]> Git Repo - linux.git/blob - fs/gfs2/aops.c
media: v4l2-subdev: Verify arguments in v4l2_subdev_call()
[linux.git] / fs / gfs2 / aops.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
5  */
6
7 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/spinlock.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/pagevec.h>
14 #include <linux/mpage.h>
15 #include <linux/fs.h>
16 #include <linux/writeback.h>
17 #include <linux/swap.h>
18 #include <linux/gfs2_ondisk.h>
19 #include <linux/backing-dev.h>
20 #include <linux/uio.h>
21 #include <trace/events/writeback.h>
22 #include <linux/sched/signal.h>
23
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37 #include "aops.h"
38
39
40 void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
41                             unsigned int from, unsigned int len)
42 {
43         struct buffer_head *head = page_buffers(page);
44         unsigned int bsize = head->b_size;
45         struct buffer_head *bh;
46         unsigned int to = from + len;
47         unsigned int start, end;
48
49         for (bh = head, start = 0; bh != head || !start;
50              bh = bh->b_this_page, start = end) {
51                 end = start + bsize;
52                 if (end <= from)
53                         continue;
54                 if (start >= to)
55                         break;
56                 set_buffer_uptodate(bh);
57                 gfs2_trans_add_data(ip->i_gl, bh);
58         }
59 }
60
61 /**
62  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
63  * @inode: The inode
64  * @lblock: The block number to look up
65  * @bh_result: The buffer head to return the result in
66  * @create: Non-zero if we may add block to the file
67  *
68  * Returns: errno
69  */
70
71 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
72                                   struct buffer_head *bh_result, int create)
73 {
74         int error;
75
76         error = gfs2_block_map(inode, lblock, bh_result, 0);
77         if (error)
78                 return error;
79         if (!buffer_mapped(bh_result))
80                 return -EIO;
81         return 0;
82 }
83
84 /**
85  * gfs2_writepage_common - Common bits of writepage
86  * @page: The page to be written
87  * @wbc: The writeback control
88  *
89  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
90  */
91
92 static int gfs2_writepage_common(struct page *page,
93                                  struct writeback_control *wbc)
94 {
95         struct inode *inode = page->mapping->host;
96         struct gfs2_inode *ip = GFS2_I(inode);
97         struct gfs2_sbd *sdp = GFS2_SB(inode);
98         loff_t i_size = i_size_read(inode);
99         pgoff_t end_index = i_size >> PAGE_SHIFT;
100         unsigned offset;
101
102         if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
103                 goto out;
104         if (current->journal_info)
105                 goto redirty;
106         /* Is the page fully outside i_size? (truncate in progress) */
107         offset = i_size & (PAGE_SIZE-1);
108         if (page->index > end_index || (page->index == end_index && !offset)) {
109                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
110                 goto out;
111         }
112         return 1;
113 redirty:
114         redirty_page_for_writepage(wbc, page);
115 out:
116         unlock_page(page);
117         return 0;
118 }
119
120 /**
121  * gfs2_writepage - Write page for writeback mappings
122  * @page: The page
123  * @wbc: The writeback control
124  *
125  */
126
127 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
128 {
129         int ret;
130
131         ret = gfs2_writepage_common(page, wbc);
132         if (ret <= 0)
133                 return ret;
134
135         return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
136 }
137
138 /* This is the same as calling block_write_full_page, but it also
139  * writes pages outside of i_size
140  */
141 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
142                                 struct writeback_control *wbc)
143 {
144         struct inode * const inode = page->mapping->host;
145         loff_t i_size = i_size_read(inode);
146         const pgoff_t end_index = i_size >> PAGE_SHIFT;
147         unsigned offset;
148
149         /*
150          * The page straddles i_size.  It must be zeroed out on each and every
151          * writepage invocation because it may be mmapped.  "A file is mapped
152          * in multiples of the page size.  For a file that is not a multiple of
153          * the  page size, the remaining memory is zeroed when mapped, and
154          * writes to that region are not written out to the file."
155          */
156         offset = i_size & (PAGE_SIZE-1);
157         if (page->index == end_index && offset)
158                 zero_user_segment(page, offset, PAGE_SIZE);
159
160         return __block_write_full_page(inode, page, get_block, wbc,
161                                        end_buffer_async_write);
162 }
163
164 /**
165  * __gfs2_jdata_writepage - The core of jdata writepage
166  * @page: The page to write
167  * @wbc: The writeback control
168  *
169  * This is shared between writepage and writepages and implements the
170  * core of the writepage operation. If a transaction is required then
171  * PageChecked will have been set and the transaction will have
172  * already been started before this is called.
173  */
174
175 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
176 {
177         struct inode *inode = page->mapping->host;
178         struct gfs2_inode *ip = GFS2_I(inode);
179         struct gfs2_sbd *sdp = GFS2_SB(inode);
180
181         if (PageChecked(page)) {
182                 ClearPageChecked(page);
183                 if (!page_has_buffers(page)) {
184                         create_empty_buffers(page, inode->i_sb->s_blocksize,
185                                              BIT(BH_Dirty)|BIT(BH_Uptodate));
186                 }
187                 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize);
188         }
189         return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
190 }
191
192 /**
193  * gfs2_jdata_writepage - Write complete page
194  * @page: Page to write
195  * @wbc: The writeback control
196  *
197  * Returns: errno
198  *
199  */
200
201 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
202 {
203         struct inode *inode = page->mapping->host;
204         struct gfs2_inode *ip = GFS2_I(inode);
205         struct gfs2_sbd *sdp = GFS2_SB(inode);
206         int ret;
207
208         if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
209                 goto out;
210         if (PageChecked(page) || current->journal_info)
211                 goto out_ignore;
212         ret = __gfs2_jdata_writepage(page, wbc);
213         return ret;
214
215 out_ignore:
216         redirty_page_for_writepage(wbc, page);
217 out:
218         unlock_page(page);
219         return 0;
220 }
221
222 /**
223  * gfs2_writepages - Write a bunch of dirty pages back to disk
224  * @mapping: The mapping to write
225  * @wbc: Write-back control
226  *
227  * Used for both ordered and writeback modes.
228  */
229 static int gfs2_writepages(struct address_space *mapping,
230                            struct writeback_control *wbc)
231 {
232         struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
233         int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
234
235         /*
236          * Even if we didn't write any pages here, we might still be holding
237          * dirty pages in the ail. We forcibly flush the ail because we don't
238          * want balance_dirty_pages() to loop indefinitely trying to write out
239          * pages held in the ail that it can't find.
240          */
241         if (ret == 0)
242                 set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
243
244         return ret;
245 }
246
247 /**
248  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
249  * @mapping: The mapping
250  * @wbc: The writeback control
251  * @pvec: The vector of pages
252  * @nr_pages: The number of pages to write
253  * @done_index: Page index
254  *
255  * Returns: non-zero if loop should terminate, zero otherwise
256  */
257
258 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
259                                     struct writeback_control *wbc,
260                                     struct pagevec *pvec,
261                                     int nr_pages,
262                                     pgoff_t *done_index)
263 {
264         struct inode *inode = mapping->host;
265         struct gfs2_sbd *sdp = GFS2_SB(inode);
266         unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
267         int i;
268         int ret;
269
270         ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
271         if (ret < 0)
272                 return ret;
273
274         for(i = 0; i < nr_pages; i++) {
275                 struct page *page = pvec->pages[i];
276
277                 *done_index = page->index;
278
279                 lock_page(page);
280
281                 if (unlikely(page->mapping != mapping)) {
282 continue_unlock:
283                         unlock_page(page);
284                         continue;
285                 }
286
287                 if (!PageDirty(page)) {
288                         /* someone wrote it for us */
289                         goto continue_unlock;
290                 }
291
292                 if (PageWriteback(page)) {
293                         if (wbc->sync_mode != WB_SYNC_NONE)
294                                 wait_on_page_writeback(page);
295                         else
296                                 goto continue_unlock;
297                 }
298
299                 BUG_ON(PageWriteback(page));
300                 if (!clear_page_dirty_for_io(page))
301                         goto continue_unlock;
302
303                 trace_wbc_writepage(wbc, inode_to_bdi(inode));
304
305                 ret = __gfs2_jdata_writepage(page, wbc);
306                 if (unlikely(ret)) {
307                         if (ret == AOP_WRITEPAGE_ACTIVATE) {
308                                 unlock_page(page);
309                                 ret = 0;
310                         } else {
311
312                                 /*
313                                  * done_index is set past this page,
314                                  * so media errors will not choke
315                                  * background writeout for the entire
316                                  * file. This has consequences for
317                                  * range_cyclic semantics (ie. it may
318                                  * not be suitable for data integrity
319                                  * writeout).
320                                  */
321                                 *done_index = page->index + 1;
322                                 ret = 1;
323                                 break;
324                         }
325                 }
326
327                 /*
328                  * We stop writing back only if we are not doing
329                  * integrity sync. In case of integrity sync we have to
330                  * keep going until we have written all the pages
331                  * we tagged for writeback prior to entering this loop.
332                  */
333                 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
334                         ret = 1;
335                         break;
336                 }
337
338         }
339         gfs2_trans_end(sdp);
340         return ret;
341 }
342
343 /**
344  * gfs2_write_cache_jdata - Like write_cache_pages but different
345  * @mapping: The mapping to write
346  * @wbc: The writeback control
347  *
348  * The reason that we use our own function here is that we need to
349  * start transactions before we grab page locks. This allows us
350  * to get the ordering right.
351  */
352
353 static int gfs2_write_cache_jdata(struct address_space *mapping,
354                                   struct writeback_control *wbc)
355 {
356         int ret = 0;
357         int done = 0;
358         struct pagevec pvec;
359         int nr_pages;
360         pgoff_t uninitialized_var(writeback_index);
361         pgoff_t index;
362         pgoff_t end;
363         pgoff_t done_index;
364         int cycled;
365         int range_whole = 0;
366         xa_mark_t tag;
367
368         pagevec_init(&pvec);
369         if (wbc->range_cyclic) {
370                 writeback_index = mapping->writeback_index; /* prev offset */
371                 index = writeback_index;
372                 if (index == 0)
373                         cycled = 1;
374                 else
375                         cycled = 0;
376                 end = -1;
377         } else {
378                 index = wbc->range_start >> PAGE_SHIFT;
379                 end = wbc->range_end >> PAGE_SHIFT;
380                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
381                         range_whole = 1;
382                 cycled = 1; /* ignore range_cyclic tests */
383         }
384         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
385                 tag = PAGECACHE_TAG_TOWRITE;
386         else
387                 tag = PAGECACHE_TAG_DIRTY;
388
389 retry:
390         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
391                 tag_pages_for_writeback(mapping, index, end);
392         done_index = index;
393         while (!done && (index <= end)) {
394                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
395                                 tag);
396                 if (nr_pages == 0)
397                         break;
398
399                 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index);
400                 if (ret)
401                         done = 1;
402                 if (ret > 0)
403                         ret = 0;
404                 pagevec_release(&pvec);
405                 cond_resched();
406         }
407
408         if (!cycled && !done) {
409                 /*
410                  * range_cyclic:
411                  * We hit the last page and there is more work to be done: wrap
412                  * back to the start of the file
413                  */
414                 cycled = 1;
415                 index = 0;
416                 end = writeback_index - 1;
417                 goto retry;
418         }
419
420         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
421                 mapping->writeback_index = done_index;
422
423         return ret;
424 }
425
426
427 /**
428  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
429  * @mapping: The mapping to write
430  * @wbc: The writeback control
431  * 
432  */
433
434 static int gfs2_jdata_writepages(struct address_space *mapping,
435                                  struct writeback_control *wbc)
436 {
437         struct gfs2_inode *ip = GFS2_I(mapping->host);
438         struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
439         int ret;
440
441         ret = gfs2_write_cache_jdata(mapping, wbc);
442         if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
443                 gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
444                                GFS2_LFC_JDATA_WPAGES);
445                 ret = gfs2_write_cache_jdata(mapping, wbc);
446         }
447         return ret;
448 }
449
450 /**
451  * stuffed_readpage - Fill in a Linux page with stuffed file data
452  * @ip: the inode
453  * @page: the page
454  *
455  * Returns: errno
456  */
457
458 int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
459 {
460         struct buffer_head *dibh;
461         u64 dsize = i_size_read(&ip->i_inode);
462         void *kaddr;
463         int error;
464
465         /*
466          * Due to the order of unstuffing files and ->fault(), we can be
467          * asked for a zero page in the case of a stuffed file being extended,
468          * so we need to supply one here. It doesn't happen often.
469          */
470         if (unlikely(page->index)) {
471                 zero_user(page, 0, PAGE_SIZE);
472                 SetPageUptodate(page);
473                 return 0;
474         }
475
476         error = gfs2_meta_inode_buffer(ip, &dibh);
477         if (error)
478                 return error;
479
480         kaddr = kmap_atomic(page);
481         if (dsize > gfs2_max_stuffed_size(ip))
482                 dsize = gfs2_max_stuffed_size(ip);
483         memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
484         memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
485         kunmap_atomic(kaddr);
486         flush_dcache_page(page);
487         brelse(dibh);
488         SetPageUptodate(page);
489
490         return 0;
491 }
492
493
494 /**
495  * __gfs2_readpage - readpage
496  * @file: The file to read a page for
497  * @page: The page to read
498  *
499  * This is the core of gfs2's readpage. It's used by the internal file
500  * reading code as in that case we already hold the glock. Also it's
501  * called by gfs2_readpage() once the required lock has been granted.
502  */
503
504 static int __gfs2_readpage(void *file, struct page *page)
505 {
506         struct gfs2_inode *ip = GFS2_I(page->mapping->host);
507         struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
508
509         int error;
510
511         if (i_blocksize(page->mapping->host) == PAGE_SIZE &&
512             !page_has_buffers(page)) {
513                 error = iomap_readpage(page, &gfs2_iomap_ops);
514         } else if (gfs2_is_stuffed(ip)) {
515                 error = stuffed_readpage(ip, page);
516                 unlock_page(page);
517         } else {
518                 error = mpage_readpage(page, gfs2_block_map);
519         }
520
521         if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
522                 return -EIO;
523
524         return error;
525 }
526
527 /**
528  * gfs2_readpage - read a page of a file
529  * @file: The file to read
530  * @page: The page of the file
531  *
532  * This deals with the locking required. We have to unlock and
533  * relock the page in order to get the locking in the right
534  * order.
535  */
536
537 static int gfs2_readpage(struct file *file, struct page *page)
538 {
539         struct address_space *mapping = page->mapping;
540         struct gfs2_inode *ip = GFS2_I(mapping->host);
541         struct gfs2_holder gh;
542         int error;
543
544         unlock_page(page);
545         gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
546         error = gfs2_glock_nq(&gh);
547         if (unlikely(error))
548                 goto out;
549         error = AOP_TRUNCATED_PAGE;
550         lock_page(page);
551         if (page->mapping == mapping && !PageUptodate(page))
552                 error = __gfs2_readpage(file, page);
553         else
554                 unlock_page(page);
555         gfs2_glock_dq(&gh);
556 out:
557         gfs2_holder_uninit(&gh);
558         if (error && error != AOP_TRUNCATED_PAGE)
559                 lock_page(page);
560         return error;
561 }
562
563 /**
564  * gfs2_internal_read - read an internal file
565  * @ip: The gfs2 inode
566  * @buf: The buffer to fill
567  * @pos: The file position
568  * @size: The amount to read
569  *
570  */
571
572 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
573                        unsigned size)
574 {
575         struct address_space *mapping = ip->i_inode.i_mapping;
576         unsigned long index = *pos / PAGE_SIZE;
577         unsigned offset = *pos & (PAGE_SIZE - 1);
578         unsigned copied = 0;
579         unsigned amt;
580         struct page *page;
581         void *p;
582
583         do {
584                 amt = size - copied;
585                 if (offset + size > PAGE_SIZE)
586                         amt = PAGE_SIZE - offset;
587                 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
588                 if (IS_ERR(page))
589                         return PTR_ERR(page);
590                 p = kmap_atomic(page);
591                 memcpy(buf + copied, p + offset, amt);
592                 kunmap_atomic(p);
593                 put_page(page);
594                 copied += amt;
595                 index++;
596                 offset = 0;
597         } while(copied < size);
598         (*pos) += size;
599         return size;
600 }
601
602 /**
603  * gfs2_readpages - Read a bunch of pages at once
604  * @file: The file to read from
605  * @mapping: Address space info
606  * @pages: List of pages to read
607  * @nr_pages: Number of pages to read
608  *
609  * Some notes:
610  * 1. This is only for readahead, so we can simply ignore any things
611  *    which are slightly inconvenient (such as locking conflicts between
612  *    the page lock and the glock) and return having done no I/O. Its
613  *    obviously not something we'd want to do on too regular a basis.
614  *    Any I/O we ignore at this time will be done via readpage later.
615  * 2. We don't handle stuffed files here we let readpage do the honours.
616  * 3. mpage_readpages() does most of the heavy lifting in the common case.
617  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
618  */
619
620 static int gfs2_readpages(struct file *file, struct address_space *mapping,
621                           struct list_head *pages, unsigned nr_pages)
622 {
623         struct inode *inode = mapping->host;
624         struct gfs2_inode *ip = GFS2_I(inode);
625         struct gfs2_sbd *sdp = GFS2_SB(inode);
626         struct gfs2_holder gh;
627         int ret;
628
629         gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
630         ret = gfs2_glock_nq(&gh);
631         if (unlikely(ret))
632                 goto out_uninit;
633         if (!gfs2_is_stuffed(ip))
634                 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
635         gfs2_glock_dq(&gh);
636 out_uninit:
637         gfs2_holder_uninit(&gh);
638         if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
639                 ret = -EIO;
640         return ret;
641 }
642
643 /**
644  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
645  * @inode: the rindex inode
646  */
647 void adjust_fs_space(struct inode *inode)
648 {
649         struct gfs2_sbd *sdp = GFS2_SB(inode);
650         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
651         struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
652         struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
653         struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
654         struct buffer_head *m_bh, *l_bh;
655         u64 fs_total, new_free;
656
657         if (gfs2_trans_begin(sdp, 2 * RES_STATFS, 0) != 0)
658                 return;
659
660         /* Total up the file system space, according to the latest rindex. */
661         fs_total = gfs2_ri_total(sdp);
662         if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
663                 goto out;
664
665         spin_lock(&sdp->sd_statfs_spin);
666         gfs2_statfs_change_in(m_sc, m_bh->b_data +
667                               sizeof(struct gfs2_dinode));
668         if (fs_total > (m_sc->sc_total + l_sc->sc_total))
669                 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
670         else
671                 new_free = 0;
672         spin_unlock(&sdp->sd_statfs_spin);
673         fs_warn(sdp, "File system extended by %llu blocks.\n",
674                 (unsigned long long)new_free);
675         gfs2_statfs_change(sdp, new_free, new_free, 0);
676
677         if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
678                 goto out2;
679         update_statfs(sdp, m_bh, l_bh);
680         brelse(l_bh);
681 out2:
682         brelse(m_bh);
683 out:
684         sdp->sd_rindex_uptodate = 0;
685         gfs2_trans_end(sdp);
686 }
687
688 /**
689  * gfs2_stuffed_write_end - Write end for stuffed files
690  * @inode: The inode
691  * @dibh: The buffer_head containing the on-disk inode
692  * @pos: The file position
693  * @copied: How much was actually copied by the VFS
694  * @page: The page
695  *
696  * This copies the data from the page into the inode block after
697  * the inode data structure itself.
698  *
699  * Returns: copied bytes or errno
700  */
701 int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
702                            loff_t pos, unsigned copied,
703                            struct page *page)
704 {
705         struct gfs2_inode *ip = GFS2_I(inode);
706         u64 to = pos + copied;
707         void *kaddr;
708         unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
709
710         BUG_ON(pos + copied > gfs2_max_stuffed_size(ip));
711
712         kaddr = kmap_atomic(page);
713         memcpy(buf + pos, kaddr + pos, copied);
714         flush_dcache_page(page);
715         kunmap_atomic(kaddr);
716
717         WARN_ON(!PageUptodate(page));
718         unlock_page(page);
719         put_page(page);
720
721         if (copied) {
722                 if (inode->i_size < to)
723                         i_size_write(inode, to);
724                 mark_inode_dirty(inode);
725         }
726         return copied;
727 }
728
729 /**
730  * jdata_set_page_dirty - Page dirtying function
731  * @page: The page to dirty
732  *
733  * Returns: 1 if it dirtyed the page, or 0 otherwise
734  */
735  
736 static int jdata_set_page_dirty(struct page *page)
737 {
738         SetPageChecked(page);
739         return __set_page_dirty_buffers(page);
740 }
741
742 /**
743  * gfs2_bmap - Block map function
744  * @mapping: Address space info
745  * @lblock: The block to map
746  *
747  * Returns: The disk address for the block or 0 on hole or error
748  */
749
750 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
751 {
752         struct gfs2_inode *ip = GFS2_I(mapping->host);
753         struct gfs2_holder i_gh;
754         sector_t dblock = 0;
755         int error;
756
757         error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
758         if (error)
759                 return 0;
760
761         if (!gfs2_is_stuffed(ip))
762                 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
763
764         gfs2_glock_dq_uninit(&i_gh);
765
766         return dblock;
767 }
768
769 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
770 {
771         struct gfs2_bufdata *bd;
772
773         lock_buffer(bh);
774         gfs2_log_lock(sdp);
775         clear_buffer_dirty(bh);
776         bd = bh->b_private;
777         if (bd) {
778                 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
779                         list_del_init(&bd->bd_list);
780                 else
781                         gfs2_remove_from_journal(bh, REMOVE_JDATA);
782         }
783         bh->b_bdev = NULL;
784         clear_buffer_mapped(bh);
785         clear_buffer_req(bh);
786         clear_buffer_new(bh);
787         gfs2_log_unlock(sdp);
788         unlock_buffer(bh);
789 }
790
791 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
792                                 unsigned int length)
793 {
794         struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
795         unsigned int stop = offset + length;
796         int partial_page = (offset || length < PAGE_SIZE);
797         struct buffer_head *bh, *head;
798         unsigned long pos = 0;
799
800         BUG_ON(!PageLocked(page));
801         if (!partial_page)
802                 ClearPageChecked(page);
803         if (!page_has_buffers(page))
804                 goto out;
805
806         bh = head = page_buffers(page);
807         do {
808                 if (pos + bh->b_size > stop)
809                         return;
810
811                 if (offset <= pos)
812                         gfs2_discard(sdp, bh);
813                 pos += bh->b_size;
814                 bh = bh->b_this_page;
815         } while (bh != head);
816 out:
817         if (!partial_page)
818                 try_to_release_page(page, 0);
819 }
820
821 /**
822  * gfs2_releasepage - free the metadata associated with a page
823  * @page: the page that's being released
824  * @gfp_mask: passed from Linux VFS, ignored by us
825  *
826  * Calls try_to_free_buffers() to free the buffers and put the page if the
827  * buffers can be released.
828  *
829  * Returns: 1 if the page was put or else 0
830  */
831
832 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
833 {
834         struct address_space *mapping = page->mapping;
835         struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
836         struct buffer_head *bh, *head;
837         struct gfs2_bufdata *bd;
838
839         if (!page_has_buffers(page))
840                 return 0;
841
842         /*
843          * From xfs_vm_releasepage: mm accommodates an old ext3 case where
844          * clean pages might not have had the dirty bit cleared.  Thus, it can
845          * send actual dirty pages to ->releasepage() via shrink_active_list().
846          *
847          * As a workaround, we skip pages that contain dirty buffers below.
848          * Once ->releasepage isn't called on dirty pages anymore, we can warn
849          * on dirty buffers like we used to here again.
850          */
851
852         gfs2_log_lock(sdp);
853         spin_lock(&sdp->sd_ail_lock);
854         head = bh = page_buffers(page);
855         do {
856                 if (atomic_read(&bh->b_count))
857                         goto cannot_release;
858                 bd = bh->b_private;
859                 if (bd && bd->bd_tr)
860                         goto cannot_release;
861                 if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
862                         goto cannot_release;
863                 bh = bh->b_this_page;
864         } while(bh != head);
865         spin_unlock(&sdp->sd_ail_lock);
866
867         head = bh = page_buffers(page);
868         do {
869                 bd = bh->b_private;
870                 if (bd) {
871                         gfs2_assert_warn(sdp, bd->bd_bh == bh);
872                         if (!list_empty(&bd->bd_list))
873                                 list_del_init(&bd->bd_list);
874                         bd->bd_bh = NULL;
875                         bh->b_private = NULL;
876                         kmem_cache_free(gfs2_bufdata_cachep, bd);
877                 }
878
879                 bh = bh->b_this_page;
880         } while (bh != head);
881         gfs2_log_unlock(sdp);
882
883         return try_to_free_buffers(page);
884
885 cannot_release:
886         spin_unlock(&sdp->sd_ail_lock);
887         gfs2_log_unlock(sdp);
888         return 0;
889 }
890
891 static const struct address_space_operations gfs2_writeback_aops = {
892         .writepage = gfs2_writepage,
893         .writepages = gfs2_writepages,
894         .readpage = gfs2_readpage,
895         .readpages = gfs2_readpages,
896         .bmap = gfs2_bmap,
897         .invalidatepage = gfs2_invalidatepage,
898         .releasepage = gfs2_releasepage,
899         .direct_IO = noop_direct_IO,
900         .migratepage = buffer_migrate_page,
901         .is_partially_uptodate = block_is_partially_uptodate,
902         .error_remove_page = generic_error_remove_page,
903 };
904
905 static const struct address_space_operations gfs2_ordered_aops = {
906         .writepage = gfs2_writepage,
907         .writepages = gfs2_writepages,
908         .readpage = gfs2_readpage,
909         .readpages = gfs2_readpages,
910         .set_page_dirty = __set_page_dirty_buffers,
911         .bmap = gfs2_bmap,
912         .invalidatepage = gfs2_invalidatepage,
913         .releasepage = gfs2_releasepage,
914         .direct_IO = noop_direct_IO,
915         .migratepage = buffer_migrate_page,
916         .is_partially_uptodate = block_is_partially_uptodate,
917         .error_remove_page = generic_error_remove_page,
918 };
919
920 static const struct address_space_operations gfs2_jdata_aops = {
921         .writepage = gfs2_jdata_writepage,
922         .writepages = gfs2_jdata_writepages,
923         .readpage = gfs2_readpage,
924         .readpages = gfs2_readpages,
925         .set_page_dirty = jdata_set_page_dirty,
926         .bmap = gfs2_bmap,
927         .invalidatepage = gfs2_invalidatepage,
928         .releasepage = gfs2_releasepage,
929         .is_partially_uptodate = block_is_partially_uptodate,
930         .error_remove_page = generic_error_remove_page,
931 };
932
933 void gfs2_set_aops(struct inode *inode)
934 {
935         struct gfs2_inode *ip = GFS2_I(inode);
936         struct gfs2_sbd *sdp = GFS2_SB(inode);
937
938         if (gfs2_is_jdata(ip))
939                 inode->i_mapping->a_ops = &gfs2_jdata_aops;
940         else if (gfs2_is_writeback(sdp))
941                 inode->i_mapping->a_ops = &gfs2_writeback_aops;
942         else if (gfs2_is_ordered(sdp))
943                 inode->i_mapping->a_ops = &gfs2_ordered_aops;
944         else
945                 BUG();
946 }
This page took 0.084766 seconds and 4 git commands to generate.