         return -EBUSY;
1746                 default:
1747                         return -EIO;
1748                 }
1749         }
1750         return 0;
1751 }
1752
1753 static void sd_rescan(struct device *dev)
1754 {
1755         struct scsi_disk *sdkp = dev_get_drvdata(dev);
1756
1757         sd_revalidate_disk(sdkp->disk);
1758 }
1759
1760 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1761                 enum blk_unique_id type)
1762 {
1763         struct scsi_device *sdev = scsi_disk(disk)->device;
1764         const struct scsi_vpd *vpd;
1765         const unsigned char *d;
1766         int ret = -ENXIO, len;
1767
1768         rcu_read_lock();
1769         vpd = rcu_dereference(sdev->vpd_pg83);
1770         if (!vpd)
1771                 goto out_unlock;
1772
1773         ret = -EINVAL;
1774         for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1775                 /* we only care about designators with LU association */
1776                 if (((d[1] >> 4) & 0x3) != 0x00)
1777                         continue;
1778                 if ((d[1] & 0xf) != type)
1779                         continue;
1780
1781                 /*
1782                  * Only exit early if a 16-byte descriptor was found.  Otherwise
1783                  * keep looking as one with more entropy might still show up.
1784                  */
1785                 len = d[3];
1786                 if (len != 8 && len != 12 && len != 16)
1787                         continue;
1788                 ret = len;
1789                 memcpy(id, d + 4, len);
1790                 if (len == 16)
1791                         break;
1792         }
1793 out_unlock:
1794         rcu_read_unlock();
1795         return ret;
1796 }
1797
1798 static char sd_pr_type(enum pr_type type)
1799 {
1800         switch (type) {
1801         case PR_WRITE_EXCLUSIVE:
1802                 return 0x01;
1803         case PR_EXCLUSIVE_ACCESS:
1804                 return 0x03;
1805         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1806                 return 0x05;
1807         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1808                 return 0x06;
1809         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1810                 return 0x07;
1811         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1812                 return 0x08;
1813         default:
1814                 return 0;
1815         }
1816 };
1817
1818 static int sd_pr_command(struct block_device *bdev, u8 sa,
1819                 u64 key, u64 sa_key, u8 type, u8 flags)
1820 {
1821         struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1822         struct scsi_device *sdev = sdkp->device;
1823         struct scsi_sense_hdr sshdr;
1824         int result;
1825         u8 cmd[16] = { 0, };
1826         u8 data[24] = { 0, };
1827
1828         cmd[0] = PERSISTENT_RESERVE_OUT;
1829         cmd[1] = sa;
1830         cmd[2] = type;
1831         put_unaligned_be32(sizeof(data), &cmd[5]);
1832
1833         put_unaligned_be64(key, &data[0]);
1834         put_unaligned_be64(sa_key, &data[8]);
1835         data[20] = flags;
1836
1837         result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1838                         &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1839
1840         if (scsi_status_is_check_condition(result) &&
1841             scsi_sense_valid(&sshdr)) {
1842                 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1843                 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1844         }
1845
1846         return result;
1847 }
1848
1849 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1850                 u32 flags)
1851 {
1852         if (flags & ~PR_FL_IGNORE_KEY)
1853                 return -EOPNOTSUPP;
1854         return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1855                         old_key, new_key, 0,
1856                         (1 << 0) /* APTPL */);
1857 }
1858
1859 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1860                 u32 flags)
1861 {
1862         if (flags)
1863                 return -EOPNOTSUPP;
1864         return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1865 }
1866
1867 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1868 {
1869         return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1870 }
1871
1872 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1873                 enum pr_type type, bool abort)
1874 {
1875         return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1876                              sd_pr_type(type), 0);
1877 }
1878
1879 static int sd_pr_clear(struct block_device *bdev, u64 key)
1880 {
1881         return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1882 }
1883
1884 static const struct pr_ops sd_pr_ops = {
1885         .pr_register    = sd_pr_register,
1886         .pr_reserve     = sd_pr_reserve,
1887         .pr_release     = sd_pr_release,
1888         .pr_preempt     = sd_pr_preempt,
1889         .pr_clear       = sd_pr_clear,
1890 };
1891
1892 static const struct block_device_operations sd_fops = {
1893         .owner                  = THIS_MODULE,
1894         .open                   = sd_open,
1895         .release                = sd_release,
1896         .ioctl                  = sd_ioctl,
1897         .getgeo                 = sd_getgeo,
1898         .compat_ioctl           = blkdev_compat_ptr_ioctl,
1899         .check_events           = sd_check_events,
1900         .unlock_native_capacity = sd_unlock_native_capacity,
1901         .report_zones           = sd_zbc_report_zones,
1902         .get_unique_id          = sd_get_unique_id,
1903         .pr_ops                 = &sd_pr_ops,
1904 };
1905
1906 /**
1907  *      sd_eh_reset - reset error handling callback
1908  *      @scmd:          sd-issued command that has failed
1909  *
1910  *      This function is called by the SCSI midlayer before starting
1911  *      SCSI EH. When counting medium access failures we have to be
1912  *      careful to register it only only once per device and SCSI EH run;
1913  *      there might be several timed out commands which will cause the
1914  *      'max_medium_access_timeouts' counter to trigger after the first
1915  *      SCSI EH run already and set the device to offline.
1916  *      So this function resets the internal counter before starting SCSI EH.
1917  **/
1918 static void sd_eh_reset(struct scsi_cmnd *scmd)
1919 {
1920         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk);
1921
1922         /* New SCSI EH run, reset gate variable */
1923         sdkp->ignore_medium_access_errors = false;
1924 }
1925
1926 /**
1927  *      sd_eh_action - error handling callback
1928  *      @scmd:          sd-issued command that has failed
1929  *      @eh_disp:       The recovery disposition suggested by the midlayer
1930  *
1931  *      This function is called by the SCSI midlayer upon completion of an
1932  *      error test command (currently TEST UNIT READY). The result of sending
1933  *      the eh command is passed in eh_disp.  We're looking for devices that
1934  *      fail medium access commands but are OK with non access commands like
1935  *      test unit ready (so wrongly see the device as having a successful
1936  *      recovery)
1937  **/
1938 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1939 {
1940         struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->rq_disk);
1941         struct scsi_device *sdev = scmd->device;
1942
1943         if (!scsi_device_online(sdev) ||
1944             !scsi_medium_access_command(scmd) ||
1945             host_byte(scmd->result) != DID_TIME_OUT ||
1946             eh_disp != SUCCESS)
1947                 return eh_disp;
1948
1949         /*
1950          * The device has timed out executing a medium access command.
1951          * However, the TEST UNIT READY command sent during error
1952          * handling completed successfully. Either the device is in the
1953          * process of recovering or has it suffered an internal failure
1954          * that prevents access to the storage medium.
1955          */
1956         if (!sdkp->ignore_medium_access_errors) {
1957                 sdkp->medium_access_timed_out++;
1958                 sdkp->ignore_medium_access_errors = true;
1959         }
1960
1961         /*
1962          * If the device keeps failing read/write commands but TEST UNIT
1963          * READY always completes successfully we assume that medium
1964          * access is no longer possible and take the device offline.
1965          */
1966         if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1967                 scmd_printk(KERN_ERR, scmd,
1968                             "Medium access timeout failure. Offlining disk!\n");
1969                 mutex_lock(&sdev->state_mutex);
1970                 scsi_device_set_state(sdev, SDEV_OFFLINE);
1971                 mutex_unlock(&sdev->state_mutex);
1972
1973                 return SUCCESS;
1974         }
1975
1976         return eh_disp;
1977 }
1978
1979 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1980 {
1981         struct request *req = scsi_cmd_to_rq(scmd);
1982         struct scsi_device *sdev = scmd->device;
1983         unsigned int transferred, good_bytes;
1984         u64 start_lba, end_lba, bad_lba;
1985
1986         /*
1987          * Some commands have a payload smaller than the device logical
1988          * block size (e.g. INQUIRY on a 4K disk).
1989          */
1990         if (scsi_bufflen(scmd) <= sdev->sector_size)
1991                 return 0;
1992
1993         /* Check if we have a 'bad_lba' information */
1994         if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1995                                      SCSI_SENSE_BUFFERSIZE,
1996                                      &bad_lba))
1997                 return 0;
1998
1999         /*
2000          * If the bad lba was reported incorrectly, we have no idea where
2001          * the error is.
2002          */
2003         start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2004         end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2005         if (bad_lba < start_lba || bad_lba >= end_lba)
2006                 return 0;
2007
2008         /*
2009          * resid is optional but mostly filled in.  When it's unused,
2010          * its value is zero, so we assume the whole buffer transferred
2011          */
2012         transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2013
2014         /* This computation should always be done in terms of the
2015          * resolution of the device's medium.
2016          */
2017         good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2018
2019         return min(good_bytes, transferred);
2020 }
2021
2022 /**
2023  *      sd_done - bottom half handler: called when the lower level
2024  *      driver has completed (successfully or otherwise) a scsi command.
2025  *      @SCpnt: mid-level's per command structure.
2026  *
2027  *      Note: potentially run from within an ISR. Must not block.
2028  **/
2029 static int sd_done(struct scsi_cmnd *SCpnt)
2030 {
2031         int result = SCpnt->result;
2032         unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2033         unsigned int sector_size = SCpnt->device->sector_size;
2034         unsigned int resid;
2035         struct scsi_sense_hdr sshdr;
2036         struct request *req = scsi_cmd_to_rq(SCpnt);
2037         struct scsi_disk *sdkp = scsi_disk(req->rq_disk);
2038         int sense_valid = 0;
2039         int sense_deferred = 0;
2040
2041         switch (req_op(req)) {
2042         case REQ_OP_DISCARD:
2043         case REQ_OP_WRITE_ZEROES:
2044         case REQ_OP_WRITE_SAME:
2045         case REQ_OP_ZONE_RESET:
2046         case REQ_OP_ZONE_RESET_ALL:
2047         case REQ_OP_ZONE_OPEN:
2048         case REQ_OP_ZONE_CLOSE:
2049         case REQ_OP_ZONE_FINISH:
2050                 if (!result) {
2051                         good_bytes = blk_rq_bytes(req);
2052                         scsi_set_resid(SCpnt, 0);
2053                 } else {
2054                         good_bytes = 0;
2055                         scsi_set_resid(SCpnt, blk_rq_bytes(req));
2056                 }
2057                 break;
2058         default:
2059                 /*
2060                  * In case of bogus fw or device, we could end up having
2061                  * an unaligned partial completion. Check this here and force
2062                  * alignment.
2063                  */
2064                 resid = scsi_get_resid(SCpnt);
2065                 if (resid & (sector_size - 1)) {
2066                         sd_printk(KERN_INFO, sdkp,
2067                                 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2068                                 resid, sector_size);
2069                         scsi_print_command(SCpnt);
2070                         resid = min(scsi_bufflen(SCpnt),
2071                                     round_up(resid, sector_size));
2072                         scsi_set_resid(SCpnt, resid);
2073                 }
2074         }
2075
2076         if (result) {
2077                 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2078                 if (sense_valid)
2079                         sense_deferred = scsi_sense_is_deferred(&sshdr);
2080         }
2081         sdkp->medium_access_timed_out = 0;
2082
2083         if (!scsi_status_is_check_condition(result) &&
2084             (!sense_valid || sense_deferred))
2085                 goto out;
2086
2087         switch (sshdr.sense_key) {
2088         case HARDWARE_ERROR:
2089         case MEDIUM_ERROR:
2090                 good_bytes = sd_completed_bytes(SCpnt);
2091                 break;
2092         case RECOVERED_ERROR:
2093                 good_bytes = scsi_bufflen(SCpnt);
2094                 break;
2095         case NO_SENSE:
2096                 /* This indicates a false check condition, so ignore it.  An
2097                  * unknown amount of data was transferred so treat it as an
2098                  * error.
2099                  */
2100                 SCpnt->result = 0;
2101                 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2102                 break;
2103         case ABORTED_COMMAND:
2104                 if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2105                         good_bytes = sd_completed_bytes(SCpnt);
2106                 break;
2107         case ILLEGAL_REQUEST:
2108                 switch (sshdr.asc) {
2109                 case 0x10:      /* DIX: Host detected corruption */
2110                         good_bytes = sd_completed_bytes(SCpnt);
2111                         break;
2112                 case 0x20:      /* INVALID COMMAND OPCODE */
2113                 case 0x24:      /* INVALID FIELD IN CDB */
2114                         switch (SCpnt->cmnd[0]) {
2115                         case UNMAP:
2116                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
2117                                 break;
2118                         case WRITE_SAME_16:
2119                         case WRITE_SAME:
2120                                 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2121                                         sd_config_discard(sdkp, SD_LBP_DISABLE);
2122                                 } else {
2123                                         sdkp->device->no_write_same = 1;
2124                                         sd_config_write_same(sdkp);
2125                                         req->rq_flags |= RQF_QUIET;
2126                                 }
2127                                 break;
2128                         }
2129                 }
2130                 break;
2131         default:
2132                 break;
2133         }
2134
2135  out:
2136         if (sd_is_zoned(sdkp))
2137                 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2138
2139         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2140                                            "sd_done: completed %d of %d bytes\n",
2141                                            good_bytes, scsi_bufflen(SCpnt)));
2142
2143         return good_bytes;
2144 }
2145
2146 /*
2147  * spinup disk - called only in sd_revalidate_disk()
2148  */
2149 static void
2150 sd_spinup_disk(struct scsi_disk *sdkp)
2151 {
2152         unsigned char cmd[10];
2153         unsigned long spintime_expire = 0;
2154         int retries, spintime;
2155         unsigned int the_result;
2156         struct scsi_sense_hdr sshdr;
2157         int sense_valid = 0;
2158
2159         spintime = 0;
2160
2161         /* Spin up drives, as required.  Only do this at boot time */
2162         /* Spinup needs to be done for module loads too. */
2163         do {
2164                 retries = 0;
2165
2166                 do {
2167                         bool media_was_present = sdkp->media_present;
2168
2169                         cmd[0] = TEST_UNIT_READY;
2170                         memset((void *) &cmd[1], 0, 9);
2171
2172                         the_result = scsi_execute_req(sdkp->device, cmd,
2173                                                       DMA_NONE, NULL, 0,
2174                                                       &sshdr, SD_TIMEOUT,
2175                                                       sdkp->max_retries, NULL);
2176
2177                         /*
2178                          * If the drive has indicated to us that it
2179                          * doesn't have any media in it, don't bother
2180                          * with any more polling.
2181                          */
2182                         if (media_not_present(sdkp, &sshdr)) {
2183                                 if (media_was_present)
2184                                         sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2185                                 return;
2186                         }
2187
2188                         if (the_result)
2189                                 sense_valid = scsi_sense_valid(&sshdr);
2190                         retries++;
2191                 } while (retries < 3 &&
2192                          (!scsi_status_is_good(the_result) ||
2193                           (scsi_status_is_check_condition(the_result) &&
2194                           sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2195
2196                 if (!scsi_status_is_check_condition(the_result)) {
2197                         /* no sense, TUR either succeeded or failed
2198                          * with a status error */
2199                         if(!spintime && !scsi_status_is_good(the_result)) {
2200                                 sd_print_result(sdkp, "Test Unit Ready failed",
2201                                                 the_result);
2202                         }
2203                         break;
2204                 }
2205
2206                 /*
2207                  * The device does not want the automatic start to be issued.
2208                  */
2209                 if (sdkp->device->no_start_on_add)
2210                         break;
2211
2212                 if (sense_valid && sshdr.sense_key == NOT_READY) {
2213                         if (sshdr.asc == 4 && sshdr.ascq == 3)
2214                                 break;  /* manual intervention required */
2215                         if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2216                                 break;  /* standby */
2217                         if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2218                                 break;  /* unavailable */
2219                         if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2220                                 break;  /* sanitize in progress */
2221                         /*
2222                          * Issue command to spin up drive when not ready
2223                          */
2224                         if (!spintime) {
2225                                 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2226                                 cmd[0] = START_STOP;
2227                                 cmd[1] = 1;     /* Return immediately */
2228                                 memset((void *) &cmd[2], 0, 8);
2229                                 cmd[4] = 1;     /* Start spin cycle */
2230                                 if (sdkp->device->start_stop_pwr_cond)
2231                                         cmd[4] |= 1 << 4;
2232                                 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2233                                                  NULL, 0, &sshdr,
2234                                                  SD_TIMEOUT, sdkp->max_retries,
2235                                                  NULL);
2236                                 spintime_expire = jiffies + 100 * HZ;
2237                                 spintime = 1;
2238                         }
2239                         /* Wait 1 second for next try */
2240                         msleep(1000);
2241                         printk(KERN_CONT ".");
2242
2243                 /*
2244                  * Wait for USB flash devices with slow firmware.
2245                  * Yes, this sense key/ASC combination shouldn't
2246                  * occur here.  It's characteristic of these devices.
2247                  */
2248                 } else if (sense_valid &&
2249                                 sshdr.sense_key == UNIT_ATTENTION &&
2250                                 sshdr.asc == 0x28) {
2251                         if (!spintime) {
2252                                 spintime_expire = jiffies + 5 * HZ;
2253                                 spintime = 1;
2254                         }
2255                         /* Wait 1 second for next try */
2256                         msleep(1000);
2257                 } else {
2258                         /* we don't understand the sense code, so it's
2259                          * probably pointless to loop */
2260                         if(!spintime) {
2261                                 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2262                                 sd_print_sense_hdr(sdkp, &sshdr);
2263                         }
2264                         break;
2265                 }
2266                                 
2267         } while (spintime && time_before_eq(jiffies, spintime_expire));
2268
2269         if (spintime) {
2270                 if (scsi_status_is_good(the_result))
2271                         printk(KERN_CONT "ready\n");
2272                 else
2273                         printk(KERN_CONT "not responding...\n");
2274         }
2275 }
2276
2277 /*
2278  * Determine whether disk supports Data Integrity Field.
2279  */
2280 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2281 {
2282         struct scsi_device *sdp = sdkp->device;
2283         u8 type;
2284         int ret = 0;
2285
2286         if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2287                 sdkp->protection_type = 0;
2288                 return ret;
2289         }
2290
2291         type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2292
2293         if (type > T10_PI_TYPE3_PROTECTION)
2294                 ret = -ENODEV;
2295         else if (scsi_host_dif_capable(sdp->host, type))
2296                 ret = 1;
2297
2298         if (sdkp->first_scan || type != sdkp->protection_type)
2299                 switch (ret) {
2300                 case -ENODEV:
2301                         sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2302                                   " protection type %u. Disabling disk!\n",
2303                                   type);
2304                         break;
2305                 case 1:
2306                         sd_printk(KERN_NOTICE, sdkp,
2307                                   "Enabling DIF Type %u protection\n", type);
2308                         break;
2309                 case 0:
2310                         sd_printk(KERN_NOTICE, sdkp,
2311                                   "Disabling DIF Type %u protection\n", type);
2312                         break;
2313                 }
2314
2315         sdkp->protection_type = type;
2316
2317         return ret;
2318 }
2319
2320 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2321                         struct scsi_sense_hdr *sshdr, int sense_valid,
2322                         int the_result)
2323 {
2324         if (sense_valid)
2325                 sd_print_sense_hdr(sdkp, sshdr);
2326         else
2327                 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2328
2329         /*
2330          * Set dirty bit for removable devices if not ready -
2331          * sometimes drives will not report this properly.
2332          */
2333         if (sdp->removable &&
2334             sense_valid && sshdr->sense_key == NOT_READY)
2335                 set_media_not_present(sdkp);
2336
2337         /*
2338          * We used to set media_present to 0 here to indicate no media
2339          * in the drive, but some drives fail read capacity even with
2340          * media present, so we can't do that.
2341          */
2342         sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2343 }
2344
2345 #define RC16_LEN 32
2346 #if RC16_LEN > SD_BUF_SIZE
2347 #error RC16_LEN must not be more than SD_BUF_SIZE
2348 #endif
2349
2350 #define READ_CAPACITY_RETRIES_ON_RESET  10
2351
2352 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2353                                                 unsigned char *buffer)
2354 {
2355         unsigned char cmd[16];
2356         struct scsi_sense_hdr sshdr;
2357         int sense_valid = 0;
2358         int the_result;
2359         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2360         unsigned int alignment;
2361         unsigned long long lba;
2362         unsigned sector_size;
2363
2364         if (sdp->no_read_capacity_16)
2365                 return -EINVAL;
2366
2367         do {
2368                 memset(cmd, 0, 16);
2369                 cmd[0] = SERVICE_ACTION_IN_16;
2370                 cmd[1] = SAI_READ_CAPACITY_16;
2371                 cmd[13] = RC16_LEN;
2372                 memset(buffer, 0, RC16_LEN);
2373
2374                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2375                                         buffer, RC16_LEN, &sshdr,
2376                                         SD_TIMEOUT, sdkp->max_retries, NULL);
2377
2378                 if (media_not_present(sdkp, &sshdr))
2379                         return -ENODEV;
2380
2381                 if (the_result > 0) {
2382                         sense_valid = scsi_sense_valid(&sshdr);
2383                         if (sense_valid &&
2384                             sshdr.sense_key == ILLEGAL_REQUEST &&
2385                             (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2386                             sshdr.ascq == 0x00)
2387                                 /* Invalid Command Operation Code or
2388                                  * Invalid Field in CDB, just retry
2389                                  * silently with RC10 */
2390                                 return -EINVAL;
2391                         if (sense_valid &&
2392                             sshdr.sense_key == UNIT_ATTENTION &&
2393                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2394                                 /* Device reset might occur several times,
2395                                  * give it one more chance */
2396                                 if (--reset_retries > 0)
2397                                         continue;
2398                 }
2399                 retries--;
2400
2401         } while (the_result && retries);
2402
2403         if (the_result) {
2404                 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2405                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2406                 return -EINVAL;
2407         }
2408
2409         sector_size = get_unaligned_be32(&buffer[8]);
2410         lba = get_unaligned_be64(&buffer[0]);
2411
2412         if (sd_read_protection_type(sdkp, buffer) < 0) {
2413                 sdkp->capacity = 0;
2414                 return -ENODEV;
2415         }
2416
2417         /* Logical blocks per physical block exponent */
2418         sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2419
2420         /* RC basis */
2421         sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2422
2423         /* Lowest aligned logical block */
2424         alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2425         blk_queue_alignment_offset(sdp->request_queue, alignment);
2426         if (alignment && sdkp->first_scan)
2427                 sd_printk(KERN_NOTICE, sdkp,
2428                           "physical block alignment offset: %u\n", alignment);
2429
2430         if (buffer[14] & 0x80) { /* LBPME */
2431                 sdkp->lbpme = 1;
2432
2433                 if (buffer[14] & 0x40) /* LBPRZ */
2434                         sdkp->lbprz = 1;
2435
2436                 sd_config_discard(sdkp, SD_LBP_WS16);
2437         }
2438
2439         sdkp->capacity = lba + 1;
2440         return sector_size;
2441 }
2442
2443 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2444                                                 unsigned char *buffer)
2445 {
2446         unsigned char cmd[16];
2447         struct scsi_sense_hdr sshdr;
2448         int sense_valid = 0;
2449         int the_result;
2450         int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2451         sector_t lba;
2452         unsigned sector_size;
2453
2454         do {
2455                 cmd[0] = READ_CAPACITY;
2456                 memset(&cmd[1], 0, 9);
2457                 memset(buffer, 0, 8);
2458
2459                 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2460                                         buffer, 8, &sshdr,
2461                                         SD_TIMEOUT, sdkp->max_retries, NULL);
2462
2463                 if (media_not_present(sdkp, &sshdr))
2464                         return -ENODEV;
2465
2466                 if (the_result > 0) {
2467                         sense_valid = scsi_sense_valid(&sshdr);
2468                         if (sense_valid &&
2469                             sshdr.sense_key == UNIT_ATTENTION &&
2470                             sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2471                                 /* Device reset might occur several times,
2472                                  * give it one more chance */
2473                                 if (--reset_retries > 0)
2474                                         continue;
2475                 }
2476                 retries--;
2477
2478         } while (the_result && retries);
2479
2480         if (the_result) {
2481                 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2482                 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2483                 return -EINVAL;
2484         }
2485
2486         sector_size = get_unaligned_be32(&buffer[4]);
2487         lba = get_unaligned_be32(&buffer[0]);
2488
2489         if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2490                 /* Some buggy (usb cardreader) devices return an lba of
2491                    0xffffffff when the want to report a size of 0 (with
2492                    which they really mean no media is present) */
2493                 sdkp->capacity = 0;
2494                 sdkp->physical_block_size = sector_size;
2495                 return sector_size;
2496         }
2497
2498         sdkp->capacity = lba + 1;
2499         sdkp->physical_block_size = sector_size;
2500         return sector_size;
2501 }
2502
2503 static int sd_try_rc16_first(struct scsi_device *sdp)
2504 {
2505         if (sdp->host->max_cmd_len < 16)
2506                 return 0;
2507         if (sdp->try_rc_10_first)
2508                 return 0;
2509         if (sdp->scsi_level > SCSI_SPC_2)
2510                 return 1;
2511         if (scsi_device_protection(sdp))
2512                 return 1;
2513         return 0;
2514 }
2515
2516 /*
2517  * read disk capacity
2518  */
2519 static void
2520 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2521 {
2522         int sector_size;
2523         struct scsi_device *sdp = sdkp->device;
2524
2525         if (sd_try_rc16_first(sdp)) {
2526                 sector_size = read_capacity_16(sdkp, sdp, buffer);
2527                 if (sector_size == -EOVERFLOW)
2528                         goto got_data;
2529                 if (sector_size == -ENODEV)
2530                         return;
2531                 if (sector_size < 0)
2532                         sector_size = read_capacity_10(sdkp, sdp, buffer);
2533                 if (sector_size < 0)
2534                         return;
2535         } else {
2536                 sector_size = read_capacity_10(sdkp, sdp, buffer);
2537                 if (sector_size == -EOVERFLOW)
2538                         goto got_data;
2539                 if (sector_size < 0)
2540                         return;
2541                 if ((sizeof(sdkp->capacity) > 4) &&
2542                     (sdkp->capacity > 0xffffffffULL)) {
2543                         int old_sector_size = sector_size;
2544                         sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2545                                         "Trying to use READ CAPACITY(16).\n");
2546                         sector_size = read_capacity_16(sdkp, sdp, buffer);
2547                         if (sector_size < 0) {
2548                                 sd_printk(KERN_NOTICE, sdkp,
2549                                         "Using 0xffffffff as device size\n");
2550                                 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2551                                 sector_size = old_sector_size;
2552                                 goto got_data;
2553                         }
2554                         /* Remember that READ CAPACITY(16) succeeded */
2555                         sdp->try_rc_10_first = 0;
2556                 }
2557         }
2558
2559         /* Some devices are known to return the total number of blocks,
2560          * not the highest block number.  Some devices have versions
2561          * which do this and others which do not.  Some devices we might
2562          * suspect of doing this but we don't know for certain.
2563          *
2564          * If we know the reported capacity is wrong, decrement it.  If
2565          * we can only guess, then assume the number of blocks is even
2566          * (usually true but not always) and err on the side of lowering
2567          * the capacity.
2568          */
2569         if (sdp->fix_capacity ||
2570             (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2571                 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2572                                 "from its reported value: %llu\n",
2573                                 (unsigned long long) sdkp->capacity);
2574                 --sdkp->capacity;
2575         }
2576
2577 got_data:
2578         if (sector_size == 0) {
2579                 sector_size = 512;
2580                 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2581                           "assuming 512.\n");
2582         }
2583
2584         if (sector_size != 512 &&
2585             sector_size != 1024 &&
2586             sector_size != 2048 &&
2587             sector_size != 4096) {
2588                 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2589                           sector_size);
2590                 /*
2591                  * The user might want to re-format the drive with
2592                  * a supported sectorsize.  Once this happens, it
2593                  * would be relatively trivial to set the thing up.
2594                  * For this reason, we leave the thing in the table.
2595                  */
2596                 sdkp->capacity = 0;
2597                 /*
2598                  * set a bogus sector size so the normal read/write
2599                  * logic in the block layer will eventually refuse any
2600                  * request on this device without tripping over power
2601                  * of two sector size assumptions
2602                  */
2603                 sector_size = 512;
2604         }
2605         blk_queue_logical_block_size(sdp->request_queue, sector_size);
2606         blk_queue_physical_block_size(sdp->request_queue,
2607                                       sdkp->physical_block_size);
2608         sdkp->device->sector_size = sector_size;
2609
2610         if (sdkp->capacity > 0xffffffff)
2611                 sdp->use_16_for_rw = 1;
2612
2613 }
2614
2615 /*
2616  * Print disk capacity
2617  */
2618 static void
2619 sd_print_capacity(struct scsi_disk *sdkp,
2620                   sector_t old_capacity)
2621 {
2622         int sector_size = sdkp->device->sector_size;
2623         char cap_str_2[10], cap_str_10[10];
2624
2625         if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2626                 return;
2627
2628         string_get_size(sdkp->capacity, sector_size,
2629                         STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2630         string_get_size(sdkp->capacity, sector_size,
2631                         STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2632
2633         sd_printk(KERN_NOTICE, sdkp,
2634                   "%llu %d-byte logical blocks: (%s/%s)\n",
2635                   (unsigned long long)sdkp->capacity,
2636                   sector_size, cap_str_10, cap_str_2);
2637
2638         if (sdkp->physical_block_size != sector_size)
2639                 sd_printk(KERN_NOTICE, sdkp,
2640                           "%u-byte physical blocks\n",
2641                           sdkp->physical_block_size);
2642 }
2643
2644 /* called with buffer of length 512 */
2645 static inline int
2646 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2647                  unsigned char *buffer, int len, struct scsi_mode_data *data,
2648                  struct scsi_sense_hdr *sshdr)
2649 {
2650         /*
2651          * If we must use MODE SENSE(10), make sure that the buffer length
2652          * is at least 8 bytes so that the mode sense header fits.
2653          */
2654         if (sdkp->device->use_10_for_ms && len < 8)
2655                 len = 8;
2656
2657         return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2658                                SD_TIMEOUT, sdkp->max_retries, data,
2659                                sshdr);
2660 }
2661
2662 /*
2663  * read write protect setting, if possible - called only in sd_revalidate_disk()
2664  * called with buffer of length SD_BUF_SIZE
2665  */
2666 static void
2667 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2668 {
2669         int res;
2670         struct scsi_device *sdp = sdkp->device;
2671         struct scsi_mode_data data;
2672         int old_wp = sdkp->write_prot;
2673
2674         set_disk_ro(sdkp->disk, 0);
2675         if (sdp->skip_ms_page_3f) {
2676                 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2677                 return;
2678         }
2679
2680         if (sdp->use_192_bytes_for_3f) {
2681                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2682         } else {
2683                 /*
2684                  * First attempt: ask for all pages (0x3F), but only 4 bytes.
2685                  * We have to start carefully: some devices hang if we ask
2686                  * for more than is available.
2687                  */
2688                 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2689
2690                 /*
2691                  * Second attempt: ask for page 0 When only page 0 is
2692                  * implemented, a request for page 3F may return Sense Key
2693                  * 5: Illegal Request, Sense Code 24: Invalid field in
2694                  * CDB.
2695                  */
2696                 if (res < 0)
2697                         res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2698
2699                 /*
2700                  * Third attempt: ask 255 bytes, as we did earlier.
2701                  */
2702                 if (res < 0)
2703                         res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2704                                                &data, NULL);
2705         }
2706
2707         if (res < 0) {
2708                 sd_first_printk(KERN_WARNING, sdkp,
2709                           "Test WP failed, assume Write Enabled\n");
2710         } else {
2711                 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2712                 set_disk_ro(sdkp->disk, sdkp->write_prot);
2713                 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2714                         sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2715                                   sdkp->write_prot ? "on" : "off");
2716                         sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2717                 }
2718         }
2719 }
2720
2721 /*
2722  * sd_read_cache_type - called only from sd_revalidate_disk()
2723  * called with buffer of length SD_BUF_SIZE
2724  */
2725 static void
2726 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2727 {
2728         int len = 0, res;
2729         struct scsi_device *sdp = sdkp->device;
2730
2731         int dbd;
2732         int modepage;
2733         int first_len;
2734         struct scsi_mode_data data;
2735         struct scsi_sense_hdr sshdr;
2736         int old_wce = sdkp->WCE;
2737         int old_rcd = sdkp->RCD;
2738         int old_dpofua = sdkp->DPOFUA;
2739
2740
2741         if (sdkp->cache_override)
2742                 return;
2743
2744         first_len = 4;
2745         if (sdp->skip_ms_page_8) {
2746                 if (sdp->type == TYPE_RBC)
2747                         goto defaults;
2748                 else {
2749                         if (sdp->skip_ms_page_3f)
2750                                 goto defaults;
2751                         modepage = 0x3F;
2752                         if (sdp->use_192_bytes_for_3f)
2753                                 first_len = 192;
2754                         dbd = 0;
2755                 }
2756         } else if (sdp->type == TYPE_RBC) {
2757                 modepage = 6;
2758                 dbd = 8;
2759         } else {
2760                 modepage = 8;
2761                 dbd = 0;
2762         }
2763
2764         /* cautiously ask */
2765         res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2766                         &data, &sshdr);
2767
2768         if (res < 0)
2769                 goto bad_sense;
2770
2771         if (!data.header_length) {
2772                 modepage = 6;
2773                 first_len = 0;
2774                 sd_first_printk(KERN_ERR, sdkp,
2775                                 "Missing header in MODE_SENSE response\n");
2776         }
2777
2778         /* that went OK, now ask for the proper length */
2779         len = data.length;
2780
2781         /*
2782          * We're only interested in the first three bytes, actually.
2783          * But the data cache page is defined for the first 20.
2784          */
2785         if (len < 3)
2786                 goto bad_sense;
2787         else if (len > SD_BUF_SIZE) {
2788                 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2789                           "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2790                 len = SD_BUF_SIZE;
2791         }
2792         if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2793                 len = 192;
2794
2795         /* Get the data */
2796         if (len > first_len)
2797                 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2798                                 &data, &sshdr);
2799
2800         if (!res) {
2801                 int offset = data.header_length + data.block_descriptor_length;
2802
2803                 while (offset < len) {
2804                         u8 page_code = buffer[offset] & 0x3F;
2805                         u8 spf       = buffer[offset] & 0x40;
2806
2807                         if (page_code == 8 || page_code == 6) {
2808                                 /* We're interested only in the first 3 bytes.
2809                                  */
2810                                 if (len - offset <= 2) {
2811                                         sd_first_printk(KERN_ERR, sdkp,
2812                                                 "Incomplete mode parameter "
2813                                                         "data\n");
2814                                         goto defaults;
2815                                 } else {
2816                                         modepage = page_code;
2817                                         goto Page_found;
2818                                 }
2819                         } else {
2820                                 /* Go to the next page */
2821                                 if (spf && len - offset > 3)
2822                                         offset += 4 + (buffer[offset+2] << 8) +
2823                                                 buffer[offset+3];
2824                                 else if (!spf && len - offset > 1)
2825                                         offset += 2 + buffer[offset+1];
2826                                 else {
2827                                         sd_first_printk(KERN_ERR, sdkp,
2828                                                         "Incomplete mode "
2829                                                         "parameter data\n");
2830                                         goto defaults;
2831                                 }
2832                         }
2833                 }
2834
2835                 sd_first_printk(KERN_WARNING, sdkp,
2836                                 "No Caching mode page found\n");
2837                 goto defaults;
2838
2839         Page_found:
2840                 if (modepage == 8) {
2841                         sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2842                         sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2843                 } else {
2844                         sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2845                         sdkp->RCD = 0;
2846                 }
2847
2848                 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2849                 if (sdp->broken_fua) {
2850                         sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2851                         sdkp->DPOFUA = 0;
2852                 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2853                            !sdkp->device->use_16_for_rw) {
2854                         sd_first_printk(KERN_NOTICE, sdkp,
2855                                   "Uses READ/WRITE(6), disabling FUA\n");
2856                         sdkp->DPOFUA = 0;
2857                 }
2858
2859                 /* No cache flush allowed for write protected devices */
2860                 if (sdkp->WCE && sdkp->write_prot)
2861                         sdkp->WCE = 0;
2862
2863                 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2864                     old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2865                         sd_printk(KERN_NOTICE, sdkp,
2866                                   "Write cache: %s, read cache: %s, %s\n",
2867                                   sdkp->WCE ? "enabled" : "disabled",
2868                                   sdkp->RCD ? "disabled" : "enabled",
2869                                   sdkp->DPOFUA ? "supports DPO and FUA"
2870                                   : "doesn't support DPO or FUA");
2871
2872                 return;
2873         }
2874
2875 bad_sense:
2876         if (scsi_sense_valid(&sshdr) &&
2877             sshdr.sense_key == ILLEGAL_REQUEST &&
2878             sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2879                 /* Invalid field in CDB */
2880                 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2881         else
2882                 sd_first_printk(KERN_ERR, sdkp,
2883                                 "Asking for cache data failed\n");
2884
2885 defaults:
2886         if (sdp->wce_default_on) {
2887                 sd_first_printk(KERN_NOTICE, sdkp,
2888                                 "Assuming drive cache: write back\n");
2889                 sdkp->WCE = 1;
2890         } else {
2891                 sd_first_printk(KERN_WARNING, sdkp,
2892                                 "Assuming drive cache: write through\n");
2893                 sdkp->WCE = 0;
2894         }
2895         sdkp->RCD = 0;
2896         sdkp->DPOFUA = 0;
2897 }
2898
2899 /*
2900  * The ATO bit indicates whether the DIF application tag is available
2901  * for use by the operating system.
2902  */
2903 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2904 {
2905         int res, offset;
2906         struct scsi_device *sdp = sdkp->device;
2907         struct scsi_mode_data data;
2908         struct scsi_sense_hdr sshdr;
2909
2910         if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2911                 return;
2912
2913         if (sdkp->protection_type == 0)
2914                 return;
2915
2916         res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2917                               sdkp->max_retries, &data, &sshdr);
2918
2919         if (res < 0 || !data.header_length ||
2920             data.length < 6) {
2921                 sd_first_printk(KERN_WARNING, sdkp,
2922                           "getting Control mode page failed, assume no ATO\n");
2923
2924                 if (scsi_sense_valid(&sshdr))
2925                         sd_print_sense_hdr(sdkp, &sshdr);
2926
2927                 return;
2928         }
2929
2930         offset = data.header_length + data.block_descriptor_length;
2931
2932         if ((buffer[offset] & 0x3f) != 0x0a) {
2933                 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2934                 return;
2935         }
2936
2937         if ((buffer[offset + 5] & 0x80) == 0)
2938                 return;
2939
2940         sdkp->ATO = 1;
2941
2942         return;
2943 }
2944
2945 /**
2946  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2947  * @sdkp: disk to query
2948  */
2949 static void sd_read_block_limits(struct scsi_disk *sdkp)
2950 {
2951         unsigned int sector_sz = sdkp->device->sector_size;
2952         const int vpd_len = 64;
2953         unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2954
2955         if (!buffer ||
2956             /* Block Limits VPD */
2957             scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2958                 goto out;
2959
2960         blk_queue_io_min(sdkp->disk->queue,
2961                          get_unaligned_be16(&buffer[6]) * sector_sz);
2962
2963         sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2964         sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2965
2966         if (buffer[3] == 0x3c) {
2967                 unsigned int lba_count, desc_count;
2968
2969                 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2970
2971                 if (!sdkp->lbpme)
2972                         goto out;
2973
2974                 lba_count = get_unaligned_be32(&buffer[20]);
2975                 desc_count = get_unaligned_be32(&buffer[24]);
2976
2977                 if (lba_count && desc_count)
2978                         sdkp->max_unmap_blocks = lba_count;
2979
2980                 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2981
2982                 if (buffer[32] & 0x80)
2983                         sdkp->unmap_alignment =
2984                                 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2985
2986                 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2987
2988                         if (sdkp->max_unmap_blocks)
2989                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2990                         else
2991                                 sd_config_discard(sdkp, SD_LBP_WS16);
2992
2993                 } else {        /* LBP VPD page tells us what to use */
2994                         if (sdkp->lbpu && sdkp->max_unmap_blocks)
2995                                 sd_config_discard(sdkp, SD_LBP_UNMAP);
2996                         else if (sdkp->lbpws)
2997                                 sd_config_discard(sdkp, SD_LBP_WS16);
2998                         else if (sdkp->lbpws10)
2999                                 sd_config_discard(sdkp, SD_LBP_WS10);
3000                         else
3001                                 sd_config_discard(sdkp, SD_LBP_DISABLE);
3002                 }
3003         }
3004
3005  out:
3006         kfree(buffer);
3007 }
3008
3009 /**
3010  * sd_read_block_characteristics - Query block dev. characteristics
3011  * @sdkp: disk to query
3012  */
3013 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3014 {
3015         struct request_queue *q = sdkp->disk->queue;
3016         unsigned char *buffer;
3017         u16 rot;
3018         const int vpd_len = 64;
3019
3020         buffer = kmalloc(vpd_len, GFP_KERNEL);
3021
3022         if (!buffer ||
3023             /* Block Device Characteristics VPD */
3024             scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
3025                 goto out;
3026
3027         rot = get_unaligned_be16(&buffer[4]);
3028
3029         if (rot == 1) {
3030                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3031                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3032         }
3033
3034         if (sdkp->device->type == TYPE_ZBC) {
3035                 /* Host-managed */
3036                 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
3037         } else {
3038                 sdkp->zoned = (buffer[8] >> 4) & 3;
3039                 if (sdkp->zoned == 1) {
3040                         /* Host-aware */
3041                         blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
3042                 } else {
3043                         /* Regular disk or drive managed disk */
3044                         blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3045                 }
3046         }
3047
3048         if (!sdkp->first_scan)
3049                 goto out;
3050
3051         if (blk_queue_is_zoned(q)) {
3052                 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3053                       q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3054         } else {
3055                 if (sdkp->zoned == 1)
3056                         sd_printk(KERN_NOTICE, sdkp,
3057                                   "Host-aware SMR disk used as regular disk\n");
3058                 else if (sdkp->zoned == 2)
3059                         sd_printk(KERN_NOTICE, sdkp,
3060                                   "Drive-managed SMR disk\n");
3061         }
3062
3063  out:
3064         kfree(buffer);
3065 }
3066
3067 /**
3068  * sd_read_block_provisioning - Query provisioning VPD page
3069  * @sdkp: disk to query
3070  */
3071 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3072 {
3073         unsigned char *buffer;
3074         const int vpd_len = 8;
3075
3076         if (sdkp->lbpme == 0)
3077                 return;
3078
3079         buffer = kmalloc(vpd_len, GFP_KERNEL);
3080
3081         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3082                 goto out;
3083
3084         sdkp->lbpvpd    = 1;
3085         sdkp->lbpu      = (buffer[5] >> 7) & 1; /* UNMAP */
3086         sdkp->lbpws     = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3087         sdkp->lbpws10   = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3088
3089  out:
3090         kfree(buffer);
3091 }
3092
3093 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3094 {
3095         struct scsi_device *sdev = sdkp->device;
3096
3097         if (sdev->host->no_write_same) {
3098                 sdev->no_write_same = 1;
3099
3100                 return;
3101         }
3102
3103         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3104                 /* too large values might cause issues with arcmsr */
3105                 int vpd_buf_len = 64;
3106
3107                 sdev->no_report_opcodes = 1;
3108
3109                 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3110                  * CODES is unsupported and the device has an ATA
3111                  * Information VPD page (SAT).
3112                  */
3113                 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3114                         sdev->no_write_same = 1;
3115         }
3116
3117         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3118                 sdkp->ws16 = 1;
3119
3120         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3121                 sdkp->ws10 = 1;
3122 }
3123
3124 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3125 {
3126         struct scsi_device *sdev = sdkp->device;
3127
3128         if (!sdev->security_supported)
3129                 return;
3130
3131         if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3132                         SECURITY_PROTOCOL_IN) == 1 &&
3133             scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3134                         SECURITY_PROTOCOL_OUT) == 1)
3135                 sdkp->security = 1;
3136 }
3137
3138 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3139 {
3140         return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3141 }
3142
3143 /**
3144  * sd_read_cpr - Query concurrent positioning ranges
3145  * @sdkp:       disk to query
3146  */
3147 static void sd_read_cpr(struct scsi_disk *sdkp)
3148 {
3149         struct blk_independent_access_ranges *iars = NULL;
3150         unsigned char *buffer = NULL;
3151         unsigned int nr_cpr = 0;
3152         int i, vpd_len, buf_len = SD_BUF_SIZE;
3153         u8 *desc;
3154
3155         /*
3156          * We need to have the capacity set first for the block layer to be
3157          * able to check the ranges.
3158          */
3159         if (sdkp->first_scan)
3160                 return;
3161
3162         if (!sdkp->capacity)
3163                 goto out;
3164
3165         /*
3166          * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3167          * leading to a maximum page size of 64 + 256*32 bytes.
3168          */
3169         buf_len = 64 + 256*32;
3170         buffer = kmalloc(buf_len, GFP_KERNEL);
3171         if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3172                 goto out;
3173
3174         /* We must have at least a 64B header and one 32B range descriptor */
3175         vpd_len = get_unaligned_be16(&buffer[2]) + 3;
3176         if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3177                 sd_printk(KERN_ERR, sdkp,
3178                           "Invalid Concurrent Positioning Ranges VPD page\n");
3179                 goto out;
3180         }
3181
3182         nr_cpr = (vpd_len - 64) / 32;
3183         if (nr_cpr == 1) {
3184                 nr_cpr = 0;
3185                 goto out;
3186         }
3187
3188         iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3189         if (!iars) {
3190                 nr_cpr = 0;
3191                 goto out;
3192         }
3193
3194         desc = &buffer[64];
3195         for (i = 0; i < nr_cpr; i++, desc += 32) {
3196                 if (desc[0] != i) {
3197                         sd_printk(KERN_ERR, sdkp,
3198                                 "Invalid Concurrent Positioning Range number\n");
3199                         nr_cpr = 0;
3200                         break;
3201                 }
3202
3203                 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3204                 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3205         }
3206
3207 out:
3208         disk_set_independent_access_ranges(sdkp->disk, iars);
3209         if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3210                 sd_printk(KERN_NOTICE, sdkp,
3211                           "%u concurrent positioning ranges\n", nr_cpr);
3212                 sdkp->nr_actuators = nr_cpr;
3213         }
3214
3215         kfree(buffer);
3216 }
3217
3218 /*
3219  * Determine the device's preferred I/O size for reads and writes
3220  * unless the reported value is unreasonably small, large, not a
3221  * multiple of the physical block size, or simply garbage.
3222  */
3223 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3224                                       unsigned int dev_max)
3225 {
3226         struct scsi_device *sdp = sdkp->device;
3227         unsigned int opt_xfer_bytes =
3228                 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3229
3230         if (sdkp->opt_xfer_blocks == 0)
3231                 return false;
3232
3233         if (sdkp->opt_xfer_blocks > dev_max) {
3234                 sd_first_printk(KERN_WARNING, sdkp,
3235                                 "Optimal transfer size %u logical blocks " \
3236                                 "> dev_max (%u logical blocks)\n",
3237                                 sdkp->opt_xfer_blocks, dev_max);
3238                 return false;
3239         }
3240
3241         if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3242                 sd_first_printk(KERN_WARNING, sdkp,
3243                                 "Optimal transfer size %u logical blocks " \
3244                                 "> sd driver limit (%u logical blocks)\n",
3245                                 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3246                 return false;
3247         }
3248
3249         if (opt_xfer_bytes < PAGE_SIZE) {
3250                 sd_first_printk(KERN_WARNING, sdkp,
3251                                 "Optimal transfer size %u bytes < " \
3252                                 "PAGE_SIZE (%u bytes)\n",
3253                                 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3254                 return false;
3255         }
3256
3257         if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3258                 sd_first_printk(KERN_WARNING, sdkp,
3259                                 "Optimal transfer size %u bytes not a " \
3260                                 "multiple of physical block size (%u bytes)\n",
3261                                 opt_xfer_bytes, sdkp->physical_block_size);
3262                 return false;
3263         }
3264
3265         sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3266                         opt_xfer_bytes);
3267         return true;
3268 }
3269
3270 /**
3271  *      sd_revalidate_disk - called the first time a new disk is seen,
3272  *      performs disk spin up, read_capacity, etc.
3273  *      @disk: struct gendisk we care about
3274  **/
3275 static int sd_revalidate_disk(struct gendisk *disk)
3276 {
3277         struct scsi_disk *sdkp = scsi_disk(disk);
3278         struct scsi_device *sdp = sdkp->device;
3279         struct request_queue *q = sdkp->disk->queue;
3280         sector_t old_capacity = sdkp->capacity;
3281         unsigned char *buffer;
3282         unsigned int dev_max, rw_max;
3283
3284         SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3285                                       "sd_revalidate_disk\n"));
3286
3287         /*
3288          * If the device is offline, don't try and read capacity or any
3289          * of the other niceties.
3290          */
3291         if (!scsi_device_online(sdp))
3292                 goto out;
3293
3294         buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3295         if (!buffer) {
3296                 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3297                           "allocation failure.\n");
3298                 goto out;
3299         }
3300
3301         sd_spinup_disk(sdkp);
3302
3303         /*
3304          * Without media there is no reason to ask; moreover, some devices
3305          * react badly if we do.
3306          */
3307         if (sdkp->media_present) {
3308                 sd_read_capacity(sdkp, buffer);
3309
3310                 /*
3311                  * set the default to rotational.  All non-rotational devices
3312                  * support the block characteristics VPD page, which will
3313                  * cause this to be updated correctly and any device which
3314                  * doesn't support it should be treated as rotational.
3315                  */
3316                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3317                 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3318
3319                 if (scsi_device_supports_vpd(sdp)) {
3320                         sd_read_block_provisioning(sdkp);
3321                         sd_read_block_limits(sdkp);
3322                         sd_read_block_characteristics(sdkp);
3323                         sd_zbc_read_zones(sdkp, buffer);
3324                 }
3325
3326                 sd_print_capacity(sdkp, old_capacity);
3327
3328                 sd_read_write_protect_flag(sdkp, buffer);
3329                 sd_read_cache_type(sdkp, buffer);
3330                 sd_read_app_tag_own(sdkp, buffer);
3331                 sd_read_write_same(sdkp, buffer);
3332                 sd_read_security(sdkp, buffer);
3333                 sd_read_cpr(sdkp);
3334         }
3335
3336         /*
3337          * We now have all cache related info, determine how we deal
3338          * with flush requests.
3339          */
3340         sd_set_flush_flag(sdkp);
3341
3342         /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3343         dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3344
3345         /* Some devices report a maximum block count for READ/WRITE requests. */
3346         dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3347         q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3348
3349         if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3350                 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3351                 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3352         } else {
3353                 q->limits.io_opt = 0;
3354                 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3355                                       (sector_t)BLK_DEF_MAX_SECTORS);
3356         }
3357
3358         /* Do not exceed controller limit */
3359         rw_max = min(rw_max, queue_max_hw_sectors(q));
3360
3361         /*
3362          * Only update max_sectors if previously unset or if the current value
3363          * exceeds the capabilities of the hardware.
3364          */
3365         if (sdkp->first_scan ||
3366             q->limits.max_sectors > q->limits.max_dev_sectors ||
3367             q->limits.max_sectors > q->limits.max_hw_sectors)
3368                 q->limits.max_sectors = rw_max;
3369
3370         sdkp->first_scan = 0;
3371
3372         set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3373         sd_config_write_same(sdkp);
3374         kfree(buffer);
3375
3376         /*
3377          * For a zoned drive, revalidating the zones can be done only once
3378          * the gendisk capacity is set. So if this fails, set back the gendisk
3379          * capacity to 0.
3380          */
3381         if (sd_zbc_revalidate_zones(sdkp))
3382                 set_capacity_and_notify(disk, 0);
3383
3384  out:
3385         return 0;
3386 }
3387
3388 /**
3389  *      sd_unlock_native_capacity - unlock native capacity
3390  *      @disk: struct gendisk to set capacity for
3391  *
3392  *      Block layer calls this function if it detects that partitions
3393  *      on @disk reach beyond the end of the device.  If the SCSI host
3394  *      implements ->unlock_native_capacity() method, it's invoked to
3395  *      give it a chance to adjust the device capacity.
3396  *
3397  *      CONTEXT:
3398  *      Defined by block layer.  Might sleep.
3399  */
3400 static void sd_unlock_native_capacity(struct gendisk *disk)
3401 {
3402         struct scsi_device *sdev = scsi_disk(disk)->device;
3403
3404         if (sdev->host->hostt->unlock_native_capacity)
3405                 sdev->host->hostt->unlock_native_capacity(sdev);
3406 }
3407
3408 /**
3409  *      sd_format_disk_name - format disk name
3410  *      @prefix: name prefix - ie. "sd" for SCSI disks
3411  *      @index: index of the disk to format name for
3412  *      @buf: output buffer
3413  *      @buflen: length of the output buffer
3414  *
3415  *      SCSI disk names starts at sda.  The 26th device is sdz and the
3416  *      27th is sdaa.  The last one for two lettered suffix is sdzz
3417  *      which is followed by sdaaa.
3418  *
3419  *      This is basically 26 base counting with one extra 'nil' entry
3420  *      at the beginning from the second digit on and can be
3421  *      determined using similar method as 26 base conversion with the
3422  *      index shifted -1 after each digit is computed.
3423  *
3424  *      CONTEXT:
3425  *      Don't care.
3426  *
3427  *      RETURNS:
3428  *      0 on success, -errno on failure.
3429  */
3430 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3431 {
3432         const int base = 'z' - 'a' + 1;
3433         char *begin = buf + strlen(prefix);
3434         char *end = buf + buflen;
3435         char *p;
3436         int unit;
3437
3438         p = end - 1;
3439         *p = '\0';
3440         unit = base;
3441         do {
3442                 if (p == begin)
3443                         return -EINVAL;
3444                 *--p = 'a' + (index % unit);
3445                 index = (index / unit) - 1;
3446         } while (index >= 0);
3447
3448         memmove(begin, p, end - p);
3449         memcpy(buf, prefix, strlen(prefix));
3450
3451         return 0;
3452 }
3453
3454 /**
3455  *      sd_probe - called during driver initialization and whenever a
3456  *      new scsi device is attached to the system. It is called once
3457  *      for each scsi device (not just disks) present.
3458  *      @dev: pointer to device object
3459  *
3460  *      Returns 0 if successful (or not interested in this scsi device 
3461  *      (e.g. scanner)); 1 when there is an error.
3462  *
3463  *      Note: this function is invoked from the scsi mid-level.
3464  *      This function sets up the mapping between a given 
3465  *      <host,channel,id,lun> (found in sdp) and new device name 
3466  *      (e.g. /dev/sda). More precisely it is the block device major 
3467  *      and minor number that is chosen here.
3468  *
3469  *      Assume sd_probe is not re-entrant (for time being)
3470  *      Also think about sd_probe() and sd_remove() running coincidentally.
3471  **/
3472 static int sd_probe(struct device *dev)
3473 {
3474         struct scsi_device *sdp = to_scsi_device(dev);
3475         struct scsi_disk *sdkp;
3476         struct gendisk *gd;
3477         int index;
3478         int error;
3479
3480         scsi_autopm_get_device(sdp);
3481         error = -ENODEV;
3482         if (sdp->type != TYPE_DISK &&
3483             sdp->type != TYPE_ZBC &&
3484             sdp->type != TYPE_MOD &&
3485             sdp->type != TYPE_RBC)
3486                 goto out;
3487
3488         if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3489                 sdev_printk(KERN_WARNING, sdp,
3490                             "Unsupported ZBC host-managed device.\n");
3491                 goto out;
3492         }
3493
3494         SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3495                                         "sd_probe\n"));
3496
3497         error = -ENOMEM;
3498         sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3499         if (!sdkp)
3500                 goto out;
3501
3502         gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE,
3503                                &sd_bio_compl_lkclass);
3504         if (!gd)
3505                 goto out_free;
3506
3507         index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3508         if (index < 0) {
3509                 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3510                 goto out_put;
3511         }
3512
3513         error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3514         if (error) {
3515                 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3516                 goto out_free_index;
3517         }
3518
3519         sdkp->device = sdp;
3520         sdkp->driver = &sd_template;
3521         sdkp->disk = gd;
3522         sdkp->index = index;
3523         sdkp->max_retries = SD_MAX_RETRIES;
3524         atomic_set(&sdkp->openers, 0);
3525         atomic_set(&sdkp->device->ioerr_cnt, 0);
3526
3527         if (!sdp->request_queue->rq_timeout) {
3528                 if (sdp->type != TYPE_MOD)
3529                         blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3530                 else
3531                         blk_queue_rq_timeout(sdp->request_queue,
3532                                              SD_MOD_TIMEOUT);
3533         }
3534
3535         device_initialize(&sdkp->dev);
3536         sdkp->dev.parent = get_device(dev);
3537         sdkp->dev.class = &sd_disk_class;
3538         dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3539
3540         error = device_add(&sdkp->dev);
3541         if (error) {
3542                 put_device(&sdkp->dev);
3543                 goto out;
3544         }
3545
3546         dev_set_drvdata(dev, sdkp);
3547
3548         gd->major = sd_major((index & 0xf0) >> 4);
3549         gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3550         gd->minors = SD_MINORS;
3551
3552         gd->fops = &sd_fops;
3553         gd->private_data = &sdkp->driver;
3554
3555         /* defaults, until the device tells us otherwise */
3556         sdp->sector_size = 512;
3557         sdkp->capacity = 0;
3558         sdkp->media_present = 1;
3559         sdkp->write_prot = 0;
3560         sdkp->cache_override = 0;
3561         sdkp->WCE = 0;
3562         sdkp->RCD = 0;
3563         sdkp->ATO = 0;
3564         sdkp->first_scan = 1;
3565         sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3566
3567         sd_revalidate_disk(gd);
3568
3569         gd->flags = GENHD_FL_EXT_DEVT;
3570         if (sdp->removable) {
3571                 gd->flags |= GENHD_FL_REMOVABLE;
3572                 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3573                 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3574         }
3575
3576         blk_pm_runtime_init(sdp->request_queue, dev);
3577         if (sdp->rpm_autosuspend) {
3578                 pm_runtime_set_autosuspend_delay(dev,
3579                         sdp->host->hostt->rpm_autosuspend_delay);
3580         }
3581
3582         error = device_add_disk(dev, gd, NULL);
3583         if (error) {
3584                 put_device(&sdkp->dev);
3585                 goto out;
3586         }
3587
3588         if (sdkp->capacity)
3589                 sd_dif_config_host(sdkp);
3590
3591         sd_revalidate_disk(gd);
3592
3593         if (sdkp->security) {
3594                 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3595                 if (sdkp->opal_dev)
3596                         sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3597         }
3598
3599         sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3600                   sdp->removable ? "removable " : "");
3601         scsi_autopm_put_device(sdp);
3602
3603         return 0;
3604
3605  out_free_index:
3606         ida_free(&sd_index_ida, index);
3607  out_put:
3608         put_disk(gd);
3609  out_free:
3610         sd_zbc_release_disk(sdkp);
3611         kfree(sdkp);
3612  out:
3613         scsi_autopm_put_device(sdp);
3614         return error;
3615 }
3616
3617 /**
3618  *      sd_remove - called whenever a scsi disk (previously recognized by
3619  *      sd_probe) is detached from the system. It is called (potentially
3620  *      multiple times) during sd module unload.
3621  *      @dev: pointer to device object
3622  *
3623  *      Note: this function is invoked from the scsi mid-level.
3624  *      This function potentially frees up a device name (e.g. /dev/sdc)
3625  *      that could be re-used by a subsequent sd_probe().
3626  *      This function is not called when the built-in sd driver is "exit-ed".
3627  **/
3628 static int sd_remove(struct device *dev)
3629 {
3630         struct scsi_disk *sdkp;
3631
3632         sdkp = dev_get_drvdata(dev);
3633         scsi_autopm_get_device(sdkp->device);
3634
3635         device_del(&sdkp->dev);
3636         del_gendisk(sdkp->disk);
3637         sd_shutdown(dev);
3638
3639         free_opal_dev(sdkp->opal_dev);
3640
3641         mutex_lock(&sd_ref_mutex);
3642         dev_set_drvdata(dev, NULL);
3643         put_device(&sdkp->dev);
3644         mutex_unlock(&sd_ref_mutex);
3645
3646         return 0;
3647 }
3648
3649 /**
3650  *      scsi_disk_release - Called to free the scsi_disk structure
3651  *      @dev: pointer to embedded class device
3652  *
3653  *      sd_ref_mutex must be held entering this routine.  Because it is
3654  *      called on last put, you should always use the scsi_disk_get()
3655  *      scsi_disk_put() helpers which manipulate the semaphore directly
3656  *      and never do a direct put_device.
3657  **/
3658 static void scsi_disk_release(struct device *dev)
3659 {
3660         struct scsi_disk *sdkp = to_scsi_disk(dev);
3661         struct gendisk *disk = sdkp->disk;
3662         struct request_queue *q = disk->queue;
3663
3664         ida_free(&sd_index_ida, sdkp->index);
3665
3666         /*
3667          * Wait until all requests that are in progress have completed.
3668          * This is necessary to avoid that e.g. scsi_end_request() crashes
3669          * due to clearing the disk->private_data pointer. Wait from inside
3670          * scsi_disk_release() instead of from sd_release() to avoid that
3671          * freezing and unfreezing the request queue affects user space I/O
3672          * in case multiple processes open a /dev/sd... node concurrently.
3673          */
3674         blk_mq_freeze_queue(q);
3675         blk_mq_unfreeze_queue(q);
3676
3677         disk->private_data = NULL;
3678         put_disk(disk);
3679         put_device(&sdkp->device->sdev_gendev);
3680
3681         sd_zbc_release_disk(sdkp);
3682
3683         kfree(sdkp);
3684 }
3685
3686 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3687 {
3688         unsigned char cmd[6] = { START_STOP };  /* START_VALID */
3689         struct scsi_sense_hdr sshdr;
3690         struct scsi_device *sdp = sdkp->device;
3691         int res;
3692
3693         if (start)
3694                 cmd[4] |= 1;    /* START */
3695
3696         if (sdp->start_stop_pwr_cond)
3697                 cmd[4] |= start ? 1 << 4 : 3 << 4;      /* Active or Standby */
3698
3699         if (!scsi_device_online(sdp))
3700                 return -ENODEV;
3701
3702         res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3703                         SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3704         if (res) {
3705                 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3706                 if (res > 0 && scsi_sense_valid(&sshdr)) {
3707                         sd_print_sense_hdr(sdkp, &sshdr);
3708                         /* 0x3a is medium not present */
3709                         if (sshdr.asc == 0x3a)
3710                                 res = 0;
3711                 }
3712         }
3713
3714         /* SCSI error codes must not go to the generic layer */
3715         if (res)
3716                 return -EIO;
3717
3718         return 0;
3719 }
3720
3721 /*
3722  * Send a SYNCHRONIZE CACHE instruction down to the device through
3723  * the normal SCSI command structure.  Wait for the command to
3724  * complete.
3725  */
3726 static void sd_shutdown(struct device *dev)
3727 {
3728         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3729
3730         if (!sdkp)
3731                 return;         /* this can happen */
3732
3733         if (pm_runtime_suspended(dev))
3734                 return;
3735
3736         if (sdkp->WCE && sdkp->media_present) {
3737                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3738                 sd_sync_cache(sdkp, NULL);
3739         }
3740
3741         if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3742                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3743                 sd_start_stop_device(sdkp, 0);
3744         }
3745 }
3746
3747 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3748 {
3749         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3750         struct scsi_sense_hdr sshdr;
3751         int ret = 0;
3752
3753         if (!sdkp)      /* E.g.: runtime suspend following sd_remove() */
3754                 return 0;
3755
3756         if (sdkp->WCE && sdkp->media_present) {
3757                 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3758                 ret = sd_sync_cache(sdkp, &sshdr);
3759
3760                 if (ret) {
3761                         /* ignore OFFLINE device */
3762                         if (ret == -ENODEV)
3763                                 return 0;
3764
3765                         if (!scsi_sense_valid(&sshdr) ||
3766                             sshdr.sense_key != ILLEGAL_REQUEST)
3767                                 return ret;
3768
3769                         /*
3770                          * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3771                          * doesn't support sync. There's not much to do and
3772                          * suspend shouldn't fail.
3773                          */
3774                         ret = 0;
3775                 }
3776         }
3777
3778         if (sdkp->device->manage_start_stop) {
3779                 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3780                 /* an error is not worth aborting a system sleep */
3781                 ret = sd_start_stop_device(sdkp, 0);
3782                 if (ignore_stop_errors)
3783                         ret = 0;
3784         }
3785
3786         return ret;
3787 }
3788
3789 static int sd_suspend_system(struct device *dev)
3790 {
3791         if (pm_runtime_suspended(dev))
3792                 return 0;
3793
3794         return sd_suspend_common(dev, true);
3795 }
3796
3797 static int sd_suspend_runtime(struct device *dev)
3798 {
3799         return sd_suspend_common(dev, false);
3800 }
3801
3802 static int sd_resume(struct device *dev)
3803 {
3804         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3805         int ret;
3806
3807         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3808                 return 0;
3809
3810         if (!sdkp->device->manage_start_stop)
3811                 return 0;
3812
3813         sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3814         ret = sd_start_stop_device(sdkp, 1);
3815         if (!ret)
3816                 opal_unlock_from_suspend(sdkp->opal_dev);
3817         return ret;
3818 }
3819
3820 static int sd_resume_system(struct device *dev)
3821 {
3822         if (pm_runtime_suspended(dev))
3823                 return 0;
3824
3825         return sd_resume(dev);
3826 }
3827
3828 static int sd_resume_runtime(struct device *dev)
3829 {
3830         struct scsi_disk *sdkp = dev_get_drvdata(dev);
3831         struct scsi_device *sdp;
3832
3833         if (!sdkp)      /* E.g.: runtime resume at the start of sd_probe() */
3834                 return 0;
3835
3836         sdp = sdkp->device;
3837
3838         if (sdp->ignore_media_change) {
3839                 /* clear the device's sense data */
3840                 static const u8 cmd[10] = { REQUEST_SENSE };
3841
3842                 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3843                                  NULL, sdp->request_queue->rq_timeout, 1, 0,
3844                                  RQF_PM, NULL))
3845                         sd_printk(KERN_NOTICE, sdkp,
3846                                   "Failed to clear sense data\n");
3847         }
3848
3849         return sd_resume(dev);
3850 }
3851
3852 /**
3853  *      init_sd - entry point for this driver (both when built in or when
3854  *      a module).
3855  *
3856  *      Note: this function registers this driver with the scsi mid-level.
3857  **/
3858 static int __init init_sd(void)
3859 {
3860         int majors = 0, i, err;
3861
3862         SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3863
3864         for (i = 0; i < SD_MAJORS; i++) {
3865                 if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3866                         continue;
3867                 majors++;
3868         }
3869
3870         if (!majors)
3871                 return -ENODEV;
3872
3873         err = class_register(&sd_disk_class);
3874         if (err)
3875                 goto err_out;
3876
3877         sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3878                                          0, 0, NULL);
3879         if (!sd_cdb_cache) {
3880                 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3881                 err = -ENOMEM;
3882                 goto err_out_class;
3883         }
3884
3885         sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3886         if (!sd_cdb_pool) {
3887                 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3888                 err = -ENOMEM;
3889                 goto err_out_cache;
3890         }
3891
3892         sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3893         if (!sd_page_pool) {
3894                 printk(KERN_ERR "sd: can't init discard page pool\n");
3895                 err = -ENOMEM;
3896                 goto err_out_ppool;
3897         }
3898
3899         err = scsi_register_driver(&sd_template.gendrv);
3900         if (err)
3901                 goto err_out_driver;
3902
3903         return 0;
3904
3905 err_out_driver:
3906         mempool_destroy(sd_page_pool);
3907
3908 err_out_ppool:
3909         mempool_destroy(sd_cdb_pool);
3910
3911 err_out_cache:
3912         kmem_cache_destroy(sd_cdb_cache);
3913
3914 err_out_class:
3915         class_unregister(&sd_disk_class);
3916 err_out:
3917         for (i = 0; i < SD_MAJORS; i++)
3918                 unregister_blkdev(sd_major(i), "sd");
3919         return err;
3920 }
3921
3922 /**
3923  *      exit_sd - exit point for this driver (when it is a module).
3924  *
3925  *      Note: this function unregisters this driver from the scsi mid-level.
3926  **/
3927 static void __exit exit_sd(void)
3928 {
3929         int i;
3930
3931         SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3932
3933         scsi_unregister_driver(&sd_template.gendrv);
3934         mempool_destroy(sd_cdb_pool);
3935         mempool_destroy(sd_page_pool);
3936         kmem_cache_destroy(sd_cdb_cache);
3937
3938         class_unregister(&sd_disk_class);
3939
3940         for (i = 0; i < SD_MAJORS; i++)
3941                 unregister_blkdev(sd_major(i), "sd");
3942 }
3943
3944 module_init(init_sd);
3945 module_exit(exit_sd);
3946
3947 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3948 {
3949         scsi_print_sense_hdr(sdkp->device,
3950                              sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3951 }
3952
3953 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3954 {
3955         const char *hb_string = scsi_hostbyte_string(result);
3956
3957         if (hb_string)
3958                 sd_printk(KERN_INFO, sdkp,
3959                           "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3960                           hb_string ? hb_string : "invalid",
3961                           "DRIVER_OK");
3962         else
3963                 sd_printk(KERN_INFO, sdkp,
3964                           "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3965                           msg, host_byte(result), "DRIVER_OK");
3966 }
This page took 0.263756 seconds and 4 git commands to generate.