]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/i915_vma.c
Merge tag 'irq-urgent-2025-02-08' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / gpu / drm / i915 / i915_vma.c
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28
29 #include "display/intel_display.h"
30 #include "display/intel_frontbuffer.h"
31 #include "gem/i915_gem_lmem.h"
32 #include "gem/i915_gem_object_frontbuffer.h"
33 #include "gem/i915_gem_tiling.h"
34 #include "gt/intel_engine.h"
35 #include "gt/intel_engine_heartbeat.h"
36 #include "gt/intel_gt.h"
37 #include "gt/intel_gt_pm.h"
38 #include "gt/intel_gt_requests.h"
39 #include "gt/intel_tlb.h"
40
41 #include "i915_drv.h"
42 #include "i915_gem_evict.h"
43 #include "i915_sw_fence_work.h"
44 #include "i915_trace.h"
45 #include "i915_vma.h"
46 #include "i915_vma_resource.h"
47
48 static inline void assert_vma_held_evict(const struct i915_vma *vma)
49 {
50         /*
51          * We may be forced to unbind when the vm is dead, to clean it up.
52          * This is the only exception to the requirement of the object lock
53          * being held.
54          */
55         if (kref_read(&vma->vm->ref))
56                 assert_object_held_shared(vma->obj);
57 }
58
59 static struct kmem_cache *slab_vmas;
60
61 static struct i915_vma *i915_vma_alloc(void)
62 {
63         return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
64 }
65
66 static void i915_vma_free(struct i915_vma *vma)
67 {
68         return kmem_cache_free(slab_vmas, vma);
69 }
70
71 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
72
73 #include <linux/stackdepot.h>
74
75 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
76 {
77         char buf[512];
78
79         if (!vma->node.stack) {
80                 drm_dbg(vma->obj->base.dev,
81                         "vma.node [%08llx + %08llx] %s: unknown owner\n",
82                         vma->node.start, vma->node.size, reason);
83                 return;
84         }
85
86         stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
87         drm_dbg(vma->obj->base.dev,
88                 "vma.node [%08llx + %08llx] %s: inserted at %s\n",
89                 vma->node.start, vma->node.size, reason, buf);
90 }
91
92 #else
93
94 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
95 {
96 }
97
98 #endif
99
100 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
101 {
102         return container_of(ref, typeof(struct i915_vma), active);
103 }
104
105 static int __i915_vma_active(struct i915_active *ref)
106 {
107         struct i915_vma *vma = active_to_vma(ref);
108
109         if (!i915_vma_tryget(vma))
110                 return -ENOENT;
111
112         /*
113          * Exclude global GTT VMA from holding a GT wakeref
114          * while active, otherwise GPU never goes idle.
115          */
116         if (!i915_vma_is_ggtt(vma)) {
117                 /*
118                  * Since we and our _retire() counterpart can be
119                  * called asynchronously, storing a wakeref tracking
120                  * handle inside struct i915_vma is not safe, and
121                  * there is no other good place for that.  Hence,
122                  * use untracked variants of intel_gt_pm_get/put().
123                  */
124                 intel_gt_pm_get_untracked(vma->vm->gt);
125         }
126
127         return 0;
128 }
129
130 static void __i915_vma_retire(struct i915_active *ref)
131 {
132         struct i915_vma *vma = active_to_vma(ref);
133
134         if (!i915_vma_is_ggtt(vma)) {
135                 /*
136                  * Since we can be called from atomic contexts,
137                  * use an async variant of intel_gt_pm_put().
138                  */
139                 intel_gt_pm_put_async_untracked(vma->vm->gt);
140         }
141
142         i915_vma_put(vma);
143 }
144
145 static struct i915_vma *
146 vma_create(struct drm_i915_gem_object *obj,
147            struct i915_address_space *vm,
148            const struct i915_gtt_view *view)
149 {
150         struct i915_vma *pos = ERR_PTR(-E2BIG);
151         struct i915_vma *vma;
152         struct rb_node *rb, **p;
153         int err;
154
155         /* The aliasing_ppgtt should never be used directly! */
156         GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
157
158         vma = i915_vma_alloc();
159         if (vma == NULL)
160                 return ERR_PTR(-ENOMEM);
161
162         vma->ops = &vm->vma_ops;
163         vma->obj = obj;
164         vma->size = obj->base.size;
165         vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
166
167         i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
168
169         /* Declare ourselves safe for use inside shrinkers */
170         if (IS_ENABLED(CONFIG_LOCKDEP)) {
171                 fs_reclaim_acquire(GFP_KERNEL);
172                 might_lock(&vma->active.mutex);
173                 fs_reclaim_release(GFP_KERNEL);
174         }
175
176         INIT_LIST_HEAD(&vma->closed_link);
177         INIT_LIST_HEAD(&vma->obj_link);
178         RB_CLEAR_NODE(&vma->obj_node);
179
180         if (view && view->type != I915_GTT_VIEW_NORMAL) {
181                 vma->gtt_view = *view;
182                 if (view->type == I915_GTT_VIEW_PARTIAL) {
183                         GEM_BUG_ON(range_overflows_t(u64,
184                                                      view->partial.offset,
185                                                      view->partial.size,
186                                                      obj->base.size >> PAGE_SHIFT));
187                         vma->size = view->partial.size;
188                         vma->size <<= PAGE_SHIFT;
189                         GEM_BUG_ON(vma->size > obj->base.size);
190                 } else if (view->type == I915_GTT_VIEW_ROTATED) {
191                         vma->size = intel_rotation_info_size(&view->rotated);
192                         vma->size <<= PAGE_SHIFT;
193                 } else if (view->type == I915_GTT_VIEW_REMAPPED) {
194                         vma->size = intel_remapped_info_size(&view->remapped);
195                         vma->size <<= PAGE_SHIFT;
196                 }
197         }
198
199         if (unlikely(vma->size > vm->total))
200                 goto err_vma;
201
202         GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
203
204         err = mutex_lock_interruptible(&vm->mutex);
205         if (err) {
206                 pos = ERR_PTR(err);
207                 goto err_vma;
208         }
209
210         vma->vm = vm;
211         list_add_tail(&vma->vm_link, &vm->unbound_list);
212
213         spin_lock(&obj->vma.lock);
214         if (i915_is_ggtt(vm)) {
215                 if (unlikely(overflows_type(vma->size, u32)))
216                         goto err_unlock;
217
218                 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
219                                                       i915_gem_object_get_tiling(obj),
220                                                       i915_gem_object_get_stride(obj));
221                 if (unlikely(vma->fence_size < vma->size || /* overflow */
222                              vma->fence_size > vm->total))
223                         goto err_unlock;
224
225                 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
226
227                 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
228                                                                 i915_gem_object_get_tiling(obj),
229                                                                 i915_gem_object_get_stride(obj));
230                 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
231
232                 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
233         }
234
235         rb = NULL;
236         p = &obj->vma.tree.rb_node;
237         while (*p) {
238                 long cmp;
239
240                 rb = *p;
241                 pos = rb_entry(rb, struct i915_vma, obj_node);
242
243                 /*
244                  * If the view already exists in the tree, another thread
245                  * already created a matching vma, so return the older instance
246                  * and dispose of ours.
247                  */
248                 cmp = i915_vma_compare(pos, vm, view);
249                 if (cmp < 0)
250                         p = &rb->rb_right;
251                 else if (cmp > 0)
252                         p = &rb->rb_left;
253                 else
254                         goto err_unlock;
255         }
256         rb_link_node(&vma->obj_node, rb, p);
257         rb_insert_color(&vma->obj_node, &obj->vma.tree);
258
259         if (i915_vma_is_ggtt(vma))
260                 /*
261                  * We put the GGTT vma at the start of the vma-list, followed
262                  * by the ppGGTT vma. This allows us to break early when
263                  * iterating over only the GGTT vma for an object, see
264                  * for_each_ggtt_vma()
265                  */
266                 list_add(&vma->obj_link, &obj->vma.list);
267         else
268                 list_add_tail(&vma->obj_link, &obj->vma.list);
269
270         spin_unlock(&obj->vma.lock);
271         mutex_unlock(&vm->mutex);
272
273         return vma;
274
275 err_unlock:
276         spin_unlock(&obj->vma.lock);
277         list_del_init(&vma->vm_link);
278         mutex_unlock(&vm->mutex);
279 err_vma:
280         i915_vma_free(vma);
281         return pos;
282 }
283
284 static struct i915_vma *
285 i915_vma_lookup(struct drm_i915_gem_object *obj,
286            struct i915_address_space *vm,
287            const struct i915_gtt_view *view)
288 {
289         struct rb_node *rb;
290
291         rb = obj->vma.tree.rb_node;
292         while (rb) {
293                 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
294                 long cmp;
295
296                 cmp = i915_vma_compare(vma, vm, view);
297                 if (cmp == 0)
298                         return vma;
299
300                 if (cmp < 0)
301                         rb = rb->rb_right;
302                 else
303                         rb = rb->rb_left;
304         }
305
306         return NULL;
307 }
308
309 /**
310  * i915_vma_instance - return the singleton instance of the VMA
311  * @obj: parent &struct drm_i915_gem_object to be mapped
312  * @vm: address space in which the mapping is located
313  * @view: additional mapping requirements
314  *
315  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
316  * the same @view characteristics. If a match is not found, one is created.
317  * Once created, the VMA is kept until either the object is freed, or the
318  * address space is closed.
319  *
320  * Returns the vma, or an error pointer.
321  */
322 struct i915_vma *
323 i915_vma_instance(struct drm_i915_gem_object *obj,
324                   struct i915_address_space *vm,
325                   const struct i915_gtt_view *view)
326 {
327         struct i915_vma *vma;
328
329         GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
330         GEM_BUG_ON(!kref_read(&vm->ref));
331
332         spin_lock(&obj->vma.lock);
333         vma = i915_vma_lookup(obj, vm, view);
334         spin_unlock(&obj->vma.lock);
335
336         /* vma_create() will resolve the race if another creates the vma */
337         if (unlikely(!vma))
338                 vma = vma_create(obj, vm, view);
339
340         GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
341         return vma;
342 }
343
344 struct i915_vma_work {
345         struct dma_fence_work base;
346         struct i915_address_space *vm;
347         struct i915_vm_pt_stash stash;
348         struct i915_vma_resource *vma_res;
349         struct drm_i915_gem_object *obj;
350         struct i915_sw_dma_fence_cb cb;
351         unsigned int pat_index;
352         unsigned int flags;
353 };
354
355 static void __vma_bind(struct dma_fence_work *work)
356 {
357         struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
358         struct i915_vma_resource *vma_res = vw->vma_res;
359
360         /*
361          * We are about the bind the object, which must mean we have already
362          * signaled the work to potentially clear/move the pages underneath. If
363          * something went wrong at that stage then the object should have
364          * unknown_state set, in which case we need to skip the bind.
365          */
366         if (i915_gem_object_has_unknown_state(vw->obj))
367                 return;
368
369         vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
370                                vma_res, vw->pat_index, vw->flags);
371 }
372
373 static void __vma_release(struct dma_fence_work *work)
374 {
375         struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
376
377         if (vw->obj)
378                 i915_gem_object_put(vw->obj);
379
380         i915_vm_free_pt_stash(vw->vm, &vw->stash);
381         if (vw->vma_res)
382                 i915_vma_resource_put(vw->vma_res);
383 }
384
385 static const struct dma_fence_work_ops bind_ops = {
386         .name = "bind",
387         .work = __vma_bind,
388         .release = __vma_release,
389 };
390
391 struct i915_vma_work *i915_vma_work(void)
392 {
393         struct i915_vma_work *vw;
394
395         vw = kzalloc(sizeof(*vw), GFP_KERNEL);
396         if (!vw)
397                 return NULL;
398
399         dma_fence_work_init(&vw->base, &bind_ops);
400         vw->base.dma.error = -EAGAIN; /* disable the worker by default */
401
402         return vw;
403 }
404
405 int i915_vma_wait_for_bind(struct i915_vma *vma)
406 {
407         int err = 0;
408
409         if (rcu_access_pointer(vma->active.excl.fence)) {
410                 struct dma_fence *fence;
411
412                 rcu_read_lock();
413                 fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
414                 rcu_read_unlock();
415                 if (fence) {
416                         err = dma_fence_wait(fence, true);
417                         dma_fence_put(fence);
418                 }
419         }
420
421         return err;
422 }
423
424 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
425 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
426 {
427         struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
428         int err;
429
430         if (!fence)
431                 return 0;
432
433         if (dma_fence_is_signaled(fence))
434                 err = fence->error;
435         else
436                 err = -EBUSY;
437
438         dma_fence_put(fence);
439
440         return err;
441 }
442 #else
443 #define i915_vma_verify_bind_complete(_vma) 0
444 #endif
445
446 I915_SELFTEST_EXPORT void
447 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
448                                 struct i915_vma *vma)
449 {
450         struct drm_i915_gem_object *obj = vma->obj;
451
452         i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
453                                obj->mm.rsgt, i915_gem_object_is_readonly(obj),
454                                i915_gem_object_is_lmem(obj), obj->mm.region,
455                                vma->ops, vma->private, __i915_vma_offset(vma),
456                                __i915_vma_size(vma), vma->size, vma->guard);
457 }
458
459 /**
460  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
461  * @vma: VMA to map
462  * @pat_index: PAT index to set in PTE
463  * @flags: flags like global or local mapping
464  * @work: preallocated worker for allocating and binding the PTE
465  * @vma_res: pointer to a preallocated vma resource. The resource is either
466  * consumed or freed.
467  *
468  * DMA addresses are taken from the scatter-gather table of this object (or of
469  * this VMA in case of non-default GGTT views) and PTE entries set up.
470  * Note that DMA addresses are also the only part of the SG table we care about.
471  */
472 int i915_vma_bind(struct i915_vma *vma,
473                   unsigned int pat_index,
474                   u32 flags,
475                   struct i915_vma_work *work,
476                   struct i915_vma_resource *vma_res)
477 {
478         u32 bind_flags;
479         u32 vma_flags;
480         int ret;
481
482         lockdep_assert_held(&vma->vm->mutex);
483         GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
484         GEM_BUG_ON(vma->size > i915_vma_size(vma));
485
486         if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
487                                               vma->node.size,
488                                               vma->vm->total))) {
489                 i915_vma_resource_free(vma_res);
490                 return -ENODEV;
491         }
492
493         if (GEM_DEBUG_WARN_ON(!flags)) {
494                 i915_vma_resource_free(vma_res);
495                 return -EINVAL;
496         }
497
498         bind_flags = flags;
499         bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
500
501         vma_flags = atomic_read(&vma->flags);
502         vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
503
504         bind_flags &= ~vma_flags;
505         if (bind_flags == 0) {
506                 i915_vma_resource_free(vma_res);
507                 return 0;
508         }
509
510         GEM_BUG_ON(!atomic_read(&vma->pages_count));
511
512         /* Wait for or await async unbinds touching our range */
513         if (work && bind_flags & vma->vm->bind_async_flags)
514                 ret = i915_vma_resource_bind_dep_await(vma->vm,
515                                                        &work->base.chain,
516                                                        vma->node.start,
517                                                        vma->node.size,
518                                                        true,
519                                                        GFP_NOWAIT |
520                                                        __GFP_RETRY_MAYFAIL |
521                                                        __GFP_NOWARN);
522         else
523                 ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
524                                                       vma->node.size, true);
525         if (ret) {
526                 i915_vma_resource_free(vma_res);
527                 return ret;
528         }
529
530         if (vma->resource || !vma_res) {
531                 /* Rebinding with an additional I915_VMA_*_BIND */
532                 GEM_WARN_ON(!vma_flags);
533                 i915_vma_resource_free(vma_res);
534         } else {
535                 i915_vma_resource_init_from_vma(vma_res, vma);
536                 vma->resource = vma_res;
537         }
538         trace_i915_vma_bind(vma, bind_flags);
539         if (work && bind_flags & vma->vm->bind_async_flags) {
540                 struct dma_fence *prev;
541
542                 work->vma_res = i915_vma_resource_get(vma->resource);
543                 work->pat_index = pat_index;
544                 work->flags = bind_flags;
545
546                 /*
547                  * Note we only want to chain up to the migration fence on
548                  * the pages (not the object itself). As we don't track that,
549                  * yet, we have to use the exclusive fence instead.
550                  *
551                  * Also note that we do not want to track the async vma as
552                  * part of the obj->resv->excl_fence as it only affects
553                  * execution and not content or object's backing store lifetime.
554                  */
555                 prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
556                 if (prev) {
557                         __i915_sw_fence_await_dma_fence(&work->base.chain,
558                                                         prev,
559                                                         &work->cb);
560                         dma_fence_put(prev);
561                 }
562
563                 work->base.dma.error = 0; /* enable the queue_work() */
564                 work->obj = i915_gem_object_get(vma->obj);
565         } else {
566                 ret = i915_gem_object_wait_moving_fence(vma->obj, true);
567                 if (ret) {
568                         i915_vma_resource_free(vma->resource);
569                         vma->resource = NULL;
570
571                         return ret;
572                 }
573                 vma->ops->bind_vma(vma->vm, NULL, vma->resource, pat_index,
574                                    bind_flags);
575         }
576
577         atomic_or(bind_flags, &vma->flags);
578         return 0;
579 }
580
581 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
582 {
583         void __iomem *ptr;
584         int err;
585
586         if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
587                 return IOMEM_ERR_PTR(-EINVAL);
588
589         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
590         GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
591         GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
592
593         ptr = READ_ONCE(vma->iomap);
594         if (ptr == NULL) {
595                 /*
596                  * TODO: consider just using i915_gem_object_pin_map() for lmem
597                  * instead, which already supports mapping non-contiguous chunks
598                  * of pages, that way we can also drop the
599                  * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
600                  */
601                 if (i915_gem_object_is_lmem(vma->obj)) {
602                         ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
603                                                           vma->obj->base.size);
604                 } else if (i915_vma_is_map_and_fenceable(vma)) {
605                         ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
606                                                 i915_vma_offset(vma),
607                                                 i915_vma_size(vma));
608                 } else {
609                         ptr = (void __iomem *)
610                                 i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
611                         if (IS_ERR(ptr)) {
612                                 err = PTR_ERR(ptr);
613                                 goto err;
614                         }
615                         ptr = page_pack_bits(ptr, 1);
616                 }
617
618                 if (ptr == NULL) {
619                         err = -ENOMEM;
620                         goto err;
621                 }
622
623                 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
624                         if (page_unmask_bits(ptr))
625                                 __i915_gem_object_release_map(vma->obj);
626                         else
627                                 io_mapping_unmap(ptr);
628                         ptr = vma->iomap;
629                 }
630         }
631
632         __i915_vma_pin(vma);
633
634         err = i915_vma_pin_fence(vma);
635         if (err)
636                 goto err_unpin;
637
638         i915_vma_set_ggtt_write(vma);
639
640         /* NB Access through the GTT requires the device to be awake. */
641         return page_mask_bits(ptr);
642
643 err_unpin:
644         __i915_vma_unpin(vma);
645 err:
646         return IOMEM_ERR_PTR(err);
647 }
648
649 void i915_vma_flush_writes(struct i915_vma *vma)
650 {
651         if (i915_vma_unset_ggtt_write(vma))
652                 intel_gt_flush_ggtt_writes(vma->vm->gt);
653 }
654
655 void i915_vma_unpin_iomap(struct i915_vma *vma)
656 {
657         GEM_BUG_ON(vma->iomap == NULL);
658
659         /* XXX We keep the mapping until __i915_vma_unbind()/evict() */
660
661         i915_vma_flush_writes(vma);
662
663         i915_vma_unpin_fence(vma);
664         i915_vma_unpin(vma);
665 }
666
667 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
668 {
669         struct i915_vma *vma;
670         struct drm_i915_gem_object *obj;
671
672         vma = fetch_and_zero(p_vma);
673         if (!vma)
674                 return;
675
676         obj = vma->obj;
677         GEM_BUG_ON(!obj);
678
679         i915_vma_unpin(vma);
680
681         if (flags & I915_VMA_RELEASE_MAP)
682                 i915_gem_object_unpin_map(obj);
683
684         i915_gem_object_put(obj);
685 }
686
687 bool i915_vma_misplaced(const struct i915_vma *vma,
688                         u64 size, u64 alignment, u64 flags)
689 {
690         if (!drm_mm_node_allocated(&vma->node))
691                 return false;
692
693         if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
694                 return true;
695
696         if (i915_vma_size(vma) < size)
697                 return true;
698
699         GEM_BUG_ON(alignment && !is_power_of_2(alignment));
700         if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment))
701                 return true;
702
703         if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
704                 return true;
705
706         if (flags & PIN_OFFSET_BIAS &&
707             i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK))
708                 return true;
709
710         if (flags & PIN_OFFSET_FIXED &&
711             i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK))
712                 return true;
713
714         if (flags & PIN_OFFSET_GUARD &&
715             vma->guard < (flags & PIN_OFFSET_MASK))
716                 return true;
717
718         return false;
719 }
720
721 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
722 {
723         bool mappable, fenceable;
724
725         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
726         GEM_BUG_ON(!vma->fence_size);
727
728         fenceable = (i915_vma_size(vma) >= vma->fence_size &&
729                      IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment));
730
731         mappable = i915_ggtt_offset(vma) + vma->fence_size <=
732                    i915_vm_to_ggtt(vma->vm)->mappable_end;
733
734         if (mappable && fenceable)
735                 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
736         else
737                 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
738 }
739
740 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
741 {
742         struct drm_mm_node *node = &vma->node;
743         struct drm_mm_node *other;
744
745         /*
746          * On some machines we have to be careful when putting differing types
747          * of snoopable memory together to avoid the prefetcher crossing memory
748          * domains and dying. During vm initialisation, we decide whether or not
749          * these constraints apply and set the drm_mm.color_adjust
750          * appropriately.
751          */
752         if (!i915_vm_has_cache_coloring(vma->vm))
753                 return true;
754
755         /* Only valid to be called on an already inserted vma */
756         GEM_BUG_ON(!drm_mm_node_allocated(node));
757         GEM_BUG_ON(list_empty(&node->node_list));
758
759         other = list_prev_entry(node, node_list);
760         if (i915_node_color_differs(other, color) &&
761             !drm_mm_hole_follows(other))
762                 return false;
763
764         other = list_next_entry(node, node_list);
765         if (i915_node_color_differs(other, color) &&
766             !drm_mm_hole_follows(node))
767                 return false;
768
769         return true;
770 }
771
772 /**
773  * i915_vma_insert - finds a slot for the vma in its address space
774  * @vma: the vma
775  * @ww: An optional struct i915_gem_ww_ctx
776  * @size: requested size in bytes (can be larger than the VMA)
777  * @alignment: required alignment
778  * @flags: mask of PIN_* flags to use
779  *
780  * First we try to allocate some free space that meets the requirements for
781  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
782  * preferrably the oldest idle entry to make room for the new VMA.
783  *
784  * Returns:
785  * 0 on success, negative error code otherwise.
786  */
787 static int
788 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
789                 u64 size, u64 alignment, u64 flags)
790 {
791         unsigned long color, guard;
792         u64 start, end;
793         int ret;
794
795         GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
796         GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
797         GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1);
798
799         size = max(size, vma->size);
800         alignment = max_t(typeof(alignment), alignment, vma->display_alignment);
801         if (flags & PIN_MAPPABLE) {
802                 size = max_t(typeof(size), size, vma->fence_size);
803                 alignment = max_t(typeof(alignment),
804                                   alignment, vma->fence_alignment);
805         }
806
807         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
808         GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
809         GEM_BUG_ON(!is_power_of_2(alignment));
810
811         guard = vma->guard; /* retain guard across rebinds */
812         if (flags & PIN_OFFSET_GUARD) {
813                 GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32));
814                 guard = max_t(u32, guard, flags & PIN_OFFSET_MASK);
815         }
816         /*
817          * As we align the node upon insertion, but the hardware gets
818          * node.start + guard, the easiest way to make that work is
819          * to make the guard a multiple of the alignment size.
820          */
821         guard = ALIGN(guard, alignment);
822
823         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
824         GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
825
826         end = vma->vm->total;
827         if (flags & PIN_MAPPABLE)
828                 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
829         if (flags & PIN_ZONE_4G)
830                 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
831         GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
832
833         alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
834
835         /*
836          * If binding the object/GGTT view requires more space than the entire
837          * aperture has, reject it early before evicting everything in a vain
838          * attempt to find space.
839          */
840         if (size > end - 2 * guard) {
841                 drm_dbg(vma->obj->base.dev,
842                         "Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
843                         size, flags & PIN_MAPPABLE ? "mappable" : "total", end);
844                 return -ENOSPC;
845         }
846
847         color = 0;
848
849         if (i915_vm_has_cache_coloring(vma->vm))
850                 color = vma->obj->pat_index;
851
852         if (flags & PIN_OFFSET_FIXED) {
853                 u64 offset = flags & PIN_OFFSET_MASK;
854                 if (!IS_ALIGNED(offset, alignment) ||
855                     range_overflows(offset, size, end))
856                         return -EINVAL;
857                 /*
858                  * The caller knows not of the guard added by others and
859                  * requests for the offset of the start of its buffer
860                  * to be fixed, which may not be the same as the position
861                  * of the vma->node due to the guard pages.
862                  */
863                 if (offset < guard || offset + size > end - guard)
864                         return -ENOSPC;
865
866                 ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
867                                            size + 2 * guard,
868                                            offset - guard,
869                                            color, flags);
870                 if (ret)
871                         return ret;
872         } else {
873                 size += 2 * guard;
874                 /*
875                  * We only support huge gtt pages through the 48b PPGTT,
876                  * however we also don't want to force any alignment for
877                  * objects which need to be tightly packed into the low 32bits.
878                  *
879                  * Note that we assume that GGTT are limited to 4GiB for the
880                  * forseeable future. See also i915_ggtt_offset().
881                  */
882                 if (upper_32_bits(end - 1) &&
883                     vma->page_sizes.sg > I915_GTT_PAGE_SIZE &&
884                     !HAS_64K_PAGES(vma->vm->i915)) {
885                         /*
886                          * We can't mix 64K and 4K PTEs in the same page-table
887                          * (2M block), and so to avoid the ugliness and
888                          * complexity of coloring we opt for just aligning 64K
889                          * objects to 2M.
890                          */
891                         u64 page_alignment =
892                                 rounddown_pow_of_two(vma->page_sizes.sg |
893                                                      I915_GTT_PAGE_SIZE_2M);
894
895                         /*
896                          * Check we don't expand for the limited Global GTT
897                          * (mappable aperture is even more precious!). This
898                          * also checks that we exclude the aliasing-ppgtt.
899                          */
900                         GEM_BUG_ON(i915_vma_is_ggtt(vma));
901
902                         alignment = max(alignment, page_alignment);
903
904                         if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
905                                 size = round_up(size, I915_GTT_PAGE_SIZE_2M);
906                 }
907
908                 ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
909                                           size, alignment, color,
910                                           start, end, flags);
911                 if (ret)
912                         return ret;
913
914                 GEM_BUG_ON(vma->node.start < start);
915                 GEM_BUG_ON(vma->node.start + vma->node.size > end);
916         }
917         GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
918         GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
919
920         list_move_tail(&vma->vm_link, &vma->vm->bound_list);
921         vma->guard = guard;
922
923         return 0;
924 }
925
926 static void
927 i915_vma_detach(struct i915_vma *vma)
928 {
929         GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
930         GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
931
932         /*
933          * And finally now the object is completely decoupled from this
934          * vma, we can drop its hold on the backing storage and allow
935          * it to be reaped by the shrinker.
936          */
937         list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
938 }
939
940 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
941 {
942         unsigned int bound;
943
944         bound = atomic_read(&vma->flags);
945
946         if (flags & PIN_VALIDATE) {
947                 flags &= I915_VMA_BIND_MASK;
948
949                 return (flags & bound) == flags;
950         }
951
952         /* with the lock mandatory for unbind, we don't race here */
953         flags &= I915_VMA_BIND_MASK;
954         do {
955                 if (unlikely(flags & ~bound))
956                         return false;
957
958                 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
959                         return false;
960
961                 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
962         } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
963
964         return true;
965 }
966
967 static struct scatterlist *
968 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
969              unsigned int width, unsigned int height,
970              unsigned int src_stride, unsigned int dst_stride,
971              struct sg_table *st, struct scatterlist *sg)
972 {
973         unsigned int column, row;
974         pgoff_t src_idx;
975
976         for (column = 0; column < width; column++) {
977                 unsigned int left;
978
979                 src_idx = src_stride * (height - 1) + column + offset;
980                 for (row = 0; row < height; row++) {
981                         st->nents++;
982                         /*
983                          * We don't need the pages, but need to initialize
984                          * the entries so the sg list can be happily traversed.
985                          * The only thing we need are DMA addresses.
986                          */
987                         sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
988                         sg_dma_address(sg) =
989                                 i915_gem_object_get_dma_address(obj, src_idx);
990                         sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
991                         sg = sg_next(sg);
992                         src_idx -= src_stride;
993                 }
994
995                 left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
996
997                 if (!left)
998                         continue;
999
1000                 st->nents++;
1001
1002                 /*
1003                  * The DE ignores the PTEs for the padding tiles, the sg entry
1004                  * here is just a conenience to indicate how many padding PTEs
1005                  * to insert at this spot.
1006                  */
1007                 sg_set_page(sg, NULL, left, 0);
1008                 sg_dma_address(sg) = 0;
1009                 sg_dma_len(sg) = left;
1010                 sg = sg_next(sg);
1011         }
1012
1013         return sg;
1014 }
1015
1016 static noinline struct sg_table *
1017 intel_rotate_pages(struct intel_rotation_info *rot_info,
1018                    struct drm_i915_gem_object *obj)
1019 {
1020         unsigned int size = intel_rotation_info_size(rot_info);
1021         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1022         struct sg_table *st;
1023         struct scatterlist *sg;
1024         int ret = -ENOMEM;
1025         int i;
1026
1027         /* Allocate target SG list. */
1028         st = kmalloc(sizeof(*st), GFP_KERNEL);
1029         if (!st)
1030                 goto err_st_alloc;
1031
1032         ret = sg_alloc_table(st, size, GFP_KERNEL);
1033         if (ret)
1034                 goto err_sg_alloc;
1035
1036         st->nents = 0;
1037         sg = st->sgl;
1038
1039         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1040                 sg = rotate_pages(obj, rot_info->plane[i].offset,
1041                                   rot_info->plane[i].width, rot_info->plane[i].height,
1042                                   rot_info->plane[i].src_stride,
1043                                   rot_info->plane[i].dst_stride,
1044                                   st, sg);
1045
1046         return st;
1047
1048 err_sg_alloc:
1049         kfree(st);
1050 err_st_alloc:
1051
1052         drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1053                 obj->base.size, rot_info->plane[0].width,
1054                 rot_info->plane[0].height, size);
1055
1056         return ERR_PTR(ret);
1057 }
1058
1059 static struct scatterlist *
1060 add_padding_pages(unsigned int count,
1061                   struct sg_table *st, struct scatterlist *sg)
1062 {
1063         st->nents++;
1064
1065         /*
1066          * The DE ignores the PTEs for the padding tiles, the sg entry
1067          * here is just a convenience to indicate how many padding PTEs
1068          * to insert at this spot.
1069          */
1070         sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1071         sg_dma_address(sg) = 0;
1072         sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1073         sg = sg_next(sg);
1074
1075         return sg;
1076 }
1077
1078 static struct scatterlist *
1079 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1080                               unsigned long offset, unsigned int alignment_pad,
1081                               unsigned int width, unsigned int height,
1082                               unsigned int src_stride, unsigned int dst_stride,
1083                               struct sg_table *st, struct scatterlist *sg,
1084                               unsigned int *gtt_offset)
1085 {
1086         unsigned int row;
1087
1088         if (!width || !height)
1089                 return sg;
1090
1091         if (alignment_pad)
1092                 sg = add_padding_pages(alignment_pad, st, sg);
1093
1094         for (row = 0; row < height; row++) {
1095                 unsigned int left = width * I915_GTT_PAGE_SIZE;
1096
1097                 while (left) {
1098                         dma_addr_t addr;
1099                         unsigned int length;
1100
1101                         /*
1102                          * We don't need the pages, but need to initialize
1103                          * the entries so the sg list can be happily traversed.
1104                          * The only thing we need are DMA addresses.
1105                          */
1106
1107                         addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1108
1109                         length = min(left, length);
1110
1111                         st->nents++;
1112
1113                         sg_set_page(sg, NULL, length, 0);
1114                         sg_dma_address(sg) = addr;
1115                         sg_dma_len(sg) = length;
1116                         sg = sg_next(sg);
1117
1118                         offset += length / I915_GTT_PAGE_SIZE;
1119                         left -= length;
1120                 }
1121
1122                 offset += src_stride - width;
1123
1124                 left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1125
1126                 if (!left)
1127                         continue;
1128
1129                 sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1130         }
1131
1132         *gtt_offset += alignment_pad + dst_stride * height;
1133
1134         return sg;
1135 }
1136
1137 static struct scatterlist *
1138 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1139                        pgoff_t obj_offset,
1140                        unsigned int count,
1141                        struct sg_table *st, struct scatterlist *sg)
1142 {
1143         struct scatterlist *iter;
1144         unsigned int offset;
1145
1146         iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1147         GEM_BUG_ON(!iter);
1148
1149         do {
1150                 unsigned int len;
1151
1152                 len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1153                           count << PAGE_SHIFT);
1154                 sg_set_page(sg, NULL, len, 0);
1155                 sg_dma_address(sg) =
1156                         sg_dma_address(iter) + (offset << PAGE_SHIFT);
1157                 sg_dma_len(sg) = len;
1158
1159                 st->nents++;
1160                 count -= len >> PAGE_SHIFT;
1161                 if (count == 0)
1162                         return sg;
1163
1164                 sg = __sg_next(sg);
1165                 iter = __sg_next(iter);
1166                 offset = 0;
1167         } while (1);
1168 }
1169
1170 static struct scatterlist *
1171 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1172                                pgoff_t obj_offset, unsigned int alignment_pad,
1173                                unsigned int size,
1174                                struct sg_table *st, struct scatterlist *sg,
1175                                unsigned int *gtt_offset)
1176 {
1177         if (!size)
1178                 return sg;
1179
1180         if (alignment_pad)
1181                 sg = add_padding_pages(alignment_pad, st, sg);
1182
1183         sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1184         sg = sg_next(sg);
1185
1186         *gtt_offset += alignment_pad + size;
1187
1188         return sg;
1189 }
1190
1191 static struct scatterlist *
1192 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1193                         struct drm_i915_gem_object *obj,
1194                         int color_plane,
1195                         struct sg_table *st, struct scatterlist *sg,
1196                         unsigned int *gtt_offset)
1197 {
1198         unsigned int alignment_pad = 0;
1199
1200         if (rem_info->plane_alignment)
1201                 alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1202
1203         if (rem_info->plane[color_plane].linear)
1204                 sg = remap_linear_color_plane_pages(obj,
1205                                                     rem_info->plane[color_plane].offset,
1206                                                     alignment_pad,
1207                                                     rem_info->plane[color_plane].size,
1208                                                     st, sg,
1209                                                     gtt_offset);
1210
1211         else
1212                 sg = remap_tiled_color_plane_pages(obj,
1213                                                    rem_info->plane[color_plane].offset,
1214                                                    alignment_pad,
1215                                                    rem_info->plane[color_plane].width,
1216                                                    rem_info->plane[color_plane].height,
1217                                                    rem_info->plane[color_plane].src_stride,
1218                                                    rem_info->plane[color_plane].dst_stride,
1219                                                    st, sg,
1220                                                    gtt_offset);
1221
1222         return sg;
1223 }
1224
1225 static noinline struct sg_table *
1226 intel_remap_pages(struct intel_remapped_info *rem_info,
1227                   struct drm_i915_gem_object *obj)
1228 {
1229         unsigned int size = intel_remapped_info_size(rem_info);
1230         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1231         struct sg_table *st;
1232         struct scatterlist *sg;
1233         unsigned int gtt_offset = 0;
1234         int ret = -ENOMEM;
1235         int i;
1236
1237         /* Allocate target SG list. */
1238         st = kmalloc(sizeof(*st), GFP_KERNEL);
1239         if (!st)
1240                 goto err_st_alloc;
1241
1242         ret = sg_alloc_table(st, size, GFP_KERNEL);
1243         if (ret)
1244                 goto err_sg_alloc;
1245
1246         st->nents = 0;
1247         sg = st->sgl;
1248
1249         for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1250                 sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1251
1252         i915_sg_trim(st);
1253
1254         return st;
1255
1256 err_sg_alloc:
1257         kfree(st);
1258 err_st_alloc:
1259
1260         drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1261                 obj->base.size, rem_info->plane[0].width,
1262                 rem_info->plane[0].height, size);
1263
1264         return ERR_PTR(ret);
1265 }
1266
1267 static noinline struct sg_table *
1268 intel_partial_pages(const struct i915_gtt_view *view,
1269                     struct drm_i915_gem_object *obj)
1270 {
1271         struct sg_table *st;
1272         struct scatterlist *sg;
1273         unsigned int count = view->partial.size;
1274         int ret = -ENOMEM;
1275
1276         st = kmalloc(sizeof(*st), GFP_KERNEL);
1277         if (!st)
1278                 goto err_st_alloc;
1279
1280         ret = sg_alloc_table(st, count, GFP_KERNEL);
1281         if (ret)
1282                 goto err_sg_alloc;
1283
1284         st->nents = 0;
1285
1286         sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1287
1288         sg_mark_end(sg);
1289         i915_sg_trim(st); /* Drop any unused tail entries. */
1290
1291         return st;
1292
1293 err_sg_alloc:
1294         kfree(st);
1295 err_st_alloc:
1296         return ERR_PTR(ret);
1297 }
1298
1299 static int
1300 __i915_vma_get_pages(struct i915_vma *vma)
1301 {
1302         struct sg_table *pages;
1303
1304         /*
1305          * The vma->pages are only valid within the lifespan of the borrowed
1306          * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1307          * must be the vma->pages. A simple rule is that vma->pages must only
1308          * be accessed when the obj->mm.pages are pinned.
1309          */
1310         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1311
1312         switch (vma->gtt_view.type) {
1313         default:
1314                 GEM_BUG_ON(vma->gtt_view.type);
1315                 fallthrough;
1316         case I915_GTT_VIEW_NORMAL:
1317                 pages = vma->obj->mm.pages;
1318                 break;
1319
1320         case I915_GTT_VIEW_ROTATED:
1321                 pages =
1322                         intel_rotate_pages(&vma->gtt_view.rotated, vma->obj);
1323                 break;
1324
1325         case I915_GTT_VIEW_REMAPPED:
1326                 pages =
1327                         intel_remap_pages(&vma->gtt_view.remapped, vma->obj);
1328                 break;
1329
1330         case I915_GTT_VIEW_PARTIAL:
1331                 pages = intel_partial_pages(&vma->gtt_view, vma->obj);
1332                 break;
1333         }
1334
1335         if (IS_ERR(pages)) {
1336                 drm_err(&vma->vm->i915->drm,
1337                         "Failed to get pages for VMA view type %u (%ld)!\n",
1338                         vma->gtt_view.type, PTR_ERR(pages));
1339                 return PTR_ERR(pages);
1340         }
1341
1342         vma->pages = pages;
1343
1344         return 0;
1345 }
1346
1347 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1348 {
1349         int err;
1350
1351         if (atomic_add_unless(&vma->pages_count, 1, 0))
1352                 return 0;
1353
1354         err = i915_gem_object_pin_pages(vma->obj);
1355         if (err)
1356                 return err;
1357
1358         err = __i915_vma_get_pages(vma);
1359         if (err)
1360                 goto err_unpin;
1361
1362         vma->page_sizes = vma->obj->mm.page_sizes;
1363         atomic_inc(&vma->pages_count);
1364
1365         return 0;
1366
1367 err_unpin:
1368         __i915_gem_object_unpin_pages(vma->obj);
1369
1370         return err;
1371 }
1372
1373 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1374 {
1375         struct intel_gt *gt;
1376         int id;
1377
1378         if (!tlb)
1379                 return;
1380
1381         /*
1382          * Before we release the pages that were bound by this vma, we
1383          * must invalidate all the TLBs that may still have a reference
1384          * back to our physical address. It only needs to be done once,
1385          * so after updating the PTE to point away from the pages, record
1386          * the most recent TLB invalidation seqno, and if we have not yet
1387          * flushed the TLBs upon release, perform a full invalidation.
1388          */
1389         for_each_gt(gt, vm->i915, id)
1390                 WRITE_ONCE(tlb[id],
1391                            intel_gt_next_invalidate_tlb_full(gt));
1392 }
1393
1394 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1395 {
1396         /* We allocate under vma_get_pages, so beware the shrinker */
1397         GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1398
1399         if (atomic_sub_return(count, &vma->pages_count) == 0) {
1400                 if (vma->pages != vma->obj->mm.pages) {
1401                         sg_free_table(vma->pages);
1402                         kfree(vma->pages);
1403                 }
1404                 vma->pages = NULL;
1405
1406                 i915_gem_object_unpin_pages(vma->obj);
1407         }
1408 }
1409
1410 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1411 {
1412         if (atomic_add_unless(&vma->pages_count, -1, 1))
1413                 return;
1414
1415         __vma_put_pages(vma, 1);
1416 }
1417
1418 static void vma_unbind_pages(struct i915_vma *vma)
1419 {
1420         unsigned int count;
1421
1422         lockdep_assert_held(&vma->vm->mutex);
1423
1424         /* The upper portion of pages_count is the number of bindings */
1425         count = atomic_read(&vma->pages_count);
1426         count >>= I915_VMA_PAGES_BIAS;
1427         GEM_BUG_ON(!count);
1428
1429         __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1430 }
1431
1432 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1433                     u64 size, u64 alignment, u64 flags)
1434 {
1435         struct i915_vma_work *work = NULL;
1436         struct dma_fence *moving = NULL;
1437         struct i915_vma_resource *vma_res = NULL;
1438         intel_wakeref_t wakeref;
1439         unsigned int bound;
1440         int err;
1441
1442         assert_vma_held(vma);
1443         GEM_BUG_ON(!ww);
1444
1445         BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1446         BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1447
1448         GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1449
1450         /* First try and grab the pin without rebinding the vma */
1451         if (try_qad_pin(vma, flags))
1452                 return 0;
1453
1454         err = i915_vma_get_pages(vma);
1455         if (err)
1456                 return err;
1457
1458         /*
1459          * In case of a global GTT, we must hold a runtime-pm wakeref
1460          * while global PTEs are updated.  In other cases, we hold
1461          * the rpm reference while the VMA is active.  Since runtime
1462          * resume may require allocations, which are forbidden inside
1463          * vm->mutex, get the first rpm wakeref outside of the mutex.
1464          */
1465         wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1466
1467         if (flags & vma->vm->bind_async_flags) {
1468                 /* lock VM */
1469                 err = i915_vm_lock_objects(vma->vm, ww);
1470                 if (err)
1471                         goto err_rpm;
1472
1473                 work = i915_vma_work();
1474                 if (!work) {
1475                         err = -ENOMEM;
1476                         goto err_rpm;
1477                 }
1478
1479                 work->vm = vma->vm;
1480
1481                 err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1482                 if (err)
1483                         goto err_rpm;
1484
1485                 dma_fence_work_chain(&work->base, moving);
1486
1487                 /* Allocate enough page directories to used PTE */
1488                 if (vma->vm->allocate_va_range) {
1489                         err = i915_vm_alloc_pt_stash(vma->vm,
1490                                                      &work->stash,
1491                                                      vma->size);
1492                         if (err)
1493                                 goto err_fence;
1494
1495                         err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1496                         if (err)
1497                                 goto err_fence;
1498                 }
1499         }
1500
1501         vma_res = i915_vma_resource_alloc();
1502         if (IS_ERR(vma_res)) {
1503                 err = PTR_ERR(vma_res);
1504                 goto err_fence;
1505         }
1506
1507         /*
1508          * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1509          *
1510          * We conflate the Global GTT with the user's vma when using the
1511          * aliasing-ppgtt, but it is still vitally important to try and
1512          * keep the use cases distinct. For example, userptr objects are
1513          * not allowed inside the Global GTT as that will cause lock
1514          * inversions when we have to evict them the mmu_notifier callbacks -
1515          * but they are allowed to be part of the user ppGTT which can never
1516          * be mapped. As such we try to give the distinct users of the same
1517          * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1518          * and i915_ppgtt separate].
1519          *
1520          * NB this may cause us to mask real lock inversions -- while the
1521          * code is safe today, lockdep may not be able to spot future
1522          * transgressions.
1523          */
1524         err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1525                                               !(flags & PIN_GLOBAL));
1526         if (err)
1527                 goto err_vma_res;
1528
1529         /* No more allocations allowed now we hold vm->mutex */
1530
1531         if (unlikely(i915_vma_is_closed(vma))) {
1532                 err = -ENOENT;
1533                 goto err_unlock;
1534         }
1535
1536         bound = atomic_read(&vma->flags);
1537         if (unlikely(bound & I915_VMA_ERROR)) {
1538                 err = -ENOMEM;
1539                 goto err_unlock;
1540         }
1541
1542         if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1543                 err = -EAGAIN; /* pins are meant to be fairly temporary */
1544                 goto err_unlock;
1545         }
1546
1547         if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1548                 if (!(flags & PIN_VALIDATE))
1549                         __i915_vma_pin(vma);
1550                 goto err_unlock;
1551         }
1552
1553         err = i915_active_acquire(&vma->active);
1554         if (err)
1555                 goto err_unlock;
1556
1557         if (!(bound & I915_VMA_BIND_MASK)) {
1558                 err = i915_vma_insert(vma, ww, size, alignment, flags);
1559                 if (err)
1560                         goto err_active;
1561
1562                 if (i915_is_ggtt(vma->vm))
1563                         __i915_vma_set_map_and_fenceable(vma);
1564         }
1565
1566         GEM_BUG_ON(!vma->pages);
1567         err = i915_vma_bind(vma,
1568                             vma->obj->pat_index,
1569                             flags, work, vma_res);
1570         vma_res = NULL;
1571         if (err)
1572                 goto err_remove;
1573
1574         /* There should only be at most 2 active bindings (user, global) */
1575         GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1576         atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1577         list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1578
1579         if (!(flags & PIN_VALIDATE)) {
1580                 __i915_vma_pin(vma);
1581                 GEM_BUG_ON(!i915_vma_is_pinned(vma));
1582         }
1583         GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1584         GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1585
1586 err_remove:
1587         if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1588                 i915_vma_detach(vma);
1589                 drm_mm_remove_node(&vma->node);
1590         }
1591 err_active:
1592         i915_active_release(&vma->active);
1593 err_unlock:
1594         mutex_unlock(&vma->vm->mutex);
1595 err_vma_res:
1596         i915_vma_resource_free(vma_res);
1597 err_fence:
1598         if (work)
1599                 dma_fence_work_commit_imm(&work->base);
1600 err_rpm:
1601         intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1602
1603         if (moving)
1604                 dma_fence_put(moving);
1605
1606         i915_vma_put_pages(vma);
1607         return err;
1608 }
1609
1610 static void flush_idle_contexts(struct intel_gt *gt)
1611 {
1612         struct intel_engine_cs *engine;
1613         enum intel_engine_id id;
1614
1615         for_each_engine(engine, gt, id)
1616                 intel_engine_flush_barriers(engine);
1617
1618         intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1619 }
1620
1621 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1622                            u32 align, unsigned int flags)
1623 {
1624         struct i915_address_space *vm = vma->vm;
1625         struct intel_gt *gt;
1626         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1627         int err;
1628
1629         do {
1630                 err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1631
1632                 if (err != -ENOSPC) {
1633                         if (!err) {
1634                                 err = i915_vma_wait_for_bind(vma);
1635                                 if (err)
1636                                         i915_vma_unpin(vma);
1637                         }
1638                         return err;
1639                 }
1640
1641                 /* Unlike i915_vma_pin, we don't take no for an answer! */
1642                 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1643                         flush_idle_contexts(gt);
1644                 if (mutex_lock_interruptible(&vm->mutex) == 0) {
1645                         /*
1646                          * We pass NULL ww here, as we don't want to unbind
1647                          * locked objects when called from execbuf when pinning
1648                          * is removed. This would probably regress badly.
1649                          */
1650                         i915_gem_evict_vm(vm, NULL, NULL);
1651                         mutex_unlock(&vm->mutex);
1652                 }
1653         } while (1);
1654 }
1655
1656 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1657                   u32 align, unsigned int flags)
1658 {
1659         struct i915_gem_ww_ctx _ww;
1660         int err;
1661
1662         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1663
1664         if (ww)
1665                 return __i915_ggtt_pin(vma, ww, align, flags);
1666
1667         lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1668
1669         for_i915_gem_ww(&_ww, err, true) {
1670                 err = i915_gem_object_lock(vma->obj, &_ww);
1671                 if (!err)
1672                         err = __i915_ggtt_pin(vma, &_ww, align, flags);
1673         }
1674
1675         return err;
1676 }
1677
1678 /**
1679  * i915_ggtt_clear_scanout - Clear scanout flag for all objects ggtt vmas
1680  * @obj: i915 GEM object
1681  * This function clears scanout flags for objects ggtt vmas. These flags are set
1682  * when object is pinned for display use and this function to clear them all is
1683  * targeted to be called by frontbuffer tracking code when the frontbuffer is
1684  * about to be released.
1685  */
1686 void i915_ggtt_clear_scanout(struct drm_i915_gem_object *obj)
1687 {
1688         struct i915_vma *vma;
1689
1690         spin_lock(&obj->vma.lock);
1691         for_each_ggtt_vma(vma, obj) {
1692                 i915_vma_clear_scanout(vma);
1693                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
1694         }
1695         spin_unlock(&obj->vma.lock);
1696 }
1697
1698 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1699 {
1700         /*
1701          * We defer actually closing, unbinding and destroying the VMA until
1702          * the next idle point, or if the object is freed in the meantime. By
1703          * postponing the unbind, we allow for it to be resurrected by the
1704          * client, avoiding the work required to rebind the VMA. This is
1705          * advantageous for DRI, where the client/server pass objects
1706          * between themselves, temporarily opening a local VMA to the
1707          * object, and then closing it again. The same object is then reused
1708          * on the next frame (or two, depending on the depth of the swap queue)
1709          * causing us to rebind the VMA once more. This ends up being a lot
1710          * of wasted work for the steady state.
1711          */
1712         GEM_BUG_ON(i915_vma_is_closed(vma));
1713         list_add(&vma->closed_link, &gt->closed_vma);
1714 }
1715
1716 void i915_vma_close(struct i915_vma *vma)
1717 {
1718         struct intel_gt *gt = vma->vm->gt;
1719         unsigned long flags;
1720
1721         if (i915_vma_is_ggtt(vma))
1722                 return;
1723
1724         GEM_BUG_ON(!atomic_read(&vma->open_count));
1725         if (atomic_dec_and_lock_irqsave(&vma->open_count,
1726                                         &gt->closed_lock,
1727                                         flags)) {
1728                 __vma_close(vma, gt);
1729                 spin_unlock_irqrestore(&gt->closed_lock, flags);
1730         }
1731 }
1732
1733 static void __i915_vma_remove_closed(struct i915_vma *vma)
1734 {
1735         list_del_init(&vma->closed_link);
1736 }
1737
1738 void i915_vma_reopen(struct i915_vma *vma)
1739 {
1740         struct intel_gt *gt = vma->vm->gt;
1741
1742         spin_lock_irq(&gt->closed_lock);
1743         if (i915_vma_is_closed(vma))
1744                 __i915_vma_remove_closed(vma);
1745         spin_unlock_irq(&gt->closed_lock);
1746 }
1747
1748 static void force_unbind(struct i915_vma *vma)
1749 {
1750         if (!drm_mm_node_allocated(&vma->node))
1751                 return;
1752
1753         atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1754         WARN_ON(__i915_vma_unbind(vma));
1755         GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1756 }
1757
1758 static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1759                                bool vm_ddestroy)
1760 {
1761         struct drm_i915_gem_object *obj = vma->obj;
1762
1763         GEM_BUG_ON(i915_vma_is_active(vma));
1764
1765         spin_lock(&obj->vma.lock);
1766         list_del(&vma->obj_link);
1767         if (!RB_EMPTY_NODE(&vma->obj_node))
1768                 rb_erase(&vma->obj_node, &obj->vma.tree);
1769
1770         spin_unlock(&obj->vma.lock);
1771
1772         spin_lock_irq(&gt->closed_lock);
1773         __i915_vma_remove_closed(vma);
1774         spin_unlock_irq(&gt->closed_lock);
1775
1776         if (vm_ddestroy)
1777                 i915_vm_resv_put(vma->vm);
1778
1779         i915_active_fini(&vma->active);
1780         GEM_WARN_ON(vma->resource);
1781         i915_vma_free(vma);
1782 }
1783
1784 /*
1785  * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1786  * the initial reference.
1787  *
1788  * This function should be called when it's decided the vma isn't needed
1789  * anymore. The caller must assure that it doesn't race with another lookup
1790  * plus destroy, typically by taking an appropriate reference.
1791  *
1792  * Current callsites are
1793  * - __i915_gem_object_pages_fini()
1794  * - __i915_vm_close() - Blocks the above function by taking a reference on
1795  * the object.
1796  * - __i915_vma_parked() - Blocks the above functions by taking a reference
1797  * on the vm and a reference on the object. Also takes the object lock so
1798  * destruction from __i915_vma_parked() can be blocked by holding the
1799  * object lock. Since the object lock is only allowed from within i915 with
1800  * an object refcount, holding the object lock also implicitly blocks the
1801  * vma freeing from __i915_gem_object_pages_fini().
1802  *
1803  * Because of locks taken during destruction, a vma is also guaranteed to
1804  * stay alive while the following locks are held if it was looked up while
1805  * holding one of the locks:
1806  * - vm->mutex
1807  * - obj->vma.lock
1808  * - gt->closed_lock
1809  */
1810 void i915_vma_destroy_locked(struct i915_vma *vma)
1811 {
1812         lockdep_assert_held(&vma->vm->mutex);
1813
1814         force_unbind(vma);
1815         list_del_init(&vma->vm_link);
1816         release_references(vma, vma->vm->gt, false);
1817 }
1818
1819 void i915_vma_destroy(struct i915_vma *vma)
1820 {
1821         struct intel_gt *gt;
1822         bool vm_ddestroy;
1823
1824         mutex_lock(&vma->vm->mutex);
1825         force_unbind(vma);
1826         list_del_init(&vma->vm_link);
1827         vm_ddestroy = vma->vm_ddestroy;
1828         vma->vm_ddestroy = false;
1829
1830         /* vma->vm may be freed when releasing vma->vm->mutex. */
1831         gt = vma->vm->gt;
1832         mutex_unlock(&vma->vm->mutex);
1833         release_references(vma, gt, vm_ddestroy);
1834 }
1835
1836 void i915_vma_parked(struct intel_gt *gt)
1837 {
1838         struct i915_vma *vma, *next;
1839         LIST_HEAD(closed);
1840
1841         spin_lock_irq(&gt->closed_lock);
1842         list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1843                 struct drm_i915_gem_object *obj = vma->obj;
1844                 struct i915_address_space *vm = vma->vm;
1845
1846                 /* XXX All to avoid keeping a reference on i915_vma itself */
1847
1848                 if (!kref_get_unless_zero(&obj->base.refcount))
1849                         continue;
1850
1851                 if (!i915_vm_tryget(vm)) {
1852                         i915_gem_object_put(obj);
1853                         continue;
1854                 }
1855
1856                 list_move(&vma->closed_link, &closed);
1857         }
1858         spin_unlock_irq(&gt->closed_lock);
1859
1860         /* As the GT is held idle, no vma can be reopened as we destroy them */
1861         list_for_each_entry_safe(vma, next, &closed, closed_link) {
1862                 struct drm_i915_gem_object *obj = vma->obj;
1863                 struct i915_address_space *vm = vma->vm;
1864
1865                 if (i915_gem_object_trylock(obj, NULL)) {
1866                         INIT_LIST_HEAD(&vma->closed_link);
1867                         i915_vma_destroy(vma);
1868                         i915_gem_object_unlock(obj);
1869                 } else {
1870                         /* back you go.. */
1871                         spin_lock_irq(&gt->closed_lock);
1872                         list_add(&vma->closed_link, &gt->closed_vma);
1873                         spin_unlock_irq(&gt->closed_lock);
1874                 }
1875
1876                 i915_gem_object_put(obj);
1877                 i915_vm_put(vm);
1878         }
1879 }
1880
1881 static void __i915_vma_iounmap(struct i915_vma *vma)
1882 {
1883         GEM_BUG_ON(i915_vma_is_pinned(vma));
1884
1885         if (vma->iomap == NULL)
1886                 return;
1887
1888         if (page_unmask_bits(vma->iomap))
1889                 __i915_gem_object_release_map(vma->obj);
1890         else
1891                 io_mapping_unmap(vma->iomap);
1892         vma->iomap = NULL;
1893 }
1894
1895 void i915_vma_revoke_mmap(struct i915_vma *vma)
1896 {
1897         struct drm_vma_offset_node *node;
1898         u64 vma_offset;
1899
1900         if (!i915_vma_has_userfault(vma))
1901                 return;
1902
1903         GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1904         GEM_BUG_ON(!vma->obj->userfault_count);
1905
1906         node = &vma->mmo->vma_node;
1907         vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1908         unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1909                             drm_vma_node_offset_addr(node) + vma_offset,
1910                             vma->size,
1911                             1);
1912
1913         i915_vma_unset_userfault(vma);
1914         if (!--vma->obj->userfault_count)
1915                 list_del(&vma->obj->userfault_link);
1916 }
1917
1918 static int
1919 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1920 {
1921         return __i915_request_await_exclusive(rq, &vma->active);
1922 }
1923
1924 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1925 {
1926         int err;
1927
1928         /* Wait for the vma to be bound before we start! */
1929         err = __i915_request_await_bind(rq, vma);
1930         if (err)
1931                 return err;
1932
1933         return i915_active_add_request(&vma->active, rq);
1934 }
1935
1936 int _i915_vma_move_to_active(struct i915_vma *vma,
1937                              struct i915_request *rq,
1938                              struct dma_fence *fence,
1939                              unsigned int flags)
1940 {
1941         struct drm_i915_gem_object *obj = vma->obj;
1942         int err;
1943
1944         assert_object_held(obj);
1945
1946         GEM_BUG_ON(!vma->pages);
1947
1948         if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) {
1949                 err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE);
1950                 if (unlikely(err))
1951                         return err;
1952         }
1953         err = __i915_vma_move_to_active(vma, rq);
1954         if (unlikely(err))
1955                 return err;
1956
1957         /*
1958          * Reserve fences slot early to prevent an allocation after preparing
1959          * the workload and associating fences with dma_resv.
1960          */
1961         if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1962                 struct dma_fence *curr;
1963                 int idx;
1964
1965                 dma_fence_array_for_each(curr, idx, fence)
1966                         ;
1967                 err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1968                 if (unlikely(err))
1969                         return err;
1970         }
1971
1972         if (flags & EXEC_OBJECT_WRITE) {
1973                 struct intel_frontbuffer *front;
1974
1975                 front = i915_gem_object_get_frontbuffer(obj);
1976                 if (unlikely(front)) {
1977                         if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1978                                 i915_active_add_request(&front->write, rq);
1979                         intel_frontbuffer_put(front);
1980                 }
1981         }
1982
1983         if (fence) {
1984                 struct dma_fence *curr;
1985                 enum dma_resv_usage usage;
1986                 int idx;
1987
1988                 if (flags & EXEC_OBJECT_WRITE) {
1989                         usage = DMA_RESV_USAGE_WRITE;
1990                         obj->write_domain = I915_GEM_DOMAIN_RENDER;
1991                         obj->read_domains = 0;
1992                 } else {
1993                         usage = DMA_RESV_USAGE_READ;
1994                         obj->write_domain = 0;
1995                 }
1996
1997                 dma_fence_array_for_each(curr, idx, fence)
1998                         dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1999         }
2000
2001         if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
2002                 i915_active_add_request(&vma->fence->active, rq);
2003
2004         obj->read_domains |= I915_GEM_GPU_DOMAINS;
2005         obj->mm.dirty = true;
2006
2007         GEM_BUG_ON(!i915_vma_is_active(vma));
2008         return 0;
2009 }
2010
2011 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
2012 {
2013         struct i915_vma_resource *vma_res = vma->resource;
2014         struct dma_fence *unbind_fence;
2015
2016         GEM_BUG_ON(i915_vma_is_pinned(vma));
2017         assert_vma_held_evict(vma);
2018
2019         if (i915_vma_is_map_and_fenceable(vma)) {
2020                 /* Force a pagefault for domain tracking on next user access */
2021                 i915_vma_revoke_mmap(vma);
2022
2023                 /*
2024                  * Check that we have flushed all writes through the GGTT
2025                  * before the unbind, other due to non-strict nature of those
2026                  * indirect writes they may end up referencing the GGTT PTE
2027                  * after the unbind.
2028                  *
2029                  * Note that we may be concurrently poking at the GGTT_WRITE
2030                  * bit from set-domain, as we mark all GGTT vma associated
2031                  * with an object. We know this is for another vma, as we
2032                  * are currently unbinding this one -- so if this vma will be
2033                  * reused, it will be refaulted and have its dirty bit set
2034                  * before the next write.
2035                  */
2036                 i915_vma_flush_writes(vma);
2037
2038                 /* release the fence reg _after_ flushing */
2039                 i915_vma_revoke_fence(vma);
2040
2041                 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
2042         }
2043
2044         __i915_vma_iounmap(vma);
2045
2046         GEM_BUG_ON(vma->fence);
2047         GEM_BUG_ON(i915_vma_has_userfault(vma));
2048
2049         /* Object backend must be async capable. */
2050         GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
2051
2052         /* If vm is not open, unbind is a nop. */
2053         vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
2054                 kref_read(&vma->vm->ref);
2055         vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
2056                 vma->vm->skip_pte_rewrite;
2057         trace_i915_vma_unbind(vma);
2058
2059         if (async)
2060                 unbind_fence = i915_vma_resource_unbind(vma_res,
2061                                                         vma->obj->mm.tlb);
2062         else
2063                 unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
2064
2065         vma->resource = NULL;
2066
2067         atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
2068                    &vma->flags);
2069
2070         i915_vma_detach(vma);
2071
2072         if (!async) {
2073                 if (unbind_fence) {
2074                         dma_fence_wait(unbind_fence, false);
2075                         dma_fence_put(unbind_fence);
2076                         unbind_fence = NULL;
2077                 }
2078                 vma_invalidate_tlb(vma->vm, vma->obj->mm.tlb);
2079         }
2080
2081         /*
2082          * Binding itself may not have completed until the unbind fence signals,
2083          * so don't drop the pages until that happens, unless the resource is
2084          * async_capable.
2085          */
2086
2087         vma_unbind_pages(vma);
2088         return unbind_fence;
2089 }
2090
2091 int __i915_vma_unbind(struct i915_vma *vma)
2092 {
2093         int ret;
2094
2095         lockdep_assert_held(&vma->vm->mutex);
2096         assert_vma_held_evict(vma);
2097
2098         if (!drm_mm_node_allocated(&vma->node))
2099                 return 0;
2100
2101         if (i915_vma_is_pinned(vma)) {
2102                 vma_print_allocator(vma, "is pinned");
2103                 return -EAGAIN;
2104         }
2105
2106         /*
2107          * After confirming that no one else is pinning this vma, wait for
2108          * any laggards who may have crept in during the wait (through
2109          * a residual pin skipping the vm->mutex) to complete.
2110          */
2111         ret = i915_vma_sync(vma);
2112         if (ret)
2113                 return ret;
2114
2115         GEM_BUG_ON(i915_vma_is_active(vma));
2116         __i915_vma_evict(vma, false);
2117
2118         drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2119         return 0;
2120 }
2121
2122 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2123 {
2124         struct dma_fence *fence;
2125
2126         lockdep_assert_held(&vma->vm->mutex);
2127
2128         if (!drm_mm_node_allocated(&vma->node))
2129                 return NULL;
2130
2131         if (i915_vma_is_pinned(vma) ||
2132             &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2133                 return ERR_PTR(-EAGAIN);
2134
2135         /*
2136          * We probably need to replace this with awaiting the fences of the
2137          * object's dma_resv when the vma active goes away. When doing that
2138          * we need to be careful to not add the vma_resource unbind fence
2139          * immediately to the object's dma_resv, because then unbinding
2140          * the next vma from the object, in case there are many, will
2141          * actually await the unbinding of the previous vmas, which is
2142          * undesirable.
2143          */
2144         if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2145                                        I915_ACTIVE_AWAIT_EXCL |
2146                                        I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2147                 return ERR_PTR(-EBUSY);
2148         }
2149
2150         fence = __i915_vma_evict(vma, true);
2151
2152         drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2153
2154         return fence;
2155 }
2156
2157 int i915_vma_unbind(struct i915_vma *vma)
2158 {
2159         struct i915_address_space *vm = vma->vm;
2160         intel_wakeref_t wakeref = NULL;
2161         int err;
2162
2163         assert_object_held_shared(vma->obj);
2164
2165         /* Optimistic wait before taking the mutex */
2166         err = i915_vma_sync(vma);
2167         if (err)
2168                 return err;
2169
2170         if (!drm_mm_node_allocated(&vma->node))
2171                 return 0;
2172
2173         if (i915_vma_is_pinned(vma)) {
2174                 vma_print_allocator(vma, "is pinned");
2175                 return -EAGAIN;
2176         }
2177
2178         if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2179                 /* XXX not always required: nop_clear_range */
2180                 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2181
2182         err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2183         if (err)
2184                 goto out_rpm;
2185
2186         err = __i915_vma_unbind(vma);
2187         mutex_unlock(&vm->mutex);
2188
2189 out_rpm:
2190         if (wakeref)
2191                 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2192         return err;
2193 }
2194
2195 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2196 {
2197         struct drm_i915_gem_object *obj = vma->obj;
2198         struct i915_address_space *vm = vma->vm;
2199         intel_wakeref_t wakeref = NULL;
2200         struct dma_fence *fence;
2201         int err;
2202
2203         /*
2204          * We need the dma-resv lock since we add the
2205          * unbind fence to the dma-resv object.
2206          */
2207         assert_object_held(obj);
2208
2209         if (!drm_mm_node_allocated(&vma->node))
2210                 return 0;
2211
2212         if (i915_vma_is_pinned(vma)) {
2213                 vma_print_allocator(vma, "is pinned");
2214                 return -EAGAIN;
2215         }
2216
2217         if (!obj->mm.rsgt)
2218                 return -EBUSY;
2219
2220         err = dma_resv_reserve_fences(obj->base.resv, 2);
2221         if (err)
2222                 return -EBUSY;
2223
2224         /*
2225          * It would be great if we could grab this wakeref from the
2226          * async unbind work if needed, but we can't because it uses
2227          * kmalloc and it's in the dma-fence signalling critical path.
2228          */
2229         if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2230                 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2231
2232         if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2233                 err = -EBUSY;
2234                 goto out_rpm;
2235         } else if (!trylock_vm) {
2236                 err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2237                 if (err)
2238                         goto out_rpm;
2239         }
2240
2241         fence = __i915_vma_unbind_async(vma);
2242         mutex_unlock(&vm->mutex);
2243         if (IS_ERR_OR_NULL(fence)) {
2244                 err = PTR_ERR_OR_ZERO(fence);
2245                 goto out_rpm;
2246         }
2247
2248         dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2249         dma_fence_put(fence);
2250
2251 out_rpm:
2252         if (wakeref)
2253                 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2254         return err;
2255 }
2256
2257 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2258 {
2259         int err;
2260
2261         i915_gem_object_lock(vma->obj, NULL);
2262         err = i915_vma_unbind(vma);
2263         i915_gem_object_unlock(vma->obj);
2264
2265         return err;
2266 }
2267
2268 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2269 {
2270         i915_gem_object_make_unshrinkable(vma->obj);
2271         return vma;
2272 }
2273
2274 void i915_vma_make_shrinkable(struct i915_vma *vma)
2275 {
2276         i915_gem_object_make_shrinkable(vma->obj);
2277 }
2278
2279 void i915_vma_make_purgeable(struct i915_vma *vma)
2280 {
2281         i915_gem_object_make_purgeable(vma->obj);
2282 }
2283
2284 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2285 #include "selftests/i915_vma.c"
2286 #endif
2287
2288 void i915_vma_module_exit(void)
2289 {
2290         kmem_cache_destroy(slab_vmas);
2291 }
2292
2293 int __init i915_vma_module_init(void)
2294 {
2295         slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2296         if (!slab_vmas)
2297                 return -ENOMEM;
2298
2299         return 0;
2300 }
This page took 0.16838 seconds and 4 git commands to generate.