1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
53 * 1. slab_mutex (Global Mutex)
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
56 * 4. slab_lock(slab) (Only on some arches)
57 * 5. object_map_lock (Only for debugging)
61 * The role of the slab_mutex is to protect the list of all the slabs
62 * and to synchronize major metadata changes to slab cache structures.
63 * Also synchronizes memory hotplug callbacks.
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
83 * slab is the one who can perform list operations on the slab. Other
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
119 * cpu_slab->lock local lock
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
140 * irq, preemption, migration considerations
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
156 * freed then the slab will show up again on the partial lists.
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
164 * slab->frozen The slab is frozen and exempt from list processing.
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
176 * freelist that allows lockless access to
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
181 * options set. This moves slab handling out of
182 * the fast path and disables lockless freelists.
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH() (true)
194 #define slub_get_cpu_ptr(var) \
199 #define slub_put_cpu_ptr(var) \
204 #define USE_LOCKLESS_FAST_PATH() (false)
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
210 #define __fastpath_inline
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
219 #endif /* CONFIG_SLUB_DEBUG */
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
224 unsigned int orig_size;
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 (s->flags & SLAB_KMALLOC));
239 void *fixup_red_left(struct kmem_cache *s, void *p)
241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 p += s->red_left_pad;
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 return !kmem_cache_debug(s);
257 * Issues still to be resolved:
259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
261 * - Variable sizing of the per node arrays
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
267 #ifndef CONFIG_SLUB_TINY
269 * Minimum number of partial slabs. These will be left on the partial
270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
272 #define MIN_PARTIAL 5
275 * Maximum number of desirable partial slabs.
276 * The existence of more partial slabs makes kmem_cache_shrink
277 * sort the partial list by the number of objects in use.
279 #define MAX_PARTIAL 10
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 SLAB_POISON | SLAB_STORE_USER)
289 * These debug flags cannot use CMPXCHG because there might be consistency
290 * issues when checking or reading debug information
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
297 * Debugging flags that require metadata to be stored in the slab. These get
298 * disabled when slab_debug=O is used and a cache's min order increases with
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
304 #define OO_MASK ((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
307 /* Internal SLUB flags */
309 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
315 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
319 * Tracking user of a slab.
321 #define TRACK_ADDRS_COUNT 16
323 unsigned long addr; /* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 depot_stack_handle_t handle;
327 int cpu; /* Was running on cpu */
328 int pid; /* Pid context */
329 unsigned long when; /* When did the operation occur */
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
350 ALLOC_FASTPATH, /* Allocation from cpu slab */
351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
352 FREE_FASTPATH, /* Free to cpu slab */
353 FREE_SLOWPATH, /* Freeing not to cpu slab */
354 FREE_FROZEN, /* Freeing to frozen slab */
355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
361 FREE_SLAB, /* Slab freed to the page allocator */
362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 DEACTIVATE_BYPASS, /* Implicit deactivation */
369 ORDER_FALLBACK, /* Number of times fallback was necessary */
370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
379 #ifndef CONFIG_SLUB_TINY
381 * When changing the layout, make sure freelist and tid are still compatible
382 * with this_cpu_cmpxchg_double() alignment requirements.
384 struct kmem_cache_cpu {
387 void **freelist; /* Pointer to next available object */
388 unsigned long tid; /* Globally unique transaction id */
390 freelist_aba_t freelist_tid;
392 struct slab *slab; /* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 struct slab *partial; /* Partially allocated slabs */
396 local_lock_t lock; /* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 unsigned int stat[NR_SLUB_STAT_ITEMS];
401 #endif /* CONFIG_SLUB_TINY */
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
405 #ifdef CONFIG_SLUB_STATS
407 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 * avoid this_cpu_add()'s irq-disable overhead.
410 raw_cpu_inc(s->cpu_slab->stat[si]);
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
417 #ifdef CONFIG_SLUB_STATS
418 raw_cpu_add(s->cpu_slab->stat[si], v);
423 * The slab lists for all objects.
425 struct kmem_cache_node {
426 spinlock_t list_lock;
427 unsigned long nr_partial;
428 struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 atomic_long_t nr_slabs;
431 atomic_long_t total_objects;
432 struct list_head full;
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
438 return s->node[node];
442 * Iterator over all nodes. The body will be executed for each node that has
443 * a kmem_cache_node structure allocated (which is true for all online nodes)
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 for (__node = 0; __node < nr_node_ids; __node++) \
447 if ((__n = get_node(__s, __node)))
450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452 * differ during memory hotplug/hotremove operations.
453 * Protected by slab_mutex.
455 static nodemask_t slab_nodes;
457 #ifndef CONFIG_SLUB_TINY
459 * Workqueue used for flush_cpu_slab().
461 static struct workqueue_struct *flushwq;
464 /********************************************************************
465 * Core slab cache functions
466 *******************************************************************/
469 * freeptr_t represents a SLUB freelist pointer, which might be encoded
470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
472 typedef struct { unsigned long v; } freeptr_t;
475 * Returns freelist pointer (ptr). With hardening, this is obfuscated
476 * with an XOR of the address where the pointer is held and a per-cache
479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 void *ptr, unsigned long ptr_addr)
482 unsigned long encoded;
484 #ifdef CONFIG_SLAB_FREELIST_HARDENED
485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
487 encoded = (unsigned long)ptr;
489 return (freeptr_t){.v = encoded};
492 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 freeptr_t ptr, unsigned long ptr_addr)
497 #ifdef CONFIG_SLAB_FREELIST_HARDENED
498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
500 decoded = (void *)ptr.v;
505 static inline void *get_freepointer(struct kmem_cache *s, void *object)
507 unsigned long ptr_addr;
510 object = kasan_reset_tag(object);
511 ptr_addr = (unsigned long)object + s->offset;
512 p = *(freeptr_t *)(ptr_addr);
513 return freelist_ptr_decode(s, p, ptr_addr);
516 #ifndef CONFIG_SLUB_TINY
517 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
519 prefetchw(object + s->offset);
524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525 * pointer value in the case the current thread loses the race for the next
526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528 * KMSAN will still check all arguments of cmpxchg because of imperfect
529 * handling of inline assembly.
530 * To work around this problem, we apply __no_kmsan_checks to ensure that
531 * get_freepointer_safe() returns initialized memory.
534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
536 unsigned long freepointer_addr;
539 if (!debug_pagealloc_enabled_static())
540 return get_freepointer(s, object);
542 object = kasan_reset_tag(object);
543 freepointer_addr = (unsigned long)object + s->offset;
544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 return freelist_ptr_decode(s, p, freepointer_addr);
548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
550 unsigned long freeptr_addr = (unsigned long)object + s->offset;
552 #ifdef CONFIG_SLAB_FREELIST_HARDENED
553 BUG_ON(object == fp); /* naive detection of double free or corruption */
556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
561 * See comment in calculate_sizes().
563 static inline bool freeptr_outside_object(struct kmem_cache *s)
565 return s->offset >= s->inuse;
569 * Return offset of the end of info block which is inuse + free pointer if
570 * not overlapping with object.
572 static inline unsigned int get_info_end(struct kmem_cache *s)
574 if (freeptr_outside_object(s))
575 return s->inuse + sizeof(void *);
580 /* Loop over all objects in a slab */
581 #define for_each_object(__p, __s, __addr, __objects) \
582 for (__p = fixup_red_left(__s, __addr); \
583 __p < (__addr) + (__objects) * (__s)->size; \
586 static inline unsigned int order_objects(unsigned int order, unsigned int size)
588 return ((unsigned int)PAGE_SIZE << order) / size;
591 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
594 struct kmem_cache_order_objects x = {
595 (order << OO_SHIFT) + order_objects(order, size)
601 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
603 return x.x >> OO_SHIFT;
606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
608 return x.x & OO_MASK;
611 #ifdef CONFIG_SLUB_CPU_PARTIAL
612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
614 unsigned int nr_slabs;
616 s->cpu_partial = nr_objects;
619 * We take the number of objects but actually limit the number of
620 * slabs on the per cpu partial list, in order to limit excessive
621 * growth of the list. For simplicity we assume that the slabs will
624 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
625 s->cpu_partial_slabs = nr_slabs;
628 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
630 return s->cpu_partial_slabs;
634 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
642 #endif /* CONFIG_SLUB_CPU_PARTIAL */
645 * Per slab locking using the pagelock
647 static __always_inline void slab_lock(struct slab *slab)
649 struct page *page = slab_page(slab);
651 VM_BUG_ON_PAGE(PageTail(page), page);
652 bit_spin_lock(PG_locked, &page->flags);
655 static __always_inline void slab_unlock(struct slab *slab)
657 struct page *page = slab_page(slab);
659 VM_BUG_ON_PAGE(PageTail(page), page);
660 bit_spin_unlock(PG_locked, &page->flags);
664 __update_freelist_fast(struct slab *slab,
665 void *freelist_old, unsigned long counters_old,
666 void *freelist_new, unsigned long counters_new)
668 #ifdef system_has_freelist_aba
669 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
670 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
672 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
679 __update_freelist_slow(struct slab *slab,
680 void *freelist_old, unsigned long counters_old,
681 void *freelist_new, unsigned long counters_new)
686 if (slab->freelist == freelist_old &&
687 slab->counters == counters_old) {
688 slab->freelist = freelist_new;
689 slab->counters = counters_new;
698 * Interrupts must be disabled (for the fallback code to work right), typically
699 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
700 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
701 * allocation/ free operation in hardirq context. Therefore nothing can
702 * interrupt the operation.
704 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
705 void *freelist_old, unsigned long counters_old,
706 void *freelist_new, unsigned long counters_new,
711 if (USE_LOCKLESS_FAST_PATH())
712 lockdep_assert_irqs_disabled();
714 if (s->flags & __CMPXCHG_DOUBLE) {
715 ret = __update_freelist_fast(slab, freelist_old, counters_old,
716 freelist_new, counters_new);
718 ret = __update_freelist_slow(slab, freelist_old, counters_old,
719 freelist_new, counters_new);
725 stat(s, CMPXCHG_DOUBLE_FAIL);
727 #ifdef SLUB_DEBUG_CMPXCHG
728 pr_info("%s %s: cmpxchg double redo ", n, s->name);
734 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
735 void *freelist_old, unsigned long counters_old,
736 void *freelist_new, unsigned long counters_new,
741 if (s->flags & __CMPXCHG_DOUBLE) {
742 ret = __update_freelist_fast(slab, freelist_old, counters_old,
743 freelist_new, counters_new);
747 local_irq_save(flags);
748 ret = __update_freelist_slow(slab, freelist_old, counters_old,
749 freelist_new, counters_new);
750 local_irq_restore(flags);
756 stat(s, CMPXCHG_DOUBLE_FAIL);
758 #ifdef SLUB_DEBUG_CMPXCHG
759 pr_info("%s %s: cmpxchg double redo ", n, s->name);
765 #ifdef CONFIG_SLUB_DEBUG
766 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
767 static DEFINE_SPINLOCK(object_map_lock);
769 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
772 void *addr = slab_address(slab);
775 bitmap_zero(obj_map, slab->objects);
777 for (p = slab->freelist; p; p = get_freepointer(s, p))
778 set_bit(__obj_to_index(s, addr, p), obj_map);
781 #if IS_ENABLED(CONFIG_KUNIT)
782 static bool slab_add_kunit_errors(void)
784 struct kunit_resource *resource;
786 if (!kunit_get_current_test())
789 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
793 (*(int *)resource->data)++;
794 kunit_put_resource(resource);
798 static inline bool slab_add_kunit_errors(void) { return false; }
801 static inline unsigned int size_from_object(struct kmem_cache *s)
803 if (s->flags & SLAB_RED_ZONE)
804 return s->size - s->red_left_pad;
809 static inline void *restore_red_left(struct kmem_cache *s, void *p)
811 if (s->flags & SLAB_RED_ZONE)
812 p -= s->red_left_pad;
820 #if defined(CONFIG_SLUB_DEBUG_ON)
821 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
823 static slab_flags_t slub_debug;
826 static char *slub_debug_string;
827 static int disable_higher_order_debug;
830 * slub is about to manipulate internal object metadata. This memory lies
831 * outside the range of the allocated object, so accessing it would normally
832 * be reported by kasan as a bounds error. metadata_access_enable() is used
833 * to tell kasan that these accesses are OK.
835 static inline void metadata_access_enable(void)
837 kasan_disable_current();
840 static inline void metadata_access_disable(void)
842 kasan_enable_current();
849 /* Verify that a pointer has an address that is valid within a slab page */
850 static inline int check_valid_pointer(struct kmem_cache *s,
851 struct slab *slab, void *object)
858 base = slab_address(slab);
859 object = kasan_reset_tag(object);
860 object = restore_red_left(s, object);
861 if (object < base || object >= base + slab->objects * s->size ||
862 (object - base) % s->size) {
869 static void print_section(char *level, char *text, u8 *addr,
872 metadata_access_enable();
873 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
874 16, 1, kasan_reset_tag((void *)addr), length, 1);
875 metadata_access_disable();
878 static struct track *get_track(struct kmem_cache *s, void *object,
879 enum track_item alloc)
883 p = object + get_info_end(s);
885 return kasan_reset_tag(p + alloc);
888 #ifdef CONFIG_STACKDEPOT
889 static noinline depot_stack_handle_t set_track_prepare(void)
891 depot_stack_handle_t handle;
892 unsigned long entries[TRACK_ADDRS_COUNT];
893 unsigned int nr_entries;
895 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
896 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
901 static inline depot_stack_handle_t set_track_prepare(void)
907 static void set_track_update(struct kmem_cache *s, void *object,
908 enum track_item alloc, unsigned long addr,
909 depot_stack_handle_t handle)
911 struct track *p = get_track(s, object, alloc);
913 #ifdef CONFIG_STACKDEPOT
917 p->cpu = smp_processor_id();
918 p->pid = current->pid;
922 static __always_inline void set_track(struct kmem_cache *s, void *object,
923 enum track_item alloc, unsigned long addr)
925 depot_stack_handle_t handle = set_track_prepare();
927 set_track_update(s, object, alloc, addr, handle);
930 static void init_tracking(struct kmem_cache *s, void *object)
934 if (!(s->flags & SLAB_STORE_USER))
937 p = get_track(s, object, TRACK_ALLOC);
938 memset(p, 0, 2*sizeof(struct track));
941 static void print_track(const char *s, struct track *t, unsigned long pr_time)
943 depot_stack_handle_t handle __maybe_unused;
948 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
949 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
950 #ifdef CONFIG_STACKDEPOT
951 handle = READ_ONCE(t->handle);
953 stack_depot_print(handle);
955 pr_err("object allocation/free stack trace missing\n");
959 void print_tracking(struct kmem_cache *s, void *object)
961 unsigned long pr_time = jiffies;
962 if (!(s->flags & SLAB_STORE_USER))
965 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
966 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
969 static void print_slab_info(const struct slab *slab)
971 struct folio *folio = (struct folio *)slab_folio(slab);
973 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
974 slab, slab->objects, slab->inuse, slab->freelist,
975 folio_flags(folio, 0));
979 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
980 * family will round up the real request size to these fixed ones, so
981 * there could be an extra area than what is requested. Save the original
982 * request size in the meta data area, for better debug and sanity check.
984 static inline void set_orig_size(struct kmem_cache *s,
985 void *object, unsigned int orig_size)
987 void *p = kasan_reset_tag(object);
988 unsigned int kasan_meta_size;
990 if (!slub_debug_orig_size(s))
994 * KASAN can save its free meta data inside of the object at offset 0.
995 * If this meta data size is larger than 'orig_size', it will overlap
996 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
997 * 'orig_size' to be as at least as big as KASAN's meta data.
999 kasan_meta_size = kasan_metadata_size(s, true);
1000 if (kasan_meta_size > orig_size)
1001 orig_size = kasan_meta_size;
1003 p += get_info_end(s);
1004 p += sizeof(struct track) * 2;
1006 *(unsigned int *)p = orig_size;
1009 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1011 void *p = kasan_reset_tag(object);
1013 if (!slub_debug_orig_size(s))
1014 return s->object_size;
1016 p += get_info_end(s);
1017 p += sizeof(struct track) * 2;
1019 return *(unsigned int *)p;
1022 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1024 set_orig_size(s, (void *)object, s->object_size);
1027 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1029 struct va_format vaf;
1032 va_start(args, fmt);
1035 pr_err("=============================================================================\n");
1036 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1037 pr_err("-----------------------------------------------------------------------------\n\n");
1042 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1044 struct va_format vaf;
1047 if (slab_add_kunit_errors())
1050 va_start(args, fmt);
1053 pr_err("FIX %s: %pV\n", s->name, &vaf);
1057 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1059 unsigned int off; /* Offset of last byte */
1060 u8 *addr = slab_address(slab);
1062 print_tracking(s, p);
1064 print_slab_info(slab);
1066 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1067 p, p - addr, get_freepointer(s, p));
1069 if (s->flags & SLAB_RED_ZONE)
1070 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1072 else if (p > addr + 16)
1073 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1075 print_section(KERN_ERR, "Object ", p,
1076 min_t(unsigned int, s->object_size, PAGE_SIZE));
1077 if (s->flags & SLAB_RED_ZONE)
1078 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1079 s->inuse - s->object_size);
1081 off = get_info_end(s);
1083 if (s->flags & SLAB_STORE_USER)
1084 off += 2 * sizeof(struct track);
1086 if (slub_debug_orig_size(s))
1087 off += sizeof(unsigned int);
1089 off += kasan_metadata_size(s, false);
1091 if (off != size_from_object(s))
1092 /* Beginning of the filler is the free pointer */
1093 print_section(KERN_ERR, "Padding ", p + off,
1094 size_from_object(s) - off);
1099 static void object_err(struct kmem_cache *s, struct slab *slab,
1100 u8 *object, char *reason)
1102 if (slab_add_kunit_errors())
1105 slab_bug(s, "%s", reason);
1106 print_trailer(s, slab, object);
1107 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1110 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1111 void **freelist, void *nextfree)
1113 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1114 !check_valid_pointer(s, slab, nextfree) && freelist) {
1115 object_err(s, slab, *freelist, "Freechain corrupt");
1117 slab_fix(s, "Isolate corrupted freechain");
1124 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1125 const char *fmt, ...)
1130 if (slab_add_kunit_errors())
1133 va_start(args, fmt);
1134 vsnprintf(buf, sizeof(buf), fmt, args);
1136 slab_bug(s, "%s", buf);
1137 print_slab_info(slab);
1139 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1142 static void init_object(struct kmem_cache *s, void *object, u8 val)
1144 u8 *p = kasan_reset_tag(object);
1145 unsigned int poison_size = s->object_size;
1147 if (s->flags & SLAB_RED_ZONE) {
1148 memset(p - s->red_left_pad, val, s->red_left_pad);
1150 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1152 * Redzone the extra allocated space by kmalloc than
1153 * requested, and the poison size will be limited to
1154 * the original request size accordingly.
1156 poison_size = get_orig_size(s, object);
1160 if (s->flags & __OBJECT_POISON) {
1161 memset(p, POISON_FREE, poison_size - 1);
1162 p[poison_size - 1] = POISON_END;
1165 if (s->flags & SLAB_RED_ZONE)
1166 memset(p + poison_size, val, s->inuse - poison_size);
1169 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1170 void *from, void *to)
1172 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1173 memset(from, data, to - from);
1176 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1177 u8 *object, char *what,
1178 u8 *start, unsigned int value, unsigned int bytes)
1182 u8 *addr = slab_address(slab);
1184 metadata_access_enable();
1185 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1186 metadata_access_disable();
1190 end = start + bytes;
1191 while (end > fault && end[-1] == value)
1194 if (slab_add_kunit_errors())
1195 goto skip_bug_print;
1197 slab_bug(s, "%s overwritten", what);
1198 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1199 fault, end - 1, fault - addr,
1201 print_trailer(s, slab, object);
1202 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1205 restore_bytes(s, what, value, fault, end);
1213 * Bytes of the object to be managed.
1214 * If the freepointer may overlay the object then the free
1215 * pointer is at the middle of the object.
1217 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1220 * object + s->object_size
1221 * Padding to reach word boundary. This is also used for Redzoning.
1222 * Padding is extended by another word if Redzoning is enabled and
1223 * object_size == inuse.
1225 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1226 * 0xcc (RED_ACTIVE) for objects in use.
1229 * Meta data starts here.
1231 * A. Free pointer (if we cannot overwrite object on free)
1232 * B. Tracking data for SLAB_STORE_USER
1233 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1234 * D. Padding to reach required alignment boundary or at minimum
1235 * one word if debugging is on to be able to detect writes
1236 * before the word boundary.
1238 * Padding is done using 0x5a (POISON_INUSE)
1241 * Nothing is used beyond s->size.
1243 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1244 * ignored. And therefore no slab options that rely on these boundaries
1245 * may be used with merged slabcaches.
1248 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1250 unsigned long off = get_info_end(s); /* The end of info */
1252 if (s->flags & SLAB_STORE_USER) {
1253 /* We also have user information there */
1254 off += 2 * sizeof(struct track);
1256 if (s->flags & SLAB_KMALLOC)
1257 off += sizeof(unsigned int);
1260 off += kasan_metadata_size(s, false);
1262 if (size_from_object(s) == off)
1265 return check_bytes_and_report(s, slab, p, "Object padding",
1266 p + off, POISON_INUSE, size_from_object(s) - off);
1269 /* Check the pad bytes at the end of a slab page */
1270 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1279 if (!(s->flags & SLAB_POISON))
1282 start = slab_address(slab);
1283 length = slab_size(slab);
1284 end = start + length;
1285 remainder = length % s->size;
1289 pad = end - remainder;
1290 metadata_access_enable();
1291 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1292 metadata_access_disable();
1295 while (end > fault && end[-1] == POISON_INUSE)
1298 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1299 fault, end - 1, fault - start);
1300 print_section(KERN_ERR, "Padding ", pad, remainder);
1302 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1305 static int check_object(struct kmem_cache *s, struct slab *slab,
1306 void *object, u8 val)
1309 u8 *endobject = object + s->object_size;
1310 unsigned int orig_size, kasan_meta_size;
1312 if (s->flags & SLAB_RED_ZONE) {
1313 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1314 object - s->red_left_pad, val, s->red_left_pad))
1317 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1318 endobject, val, s->inuse - s->object_size))
1321 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1322 orig_size = get_orig_size(s, object);
1324 if (s->object_size > orig_size &&
1325 !check_bytes_and_report(s, slab, object,
1326 "kmalloc Redzone", p + orig_size,
1327 val, s->object_size - orig_size)) {
1332 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1333 check_bytes_and_report(s, slab, p, "Alignment padding",
1334 endobject, POISON_INUSE,
1335 s->inuse - s->object_size);
1339 if (s->flags & SLAB_POISON) {
1340 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1342 * KASAN can save its free meta data inside of the
1343 * object at offset 0. Thus, skip checking the part of
1344 * the redzone that overlaps with the meta data.
1346 kasan_meta_size = kasan_metadata_size(s, true);
1347 if (kasan_meta_size < s->object_size - 1 &&
1348 !check_bytes_and_report(s, slab, p, "Poison",
1349 p + kasan_meta_size, POISON_FREE,
1350 s->object_size - kasan_meta_size - 1))
1352 if (kasan_meta_size < s->object_size &&
1353 !check_bytes_and_report(s, slab, p, "End Poison",
1354 p + s->object_size - 1, POISON_END, 1))
1358 * check_pad_bytes cleans up on its own.
1360 check_pad_bytes(s, slab, p);
1363 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1365 * Object and freepointer overlap. Cannot check
1366 * freepointer while object is allocated.
1370 /* Check free pointer validity */
1371 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1372 object_err(s, slab, p, "Freepointer corrupt");
1374 * No choice but to zap it and thus lose the remainder
1375 * of the free objects in this slab. May cause
1376 * another error because the object count is now wrong.
1378 set_freepointer(s, p, NULL);
1384 static int check_slab(struct kmem_cache *s, struct slab *slab)
1388 if (!folio_test_slab(slab_folio(slab))) {
1389 slab_err(s, slab, "Not a valid slab page");
1393 maxobj = order_objects(slab_order(slab), s->size);
1394 if (slab->objects > maxobj) {
1395 slab_err(s, slab, "objects %u > max %u",
1396 slab->objects, maxobj);
1399 if (slab->inuse > slab->objects) {
1400 slab_err(s, slab, "inuse %u > max %u",
1401 slab->inuse, slab->objects);
1404 /* Slab_pad_check fixes things up after itself */
1405 slab_pad_check(s, slab);
1410 * Determine if a certain object in a slab is on the freelist. Must hold the
1411 * slab lock to guarantee that the chains are in a consistent state.
1413 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1417 void *object = NULL;
1420 fp = slab->freelist;
1421 while (fp && nr <= slab->objects) {
1424 if (!check_valid_pointer(s, slab, fp)) {
1426 object_err(s, slab, object,
1427 "Freechain corrupt");
1428 set_freepointer(s, object, NULL);
1430 slab_err(s, slab, "Freepointer corrupt");
1431 slab->freelist = NULL;
1432 slab->inuse = slab->objects;
1433 slab_fix(s, "Freelist cleared");
1439 fp = get_freepointer(s, object);
1443 max_objects = order_objects(slab_order(slab), s->size);
1444 if (max_objects > MAX_OBJS_PER_PAGE)
1445 max_objects = MAX_OBJS_PER_PAGE;
1447 if (slab->objects != max_objects) {
1448 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1449 slab->objects, max_objects);
1450 slab->objects = max_objects;
1451 slab_fix(s, "Number of objects adjusted");
1453 if (slab->inuse != slab->objects - nr) {
1454 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1455 slab->inuse, slab->objects - nr);
1456 slab->inuse = slab->objects - nr;
1457 slab_fix(s, "Object count adjusted");
1459 return search == NULL;
1462 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1465 if (s->flags & SLAB_TRACE) {
1466 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1468 alloc ? "alloc" : "free",
1469 object, slab->inuse,
1473 print_section(KERN_INFO, "Object ", (void *)object,
1481 * Tracking of fully allocated slabs for debugging purposes.
1483 static void add_full(struct kmem_cache *s,
1484 struct kmem_cache_node *n, struct slab *slab)
1486 if (!(s->flags & SLAB_STORE_USER))
1489 lockdep_assert_held(&n->list_lock);
1490 list_add(&slab->slab_list, &n->full);
1493 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1495 if (!(s->flags & SLAB_STORE_USER))
1498 lockdep_assert_held(&n->list_lock);
1499 list_del(&slab->slab_list);
1502 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1504 return atomic_long_read(&n->nr_slabs);
1507 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1509 struct kmem_cache_node *n = get_node(s, node);
1511 atomic_long_inc(&n->nr_slabs);
1512 atomic_long_add(objects, &n->total_objects);
1514 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1516 struct kmem_cache_node *n = get_node(s, node);
1518 atomic_long_dec(&n->nr_slabs);
1519 atomic_long_sub(objects, &n->total_objects);
1522 /* Object debug checks for alloc/free paths */
1523 static void setup_object_debug(struct kmem_cache *s, void *object)
1525 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1528 init_object(s, object, SLUB_RED_INACTIVE);
1529 init_tracking(s, object);
1533 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1535 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1538 metadata_access_enable();
1539 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1540 metadata_access_disable();
1543 static inline int alloc_consistency_checks(struct kmem_cache *s,
1544 struct slab *slab, void *object)
1546 if (!check_slab(s, slab))
1549 if (!check_valid_pointer(s, slab, object)) {
1550 object_err(s, slab, object, "Freelist Pointer check fails");
1554 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1560 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1561 struct slab *slab, void *object, int orig_size)
1563 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1564 if (!alloc_consistency_checks(s, slab, object))
1568 /* Success. Perform special debug activities for allocs */
1569 trace(s, slab, object, 1);
1570 set_orig_size(s, object, orig_size);
1571 init_object(s, object, SLUB_RED_ACTIVE);
1575 if (folio_test_slab(slab_folio(slab))) {
1577 * If this is a slab page then lets do the best we can
1578 * to avoid issues in the future. Marking all objects
1579 * as used avoids touching the remaining objects.
1581 slab_fix(s, "Marking all objects used");
1582 slab->inuse = slab->objects;
1583 slab->freelist = NULL;
1588 static inline int free_consistency_checks(struct kmem_cache *s,
1589 struct slab *slab, void *object, unsigned long addr)
1591 if (!check_valid_pointer(s, slab, object)) {
1592 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1596 if (on_freelist(s, slab, object)) {
1597 object_err(s, slab, object, "Object already free");
1601 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1604 if (unlikely(s != slab->slab_cache)) {
1605 if (!folio_test_slab(slab_folio(slab))) {
1606 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1608 } else if (!slab->slab_cache) {
1609 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1613 object_err(s, slab, object,
1614 "page slab pointer corrupt.");
1621 * Parse a block of slab_debug options. Blocks are delimited by ';'
1623 * @str: start of block
1624 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1625 * @slabs: return start of list of slabs, or NULL when there's no list
1626 * @init: assume this is initial parsing and not per-kmem-create parsing
1628 * returns the start of next block if there's any, or NULL
1631 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1633 bool higher_order_disable = false;
1635 /* Skip any completely empty blocks */
1636 while (*str && *str == ';')
1641 * No options but restriction on slabs. This means full
1642 * debugging for slabs matching a pattern.
1644 *flags = DEBUG_DEFAULT_FLAGS;
1649 /* Determine which debug features should be switched on */
1650 for (; *str && *str != ',' && *str != ';'; str++) {
1651 switch (tolower(*str)) {
1656 *flags |= SLAB_CONSISTENCY_CHECKS;
1659 *flags |= SLAB_RED_ZONE;
1662 *flags |= SLAB_POISON;
1665 *flags |= SLAB_STORE_USER;
1668 *flags |= SLAB_TRACE;
1671 *flags |= SLAB_FAILSLAB;
1675 * Avoid enabling debugging on caches if its minimum
1676 * order would increase as a result.
1678 higher_order_disable = true;
1682 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1691 /* Skip over the slab list */
1692 while (*str && *str != ';')
1695 /* Skip any completely empty blocks */
1696 while (*str && *str == ';')
1699 if (init && higher_order_disable)
1700 disable_higher_order_debug = 1;
1708 static int __init setup_slub_debug(char *str)
1711 slab_flags_t global_flags;
1714 bool global_slub_debug_changed = false;
1715 bool slab_list_specified = false;
1717 global_flags = DEBUG_DEFAULT_FLAGS;
1718 if (*str++ != '=' || !*str)
1720 * No options specified. Switch on full debugging.
1726 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1729 global_flags = flags;
1730 global_slub_debug_changed = true;
1732 slab_list_specified = true;
1733 if (flags & SLAB_STORE_USER)
1734 stack_depot_request_early_init();
1739 * For backwards compatibility, a single list of flags with list of
1740 * slabs means debugging is only changed for those slabs, so the global
1741 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1742 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1743 * long as there is no option specifying flags without a slab list.
1745 if (slab_list_specified) {
1746 if (!global_slub_debug_changed)
1747 global_flags = slub_debug;
1748 slub_debug_string = saved_str;
1751 slub_debug = global_flags;
1752 if (slub_debug & SLAB_STORE_USER)
1753 stack_depot_request_early_init();
1754 if (slub_debug != 0 || slub_debug_string)
1755 static_branch_enable(&slub_debug_enabled);
1757 static_branch_disable(&slub_debug_enabled);
1758 if ((static_branch_unlikely(&init_on_alloc) ||
1759 static_branch_unlikely(&init_on_free)) &&
1760 (slub_debug & SLAB_POISON))
1761 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1765 __setup("slab_debug", setup_slub_debug);
1766 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1769 * kmem_cache_flags - apply debugging options to the cache
1770 * @flags: flags to set
1771 * @name: name of the cache
1773 * Debug option(s) are applied to @flags. In addition to the debug
1774 * option(s), if a slab name (or multiple) is specified i.e.
1775 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1776 * then only the select slabs will receive the debug option(s).
1778 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1783 slab_flags_t block_flags;
1784 slab_flags_t slub_debug_local = slub_debug;
1786 if (flags & SLAB_NO_USER_FLAGS)
1790 * If the slab cache is for debugging (e.g. kmemleak) then
1791 * don't store user (stack trace) information by default,
1792 * but let the user enable it via the command line below.
1794 if (flags & SLAB_NOLEAKTRACE)
1795 slub_debug_local &= ~SLAB_STORE_USER;
1798 next_block = slub_debug_string;
1799 /* Go through all blocks of debug options, see if any matches our slab's name */
1800 while (next_block) {
1801 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1804 /* Found a block that has a slab list, search it */
1809 end = strchrnul(iter, ',');
1810 if (next_block && next_block < end)
1811 end = next_block - 1;
1813 glob = strnchr(iter, end - iter, '*');
1815 cmplen = glob - iter;
1817 cmplen = max_t(size_t, len, (end - iter));
1819 if (!strncmp(name, iter, cmplen)) {
1820 flags |= block_flags;
1824 if (!*end || *end == ';')
1830 return flags | slub_debug_local;
1832 #else /* !CONFIG_SLUB_DEBUG */
1833 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1835 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1837 static inline bool alloc_debug_processing(struct kmem_cache *s,
1838 struct slab *slab, void *object, int orig_size) { return true; }
1840 static inline bool free_debug_processing(struct kmem_cache *s,
1841 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1842 unsigned long addr, depot_stack_handle_t handle) { return true; }
1844 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1845 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1846 void *object, u8 val) { return 1; }
1847 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1848 static inline void set_track(struct kmem_cache *s, void *object,
1849 enum track_item alloc, unsigned long addr) {}
1850 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1851 struct slab *slab) {}
1852 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1853 struct slab *slab) {}
1854 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1858 #define slub_debug 0
1860 #define disable_higher_order_debug 0
1862 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1864 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1866 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1869 #ifndef CONFIG_SLUB_TINY
1870 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1871 void **freelist, void *nextfree)
1876 #endif /* CONFIG_SLUB_DEBUG */
1878 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
1880 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1881 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
1884 #ifdef CONFIG_MEMCG_KMEM
1885 static inline void memcg_free_slab_cgroups(struct slab *slab)
1887 kfree(slab_objcgs(slab));
1888 slab->memcg_data = 0;
1891 static inline size_t obj_full_size(struct kmem_cache *s)
1894 * For each accounted object there is an extra space which is used
1895 * to store obj_cgroup membership. Charge it too.
1897 return s->size + sizeof(struct obj_cgroup *);
1901 * Returns false if the allocation should fail.
1903 static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s,
1904 struct list_lru *lru,
1905 struct obj_cgroup **objcgp,
1906 size_t objects, gfp_t flags)
1909 * The obtained objcg pointer is safe to use within the current scope,
1910 * defined by current task or set_active_memcg() pair.
1911 * obj_cgroup_get() is used to get a permanent reference.
1913 struct obj_cgroup *objcg = current_obj_cgroup();
1919 struct mem_cgroup *memcg;
1921 memcg = get_mem_cgroup_from_objcg(objcg);
1922 ret = memcg_list_lru_alloc(memcg, lru, flags);
1923 css_put(&memcg->css);
1929 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
1937 * Returns false if the allocation should fail.
1939 static __fastpath_inline
1940 bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
1941 struct obj_cgroup **objcgp, size_t objects,
1944 if (!memcg_kmem_online())
1947 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
1950 return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects,
1954 static void __memcg_slab_post_alloc_hook(struct kmem_cache *s,
1955 struct obj_cgroup *objcg,
1956 gfp_t flags, size_t size,
1963 flags &= gfp_allowed_mask;
1965 for (i = 0; i < size; i++) {
1967 slab = virt_to_slab(p[i]);
1969 if (!slab_objcgs(slab) &&
1970 memcg_alloc_slab_cgroups(slab, s, flags, false)) {
1971 obj_cgroup_uncharge(objcg, obj_full_size(s));
1975 off = obj_to_index(s, slab, p[i]);
1976 obj_cgroup_get(objcg);
1977 slab_objcgs(slab)[off] = objcg;
1978 mod_objcg_state(objcg, slab_pgdat(slab),
1979 cache_vmstat_idx(s), obj_full_size(s));
1981 obj_cgroup_uncharge(objcg, obj_full_size(s));
1986 static __fastpath_inline
1987 void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg,
1988 gfp_t flags, size_t size, void **p)
1990 if (likely(!memcg_kmem_online() || !objcg))
1993 return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
1996 static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
1997 void **p, int objects,
1998 struct obj_cgroup **objcgs)
2000 for (int i = 0; i < objects; i++) {
2001 struct obj_cgroup *objcg;
2004 off = obj_to_index(s, slab, p[i]);
2005 objcg = objcgs[off];
2010 obj_cgroup_uncharge(objcg, obj_full_size(s));
2011 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
2013 obj_cgroup_put(objcg);
2017 static __fastpath_inline
2018 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2021 struct obj_cgroup **objcgs;
2023 if (!memcg_kmem_online())
2026 objcgs = slab_objcgs(slab);
2027 if (likely(!objcgs))
2030 __memcg_slab_free_hook(s, slab, p, objects, objcgs);
2034 void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2035 struct obj_cgroup *objcg)
2038 obj_cgroup_uncharge(objcg, objects * obj_full_size(s));
2040 #else /* CONFIG_MEMCG_KMEM */
2041 static inline void memcg_free_slab_cgroups(struct slab *slab)
2045 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
2046 struct list_lru *lru,
2047 struct obj_cgroup **objcgp,
2048 size_t objects, gfp_t flags)
2053 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
2054 struct obj_cgroup *objcg,
2055 gfp_t flags, size_t size,
2060 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2061 void **p, int objects)
2066 void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2067 struct obj_cgroup *objcg)
2070 #endif /* CONFIG_MEMCG_KMEM */
2073 * Hooks for other subsystems that check memory allocations. In a typical
2074 * production configuration these hooks all should produce no code at all.
2076 * Returns true if freeing of the object can proceed, false if its reuse
2077 * was delayed by KASAN quarantine, or it was returned to KFENCE.
2079 static __always_inline
2080 bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2082 kmemleak_free_recursive(x, s->flags);
2083 kmsan_slab_free(s, x);
2085 debug_check_no_locks_freed(x, s->object_size);
2087 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2088 debug_check_no_obj_freed(x, s->object_size);
2090 /* Use KCSAN to help debug racy use-after-free. */
2091 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2092 __kcsan_check_access(x, s->object_size,
2093 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2099 * As memory initialization might be integrated into KASAN,
2100 * kasan_slab_free and initialization memset's must be
2101 * kept together to avoid discrepancies in behavior.
2103 * The initialization memset's clear the object and the metadata,
2104 * but don't touch the SLAB redzone.
2106 * The object's freepointer is also avoided if stored outside the
2109 if (unlikely(init)) {
2113 inuse = get_info_end(s);
2114 if (!kasan_has_integrated_init())
2115 memset(kasan_reset_tag(x), 0, s->object_size);
2116 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2117 memset((char *)kasan_reset_tag(x) + inuse, 0,
2118 s->size - inuse - rsize);
2120 /* KASAN might put x into memory quarantine, delaying its reuse. */
2121 return !kasan_slab_free(s, x, init);
2124 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
2125 void **head, void **tail,
2131 void *old_tail = *tail;
2134 if (is_kfence_address(next)) {
2135 slab_free_hook(s, next, false);
2139 /* Head and tail of the reconstructed freelist */
2143 init = slab_want_init_on_free(s);
2147 next = get_freepointer(s, object);
2149 /* If object's reuse doesn't have to be delayed */
2150 if (likely(slab_free_hook(s, object, init))) {
2151 /* Move object to the new freelist */
2152 set_freepointer(s, object, *head);
2158 * Adjust the reconstructed freelist depth
2159 * accordingly if object's reuse is delayed.
2163 } while (object != old_tail);
2165 return *head != NULL;
2168 static void *setup_object(struct kmem_cache *s, void *object)
2170 setup_object_debug(s, object);
2171 object = kasan_init_slab_obj(s, object);
2172 if (unlikely(s->ctor)) {
2173 kasan_unpoison_new_object(s, object);
2175 kasan_poison_new_object(s, object);
2181 * Slab allocation and freeing
2183 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2184 struct kmem_cache_order_objects oo)
2186 struct folio *folio;
2188 unsigned int order = oo_order(oo);
2190 folio = (struct folio *)alloc_pages_node(node, flags, order);
2194 slab = folio_slab(folio);
2195 __folio_set_slab(folio);
2196 /* Make the flag visible before any changes to folio->mapping */
2198 if (folio_is_pfmemalloc(folio))
2199 slab_set_pfmemalloc(slab);
2204 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2205 /* Pre-initialize the random sequence cache */
2206 static int init_cache_random_seq(struct kmem_cache *s)
2208 unsigned int count = oo_objects(s->oo);
2211 /* Bailout if already initialised */
2215 err = cache_random_seq_create(s, count, GFP_KERNEL);
2217 pr_err("SLUB: Unable to initialize free list for %s\n",
2222 /* Transform to an offset on the set of pages */
2223 if (s->random_seq) {
2226 for (i = 0; i < count; i++)
2227 s->random_seq[i] *= s->size;
2232 /* Initialize each random sequence freelist per cache */
2233 static void __init init_freelist_randomization(void)
2235 struct kmem_cache *s;
2237 mutex_lock(&slab_mutex);
2239 list_for_each_entry(s, &slab_caches, list)
2240 init_cache_random_seq(s);
2242 mutex_unlock(&slab_mutex);
2245 /* Get the next entry on the pre-computed freelist randomized */
2246 static void *next_freelist_entry(struct kmem_cache *s,
2247 unsigned long *pos, void *start,
2248 unsigned long page_limit,
2249 unsigned long freelist_count)
2254 * If the target page allocation failed, the number of objects on the
2255 * page might be smaller than the usual size defined by the cache.
2258 idx = s->random_seq[*pos];
2260 if (*pos >= freelist_count)
2262 } while (unlikely(idx >= page_limit));
2264 return (char *)start + idx;
2267 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2268 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2273 unsigned long idx, pos, page_limit, freelist_count;
2275 if (slab->objects < 2 || !s->random_seq)
2278 freelist_count = oo_objects(s->oo);
2279 pos = get_random_u32_below(freelist_count);
2281 page_limit = slab->objects * s->size;
2282 start = fixup_red_left(s, slab_address(slab));
2284 /* First entry is used as the base of the freelist */
2285 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2286 cur = setup_object(s, cur);
2287 slab->freelist = cur;
2289 for (idx = 1; idx < slab->objects; idx++) {
2290 next = next_freelist_entry(s, &pos, start, page_limit,
2292 next = setup_object(s, next);
2293 set_freepointer(s, cur, next);
2296 set_freepointer(s, cur, NULL);
2301 static inline int init_cache_random_seq(struct kmem_cache *s)
2305 static inline void init_freelist_randomization(void) { }
2306 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2310 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2312 static __always_inline void account_slab(struct slab *slab, int order,
2313 struct kmem_cache *s, gfp_t gfp)
2315 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2316 memcg_alloc_slab_cgroups(slab, s, gfp, true);
2318 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2319 PAGE_SIZE << order);
2322 static __always_inline void unaccount_slab(struct slab *slab, int order,
2323 struct kmem_cache *s)
2325 if (memcg_kmem_online())
2326 memcg_free_slab_cgroups(slab);
2328 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2329 -(PAGE_SIZE << order));
2332 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2335 struct kmem_cache_order_objects oo = s->oo;
2337 void *start, *p, *next;
2341 flags &= gfp_allowed_mask;
2343 flags |= s->allocflags;
2346 * Let the initial higher-order allocation fail under memory pressure
2347 * so we fall-back to the minimum order allocation.
2349 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2350 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2351 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2353 slab = alloc_slab_page(alloc_gfp, node, oo);
2354 if (unlikely(!slab)) {
2358 * Allocation may have failed due to fragmentation.
2359 * Try a lower order alloc if possible
2361 slab = alloc_slab_page(alloc_gfp, node, oo);
2362 if (unlikely(!slab))
2364 stat(s, ORDER_FALLBACK);
2367 slab->objects = oo_objects(oo);
2371 account_slab(slab, oo_order(oo), s, flags);
2373 slab->slab_cache = s;
2375 kasan_poison_slab(slab);
2377 start = slab_address(slab);
2379 setup_slab_debug(s, slab, start);
2381 shuffle = shuffle_freelist(s, slab);
2384 start = fixup_red_left(s, start);
2385 start = setup_object(s, start);
2386 slab->freelist = start;
2387 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2389 next = setup_object(s, next);
2390 set_freepointer(s, p, next);
2393 set_freepointer(s, p, NULL);
2399 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2401 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2402 flags = kmalloc_fix_flags(flags);
2404 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2406 return allocate_slab(s,
2407 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2410 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2412 struct folio *folio = slab_folio(slab);
2413 int order = folio_order(folio);
2414 int pages = 1 << order;
2416 __slab_clear_pfmemalloc(slab);
2417 folio->mapping = NULL;
2418 /* Make the mapping reset visible before clearing the flag */
2420 __folio_clear_slab(folio);
2421 mm_account_reclaimed_pages(pages);
2422 unaccount_slab(slab, order, s);
2423 __free_pages(&folio->page, order);
2426 static void rcu_free_slab(struct rcu_head *h)
2428 struct slab *slab = container_of(h, struct slab, rcu_head);
2430 __free_slab(slab->slab_cache, slab);
2433 static void free_slab(struct kmem_cache *s, struct slab *slab)
2435 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2438 slab_pad_check(s, slab);
2439 for_each_object(p, s, slab_address(slab), slab->objects)
2440 check_object(s, slab, p, SLUB_RED_INACTIVE);
2443 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2444 call_rcu(&slab->rcu_head, rcu_free_slab);
2446 __free_slab(s, slab);
2449 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2451 dec_slabs_node(s, slab_nid(slab), slab->objects);
2456 * SLUB reuses PG_workingset bit to keep track of whether it's on
2457 * the per-node partial list.
2459 static inline bool slab_test_node_partial(const struct slab *slab)
2461 return folio_test_workingset((struct folio *)slab_folio(slab));
2464 static inline void slab_set_node_partial(struct slab *slab)
2466 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2469 static inline void slab_clear_node_partial(struct slab *slab)
2471 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2475 * Management of partially allocated slabs.
2478 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2481 if (tail == DEACTIVATE_TO_TAIL)
2482 list_add_tail(&slab->slab_list, &n->partial);
2484 list_add(&slab->slab_list, &n->partial);
2485 slab_set_node_partial(slab);
2488 static inline void add_partial(struct kmem_cache_node *n,
2489 struct slab *slab, int tail)
2491 lockdep_assert_held(&n->list_lock);
2492 __add_partial(n, slab, tail);
2495 static inline void remove_partial(struct kmem_cache_node *n,
2498 lockdep_assert_held(&n->list_lock);
2499 list_del(&slab->slab_list);
2500 slab_clear_node_partial(slab);
2505 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2506 * slab from the n->partial list. Remove only a single object from the slab, do
2507 * the alloc_debug_processing() checks and leave the slab on the list, or move
2508 * it to full list if it was the last free object.
2510 static void *alloc_single_from_partial(struct kmem_cache *s,
2511 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2515 lockdep_assert_held(&n->list_lock);
2517 object = slab->freelist;
2518 slab->freelist = get_freepointer(s, object);
2521 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2522 remove_partial(n, slab);
2526 if (slab->inuse == slab->objects) {
2527 remove_partial(n, slab);
2528 add_full(s, n, slab);
2535 * Called only for kmem_cache_debug() caches to allocate from a freshly
2536 * allocated slab. Allocate a single object instead of whole freelist
2537 * and put the slab to the partial (or full) list.
2539 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2540 struct slab *slab, int orig_size)
2542 int nid = slab_nid(slab);
2543 struct kmem_cache_node *n = get_node(s, nid);
2544 unsigned long flags;
2548 object = slab->freelist;
2549 slab->freelist = get_freepointer(s, object);
2552 if (!alloc_debug_processing(s, slab, object, orig_size))
2554 * It's not really expected that this would fail on a
2555 * freshly allocated slab, but a concurrent memory
2556 * corruption in theory could cause that.
2560 spin_lock_irqsave(&n->list_lock, flags);
2562 if (slab->inuse == slab->objects)
2563 add_full(s, n, slab);
2565 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2567 inc_slabs_node(s, nid, slab->objects);
2568 spin_unlock_irqrestore(&n->list_lock, flags);
2573 #ifdef CONFIG_SLUB_CPU_PARTIAL
2574 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2576 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2579 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2582 * Try to allocate a partial slab from a specific node.
2584 static struct slab *get_partial_node(struct kmem_cache *s,
2585 struct kmem_cache_node *n,
2586 struct partial_context *pc)
2588 struct slab *slab, *slab2, *partial = NULL;
2589 unsigned long flags;
2590 unsigned int partial_slabs = 0;
2593 * Racy check. If we mistakenly see no partial slabs then we
2594 * just allocate an empty slab. If we mistakenly try to get a
2595 * partial slab and there is none available then get_partial()
2598 if (!n || !n->nr_partial)
2601 spin_lock_irqsave(&n->list_lock, flags);
2602 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2603 if (!pfmemalloc_match(slab, pc->flags))
2606 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2607 void *object = alloc_single_from_partial(s, n, slab,
2611 pc->object = object;
2617 remove_partial(n, slab);
2621 stat(s, ALLOC_FROM_PARTIAL);
2623 if ((slub_get_cpu_partial(s) == 0)) {
2627 put_cpu_partial(s, slab, 0);
2628 stat(s, CPU_PARTIAL_NODE);
2630 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2635 spin_unlock_irqrestore(&n->list_lock, flags);
2640 * Get a slab from somewhere. Search in increasing NUMA distances.
2642 static struct slab *get_any_partial(struct kmem_cache *s,
2643 struct partial_context *pc)
2646 struct zonelist *zonelist;
2649 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2651 unsigned int cpuset_mems_cookie;
2654 * The defrag ratio allows a configuration of the tradeoffs between
2655 * inter node defragmentation and node local allocations. A lower
2656 * defrag_ratio increases the tendency to do local allocations
2657 * instead of attempting to obtain partial slabs from other nodes.
2659 * If the defrag_ratio is set to 0 then kmalloc() always
2660 * returns node local objects. If the ratio is higher then kmalloc()
2661 * may return off node objects because partial slabs are obtained
2662 * from other nodes and filled up.
2664 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2665 * (which makes defrag_ratio = 1000) then every (well almost)
2666 * allocation will first attempt to defrag slab caches on other nodes.
2667 * This means scanning over all nodes to look for partial slabs which
2668 * may be expensive if we do it every time we are trying to find a slab
2669 * with available objects.
2671 if (!s->remote_node_defrag_ratio ||
2672 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2676 cpuset_mems_cookie = read_mems_allowed_begin();
2677 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2678 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2679 struct kmem_cache_node *n;
2681 n = get_node(s, zone_to_nid(zone));
2683 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2684 n->nr_partial > s->min_partial) {
2685 slab = get_partial_node(s, n, pc);
2688 * Don't check read_mems_allowed_retry()
2689 * here - if mems_allowed was updated in
2690 * parallel, that was a harmless race
2691 * between allocation and the cpuset
2698 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2699 #endif /* CONFIG_NUMA */
2704 * Get a partial slab, lock it and return it.
2706 static struct slab *get_partial(struct kmem_cache *s, int node,
2707 struct partial_context *pc)
2710 int searchnode = node;
2712 if (node == NUMA_NO_NODE)
2713 searchnode = numa_mem_id();
2715 slab = get_partial_node(s, get_node(s, searchnode), pc);
2716 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2719 return get_any_partial(s, pc);
2722 #ifndef CONFIG_SLUB_TINY
2724 #ifdef CONFIG_PREEMPTION
2726 * Calculate the next globally unique transaction for disambiguation
2727 * during cmpxchg. The transactions start with the cpu number and are then
2728 * incremented by CONFIG_NR_CPUS.
2730 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2733 * No preemption supported therefore also no need to check for
2737 #endif /* CONFIG_PREEMPTION */
2739 static inline unsigned long next_tid(unsigned long tid)
2741 return tid + TID_STEP;
2744 #ifdef SLUB_DEBUG_CMPXCHG
2745 static inline unsigned int tid_to_cpu(unsigned long tid)
2747 return tid % TID_STEP;
2750 static inline unsigned long tid_to_event(unsigned long tid)
2752 return tid / TID_STEP;
2756 static inline unsigned int init_tid(int cpu)
2761 static inline void note_cmpxchg_failure(const char *n,
2762 const struct kmem_cache *s, unsigned long tid)
2764 #ifdef SLUB_DEBUG_CMPXCHG
2765 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2767 pr_info("%s %s: cmpxchg redo ", n, s->name);
2769 #ifdef CONFIG_PREEMPTION
2770 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2771 pr_warn("due to cpu change %d -> %d\n",
2772 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2775 if (tid_to_event(tid) != tid_to_event(actual_tid))
2776 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2777 tid_to_event(tid), tid_to_event(actual_tid));
2779 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2780 actual_tid, tid, next_tid(tid));
2782 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2785 static void init_kmem_cache_cpus(struct kmem_cache *s)
2788 struct kmem_cache_cpu *c;
2790 for_each_possible_cpu(cpu) {
2791 c = per_cpu_ptr(s->cpu_slab, cpu);
2792 local_lock_init(&c->lock);
2793 c->tid = init_tid(cpu);
2798 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2799 * unfreezes the slabs and puts it on the proper list.
2800 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2803 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2806 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2808 void *nextfree, *freelist_iter, *freelist_tail;
2809 int tail = DEACTIVATE_TO_HEAD;
2810 unsigned long flags = 0;
2814 if (READ_ONCE(slab->freelist)) {
2815 stat(s, DEACTIVATE_REMOTE_FREES);
2816 tail = DEACTIVATE_TO_TAIL;
2820 * Stage one: Count the objects on cpu's freelist as free_delta and
2821 * remember the last object in freelist_tail for later splicing.
2823 freelist_tail = NULL;
2824 freelist_iter = freelist;
2825 while (freelist_iter) {
2826 nextfree = get_freepointer(s, freelist_iter);
2829 * If 'nextfree' is invalid, it is possible that the object at
2830 * 'freelist_iter' is already corrupted. So isolate all objects
2831 * starting at 'freelist_iter' by skipping them.
2833 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2836 freelist_tail = freelist_iter;
2839 freelist_iter = nextfree;
2843 * Stage two: Unfreeze the slab while splicing the per-cpu
2844 * freelist to the head of slab's freelist.
2847 old.freelist = READ_ONCE(slab->freelist);
2848 old.counters = READ_ONCE(slab->counters);
2849 VM_BUG_ON(!old.frozen);
2851 /* Determine target state of the slab */
2852 new.counters = old.counters;
2854 if (freelist_tail) {
2855 new.inuse -= free_delta;
2856 set_freepointer(s, freelist_tail, old.freelist);
2857 new.freelist = freelist;
2859 new.freelist = old.freelist;
2861 } while (!slab_update_freelist(s, slab,
2862 old.freelist, old.counters,
2863 new.freelist, new.counters,
2864 "unfreezing slab"));
2867 * Stage three: Manipulate the slab list based on the updated state.
2869 if (!new.inuse && n->nr_partial >= s->min_partial) {
2870 stat(s, DEACTIVATE_EMPTY);
2871 discard_slab(s, slab);
2873 } else if (new.freelist) {
2874 spin_lock_irqsave(&n->list_lock, flags);
2875 add_partial(n, slab, tail);
2876 spin_unlock_irqrestore(&n->list_lock, flags);
2879 stat(s, DEACTIVATE_FULL);
2883 #ifdef CONFIG_SLUB_CPU_PARTIAL
2884 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
2886 struct kmem_cache_node *n = NULL, *n2 = NULL;
2887 struct slab *slab, *slab_to_discard = NULL;
2888 unsigned long flags = 0;
2890 while (partial_slab) {
2891 slab = partial_slab;
2892 partial_slab = slab->next;
2894 n2 = get_node(s, slab_nid(slab));
2897 spin_unlock_irqrestore(&n->list_lock, flags);
2900 spin_lock_irqsave(&n->list_lock, flags);
2903 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
2904 slab->next = slab_to_discard;
2905 slab_to_discard = slab;
2907 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2908 stat(s, FREE_ADD_PARTIAL);
2913 spin_unlock_irqrestore(&n->list_lock, flags);
2915 while (slab_to_discard) {
2916 slab = slab_to_discard;
2917 slab_to_discard = slab_to_discard->next;
2919 stat(s, DEACTIVATE_EMPTY);
2920 discard_slab(s, slab);
2926 * Put all the cpu partial slabs to the node partial list.
2928 static void put_partials(struct kmem_cache *s)
2930 struct slab *partial_slab;
2931 unsigned long flags;
2933 local_lock_irqsave(&s->cpu_slab->lock, flags);
2934 partial_slab = this_cpu_read(s->cpu_slab->partial);
2935 this_cpu_write(s->cpu_slab->partial, NULL);
2936 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2939 __put_partials(s, partial_slab);
2942 static void put_partials_cpu(struct kmem_cache *s,
2943 struct kmem_cache_cpu *c)
2945 struct slab *partial_slab;
2947 partial_slab = slub_percpu_partial(c);
2951 __put_partials(s, partial_slab);
2955 * Put a slab into a partial slab slot if available.
2957 * If we did not find a slot then simply move all the partials to the
2958 * per node partial list.
2960 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2962 struct slab *oldslab;
2963 struct slab *slab_to_put = NULL;
2964 unsigned long flags;
2967 local_lock_irqsave(&s->cpu_slab->lock, flags);
2969 oldslab = this_cpu_read(s->cpu_slab->partial);
2972 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2974 * Partial array is full. Move the existing set to the
2975 * per node partial list. Postpone the actual unfreezing
2976 * outside of the critical section.
2978 slab_to_put = oldslab;
2981 slabs = oldslab->slabs;
2987 slab->slabs = slabs;
2988 slab->next = oldslab;
2990 this_cpu_write(s->cpu_slab->partial, slab);
2992 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2995 __put_partials(s, slab_to_put);
2996 stat(s, CPU_PARTIAL_DRAIN);
3000 #else /* CONFIG_SLUB_CPU_PARTIAL */
3002 static inline void put_partials(struct kmem_cache *s) { }
3003 static inline void put_partials_cpu(struct kmem_cache *s,
3004 struct kmem_cache_cpu *c) { }
3006 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3008 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3010 unsigned long flags;
3014 local_lock_irqsave(&s->cpu_slab->lock, flags);
3017 freelist = c->freelist;
3021 c->tid = next_tid(c->tid);
3023 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3026 deactivate_slab(s, slab, freelist);
3027 stat(s, CPUSLAB_FLUSH);
3031 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3033 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3034 void *freelist = c->freelist;
3035 struct slab *slab = c->slab;
3039 c->tid = next_tid(c->tid);
3042 deactivate_slab(s, slab, freelist);
3043 stat(s, CPUSLAB_FLUSH);
3046 put_partials_cpu(s, c);
3049 struct slub_flush_work {
3050 struct work_struct work;
3051 struct kmem_cache *s;
3058 * Called from CPU work handler with migration disabled.
3060 static void flush_cpu_slab(struct work_struct *w)
3062 struct kmem_cache *s;
3063 struct kmem_cache_cpu *c;
3064 struct slub_flush_work *sfw;
3066 sfw = container_of(w, struct slub_flush_work, work);
3069 c = this_cpu_ptr(s->cpu_slab);
3077 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3079 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3081 return c->slab || slub_percpu_partial(c);
3084 static DEFINE_MUTEX(flush_lock);
3085 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3087 static void flush_all_cpus_locked(struct kmem_cache *s)
3089 struct slub_flush_work *sfw;
3092 lockdep_assert_cpus_held();
3093 mutex_lock(&flush_lock);
3095 for_each_online_cpu(cpu) {
3096 sfw = &per_cpu(slub_flush, cpu);
3097 if (!has_cpu_slab(cpu, s)) {
3101 INIT_WORK(&sfw->work, flush_cpu_slab);
3104 queue_work_on(cpu, flushwq, &sfw->work);
3107 for_each_online_cpu(cpu) {
3108 sfw = &per_cpu(slub_flush, cpu);
3111 flush_work(&sfw->work);
3114 mutex_unlock(&flush_lock);
3117 static void flush_all(struct kmem_cache *s)
3120 flush_all_cpus_locked(s);
3125 * Use the cpu notifier to insure that the cpu slabs are flushed when
3128 static int slub_cpu_dead(unsigned int cpu)
3130 struct kmem_cache *s;
3132 mutex_lock(&slab_mutex);
3133 list_for_each_entry(s, &slab_caches, list)
3134 __flush_cpu_slab(s, cpu);
3135 mutex_unlock(&slab_mutex);
3139 #else /* CONFIG_SLUB_TINY */
3140 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3141 static inline void flush_all(struct kmem_cache *s) { }
3142 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3143 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3144 #endif /* CONFIG_SLUB_TINY */
3147 * Check if the objects in a per cpu structure fit numa
3148 * locality expectations.
3150 static inline int node_match(struct slab *slab, int node)
3153 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3159 #ifdef CONFIG_SLUB_DEBUG
3160 static int count_free(struct slab *slab)
3162 return slab->objects - slab->inuse;
3165 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3167 return atomic_long_read(&n->total_objects);
3170 /* Supports checking bulk free of a constructed freelist */
3171 static inline bool free_debug_processing(struct kmem_cache *s,
3172 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3173 unsigned long addr, depot_stack_handle_t handle)
3175 bool checks_ok = false;
3176 void *object = head;
3179 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3180 if (!check_slab(s, slab))
3184 if (slab->inuse < *bulk_cnt) {
3185 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3186 slab->inuse, *bulk_cnt);
3192 if (++cnt > *bulk_cnt)
3195 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3196 if (!free_consistency_checks(s, slab, object, addr))
3200 if (s->flags & SLAB_STORE_USER)
3201 set_track_update(s, object, TRACK_FREE, addr, handle);
3202 trace(s, slab, object, 0);
3203 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3204 init_object(s, object, SLUB_RED_INACTIVE);
3206 /* Reached end of constructed freelist yet? */
3207 if (object != tail) {
3208 object = get_freepointer(s, object);
3214 if (cnt != *bulk_cnt) {
3215 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3223 slab_fix(s, "Object at 0x%p not freed", object);
3227 #endif /* CONFIG_SLUB_DEBUG */
3229 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3230 static unsigned long count_partial(struct kmem_cache_node *n,
3231 int (*get_count)(struct slab *))
3233 unsigned long flags;
3234 unsigned long x = 0;
3237 spin_lock_irqsave(&n->list_lock, flags);
3238 list_for_each_entry(slab, &n->partial, slab_list)
3239 x += get_count(slab);
3240 spin_unlock_irqrestore(&n->list_lock, flags);
3243 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3245 #ifdef CONFIG_SLUB_DEBUG
3246 #define MAX_PARTIAL_TO_SCAN 10000
3248 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3250 unsigned long flags;
3251 unsigned long x = 0;
3254 spin_lock_irqsave(&n->list_lock, flags);
3255 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3256 list_for_each_entry(slab, &n->partial, slab_list)
3257 x += slab->objects - slab->inuse;
3260 * For a long list, approximate the total count of objects in
3261 * it to meet the limit on the number of slabs to scan.
3262 * Scan from both the list's head and tail for better accuracy.
3264 unsigned long scanned = 0;
3266 list_for_each_entry(slab, &n->partial, slab_list) {
3267 x += slab->objects - slab->inuse;
3268 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3271 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3272 x += slab->objects - slab->inuse;
3273 if (++scanned == MAX_PARTIAL_TO_SCAN)
3276 x = mult_frac(x, n->nr_partial, scanned);
3277 x = min(x, node_nr_objs(n));
3279 spin_unlock_irqrestore(&n->list_lock, flags);
3283 static noinline void
3284 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3286 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3287 DEFAULT_RATELIMIT_BURST);
3289 struct kmem_cache_node *n;
3291 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3294 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3295 nid, gfpflags, &gfpflags);
3296 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3297 s->name, s->object_size, s->size, oo_order(s->oo),
3300 if (oo_order(s->min) > get_order(s->object_size))
3301 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3304 for_each_kmem_cache_node(s, node, n) {
3305 unsigned long nr_slabs;
3306 unsigned long nr_objs;
3307 unsigned long nr_free;
3309 nr_free = count_partial_free_approx(n);
3310 nr_slabs = node_nr_slabs(n);
3311 nr_objs = node_nr_objs(n);
3313 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3314 node, nr_slabs, nr_objs, nr_free);
3317 #else /* CONFIG_SLUB_DEBUG */
3319 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3322 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3324 if (unlikely(slab_test_pfmemalloc(slab)))
3325 return gfp_pfmemalloc_allowed(gfpflags);
3330 #ifndef CONFIG_SLUB_TINY
3332 __update_cpu_freelist_fast(struct kmem_cache *s,
3333 void *freelist_old, void *freelist_new,
3336 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3337 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3339 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3340 &old.full, new.full);
3344 * Check the slab->freelist and either transfer the freelist to the
3345 * per cpu freelist or deactivate the slab.
3347 * The slab is still frozen if the return value is not NULL.
3349 * If this function returns NULL then the slab has been unfrozen.
3351 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3354 unsigned long counters;
3357 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3360 freelist = slab->freelist;
3361 counters = slab->counters;
3363 new.counters = counters;
3365 new.inuse = slab->objects;
3366 new.frozen = freelist != NULL;
3368 } while (!__slab_update_freelist(s, slab,
3377 * Freeze the partial slab and return the pointer to the freelist.
3379 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3382 unsigned long counters;
3386 freelist = slab->freelist;
3387 counters = slab->counters;
3389 new.counters = counters;
3390 VM_BUG_ON(new.frozen);
3392 new.inuse = slab->objects;
3395 } while (!slab_update_freelist(s, slab,
3404 * Slow path. The lockless freelist is empty or we need to perform
3407 * Processing is still very fast if new objects have been freed to the
3408 * regular freelist. In that case we simply take over the regular freelist
3409 * as the lockless freelist and zap the regular freelist.
3411 * If that is not working then we fall back to the partial lists. We take the
3412 * first element of the freelist as the object to allocate now and move the
3413 * rest of the freelist to the lockless freelist.
3415 * And if we were unable to get a new slab from the partial slab lists then
3416 * we need to allocate a new slab. This is the slowest path since it involves
3417 * a call to the page allocator and the setup of a new slab.
3419 * Version of __slab_alloc to use when we know that preemption is
3420 * already disabled (which is the case for bulk allocation).
3422 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3423 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3427 unsigned long flags;
3428 struct partial_context pc;
3429 bool try_thisnode = true;
3431 stat(s, ALLOC_SLOWPATH);
3435 slab = READ_ONCE(c->slab);
3438 * if the node is not online or has no normal memory, just
3439 * ignore the node constraint
3441 if (unlikely(node != NUMA_NO_NODE &&
3442 !node_isset(node, slab_nodes)))
3443 node = NUMA_NO_NODE;
3447 if (unlikely(!node_match(slab, node))) {
3449 * same as above but node_match() being false already
3450 * implies node != NUMA_NO_NODE
3452 if (!node_isset(node, slab_nodes)) {
3453 node = NUMA_NO_NODE;
3455 stat(s, ALLOC_NODE_MISMATCH);
3456 goto deactivate_slab;
3461 * By rights, we should be searching for a slab page that was
3462 * PFMEMALLOC but right now, we are losing the pfmemalloc
3463 * information when the page leaves the per-cpu allocator
3465 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3466 goto deactivate_slab;
3468 /* must check again c->slab in case we got preempted and it changed */
3469 local_lock_irqsave(&s->cpu_slab->lock, flags);
3470 if (unlikely(slab != c->slab)) {
3471 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3474 freelist = c->freelist;
3478 freelist = get_freelist(s, slab);
3482 c->tid = next_tid(c->tid);
3483 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3484 stat(s, DEACTIVATE_BYPASS);
3488 stat(s, ALLOC_REFILL);
3492 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3495 * freelist is pointing to the list of objects to be used.
3496 * slab is pointing to the slab from which the objects are obtained.
3497 * That slab must be frozen for per cpu allocations to work.
3499 VM_BUG_ON(!c->slab->frozen);
3500 c->freelist = get_freepointer(s, freelist);
3501 c->tid = next_tid(c->tid);
3502 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3507 local_lock_irqsave(&s->cpu_slab->lock, flags);
3508 if (slab != c->slab) {
3509 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3512 freelist = c->freelist;
3515 c->tid = next_tid(c->tid);
3516 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3517 deactivate_slab(s, slab, freelist);
3521 #ifdef CONFIG_SLUB_CPU_PARTIAL
3522 while (slub_percpu_partial(c)) {
3523 local_lock_irqsave(&s->cpu_slab->lock, flags);
3524 if (unlikely(c->slab)) {
3525 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3528 if (unlikely(!slub_percpu_partial(c))) {
3529 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3530 /* we were preempted and partial list got empty */
3534 slab = slub_percpu_partial(c);
3535 slub_set_percpu_partial(c, slab);
3537 if (likely(node_match(slab, node) &&
3538 pfmemalloc_match(slab, gfpflags))) {
3540 freelist = get_freelist(s, slab);
3541 VM_BUG_ON(!freelist);
3542 stat(s, CPU_PARTIAL_ALLOC);
3546 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3549 __put_partials(s, slab);
3555 pc.flags = gfpflags;
3557 * When a preferred node is indicated but no __GFP_THISNODE
3559 * 1) try to get a partial slab from target node only by having
3560 * __GFP_THISNODE in pc.flags for get_partial()
3561 * 2) if 1) failed, try to allocate a new slab from target node with
3562 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3563 * 3) if 2) failed, retry with original gfpflags which will allow
3564 * get_partial() try partial lists of other nodes before potentially
3565 * allocating new page from other nodes
3567 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3569 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3571 pc.orig_size = orig_size;
3572 slab = get_partial(s, node, &pc);
3574 if (kmem_cache_debug(s)) {
3575 freelist = pc.object;
3577 * For debug caches here we had to go through
3578 * alloc_single_from_partial() so just store the
3579 * tracking info and return the object.
3581 if (s->flags & SLAB_STORE_USER)
3582 set_track(s, freelist, TRACK_ALLOC, addr);
3587 freelist = freeze_slab(s, slab);
3588 goto retry_load_slab;
3591 slub_put_cpu_ptr(s->cpu_slab);
3592 slab = new_slab(s, pc.flags, node);
3593 c = slub_get_cpu_ptr(s->cpu_slab);
3595 if (unlikely(!slab)) {
3596 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3598 try_thisnode = false;
3601 slab_out_of_memory(s, gfpflags, node);
3605 stat(s, ALLOC_SLAB);
3607 if (kmem_cache_debug(s)) {
3608 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3610 if (unlikely(!freelist))
3613 if (s->flags & SLAB_STORE_USER)
3614 set_track(s, freelist, TRACK_ALLOC, addr);
3620 * No other reference to the slab yet so we can
3621 * muck around with it freely without cmpxchg
3623 freelist = slab->freelist;
3624 slab->freelist = NULL;
3625 slab->inuse = slab->objects;
3628 inc_slabs_node(s, slab_nid(slab), slab->objects);
3630 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3632 * For !pfmemalloc_match() case we don't load freelist so that
3633 * we don't make further mismatched allocations easier.
3635 deactivate_slab(s, slab, get_freepointer(s, freelist));
3641 local_lock_irqsave(&s->cpu_slab->lock, flags);
3642 if (unlikely(c->slab)) {
3643 void *flush_freelist = c->freelist;
3644 struct slab *flush_slab = c->slab;
3648 c->tid = next_tid(c->tid);
3650 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3652 deactivate_slab(s, flush_slab, flush_freelist);
3654 stat(s, CPUSLAB_FLUSH);
3656 goto retry_load_slab;
3664 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3665 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3668 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3669 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3673 #ifdef CONFIG_PREEMPT_COUNT
3675 * We may have been preempted and rescheduled on a different
3676 * cpu before disabling preemption. Need to reload cpu area
3679 c = slub_get_cpu_ptr(s->cpu_slab);
3682 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3683 #ifdef CONFIG_PREEMPT_COUNT
3684 slub_put_cpu_ptr(s->cpu_slab);
3689 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3690 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3692 struct kmem_cache_cpu *c;
3699 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3700 * enabled. We may switch back and forth between cpus while
3701 * reading from one cpu area. That does not matter as long
3702 * as we end up on the original cpu again when doing the cmpxchg.
3704 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3705 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3706 * the tid. If we are preempted and switched to another cpu between the
3707 * two reads, it's OK as the two are still associated with the same cpu
3708 * and cmpxchg later will validate the cpu.
3710 c = raw_cpu_ptr(s->cpu_slab);
3711 tid = READ_ONCE(c->tid);
3714 * Irqless object alloc/free algorithm used here depends on sequence
3715 * of fetching cpu_slab's data. tid should be fetched before anything
3716 * on c to guarantee that object and slab associated with previous tid
3717 * won't be used with current tid. If we fetch tid first, object and
3718 * slab could be one associated with next tid and our alloc/free
3719 * request will be failed. In this case, we will retry. So, no problem.
3724 * The transaction ids are globally unique per cpu and per operation on
3725 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3726 * occurs on the right processor and that there was no operation on the
3727 * linked list in between.
3730 object = c->freelist;
3733 if (!USE_LOCKLESS_FAST_PATH() ||
3734 unlikely(!object || !slab || !node_match(slab, node))) {
3735 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3737 void *next_object = get_freepointer_safe(s, object);
3740 * The cmpxchg will only match if there was no additional
3741 * operation and if we are on the right processor.
3743 * The cmpxchg does the following atomically (without lock
3745 * 1. Relocate first pointer to the current per cpu area.
3746 * 2. Verify that tid and freelist have not been changed
3747 * 3. If they were not changed replace tid and freelist
3749 * Since this is without lock semantics the protection is only
3750 * against code executing on this cpu *not* from access by
3753 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3754 note_cmpxchg_failure("slab_alloc", s, tid);
3757 prefetch_freepointer(s, next_object);
3758 stat(s, ALLOC_FASTPATH);
3763 #else /* CONFIG_SLUB_TINY */
3764 static void *__slab_alloc_node(struct kmem_cache *s,
3765 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3767 struct partial_context pc;
3771 pc.flags = gfpflags;
3772 pc.orig_size = orig_size;
3773 slab = get_partial(s, node, &pc);
3778 slab = new_slab(s, gfpflags, node);
3779 if (unlikely(!slab)) {
3780 slab_out_of_memory(s, gfpflags, node);
3784 object = alloc_single_from_new_slab(s, slab, orig_size);
3788 #endif /* CONFIG_SLUB_TINY */
3791 * If the object has been wiped upon free, make sure it's fully initialized by
3792 * zeroing out freelist pointer.
3794 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3797 if (unlikely(slab_want_init_on_free(s)) && obj &&
3798 !freeptr_outside_object(s))
3799 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3803 noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
3805 if (__should_failslab(s, gfpflags))
3809 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
3811 static __fastpath_inline
3812 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
3813 struct list_lru *lru,
3814 struct obj_cgroup **objcgp,
3815 size_t size, gfp_t flags)
3817 flags &= gfp_allowed_mask;
3821 if (unlikely(should_failslab(s, flags)))
3824 if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags)))
3830 static __fastpath_inline
3831 void slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg,
3832 gfp_t flags, size_t size, void **p, bool init,
3833 unsigned int orig_size)
3835 unsigned int zero_size = s->object_size;
3836 bool kasan_init = init;
3838 gfp_t init_flags = flags & gfp_allowed_mask;
3841 * For kmalloc object, the allocated memory size(object_size) is likely
3842 * larger than the requested size(orig_size). If redzone check is
3843 * enabled for the extra space, don't zero it, as it will be redzoned
3844 * soon. The redzone operation for this extra space could be seen as a
3845 * replacement of current poisoning under certain debug option, and
3846 * won't break other sanity checks.
3848 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3849 (s->flags & SLAB_KMALLOC))
3850 zero_size = orig_size;
3853 * When slab_debug is enabled, avoid memory initialization integrated
3854 * into KASAN and instead zero out the memory via the memset below with
3855 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3856 * cause false-positive reports. This does not lead to a performance
3857 * penalty on production builds, as slab_debug is not intended to be
3860 if (__slub_debug_enabled())
3864 * As memory initialization might be integrated into KASAN,
3865 * kasan_slab_alloc and initialization memset must be
3866 * kept together to avoid discrepancies in behavior.
3868 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3870 for (i = 0; i < size; i++) {
3871 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3872 if (p[i] && init && (!kasan_init ||
3873 !kasan_has_integrated_init()))
3874 memset(p[i], 0, zero_size);
3875 kmemleak_alloc_recursive(p[i], s->object_size, 1,
3876 s->flags, init_flags);
3877 kmsan_slab_alloc(s, p[i], init_flags);
3880 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
3884 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3885 * have the fastpath folded into their functions. So no function call
3886 * overhead for requests that can be satisfied on the fastpath.
3888 * The fastpath works by first checking if the lockless freelist can be used.
3889 * If not then __slab_alloc is called for slow processing.
3891 * Otherwise we can simply pick the next object from the lockless free list.
3893 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3894 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3897 struct obj_cgroup *objcg = NULL;
3900 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3904 object = kfence_alloc(s, orig_size, gfpflags);
3905 if (unlikely(object))
3908 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3910 maybe_wipe_obj_freeptr(s, object);
3911 init = slab_want_init_on_alloc(gfpflags, s);
3915 * When init equals 'true', like for kzalloc() family, only
3916 * @orig_size bytes might be zeroed instead of s->object_size
3918 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3923 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3925 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
3928 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3932 EXPORT_SYMBOL(kmem_cache_alloc);
3934 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3937 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
3940 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3944 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3947 * kmem_cache_alloc_node - Allocate an object on the specified node
3948 * @s: The cache to allocate from.
3949 * @gfpflags: See kmalloc().
3950 * @node: node number of the target node.
3952 * Identical to kmem_cache_alloc but it will allocate memory on the given
3953 * node, which can improve the performance for cpu bound structures.
3955 * Fallback to other node is possible if __GFP_THISNODE is not set.
3957 * Return: pointer to the new object or %NULL in case of error
3959 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3961 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3963 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3967 EXPORT_SYMBOL(kmem_cache_alloc_node);
3970 * To avoid unnecessary overhead, we pass through large allocation requests
3971 * directly to the page allocator. We use __GFP_COMP, because we will need to
3972 * know the allocation order to free the pages properly in kfree.
3974 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
3976 struct folio *folio;
3978 unsigned int order = get_order(size);
3980 if (unlikely(flags & GFP_SLAB_BUG_MASK))
3981 flags = kmalloc_fix_flags(flags);
3983 flags |= __GFP_COMP;
3984 folio = (struct folio *)alloc_pages_node(node, flags, order);
3986 ptr = folio_address(folio);
3987 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
3988 PAGE_SIZE << order);
3991 ptr = kasan_kmalloc_large(ptr, size, flags);
3992 /* As ptr might get tagged, call kmemleak hook after KASAN. */
3993 kmemleak_alloc(ptr, size, 1, flags);
3994 kmsan_kmalloc_large(ptr, size, flags);
3999 void *kmalloc_large(size_t size, gfp_t flags)
4001 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
4003 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4004 flags, NUMA_NO_NODE);
4007 EXPORT_SYMBOL(kmalloc_large);
4009 void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4011 void *ret = __kmalloc_large_node(size, flags, node);
4013 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4017 EXPORT_SYMBOL(kmalloc_large_node);
4019 static __always_inline
4020 void *__do_kmalloc_node(size_t size, gfp_t flags, int node,
4021 unsigned long caller)
4023 struct kmem_cache *s;
4026 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4027 ret = __kmalloc_large_node(size, flags, node);
4028 trace_kmalloc(caller, ret, size,
4029 PAGE_SIZE << get_order(size), flags, node);
4033 if (unlikely(!size))
4034 return ZERO_SIZE_PTR;
4036 s = kmalloc_slab(size, flags, caller);
4038 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4039 ret = kasan_kmalloc(s, ret, size, flags);
4040 trace_kmalloc(caller, ret, size, s->size, flags, node);
4044 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4046 return __do_kmalloc_node(size, flags, node, _RET_IP_);
4048 EXPORT_SYMBOL(__kmalloc_node);
4050 void *__kmalloc(size_t size, gfp_t flags)
4052 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
4054 EXPORT_SYMBOL(__kmalloc);
4056 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
4057 int node, unsigned long caller)
4059 return __do_kmalloc_node(size, flags, node, caller);
4061 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4063 void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4065 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4068 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4070 ret = kasan_kmalloc(s, ret, size, gfpflags);
4073 EXPORT_SYMBOL(kmalloc_trace);
4075 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
4076 int node, size_t size)
4078 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4080 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4082 ret = kasan_kmalloc(s, ret, size, gfpflags);
4085 EXPORT_SYMBOL(kmalloc_node_trace);
4087 static noinline void free_to_partial_list(
4088 struct kmem_cache *s, struct slab *slab,
4089 void *head, void *tail, int bulk_cnt,
4092 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4093 struct slab *slab_free = NULL;
4095 unsigned long flags;
4096 depot_stack_handle_t handle = 0;
4098 if (s->flags & SLAB_STORE_USER)
4099 handle = set_track_prepare();
4101 spin_lock_irqsave(&n->list_lock, flags);
4103 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4104 void *prior = slab->freelist;
4106 /* Perform the actual freeing while we still hold the locks */
4108 set_freepointer(s, tail, prior);
4109 slab->freelist = head;
4112 * If the slab is empty, and node's partial list is full,
4113 * it should be discarded anyway no matter it's on full or
4116 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4120 /* was on full list */
4121 remove_full(s, n, slab);
4123 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4124 stat(s, FREE_ADD_PARTIAL);
4126 } else if (slab_free) {
4127 remove_partial(n, slab);
4128 stat(s, FREE_REMOVE_PARTIAL);
4134 * Update the counters while still holding n->list_lock to
4135 * prevent spurious validation warnings
4137 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4140 spin_unlock_irqrestore(&n->list_lock, flags);
4144 free_slab(s, slab_free);
4149 * Slow path handling. This may still be called frequently since objects
4150 * have a longer lifetime than the cpu slabs in most processing loads.
4152 * So we still attempt to reduce cache line usage. Just take the slab
4153 * lock and free the item. If there is no additional partial slab
4154 * handling required then we can return immediately.
4156 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4157 void *head, void *tail, int cnt,
4164 unsigned long counters;
4165 struct kmem_cache_node *n = NULL;
4166 unsigned long flags;
4167 bool on_node_partial;
4169 stat(s, FREE_SLOWPATH);
4171 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4172 free_to_partial_list(s, slab, head, tail, cnt, addr);
4178 spin_unlock_irqrestore(&n->list_lock, flags);
4181 prior = slab->freelist;
4182 counters = slab->counters;
4183 set_freepointer(s, tail, prior);
4184 new.counters = counters;
4185 was_frozen = new.frozen;
4187 if ((!new.inuse || !prior) && !was_frozen) {
4188 /* Needs to be taken off a list */
4189 if (!kmem_cache_has_cpu_partial(s) || prior) {
4191 n = get_node(s, slab_nid(slab));
4193 * Speculatively acquire the list_lock.
4194 * If the cmpxchg does not succeed then we may
4195 * drop the list_lock without any processing.
4197 * Otherwise the list_lock will synchronize with
4198 * other processors updating the list of slabs.
4200 spin_lock_irqsave(&n->list_lock, flags);
4202 on_node_partial = slab_test_node_partial(slab);
4206 } while (!slab_update_freelist(s, slab,
4213 if (likely(was_frozen)) {
4215 * The list lock was not taken therefore no list
4216 * activity can be necessary.
4218 stat(s, FREE_FROZEN);
4219 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4221 * If we started with a full slab then put it onto the
4222 * per cpu partial list.
4224 put_cpu_partial(s, slab, 1);
4225 stat(s, CPU_PARTIAL_FREE);
4232 * This slab was partially empty but not on the per-node partial list,
4233 * in which case we shouldn't manipulate its list, just return.
4235 if (prior && !on_node_partial) {
4236 spin_unlock_irqrestore(&n->list_lock, flags);
4240 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4244 * Objects left in the slab. If it was not on the partial list before
4247 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4248 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4249 stat(s, FREE_ADD_PARTIAL);
4251 spin_unlock_irqrestore(&n->list_lock, flags);
4257 * Slab on the partial list.
4259 remove_partial(n, slab);
4260 stat(s, FREE_REMOVE_PARTIAL);
4263 spin_unlock_irqrestore(&n->list_lock, flags);
4265 discard_slab(s, slab);
4268 #ifndef CONFIG_SLUB_TINY
4270 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4271 * can perform fastpath freeing without additional function calls.
4273 * The fastpath is only possible if we are freeing to the current cpu slab
4274 * of this processor. This typically the case if we have just allocated
4277 * If fastpath is not possible then fall back to __slab_free where we deal
4278 * with all sorts of special processing.
4280 * Bulk free of a freelist with several objects (all pointing to the
4281 * same slab) possible by specifying head and tail ptr, plus objects
4282 * count (cnt). Bulk free indicated by tail pointer being set.
4284 static __always_inline void do_slab_free(struct kmem_cache *s,
4285 struct slab *slab, void *head, void *tail,
4286 int cnt, unsigned long addr)
4288 struct kmem_cache_cpu *c;
4294 * Determine the currently cpus per cpu slab.
4295 * The cpu may change afterward. However that does not matter since
4296 * data is retrieved via this pointer. If we are on the same cpu
4297 * during the cmpxchg then the free will succeed.
4299 c = raw_cpu_ptr(s->cpu_slab);
4300 tid = READ_ONCE(c->tid);
4302 /* Same with comment on barrier() in __slab_alloc_node() */
4305 if (unlikely(slab != c->slab)) {
4306 __slab_free(s, slab, head, tail, cnt, addr);
4310 if (USE_LOCKLESS_FAST_PATH()) {
4311 freelist = READ_ONCE(c->freelist);
4313 set_freepointer(s, tail, freelist);
4315 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4316 note_cmpxchg_failure("slab_free", s, tid);
4320 /* Update the free list under the local lock */
4321 local_lock(&s->cpu_slab->lock);
4322 c = this_cpu_ptr(s->cpu_slab);
4323 if (unlikely(slab != c->slab)) {
4324 local_unlock(&s->cpu_slab->lock);
4328 freelist = c->freelist;
4330 set_freepointer(s, tail, freelist);
4332 c->tid = next_tid(tid);
4334 local_unlock(&s->cpu_slab->lock);
4336 stat_add(s, FREE_FASTPATH, cnt);
4338 #else /* CONFIG_SLUB_TINY */
4339 static void do_slab_free(struct kmem_cache *s,
4340 struct slab *slab, void *head, void *tail,
4341 int cnt, unsigned long addr)
4343 __slab_free(s, slab, head, tail, cnt, addr);
4345 #endif /* CONFIG_SLUB_TINY */
4347 static __fastpath_inline
4348 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4351 memcg_slab_free_hook(s, slab, &object, 1);
4353 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4354 do_slab_free(s, slab, object, object, 1, addr);
4357 static __fastpath_inline
4358 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4359 void *tail, void **p, int cnt, unsigned long addr)
4361 memcg_slab_free_hook(s, slab, p, cnt);
4363 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4364 * to remove objects, whose reuse must be delayed.
4366 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4367 do_slab_free(s, slab, head, tail, cnt, addr);
4370 #ifdef CONFIG_KASAN_GENERIC
4371 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4373 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4377 static inline struct kmem_cache *virt_to_cache(const void *obj)
4381 slab = virt_to_slab(obj);
4382 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4384 return slab->slab_cache;
4387 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4389 struct kmem_cache *cachep;
4391 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4392 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4395 cachep = virt_to_cache(x);
4396 if (WARN(cachep && cachep != s,
4397 "%s: Wrong slab cache. %s but object is from %s\n",
4398 __func__, s->name, cachep->name))
4399 print_tracking(cachep, x);
4404 * kmem_cache_free - Deallocate an object
4405 * @s: The cache the allocation was from.
4406 * @x: The previously allocated object.
4408 * Free an object which was previously allocated from this
4411 void kmem_cache_free(struct kmem_cache *s, void *x)
4413 s = cache_from_obj(s, x);
4416 trace_kmem_cache_free(_RET_IP_, x, s);
4417 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4419 EXPORT_SYMBOL(kmem_cache_free);
4421 static void free_large_kmalloc(struct folio *folio, void *object)
4423 unsigned int order = folio_order(folio);
4425 if (WARN_ON_ONCE(order == 0))
4426 pr_warn_once("object pointer: 0x%p\n", object);
4428 kmemleak_free(object);
4429 kasan_kfree_large(object);
4430 kmsan_kfree_large(object);
4432 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4433 -(PAGE_SIZE << order));
4438 * kfree - free previously allocated memory
4439 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4441 * If @object is NULL, no operation is performed.
4443 void kfree(const void *object)
4445 struct folio *folio;
4447 struct kmem_cache *s;
4448 void *x = (void *)object;
4450 trace_kfree(_RET_IP_, object);
4452 if (unlikely(ZERO_OR_NULL_PTR(object)))
4455 folio = virt_to_folio(object);
4456 if (unlikely(!folio_test_slab(folio))) {
4457 free_large_kmalloc(folio, (void *)object);
4461 slab = folio_slab(folio);
4462 s = slab->slab_cache;
4463 slab_free(s, slab, x, _RET_IP_);
4465 EXPORT_SYMBOL(kfree);
4467 struct detached_freelist {
4472 struct kmem_cache *s;
4476 * This function progressively scans the array with free objects (with
4477 * a limited look ahead) and extract objects belonging to the same
4478 * slab. It builds a detached freelist directly within the given
4479 * slab/objects. This can happen without any need for
4480 * synchronization, because the objects are owned by running process.
4481 * The freelist is build up as a single linked list in the objects.
4482 * The idea is, that this detached freelist can then be bulk
4483 * transferred to the real freelist(s), but only requiring a single
4484 * synchronization primitive. Look ahead in the array is limited due
4485 * to performance reasons.
4488 int build_detached_freelist(struct kmem_cache *s, size_t size,
4489 void **p, struct detached_freelist *df)
4493 struct folio *folio;
4497 folio = virt_to_folio(object);
4499 /* Handle kalloc'ed objects */
4500 if (unlikely(!folio_test_slab(folio))) {
4501 free_large_kmalloc(folio, object);
4505 /* Derive kmem_cache from object */
4506 df->slab = folio_slab(folio);
4507 df->s = df->slab->slab_cache;
4509 df->slab = folio_slab(folio);
4510 df->s = cache_from_obj(s, object); /* Support for memcg */
4513 /* Start new detached freelist */
4515 df->freelist = object;
4518 if (is_kfence_address(object))
4521 set_freepointer(df->s, object, NULL);
4526 /* df->slab is always set at this point */
4527 if (df->slab == virt_to_slab(object)) {
4528 /* Opportunity build freelist */
4529 set_freepointer(df->s, object, df->freelist);
4530 df->freelist = object;
4534 swap(p[size], p[same]);
4538 /* Limit look ahead search */
4547 * Internal bulk free of objects that were not initialised by the post alloc
4548 * hooks and thus should not be processed by the free hooks
4550 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4556 struct detached_freelist df;
4558 size = build_detached_freelist(s, size, p, &df);
4562 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4564 } while (likely(size));
4567 /* Note that interrupts must be enabled when calling this function. */
4568 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4574 struct detached_freelist df;
4576 size = build_detached_freelist(s, size, p, &df);
4580 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4582 } while (likely(size));
4584 EXPORT_SYMBOL(kmem_cache_free_bulk);
4586 #ifndef CONFIG_SLUB_TINY
4588 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4591 struct kmem_cache_cpu *c;
4592 unsigned long irqflags;
4596 * Drain objects in the per cpu slab, while disabling local
4597 * IRQs, which protects against PREEMPT and interrupts
4598 * handlers invoking normal fastpath.
4600 c = slub_get_cpu_ptr(s->cpu_slab);
4601 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4603 for (i = 0; i < size; i++) {
4604 void *object = kfence_alloc(s, s->object_size, flags);
4606 if (unlikely(object)) {
4611 object = c->freelist;
4612 if (unlikely(!object)) {
4614 * We may have removed an object from c->freelist using
4615 * the fastpath in the previous iteration; in that case,
4616 * c->tid has not been bumped yet.
4617 * Since ___slab_alloc() may reenable interrupts while
4618 * allocating memory, we should bump c->tid now.
4620 c->tid = next_tid(c->tid);
4622 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4625 * Invoking slow path likely have side-effect
4626 * of re-populating per CPU c->freelist
4628 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4629 _RET_IP_, c, s->object_size);
4630 if (unlikely(!p[i]))
4633 c = this_cpu_ptr(s->cpu_slab);
4634 maybe_wipe_obj_freeptr(s, p[i]);
4636 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4638 continue; /* goto for-loop */
4640 c->freelist = get_freepointer(s, object);
4642 maybe_wipe_obj_freeptr(s, p[i]);
4643 stat(s, ALLOC_FASTPATH);
4645 c->tid = next_tid(c->tid);
4646 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4647 slub_put_cpu_ptr(s->cpu_slab);
4652 slub_put_cpu_ptr(s->cpu_slab);
4653 __kmem_cache_free_bulk(s, i, p);
4657 #else /* CONFIG_SLUB_TINY */
4658 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4659 size_t size, void **p)
4663 for (i = 0; i < size; i++) {
4664 void *object = kfence_alloc(s, s->object_size, flags);
4666 if (unlikely(object)) {
4671 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4672 _RET_IP_, s->object_size);
4673 if (unlikely(!p[i]))
4676 maybe_wipe_obj_freeptr(s, p[i]);
4682 __kmem_cache_free_bulk(s, i, p);
4685 #endif /* CONFIG_SLUB_TINY */
4687 /* Note that interrupts must be enabled when calling this function. */
4688 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4692 struct obj_cgroup *objcg = NULL;
4697 /* memcg and kmem_cache debug support */
4698 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4702 i = __kmem_cache_alloc_bulk(s, flags, size, p);
4705 * memcg and kmem_cache debug support and memory initialization.
4706 * Done outside of the IRQ disabled fastpath loop.
4708 if (likely(i != 0)) {
4709 slab_post_alloc_hook(s, objcg, flags, size, p,
4710 slab_want_init_on_alloc(flags, s), s->object_size);
4712 memcg_slab_alloc_error_hook(s, size, objcg);
4717 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4721 * Object placement in a slab is made very easy because we always start at
4722 * offset 0. If we tune the size of the object to the alignment then we can
4723 * get the required alignment by putting one properly sized object after
4726 * Notice that the allocation order determines the sizes of the per cpu
4727 * caches. Each processor has always one slab available for allocations.
4728 * Increasing the allocation order reduces the number of times that slabs
4729 * must be moved on and off the partial lists and is therefore a factor in
4734 * Minimum / Maximum order of slab pages. This influences locking overhead
4735 * and slab fragmentation. A higher order reduces the number of partial slabs
4736 * and increases the number of allocations possible without having to
4737 * take the list_lock.
4739 static unsigned int slub_min_order;
4740 static unsigned int slub_max_order =
4741 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4742 static unsigned int slub_min_objects;
4745 * Calculate the order of allocation given an slab object size.
4747 * The order of allocation has significant impact on performance and other
4748 * system components. Generally order 0 allocations should be preferred since
4749 * order 0 does not cause fragmentation in the page allocator. Larger objects
4750 * be problematic to put into order 0 slabs because there may be too much
4751 * unused space left. We go to a higher order if more than 1/16th of the slab
4754 * In order to reach satisfactory performance we must ensure that a minimum
4755 * number of objects is in one slab. Otherwise we may generate too much
4756 * activity on the partial lists which requires taking the list_lock. This is
4757 * less a concern for large slabs though which are rarely used.
4759 * slab_max_order specifies the order where we begin to stop considering the
4760 * number of objects in a slab as critical. If we reach slab_max_order then
4761 * we try to keep the page order as low as possible. So we accept more waste
4762 * of space in favor of a small page order.
4764 * Higher order allocations also allow the placement of more objects in a
4765 * slab and thereby reduce object handling overhead. If the user has
4766 * requested a higher minimum order then we start with that one instead of
4767 * the smallest order which will fit the object.
4769 static inline unsigned int calc_slab_order(unsigned int size,
4770 unsigned int min_order, unsigned int max_order,
4771 unsigned int fract_leftover)
4775 for (order = min_order; order <= max_order; order++) {
4777 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4780 rem = slab_size % size;
4782 if (rem <= slab_size / fract_leftover)
4789 static inline int calculate_order(unsigned int size)
4792 unsigned int min_objects;
4793 unsigned int max_objects;
4794 unsigned int min_order;
4796 min_objects = slub_min_objects;
4799 * Some architectures will only update present cpus when
4800 * onlining them, so don't trust the number if it's just 1. But
4801 * we also don't want to use nr_cpu_ids always, as on some other
4802 * architectures, there can be many possible cpus, but never
4803 * onlined. Here we compromise between trying to avoid too high
4804 * order on systems that appear larger than they are, and too
4805 * low order on systems that appear smaller than they are.
4807 unsigned int nr_cpus = num_present_cpus();
4809 nr_cpus = nr_cpu_ids;
4810 min_objects = 4 * (fls(nr_cpus) + 1);
4812 /* min_objects can't be 0 because get_order(0) is undefined */
4813 max_objects = max(order_objects(slub_max_order, size), 1U);
4814 min_objects = min(min_objects, max_objects);
4816 min_order = max_t(unsigned int, slub_min_order,
4817 get_order(min_objects * size));
4818 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4819 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4822 * Attempt to find best configuration for a slab. This works by first
4823 * attempting to generate a layout with the best possible configuration
4824 * and backing off gradually.
4826 * We start with accepting at most 1/16 waste and try to find the
4827 * smallest order from min_objects-derived/slab_min_order up to
4828 * slab_max_order that will satisfy the constraint. Note that increasing
4829 * the order can only result in same or less fractional waste, not more.
4831 * If that fails, we increase the acceptable fraction of waste and try
4832 * again. The last iteration with fraction of 1/2 would effectively
4833 * accept any waste and give us the order determined by min_objects, as
4834 * long as at least single object fits within slab_max_order.
4836 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4837 order = calc_slab_order(size, min_order, slub_max_order,
4839 if (order <= slub_max_order)
4844 * Doh this slab cannot be placed using slab_max_order.
4846 order = get_order(size);
4847 if (order <= MAX_PAGE_ORDER)
4853 init_kmem_cache_node(struct kmem_cache_node *n)
4856 spin_lock_init(&n->list_lock);
4857 INIT_LIST_HEAD(&n->partial);
4858 #ifdef CONFIG_SLUB_DEBUG
4859 atomic_long_set(&n->nr_slabs, 0);
4860 atomic_long_set(&n->total_objects, 0);
4861 INIT_LIST_HEAD(&n->full);
4865 #ifndef CONFIG_SLUB_TINY
4866 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4868 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4869 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4870 sizeof(struct kmem_cache_cpu));
4873 * Must align to double word boundary for the double cmpxchg
4874 * instructions to work; see __pcpu_double_call_return_bool().
4876 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4877 2 * sizeof(void *));
4882 init_kmem_cache_cpus(s);
4887 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4891 #endif /* CONFIG_SLUB_TINY */
4893 static struct kmem_cache *kmem_cache_node;
4896 * No kmalloc_node yet so do it by hand. We know that this is the first
4897 * slab on the node for this slabcache. There are no concurrent accesses
4900 * Note that this function only works on the kmem_cache_node
4901 * when allocating for the kmem_cache_node. This is used for bootstrapping
4902 * memory on a fresh node that has no slab structures yet.
4904 static void early_kmem_cache_node_alloc(int node)
4907 struct kmem_cache_node *n;
4909 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4911 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4914 if (slab_nid(slab) != node) {
4915 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4916 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4921 #ifdef CONFIG_SLUB_DEBUG
4922 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4924 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4925 slab->freelist = get_freepointer(kmem_cache_node, n);
4927 kmem_cache_node->node[node] = n;
4928 init_kmem_cache_node(n);
4929 inc_slabs_node(kmem_cache_node, node, slab->objects);
4932 * No locks need to be taken here as it has just been
4933 * initialized and there is no concurrent access.
4935 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
4938 static void free_kmem_cache_nodes(struct kmem_cache *s)
4941 struct kmem_cache_node *n;
4943 for_each_kmem_cache_node(s, node, n) {
4944 s->node[node] = NULL;
4945 kmem_cache_free(kmem_cache_node, n);
4949 void __kmem_cache_release(struct kmem_cache *s)
4951 cache_random_seq_destroy(s);
4952 #ifndef CONFIG_SLUB_TINY
4953 free_percpu(s->cpu_slab);
4955 free_kmem_cache_nodes(s);
4958 static int init_kmem_cache_nodes(struct kmem_cache *s)
4962 for_each_node_mask(node, slab_nodes) {
4963 struct kmem_cache_node *n;
4965 if (slab_state == DOWN) {
4966 early_kmem_cache_node_alloc(node);
4969 n = kmem_cache_alloc_node(kmem_cache_node,
4973 free_kmem_cache_nodes(s);
4977 init_kmem_cache_node(n);
4983 static void set_cpu_partial(struct kmem_cache *s)
4985 #ifdef CONFIG_SLUB_CPU_PARTIAL
4986 unsigned int nr_objects;
4989 * cpu_partial determined the maximum number of objects kept in the
4990 * per cpu partial lists of a processor.
4992 * Per cpu partial lists mainly contain slabs that just have one
4993 * object freed. If they are used for allocation then they can be
4994 * filled up again with minimal effort. The slab will never hit the
4995 * per node partial lists and therefore no locking will be required.
4997 * For backwards compatibility reasons, this is determined as number
4998 * of objects, even though we now limit maximum number of pages, see
4999 * slub_set_cpu_partial()
5001 if (!kmem_cache_has_cpu_partial(s))
5003 else if (s->size >= PAGE_SIZE)
5005 else if (s->size >= 1024)
5007 else if (s->size >= 256)
5012 slub_set_cpu_partial(s, nr_objects);
5017 * calculate_sizes() determines the order and the distribution of data within
5020 static int calculate_sizes(struct kmem_cache *s)
5022 slab_flags_t flags = s->flags;
5023 unsigned int size = s->object_size;
5027 * Round up object size to the next word boundary. We can only
5028 * place the free pointer at word boundaries and this determines
5029 * the possible location of the free pointer.
5031 size = ALIGN(size, sizeof(void *));
5033 #ifdef CONFIG_SLUB_DEBUG
5035 * Determine if we can poison the object itself. If the user of
5036 * the slab may touch the object after free or before allocation
5037 * then we should never poison the object itself.
5039 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5041 s->flags |= __OBJECT_POISON;
5043 s->flags &= ~__OBJECT_POISON;
5047 * If we are Redzoning then check if there is some space between the
5048 * end of the object and the free pointer. If not then add an
5049 * additional word to have some bytes to store Redzone information.
5051 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5052 size += sizeof(void *);
5056 * With that we have determined the number of bytes in actual use
5057 * by the object and redzoning.
5061 if (slub_debug_orig_size(s) ||
5062 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
5063 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
5066 * Relocate free pointer after the object if it is not
5067 * permitted to overwrite the first word of the object on
5070 * This is the case if we do RCU, have a constructor or
5071 * destructor, are poisoning the objects, or are
5072 * redzoning an object smaller than sizeof(void *).
5074 * The assumption that s->offset >= s->inuse means free
5075 * pointer is outside of the object is used in the
5076 * freeptr_outside_object() function. If that is no
5077 * longer true, the function needs to be modified.
5080 size += sizeof(void *);
5083 * Store freelist pointer near middle of object to keep
5084 * it away from the edges of the object to avoid small
5085 * sized over/underflows from neighboring allocations.
5087 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5090 #ifdef CONFIG_SLUB_DEBUG
5091 if (flags & SLAB_STORE_USER) {
5093 * Need to store information about allocs and frees after
5096 size += 2 * sizeof(struct track);
5098 /* Save the original kmalloc request size */
5099 if (flags & SLAB_KMALLOC)
5100 size += sizeof(unsigned int);
5104 kasan_cache_create(s, &size, &s->flags);
5105 #ifdef CONFIG_SLUB_DEBUG
5106 if (flags & SLAB_RED_ZONE) {
5108 * Add some empty padding so that we can catch
5109 * overwrites from earlier objects rather than let
5110 * tracking information or the free pointer be
5111 * corrupted if a user writes before the start
5114 size += sizeof(void *);
5116 s->red_left_pad = sizeof(void *);
5117 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5118 size += s->red_left_pad;
5123 * SLUB stores one object immediately after another beginning from
5124 * offset 0. In order to align the objects we have to simply size
5125 * each object to conform to the alignment.
5127 size = ALIGN(size, s->align);
5129 s->reciprocal_size = reciprocal_value(size);
5130 order = calculate_order(size);
5135 s->allocflags = __GFP_COMP;
5137 if (s->flags & SLAB_CACHE_DMA)
5138 s->allocflags |= GFP_DMA;
5140 if (s->flags & SLAB_CACHE_DMA32)
5141 s->allocflags |= GFP_DMA32;
5143 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5144 s->allocflags |= __GFP_RECLAIMABLE;
5147 * Determine the number of objects per slab
5149 s->oo = oo_make(order, size);
5150 s->min = oo_make(get_order(size), size);
5152 return !!oo_objects(s->oo);
5155 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5157 s->flags = kmem_cache_flags(flags, s->name);
5158 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5159 s->random = get_random_long();
5162 if (!calculate_sizes(s))
5164 if (disable_higher_order_debug) {
5166 * Disable debugging flags that store metadata if the min slab
5169 if (get_order(s->size) > get_order(s->object_size)) {
5170 s->flags &= ~DEBUG_METADATA_FLAGS;
5172 if (!calculate_sizes(s))
5177 #ifdef system_has_freelist_aba
5178 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5179 /* Enable fast mode */
5180 s->flags |= __CMPXCHG_DOUBLE;
5185 * The larger the object size is, the more slabs we want on the partial
5186 * list to avoid pounding the page allocator excessively.
5188 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5189 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5194 s->remote_node_defrag_ratio = 1000;
5197 /* Initialize the pre-computed randomized freelist if slab is up */
5198 if (slab_state >= UP) {
5199 if (init_cache_random_seq(s))
5203 if (!init_kmem_cache_nodes(s))
5206 if (alloc_kmem_cache_cpus(s))
5210 __kmem_cache_release(s);
5214 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5217 #ifdef CONFIG_SLUB_DEBUG
5218 void *addr = slab_address(slab);
5221 slab_err(s, slab, text, s->name);
5223 spin_lock(&object_map_lock);
5224 __fill_map(object_map, s, slab);
5226 for_each_object(p, s, addr, slab->objects) {
5228 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5229 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5230 print_tracking(s, p);
5233 spin_unlock(&object_map_lock);
5238 * Attempt to free all partial slabs on a node.
5239 * This is called from __kmem_cache_shutdown(). We must take list_lock
5240 * because sysfs file might still access partial list after the shutdowning.
5242 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5245 struct slab *slab, *h;
5247 BUG_ON(irqs_disabled());
5248 spin_lock_irq(&n->list_lock);
5249 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5251 remove_partial(n, slab);
5252 list_add(&slab->slab_list, &discard);
5254 list_slab_objects(s, slab,
5255 "Objects remaining in %s on __kmem_cache_shutdown()");
5258 spin_unlock_irq(&n->list_lock);
5260 list_for_each_entry_safe(slab, h, &discard, slab_list)
5261 discard_slab(s, slab);
5264 bool __kmem_cache_empty(struct kmem_cache *s)
5267 struct kmem_cache_node *n;
5269 for_each_kmem_cache_node(s, node, n)
5270 if (n->nr_partial || node_nr_slabs(n))
5276 * Release all resources used by a slab cache.
5278 int __kmem_cache_shutdown(struct kmem_cache *s)
5281 struct kmem_cache_node *n;
5283 flush_all_cpus_locked(s);
5284 /* Attempt to free all objects */
5285 for_each_kmem_cache_node(s, node, n) {
5287 if (n->nr_partial || node_nr_slabs(n))
5293 #ifdef CONFIG_PRINTK
5294 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5297 int __maybe_unused i;
5301 struct kmem_cache *s = slab->slab_cache;
5302 struct track __maybe_unused *trackp;
5304 kpp->kp_ptr = object;
5305 kpp->kp_slab = slab;
5306 kpp->kp_slab_cache = s;
5307 base = slab_address(slab);
5308 objp0 = kasan_reset_tag(object);
5309 #ifdef CONFIG_SLUB_DEBUG
5310 objp = restore_red_left(s, objp0);
5314 objnr = obj_to_index(s, slab, objp);
5315 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5316 objp = base + s->size * objnr;
5317 kpp->kp_objp = objp;
5318 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5319 || (objp - base) % s->size) ||
5320 !(s->flags & SLAB_STORE_USER))
5322 #ifdef CONFIG_SLUB_DEBUG
5323 objp = fixup_red_left(s, objp);
5324 trackp = get_track(s, objp, TRACK_ALLOC);
5325 kpp->kp_ret = (void *)trackp->addr;
5326 #ifdef CONFIG_STACKDEPOT
5328 depot_stack_handle_t handle;
5329 unsigned long *entries;
5330 unsigned int nr_entries;
5332 handle = READ_ONCE(trackp->handle);
5334 nr_entries = stack_depot_fetch(handle, &entries);
5335 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5336 kpp->kp_stack[i] = (void *)entries[i];
5339 trackp = get_track(s, objp, TRACK_FREE);
5340 handle = READ_ONCE(trackp->handle);
5342 nr_entries = stack_depot_fetch(handle, &entries);
5343 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5344 kpp->kp_free_stack[i] = (void *)entries[i];
5352 /********************************************************************
5354 *******************************************************************/
5356 static int __init setup_slub_min_order(char *str)
5358 get_option(&str, (int *)&slub_min_order);
5360 if (slub_min_order > slub_max_order)
5361 slub_max_order = slub_min_order;
5366 __setup("slab_min_order=", setup_slub_min_order);
5367 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5370 static int __init setup_slub_max_order(char *str)
5372 get_option(&str, (int *)&slub_max_order);
5373 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5375 if (slub_min_order > slub_max_order)
5376 slub_min_order = slub_max_order;
5381 __setup("slab_max_order=", setup_slub_max_order);
5382 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5384 static int __init setup_slub_min_objects(char *str)
5386 get_option(&str, (int *)&slub_min_objects);
5391 __setup("slab_min_objects=", setup_slub_min_objects);
5392 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5394 #ifdef CONFIG_HARDENED_USERCOPY
5396 * Rejects incorrectly sized objects and objects that are to be copied
5397 * to/from userspace but do not fall entirely within the containing slab
5398 * cache's usercopy region.
5400 * Returns NULL if check passes, otherwise const char * to name of cache
5401 * to indicate an error.
5403 void __check_heap_object(const void *ptr, unsigned long n,
5404 const struct slab *slab, bool to_user)
5406 struct kmem_cache *s;
5407 unsigned int offset;
5408 bool is_kfence = is_kfence_address(ptr);
5410 ptr = kasan_reset_tag(ptr);
5412 /* Find object and usable object size. */
5413 s = slab->slab_cache;
5415 /* Reject impossible pointers. */
5416 if (ptr < slab_address(slab))
5417 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5420 /* Find offset within object. */
5422 offset = ptr - kfence_object_start(ptr);
5424 offset = (ptr - slab_address(slab)) % s->size;
5426 /* Adjust for redzone and reject if within the redzone. */
5427 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5428 if (offset < s->red_left_pad)
5429 usercopy_abort("SLUB object in left red zone",
5430 s->name, to_user, offset, n);
5431 offset -= s->red_left_pad;
5434 /* Allow address range falling entirely within usercopy region. */
5435 if (offset >= s->useroffset &&
5436 offset - s->useroffset <= s->usersize &&
5437 n <= s->useroffset - offset + s->usersize)
5440 usercopy_abort("SLUB object", s->name, to_user, offset, n);
5442 #endif /* CONFIG_HARDENED_USERCOPY */
5444 #define SHRINK_PROMOTE_MAX 32
5447 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5448 * up most to the head of the partial lists. New allocations will then
5449 * fill those up and thus they can be removed from the partial lists.
5451 * The slabs with the least items are placed last. This results in them
5452 * being allocated from last increasing the chance that the last objects
5453 * are freed in them.
5455 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5459 struct kmem_cache_node *n;
5462 struct list_head discard;
5463 struct list_head promote[SHRINK_PROMOTE_MAX];
5464 unsigned long flags;
5467 for_each_kmem_cache_node(s, node, n) {
5468 INIT_LIST_HEAD(&discard);
5469 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5470 INIT_LIST_HEAD(promote + i);
5472 spin_lock_irqsave(&n->list_lock, flags);
5475 * Build lists of slabs to discard or promote.
5477 * Note that concurrent frees may occur while we hold the
5478 * list_lock. slab->inuse here is the upper limit.
5480 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5481 int free = slab->objects - slab->inuse;
5483 /* Do not reread slab->inuse */
5486 /* We do not keep full slabs on the list */
5489 if (free == slab->objects) {
5490 list_move(&slab->slab_list, &discard);
5491 slab_clear_node_partial(slab);
5493 dec_slabs_node(s, node, slab->objects);
5494 } else if (free <= SHRINK_PROMOTE_MAX)
5495 list_move(&slab->slab_list, promote + free - 1);
5499 * Promote the slabs filled up most to the head of the
5502 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5503 list_splice(promote + i, &n->partial);
5505 spin_unlock_irqrestore(&n->list_lock, flags);
5507 /* Release empty slabs */
5508 list_for_each_entry_safe(slab, t, &discard, slab_list)
5511 if (node_nr_slabs(n))
5518 int __kmem_cache_shrink(struct kmem_cache *s)
5521 return __kmem_cache_do_shrink(s);
5524 static int slab_mem_going_offline_callback(void *arg)
5526 struct kmem_cache *s;
5528 mutex_lock(&slab_mutex);
5529 list_for_each_entry(s, &slab_caches, list) {
5530 flush_all_cpus_locked(s);
5531 __kmem_cache_do_shrink(s);
5533 mutex_unlock(&slab_mutex);
5538 static void slab_mem_offline_callback(void *arg)
5540 struct memory_notify *marg = arg;
5543 offline_node = marg->status_change_nid_normal;
5546 * If the node still has available memory. we need kmem_cache_node
5549 if (offline_node < 0)
5552 mutex_lock(&slab_mutex);
5553 node_clear(offline_node, slab_nodes);
5555 * We no longer free kmem_cache_node structures here, as it would be
5556 * racy with all get_node() users, and infeasible to protect them with
5559 mutex_unlock(&slab_mutex);
5562 static int slab_mem_going_online_callback(void *arg)
5564 struct kmem_cache_node *n;
5565 struct kmem_cache *s;
5566 struct memory_notify *marg = arg;
5567 int nid = marg->status_change_nid_normal;
5571 * If the node's memory is already available, then kmem_cache_node is
5572 * already created. Nothing to do.
5578 * We are bringing a node online. No memory is available yet. We must
5579 * allocate a kmem_cache_node structure in order to bring the node
5582 mutex_lock(&slab_mutex);
5583 list_for_each_entry(s, &slab_caches, list) {
5585 * The structure may already exist if the node was previously
5586 * onlined and offlined.
5588 if (get_node(s, nid))
5591 * XXX: kmem_cache_alloc_node will fallback to other nodes
5592 * since memory is not yet available from the node that
5595 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5600 init_kmem_cache_node(n);
5604 * Any cache created after this point will also have kmem_cache_node
5605 * initialized for the new node.
5607 node_set(nid, slab_nodes);
5609 mutex_unlock(&slab_mutex);
5613 static int slab_memory_callback(struct notifier_block *self,
5614 unsigned long action, void *arg)
5619 case MEM_GOING_ONLINE:
5620 ret = slab_mem_going_online_callback(arg);
5622 case MEM_GOING_OFFLINE:
5623 ret = slab_mem_going_offline_callback(arg);
5626 case MEM_CANCEL_ONLINE:
5627 slab_mem_offline_callback(arg);
5630 case MEM_CANCEL_OFFLINE:
5634 ret = notifier_from_errno(ret);
5640 /********************************************************************
5641 * Basic setup of slabs
5642 *******************************************************************/
5645 * Used for early kmem_cache structures that were allocated using
5646 * the page allocator. Allocate them properly then fix up the pointers
5647 * that may be pointing to the wrong kmem_cache structure.
5650 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5653 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5654 struct kmem_cache_node *n;
5656 memcpy(s, static_cache, kmem_cache->object_size);
5659 * This runs very early, and only the boot processor is supposed to be
5660 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5663 __flush_cpu_slab(s, smp_processor_id());
5664 for_each_kmem_cache_node(s, node, n) {
5667 list_for_each_entry(p, &n->partial, slab_list)
5670 #ifdef CONFIG_SLUB_DEBUG
5671 list_for_each_entry(p, &n->full, slab_list)
5675 list_add(&s->list, &slab_caches);
5679 void __init kmem_cache_init(void)
5681 static __initdata struct kmem_cache boot_kmem_cache,
5682 boot_kmem_cache_node;
5685 if (debug_guardpage_minorder())
5688 /* Print slub debugging pointers without hashing */
5689 if (__slub_debug_enabled())
5690 no_hash_pointers_enable(NULL);
5692 kmem_cache_node = &boot_kmem_cache_node;
5693 kmem_cache = &boot_kmem_cache;
5696 * Initialize the nodemask for which we will allocate per node
5697 * structures. Here we don't need taking slab_mutex yet.
5699 for_each_node_state(node, N_NORMAL_MEMORY)
5700 node_set(node, slab_nodes);
5702 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5703 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5705 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5707 /* Able to allocate the per node structures */
5708 slab_state = PARTIAL;
5710 create_boot_cache(kmem_cache, "kmem_cache",
5711 offsetof(struct kmem_cache, node) +
5712 nr_node_ids * sizeof(struct kmem_cache_node *),
5713 SLAB_HWCACHE_ALIGN, 0, 0);
5715 kmem_cache = bootstrap(&boot_kmem_cache);
5716 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5718 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5719 setup_kmalloc_cache_index_table();
5720 create_kmalloc_caches();
5722 /* Setup random freelists for each cache */
5723 init_freelist_randomization();
5725 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5728 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5730 slub_min_order, slub_max_order, slub_min_objects,
5731 nr_cpu_ids, nr_node_ids);
5734 void __init kmem_cache_init_late(void)
5736 #ifndef CONFIG_SLUB_TINY
5737 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5743 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5744 slab_flags_t flags, void (*ctor)(void *))
5746 struct kmem_cache *s;
5748 s = find_mergeable(size, align, flags, name, ctor);
5750 if (sysfs_slab_alias(s, name))
5756 * Adjust the object sizes so that we clear
5757 * the complete object on kzalloc.
5759 s->object_size = max(s->object_size, size);
5760 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5766 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5770 err = kmem_cache_open(s, flags);
5774 /* Mutex is not taken during early boot */
5775 if (slab_state <= UP)
5778 err = sysfs_slab_add(s);
5780 __kmem_cache_release(s);
5784 if (s->flags & SLAB_STORE_USER)
5785 debugfs_slab_add(s);
5790 #ifdef SLAB_SUPPORTS_SYSFS
5791 static int count_inuse(struct slab *slab)
5796 static int count_total(struct slab *slab)
5798 return slab->objects;
5802 #ifdef CONFIG_SLUB_DEBUG
5803 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5804 unsigned long *obj_map)
5807 void *addr = slab_address(slab);
5809 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5812 /* Now we know that a valid freelist exists */
5813 __fill_map(obj_map, s, slab);
5814 for_each_object(p, s, addr, slab->objects) {
5815 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5816 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5818 if (!check_object(s, slab, p, val))
5823 static int validate_slab_node(struct kmem_cache *s,
5824 struct kmem_cache_node *n, unsigned long *obj_map)
5826 unsigned long count = 0;
5828 unsigned long flags;
5830 spin_lock_irqsave(&n->list_lock, flags);
5832 list_for_each_entry(slab, &n->partial, slab_list) {
5833 validate_slab(s, slab, obj_map);
5836 if (count != n->nr_partial) {
5837 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5838 s->name, count, n->nr_partial);
5839 slab_add_kunit_errors();
5842 if (!(s->flags & SLAB_STORE_USER))
5845 list_for_each_entry(slab, &n->full, slab_list) {
5846 validate_slab(s, slab, obj_map);
5849 if (count != node_nr_slabs(n)) {
5850 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5851 s->name, count, node_nr_slabs(n));
5852 slab_add_kunit_errors();
5856 spin_unlock_irqrestore(&n->list_lock, flags);
5860 long validate_slab_cache(struct kmem_cache *s)
5863 unsigned long count = 0;
5864 struct kmem_cache_node *n;
5865 unsigned long *obj_map;
5867 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5872 for_each_kmem_cache_node(s, node, n)
5873 count += validate_slab_node(s, n, obj_map);
5875 bitmap_free(obj_map);
5879 EXPORT_SYMBOL(validate_slab_cache);
5881 #ifdef CONFIG_DEBUG_FS
5883 * Generate lists of code addresses where slabcache objects are allocated
5888 depot_stack_handle_t handle;
5889 unsigned long count;
5891 unsigned long waste;
5897 DECLARE_BITMAP(cpus, NR_CPUS);
5903 unsigned long count;
5904 struct location *loc;
5908 static struct dentry *slab_debugfs_root;
5910 static void free_loc_track(struct loc_track *t)
5913 free_pages((unsigned long)t->loc,
5914 get_order(sizeof(struct location) * t->max));
5917 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5922 order = get_order(sizeof(struct location) * max);
5924 l = (void *)__get_free_pages(flags, order);
5929 memcpy(l, t->loc, sizeof(struct location) * t->count);
5937 static int add_location(struct loc_track *t, struct kmem_cache *s,
5938 const struct track *track,
5939 unsigned int orig_size)
5941 long start, end, pos;
5943 unsigned long caddr, chandle, cwaste;
5944 unsigned long age = jiffies - track->when;
5945 depot_stack_handle_t handle = 0;
5946 unsigned int waste = s->object_size - orig_size;
5948 #ifdef CONFIG_STACKDEPOT
5949 handle = READ_ONCE(track->handle);
5955 pos = start + (end - start + 1) / 2;
5958 * There is nothing at "end". If we end up there
5959 * we need to add something to before end.
5966 chandle = l->handle;
5968 if ((track->addr == caddr) && (handle == chandle) &&
5969 (waste == cwaste)) {
5974 if (age < l->min_time)
5976 if (age > l->max_time)
5979 if (track->pid < l->min_pid)
5980 l->min_pid = track->pid;
5981 if (track->pid > l->max_pid)
5982 l->max_pid = track->pid;
5984 cpumask_set_cpu(track->cpu,
5985 to_cpumask(l->cpus));
5987 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5991 if (track->addr < caddr)
5993 else if (track->addr == caddr && handle < chandle)
5995 else if (track->addr == caddr && handle == chandle &&
6003 * Not found. Insert new tracking element.
6005 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6011 (t->count - pos) * sizeof(struct location));
6014 l->addr = track->addr;
6018 l->min_pid = track->pid;
6019 l->max_pid = track->pid;
6022 cpumask_clear(to_cpumask(l->cpus));
6023 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6024 nodes_clear(l->nodes);
6025 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6029 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6030 struct slab *slab, enum track_item alloc,
6031 unsigned long *obj_map)
6033 void *addr = slab_address(slab);
6034 bool is_alloc = (alloc == TRACK_ALLOC);
6037 __fill_map(obj_map, s, slab);
6039 for_each_object(p, s, addr, slab->objects)
6040 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6041 add_location(t, s, get_track(s, p, alloc),
6042 is_alloc ? get_orig_size(s, p) :
6045 #endif /* CONFIG_DEBUG_FS */
6046 #endif /* CONFIG_SLUB_DEBUG */
6048 #ifdef SLAB_SUPPORTS_SYSFS
6049 enum slab_stat_type {
6050 SL_ALL, /* All slabs */
6051 SL_PARTIAL, /* Only partially allocated slabs */
6052 SL_CPU, /* Only slabs used for cpu caches */
6053 SL_OBJECTS, /* Determine allocated objects not slabs */
6054 SL_TOTAL /* Determine object capacity not slabs */
6057 #define SO_ALL (1 << SL_ALL)
6058 #define SO_PARTIAL (1 << SL_PARTIAL)
6059 #define SO_CPU (1 << SL_CPU)
6060 #define SO_OBJECTS (1 << SL_OBJECTS)
6061 #define SO_TOTAL (1 << SL_TOTAL)
6063 static ssize_t show_slab_objects(struct kmem_cache *s,
6064 char *buf, unsigned long flags)
6066 unsigned long total = 0;
6069 unsigned long *nodes;
6072 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6076 if (flags & SO_CPU) {
6079 for_each_possible_cpu(cpu) {
6080 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6085 slab = READ_ONCE(c->slab);
6089 node = slab_nid(slab);
6090 if (flags & SO_TOTAL)
6092 else if (flags & SO_OBJECTS)
6100 #ifdef CONFIG_SLUB_CPU_PARTIAL
6101 slab = slub_percpu_partial_read_once(c);
6103 node = slab_nid(slab);
6104 if (flags & SO_TOTAL)
6106 else if (flags & SO_OBJECTS)
6109 x = data_race(slab->slabs);
6118 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6119 * already held which will conflict with an existing lock order:
6121 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6123 * We don't really need mem_hotplug_lock (to hold off
6124 * slab_mem_going_offline_callback) here because slab's memory hot
6125 * unplug code doesn't destroy the kmem_cache->node[] data.
6128 #ifdef CONFIG_SLUB_DEBUG
6129 if (flags & SO_ALL) {
6130 struct kmem_cache_node *n;
6132 for_each_kmem_cache_node(s, node, n) {
6134 if (flags & SO_TOTAL)
6135 x = node_nr_objs(n);
6136 else if (flags & SO_OBJECTS)
6137 x = node_nr_objs(n) - count_partial(n, count_free);
6139 x = node_nr_slabs(n);
6146 if (flags & SO_PARTIAL) {
6147 struct kmem_cache_node *n;
6149 for_each_kmem_cache_node(s, node, n) {
6150 if (flags & SO_TOTAL)
6151 x = count_partial(n, count_total);
6152 else if (flags & SO_OBJECTS)
6153 x = count_partial(n, count_inuse);
6161 len += sysfs_emit_at(buf, len, "%lu", total);
6163 for (node = 0; node < nr_node_ids; node++) {
6165 len += sysfs_emit_at(buf, len, " N%d=%lu",
6169 len += sysfs_emit_at(buf, len, "\n");
6175 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6176 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6178 struct slab_attribute {
6179 struct attribute attr;
6180 ssize_t (*show)(struct kmem_cache *s, char *buf);
6181 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6184 #define SLAB_ATTR_RO(_name) \
6185 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6187 #define SLAB_ATTR(_name) \
6188 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6190 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6192 return sysfs_emit(buf, "%u\n", s->size);
6194 SLAB_ATTR_RO(slab_size);
6196 static ssize_t align_show(struct kmem_cache *s, char *buf)
6198 return sysfs_emit(buf, "%u\n", s->align);
6200 SLAB_ATTR_RO(align);
6202 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6204 return sysfs_emit(buf, "%u\n", s->object_size);
6206 SLAB_ATTR_RO(object_size);
6208 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6210 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6212 SLAB_ATTR_RO(objs_per_slab);
6214 static ssize_t order_show(struct kmem_cache *s, char *buf)
6216 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6218 SLAB_ATTR_RO(order);
6220 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6222 return sysfs_emit(buf, "%lu\n", s->min_partial);
6225 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6231 err = kstrtoul(buf, 10, &min);
6235 s->min_partial = min;
6238 SLAB_ATTR(min_partial);
6240 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6242 unsigned int nr_partial = 0;
6243 #ifdef CONFIG_SLUB_CPU_PARTIAL
6244 nr_partial = s->cpu_partial;
6247 return sysfs_emit(buf, "%u\n", nr_partial);
6250 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6253 unsigned int objects;
6256 err = kstrtouint(buf, 10, &objects);
6259 if (objects && !kmem_cache_has_cpu_partial(s))
6262 slub_set_cpu_partial(s, objects);
6266 SLAB_ATTR(cpu_partial);
6268 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6272 return sysfs_emit(buf, "%pS\n", s->ctor);
6276 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6278 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6280 SLAB_ATTR_RO(aliases);
6282 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6284 return show_slab_objects(s, buf, SO_PARTIAL);
6286 SLAB_ATTR_RO(partial);
6288 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6290 return show_slab_objects(s, buf, SO_CPU);
6292 SLAB_ATTR_RO(cpu_slabs);
6294 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6296 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6298 SLAB_ATTR_RO(objects_partial);
6300 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6304 int cpu __maybe_unused;
6307 #ifdef CONFIG_SLUB_CPU_PARTIAL
6308 for_each_online_cpu(cpu) {
6311 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6314 slabs += data_race(slab->slabs);
6318 /* Approximate half-full slabs, see slub_set_cpu_partial() */
6319 objects = (slabs * oo_objects(s->oo)) / 2;
6320 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6322 #ifdef CONFIG_SLUB_CPU_PARTIAL
6323 for_each_online_cpu(cpu) {
6326 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6328 slabs = data_race(slab->slabs);
6329 objects = (slabs * oo_objects(s->oo)) / 2;
6330 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6331 cpu, objects, slabs);
6335 len += sysfs_emit_at(buf, len, "\n");
6339 SLAB_ATTR_RO(slabs_cpu_partial);
6341 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6343 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6345 SLAB_ATTR_RO(reclaim_account);
6347 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6349 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6351 SLAB_ATTR_RO(hwcache_align);
6353 #ifdef CONFIG_ZONE_DMA
6354 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6356 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6358 SLAB_ATTR_RO(cache_dma);
6361 #ifdef CONFIG_HARDENED_USERCOPY
6362 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6364 return sysfs_emit(buf, "%u\n", s->usersize);
6366 SLAB_ATTR_RO(usersize);
6369 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6371 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6373 SLAB_ATTR_RO(destroy_by_rcu);
6375 #ifdef CONFIG_SLUB_DEBUG
6376 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6378 return show_slab_objects(s, buf, SO_ALL);
6380 SLAB_ATTR_RO(slabs);
6382 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6384 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6386 SLAB_ATTR_RO(total_objects);
6388 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6390 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6392 SLAB_ATTR_RO(objects);
6394 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6396 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6398 SLAB_ATTR_RO(sanity_checks);
6400 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6402 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6404 SLAB_ATTR_RO(trace);
6406 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6408 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6411 SLAB_ATTR_RO(red_zone);
6413 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6415 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6418 SLAB_ATTR_RO(poison);
6420 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6422 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6425 SLAB_ATTR_RO(store_user);
6427 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6432 static ssize_t validate_store(struct kmem_cache *s,
6433 const char *buf, size_t length)
6437 if (buf[0] == '1' && kmem_cache_debug(s)) {
6438 ret = validate_slab_cache(s);
6444 SLAB_ATTR(validate);
6446 #endif /* CONFIG_SLUB_DEBUG */
6448 #ifdef CONFIG_FAILSLAB
6449 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6451 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6454 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6457 if (s->refcount > 1)
6461 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6463 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6467 SLAB_ATTR(failslab);
6470 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6475 static ssize_t shrink_store(struct kmem_cache *s,
6476 const char *buf, size_t length)
6479 kmem_cache_shrink(s);
6487 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6489 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6492 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6493 const char *buf, size_t length)
6498 err = kstrtouint(buf, 10, &ratio);
6504 s->remote_node_defrag_ratio = ratio * 10;
6508 SLAB_ATTR(remote_node_defrag_ratio);
6511 #ifdef CONFIG_SLUB_STATS
6512 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6514 unsigned long sum = 0;
6517 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6522 for_each_online_cpu(cpu) {
6523 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6529 len += sysfs_emit_at(buf, len, "%lu", sum);
6532 for_each_online_cpu(cpu) {
6534 len += sysfs_emit_at(buf, len, " C%d=%u",
6539 len += sysfs_emit_at(buf, len, "\n");
6544 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6548 for_each_online_cpu(cpu)
6549 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6552 #define STAT_ATTR(si, text) \
6553 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
6555 return show_stat(s, buf, si); \
6557 static ssize_t text##_store(struct kmem_cache *s, \
6558 const char *buf, size_t length) \
6560 if (buf[0] != '0') \
6562 clear_stat(s, si); \
6567 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6568 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6569 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6570 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6571 STAT_ATTR(FREE_FROZEN, free_frozen);
6572 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6573 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6574 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6575 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6576 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6577 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6578 STAT_ATTR(FREE_SLAB, free_slab);
6579 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6580 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6581 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6582 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6583 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6584 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6585 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6586 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6587 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6588 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6589 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6590 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6591 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6592 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6593 #endif /* CONFIG_SLUB_STATS */
6595 #ifdef CONFIG_KFENCE
6596 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6598 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6601 static ssize_t skip_kfence_store(struct kmem_cache *s,
6602 const char *buf, size_t length)
6607 s->flags &= ~SLAB_SKIP_KFENCE;
6608 else if (buf[0] == '1')
6609 s->flags |= SLAB_SKIP_KFENCE;
6615 SLAB_ATTR(skip_kfence);
6618 static struct attribute *slab_attrs[] = {
6619 &slab_size_attr.attr,
6620 &object_size_attr.attr,
6621 &objs_per_slab_attr.attr,
6623 &min_partial_attr.attr,
6624 &cpu_partial_attr.attr,
6625 &objects_partial_attr.attr,
6627 &cpu_slabs_attr.attr,
6631 &hwcache_align_attr.attr,
6632 &reclaim_account_attr.attr,
6633 &destroy_by_rcu_attr.attr,
6635 &slabs_cpu_partial_attr.attr,
6636 #ifdef CONFIG_SLUB_DEBUG
6637 &total_objects_attr.attr,
6640 &sanity_checks_attr.attr,
6642 &red_zone_attr.attr,
6644 &store_user_attr.attr,
6645 &validate_attr.attr,
6647 #ifdef CONFIG_ZONE_DMA
6648 &cache_dma_attr.attr,
6651 &remote_node_defrag_ratio_attr.attr,
6653 #ifdef CONFIG_SLUB_STATS
6654 &alloc_fastpath_attr.attr,
6655 &alloc_slowpath_attr.attr,
6656 &free_fastpath_attr.attr,
6657 &free_slowpath_attr.attr,
6658 &free_frozen_attr.attr,
6659 &free_add_partial_attr.attr,
6660 &free_remove_partial_attr.attr,
6661 &alloc_from_partial_attr.attr,
6662 &alloc_slab_attr.attr,
6663 &alloc_refill_attr.attr,
6664 &alloc_node_mismatch_attr.attr,
6665 &free_slab_attr.attr,
6666 &cpuslab_flush_attr.attr,
6667 &deactivate_full_attr.attr,
6668 &deactivate_empty_attr.attr,
6669 &deactivate_to_head_attr.attr,
6670 &deactivate_to_tail_attr.attr,
6671 &deactivate_remote_frees_attr.attr,
6672 &deactivate_bypass_attr.attr,
6673 &order_fallback_attr.attr,
6674 &cmpxchg_double_fail_attr.attr,
6675 &cmpxchg_double_cpu_fail_attr.attr,
6676 &cpu_partial_alloc_attr.attr,
6677 &cpu_partial_free_attr.attr,
6678 &cpu_partial_node_attr.attr,
6679 &cpu_partial_drain_attr.attr,
6681 #ifdef CONFIG_FAILSLAB
6682 &failslab_attr.attr,
6684 #ifdef CONFIG_HARDENED_USERCOPY
6685 &usersize_attr.attr,
6687 #ifdef CONFIG_KFENCE
6688 &skip_kfence_attr.attr,
6694 static const struct attribute_group slab_attr_group = {
6695 .attrs = slab_attrs,
6698 static ssize_t slab_attr_show(struct kobject *kobj,
6699 struct attribute *attr,
6702 struct slab_attribute *attribute;
6703 struct kmem_cache *s;
6705 attribute = to_slab_attr(attr);
6708 if (!attribute->show)
6711 return attribute->show(s, buf);
6714 static ssize_t slab_attr_store(struct kobject *kobj,
6715 struct attribute *attr,
6716 const char *buf, size_t len)
6718 struct slab_attribute *attribute;
6719 struct kmem_cache *s;
6721 attribute = to_slab_attr(attr);
6724 if (!attribute->store)
6727 return attribute->store(s, buf, len);
6730 static void kmem_cache_release(struct kobject *k)
6732 slab_kmem_cache_release(to_slab(k));
6735 static const struct sysfs_ops slab_sysfs_ops = {
6736 .show = slab_attr_show,
6737 .store = slab_attr_store,
6740 static const struct kobj_type slab_ktype = {
6741 .sysfs_ops = &slab_sysfs_ops,
6742 .release = kmem_cache_release,
6745 static struct kset *slab_kset;
6747 static inline struct kset *cache_kset(struct kmem_cache *s)
6752 #define ID_STR_LENGTH 32
6754 /* Create a unique string id for a slab cache:
6756 * Format :[flags-]size
6758 static char *create_unique_id(struct kmem_cache *s)
6760 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6764 return ERR_PTR(-ENOMEM);
6768 * First flags affecting slabcache operations. We will only
6769 * get here for aliasable slabs so we do not need to support
6770 * too many flags. The flags here must cover all flags that
6771 * are matched during merging to guarantee that the id is
6774 if (s->flags & SLAB_CACHE_DMA)
6776 if (s->flags & SLAB_CACHE_DMA32)
6778 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6780 if (s->flags & SLAB_CONSISTENCY_CHECKS)
6782 if (s->flags & SLAB_ACCOUNT)
6786 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6788 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6790 return ERR_PTR(-EINVAL);
6792 kmsan_unpoison_memory(name, p - name);
6796 static int sysfs_slab_add(struct kmem_cache *s)
6800 struct kset *kset = cache_kset(s);
6801 int unmergeable = slab_unmergeable(s);
6803 if (!unmergeable && disable_higher_order_debug &&
6804 (slub_debug & DEBUG_METADATA_FLAGS))
6809 * Slabcache can never be merged so we can use the name proper.
6810 * This is typically the case for debug situations. In that
6811 * case we can catch duplicate names easily.
6813 sysfs_remove_link(&slab_kset->kobj, s->name);
6817 * Create a unique name for the slab as a target
6820 name = create_unique_id(s);
6822 return PTR_ERR(name);
6825 s->kobj.kset = kset;
6826 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6830 err = sysfs_create_group(&s->kobj, &slab_attr_group);
6835 /* Setup first alias */
6836 sysfs_slab_alias(s, s->name);
6843 kobject_del(&s->kobj);
6847 void sysfs_slab_unlink(struct kmem_cache *s)
6849 kobject_del(&s->kobj);
6852 void sysfs_slab_release(struct kmem_cache *s)
6854 kobject_put(&s->kobj);
6858 * Need to buffer aliases during bootup until sysfs becomes
6859 * available lest we lose that information.
6861 struct saved_alias {
6862 struct kmem_cache *s;
6864 struct saved_alias *next;
6867 static struct saved_alias *alias_list;
6869 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6871 struct saved_alias *al;
6873 if (slab_state == FULL) {
6875 * If we have a leftover link then remove it.
6877 sysfs_remove_link(&slab_kset->kobj, name);
6878 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6881 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6887 al->next = alias_list;
6889 kmsan_unpoison_memory(al, sizeof(*al));
6893 static int __init slab_sysfs_init(void)
6895 struct kmem_cache *s;
6898 mutex_lock(&slab_mutex);
6900 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6902 mutex_unlock(&slab_mutex);
6903 pr_err("Cannot register slab subsystem.\n");
6909 list_for_each_entry(s, &slab_caches, list) {
6910 err = sysfs_slab_add(s);
6912 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6916 while (alias_list) {
6917 struct saved_alias *al = alias_list;
6919 alias_list = alias_list->next;
6920 err = sysfs_slab_alias(al->s, al->name);
6922 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6927 mutex_unlock(&slab_mutex);
6930 late_initcall(slab_sysfs_init);
6931 #endif /* SLAB_SUPPORTS_SYSFS */
6933 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6934 static int slab_debugfs_show(struct seq_file *seq, void *v)
6936 struct loc_track *t = seq->private;
6940 idx = (unsigned long) t->idx;
6941 if (idx < t->count) {
6944 seq_printf(seq, "%7ld ", l->count);
6947 seq_printf(seq, "%pS", (void *)l->addr);
6949 seq_puts(seq, "<not-available>");
6952 seq_printf(seq, " waste=%lu/%lu",
6953 l->count * l->waste, l->waste);
6955 if (l->sum_time != l->min_time) {
6956 seq_printf(seq, " age=%ld/%llu/%ld",
6957 l->min_time, div_u64(l->sum_time, l->count),
6960 seq_printf(seq, " age=%ld", l->min_time);
6962 if (l->min_pid != l->max_pid)
6963 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6965 seq_printf(seq, " pid=%ld",
6968 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6969 seq_printf(seq, " cpus=%*pbl",
6970 cpumask_pr_args(to_cpumask(l->cpus)));
6972 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6973 seq_printf(seq, " nodes=%*pbl",
6974 nodemask_pr_args(&l->nodes));
6976 #ifdef CONFIG_STACKDEPOT
6978 depot_stack_handle_t handle;
6979 unsigned long *entries;
6980 unsigned int nr_entries, j;
6982 handle = READ_ONCE(l->handle);
6984 nr_entries = stack_depot_fetch(handle, &entries);
6985 seq_puts(seq, "\n");
6986 for (j = 0; j < nr_entries; j++)
6987 seq_printf(seq, " %pS\n", (void *)entries[j]);
6991 seq_puts(seq, "\n");
6994 if (!idx && !t->count)
6995 seq_puts(seq, "No data\n");
7000 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7004 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7006 struct loc_track *t = seq->private;
7009 if (*ppos <= t->count)
7015 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7017 struct location *loc1 = (struct location *)a;
7018 struct location *loc2 = (struct location *)b;
7020 if (loc1->count > loc2->count)
7026 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7028 struct loc_track *t = seq->private;
7034 static const struct seq_operations slab_debugfs_sops = {
7035 .start = slab_debugfs_start,
7036 .next = slab_debugfs_next,
7037 .stop = slab_debugfs_stop,
7038 .show = slab_debugfs_show,
7041 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7044 struct kmem_cache_node *n;
7045 enum track_item alloc;
7047 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7048 sizeof(struct loc_track));
7049 struct kmem_cache *s = file_inode(filep)->i_private;
7050 unsigned long *obj_map;
7055 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7057 seq_release_private(inode, filep);
7061 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7062 alloc = TRACK_ALLOC;
7066 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7067 bitmap_free(obj_map);
7068 seq_release_private(inode, filep);
7072 for_each_kmem_cache_node(s, node, n) {
7073 unsigned long flags;
7076 if (!node_nr_slabs(n))
7079 spin_lock_irqsave(&n->list_lock, flags);
7080 list_for_each_entry(slab, &n->partial, slab_list)
7081 process_slab(t, s, slab, alloc, obj_map);
7082 list_for_each_entry(slab, &n->full, slab_list)
7083 process_slab(t, s, slab, alloc, obj_map);
7084 spin_unlock_irqrestore(&n->list_lock, flags);
7087 /* Sort locations by count */
7088 sort_r(t->loc, t->count, sizeof(struct location),
7089 cmp_loc_by_count, NULL, NULL);
7091 bitmap_free(obj_map);
7095 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7097 struct seq_file *seq = file->private_data;
7098 struct loc_track *t = seq->private;
7101 return seq_release_private(inode, file);
7104 static const struct file_operations slab_debugfs_fops = {
7105 .open = slab_debug_trace_open,
7107 .llseek = seq_lseek,
7108 .release = slab_debug_trace_release,
7111 static void debugfs_slab_add(struct kmem_cache *s)
7113 struct dentry *slab_cache_dir;
7115 if (unlikely(!slab_debugfs_root))
7118 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7120 debugfs_create_file("alloc_traces", 0400,
7121 slab_cache_dir, s, &slab_debugfs_fops);
7123 debugfs_create_file("free_traces", 0400,
7124 slab_cache_dir, s, &slab_debugfs_fops);
7127 void debugfs_slab_release(struct kmem_cache *s)
7129 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7132 static int __init slab_debugfs_init(void)
7134 struct kmem_cache *s;
7136 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7138 list_for_each_entry(s, &slab_caches, list)
7139 if (s->flags & SLAB_STORE_USER)
7140 debugfs_slab_add(s);
7145 __initcall(slab_debugfs_init);
7148 * The /proc/slabinfo ABI
7150 #ifdef CONFIG_SLUB_DEBUG
7151 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7153 unsigned long nr_slabs = 0;
7154 unsigned long nr_objs = 0;
7155 unsigned long nr_free = 0;
7157 struct kmem_cache_node *n;
7159 for_each_kmem_cache_node(s, node, n) {
7160 nr_slabs += node_nr_slabs(n);
7161 nr_objs += node_nr_objs(n);
7162 nr_free += count_partial_free_approx(n);
7165 sinfo->active_objs = nr_objs - nr_free;
7166 sinfo->num_objs = nr_objs;
7167 sinfo->active_slabs = nr_slabs;
7168 sinfo->num_slabs = nr_slabs;
7169 sinfo->objects_per_slab = oo_objects(s->oo);
7170 sinfo->cache_order = oo_order(s->oo);
7172 #endif /* CONFIG_SLUB_DEBUG */