2 * libata-core.c - helper library for ATA
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev,
68 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
69 struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 int atapi_enabled = 1;
76 module_param(atapi_enabled, int, 0444);
77 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80 module_param(atapi_dmadir, int, 0444);
81 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84 module_param_named(fua, libata_fua, int, 0444);
85 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
87 MODULE_AUTHOR("Jeff Garzik");
88 MODULE_DESCRIPTION("Library module for ATA devices");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
94 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
95 * @tf: Taskfile to convert
96 * @fis: Buffer into which data will output
97 * @pmp: Port multiplier port
99 * Converts a standard ATA taskfile to a Serial ATA
100 * FIS structure (Register - Host to Device).
103 * Inherited from caller.
106 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
108 fis[0] = 0x27; /* Register - Host to Device FIS */
109 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
110 bit 7 indicates Command FIS */
111 fis[2] = tf->command;
112 fis[3] = tf->feature;
119 fis[8] = tf->hob_lbal;
120 fis[9] = tf->hob_lbam;
121 fis[10] = tf->hob_lbah;
122 fis[11] = tf->hob_feature;
125 fis[13] = tf->hob_nsect;
136 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
137 * @fis: Buffer from which data will be input
138 * @tf: Taskfile to output
140 * Converts a serial ATA FIS structure to a standard ATA taskfile.
143 * Inherited from caller.
146 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
148 tf->command = fis[2]; /* status */
149 tf->feature = fis[3]; /* error */
156 tf->hob_lbal = fis[8];
157 tf->hob_lbam = fis[9];
158 tf->hob_lbah = fis[10];
161 tf->hob_nsect = fis[13];
164 static const u8 ata_rw_cmds[] = {
168 ATA_CMD_READ_MULTI_EXT,
169 ATA_CMD_WRITE_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_FUA_EXT,
177 ATA_CMD_PIO_READ_EXT,
178 ATA_CMD_PIO_WRITE_EXT,
191 ATA_CMD_WRITE_FUA_EXT
195 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
196 * @qc: command to examine and configure
198 * Examine the device configuration and tf->flags to calculate
199 * the proper read/write commands and protocol to use.
204 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
206 struct ata_taskfile *tf = &qc->tf;
207 struct ata_device *dev = qc->dev;
210 int index, fua, lba48, write;
212 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
213 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
214 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
216 if (dev->flags & ATA_DFLAG_PIO) {
217 tf->protocol = ATA_PROT_PIO;
218 index = dev->multi_count ? 0 : 8;
219 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
220 /* Unable to use DMA due to host limitation */
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
224 tf->protocol = ATA_PROT_DMA;
228 cmd = ata_rw_cmds[index + fua + lba48 + write];
237 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
238 * @pio_mask: pio_mask
239 * @mwdma_mask: mwdma_mask
240 * @udma_mask: udma_mask
242 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
243 * unsigned int xfer_mask.
251 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
252 unsigned int mwdma_mask,
253 unsigned int udma_mask)
255 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
256 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
257 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
261 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
262 * @xfer_mask: xfer_mask to unpack
263 * @pio_mask: resulting pio_mask
264 * @mwdma_mask: resulting mwdma_mask
265 * @udma_mask: resulting udma_mask
267 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
268 * Any NULL distination masks will be ignored.
270 static void ata_unpack_xfermask(unsigned int xfer_mask,
271 unsigned int *pio_mask,
272 unsigned int *mwdma_mask,
273 unsigned int *udma_mask)
276 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
278 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
280 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
283 static const struct ata_xfer_ent {
287 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
288 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
289 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
295 * @xfer_mask: xfer_mask of interest
297 * Return matching XFER_* value for @xfer_mask. Only the highest
298 * bit of @xfer_mask is considered.
304 * Matching XFER_* value, 0 if no match found.
306 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
308 int highbit = fls(xfer_mask) - 1;
309 const struct ata_xfer_ent *ent;
311 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
312 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
313 return ent->base + highbit - ent->shift;
318 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
319 * @xfer_mode: XFER_* of interest
321 * Return matching xfer_mask for @xfer_mode.
327 * Matching xfer_mask, 0 if no match found.
329 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
331 const struct ata_xfer_ent *ent;
333 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
334 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
335 return 1 << (ent->shift + xfer_mode - ent->base);
340 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
341 * @xfer_mode: XFER_* of interest
343 * Return matching xfer_shift for @xfer_mode.
349 * Matching xfer_shift, -1 if no match found.
351 static int ata_xfer_mode2shift(unsigned int xfer_mode)
353 const struct ata_xfer_ent *ent;
355 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
356 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
362 * ata_mode_string - convert xfer_mask to string
363 * @xfer_mask: mask of bits supported; only highest bit counts.
365 * Determine string which represents the highest speed
366 * (highest bit in @modemask).
372 * Constant C string representing highest speed listed in
373 * @mode_mask, or the constant C string "<n/a>".
375 static const char *ata_mode_string(unsigned int xfer_mask)
377 static const char * const xfer_mode_str[] = {
397 highbit = fls(xfer_mask) - 1;
398 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
399 return xfer_mode_str[highbit];
403 static const char *sata_spd_string(unsigned int spd)
405 static const char * const spd_str[] = {
410 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
412 return spd_str[spd - 1];
415 void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
417 if (ata_dev_enabled(dev)) {
418 printk(KERN_WARNING "ata%u: dev %u disabled\n",
425 * ata_pio_devchk - PATA device presence detection
426 * @ap: ATA channel to examine
427 * @device: Device to examine (starting at zero)
429 * This technique was originally described in
430 * Hale Landis's ATADRVR (www.ata-atapi.com), and
431 * later found its way into the ATA/ATAPI spec.
433 * Write a pattern to the ATA shadow registers,
434 * and if a device is present, it will respond by
435 * correctly storing and echoing back the
436 * ATA shadow register contents.
442 static unsigned int ata_pio_devchk(struct ata_port *ap,
445 struct ata_ioports *ioaddr = &ap->ioaddr;
448 ap->ops->dev_select(ap, device);
450 outb(0x55, ioaddr->nsect_addr);
451 outb(0xaa, ioaddr->lbal_addr);
453 outb(0xaa, ioaddr->nsect_addr);
454 outb(0x55, ioaddr->lbal_addr);
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
459 nsect = inb(ioaddr->nsect_addr);
460 lbal = inb(ioaddr->lbal_addr);
462 if ((nsect == 0x55) && (lbal == 0xaa))
463 return 1; /* we found a device */
465 return 0; /* nothing found */
469 * ata_mmio_devchk - PATA device presence detection
470 * @ap: ATA channel to examine
471 * @device: Device to examine (starting at zero)
473 * This technique was originally described in
474 * Hale Landis's ATADRVR (www.ata-atapi.com), and
475 * later found its way into the ATA/ATAPI spec.
477 * Write a pattern to the ATA shadow registers,
478 * and if a device is present, it will respond by
479 * correctly storing and echoing back the
480 * ATA shadow register contents.
486 static unsigned int ata_mmio_devchk(struct ata_port *ap,
489 struct ata_ioports *ioaddr = &ap->ioaddr;
492 ap->ops->dev_select(ap, device);
494 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
503 nsect = readb((void __iomem *) ioaddr->nsect_addr);
504 lbal = readb((void __iomem *) ioaddr->lbal_addr);
506 if ((nsect == 0x55) && (lbal == 0xaa))
507 return 1; /* we found a device */
509 return 0; /* nothing found */
513 * ata_devchk - PATA device presence detection
514 * @ap: ATA channel to examine
515 * @device: Device to examine (starting at zero)
517 * Dispatch ATA device presence detection, depending
518 * on whether we are using PIO or MMIO to talk to the
519 * ATA shadow registers.
525 static unsigned int ata_devchk(struct ata_port *ap,
528 if (ap->flags & ATA_FLAG_MMIO)
529 return ata_mmio_devchk(ap, device);
530 return ata_pio_devchk(ap, device);
534 * ata_dev_classify - determine device type based on ATA-spec signature
535 * @tf: ATA taskfile register set for device to be identified
537 * Determine from taskfile register contents whether a device is
538 * ATA or ATAPI, as per "Signature and persistence" section
539 * of ATA/PI spec (volume 1, sect 5.14).
545 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
546 * the event of failure.
549 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
551 /* Apple's open source Darwin code hints that some devices only
552 * put a proper signature into the LBA mid/high registers,
553 * So, we only check those. It's sufficient for uniqueness.
556 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
557 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
558 DPRINTK("found ATA device by sig\n");
562 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
563 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
564 DPRINTK("found ATAPI device by sig\n");
565 return ATA_DEV_ATAPI;
568 DPRINTK("unknown device\n");
569 return ATA_DEV_UNKNOWN;
573 * ata_dev_try_classify - Parse returned ATA device signature
574 * @ap: ATA channel to examine
575 * @device: Device to examine (starting at zero)
576 * @r_err: Value of error register on completion
578 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
579 * an ATA/ATAPI-defined set of values is placed in the ATA
580 * shadow registers, indicating the results of device detection
583 * Select the ATA device, and read the values from the ATA shadow
584 * registers. Then parse according to the Error register value,
585 * and the spec-defined values examined by ata_dev_classify().
591 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
595 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
597 struct ata_taskfile tf;
601 ap->ops->dev_select(ap, device);
603 memset(&tf, 0, sizeof(tf));
605 ap->ops->tf_read(ap, &tf);
610 /* see if device passed diags */
613 else if ((device == 0) && (err == 0x81))
618 /* determine if device is ATA or ATAPI */
619 class = ata_dev_classify(&tf);
621 if (class == ATA_DEV_UNKNOWN)
623 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
629 * ata_id_string - Convert IDENTIFY DEVICE page into string
630 * @id: IDENTIFY DEVICE results we will examine
631 * @s: string into which data is output
632 * @ofs: offset into identify device page
633 * @len: length of string to return. must be an even number.
635 * The strings in the IDENTIFY DEVICE page are broken up into
636 * 16-bit chunks. Run through the string, and output each
637 * 8-bit chunk linearly, regardless of platform.
643 void ata_id_string(const u16 *id, unsigned char *s,
644 unsigned int ofs, unsigned int len)
663 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
664 * @id: IDENTIFY DEVICE results we will examine
665 * @s: string into which data is output
666 * @ofs: offset into identify device page
667 * @len: length of string to return. must be an odd number.
669 * This function is identical to ata_id_string except that it
670 * trims trailing spaces and terminates the resulting string with
671 * null. @len must be actual maximum length (even number) + 1.
676 void ata_id_c_string(const u16 *id, unsigned char *s,
677 unsigned int ofs, unsigned int len)
683 ata_id_string(id, s, ofs, len - 1);
685 p = s + strnlen(s, len - 1);
686 while (p > s && p[-1] == ' ')
691 static u64 ata_id_n_sectors(const u16 *id)
693 if (ata_id_has_lba(id)) {
694 if (ata_id_has_lba48(id))
695 return ata_id_u64(id, 100);
697 return ata_id_u32(id, 60);
699 if (ata_id_current_chs_valid(id))
700 return ata_id_u32(id, 57);
702 return id[1] * id[3] * id[6];
707 * ata_noop_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
711 * This function performs no actual function.
713 * May be used as the dev_select() entry in ata_port_operations.
718 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
724 * ata_std_dev_select - Select device 0/1 on ATA bus
725 * @ap: ATA channel to manipulate
726 * @device: ATA device (numbered from zero) to select
728 * Use the method defined in the ATA specification to
729 * make either device 0, or device 1, active on the
730 * ATA channel. Works with both PIO and MMIO.
732 * May be used as the dev_select() entry in ata_port_operations.
738 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
743 tmp = ATA_DEVICE_OBS;
745 tmp = ATA_DEVICE_OBS | ATA_DEV1;
747 if (ap->flags & ATA_FLAG_MMIO) {
748 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
750 outb(tmp, ap->ioaddr.device_addr);
752 ata_pause(ap); /* needed; also flushes, for mmio */
756 * ata_dev_select - Select device 0/1 on ATA bus
757 * @ap: ATA channel to manipulate
758 * @device: ATA device (numbered from zero) to select
759 * @wait: non-zero to wait for Status register BSY bit to clear
760 * @can_sleep: non-zero if context allows sleeping
762 * Use the method defined in the ATA specification to
763 * make either device 0, or device 1, active on the
766 * This is a high-level version of ata_std_dev_select(),
767 * which additionally provides the services of inserting
768 * the proper pauses and status polling, where needed.
774 void ata_dev_select(struct ata_port *ap, unsigned int device,
775 unsigned int wait, unsigned int can_sleep)
777 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
778 ap->id, device, wait);
783 ap->ops->dev_select(ap, device);
786 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
793 * ata_dump_id - IDENTIFY DEVICE info debugging output
794 * @id: IDENTIFY DEVICE page to dump
796 * Dump selected 16-bit words from the given IDENTIFY DEVICE
803 static inline void ata_dump_id(const u16 *id)
805 DPRINTK("49==0x%04x "
815 DPRINTK("80==0x%04x "
825 DPRINTK("88==0x%04x "
832 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
833 * @id: IDENTIFY data to compute xfer mask from
835 * Compute the xfermask for this device. This is not as trivial
836 * as it seems if we must consider early devices correctly.
838 * FIXME: pre IDE drive timing (do we care ?).
846 static unsigned int ata_id_xfermask(const u16 *id)
848 unsigned int pio_mask, mwdma_mask, udma_mask;
850 /* Usual case. Word 53 indicates word 64 is valid */
851 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
852 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
856 /* If word 64 isn't valid then Word 51 high byte holds
857 * the PIO timing number for the maximum. Turn it into
860 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
862 /* But wait.. there's more. Design your standards by
863 * committee and you too can get a free iordy field to
864 * process. However its the speeds not the modes that
865 * are supported... Note drivers using the timing API
866 * will get this right anyway
870 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
873 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
874 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
876 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
880 * ata_port_queue_task - Queue port_task
881 * @ap: The ata_port to queue port_task for
883 * Schedule @fn(@data) for execution after @delay jiffies using
884 * port_task. There is one port_task per port and it's the
885 * user(low level driver)'s responsibility to make sure that only
886 * one task is active at any given time.
888 * libata core layer takes care of synchronization between
889 * port_task and EH. ata_port_queue_task() may be ignored for EH
893 * Inherited from caller.
895 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
900 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
903 PREPARE_WORK(&ap->port_task, fn, data);
906 rc = queue_work(ata_wq, &ap->port_task);
908 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
910 /* rc == 0 means that another user is using port task */
915 * ata_port_flush_task - Flush port_task
916 * @ap: The ata_port to flush port_task for
918 * After this function completes, port_task is guranteed not to
919 * be running or scheduled.
922 * Kernel thread context (may sleep)
924 void ata_port_flush_task(struct ata_port *ap)
930 spin_lock_irqsave(&ap->host_set->lock, flags);
931 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
934 DPRINTK("flush #1\n");
935 flush_workqueue(ata_wq);
938 * At this point, if a task is running, it's guaranteed to see
939 * the FLUSH flag; thus, it will never queue pio tasks again.
942 if (!cancel_delayed_work(&ap->port_task)) {
943 DPRINTK("flush #2\n");
944 flush_workqueue(ata_wq);
947 spin_lock_irqsave(&ap->host_set->lock, flags);
948 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
949 spin_unlock_irqrestore(&ap->host_set->lock, flags);
954 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
956 struct completion *waiting = qc->private_data;
958 qc->ap->ops->tf_read(qc->ap, &qc->tf);
963 * ata_exec_internal - execute libata internal command
964 * @ap: Port to which the command is sent
965 * @dev: Device to which the command is sent
966 * @tf: Taskfile registers for the command and the result
967 * @cdb: CDB for packet command
968 * @dma_dir: Data tranfer direction of the command
969 * @buf: Data buffer of the command
970 * @buflen: Length of data buffer
972 * Executes libata internal command with timeout. @tf contains
973 * command on entry and result on return. Timeout and error
974 * conditions are reported via return value. No recovery action
975 * is taken after a command times out. It's caller's duty to
976 * clean up after timeout.
979 * None. Should be called with kernel context, might sleep.
982 unsigned ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
983 struct ata_taskfile *tf, const u8 *cdb,
984 int dma_dir, void *buf, unsigned int buflen)
986 u8 command = tf->command;
987 struct ata_queued_cmd *qc;
988 DECLARE_COMPLETION(wait);
990 unsigned int err_mask;
992 spin_lock_irqsave(&ap->host_set->lock, flags);
994 qc = ata_qc_new_init(ap, dev);
999 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1000 qc->dma_dir = dma_dir;
1001 if (dma_dir != DMA_NONE) {
1002 ata_sg_init_one(qc, buf, buflen);
1003 qc->nsect = buflen / ATA_SECT_SIZE;
1006 qc->private_data = &wait;
1007 qc->complete_fn = ata_qc_complete_internal;
1011 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1013 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1014 ata_port_flush_task(ap);
1016 spin_lock_irqsave(&ap->host_set->lock, flags);
1018 /* We're racing with irq here. If we lose, the
1019 * following test prevents us from completing the qc
1020 * again. If completion irq occurs after here but
1021 * before the caller cleans up, it will result in a
1022 * spurious interrupt. We can live with that.
1024 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1025 qc->err_mask = AC_ERR_TIMEOUT;
1026 ata_qc_complete(qc);
1027 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1031 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1035 err_mask = qc->err_mask;
1039 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1040 * Until those drivers are fixed, we detect the condition
1041 * here, fail the command with AC_ERR_SYSTEM and reenable the
1044 * Note that this doesn't change any behavior as internal
1045 * command failure results in disabling the device in the
1046 * higher layer for LLDDs without new reset/EH callbacks.
1048 * Kill the following code as soon as those drivers are fixed.
1050 if (ap->flags & ATA_FLAG_DISABLED) {
1051 err_mask |= AC_ERR_SYSTEM;
1059 * ata_pio_need_iordy - check if iordy needed
1062 * Check if the current speed of the device requires IORDY. Used
1063 * by various controllers for chip configuration.
1066 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1069 int speed = adev->pio_mode - XFER_PIO_0;
1076 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1078 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1079 pio = adev->id[ATA_ID_EIDE_PIO];
1080 /* Is the speed faster than the drive allows non IORDY ? */
1082 /* This is cycle times not frequency - watch the logic! */
1083 if (pio > 240) /* PIO2 is 240nS per cycle */
1092 * ata_dev_read_id - Read ID data from the specified device
1093 * @ap: port on which target device resides
1094 * @dev: target device
1095 * @p_class: pointer to class of the target device (may be changed)
1096 * @post_reset: is this read ID post-reset?
1097 * @p_id: read IDENTIFY page (newly allocated)
1099 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1100 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1101 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1102 * for pre-ATA4 drives.
1105 * Kernel thread context (may sleep)
1108 * 0 on success, -errno otherwise.
1110 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
1111 unsigned int *p_class, int post_reset, u16 **p_id)
1113 unsigned int class = *p_class;
1114 struct ata_taskfile tf;
1115 unsigned int err_mask = 0;
1120 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1122 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1124 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1127 reason = "out of memory";
1132 ata_tf_init(ap, &tf, dev->devno);
1136 tf.command = ATA_CMD_ID_ATA;
1139 tf.command = ATA_CMD_ID_ATAPI;
1143 reason = "unsupported class";
1147 tf.protocol = ATA_PROT_PIO;
1149 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_FROM_DEVICE,
1150 id, sizeof(id[0]) * ATA_ID_WORDS);
1153 reason = "I/O error";
1157 swap_buf_le16(id, ATA_ID_WORDS);
1160 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1162 reason = "device reports illegal type";
1166 if (post_reset && class == ATA_DEV_ATA) {
1168 * The exact sequence expected by certain pre-ATA4 drives is:
1171 * INITIALIZE DEVICE PARAMETERS
1173 * Some drives were very specific about that exact sequence.
1175 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1176 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
1179 reason = "INIT_DEV_PARAMS failed";
1183 /* current CHS translation info (id[53-58]) might be
1184 * changed. reread the identify device info.
1196 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1197 ap->id, dev->devno, reason);
1202 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1203 struct ata_device *dev)
1205 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1209 * ata_dev_configure - Configure the specified ATA/ATAPI device
1210 * @ap: Port on which target device resides
1211 * @dev: Target device to configure
1212 * @print_info: Enable device info printout
1214 * Configure @dev according to @dev->id. Generic and low-level
1215 * driver specific fixups are also applied.
1218 * Kernel thread context (may sleep)
1221 * 0 on success, -errno otherwise
1223 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1226 const u16 *id = dev->id;
1227 unsigned int xfer_mask;
1230 if (!ata_dev_enabled(dev)) {
1231 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1232 ap->id, dev->devno);
1236 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1238 /* print device capabilities */
1240 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1241 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1242 ap->id, dev->devno, id[49], id[82], id[83],
1243 id[84], id[85], id[86], id[87], id[88]);
1245 /* initialize to-be-configured parameters */
1246 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1247 dev->max_sectors = 0;
1255 * common ATA, ATAPI feature tests
1258 /* find max transfer mode; for printk only */
1259 xfer_mask = ata_id_xfermask(id);
1263 /* ATA-specific feature tests */
1264 if (dev->class == ATA_DEV_ATA) {
1265 dev->n_sectors = ata_id_n_sectors(id);
1267 if (ata_id_has_lba(id)) {
1268 const char *lba_desc;
1271 dev->flags |= ATA_DFLAG_LBA;
1272 if (ata_id_has_lba48(id)) {
1273 dev->flags |= ATA_DFLAG_LBA48;
1277 /* print device info to dmesg */
1279 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1280 "max %s, %Lu sectors: %s\n",
1282 ata_id_major_version(id),
1283 ata_mode_string(xfer_mask),
1284 (unsigned long long)dev->n_sectors,
1289 /* Default translation */
1290 dev->cylinders = id[1];
1292 dev->sectors = id[6];
1294 if (ata_id_current_chs_valid(id)) {
1295 /* Current CHS translation is valid. */
1296 dev->cylinders = id[54];
1297 dev->heads = id[55];
1298 dev->sectors = id[56];
1301 /* print device info to dmesg */
1303 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1304 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1306 ata_id_major_version(id),
1307 ata_mode_string(xfer_mask),
1308 (unsigned long long)dev->n_sectors,
1309 dev->cylinders, dev->heads, dev->sectors);
1312 if (dev->id[59] & 0x100) {
1313 dev->multi_count = dev->id[59] & 0xff;
1314 DPRINTK("ata%u: dev %u multi count %u\n",
1315 ap->id, dev->devno, dev->multi_count);
1321 /* ATAPI-specific feature tests */
1322 else if (dev->class == ATA_DEV_ATAPI) {
1323 char *cdb_intr_string = "";
1325 rc = atapi_cdb_len(id);
1326 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1327 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1331 dev->cdb_len = (unsigned int) rc;
1333 if (ata_id_cdb_intr(dev->id)) {
1334 dev->flags |= ATA_DFLAG_CDB_INTR;
1335 cdb_intr_string = ", CDB intr";
1338 /* print device info to dmesg */
1340 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s%s\n",
1341 ap->id, dev->devno, ata_mode_string(xfer_mask),
1345 ap->host->max_cmd_len = 0;
1346 for (i = 0; i < ATA_MAX_DEVICES; i++)
1347 ap->host->max_cmd_len = max_t(unsigned int,
1348 ap->host->max_cmd_len,
1349 ap->device[i].cdb_len);
1351 /* limit bridge transfers to udma5, 200 sectors */
1352 if (ata_dev_knobble(ap, dev)) {
1354 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1355 ap->id, dev->devno);
1356 dev->udma_mask &= ATA_UDMA5;
1357 dev->max_sectors = ATA_MAX_SECTORS;
1360 if (ap->ops->dev_config)
1361 ap->ops->dev_config(ap, dev);
1363 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1367 DPRINTK("EXIT, err\n");
1372 * ata_bus_probe - Reset and probe ATA bus
1375 * Master ATA bus probing function. Initiates a hardware-dependent
1376 * bus reset, then attempts to identify any devices found on
1380 * PCI/etc. bus probe sem.
1383 * Zero on success, negative errno otherwise.
1386 static int ata_bus_probe(struct ata_port *ap)
1388 unsigned int classes[ATA_MAX_DEVICES];
1389 int tries[ATA_MAX_DEVICES];
1390 int i, rc, down_xfermask;
1391 struct ata_device *dev;
1395 for (i = 0; i < ATA_MAX_DEVICES; i++)
1396 tries[i] = ATA_PROBE_MAX_TRIES;
1401 /* reset and determine device classes */
1402 for (i = 0; i < ATA_MAX_DEVICES; i++)
1403 classes[i] = ATA_DEV_UNKNOWN;
1405 if (ap->ops->probe_reset) {
1406 rc = ap->ops->probe_reset(ap, classes);
1408 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1412 ap->ops->phy_reset(ap);
1414 if (!(ap->flags & ATA_FLAG_DISABLED))
1415 for (i = 0; i < ATA_MAX_DEVICES; i++)
1416 classes[i] = ap->device[i].class;
1421 for (i = 0; i < ATA_MAX_DEVICES; i++)
1422 if (classes[i] == ATA_DEV_UNKNOWN)
1423 classes[i] = ATA_DEV_NONE;
1425 /* read IDENTIFY page and configure devices */
1426 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1427 dev = &ap->device[i];
1430 dev->class = classes[i];
1432 if (!ata_dev_enabled(dev))
1437 rc = ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id);
1441 rc = ata_dev_configure(ap, dev, 1);
1446 /* configure transfer mode */
1447 if (ap->ops->set_mode) {
1448 /* FIXME: make ->set_mode handle no device case and
1449 * return error code and failing device on failure as
1450 * ata_set_mode() does.
1452 for (i = 0; i < ATA_MAX_DEVICES; i++)
1453 if (ata_dev_enabled(&ap->device[i])) {
1454 ap->ops->set_mode(ap);
1459 rc = ata_set_mode(ap, &dev);
1466 for (i = 0; i < ATA_MAX_DEVICES; i++)
1467 if (ata_dev_enabled(&ap->device[i]))
1470 /* no device present, disable port */
1471 ata_port_disable(ap);
1472 ap->ops->port_disable(ap);
1479 tries[dev->devno] = 0;
1482 ata_down_sata_spd_limit(ap);
1485 tries[dev->devno]--;
1486 if (down_xfermask &&
1487 ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
1488 tries[dev->devno] = 0;
1491 if (!tries[dev->devno]) {
1492 ata_down_xfermask_limit(ap, dev, 1);
1493 ata_dev_disable(ap, dev);
1500 * ata_port_probe - Mark port as enabled
1501 * @ap: Port for which we indicate enablement
1503 * Modify @ap data structure such that the system
1504 * thinks that the entire port is enabled.
1506 * LOCKING: host_set lock, or some other form of
1510 void ata_port_probe(struct ata_port *ap)
1512 ap->flags &= ~ATA_FLAG_DISABLED;
1516 * sata_print_link_status - Print SATA link status
1517 * @ap: SATA port to printk link status about
1519 * This function prints link speed and status of a SATA link.
1524 static void sata_print_link_status(struct ata_port *ap)
1526 u32 sstatus, scontrol, tmp;
1528 if (!ap->ops->scr_read)
1531 sstatus = scr_read(ap, SCR_STATUS);
1532 scontrol = scr_read(ap, SCR_CONTROL);
1534 if (sata_dev_present(ap)) {
1535 tmp = (sstatus >> 4) & 0xf;
1537 "ata%u: SATA link up %s (SStatus %X SControl %X)\n",
1538 ap->id, sata_spd_string(tmp), sstatus, scontrol);
1541 "ata%u: SATA link down (SStatus %X SControl %X)\n",
1542 ap->id, sstatus, scontrol);
1547 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1548 * @ap: SATA port associated with target SATA PHY.
1550 * This function issues commands to standard SATA Sxxx
1551 * PHY registers, to wake up the phy (and device), and
1552 * clear any reset condition.
1555 * PCI/etc. bus probe sem.
1558 void __sata_phy_reset(struct ata_port *ap)
1561 unsigned long timeout = jiffies + (HZ * 5);
1563 if (ap->flags & ATA_FLAG_SATA_RESET) {
1564 /* issue phy wake/reset */
1565 scr_write_flush(ap, SCR_CONTROL, 0x301);
1566 /* Couldn't find anything in SATA I/II specs, but
1567 * AHCI-1.1 10.4.2 says at least 1 ms. */
1570 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1572 /* wait for phy to become ready, if necessary */
1575 sstatus = scr_read(ap, SCR_STATUS);
1576 if ((sstatus & 0xf) != 1)
1578 } while (time_before(jiffies, timeout));
1580 /* print link status */
1581 sata_print_link_status(ap);
1583 /* TODO: phy layer with polling, timeouts, etc. */
1584 if (sata_dev_present(ap))
1587 ata_port_disable(ap);
1589 if (ap->flags & ATA_FLAG_DISABLED)
1592 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1593 ata_port_disable(ap);
1597 ap->cbl = ATA_CBL_SATA;
1601 * sata_phy_reset - Reset SATA bus.
1602 * @ap: SATA port associated with target SATA PHY.
1604 * This function resets the SATA bus, and then probes
1605 * the bus for devices.
1608 * PCI/etc. bus probe sem.
1611 void sata_phy_reset(struct ata_port *ap)
1613 __sata_phy_reset(ap);
1614 if (ap->flags & ATA_FLAG_DISABLED)
1620 * ata_dev_pair - return other device on cable
1624 * Obtain the other device on the same cable, or if none is
1625 * present NULL is returned
1628 struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1630 struct ata_device *pair = &ap->device[1 - adev->devno];
1631 if (!ata_dev_enabled(pair))
1637 * ata_port_disable - Disable port.
1638 * @ap: Port to be disabled.
1640 * Modify @ap data structure such that the system
1641 * thinks that the entire port is disabled, and should
1642 * never attempt to probe or communicate with devices
1645 * LOCKING: host_set lock, or some other form of
1649 void ata_port_disable(struct ata_port *ap)
1651 ap->device[0].class = ATA_DEV_NONE;
1652 ap->device[1].class = ATA_DEV_NONE;
1653 ap->flags |= ATA_FLAG_DISABLED;
1657 * ata_down_sata_spd_limit - adjust SATA spd limit downward
1658 * @ap: Port to adjust SATA spd limit for
1660 * Adjust SATA spd limit of @ap downward. Note that this
1661 * function only adjusts the limit. The change must be applied
1662 * using ata_set_sata_spd().
1665 * Inherited from caller.
1668 * 0 on success, negative errno on failure
1670 int ata_down_sata_spd_limit(struct ata_port *ap)
1675 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1678 mask = ap->sata_spd_limit;
1681 highbit = fls(mask) - 1;
1682 mask &= ~(1 << highbit);
1684 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1688 mask &= (1 << spd) - 1;
1692 ap->sata_spd_limit = mask;
1694 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1695 ap->id, sata_spd_string(fls(mask)));
1700 static int __ata_set_sata_spd_needed(struct ata_port *ap, u32 *scontrol)
1704 if (ap->sata_spd_limit == UINT_MAX)
1707 limit = fls(ap->sata_spd_limit);
1709 spd = (*scontrol >> 4) & 0xf;
1710 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1712 return spd != limit;
1716 * ata_set_sata_spd_needed - is SATA spd configuration needed
1717 * @ap: Port in question
1719 * Test whether the spd limit in SControl matches
1720 * @ap->sata_spd_limit. This function is used to determine
1721 * whether hardreset is necessary to apply SATA spd
1725 * Inherited from caller.
1728 * 1 if SATA spd configuration is needed, 0 otherwise.
1730 int ata_set_sata_spd_needed(struct ata_port *ap)
1734 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1737 scontrol = scr_read(ap, SCR_CONTROL);
1739 return __ata_set_sata_spd_needed(ap, &scontrol);
1743 * ata_set_sata_spd - set SATA spd according to spd limit
1744 * @ap: Port to set SATA spd for
1746 * Set SATA spd of @ap according to sata_spd_limit.
1749 * Inherited from caller.
1752 * 0 if spd doesn't need to be changed, 1 if spd has been
1753 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1755 int ata_set_sata_spd(struct ata_port *ap)
1759 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1762 scontrol = scr_read(ap, SCR_CONTROL);
1763 if (!__ata_set_sata_spd_needed(ap, &scontrol))
1766 scr_write(ap, SCR_CONTROL, scontrol);
1771 * This mode timing computation functionality is ported over from
1772 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1775 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1776 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1777 * for PIO 5, which is a nonstandard extension and UDMA6, which
1778 * is currently supported only by Maxtor drives.
1781 static const struct ata_timing ata_timing[] = {
1783 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1784 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1785 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1786 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1788 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1789 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1790 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1792 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1794 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1795 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1796 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1798 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1799 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1800 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1802 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1803 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1804 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1806 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1807 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1808 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1810 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1815 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1816 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1818 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1820 q->setup = EZ(t->setup * 1000, T);
1821 q->act8b = EZ(t->act8b * 1000, T);
1822 q->rec8b = EZ(t->rec8b * 1000, T);
1823 q->cyc8b = EZ(t->cyc8b * 1000, T);
1824 q->active = EZ(t->active * 1000, T);
1825 q->recover = EZ(t->recover * 1000, T);
1826 q->cycle = EZ(t->cycle * 1000, T);
1827 q->udma = EZ(t->udma * 1000, UT);
1830 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1831 struct ata_timing *m, unsigned int what)
1833 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1834 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1835 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1836 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1837 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1838 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1839 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1840 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1843 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1845 const struct ata_timing *t;
1847 for (t = ata_timing; t->mode != speed; t++)
1848 if (t->mode == 0xFF)
1853 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1854 struct ata_timing *t, int T, int UT)
1856 const struct ata_timing *s;
1857 struct ata_timing p;
1863 if (!(s = ata_timing_find_mode(speed)))
1866 memcpy(t, s, sizeof(*s));
1869 * If the drive is an EIDE drive, it can tell us it needs extended
1870 * PIO/MW_DMA cycle timing.
1873 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1874 memset(&p, 0, sizeof(p));
1875 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1876 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1877 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1878 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1879 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1881 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1885 * Convert the timing to bus clock counts.
1888 ata_timing_quantize(t, t, T, UT);
1891 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1892 * S.M.A.R.T * and some other commands. We have to ensure that the
1893 * DMA cycle timing is slower/equal than the fastest PIO timing.
1896 if (speed > XFER_PIO_4) {
1897 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1898 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1902 * Lengthen active & recovery time so that cycle time is correct.
1905 if (t->act8b + t->rec8b < t->cyc8b) {
1906 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1907 t->rec8b = t->cyc8b - t->act8b;
1910 if (t->active + t->recover < t->cycle) {
1911 t->active += (t->cycle - (t->active + t->recover)) / 2;
1912 t->recover = t->cycle - t->active;
1919 * ata_down_xfermask_limit - adjust dev xfer masks downward
1920 * @ap: Port associated with device @dev
1921 * @dev: Device to adjust xfer masks
1922 * @force_pio0: Force PIO0
1924 * Adjust xfer masks of @dev downward. Note that this function
1925 * does not apply the change. Invoking ata_set_mode() afterwards
1926 * will apply the limit.
1929 * Inherited from caller.
1932 * 0 on success, negative errno on failure
1934 int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
1937 unsigned long xfer_mask;
1940 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1945 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1946 if (xfer_mask & ATA_MASK_UDMA)
1947 xfer_mask &= ~ATA_MASK_MWDMA;
1949 highbit = fls(xfer_mask) - 1;
1950 xfer_mask &= ~(1 << highbit);
1952 xfer_mask &= 1 << ATA_SHIFT_PIO;
1956 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1959 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1960 ap->id, dev->devno, ata_mode_string(xfer_mask));
1968 static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1970 unsigned int err_mask;
1973 dev->flags &= ~ATA_DFLAG_PIO;
1974 if (dev->xfer_shift == ATA_SHIFT_PIO)
1975 dev->flags |= ATA_DFLAG_PIO;
1977 err_mask = ata_dev_set_xfermode(ap, dev);
1980 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1985 rc = ata_dev_revalidate(ap, dev, 0);
1989 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1990 dev->xfer_shift, (int)dev->xfer_mode);
1992 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1994 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1999 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2000 * @ap: port on which timings will be programmed
2001 * @r_failed_dev: out paramter for failed device
2003 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2004 * ata_set_mode() fails, pointer to the failing device is
2005 * returned in @r_failed_dev.
2008 * PCI/etc. bus probe sem.
2011 * 0 on success, negative errno otherwise
2013 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2015 struct ata_device *dev;
2016 int i, rc = 0, used_dma = 0, found = 0;
2018 /* step 1: calculate xfer_mask */
2019 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2020 unsigned int pio_mask, dma_mask;
2022 dev = &ap->device[i];
2024 if (!ata_dev_enabled(dev))
2027 ata_dev_xfermask(ap, dev);
2029 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2030 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2031 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2032 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2041 /* step 2: always set host PIO timings */
2042 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2043 dev = &ap->device[i];
2044 if (!ata_dev_enabled(dev))
2047 if (!dev->pio_mode) {
2048 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2049 ap->id, dev->devno);
2054 dev->xfer_mode = dev->pio_mode;
2055 dev->xfer_shift = ATA_SHIFT_PIO;
2056 if (ap->ops->set_piomode)
2057 ap->ops->set_piomode(ap, dev);
2060 /* step 3: set host DMA timings */
2061 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2062 dev = &ap->device[i];
2064 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2067 dev->xfer_mode = dev->dma_mode;
2068 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2069 if (ap->ops->set_dmamode)
2070 ap->ops->set_dmamode(ap, dev);
2073 /* step 4: update devices' xfer mode */
2074 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2075 dev = &ap->device[i];
2077 if (!ata_dev_enabled(dev))
2080 rc = ata_dev_set_mode(ap, dev);
2085 /* Record simplex status. If we selected DMA then the other
2086 * host channels are not permitted to do so.
2088 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2089 ap->host_set->simplex_claimed = 1;
2091 /* step5: chip specific finalisation */
2092 if (ap->ops->post_set_mode)
2093 ap->ops->post_set_mode(ap);
2097 *r_failed_dev = dev;
2102 * ata_tf_to_host - issue ATA taskfile to host controller
2103 * @ap: port to which command is being issued
2104 * @tf: ATA taskfile register set
2106 * Issues ATA taskfile register set to ATA host controller,
2107 * with proper synchronization with interrupt handler and
2111 * spin_lock_irqsave(host_set lock)
2114 static inline void ata_tf_to_host(struct ata_port *ap,
2115 const struct ata_taskfile *tf)
2117 ap->ops->tf_load(ap, tf);
2118 ap->ops->exec_command(ap, tf);
2122 * ata_busy_sleep - sleep until BSY clears, or timeout
2123 * @ap: port containing status register to be polled
2124 * @tmout_pat: impatience timeout
2125 * @tmout: overall timeout
2127 * Sleep until ATA Status register bit BSY clears,
2128 * or a timeout occurs.
2133 unsigned int ata_busy_sleep (struct ata_port *ap,
2134 unsigned long tmout_pat, unsigned long tmout)
2136 unsigned long timer_start, timeout;
2139 status = ata_busy_wait(ap, ATA_BUSY, 300);
2140 timer_start = jiffies;
2141 timeout = timer_start + tmout_pat;
2142 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2144 status = ata_busy_wait(ap, ATA_BUSY, 3);
2147 if (status & ATA_BUSY)
2148 printk(KERN_WARNING "ata%u is slow to respond, "
2149 "please be patient\n", ap->id);
2151 timeout = timer_start + tmout;
2152 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2154 status = ata_chk_status(ap);
2157 if (status & ATA_BUSY) {
2158 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2159 ap->id, tmout / HZ);
2166 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2168 struct ata_ioports *ioaddr = &ap->ioaddr;
2169 unsigned int dev0 = devmask & (1 << 0);
2170 unsigned int dev1 = devmask & (1 << 1);
2171 unsigned long timeout;
2173 /* if device 0 was found in ata_devchk, wait for its
2177 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2179 /* if device 1 was found in ata_devchk, wait for
2180 * register access, then wait for BSY to clear
2182 timeout = jiffies + ATA_TMOUT_BOOT;
2186 ap->ops->dev_select(ap, 1);
2187 if (ap->flags & ATA_FLAG_MMIO) {
2188 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2189 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2191 nsect = inb(ioaddr->nsect_addr);
2192 lbal = inb(ioaddr->lbal_addr);
2194 if ((nsect == 1) && (lbal == 1))
2196 if (time_after(jiffies, timeout)) {
2200 msleep(50); /* give drive a breather */
2203 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2205 /* is all this really necessary? */
2206 ap->ops->dev_select(ap, 0);
2208 ap->ops->dev_select(ap, 1);
2210 ap->ops->dev_select(ap, 0);
2213 static unsigned int ata_bus_softreset(struct ata_port *ap,
2214 unsigned int devmask)
2216 struct ata_ioports *ioaddr = &ap->ioaddr;
2218 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2220 /* software reset. causes dev0 to be selected */
2221 if (ap->flags & ATA_FLAG_MMIO) {
2222 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2223 udelay(20); /* FIXME: flush */
2224 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2225 udelay(20); /* FIXME: flush */
2226 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2228 outb(ap->ctl, ioaddr->ctl_addr);
2230 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2232 outb(ap->ctl, ioaddr->ctl_addr);
2235 /* spec mandates ">= 2ms" before checking status.
2236 * We wait 150ms, because that was the magic delay used for
2237 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2238 * between when the ATA command register is written, and then
2239 * status is checked. Because waiting for "a while" before
2240 * checking status is fine, post SRST, we perform this magic
2241 * delay here as well.
2243 * Old drivers/ide uses the 2mS rule and then waits for ready
2247 /* Before we perform post reset processing we want to see if
2248 * the bus shows 0xFF because the odd clown forgets the D7
2249 * pulldown resistor.
2251 if (ata_check_status(ap) == 0xFF) {
2252 printk(KERN_ERR "ata%u: SRST failed (status 0xFF)\n", ap->id);
2253 return AC_ERR_OTHER;
2256 ata_bus_post_reset(ap, devmask);
2262 * ata_bus_reset - reset host port and associated ATA channel
2263 * @ap: port to reset
2265 * This is typically the first time we actually start issuing
2266 * commands to the ATA channel. We wait for BSY to clear, then
2267 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2268 * result. Determine what devices, if any, are on the channel
2269 * by looking at the device 0/1 error register. Look at the signature
2270 * stored in each device's taskfile registers, to determine if
2271 * the device is ATA or ATAPI.
2274 * PCI/etc. bus probe sem.
2275 * Obtains host_set lock.
2278 * Sets ATA_FLAG_DISABLED if bus reset fails.
2281 void ata_bus_reset(struct ata_port *ap)
2283 struct ata_ioports *ioaddr = &ap->ioaddr;
2284 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2286 unsigned int dev0, dev1 = 0, devmask = 0;
2288 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2290 /* determine if device 0/1 are present */
2291 if (ap->flags & ATA_FLAG_SATA_RESET)
2294 dev0 = ata_devchk(ap, 0);
2296 dev1 = ata_devchk(ap, 1);
2300 devmask |= (1 << 0);
2302 devmask |= (1 << 1);
2304 /* select device 0 again */
2305 ap->ops->dev_select(ap, 0);
2307 /* issue bus reset */
2308 if (ap->flags & ATA_FLAG_SRST)
2309 if (ata_bus_softreset(ap, devmask))
2313 * determine by signature whether we have ATA or ATAPI devices
2315 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2316 if ((slave_possible) && (err != 0x81))
2317 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2319 /* re-enable interrupts */
2320 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2323 /* is double-select really necessary? */
2324 if (ap->device[1].class != ATA_DEV_NONE)
2325 ap->ops->dev_select(ap, 1);
2326 if (ap->device[0].class != ATA_DEV_NONE)
2327 ap->ops->dev_select(ap, 0);
2329 /* if no devices were detected, disable this port */
2330 if ((ap->device[0].class == ATA_DEV_NONE) &&
2331 (ap->device[1].class == ATA_DEV_NONE))
2334 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2335 /* set up device control for ATA_FLAG_SATA_RESET */
2336 if (ap->flags & ATA_FLAG_MMIO)
2337 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2339 outb(ap->ctl, ioaddr->ctl_addr);
2346 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2347 ap->ops->port_disable(ap);
2352 static int sata_phy_resume(struct ata_port *ap)
2354 unsigned long timeout = jiffies + (HZ * 5);
2355 u32 scontrol, sstatus;
2357 scontrol = scr_read(ap, SCR_CONTROL);
2358 scontrol = (scontrol & 0x0f0) | 0x300;
2359 scr_write_flush(ap, SCR_CONTROL, scontrol);
2361 /* Wait for phy to become ready, if necessary. */
2364 sstatus = scr_read(ap, SCR_STATUS);
2365 if ((sstatus & 0xf) != 1)
2367 } while (time_before(jiffies, timeout));
2373 * ata_std_probeinit - initialize probing
2374 * @ap: port to be probed
2376 * @ap is about to be probed. Initialize it. This function is
2377 * to be used as standard callback for ata_drive_probe_reset().
2379 * NOTE!!! Do not use this function as probeinit if a low level
2380 * driver implements only hardreset. Just pass NULL as probeinit
2381 * in that case. Using this function is probably okay but doing
2382 * so makes reset sequence different from the original
2383 * ->phy_reset implementation and Jeff nervous. :-P
2385 void ata_std_probeinit(struct ata_port *ap)
2387 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
2390 /* set cable type and resume link */
2391 ap->cbl = ATA_CBL_SATA;
2392 sata_phy_resume(ap);
2394 /* init sata_spd_limit to the current value */
2395 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2397 ap->sata_spd_limit &= (1 << spd) - 1;
2399 /* wait for device */
2400 if (sata_dev_present(ap))
2401 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2406 * ata_std_softreset - reset host port via ATA SRST
2407 * @ap: port to reset
2408 * @classes: resulting classes of attached devices
2410 * Reset host port using ATA SRST. This function is to be used
2411 * as standard callback for ata_drive_*_reset() functions.
2414 * Kernel thread context (may sleep)
2417 * 0 on success, -errno otherwise.
2419 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2421 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2422 unsigned int devmask = 0, err_mask;
2427 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2428 classes[0] = ATA_DEV_NONE;
2432 /* determine if device 0/1 are present */
2433 if (ata_devchk(ap, 0))
2434 devmask |= (1 << 0);
2435 if (slave_possible && ata_devchk(ap, 1))
2436 devmask |= (1 << 1);
2438 /* select device 0 again */
2439 ap->ops->dev_select(ap, 0);
2441 /* issue bus reset */
2442 DPRINTK("about to softreset, devmask=%x\n", devmask);
2443 err_mask = ata_bus_softreset(ap, devmask);
2445 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2450 /* determine by signature whether we have ATA or ATAPI devices */
2451 classes[0] = ata_dev_try_classify(ap, 0, &err);
2452 if (slave_possible && err != 0x81)
2453 classes[1] = ata_dev_try_classify(ap, 1, &err);
2456 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2461 * sata_std_hardreset - reset host port via SATA phy reset
2462 * @ap: port to reset
2463 * @class: resulting class of attached device
2465 * SATA phy-reset host port using DET bits of SControl register.
2466 * This function is to be used as standard callback for
2467 * ata_drive_*_reset().
2470 * Kernel thread context (may sleep)
2473 * 0 on success, -errno otherwise.
2475 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2481 if (ata_set_sata_spd_needed(ap)) {
2482 /* SATA spec says nothing about how to reconfigure
2483 * spd. To be on the safe side, turn off phy during
2484 * reconfiguration. This works for at least ICH7 AHCI
2487 scontrol = scr_read(ap, SCR_CONTROL);
2488 scontrol = (scontrol & 0x0f0) | 0x302;
2489 scr_write_flush(ap, SCR_CONTROL, scontrol);
2491 ata_set_sata_spd(ap);
2494 /* issue phy wake/reset */
2495 scontrol = scr_read(ap, SCR_CONTROL);
2496 scontrol = (scontrol & 0x0f0) | 0x301;
2497 scr_write_flush(ap, SCR_CONTROL, scontrol);
2499 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2500 * 10.4.2 says at least 1 ms.
2504 /* bring phy back */
2505 sata_phy_resume(ap);
2507 /* TODO: phy layer with polling, timeouts, etc. */
2508 if (!sata_dev_present(ap)) {
2509 *class = ATA_DEV_NONE;
2510 DPRINTK("EXIT, link offline\n");
2514 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2516 "ata%u: COMRESET failed (device not ready)\n", ap->id);
2520 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2522 *class = ata_dev_try_classify(ap, 0, NULL);
2524 DPRINTK("EXIT, class=%u\n", *class);
2529 * ata_std_postreset - standard postreset callback
2530 * @ap: the target ata_port
2531 * @classes: classes of attached devices
2533 * This function is invoked after a successful reset. Note that
2534 * the device might have been reset more than once using
2535 * different reset methods before postreset is invoked.
2537 * This function is to be used as standard callback for
2538 * ata_drive_*_reset().
2541 * Kernel thread context (may sleep)
2543 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2547 /* print link status */
2548 if (ap->cbl == ATA_CBL_SATA)
2549 sata_print_link_status(ap);
2551 /* re-enable interrupts */
2552 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2555 /* is double-select really necessary? */
2556 if (classes[0] != ATA_DEV_NONE)
2557 ap->ops->dev_select(ap, 1);
2558 if (classes[1] != ATA_DEV_NONE)
2559 ap->ops->dev_select(ap, 0);
2561 /* bail out if no device is present */
2562 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2563 DPRINTK("EXIT, no device\n");
2567 /* set up device control */
2568 if (ap->ioaddr.ctl_addr) {
2569 if (ap->flags & ATA_FLAG_MMIO)
2570 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2572 outb(ap->ctl, ap->ioaddr.ctl_addr);
2579 * ata_std_probe_reset - standard probe reset method
2580 * @ap: prot to perform probe-reset
2581 * @classes: resulting classes of attached devices
2583 * The stock off-the-shelf ->probe_reset method.
2586 * Kernel thread context (may sleep)
2589 * 0 on success, -errno otherwise.
2591 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2593 ata_reset_fn_t hardreset;
2596 if (ap->cbl == ATA_CBL_SATA && ap->ops->scr_read)
2597 hardreset = sata_std_hardreset;
2599 return ata_drive_probe_reset(ap, ata_std_probeinit,
2600 ata_std_softreset, hardreset,
2601 ata_std_postreset, classes);
2604 int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2605 ata_postreset_fn_t postreset, unsigned int *classes)
2609 for (i = 0; i < ATA_MAX_DEVICES; i++)
2610 classes[i] = ATA_DEV_UNKNOWN;
2612 rc = reset(ap, classes);
2616 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2617 * is complete and convert all ATA_DEV_UNKNOWN to
2620 for (i = 0; i < ATA_MAX_DEVICES; i++)
2621 if (classes[i] != ATA_DEV_UNKNOWN)
2624 if (i < ATA_MAX_DEVICES)
2625 for (i = 0; i < ATA_MAX_DEVICES; i++)
2626 if (classes[i] == ATA_DEV_UNKNOWN)
2627 classes[i] = ATA_DEV_NONE;
2630 postreset(ap, classes);
2636 * ata_drive_probe_reset - Perform probe reset with given methods
2637 * @ap: port to reset
2638 * @probeinit: probeinit method (can be NULL)
2639 * @softreset: softreset method (can be NULL)
2640 * @hardreset: hardreset method (can be NULL)
2641 * @postreset: postreset method (can be NULL)
2642 * @classes: resulting classes of attached devices
2644 * Reset the specified port and classify attached devices using
2645 * given methods. This function prefers softreset but tries all
2646 * possible reset sequences to reset and classify devices. This
2647 * function is intended to be used for constructing ->probe_reset
2648 * callback by low level drivers.
2650 * Reset methods should follow the following rules.
2652 * - Return 0 on sucess, -errno on failure.
2653 * - If classification is supported, fill classes[] with
2654 * recognized class codes.
2655 * - If classification is not supported, leave classes[] alone.
2658 * Kernel thread context (may sleep)
2661 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2662 * if classification fails, and any error code from reset
2665 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2666 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2667 ata_postreset_fn_t postreset, unsigned int *classes)
2674 if (softreset && !ata_set_sata_spd_needed(ap)) {
2675 rc = ata_do_reset(ap, softreset, postreset, classes);
2676 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2678 printk(KERN_INFO "ata%u: softreset failed, will try "
2679 "hardreset in 5 secs\n", ap->id);
2687 rc = ata_do_reset(ap, hardreset, postreset, classes);
2689 if (classes[0] != ATA_DEV_UNKNOWN)
2694 if (ata_down_sata_spd_limit(ap))
2697 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2698 "in 5 secs\n", ap->id);
2703 printk(KERN_INFO "ata%u: hardreset succeeded without "
2704 "classification, will retry softreset in 5 secs\n",
2708 rc = ata_do_reset(ap, softreset, postreset, classes);
2712 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2718 * ata_dev_same_device - Determine whether new ID matches configured device
2719 * @ap: port on which the device to compare against resides
2720 * @dev: device to compare against
2721 * @new_class: class of the new device
2722 * @new_id: IDENTIFY page of the new device
2724 * Compare @new_class and @new_id against @dev and determine
2725 * whether @dev is the device indicated by @new_class and
2732 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2734 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2735 unsigned int new_class, const u16 *new_id)
2737 const u16 *old_id = dev->id;
2738 unsigned char model[2][41], serial[2][21];
2741 if (dev->class != new_class) {
2743 "ata%u: dev %u class mismatch %d != %d\n",
2744 ap->id, dev->devno, dev->class, new_class);
2748 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2749 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2750 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2751 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2752 new_n_sectors = ata_id_n_sectors(new_id);
2754 if (strcmp(model[0], model[1])) {
2756 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2757 ap->id, dev->devno, model[0], model[1]);
2761 if (strcmp(serial[0], serial[1])) {
2763 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2764 ap->id, dev->devno, serial[0], serial[1]);
2768 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2770 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2771 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2772 (unsigned long long)new_n_sectors);
2780 * ata_dev_revalidate - Revalidate ATA device
2781 * @ap: port on which the device to revalidate resides
2782 * @dev: device to revalidate
2783 * @post_reset: is this revalidation after reset?
2785 * Re-read IDENTIFY page and make sure @dev is still attached to
2789 * Kernel thread context (may sleep)
2792 * 0 on success, negative errno otherwise
2794 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2797 unsigned int class = dev->class;
2801 if (!ata_dev_enabled(dev)) {
2806 /* allocate & read ID data */
2807 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2811 /* is the device still there? */
2812 if (!ata_dev_same_device(ap, dev, class, id)) {
2820 /* configure device according to the new ID */
2821 rc = ata_dev_configure(ap, dev, 0);
2826 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2827 ap->id, dev->devno, rc);
2832 static const char * const ata_dma_blacklist [] = {
2833 "WDC AC11000H", NULL,
2834 "WDC AC22100H", NULL,
2835 "WDC AC32500H", NULL,
2836 "WDC AC33100H", NULL,
2837 "WDC AC31600H", NULL,
2838 "WDC AC32100H", "24.09P07",
2839 "WDC AC23200L", "21.10N21",
2840 "Compaq CRD-8241B", NULL,
2845 "SanDisk SDP3B", NULL,
2846 "SanDisk SDP3B-64", NULL,
2847 "SANYO CD-ROM CRD", NULL,
2848 "HITACHI CDR-8", NULL,
2849 "HITACHI CDR-8335", NULL,
2850 "HITACHI CDR-8435", NULL,
2851 "Toshiba CD-ROM XM-6202B", NULL,
2852 "TOSHIBA CD-ROM XM-1702BC", NULL,
2854 "E-IDE CD-ROM CR-840", NULL,
2855 "CD-ROM Drive/F5A", NULL,
2856 "WPI CDD-820", NULL,
2857 "SAMSUNG CD-ROM SC-148C", NULL,
2858 "SAMSUNG CD-ROM SC", NULL,
2859 "SanDisk SDP3B-64", NULL,
2860 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2861 "_NEC DV5800A", NULL,
2862 "SAMSUNG CD-ROM SN-124", "N001"
2865 static int ata_strim(char *s, size_t len)
2867 len = strnlen(s, len);
2869 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2870 while ((len > 0) && (s[len - 1] == ' ')) {
2877 static int ata_dma_blacklisted(const struct ata_device *dev)
2879 unsigned char model_num[40];
2880 unsigned char model_rev[16];
2881 unsigned int nlen, rlen;
2884 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2886 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2888 nlen = ata_strim(model_num, sizeof(model_num));
2889 rlen = ata_strim(model_rev, sizeof(model_rev));
2891 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2892 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2893 if (ata_dma_blacklist[i+1] == NULL)
2895 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2903 * ata_dev_xfermask - Compute supported xfermask of the given device
2904 * @ap: Port on which the device to compute xfermask for resides
2905 * @dev: Device to compute xfermask for
2907 * Compute supported xfermask of @dev and store it in
2908 * dev->*_mask. This function is responsible for applying all
2909 * known limits including host controller limits, device
2912 * FIXME: The current implementation limits all transfer modes to
2913 * the fastest of the lowested device on the port. This is not
2914 * required on most controllers.
2919 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
2921 struct ata_host_set *hs = ap->host_set;
2922 unsigned long xfer_mask;
2925 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2926 ap->mwdma_mask, ap->udma_mask);
2928 /* Apply cable rule here. Don't apply it early because when
2929 * we handle hot plug the cable type can itself change.
2931 if (ap->cbl == ATA_CBL_PATA40)
2932 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2934 /* FIXME: Use port-wide xfermask for now */
2935 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2936 struct ata_device *d = &ap->device[i];
2938 if (ata_dev_absent(d))
2941 if (ata_dev_disabled(d)) {
2942 /* to avoid violating device selection timing */
2943 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2944 UINT_MAX, UINT_MAX);
2948 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2949 d->mwdma_mask, d->udma_mask);
2950 xfer_mask &= ata_id_xfermask(d->id);
2951 if (ata_dma_blacklisted(d))
2952 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2955 if (ata_dma_blacklisted(dev))
2956 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2957 "disabling DMA\n", ap->id, dev->devno);
2959 if (hs->flags & ATA_HOST_SIMPLEX) {
2960 if (hs->simplex_claimed)
2961 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2964 if (ap->ops->mode_filter)
2965 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2967 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2968 &dev->mwdma_mask, &dev->udma_mask);
2972 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2973 * @ap: Port associated with device @dev
2974 * @dev: Device to which command will be sent
2976 * Issue SET FEATURES - XFER MODE command to device @dev
2980 * PCI/etc. bus probe sem.
2983 * 0 on success, AC_ERR_* mask otherwise.
2986 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2987 struct ata_device *dev)
2989 struct ata_taskfile tf;
2990 unsigned int err_mask;
2992 /* set up set-features taskfile */
2993 DPRINTK("set features - xfer mode\n");
2995 ata_tf_init(ap, &tf, dev->devno);
2996 tf.command = ATA_CMD_SET_FEATURES;
2997 tf.feature = SETFEATURES_XFER;
2998 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2999 tf.protocol = ATA_PROT_NODATA;
3000 tf.nsect = dev->xfer_mode;
3002 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
3004 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3009 * ata_dev_init_params - Issue INIT DEV PARAMS command
3010 * @ap: Port associated with device @dev
3011 * @dev: Device to which command will be sent
3014 * Kernel thread context (may sleep)
3017 * 0 on success, AC_ERR_* mask otherwise.
3020 static unsigned int ata_dev_init_params(struct ata_port *ap,
3021 struct ata_device *dev,
3025 struct ata_taskfile tf;
3026 unsigned int err_mask;
3028 /* Number of sectors per track 1-255. Number of heads 1-16 */
3029 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3030 return AC_ERR_INVALID;
3032 /* set up init dev params taskfile */
3033 DPRINTK("init dev params \n");
3035 ata_tf_init(ap, &tf, dev->devno);
3036 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3037 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3038 tf.protocol = ATA_PROT_NODATA;
3040 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3042 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
3044 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3049 * ata_sg_clean - Unmap DMA memory associated with command
3050 * @qc: Command containing DMA memory to be released
3052 * Unmap all mapped DMA memory associated with this command.
3055 * spin_lock_irqsave(host_set lock)
3058 static void ata_sg_clean(struct ata_queued_cmd *qc)
3060 struct ata_port *ap = qc->ap;
3061 struct scatterlist *sg = qc->__sg;
3062 int dir = qc->dma_dir;
3063 void *pad_buf = NULL;
3065 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3066 WARN_ON(sg == NULL);
3068 if (qc->flags & ATA_QCFLAG_SINGLE)
3069 WARN_ON(qc->n_elem > 1);
3071 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3073 /* if we padded the buffer out to 32-bit bound, and data
3074 * xfer direction is from-device, we must copy from the
3075 * pad buffer back into the supplied buffer
3077 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3078 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3080 if (qc->flags & ATA_QCFLAG_SG) {
3082 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3083 /* restore last sg */
3084 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3086 struct scatterlist *psg = &qc->pad_sgent;
3087 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3088 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3089 kunmap_atomic(addr, KM_IRQ0);
3093 dma_unmap_single(ap->dev,
3094 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3097 sg->length += qc->pad_len;
3099 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3100 pad_buf, qc->pad_len);
3103 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3108 * ata_fill_sg - Fill PCI IDE PRD table
3109 * @qc: Metadata associated with taskfile to be transferred
3111 * Fill PCI IDE PRD (scatter-gather) table with segments
3112 * associated with the current disk command.
3115 * spin_lock_irqsave(host_set lock)
3118 static void ata_fill_sg(struct ata_queued_cmd *qc)
3120 struct ata_port *ap = qc->ap;
3121 struct scatterlist *sg;
3124 WARN_ON(qc->__sg == NULL);
3125 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3128 ata_for_each_sg(sg, qc) {
3132 /* determine if physical DMA addr spans 64K boundary.
3133 * Note h/w doesn't support 64-bit, so we unconditionally
3134 * truncate dma_addr_t to u32.
3136 addr = (u32) sg_dma_address(sg);
3137 sg_len = sg_dma_len(sg);
3140 offset = addr & 0xffff;
3142 if ((offset + sg_len) > 0x10000)
3143 len = 0x10000 - offset;
3145 ap->prd[idx].addr = cpu_to_le32(addr);
3146 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3147 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3156 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3159 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3160 * @qc: Metadata associated with taskfile to check
3162 * Allow low-level driver to filter ATA PACKET commands, returning
3163 * a status indicating whether or not it is OK to use DMA for the
3164 * supplied PACKET command.
3167 * spin_lock_irqsave(host_set lock)
3169 * RETURNS: 0 when ATAPI DMA can be used
3172 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3174 struct ata_port *ap = qc->ap;
3175 int rc = 0; /* Assume ATAPI DMA is OK by default */
3177 if (ap->ops->check_atapi_dma)
3178 rc = ap->ops->check_atapi_dma(qc);
3180 /* We don't support polling DMA.
3181 * Use PIO if the LLDD handles only interrupts in
3182 * the HSM_ST_LAST state and the ATAPI device
3183 * generates CDB interrupts.
3185 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3186 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3192 * ata_qc_prep - Prepare taskfile for submission
3193 * @qc: Metadata associated with taskfile to be prepared
3195 * Prepare ATA taskfile for submission.
3198 * spin_lock_irqsave(host_set lock)
3200 void ata_qc_prep(struct ata_queued_cmd *qc)
3202 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3208 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3211 * ata_sg_init_one - Associate command with memory buffer
3212 * @qc: Command to be associated
3213 * @buf: Memory buffer
3214 * @buflen: Length of memory buffer, in bytes.
3216 * Initialize the data-related elements of queued_cmd @qc
3217 * to point to a single memory buffer, @buf of byte length @buflen.
3220 * spin_lock_irqsave(host_set lock)
3223 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3225 struct scatterlist *sg;
3227 qc->flags |= ATA_QCFLAG_SINGLE;
3229 memset(&qc->sgent, 0, sizeof(qc->sgent));
3230 qc->__sg = &qc->sgent;
3232 qc->orig_n_elem = 1;
3236 sg_init_one(sg, buf, buflen);
3240 * ata_sg_init - Associate command with scatter-gather table.
3241 * @qc: Command to be associated
3242 * @sg: Scatter-gather table.
3243 * @n_elem: Number of elements in s/g table.
3245 * Initialize the data-related elements of queued_cmd @qc
3246 * to point to a scatter-gather table @sg, containing @n_elem
3250 * spin_lock_irqsave(host_set lock)
3253 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3254 unsigned int n_elem)
3256 qc->flags |= ATA_QCFLAG_SG;
3258 qc->n_elem = n_elem;
3259 qc->orig_n_elem = n_elem;
3263 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3264 * @qc: Command with memory buffer to be mapped.
3266 * DMA-map the memory buffer associated with queued_cmd @qc.
3269 * spin_lock_irqsave(host_set lock)
3272 * Zero on success, negative on error.
3275 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3277 struct ata_port *ap = qc->ap;
3278 int dir = qc->dma_dir;
3279 struct scatterlist *sg = qc->__sg;
3280 dma_addr_t dma_address;
3283 /* we must lengthen transfers to end on a 32-bit boundary */
3284 qc->pad_len = sg->length & 3;
3286 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3287 struct scatterlist *psg = &qc->pad_sgent;
3289 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3291 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3293 if (qc->tf.flags & ATA_TFLAG_WRITE)
3294 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3297 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3298 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3300 sg->length -= qc->pad_len;
3301 if (sg->length == 0)
3304 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3305 sg->length, qc->pad_len);
3313 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3315 if (dma_mapping_error(dma_address)) {
3317 sg->length += qc->pad_len;
3321 sg_dma_address(sg) = dma_address;
3322 sg_dma_len(sg) = sg->length;
3325 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3326 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3332 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3333 * @qc: Command with scatter-gather table to be mapped.
3335 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3338 * spin_lock_irqsave(host_set lock)
3341 * Zero on success, negative on error.
3345 static int ata_sg_setup(struct ata_queued_cmd *qc)
3347 struct ata_port *ap = qc->ap;
3348 struct scatterlist *sg = qc->__sg;
3349 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3350 int n_elem, pre_n_elem, dir, trim_sg = 0;
3352 VPRINTK("ENTER, ata%u\n", ap->id);
3353 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3355 /* we must lengthen transfers to end on a 32-bit boundary */
3356 qc->pad_len = lsg->length & 3;
3358 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3359 struct scatterlist *psg = &qc->pad_sgent;
3360 unsigned int offset;
3362 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3364 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3367 * psg->page/offset are used to copy to-be-written
3368 * data in this function or read data in ata_sg_clean.
3370 offset = lsg->offset + lsg->length - qc->pad_len;
3371 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3372 psg->offset = offset_in_page(offset);
3374 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3375 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3376 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3377 kunmap_atomic(addr, KM_IRQ0);
3380 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3381 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3383 lsg->length -= qc->pad_len;
3384 if (lsg->length == 0)
3387 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3388 qc->n_elem - 1, lsg->length, qc->pad_len);
3391 pre_n_elem = qc->n_elem;
3392 if (trim_sg && pre_n_elem)
3401 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3403 /* restore last sg */
3404 lsg->length += qc->pad_len;
3408 DPRINTK("%d sg elements mapped\n", n_elem);
3411 qc->n_elem = n_elem;
3417 * ata_poll_qc_complete - turn irq back on and finish qc
3418 * @qc: Command to complete
3419 * @err_mask: ATA status register content
3422 * None. (grabs host lock)
3425 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3427 struct ata_port *ap = qc->ap;
3428 unsigned long flags;
3430 spin_lock_irqsave(&ap->host_set->lock, flags);
3432 ata_qc_complete(qc);
3433 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3437 * swap_buf_le16 - swap halves of 16-bit words in place
3438 * @buf: Buffer to swap
3439 * @buf_words: Number of 16-bit words in buffer.
3441 * Swap halves of 16-bit words if needed to convert from
3442 * little-endian byte order to native cpu byte order, or
3446 * Inherited from caller.
3448 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3453 for (i = 0; i < buf_words; i++)
3454 buf[i] = le16_to_cpu(buf[i]);
3455 #endif /* __BIG_ENDIAN */
3459 * ata_mmio_data_xfer - Transfer data by MMIO
3460 * @ap: port to read/write
3462 * @buflen: buffer length
3463 * @write_data: read/write
3465 * Transfer data from/to the device data register by MMIO.
3468 * Inherited from caller.
3471 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3472 unsigned int buflen, int write_data)
3475 unsigned int words = buflen >> 1;
3476 u16 *buf16 = (u16 *) buf;
3477 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3479 /* Transfer multiple of 2 bytes */
3481 for (i = 0; i < words; i++)
3482 writew(le16_to_cpu(buf16[i]), mmio);
3484 for (i = 0; i < words; i++)
3485 buf16[i] = cpu_to_le16(readw(mmio));
3488 /* Transfer trailing 1 byte, if any. */
3489 if (unlikely(buflen & 0x01)) {
3490 u16 align_buf[1] = { 0 };
3491 unsigned char *trailing_buf = buf + buflen - 1;
3494 memcpy(align_buf, trailing_buf, 1);
3495 writew(le16_to_cpu(align_buf[0]), mmio);
3497 align_buf[0] = cpu_to_le16(readw(mmio));
3498 memcpy(trailing_buf, align_buf, 1);
3504 * ata_pio_data_xfer - Transfer data by PIO
3505 * @ap: port to read/write
3507 * @buflen: buffer length
3508 * @write_data: read/write
3510 * Transfer data from/to the device data register by PIO.
3513 * Inherited from caller.
3516 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3517 unsigned int buflen, int write_data)
3519 unsigned int words = buflen >> 1;
3521 /* Transfer multiple of 2 bytes */
3523 outsw(ap->ioaddr.data_addr, buf, words);
3525 insw(ap->ioaddr.data_addr, buf, words);
3527 /* Transfer trailing 1 byte, if any. */
3528 if (unlikely(buflen & 0x01)) {
3529 u16 align_buf[1] = { 0 };
3530 unsigned char *trailing_buf = buf + buflen - 1;
3533 memcpy(align_buf, trailing_buf, 1);
3534 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3536 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3537 memcpy(trailing_buf, align_buf, 1);
3543 * ata_data_xfer - Transfer data from/to the data register.
3544 * @ap: port to read/write
3546 * @buflen: buffer length
3547 * @do_write: read/write
3549 * Transfer data from/to the device data register.
3552 * Inherited from caller.
3555 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3556 unsigned int buflen, int do_write)
3558 /* Make the crap hardware pay the costs not the good stuff */
3559 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3560 unsigned long flags;
3561 local_irq_save(flags);
3562 if (ap->flags & ATA_FLAG_MMIO)
3563 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3565 ata_pio_data_xfer(ap, buf, buflen, do_write);
3566 local_irq_restore(flags);
3568 if (ap->flags & ATA_FLAG_MMIO)
3569 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3571 ata_pio_data_xfer(ap, buf, buflen, do_write);
3576 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3577 * @qc: Command on going
3579 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3582 * Inherited from caller.
3585 static void ata_pio_sector(struct ata_queued_cmd *qc)
3587 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3588 struct scatterlist *sg = qc->__sg;
3589 struct ata_port *ap = qc->ap;
3591 unsigned int offset;
3594 if (qc->cursect == (qc->nsect - 1))
3595 ap->hsm_task_state = HSM_ST_LAST;
3597 page = sg[qc->cursg].page;
3598 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3600 /* get the current page and offset */
3601 page = nth_page(page, (offset >> PAGE_SHIFT));
3602 offset %= PAGE_SIZE;
3604 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3606 if (PageHighMem(page)) {
3607 unsigned long flags;
3609 local_irq_save(flags);
3610 buf = kmap_atomic(page, KM_IRQ0);
3612 /* do the actual data transfer */
3613 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3615 kunmap_atomic(buf, KM_IRQ0);
3616 local_irq_restore(flags);
3618 buf = page_address(page);
3619 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3625 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3632 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3633 * @qc: Command on going
3635 * Transfer one or many ATA_SECT_SIZE of data from/to the
3636 * ATA device for the DRQ request.
3639 * Inherited from caller.
3642 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3644 if (is_multi_taskfile(&qc->tf)) {
3645 /* READ/WRITE MULTIPLE */
3648 WARN_ON(qc->dev->multi_count == 0);
3650 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3658 * atapi_send_cdb - Write CDB bytes to hardware
3659 * @ap: Port to which ATAPI device is attached.
3660 * @qc: Taskfile currently active
3662 * When device has indicated its readiness to accept
3663 * a CDB, this function is called. Send the CDB.
3669 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3672 DPRINTK("send cdb\n");
3673 WARN_ON(qc->dev->cdb_len < 12);
3675 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3676 ata_altstatus(ap); /* flush */
3678 switch (qc->tf.protocol) {
3679 case ATA_PROT_ATAPI:
3680 ap->hsm_task_state = HSM_ST;
3682 case ATA_PROT_ATAPI_NODATA:
3683 ap->hsm_task_state = HSM_ST_LAST;
3685 case ATA_PROT_ATAPI_DMA:
3686 ap->hsm_task_state = HSM_ST_LAST;
3687 /* initiate bmdma */
3688 ap->ops->bmdma_start(qc);
3694 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3695 * @qc: Command on going
3696 * @bytes: number of bytes
3698 * Transfer Transfer data from/to the ATAPI device.
3701 * Inherited from caller.
3705 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3707 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3708 struct scatterlist *sg = qc->__sg;
3709 struct ata_port *ap = qc->ap;
3712 unsigned int offset, count;
3714 if (qc->curbytes + bytes >= qc->nbytes)
3715 ap->hsm_task_state = HSM_ST_LAST;
3718 if (unlikely(qc->cursg >= qc->n_elem)) {
3720 * The end of qc->sg is reached and the device expects
3721 * more data to transfer. In order not to overrun qc->sg
3722 * and fulfill length specified in the byte count register,
3723 * - for read case, discard trailing data from the device
3724 * - for write case, padding zero data to the device
3726 u16 pad_buf[1] = { 0 };
3727 unsigned int words = bytes >> 1;
3730 if (words) /* warning if bytes > 1 */
3731 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3734 for (i = 0; i < words; i++)
3735 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3737 ap->hsm_task_state = HSM_ST_LAST;
3741 sg = &qc->__sg[qc->cursg];
3744 offset = sg->offset + qc->cursg_ofs;
3746 /* get the current page and offset */
3747 page = nth_page(page, (offset >> PAGE_SHIFT));
3748 offset %= PAGE_SIZE;
3750 /* don't overrun current sg */
3751 count = min(sg->length - qc->cursg_ofs, bytes);
3753 /* don't cross page boundaries */
3754 count = min(count, (unsigned int)PAGE_SIZE - offset);
3756 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3758 if (PageHighMem(page)) {
3759 unsigned long flags;
3761 local_irq_save(flags);
3762 buf = kmap_atomic(page, KM_IRQ0);
3764 /* do the actual data transfer */
3765 ata_data_xfer(ap, buf + offset, count, do_write);
3767 kunmap_atomic(buf, KM_IRQ0);
3768 local_irq_restore(flags);
3770 buf = page_address(page);
3771 ata_data_xfer(ap, buf + offset, count, do_write);
3775 qc->curbytes += count;
3776 qc->cursg_ofs += count;
3778 if (qc->cursg_ofs == sg->length) {
3788 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3789 * @qc: Command on going
3791 * Transfer Transfer data from/to the ATAPI device.
3794 * Inherited from caller.
3797 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3799 struct ata_port *ap = qc->ap;
3800 struct ata_device *dev = qc->dev;
3801 unsigned int ireason, bc_lo, bc_hi, bytes;
3802 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3804 ap->ops->tf_read(ap, &qc->tf);
3805 ireason = qc->tf.nsect;
3806 bc_lo = qc->tf.lbam;
3807 bc_hi = qc->tf.lbah;
3808 bytes = (bc_hi << 8) | bc_lo;
3810 /* shall be cleared to zero, indicating xfer of data */
3811 if (ireason & (1 << 0))
3814 /* make sure transfer direction matches expected */
3815 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3816 if (do_write != i_write)
3819 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3821 __atapi_pio_bytes(qc, bytes);
3826 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3827 ap->id, dev->devno);
3828 qc->err_mask |= AC_ERR_HSM;
3829 ap->hsm_task_state = HSM_ST_ERR;
3833 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3834 * @ap: the target ata_port
3838 * 1 if ok in workqueue, 0 otherwise.
3841 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3843 if (qc->tf.flags & ATA_TFLAG_POLLING)
3846 if (ap->hsm_task_state == HSM_ST_FIRST) {
3847 if (qc->tf.protocol == ATA_PROT_PIO &&
3848 (qc->tf.flags & ATA_TFLAG_WRITE))
3851 if (is_atapi_taskfile(&qc->tf) &&
3852 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3860 * ata_hsm_move - move the HSM to the next state.
3861 * @ap: the target ata_port
3863 * @status: current device status
3864 * @in_wq: 1 if called from workqueue, 0 otherwise
3867 * 1 when poll next status needed, 0 otherwise.
3870 static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3871 u8 status, int in_wq)
3873 unsigned long flags = 0;
3876 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3878 /* Make sure ata_qc_issue_prot() does not throw things
3879 * like DMA polling into the workqueue. Notice that
3880 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3882 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
3885 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
3886 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
3888 switch (ap->hsm_task_state) {
3890 /* Send first data block or PACKET CDB */
3892 /* If polling, we will stay in the work queue after
3893 * sending the data. Otherwise, interrupt handler
3894 * takes over after sending the data.
3896 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
3898 /* check device status */
3899 if (unlikely((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)) {
3900 /* Wrong status. Let EH handle this */
3901 qc->err_mask |= AC_ERR_HSM;
3902 ap->hsm_task_state = HSM_ST_ERR;
3906 /* Device should not ask for data transfer (DRQ=1)
3907 * when it finds something wrong.
3908 * We ignore DRQ here and stop the HSM by
3909 * changing hsm_task_state to HSM_ST_ERR and
3910 * let the EH abort the command or reset the device.
3912 if (unlikely(status & (ATA_ERR | ATA_DF))) {
3913 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
3915 qc->err_mask |= AC_ERR_DEV;
3916 ap->hsm_task_state = HSM_ST_ERR;
3920 /* Send the CDB (atapi) or the first data block (ata pio out).
3921 * During the state transition, interrupt handler shouldn't
3922 * be invoked before the data transfer is complete and
3923 * hsm_task_state is changed. Hence, the following locking.
3926 spin_lock_irqsave(&ap->host_set->lock, flags);
3928 if (qc->tf.protocol == ATA_PROT_PIO) {
3929 /* PIO data out protocol.
3930 * send first data block.
3933 /* ata_pio_sectors() might change the state
3934 * to HSM_ST_LAST. so, the state is changed here
3935 * before ata_pio_sectors().
3937 ap->hsm_task_state = HSM_ST;
3938 ata_pio_sectors(qc);
3939 ata_altstatus(ap); /* flush */
3942 atapi_send_cdb(ap, qc);
3945 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3947 /* if polling, ata_pio_task() handles the rest.
3948 * otherwise, interrupt handler takes over from here.
3953 /* complete command or read/write the data register */
3954 if (qc->tf.protocol == ATA_PROT_ATAPI) {
3955 /* ATAPI PIO protocol */
3956 if ((status & ATA_DRQ) == 0) {
3957 /* no more data to transfer */
3958 ap->hsm_task_state = HSM_ST_LAST;
3962 /* Device should not ask for data transfer (DRQ=1)
3963 * when it finds something wrong.
3964 * We ignore DRQ here and stop the HSM by
3965 * changing hsm_task_state to HSM_ST_ERR and
3966 * let the EH abort the command or reset the device.
3968 if (unlikely(status & (ATA_ERR | ATA_DF))) {
3969 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
3971 qc->err_mask |= AC_ERR_DEV;
3972 ap->hsm_task_state = HSM_ST_ERR;
3976 atapi_pio_bytes(qc);
3978 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
3979 /* bad ireason reported by device */
3983 /* ATA PIO protocol */
3984 if (unlikely((status & ATA_DRQ) == 0)) {
3985 /* handle BSY=0, DRQ=0 as error */
3986 qc->err_mask |= AC_ERR_HSM;
3987 ap->hsm_task_state = HSM_ST_ERR;
3991 /* For PIO reads, some devices may ask for
3992 * data transfer (DRQ=1) alone with ERR=1.
3993 * We respect DRQ here and transfer one
3994 * block of junk data before changing the
3995 * hsm_task_state to HSM_ST_ERR.
3997 * For PIO writes, ERR=1 DRQ=1 doesn't make
3998 * sense since the data block has been
3999 * transferred to the device.
4001 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4002 /* data might be corrputed */
4003 qc->err_mask |= AC_ERR_DEV;
4005 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4006 ata_pio_sectors(qc);
4008 status = ata_wait_idle(ap);
4011 /* ata_pio_sectors() might change the
4012 * state to HSM_ST_LAST. so, the state
4013 * is changed after ata_pio_sectors().
4015 ap->hsm_task_state = HSM_ST_ERR;
4019 ata_pio_sectors(qc);
4021 if (ap->hsm_task_state == HSM_ST_LAST &&
4022 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4025 status = ata_wait_idle(ap);
4030 ata_altstatus(ap); /* flush */
4035 if (unlikely(!ata_ok(status))) {
4036 qc->err_mask |= __ac_err_mask(status);
4037 ap->hsm_task_state = HSM_ST_ERR;
4041 /* no more data to transfer */
4042 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4043 ap->id, qc->dev->devno, status);
4045 WARN_ON(qc->err_mask);
4047 ap->hsm_task_state = HSM_ST_IDLE;
4049 /* complete taskfile transaction */
4051 ata_poll_qc_complete(qc);
4053 ata_qc_complete(qc);
4059 if (qc->tf.command != ATA_CMD_PACKET)
4060 printk(KERN_ERR "ata%u: dev %u command error, drv_stat 0x%x\n",
4061 ap->id, qc->dev->devno, status);
4063 /* make sure qc->err_mask is available to
4064 * know what's wrong and recover
4066 WARN_ON(qc->err_mask == 0);
4068 ap->hsm_task_state = HSM_ST_IDLE;
4070 /* complete taskfile transaction */
4072 ata_poll_qc_complete(qc);
4074 ata_qc_complete(qc);
4086 static void ata_pio_task(void *_data)
4088 struct ata_queued_cmd *qc = _data;
4089 struct ata_port *ap = qc->ap;
4094 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4097 * This is purely heuristic. This is a fast path.
4098 * Sometimes when we enter, BSY will be cleared in
4099 * a chk-status or two. If not, the drive is probably seeking
4100 * or something. Snooze for a couple msecs, then
4101 * chk-status again. If still busy, queue delayed work.
4103 status = ata_busy_wait(ap, ATA_BUSY, 5);
4104 if (status & ATA_BUSY) {
4106 status = ata_busy_wait(ap, ATA_BUSY, 10);
4107 if (status & ATA_BUSY) {
4108 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4114 poll_next = ata_hsm_move(ap, qc, status, 1);
4116 /* another command or interrupt handler
4117 * may be running at this point.
4124 * ata_qc_new - Request an available ATA command, for queueing
4125 * @ap: Port associated with device @dev
4126 * @dev: Device from whom we request an available command structure
4132 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4134 struct ata_queued_cmd *qc = NULL;
4137 for (i = 0; i < ATA_MAX_QUEUE; i++)
4138 if (!test_and_set_bit(i, &ap->qactive)) {
4139 qc = ata_qc_from_tag(ap, i);
4150 * ata_qc_new_init - Request an available ATA command, and initialize it
4151 * @ap: Port associated with device @dev
4152 * @dev: Device from whom we request an available command structure
4158 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4159 struct ata_device *dev)
4161 struct ata_queued_cmd *qc;
4163 qc = ata_qc_new(ap);
4176 * ata_qc_free - free unused ata_queued_cmd
4177 * @qc: Command to complete
4179 * Designed to free unused ata_queued_cmd object
4180 * in case something prevents using it.
4183 * spin_lock_irqsave(host_set lock)
4185 void ata_qc_free(struct ata_queued_cmd *qc)
4187 struct ata_port *ap = qc->ap;
4190 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4194 if (likely(ata_tag_valid(tag))) {
4195 if (tag == ap->active_tag)
4196 ap->active_tag = ATA_TAG_POISON;
4197 qc->tag = ATA_TAG_POISON;
4198 clear_bit(tag, &ap->qactive);
4202 void __ata_qc_complete(struct ata_queued_cmd *qc)
4204 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4205 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4207 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4210 /* atapi: mark qc as inactive to prevent the interrupt handler
4211 * from completing the command twice later, before the error handler
4212 * is called. (when rc != 0 and atapi request sense is needed)
4214 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4216 /* call completion callback */
4217 qc->complete_fn(qc);
4220 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4222 struct ata_port *ap = qc->ap;
4224 switch (qc->tf.protocol) {
4226 case ATA_PROT_ATAPI_DMA:
4229 case ATA_PROT_ATAPI:
4231 if (ap->flags & ATA_FLAG_PIO_DMA)
4244 * ata_qc_issue - issue taskfile to device
4245 * @qc: command to issue to device
4247 * Prepare an ATA command to submission to device.
4248 * This includes mapping the data into a DMA-able
4249 * area, filling in the S/G table, and finally
4250 * writing the taskfile to hardware, starting the command.
4253 * spin_lock_irqsave(host_set lock)
4255 void ata_qc_issue(struct ata_queued_cmd *qc)
4257 struct ata_port *ap = qc->ap;
4259 qc->ap->active_tag = qc->tag;
4260 qc->flags |= ATA_QCFLAG_ACTIVE;
4262 if (ata_should_dma_map(qc)) {
4263 if (qc->flags & ATA_QCFLAG_SG) {
4264 if (ata_sg_setup(qc))
4266 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4267 if (ata_sg_setup_one(qc))
4271 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4274 ap->ops->qc_prep(qc);
4276 qc->err_mask |= ap->ops->qc_issue(qc);
4277 if (unlikely(qc->err_mask))
4282 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4283 qc->err_mask |= AC_ERR_SYSTEM;
4285 ata_qc_complete(qc);
4289 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4290 * @qc: command to issue to device
4292 * Using various libata functions and hooks, this function
4293 * starts an ATA command. ATA commands are grouped into
4294 * classes called "protocols", and issuing each type of protocol
4295 * is slightly different.
4297 * May be used as the qc_issue() entry in ata_port_operations.
4300 * spin_lock_irqsave(host_set lock)
4303 * Zero on success, AC_ERR_* mask on failure
4306 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4308 struct ata_port *ap = qc->ap;
4310 /* Use polling pio if the LLD doesn't handle
4311 * interrupt driven pio and atapi CDB interrupt.
4313 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4314 switch (qc->tf.protocol) {
4316 case ATA_PROT_ATAPI:
4317 case ATA_PROT_ATAPI_NODATA:
4318 qc->tf.flags |= ATA_TFLAG_POLLING;
4320 case ATA_PROT_ATAPI_DMA:
4321 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4322 /* see ata_check_atapi_dma() */
4330 /* select the device */
4331 ata_dev_select(ap, qc->dev->devno, 1, 0);
4333 /* start the command */
4334 switch (qc->tf.protocol) {
4335 case ATA_PROT_NODATA:
4336 if (qc->tf.flags & ATA_TFLAG_POLLING)
4337 ata_qc_set_polling(qc);
4339 ata_tf_to_host(ap, &qc->tf);
4340 ap->hsm_task_state = HSM_ST_LAST;
4342 if (qc->tf.flags & ATA_TFLAG_POLLING)
4343 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4348 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4350 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4351 ap->ops->bmdma_setup(qc); /* set up bmdma */
4352 ap->ops->bmdma_start(qc); /* initiate bmdma */
4353 ap->hsm_task_state = HSM_ST_LAST;
4357 if (qc->tf.flags & ATA_TFLAG_POLLING)
4358 ata_qc_set_polling(qc);
4360 ata_tf_to_host(ap, &qc->tf);
4362 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4363 /* PIO data out protocol */
4364 ap->hsm_task_state = HSM_ST_FIRST;
4365 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4367 /* always send first data block using
4368 * the ata_pio_task() codepath.
4371 /* PIO data in protocol */
4372 ap->hsm_task_state = HSM_ST;
4374 if (qc->tf.flags & ATA_TFLAG_POLLING)
4375 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4377 /* if polling, ata_pio_task() handles the rest.
4378 * otherwise, interrupt handler takes over from here.
4384 case ATA_PROT_ATAPI:
4385 case ATA_PROT_ATAPI_NODATA:
4386 if (qc->tf.flags & ATA_TFLAG_POLLING)
4387 ata_qc_set_polling(qc);
4389 ata_tf_to_host(ap, &qc->tf);
4391 ap->hsm_task_state = HSM_ST_FIRST;
4393 /* send cdb by polling if no cdb interrupt */
4394 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4395 (qc->tf.flags & ATA_TFLAG_POLLING))
4396 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4399 case ATA_PROT_ATAPI_DMA:
4400 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4402 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4403 ap->ops->bmdma_setup(qc); /* set up bmdma */
4404 ap->hsm_task_state = HSM_ST_FIRST;
4406 /* send cdb by polling if no cdb interrupt */
4407 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4408 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4413 return AC_ERR_SYSTEM;
4420 * ata_host_intr - Handle host interrupt for given (port, task)
4421 * @ap: Port on which interrupt arrived (possibly...)
4422 * @qc: Taskfile currently active in engine
4424 * Handle host interrupt for given queued command. Currently,
4425 * only DMA interrupts are handled. All other commands are
4426 * handled via polling with interrupts disabled (nIEN bit).
4429 * spin_lock_irqsave(host_set lock)
4432 * One if interrupt was handled, zero if not (shared irq).
4435 inline unsigned int ata_host_intr (struct ata_port *ap,
4436 struct ata_queued_cmd *qc)
4438 u8 status, host_stat = 0;
4440 VPRINTK("ata%u: protocol %d task_state %d\n",
4441 ap->id, qc->tf.protocol, ap->hsm_task_state);
4443 /* Check whether we are expecting interrupt in this state */
4444 switch (ap->hsm_task_state) {
4446 /* Some pre-ATAPI-4 devices assert INTRQ
4447 * at this state when ready to receive CDB.
4450 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4451 * The flag was turned on only for atapi devices.
4452 * No need to check is_atapi_taskfile(&qc->tf) again.
4454 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4458 if (qc->tf.protocol == ATA_PROT_DMA ||
4459 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4460 /* check status of DMA engine */
4461 host_stat = ap->ops->bmdma_status(ap);
4462 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4464 /* if it's not our irq... */
4465 if (!(host_stat & ATA_DMA_INTR))
4468 /* before we do anything else, clear DMA-Start bit */
4469 ap->ops->bmdma_stop(qc);
4471 if (unlikely(host_stat & ATA_DMA_ERR)) {
4472 /* error when transfering data to/from memory */
4473 qc->err_mask |= AC_ERR_HOST_BUS;
4474 ap->hsm_task_state = HSM_ST_ERR;
4484 /* check altstatus */
4485 status = ata_altstatus(ap);
4486 if (status & ATA_BUSY)
4489 /* check main status, clearing INTRQ */
4490 status = ata_chk_status(ap);
4491 if (unlikely(status & ATA_BUSY))
4494 /* ack bmdma irq events */
4495 ap->ops->irq_clear(ap);
4497 ata_hsm_move(ap, qc, status, 0);
4498 return 1; /* irq handled */
4501 ap->stats.idle_irq++;
4504 if ((ap->stats.idle_irq % 1000) == 0) {
4505 ata_irq_ack(ap, 0); /* debug trap */
4506 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4510 return 0; /* irq not handled */
4514 * ata_interrupt - Default ATA host interrupt handler
4515 * @irq: irq line (unused)
4516 * @dev_instance: pointer to our ata_host_set information structure
4519 * Default interrupt handler for PCI IDE devices. Calls
4520 * ata_host_intr() for each port that is not disabled.
4523 * Obtains host_set lock during operation.
4526 * IRQ_NONE or IRQ_HANDLED.
4529 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4531 struct ata_host_set *host_set = dev_instance;
4533 unsigned int handled = 0;
4534 unsigned long flags;
4536 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4537 spin_lock_irqsave(&host_set->lock, flags);
4539 for (i = 0; i < host_set->n_ports; i++) {
4540 struct ata_port *ap;
4542 ap = host_set->ports[i];
4544 !(ap->flags & ATA_FLAG_DISABLED)) {
4545 struct ata_queued_cmd *qc;
4547 qc = ata_qc_from_tag(ap, ap->active_tag);
4548 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4549 (qc->flags & ATA_QCFLAG_ACTIVE))
4550 handled |= ata_host_intr(ap, qc);
4554 spin_unlock_irqrestore(&host_set->lock, flags);
4556 return IRQ_RETVAL(handled);
4561 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4562 * without filling any other registers
4564 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4567 struct ata_taskfile tf;
4570 ata_tf_init(ap, &tf, dev->devno);
4573 tf.flags |= ATA_TFLAG_DEVICE;
4574 tf.protocol = ATA_PROT_NODATA;
4576 err = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
4578 printk(KERN_ERR "%s: ata command failed: %d\n",
4584 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4588 if (!ata_try_flush_cache(dev))
4591 if (ata_id_has_flush_ext(dev->id))
4592 cmd = ATA_CMD_FLUSH_EXT;
4594 cmd = ATA_CMD_FLUSH;
4596 return ata_do_simple_cmd(ap, dev, cmd);
4599 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4601 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4604 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4606 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4610 * ata_device_resume - wakeup a previously suspended devices
4611 * @ap: port the device is connected to
4612 * @dev: the device to resume
4614 * Kick the drive back into action, by sending it an idle immediate
4615 * command and making sure its transfer mode matches between drive
4619 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4621 if (ap->flags & ATA_FLAG_SUSPENDED) {
4622 struct ata_device *failed_dev;
4623 ap->flags &= ~ATA_FLAG_SUSPENDED;
4624 while (ata_set_mode(ap, &failed_dev))
4625 ata_dev_disable(ap, failed_dev);
4627 if (!ata_dev_enabled(dev))
4629 if (dev->class == ATA_DEV_ATA)
4630 ata_start_drive(ap, dev);
4636 * ata_device_suspend - prepare a device for suspend
4637 * @ap: port the device is connected to
4638 * @dev: the device to suspend
4640 * Flush the cache on the drive, if appropriate, then issue a
4641 * standbynow command.
4643 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
4645 if (!ata_dev_enabled(dev))
4647 if (dev->class == ATA_DEV_ATA)
4648 ata_flush_cache(ap, dev);
4650 if (state.event != PM_EVENT_FREEZE)
4651 ata_standby_drive(ap, dev);
4652 ap->flags |= ATA_FLAG_SUSPENDED;
4657 * ata_port_start - Set port up for dma.
4658 * @ap: Port to initialize
4660 * Called just after data structures for each port are
4661 * initialized. Allocates space for PRD table.
4663 * May be used as the port_start() entry in ata_port_operations.
4666 * Inherited from caller.
4669 int ata_port_start (struct ata_port *ap)
4671 struct device *dev = ap->dev;
4674 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4678 rc = ata_pad_alloc(ap, dev);
4680 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4684 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4691 * ata_port_stop - Undo ata_port_start()
4692 * @ap: Port to shut down
4694 * Frees the PRD table.
4696 * May be used as the port_stop() entry in ata_port_operations.
4699 * Inherited from caller.
4702 void ata_port_stop (struct ata_port *ap)
4704 struct device *dev = ap->dev;
4706 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4707 ata_pad_free(ap, dev);
4710 void ata_host_stop (struct ata_host_set *host_set)
4712 if (host_set->mmio_base)
4713 iounmap(host_set->mmio_base);
4718 * ata_host_remove - Unregister SCSI host structure with upper layers
4719 * @ap: Port to unregister
4720 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4723 * Inherited from caller.
4726 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4728 struct Scsi_Host *sh = ap->host;
4733 scsi_remove_host(sh);
4735 ap->ops->port_stop(ap);
4739 * ata_host_init - Initialize an ata_port structure
4740 * @ap: Structure to initialize
4741 * @host: associated SCSI mid-layer structure
4742 * @host_set: Collection of hosts to which @ap belongs
4743 * @ent: Probe information provided by low-level driver
4744 * @port_no: Port number associated with this ata_port
4746 * Initialize a new ata_port structure, and its associated
4750 * Inherited from caller.
4753 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4754 struct ata_host_set *host_set,
4755 const struct ata_probe_ent *ent, unsigned int port_no)
4761 host->max_channel = 1;
4762 host->unique_id = ata_unique_id++;
4763 host->max_cmd_len = 12;
4765 ap->flags = ATA_FLAG_DISABLED;
4766 ap->id = host->unique_id;
4768 ap->ctl = ATA_DEVCTL_OBS;
4769 ap->host_set = host_set;
4771 ap->port_no = port_no;
4773 ent->legacy_mode ? ent->hard_port_no : port_no;
4774 ap->pio_mask = ent->pio_mask;
4775 ap->mwdma_mask = ent->mwdma_mask;
4776 ap->udma_mask = ent->udma_mask;
4777 ap->flags |= ent->host_flags;
4778 ap->ops = ent->port_ops;
4779 ap->cbl = ATA_CBL_NONE;
4780 ap->sata_spd_limit = UINT_MAX;
4781 ap->active_tag = ATA_TAG_POISON;
4782 ap->last_ctl = 0xFF;
4784 INIT_WORK(&ap->port_task, NULL, NULL);
4785 INIT_LIST_HEAD(&ap->eh_done_q);
4787 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4788 struct ata_device *dev = &ap->device[i];
4790 dev->pio_mask = UINT_MAX;
4791 dev->mwdma_mask = UINT_MAX;
4792 dev->udma_mask = UINT_MAX;
4796 ap->stats.unhandled_irq = 1;
4797 ap->stats.idle_irq = 1;
4800 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4804 * ata_host_add - Attach low-level ATA driver to system
4805 * @ent: Information provided by low-level driver
4806 * @host_set: Collections of ports to which we add
4807 * @port_no: Port number associated with this host
4809 * Attach low-level ATA driver to system.
4812 * PCI/etc. bus probe sem.
4815 * New ata_port on success, for NULL on error.
4818 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4819 struct ata_host_set *host_set,
4820 unsigned int port_no)
4822 struct Scsi_Host *host;
4823 struct ata_port *ap;
4828 if (!ent->port_ops->probe_reset &&
4829 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4830 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4835 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4839 host->transportt = &ata_scsi_transport_template;
4841 ap = ata_shost_to_port(host);
4843 ata_host_init(ap, host, host_set, ent, port_no);
4845 rc = ap->ops->port_start(ap);
4852 scsi_host_put(host);
4857 * ata_device_add - Register hardware device with ATA and SCSI layers
4858 * @ent: Probe information describing hardware device to be registered
4860 * This function processes the information provided in the probe
4861 * information struct @ent, allocates the necessary ATA and SCSI
4862 * host information structures, initializes them, and registers
4863 * everything with requisite kernel subsystems.
4865 * This function requests irqs, probes the ATA bus, and probes
4869 * PCI/etc. bus probe sem.
4872 * Number of ports registered. Zero on error (no ports registered).
4875 int ata_device_add(const struct ata_probe_ent *ent)
4877 unsigned int count = 0, i;
4878 struct device *dev = ent->dev;
4879 struct ata_host_set *host_set;
4882 /* alloc a container for our list of ATA ports (buses) */
4883 host_set = kzalloc(sizeof(struct ata_host_set) +
4884 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4887 spin_lock_init(&host_set->lock);
4889 host_set->dev = dev;
4890 host_set->n_ports = ent->n_ports;
4891 host_set->irq = ent->irq;
4892 host_set->mmio_base = ent->mmio_base;
4893 host_set->private_data = ent->private_data;
4894 host_set->ops = ent->port_ops;
4895 host_set->flags = ent->host_set_flags;
4897 /* register each port bound to this device */
4898 for (i = 0; i < ent->n_ports; i++) {
4899 struct ata_port *ap;
4900 unsigned long xfer_mode_mask;
4902 ap = ata_host_add(ent, host_set, i);
4906 host_set->ports[i] = ap;
4907 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4908 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4909 (ap->pio_mask << ATA_SHIFT_PIO);
4911 /* print per-port info to dmesg */
4912 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4913 "bmdma 0x%lX irq %lu\n",
4915 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4916 ata_mode_string(xfer_mode_mask),
4917 ap->ioaddr.cmd_addr,
4918 ap->ioaddr.ctl_addr,
4919 ap->ioaddr.bmdma_addr,
4923 host_set->ops->irq_clear(ap);
4930 /* obtain irq, that is shared between channels */
4931 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4932 DRV_NAME, host_set))
4935 /* perform each probe synchronously */
4936 DPRINTK("probe begin\n");
4937 for (i = 0; i < count; i++) {
4938 struct ata_port *ap;
4941 ap = host_set->ports[i];
4943 DPRINTK("ata%u: bus probe begin\n", ap->id);
4944 rc = ata_bus_probe(ap);
4945 DPRINTK("ata%u: bus probe end\n", ap->id);
4948 /* FIXME: do something useful here?
4949 * Current libata behavior will
4950 * tear down everything when
4951 * the module is removed
4952 * or the h/w is unplugged.
4956 rc = scsi_add_host(ap->host, dev);
4958 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4960 /* FIXME: do something useful here */
4961 /* FIXME: handle unconditional calls to
4962 * scsi_scan_host and ata_host_remove, below,
4968 /* probes are done, now scan each port's disk(s) */
4969 DPRINTK("host probe begin\n");
4970 for (i = 0; i < count; i++) {
4971 struct ata_port *ap = host_set->ports[i];
4973 ata_scsi_scan_host(ap);
4976 dev_set_drvdata(dev, host_set);
4978 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4979 return ent->n_ports; /* success */
4982 for (i = 0; i < count; i++) {
4983 ata_host_remove(host_set->ports[i], 1);
4984 scsi_host_put(host_set->ports[i]->host);
4988 VPRINTK("EXIT, returning 0\n");
4993 * ata_host_set_remove - PCI layer callback for device removal
4994 * @host_set: ATA host set that was removed
4996 * Unregister all objects associated with this host set. Free those
5000 * Inherited from calling layer (may sleep).
5003 void ata_host_set_remove(struct ata_host_set *host_set)
5005 struct ata_port *ap;
5008 for (i = 0; i < host_set->n_ports; i++) {
5009 ap = host_set->ports[i];
5010 scsi_remove_host(ap->host);
5013 free_irq(host_set->irq, host_set);
5015 for (i = 0; i < host_set->n_ports; i++) {
5016 ap = host_set->ports[i];
5018 ata_scsi_release(ap->host);
5020 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5021 struct ata_ioports *ioaddr = &ap->ioaddr;
5023 if (ioaddr->cmd_addr == 0x1f0)
5024 release_region(0x1f0, 8);
5025 else if (ioaddr->cmd_addr == 0x170)
5026 release_region(0x170, 8);
5029 scsi_host_put(ap->host);
5032 if (host_set->ops->host_stop)
5033 host_set->ops->host_stop(host_set);
5039 * ata_scsi_release - SCSI layer callback hook for host unload
5040 * @host: libata host to be unloaded
5042 * Performs all duties necessary to shut down a libata port...
5043 * Kill port kthread, disable port, and release resources.
5046 * Inherited from SCSI layer.
5052 int ata_scsi_release(struct Scsi_Host *host)
5054 struct ata_port *ap = ata_shost_to_port(host);
5059 ap->ops->port_disable(ap);
5060 ata_host_remove(ap, 0);
5061 for (i = 0; i < ATA_MAX_DEVICES; i++)
5062 kfree(ap->device[i].id);
5069 * ata_std_ports - initialize ioaddr with standard port offsets.
5070 * @ioaddr: IO address structure to be initialized
5072 * Utility function which initializes data_addr, error_addr,
5073 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5074 * device_addr, status_addr, and command_addr to standard offsets
5075 * relative to cmd_addr.
5077 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5080 void ata_std_ports(struct ata_ioports *ioaddr)
5082 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5083 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5084 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5085 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5086 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5087 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5088 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5089 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5090 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5091 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5097 void ata_pci_host_stop (struct ata_host_set *host_set)
5099 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5101 pci_iounmap(pdev, host_set->mmio_base);
5105 * ata_pci_remove_one - PCI layer callback for device removal
5106 * @pdev: PCI device that was removed
5108 * PCI layer indicates to libata via this hook that
5109 * hot-unplug or module unload event has occurred.
5110 * Handle this by unregistering all objects associated
5111 * with this PCI device. Free those objects. Then finally
5112 * release PCI resources and disable device.
5115 * Inherited from PCI layer (may sleep).
5118 void ata_pci_remove_one (struct pci_dev *pdev)
5120 struct device *dev = pci_dev_to_dev(pdev);
5121 struct ata_host_set *host_set = dev_get_drvdata(dev);
5123 ata_host_set_remove(host_set);
5124 pci_release_regions(pdev);
5125 pci_disable_device(pdev);
5126 dev_set_drvdata(dev, NULL);
5129 /* move to PCI subsystem */
5130 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5132 unsigned long tmp = 0;
5134 switch (bits->width) {
5137 pci_read_config_byte(pdev, bits->reg, &tmp8);
5143 pci_read_config_word(pdev, bits->reg, &tmp16);
5149 pci_read_config_dword(pdev, bits->reg, &tmp32);
5160 return (tmp == bits->val) ? 1 : 0;
5163 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5165 pci_save_state(pdev);
5166 pci_disable_device(pdev);
5167 pci_set_power_state(pdev, PCI_D3hot);
5171 int ata_pci_device_resume(struct pci_dev *pdev)
5173 pci_set_power_state(pdev, PCI_D0);
5174 pci_restore_state(pdev);
5175 pci_enable_device(pdev);
5176 pci_set_master(pdev);
5179 #endif /* CONFIG_PCI */
5182 static int __init ata_init(void)
5184 ata_wq = create_workqueue("ata");
5188 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5192 static void __exit ata_exit(void)
5194 destroy_workqueue(ata_wq);
5197 module_init(ata_init);
5198 module_exit(ata_exit);
5200 static unsigned long ratelimit_time;
5201 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5203 int ata_ratelimit(void)
5206 unsigned long flags;
5208 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5210 if (time_after(jiffies, ratelimit_time)) {
5212 ratelimit_time = jiffies + (HZ/5);
5216 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5222 * ata_wait_register - wait until register value changes
5223 * @reg: IO-mapped register
5224 * @mask: Mask to apply to read register value
5225 * @val: Wait condition
5226 * @interval_msec: polling interval in milliseconds
5227 * @timeout_msec: timeout in milliseconds
5229 * Waiting for some bits of register to change is a common
5230 * operation for ATA controllers. This function reads 32bit LE
5231 * IO-mapped register @reg and tests for the following condition.
5233 * (*@reg & mask) != val
5235 * If the condition is met, it returns; otherwise, the process is
5236 * repeated after @interval_msec until timeout.
5239 * Kernel thread context (may sleep)
5242 * The final register value.
5244 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5245 unsigned long interval_msec,
5246 unsigned long timeout_msec)
5248 unsigned long timeout;
5251 tmp = ioread32(reg);
5253 /* Calculate timeout _after_ the first read to make sure
5254 * preceding writes reach the controller before starting to
5255 * eat away the timeout.
5257 timeout = jiffies + (timeout_msec * HZ) / 1000;
5259 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5260 msleep(interval_msec);
5261 tmp = ioread32(reg);
5268 * libata is essentially a library of internal helper functions for
5269 * low-level ATA host controller drivers. As such, the API/ABI is
5270 * likely to change as new drivers are added and updated.
5271 * Do not depend on ABI/API stability.
5274 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5275 EXPORT_SYMBOL_GPL(ata_std_ports);
5276 EXPORT_SYMBOL_GPL(ata_device_add);
5277 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5278 EXPORT_SYMBOL_GPL(ata_sg_init);
5279 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5280 EXPORT_SYMBOL_GPL(__ata_qc_complete);
5281 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5282 EXPORT_SYMBOL_GPL(ata_tf_load);
5283 EXPORT_SYMBOL_GPL(ata_tf_read);
5284 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5285 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5286 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5287 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5288 EXPORT_SYMBOL_GPL(ata_check_status);
5289 EXPORT_SYMBOL_GPL(ata_altstatus);
5290 EXPORT_SYMBOL_GPL(ata_exec_command);
5291 EXPORT_SYMBOL_GPL(ata_port_start);
5292 EXPORT_SYMBOL_GPL(ata_port_stop);
5293 EXPORT_SYMBOL_GPL(ata_host_stop);
5294 EXPORT_SYMBOL_GPL(ata_interrupt);
5295 EXPORT_SYMBOL_GPL(ata_qc_prep);
5296 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5297 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5298 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5299 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5300 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5301 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5302 EXPORT_SYMBOL_GPL(ata_port_probe);
5303 EXPORT_SYMBOL_GPL(ata_set_sata_spd);
5304 EXPORT_SYMBOL_GPL(sata_phy_reset);
5305 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5306 EXPORT_SYMBOL_GPL(ata_bus_reset);
5307 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5308 EXPORT_SYMBOL_GPL(ata_std_softreset);
5309 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5310 EXPORT_SYMBOL_GPL(ata_std_postreset);
5311 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5312 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5313 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5314 EXPORT_SYMBOL_GPL(ata_dev_classify);
5315 EXPORT_SYMBOL_GPL(ata_dev_pair);
5316 EXPORT_SYMBOL_GPL(ata_port_disable);
5317 EXPORT_SYMBOL_GPL(ata_ratelimit);
5318 EXPORT_SYMBOL_GPL(ata_wait_register);
5319 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5320 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5321 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5322 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5323 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5324 EXPORT_SYMBOL_GPL(ata_scsi_release);
5325 EXPORT_SYMBOL_GPL(ata_host_intr);
5326 EXPORT_SYMBOL_GPL(ata_id_string);
5327 EXPORT_SYMBOL_GPL(ata_id_c_string);
5328 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5330 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5331 EXPORT_SYMBOL_GPL(ata_timing_compute);
5332 EXPORT_SYMBOL_GPL(ata_timing_merge);
5335 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5336 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5337 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5338 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5339 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5340 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5341 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5342 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5343 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5344 #endif /* CONFIG_PCI */
5346 EXPORT_SYMBOL_GPL(ata_device_suspend);
5347 EXPORT_SYMBOL_GPL(ata_device_resume);
5348 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5349 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5351 EXPORT_SYMBOL_GPL(ata_scsi_error);
5352 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5353 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5354 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);