2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
59 static struct dentry *debugfs_root;
61 static struct class regulator_class;
64 * struct regulator_map
66 * Used to provide symbolic supply names to devices.
68 struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
72 struct regulator_dev *regulator;
76 * struct regulator_enable_gpio
78 * Management for shared enable GPIO pin
80 struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
89 * struct regulator_supply_alias
91 * Used to map lookups for a supply onto an alternative device.
93 struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
112 const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
117 return container_of(dev, struct regulator_dev, dev);
120 static const char *rdev_get_name(struct regulator_dev *rdev)
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
130 static bool have_full_constraints(void)
132 return has_full_constraints || of_have_populated_dt();
135 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
137 if (!rdev->constraints) {
138 rdev_err(rdev, "no constraints\n");
142 if (rdev->constraints->valid_ops_mask & ops)
148 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
150 if (rdev && rdev->supply)
151 return rdev->supply->rdev;
157 * regulator_lock_supply - lock a regulator and its supplies
158 * @rdev: regulator source
160 static void regulator_lock_supply(struct regulator_dev *rdev)
164 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165 mutex_lock_nested(&rdev->mutex, i);
169 * regulator_unlock_supply - unlock a regulator and its supplies
170 * @rdev: regulator source
172 static void regulator_unlock_supply(struct regulator_dev *rdev)
174 struct regulator *supply;
177 mutex_unlock(&rdev->mutex);
178 supply = rdev->supply;
188 * of_get_regulator - get a regulator device node based on supply name
189 * @dev: Device pointer for the consumer (of regulator) device
190 * @supply: regulator supply name
192 * Extract the regulator device node corresponding to the supply name.
193 * returns the device node corresponding to the regulator if found, else
196 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
198 struct device_node *regnode = NULL;
199 char prop_name[32]; /* 32 is max size of property name */
201 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
203 snprintf(prop_name, 32, "%s-supply", supply);
204 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
207 dev_dbg(dev, "Looking up %s property in node %s failed\n",
208 prop_name, dev->of_node->full_name);
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev *rdev,
216 int *min_uV, int *max_uV)
218 BUG_ON(*min_uV > *max_uV);
220 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221 rdev_err(rdev, "voltage operation not allowed\n");
225 if (*max_uV > rdev->constraints->max_uV)
226 *max_uV = rdev->constraints->max_uV;
227 if (*min_uV < rdev->constraints->min_uV)
228 *min_uV = rdev->constraints->min_uV;
230 if (*min_uV > *max_uV) {
231 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
239 /* Make sure we select a voltage that suits the needs of all
240 * regulator consumers
242 static int regulator_check_consumers(struct regulator_dev *rdev,
243 int *min_uV, int *max_uV)
245 struct regulator *regulator;
247 list_for_each_entry(regulator, &rdev->consumer_list, list) {
249 * Assume consumers that didn't say anything are OK
250 * with anything in the constraint range.
252 if (!regulator->min_uV && !regulator->max_uV)
255 if (*max_uV > regulator->max_uV)
256 *max_uV = regulator->max_uV;
257 if (*min_uV < regulator->min_uV)
258 *min_uV = regulator->min_uV;
261 if (*min_uV > *max_uV) {
262 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev *rdev,
272 int *min_uA, int *max_uA)
274 BUG_ON(*min_uA > *max_uA);
276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277 rdev_err(rdev, "current operation not allowed\n");
281 if (*max_uA > rdev->constraints->max_uA)
282 *max_uA = rdev->constraints->max_uA;
283 if (*min_uA < rdev->constraints->min_uA)
284 *min_uA = rdev->constraints->min_uA;
286 if (*min_uA > *max_uA) {
287 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev *rdev,
300 case REGULATOR_MODE_FAST:
301 case REGULATOR_MODE_NORMAL:
302 case REGULATOR_MODE_IDLE:
303 case REGULATOR_MODE_STANDBY:
306 rdev_err(rdev, "invalid mode %x specified\n", *mode);
310 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
311 rdev_err(rdev, "mode operation not allowed\n");
315 /* The modes are bitmasks, the most power hungry modes having
316 * the lowest values. If the requested mode isn't supported
317 * try higher modes. */
319 if (rdev->constraints->valid_modes_mask & *mode)
327 static ssize_t regulator_uV_show(struct device *dev,
328 struct device_attribute *attr, char *buf)
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
333 mutex_lock(&rdev->mutex);
334 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
335 mutex_unlock(&rdev->mutex);
339 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
341 static ssize_t regulator_uA_show(struct device *dev,
342 struct device_attribute *attr, char *buf)
344 struct regulator_dev *rdev = dev_get_drvdata(dev);
346 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
348 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
350 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
355 return sprintf(buf, "%s\n", rdev_get_name(rdev));
357 static DEVICE_ATTR_RO(name);
359 static ssize_t regulator_print_opmode(char *buf, int mode)
362 case REGULATOR_MODE_FAST:
363 return sprintf(buf, "fast\n");
364 case REGULATOR_MODE_NORMAL:
365 return sprintf(buf, "normal\n");
366 case REGULATOR_MODE_IDLE:
367 return sprintf(buf, "idle\n");
368 case REGULATOR_MODE_STANDBY:
369 return sprintf(buf, "standby\n");
371 return sprintf(buf, "unknown\n");
374 static ssize_t regulator_opmode_show(struct device *dev,
375 struct device_attribute *attr, char *buf)
377 struct regulator_dev *rdev = dev_get_drvdata(dev);
379 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
381 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
383 static ssize_t regulator_print_state(char *buf, int state)
386 return sprintf(buf, "enabled\n");
388 return sprintf(buf, "disabled\n");
390 return sprintf(buf, "unknown\n");
393 static ssize_t regulator_state_show(struct device *dev,
394 struct device_attribute *attr, char *buf)
396 struct regulator_dev *rdev = dev_get_drvdata(dev);
399 mutex_lock(&rdev->mutex);
400 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
401 mutex_unlock(&rdev->mutex);
405 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
407 static ssize_t regulator_status_show(struct device *dev,
408 struct device_attribute *attr, char *buf)
410 struct regulator_dev *rdev = dev_get_drvdata(dev);
414 status = rdev->desc->ops->get_status(rdev);
419 case REGULATOR_STATUS_OFF:
422 case REGULATOR_STATUS_ON:
425 case REGULATOR_STATUS_ERROR:
428 case REGULATOR_STATUS_FAST:
431 case REGULATOR_STATUS_NORMAL:
434 case REGULATOR_STATUS_IDLE:
437 case REGULATOR_STATUS_STANDBY:
440 case REGULATOR_STATUS_BYPASS:
443 case REGULATOR_STATUS_UNDEFINED:
450 return sprintf(buf, "%s\n", label);
452 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
454 static ssize_t regulator_min_uA_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
462 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
464 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
466 static ssize_t regulator_max_uA_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
474 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
476 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
478 static ssize_t regulator_min_uV_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 if (!rdev->constraints)
484 return sprintf(buf, "constraint not defined\n");
486 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
488 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
490 static ssize_t regulator_max_uV_show(struct device *dev,
491 struct device_attribute *attr, char *buf)
493 struct regulator_dev *rdev = dev_get_drvdata(dev);
495 if (!rdev->constraints)
496 return sprintf(buf, "constraint not defined\n");
498 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
500 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
502 static ssize_t regulator_total_uA_show(struct device *dev,
503 struct device_attribute *attr, char *buf)
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
506 struct regulator *regulator;
509 mutex_lock(&rdev->mutex);
510 list_for_each_entry(regulator, &rdev->consumer_list, list)
511 uA += regulator->uA_load;
512 mutex_unlock(&rdev->mutex);
513 return sprintf(buf, "%d\n", uA);
515 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
517 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
521 return sprintf(buf, "%d\n", rdev->use_count);
523 static DEVICE_ATTR_RO(num_users);
525 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
530 switch (rdev->desc->type) {
531 case REGULATOR_VOLTAGE:
532 return sprintf(buf, "voltage\n");
533 case REGULATOR_CURRENT:
534 return sprintf(buf, "current\n");
536 return sprintf(buf, "unknown\n");
538 static DEVICE_ATTR_RO(type);
540 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
541 struct device_attribute *attr, char *buf)
543 struct regulator_dev *rdev = dev_get_drvdata(dev);
545 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
547 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
548 regulator_suspend_mem_uV_show, NULL);
550 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
551 struct device_attribute *attr, char *buf)
553 struct regulator_dev *rdev = dev_get_drvdata(dev);
555 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
557 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
558 regulator_suspend_disk_uV_show, NULL);
560 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
561 struct device_attribute *attr, char *buf)
563 struct regulator_dev *rdev = dev_get_drvdata(dev);
565 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
567 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
568 regulator_suspend_standby_uV_show, NULL);
570 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
573 struct regulator_dev *rdev = dev_get_drvdata(dev);
575 return regulator_print_opmode(buf,
576 rdev->constraints->state_mem.mode);
578 static DEVICE_ATTR(suspend_mem_mode, 0444,
579 regulator_suspend_mem_mode_show, NULL);
581 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
582 struct device_attribute *attr, char *buf)
584 struct regulator_dev *rdev = dev_get_drvdata(dev);
586 return regulator_print_opmode(buf,
587 rdev->constraints->state_disk.mode);
589 static DEVICE_ATTR(suspend_disk_mode, 0444,
590 regulator_suspend_disk_mode_show, NULL);
592 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
593 struct device_attribute *attr, char *buf)
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
597 return regulator_print_opmode(buf,
598 rdev->constraints->state_standby.mode);
600 static DEVICE_ATTR(suspend_standby_mode, 0444,
601 regulator_suspend_standby_mode_show, NULL);
603 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
604 struct device_attribute *attr, char *buf)
606 struct regulator_dev *rdev = dev_get_drvdata(dev);
608 return regulator_print_state(buf,
609 rdev->constraints->state_mem.enabled);
611 static DEVICE_ATTR(suspend_mem_state, 0444,
612 regulator_suspend_mem_state_show, NULL);
614 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
615 struct device_attribute *attr, char *buf)
617 struct regulator_dev *rdev = dev_get_drvdata(dev);
619 return regulator_print_state(buf,
620 rdev->constraints->state_disk.enabled);
622 static DEVICE_ATTR(suspend_disk_state, 0444,
623 regulator_suspend_disk_state_show, NULL);
625 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
626 struct device_attribute *attr, char *buf)
628 struct regulator_dev *rdev = dev_get_drvdata(dev);
630 return regulator_print_state(buf,
631 rdev->constraints->state_standby.enabled);
633 static DEVICE_ATTR(suspend_standby_state, 0444,
634 regulator_suspend_standby_state_show, NULL);
636 static ssize_t regulator_bypass_show(struct device *dev,
637 struct device_attribute *attr, char *buf)
639 struct regulator_dev *rdev = dev_get_drvdata(dev);
644 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
653 return sprintf(buf, "%s\n", report);
655 static DEVICE_ATTR(bypass, 0444,
656 regulator_bypass_show, NULL);
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev *rdev)
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
666 lockdep_assert_held_once(&rdev->mutex);
669 * first check to see if we can set modes at all, otherwise just
670 * tell the consumer everything is OK.
672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
675 if (!rdev->desc->ops->get_optimum_mode &&
676 !rdev->desc->ops->set_load)
679 if (!rdev->desc->ops->set_mode &&
680 !rdev->desc->ops->set_load)
683 /* calc total requested load */
684 list_for_each_entry(sibling, &rdev->consumer_list, list)
685 current_uA += sibling->uA_load;
687 current_uA += rdev->constraints->system_load;
689 if (rdev->desc->ops->set_load) {
690 /* set the optimum mode for our new total regulator load */
691 err = rdev->desc->ops->set_load(rdev, current_uA);
693 rdev_err(rdev, "failed to set load %d\n", current_uA);
695 /* get output voltage */
696 output_uV = _regulator_get_voltage(rdev);
697 if (output_uV <= 0) {
698 rdev_err(rdev, "invalid output voltage found\n");
702 /* get input voltage */
705 input_uV = regulator_get_voltage(rdev->supply);
707 input_uV = rdev->constraints->input_uV;
709 rdev_err(rdev, "invalid input voltage found\n");
713 /* now get the optimum mode for our new total regulator load */
714 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
715 output_uV, current_uA);
717 /* check the new mode is allowed */
718 err = regulator_mode_constrain(rdev, &mode);
720 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721 current_uA, input_uV, output_uV);
725 err = rdev->desc->ops->set_mode(rdev, mode);
727 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
733 static int suspend_set_state(struct regulator_dev *rdev,
734 struct regulator_state *rstate)
738 /* If we have no suspend mode configration don't set anything;
739 * only warn if the driver implements set_suspend_voltage or
740 * set_suspend_mode callback.
742 if (!rstate->enabled && !rstate->disabled) {
743 if (rdev->desc->ops->set_suspend_voltage ||
744 rdev->desc->ops->set_suspend_mode)
745 rdev_warn(rdev, "No configuration\n");
749 if (rstate->enabled && rstate->disabled) {
750 rdev_err(rdev, "invalid configuration\n");
754 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
755 ret = rdev->desc->ops->set_suspend_enable(rdev);
756 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
757 ret = rdev->desc->ops->set_suspend_disable(rdev);
758 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
762 rdev_err(rdev, "failed to enabled/disable\n");
766 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
767 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
769 rdev_err(rdev, "failed to set voltage\n");
774 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
775 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
777 rdev_err(rdev, "failed to set mode\n");
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
787 if (!rdev->constraints)
791 case PM_SUSPEND_STANDBY:
792 return suspend_set_state(rdev,
793 &rdev->constraints->state_standby);
795 return suspend_set_state(rdev,
796 &rdev->constraints->state_mem);
798 return suspend_set_state(rdev,
799 &rdev->constraints->state_disk);
805 static void print_constraints(struct regulator_dev *rdev)
807 struct regulation_constraints *constraints = rdev->constraints;
809 size_t len = sizeof(buf) - 1;
813 if (constraints->min_uV && constraints->max_uV) {
814 if (constraints->min_uV == constraints->max_uV)
815 count += scnprintf(buf + count, len - count, "%d mV ",
816 constraints->min_uV / 1000);
818 count += scnprintf(buf + count, len - count,
820 constraints->min_uV / 1000,
821 constraints->max_uV / 1000);
824 if (!constraints->min_uV ||
825 constraints->min_uV != constraints->max_uV) {
826 ret = _regulator_get_voltage(rdev);
828 count += scnprintf(buf + count, len - count,
829 "at %d mV ", ret / 1000);
832 if (constraints->uV_offset)
833 count += scnprintf(buf + count, len - count, "%dmV offset ",
834 constraints->uV_offset / 1000);
836 if (constraints->min_uA && constraints->max_uA) {
837 if (constraints->min_uA == constraints->max_uA)
838 count += scnprintf(buf + count, len - count, "%d mA ",
839 constraints->min_uA / 1000);
841 count += scnprintf(buf + count, len - count,
843 constraints->min_uA / 1000,
844 constraints->max_uA / 1000);
847 if (!constraints->min_uA ||
848 constraints->min_uA != constraints->max_uA) {
849 ret = _regulator_get_current_limit(rdev);
851 count += scnprintf(buf + count, len - count,
852 "at %d mA ", ret / 1000);
855 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
856 count += scnprintf(buf + count, len - count, "fast ");
857 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
858 count += scnprintf(buf + count, len - count, "normal ");
859 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
860 count += scnprintf(buf + count, len - count, "idle ");
861 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
862 count += scnprintf(buf + count, len - count, "standby");
865 scnprintf(buf, len, "no parameters");
867 rdev_dbg(rdev, "%s\n", buf);
869 if ((constraints->min_uV != constraints->max_uV) &&
870 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
872 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
875 static int machine_constraints_voltage(struct regulator_dev *rdev,
876 struct regulation_constraints *constraints)
878 const struct regulator_ops *ops = rdev->desc->ops;
881 /* do we need to apply the constraint voltage */
882 if (rdev->constraints->apply_uV &&
883 rdev->constraints->min_uV && rdev->constraints->max_uV) {
884 int target_min, target_max;
885 int current_uV = _regulator_get_voltage(rdev);
886 if (current_uV < 0) {
888 "failed to get the current voltage(%d)\n",
894 * If we're below the minimum voltage move up to the
895 * minimum voltage, if we're above the maximum voltage
896 * then move down to the maximum.
898 target_min = current_uV;
899 target_max = current_uV;
901 if (current_uV < rdev->constraints->min_uV) {
902 target_min = rdev->constraints->min_uV;
903 target_max = rdev->constraints->min_uV;
906 if (current_uV > rdev->constraints->max_uV) {
907 target_min = rdev->constraints->max_uV;
908 target_max = rdev->constraints->max_uV;
911 if (target_min != current_uV || target_max != current_uV) {
912 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
913 current_uV, target_min, target_max);
914 ret = _regulator_do_set_voltage(
915 rdev, target_min, target_max);
918 "failed to apply %d-%duV constraint(%d)\n",
919 target_min, target_max, ret);
925 /* constrain machine-level voltage specs to fit
926 * the actual range supported by this regulator.
928 if (ops->list_voltage && rdev->desc->n_voltages) {
929 int count = rdev->desc->n_voltages;
931 int min_uV = INT_MAX;
932 int max_uV = INT_MIN;
933 int cmin = constraints->min_uV;
934 int cmax = constraints->max_uV;
936 /* it's safe to autoconfigure fixed-voltage supplies
937 and the constraints are used by list_voltage. */
938 if (count == 1 && !cmin) {
941 constraints->min_uV = cmin;
942 constraints->max_uV = cmax;
945 /* voltage constraints are optional */
946 if ((cmin == 0) && (cmax == 0))
949 /* else require explicit machine-level constraints */
950 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
951 rdev_err(rdev, "invalid voltage constraints\n");
955 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956 for (i = 0; i < count; i++) {
959 value = ops->list_voltage(rdev, i);
963 /* maybe adjust [min_uV..max_uV] */
964 if (value >= cmin && value < min_uV)
966 if (value <= cmax && value > max_uV)
970 /* final: [min_uV..max_uV] valid iff constraints valid */
971 if (max_uV < min_uV) {
973 "unsupportable voltage constraints %u-%uuV\n",
978 /* use regulator's subset of machine constraints */
979 if (constraints->min_uV < min_uV) {
980 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
981 constraints->min_uV, min_uV);
982 constraints->min_uV = min_uV;
984 if (constraints->max_uV > max_uV) {
985 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
986 constraints->max_uV, max_uV);
987 constraints->max_uV = max_uV;
994 static int machine_constraints_current(struct regulator_dev *rdev,
995 struct regulation_constraints *constraints)
997 const struct regulator_ops *ops = rdev->desc->ops;
1000 if (!constraints->min_uA && !constraints->max_uA)
1003 if (constraints->min_uA > constraints->max_uA) {
1004 rdev_err(rdev, "Invalid current constraints\n");
1008 if (!ops->set_current_limit || !ops->get_current_limit) {
1009 rdev_warn(rdev, "Operation of current configuration missing\n");
1013 /* Set regulator current in constraints range */
1014 ret = ops->set_current_limit(rdev, constraints->min_uA,
1015 constraints->max_uA);
1017 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024 static int _regulator_do_enable(struct regulator_dev *rdev);
1027 * set_machine_constraints - sets regulator constraints
1028 * @rdev: regulator source
1029 * @constraints: constraints to apply
1031 * Allows platform initialisation code to define and constrain
1032 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1033 * Constraints *must* be set by platform code in order for some
1034 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1037 static int set_machine_constraints(struct regulator_dev *rdev,
1038 const struct regulation_constraints *constraints)
1041 const struct regulator_ops *ops = rdev->desc->ops;
1044 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1047 rdev->constraints = kzalloc(sizeof(*constraints),
1049 if (!rdev->constraints)
1052 ret = machine_constraints_voltage(rdev, rdev->constraints);
1056 ret = machine_constraints_current(rdev, rdev->constraints);
1060 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1061 ret = ops->set_input_current_limit(rdev,
1062 rdev->constraints->ilim_uA);
1064 rdev_err(rdev, "failed to set input limit\n");
1069 /* do we need to setup our suspend state */
1070 if (rdev->constraints->initial_state) {
1071 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1073 rdev_err(rdev, "failed to set suspend state\n");
1078 if (rdev->constraints->initial_mode) {
1079 if (!ops->set_mode) {
1080 rdev_err(rdev, "no set_mode operation\n");
1084 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1086 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1091 /* If the constraints say the regulator should be on at this point
1092 * and we have control then make sure it is enabled.
1094 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1095 ret = _regulator_do_enable(rdev);
1096 if (ret < 0 && ret != -EINVAL) {
1097 rdev_err(rdev, "failed to enable\n");
1102 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1103 && ops->set_ramp_delay) {
1104 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1106 rdev_err(rdev, "failed to set ramp_delay\n");
1111 if (rdev->constraints->pull_down && ops->set_pull_down) {
1112 ret = ops->set_pull_down(rdev);
1114 rdev_err(rdev, "failed to set pull down\n");
1119 if (rdev->constraints->soft_start && ops->set_soft_start) {
1120 ret = ops->set_soft_start(rdev);
1122 rdev_err(rdev, "failed to set soft start\n");
1127 if (rdev->constraints->over_current_protection
1128 && ops->set_over_current_protection) {
1129 ret = ops->set_over_current_protection(rdev);
1131 rdev_err(rdev, "failed to set over current protection\n");
1136 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1137 bool ad_state = (rdev->constraints->active_discharge ==
1138 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1140 ret = ops->set_active_discharge(rdev, ad_state);
1142 rdev_err(rdev, "failed to set active discharge\n");
1147 print_constraints(rdev);
1152 * set_supply - set regulator supply regulator
1153 * @rdev: regulator name
1154 * @supply_rdev: supply regulator name
1156 * Called by platform initialisation code to set the supply regulator for this
1157 * regulator. This ensures that a regulators supply will also be enabled by the
1158 * core if it's child is enabled.
1160 static int set_supply(struct regulator_dev *rdev,
1161 struct regulator_dev *supply_rdev)
1165 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1167 if (!try_module_get(supply_rdev->owner))
1170 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1171 if (rdev->supply == NULL) {
1175 supply_rdev->open_count++;
1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182 * @rdev: regulator source
1183 * @consumer_dev_name: dev_name() string for device supply applies to
1184 * @supply: symbolic name for supply
1186 * Allows platform initialisation code to map physical regulator
1187 * sources to symbolic names for supplies for use by devices. Devices
1188 * should use these symbolic names to request regulators, avoiding the
1189 * need to provide board-specific regulator names as platform data.
1191 static int set_consumer_device_supply(struct regulator_dev *rdev,
1192 const char *consumer_dev_name,
1195 struct regulator_map *node;
1201 if (consumer_dev_name != NULL)
1206 list_for_each_entry(node, ®ulator_map_list, list) {
1207 if (node->dev_name && consumer_dev_name) {
1208 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1210 } else if (node->dev_name || consumer_dev_name) {
1214 if (strcmp(node->supply, supply) != 0)
1217 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1219 dev_name(&node->regulator->dev),
1220 node->regulator->desc->name,
1222 dev_name(&rdev->dev), rdev_get_name(rdev));
1226 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1230 node->regulator = rdev;
1231 node->supply = supply;
1234 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1235 if (node->dev_name == NULL) {
1241 list_add(&node->list, ®ulator_map_list);
1245 static void unset_regulator_supplies(struct regulator_dev *rdev)
1247 struct regulator_map *node, *n;
1249 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1250 if (rdev == node->regulator) {
1251 list_del(&node->list);
1252 kfree(node->dev_name);
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t constraint_flags_read_file(struct file *file,
1260 char __user *user_buf,
1261 size_t count, loff_t *ppos)
1263 const struct regulator *regulator = file->private_data;
1264 const struct regulation_constraints *c = regulator->rdev->constraints;
1271 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1275 ret = snprintf(buf, PAGE_SIZE,
1279 "ramp_disable: %u\n"
1282 "over_current_protection: %u\n",
1289 c->over_current_protection);
1291 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1299 static const struct file_operations constraint_flags_fops = {
1300 #ifdef CONFIG_DEBUG_FS
1301 .open = simple_open,
1302 .read = constraint_flags_read_file,
1303 .llseek = default_llseek,
1307 #define REG_STR_SIZE 64
1309 static struct regulator *create_regulator(struct regulator_dev *rdev,
1311 const char *supply_name)
1313 struct regulator *regulator;
1314 char buf[REG_STR_SIZE];
1317 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1318 if (regulator == NULL)
1321 mutex_lock(&rdev->mutex);
1322 regulator->rdev = rdev;
1323 list_add(®ulator->list, &rdev->consumer_list);
1326 regulator->dev = dev;
1328 /* Add a link to the device sysfs entry */
1329 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1330 dev->kobj.name, supply_name);
1331 if (size >= REG_STR_SIZE)
1334 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1335 if (regulator->supply_name == NULL)
1338 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1341 rdev_dbg(rdev, "could not add device link %s err %d\n",
1342 dev->kobj.name, err);
1346 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1347 if (regulator->supply_name == NULL)
1351 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1353 if (!regulator->debugfs) {
1354 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1356 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1357 ®ulator->uA_load);
1358 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1359 ®ulator->min_uV);
1360 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1361 ®ulator->max_uV);
1362 debugfs_create_file("constraint_flags", 0444,
1363 regulator->debugfs, regulator,
1364 &constraint_flags_fops);
1368 * Check now if the regulator is an always on regulator - if
1369 * it is then we don't need to do nearly so much work for
1370 * enable/disable calls.
1372 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1373 _regulator_is_enabled(rdev))
1374 regulator->always_on = true;
1376 mutex_unlock(&rdev->mutex);
1379 list_del(®ulator->list);
1381 mutex_unlock(&rdev->mutex);
1385 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1387 if (rdev->constraints && rdev->constraints->enable_time)
1388 return rdev->constraints->enable_time;
1389 if (!rdev->desc->ops->enable_time)
1390 return rdev->desc->enable_time;
1391 return rdev->desc->ops->enable_time(rdev);
1394 static struct regulator_supply_alias *regulator_find_supply_alias(
1395 struct device *dev, const char *supply)
1397 struct regulator_supply_alias *map;
1399 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1400 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1406 static void regulator_supply_alias(struct device **dev, const char **supply)
1408 struct regulator_supply_alias *map;
1410 map = regulator_find_supply_alias(*dev, *supply);
1412 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1413 *supply, map->alias_supply,
1414 dev_name(map->alias_dev));
1415 *dev = map->alias_dev;
1416 *supply = map->alias_supply;
1420 static int of_node_match(struct device *dev, const void *data)
1422 return dev->of_node == data;
1425 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1429 dev = class_find_device(®ulator_class, NULL, np, of_node_match);
1431 return dev ? dev_to_rdev(dev) : NULL;
1434 static int regulator_match(struct device *dev, const void *data)
1436 struct regulator_dev *r = dev_to_rdev(dev);
1438 return strcmp(rdev_get_name(r), data) == 0;
1441 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1445 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1447 return dev ? dev_to_rdev(dev) : NULL;
1451 * regulator_dev_lookup - lookup a regulator device.
1452 * @dev: device for regulator "consumer".
1453 * @supply: Supply name or regulator ID.
1454 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1455 * lookup could succeed in the future.
1457 * If successful, returns a struct regulator_dev that corresponds to the name
1458 * @supply and with the embedded struct device refcount incremented by one.
1459 * The refcount must be dropped by calling put_device().
1460 * On failure one of the following ERR-PTR-encoded values is returned:
1461 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1464 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1467 struct regulator_dev *r;
1468 struct device_node *node;
1469 struct regulator_map *map;
1470 const char *devname = NULL;
1472 regulator_supply_alias(&dev, &supply);
1474 /* first do a dt based lookup */
1475 if (dev && dev->of_node) {
1476 node = of_get_regulator(dev, supply);
1478 r = of_find_regulator_by_node(node);
1483 * We have a node, but there is no device.
1484 * assume it has not registered yet.
1486 return ERR_PTR(-EPROBE_DEFER);
1490 /* if not found, try doing it non-dt way */
1492 devname = dev_name(dev);
1494 r = regulator_lookup_by_name(supply);
1498 mutex_lock(®ulator_list_mutex);
1499 list_for_each_entry(map, ®ulator_map_list, list) {
1500 /* If the mapping has a device set up it must match */
1501 if (map->dev_name &&
1502 (!devname || strcmp(map->dev_name, devname)))
1505 if (strcmp(map->supply, supply) == 0 &&
1506 get_device(&map->regulator->dev)) {
1511 mutex_unlock(®ulator_list_mutex);
1516 return ERR_PTR(-ENODEV);
1519 static int regulator_resolve_supply(struct regulator_dev *rdev)
1521 struct regulator_dev *r;
1522 struct device *dev = rdev->dev.parent;
1525 /* No supply to resovle? */
1526 if (!rdev->supply_name)
1529 /* Supply already resolved? */
1533 r = regulator_dev_lookup(dev, rdev->supply_name);
1537 if (ret == -ENODEV) {
1539 * No supply was specified for this regulator and
1540 * there will never be one.
1545 /* Did the lookup explicitly defer for us? */
1546 if (ret == -EPROBE_DEFER)
1549 if (have_full_constraints()) {
1550 r = dummy_regulator_rdev;
1551 get_device(&r->dev);
1553 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1554 rdev->supply_name, rdev->desc->name);
1555 return -EPROBE_DEFER;
1560 * If the supply's parent device is not the same as the
1561 * regulator's parent device, then ensure the parent device
1562 * is bound before we resolve the supply, in case the parent
1563 * device get probe deferred and unregisters the supply.
1565 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1566 if (!device_is_bound(r->dev.parent)) {
1567 put_device(&r->dev);
1568 return -EPROBE_DEFER;
1572 /* Recursively resolve the supply of the supply */
1573 ret = regulator_resolve_supply(r);
1575 put_device(&r->dev);
1579 ret = set_supply(rdev, r);
1581 put_device(&r->dev);
1585 /* Cascade always-on state to supply */
1586 if (_regulator_is_enabled(rdev)) {
1587 ret = regulator_enable(rdev->supply);
1589 _regulator_put(rdev->supply);
1590 rdev->supply = NULL;
1598 /* Internal regulator request function */
1599 struct regulator *_regulator_get(struct device *dev, const char *id,
1600 enum regulator_get_type get_type)
1602 struct regulator_dev *rdev;
1603 struct regulator *regulator;
1604 const char *devname = dev ? dev_name(dev) : "deviceless";
1607 if (get_type >= MAX_GET_TYPE) {
1608 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1609 return ERR_PTR(-EINVAL);
1613 pr_err("get() with no identifier\n");
1614 return ERR_PTR(-EINVAL);
1617 rdev = regulator_dev_lookup(dev, id);
1619 ret = PTR_ERR(rdev);
1622 * If regulator_dev_lookup() fails with error other
1623 * than -ENODEV our job here is done, we simply return it.
1626 return ERR_PTR(ret);
1628 if (!have_full_constraints()) {
1630 "incomplete constraints, dummy supplies not allowed\n");
1631 return ERR_PTR(-ENODEV);
1637 * Assume that a regulator is physically present and
1638 * enabled, even if it isn't hooked up, and just
1642 "%s supply %s not found, using dummy regulator\n",
1644 rdev = dummy_regulator_rdev;
1645 get_device(&rdev->dev);
1650 "dummy supplies not allowed for exclusive requests\n");
1654 return ERR_PTR(-ENODEV);
1658 if (rdev->exclusive) {
1659 regulator = ERR_PTR(-EPERM);
1660 put_device(&rdev->dev);
1664 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1665 regulator = ERR_PTR(-EBUSY);
1666 put_device(&rdev->dev);
1670 ret = regulator_resolve_supply(rdev);
1672 regulator = ERR_PTR(ret);
1673 put_device(&rdev->dev);
1677 if (!try_module_get(rdev->owner)) {
1678 regulator = ERR_PTR(-EPROBE_DEFER);
1679 put_device(&rdev->dev);
1683 regulator = create_regulator(rdev, dev, id);
1684 if (regulator == NULL) {
1685 regulator = ERR_PTR(-ENOMEM);
1686 put_device(&rdev->dev);
1687 module_put(rdev->owner);
1692 if (get_type == EXCLUSIVE_GET) {
1693 rdev->exclusive = 1;
1695 ret = _regulator_is_enabled(rdev);
1697 rdev->use_count = 1;
1699 rdev->use_count = 0;
1706 * regulator_get - lookup and obtain a reference to a regulator.
1707 * @dev: device for regulator "consumer"
1708 * @id: Supply name or regulator ID.
1710 * Returns a struct regulator corresponding to the regulator producer,
1711 * or IS_ERR() condition containing errno.
1713 * Use of supply names configured via regulator_set_device_supply() is
1714 * strongly encouraged. It is recommended that the supply name used
1715 * should match the name used for the supply and/or the relevant
1716 * device pins in the datasheet.
1718 struct regulator *regulator_get(struct device *dev, const char *id)
1720 return _regulator_get(dev, id, NORMAL_GET);
1722 EXPORT_SYMBOL_GPL(regulator_get);
1725 * regulator_get_exclusive - obtain exclusive access to a regulator.
1726 * @dev: device for regulator "consumer"
1727 * @id: Supply name or regulator ID.
1729 * Returns a struct regulator corresponding to the regulator producer,
1730 * or IS_ERR() condition containing errno. Other consumers will be
1731 * unable to obtain this regulator while this reference is held and the
1732 * use count for the regulator will be initialised to reflect the current
1733 * state of the regulator.
1735 * This is intended for use by consumers which cannot tolerate shared
1736 * use of the regulator such as those which need to force the
1737 * regulator off for correct operation of the hardware they are
1740 * Use of supply names configured via regulator_set_device_supply() is
1741 * strongly encouraged. It is recommended that the supply name used
1742 * should match the name used for the supply and/or the relevant
1743 * device pins in the datasheet.
1745 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1747 return _regulator_get(dev, id, EXCLUSIVE_GET);
1749 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1752 * regulator_get_optional - obtain optional access to a regulator.
1753 * @dev: device for regulator "consumer"
1754 * @id: Supply name or regulator ID.
1756 * Returns a struct regulator corresponding to the regulator producer,
1757 * or IS_ERR() condition containing errno.
1759 * This is intended for use by consumers for devices which can have
1760 * some supplies unconnected in normal use, such as some MMC devices.
1761 * It can allow the regulator core to provide stub supplies for other
1762 * supplies requested using normal regulator_get() calls without
1763 * disrupting the operation of drivers that can handle absent
1766 * Use of supply names configured via regulator_set_device_supply() is
1767 * strongly encouraged. It is recommended that the supply name used
1768 * should match the name used for the supply and/or the relevant
1769 * device pins in the datasheet.
1771 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1773 return _regulator_get(dev, id, OPTIONAL_GET);
1775 EXPORT_SYMBOL_GPL(regulator_get_optional);
1777 /* regulator_list_mutex lock held by regulator_put() */
1778 static void _regulator_put(struct regulator *regulator)
1780 struct regulator_dev *rdev;
1782 if (IS_ERR_OR_NULL(regulator))
1785 lockdep_assert_held_once(®ulator_list_mutex);
1787 rdev = regulator->rdev;
1789 debugfs_remove_recursive(regulator->debugfs);
1791 /* remove any sysfs entries */
1793 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1794 mutex_lock(&rdev->mutex);
1795 list_del(®ulator->list);
1798 rdev->exclusive = 0;
1799 put_device(&rdev->dev);
1800 mutex_unlock(&rdev->mutex);
1802 kfree(regulator->supply_name);
1805 module_put(rdev->owner);
1809 * regulator_put - "free" the regulator source
1810 * @regulator: regulator source
1812 * Note: drivers must ensure that all regulator_enable calls made on this
1813 * regulator source are balanced by regulator_disable calls prior to calling
1816 void regulator_put(struct regulator *regulator)
1818 mutex_lock(®ulator_list_mutex);
1819 _regulator_put(regulator);
1820 mutex_unlock(®ulator_list_mutex);
1822 EXPORT_SYMBOL_GPL(regulator_put);
1825 * regulator_register_supply_alias - Provide device alias for supply lookup
1827 * @dev: device that will be given as the regulator "consumer"
1828 * @id: Supply name or regulator ID
1829 * @alias_dev: device that should be used to lookup the supply
1830 * @alias_id: Supply name or regulator ID that should be used to lookup the
1833 * All lookups for id on dev will instead be conducted for alias_id on
1836 int regulator_register_supply_alias(struct device *dev, const char *id,
1837 struct device *alias_dev,
1838 const char *alias_id)
1840 struct regulator_supply_alias *map;
1842 map = regulator_find_supply_alias(dev, id);
1846 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1851 map->src_supply = id;
1852 map->alias_dev = alias_dev;
1853 map->alias_supply = alias_id;
1855 list_add(&map->list, ®ulator_supply_alias_list);
1857 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1858 id, dev_name(dev), alias_id, dev_name(alias_dev));
1862 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1865 * regulator_unregister_supply_alias - Remove device alias
1867 * @dev: device that will be given as the regulator "consumer"
1868 * @id: Supply name or regulator ID
1870 * Remove a lookup alias if one exists for id on dev.
1872 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1874 struct regulator_supply_alias *map;
1876 map = regulator_find_supply_alias(dev, id);
1878 list_del(&map->list);
1882 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1885 * regulator_bulk_register_supply_alias - register multiple aliases
1887 * @dev: device that will be given as the regulator "consumer"
1888 * @id: List of supply names or regulator IDs
1889 * @alias_dev: device that should be used to lookup the supply
1890 * @alias_id: List of supply names or regulator IDs that should be used to
1892 * @num_id: Number of aliases to register
1894 * @return 0 on success, an errno on failure.
1896 * This helper function allows drivers to register several supply
1897 * aliases in one operation. If any of the aliases cannot be
1898 * registered any aliases that were registered will be removed
1899 * before returning to the caller.
1901 int regulator_bulk_register_supply_alias(struct device *dev,
1902 const char *const *id,
1903 struct device *alias_dev,
1904 const char *const *alias_id,
1910 for (i = 0; i < num_id; ++i) {
1911 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1921 "Failed to create supply alias %s,%s -> %s,%s\n",
1922 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1925 regulator_unregister_supply_alias(dev, id[i]);
1929 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1932 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1934 * @dev: device that will be given as the regulator "consumer"
1935 * @id: List of supply names or regulator IDs
1936 * @num_id: Number of aliases to unregister
1938 * This helper function allows drivers to unregister several supply
1939 * aliases in one operation.
1941 void regulator_bulk_unregister_supply_alias(struct device *dev,
1942 const char *const *id,
1947 for (i = 0; i < num_id; ++i)
1948 regulator_unregister_supply_alias(dev, id[i]);
1950 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1953 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1954 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1955 const struct regulator_config *config)
1957 struct regulator_enable_gpio *pin;
1958 struct gpio_desc *gpiod;
1961 gpiod = gpio_to_desc(config->ena_gpio);
1963 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
1964 if (pin->gpiod == gpiod) {
1965 rdev_dbg(rdev, "GPIO %d is already used\n",
1967 goto update_ena_gpio_to_rdev;
1971 ret = gpio_request_one(config->ena_gpio,
1972 GPIOF_DIR_OUT | config->ena_gpio_flags,
1973 rdev_get_name(rdev));
1977 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1979 gpio_free(config->ena_gpio);
1984 pin->ena_gpio_invert = config->ena_gpio_invert;
1985 list_add(&pin->list, ®ulator_ena_gpio_list);
1987 update_ena_gpio_to_rdev:
1988 pin->request_count++;
1989 rdev->ena_pin = pin;
1993 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1995 struct regulator_enable_gpio *pin, *n;
2000 /* Free the GPIO only in case of no use */
2001 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2002 if (pin->gpiod == rdev->ena_pin->gpiod) {
2003 if (pin->request_count <= 1) {
2004 pin->request_count = 0;
2005 gpiod_put(pin->gpiod);
2006 list_del(&pin->list);
2008 rdev->ena_pin = NULL;
2011 pin->request_count--;
2018 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2019 * @rdev: regulator_dev structure
2020 * @enable: enable GPIO at initial use?
2022 * GPIO is enabled in case of initial use. (enable_count is 0)
2023 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2025 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2027 struct regulator_enable_gpio *pin = rdev->ena_pin;
2033 /* Enable GPIO at initial use */
2034 if (pin->enable_count == 0)
2035 gpiod_set_value_cansleep(pin->gpiod,
2036 !pin->ena_gpio_invert);
2038 pin->enable_count++;
2040 if (pin->enable_count > 1) {
2041 pin->enable_count--;
2045 /* Disable GPIO if not used */
2046 if (pin->enable_count <= 1) {
2047 gpiod_set_value_cansleep(pin->gpiod,
2048 pin->ena_gpio_invert);
2049 pin->enable_count = 0;
2057 * _regulator_enable_delay - a delay helper function
2058 * @delay: time to delay in microseconds
2060 * Delay for the requested amount of time as per the guidelines in:
2062 * Documentation/timers/timers-howto.txt
2064 * The assumption here is that regulators will never be enabled in
2065 * atomic context and therefore sleeping functions can be used.
2067 static void _regulator_enable_delay(unsigned int delay)
2069 unsigned int ms = delay / 1000;
2070 unsigned int us = delay % 1000;
2074 * For small enough values, handle super-millisecond
2075 * delays in the usleep_range() call below.
2084 * Give the scheduler some room to coalesce with any other
2085 * wakeup sources. For delays shorter than 10 us, don't even
2086 * bother setting up high-resolution timers and just busy-
2090 usleep_range(us, us + 100);
2095 static int _regulator_do_enable(struct regulator_dev *rdev)
2099 /* Query before enabling in case configuration dependent. */
2100 ret = _regulator_get_enable_time(rdev);
2104 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2108 trace_regulator_enable(rdev_get_name(rdev));
2110 if (rdev->desc->off_on_delay) {
2111 /* if needed, keep a distance of off_on_delay from last time
2112 * this regulator was disabled.
2114 unsigned long start_jiffy = jiffies;
2115 unsigned long intended, max_delay, remaining;
2117 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2118 intended = rdev->last_off_jiffy + max_delay;
2120 if (time_before(start_jiffy, intended)) {
2121 /* calc remaining jiffies to deal with one-time
2123 * in case of multiple timer wrapping, either it can be
2124 * detected by out-of-range remaining, or it cannot be
2125 * detected and we gets a panelty of
2126 * _regulator_enable_delay().
2128 remaining = intended - start_jiffy;
2129 if (remaining <= max_delay)
2130 _regulator_enable_delay(
2131 jiffies_to_usecs(remaining));
2135 if (rdev->ena_pin) {
2136 if (!rdev->ena_gpio_state) {
2137 ret = regulator_ena_gpio_ctrl(rdev, true);
2140 rdev->ena_gpio_state = 1;
2142 } else if (rdev->desc->ops->enable) {
2143 ret = rdev->desc->ops->enable(rdev);
2150 /* Allow the regulator to ramp; it would be useful to extend
2151 * this for bulk operations so that the regulators can ramp
2153 trace_regulator_enable_delay(rdev_get_name(rdev));
2155 _regulator_enable_delay(delay);
2157 trace_regulator_enable_complete(rdev_get_name(rdev));
2162 /* locks held by regulator_enable() */
2163 static int _regulator_enable(struct regulator_dev *rdev)
2167 lockdep_assert_held_once(&rdev->mutex);
2169 /* check voltage and requested load before enabling */
2170 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2171 drms_uA_update(rdev);
2173 if (rdev->use_count == 0) {
2174 /* The regulator may on if it's not switchable or left on */
2175 ret = _regulator_is_enabled(rdev);
2176 if (ret == -EINVAL || ret == 0) {
2177 if (!regulator_ops_is_valid(rdev,
2178 REGULATOR_CHANGE_STATUS))
2181 ret = _regulator_do_enable(rdev);
2185 } else if (ret < 0) {
2186 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2189 /* Fallthrough on positive return values - already enabled */
2198 * regulator_enable - enable regulator output
2199 * @regulator: regulator source
2201 * Request that the regulator be enabled with the regulator output at
2202 * the predefined voltage or current value. Calls to regulator_enable()
2203 * must be balanced with calls to regulator_disable().
2205 * NOTE: the output value can be set by other drivers, boot loader or may be
2206 * hardwired in the regulator.
2208 int regulator_enable(struct regulator *regulator)
2210 struct regulator_dev *rdev = regulator->rdev;
2213 if (regulator->always_on)
2217 ret = regulator_enable(rdev->supply);
2222 mutex_lock(&rdev->mutex);
2223 ret = _regulator_enable(rdev);
2224 mutex_unlock(&rdev->mutex);
2226 if (ret != 0 && rdev->supply)
2227 regulator_disable(rdev->supply);
2231 EXPORT_SYMBOL_GPL(regulator_enable);
2233 static int _regulator_do_disable(struct regulator_dev *rdev)
2237 trace_regulator_disable(rdev_get_name(rdev));
2239 if (rdev->ena_pin) {
2240 if (rdev->ena_gpio_state) {
2241 ret = regulator_ena_gpio_ctrl(rdev, false);
2244 rdev->ena_gpio_state = 0;
2247 } else if (rdev->desc->ops->disable) {
2248 ret = rdev->desc->ops->disable(rdev);
2253 /* cares about last_off_jiffy only if off_on_delay is required by
2256 if (rdev->desc->off_on_delay)
2257 rdev->last_off_jiffy = jiffies;
2259 trace_regulator_disable_complete(rdev_get_name(rdev));
2264 /* locks held by regulator_disable() */
2265 static int _regulator_disable(struct regulator_dev *rdev)
2269 lockdep_assert_held_once(&rdev->mutex);
2271 if (WARN(rdev->use_count <= 0,
2272 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2275 /* are we the last user and permitted to disable ? */
2276 if (rdev->use_count == 1 &&
2277 (rdev->constraints && !rdev->constraints->always_on)) {
2279 /* we are last user */
2280 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2281 ret = _notifier_call_chain(rdev,
2282 REGULATOR_EVENT_PRE_DISABLE,
2284 if (ret & NOTIFY_STOP_MASK)
2287 ret = _regulator_do_disable(rdev);
2289 rdev_err(rdev, "failed to disable\n");
2290 _notifier_call_chain(rdev,
2291 REGULATOR_EVENT_ABORT_DISABLE,
2295 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2299 rdev->use_count = 0;
2300 } else if (rdev->use_count > 1) {
2301 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2302 drms_uA_update(rdev);
2311 * regulator_disable - disable regulator output
2312 * @regulator: regulator source
2314 * Disable the regulator output voltage or current. Calls to
2315 * regulator_enable() must be balanced with calls to
2316 * regulator_disable().
2318 * NOTE: this will only disable the regulator output if no other consumer
2319 * devices have it enabled, the regulator device supports disabling and
2320 * machine constraints permit this operation.
2322 int regulator_disable(struct regulator *regulator)
2324 struct regulator_dev *rdev = regulator->rdev;
2327 if (regulator->always_on)
2330 mutex_lock(&rdev->mutex);
2331 ret = _regulator_disable(rdev);
2332 mutex_unlock(&rdev->mutex);
2334 if (ret == 0 && rdev->supply)
2335 regulator_disable(rdev->supply);
2339 EXPORT_SYMBOL_GPL(regulator_disable);
2341 /* locks held by regulator_force_disable() */
2342 static int _regulator_force_disable(struct regulator_dev *rdev)
2346 lockdep_assert_held_once(&rdev->mutex);
2348 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2349 REGULATOR_EVENT_PRE_DISABLE, NULL);
2350 if (ret & NOTIFY_STOP_MASK)
2353 ret = _regulator_do_disable(rdev);
2355 rdev_err(rdev, "failed to force disable\n");
2356 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2357 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2361 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2362 REGULATOR_EVENT_DISABLE, NULL);
2368 * regulator_force_disable - force disable regulator output
2369 * @regulator: regulator source
2371 * Forcibly disable the regulator output voltage or current.
2372 * NOTE: this *will* disable the regulator output even if other consumer
2373 * devices have it enabled. This should be used for situations when device
2374 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2376 int regulator_force_disable(struct regulator *regulator)
2378 struct regulator_dev *rdev = regulator->rdev;
2381 mutex_lock(&rdev->mutex);
2382 regulator->uA_load = 0;
2383 ret = _regulator_force_disable(regulator->rdev);
2384 mutex_unlock(&rdev->mutex);
2387 while (rdev->open_count--)
2388 regulator_disable(rdev->supply);
2392 EXPORT_SYMBOL_GPL(regulator_force_disable);
2394 static void regulator_disable_work(struct work_struct *work)
2396 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2400 mutex_lock(&rdev->mutex);
2402 BUG_ON(!rdev->deferred_disables);
2404 count = rdev->deferred_disables;
2405 rdev->deferred_disables = 0;
2407 for (i = 0; i < count; i++) {
2408 ret = _regulator_disable(rdev);
2410 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2413 mutex_unlock(&rdev->mutex);
2416 for (i = 0; i < count; i++) {
2417 ret = regulator_disable(rdev->supply);
2420 "Supply disable failed: %d\n", ret);
2427 * regulator_disable_deferred - disable regulator output with delay
2428 * @regulator: regulator source
2429 * @ms: miliseconds until the regulator is disabled
2431 * Execute regulator_disable() on the regulator after a delay. This
2432 * is intended for use with devices that require some time to quiesce.
2434 * NOTE: this will only disable the regulator output if no other consumer
2435 * devices have it enabled, the regulator device supports disabling and
2436 * machine constraints permit this operation.
2438 int regulator_disable_deferred(struct regulator *regulator, int ms)
2440 struct regulator_dev *rdev = regulator->rdev;
2442 if (regulator->always_on)
2446 return regulator_disable(regulator);
2448 mutex_lock(&rdev->mutex);
2449 rdev->deferred_disables++;
2450 mutex_unlock(&rdev->mutex);
2452 queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2453 msecs_to_jiffies(ms));
2456 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2458 static int _regulator_is_enabled(struct regulator_dev *rdev)
2460 /* A GPIO control always takes precedence */
2462 return rdev->ena_gpio_state;
2464 /* If we don't know then assume that the regulator is always on */
2465 if (!rdev->desc->ops->is_enabled)
2468 return rdev->desc->ops->is_enabled(rdev);
2471 static int _regulator_list_voltage(struct regulator *regulator,
2472 unsigned selector, int lock)
2474 struct regulator_dev *rdev = regulator->rdev;
2475 const struct regulator_ops *ops = rdev->desc->ops;
2478 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2479 return rdev->desc->fixed_uV;
2481 if (ops->list_voltage) {
2482 if (selector >= rdev->desc->n_voltages)
2485 mutex_lock(&rdev->mutex);
2486 ret = ops->list_voltage(rdev, selector);
2488 mutex_unlock(&rdev->mutex);
2489 } else if (rdev->supply) {
2490 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2496 if (ret < rdev->constraints->min_uV)
2498 else if (ret > rdev->constraints->max_uV)
2506 * regulator_is_enabled - is the regulator output enabled
2507 * @regulator: regulator source
2509 * Returns positive if the regulator driver backing the source/client
2510 * has requested that the device be enabled, zero if it hasn't, else a
2511 * negative errno code.
2513 * Note that the device backing this regulator handle can have multiple
2514 * users, so it might be enabled even if regulator_enable() was never
2515 * called for this particular source.
2517 int regulator_is_enabled(struct regulator *regulator)
2521 if (regulator->always_on)
2524 mutex_lock(®ulator->rdev->mutex);
2525 ret = _regulator_is_enabled(regulator->rdev);
2526 mutex_unlock(®ulator->rdev->mutex);
2530 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2533 * regulator_count_voltages - count regulator_list_voltage() selectors
2534 * @regulator: regulator source
2536 * Returns number of selectors, or negative errno. Selectors are
2537 * numbered starting at zero, and typically correspond to bitfields
2538 * in hardware registers.
2540 int regulator_count_voltages(struct regulator *regulator)
2542 struct regulator_dev *rdev = regulator->rdev;
2544 if (rdev->desc->n_voltages)
2545 return rdev->desc->n_voltages;
2550 return regulator_count_voltages(rdev->supply);
2552 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2555 * regulator_list_voltage - enumerate supported voltages
2556 * @regulator: regulator source
2557 * @selector: identify voltage to list
2558 * Context: can sleep
2560 * Returns a voltage that can be passed to @regulator_set_voltage(),
2561 * zero if this selector code can't be used on this system, or a
2564 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2566 return _regulator_list_voltage(regulator, selector, 1);
2568 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2571 * regulator_get_regmap - get the regulator's register map
2572 * @regulator: regulator source
2574 * Returns the register map for the given regulator, or an ERR_PTR value
2575 * if the regulator doesn't use regmap.
2577 struct regmap *regulator_get_regmap(struct regulator *regulator)
2579 struct regmap *map = regulator->rdev->regmap;
2581 return map ? map : ERR_PTR(-EOPNOTSUPP);
2585 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2586 * @regulator: regulator source
2587 * @vsel_reg: voltage selector register, output parameter
2588 * @vsel_mask: mask for voltage selector bitfield, output parameter
2590 * Returns the hardware register offset and bitmask used for setting the
2591 * regulator voltage. This might be useful when configuring voltage-scaling
2592 * hardware or firmware that can make I2C requests behind the kernel's back,
2595 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2596 * and 0 is returned, otherwise a negative errno is returned.
2598 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2600 unsigned *vsel_mask)
2602 struct regulator_dev *rdev = regulator->rdev;
2603 const struct regulator_ops *ops = rdev->desc->ops;
2605 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2608 *vsel_reg = rdev->desc->vsel_reg;
2609 *vsel_mask = rdev->desc->vsel_mask;
2613 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2616 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2617 * @regulator: regulator source
2618 * @selector: identify voltage to list
2620 * Converts the selector to a hardware-specific voltage selector that can be
2621 * directly written to the regulator registers. The address of the voltage
2622 * register can be determined by calling @regulator_get_hardware_vsel_register.
2624 * On error a negative errno is returned.
2626 int regulator_list_hardware_vsel(struct regulator *regulator,
2629 struct regulator_dev *rdev = regulator->rdev;
2630 const struct regulator_ops *ops = rdev->desc->ops;
2632 if (selector >= rdev->desc->n_voltages)
2634 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2639 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2642 * regulator_get_linear_step - return the voltage step size between VSEL values
2643 * @regulator: regulator source
2645 * Returns the voltage step size between VSEL values for linear
2646 * regulators, or return 0 if the regulator isn't a linear regulator.
2648 unsigned int regulator_get_linear_step(struct regulator *regulator)
2650 struct regulator_dev *rdev = regulator->rdev;
2652 return rdev->desc->uV_step;
2654 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2657 * regulator_is_supported_voltage - check if a voltage range can be supported
2659 * @regulator: Regulator to check.
2660 * @min_uV: Minimum required voltage in uV.
2661 * @max_uV: Maximum required voltage in uV.
2663 * Returns a boolean or a negative error code.
2665 int regulator_is_supported_voltage(struct regulator *regulator,
2666 int min_uV, int max_uV)
2668 struct regulator_dev *rdev = regulator->rdev;
2669 int i, voltages, ret;
2671 /* If we can't change voltage check the current voltage */
2672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2673 ret = regulator_get_voltage(regulator);
2675 return min_uV <= ret && ret <= max_uV;
2680 /* Any voltage within constrains range is fine? */
2681 if (rdev->desc->continuous_voltage_range)
2682 return min_uV >= rdev->constraints->min_uV &&
2683 max_uV <= rdev->constraints->max_uV;
2685 ret = regulator_count_voltages(regulator);
2690 for (i = 0; i < voltages; i++) {
2691 ret = regulator_list_voltage(regulator, i);
2693 if (ret >= min_uV && ret <= max_uV)
2699 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2701 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2704 const struct regulator_desc *desc = rdev->desc;
2706 if (desc->ops->map_voltage)
2707 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2709 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2710 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2712 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2713 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2715 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2718 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2719 int min_uV, int max_uV,
2722 struct pre_voltage_change_data data;
2725 data.old_uV = _regulator_get_voltage(rdev);
2726 data.min_uV = min_uV;
2727 data.max_uV = max_uV;
2728 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2730 if (ret & NOTIFY_STOP_MASK)
2733 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2737 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2738 (void *)data.old_uV);
2743 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2744 int uV, unsigned selector)
2746 struct pre_voltage_change_data data;
2749 data.old_uV = _regulator_get_voltage(rdev);
2752 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2754 if (ret & NOTIFY_STOP_MASK)
2757 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2761 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2762 (void *)data.old_uV);
2767 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2768 int old_uV, int new_uV)
2770 unsigned int ramp_delay = 0;
2772 if (rdev->constraints->ramp_delay)
2773 ramp_delay = rdev->constraints->ramp_delay;
2774 else if (rdev->desc->ramp_delay)
2775 ramp_delay = rdev->desc->ramp_delay;
2777 if (ramp_delay == 0) {
2778 rdev_dbg(rdev, "ramp_delay not set\n");
2782 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2785 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2786 int min_uV, int max_uV)
2791 unsigned int selector;
2792 int old_selector = -1;
2793 const struct regulator_ops *ops = rdev->desc->ops;
2794 int old_uV = _regulator_get_voltage(rdev);
2796 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2798 min_uV += rdev->constraints->uV_offset;
2799 max_uV += rdev->constraints->uV_offset;
2802 * If we can't obtain the old selector there is not enough
2803 * info to call set_voltage_time_sel().
2805 if (_regulator_is_enabled(rdev) &&
2806 ops->set_voltage_time_sel && ops->get_voltage_sel) {
2807 old_selector = ops->get_voltage_sel(rdev);
2808 if (old_selector < 0)
2809 return old_selector;
2812 if (ops->set_voltage) {
2813 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2817 if (ops->list_voltage)
2818 best_val = ops->list_voltage(rdev,
2821 best_val = _regulator_get_voltage(rdev);
2824 } else if (ops->set_voltage_sel) {
2825 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2827 best_val = ops->list_voltage(rdev, ret);
2828 if (min_uV <= best_val && max_uV >= best_val) {
2830 if (old_selector == selector)
2833 ret = _regulator_call_set_voltage_sel(
2834 rdev, best_val, selector);
2846 if (ops->set_voltage_time_sel) {
2848 * Call set_voltage_time_sel if successfully obtained
2851 if (old_selector >= 0 && old_selector != selector)
2852 delay = ops->set_voltage_time_sel(rdev, old_selector,
2855 if (old_uV != best_val) {
2856 if (ops->set_voltage_time)
2857 delay = ops->set_voltage_time(rdev, old_uV,
2860 delay = _regulator_set_voltage_time(rdev,
2867 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2871 /* Insert any necessary delays */
2872 if (delay >= 1000) {
2873 mdelay(delay / 1000);
2874 udelay(delay % 1000);
2879 if (best_val >= 0) {
2880 unsigned long data = best_val;
2882 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2887 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2892 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2893 int min_uV, int max_uV)
2895 struct regulator_dev *rdev = regulator->rdev;
2897 int old_min_uV, old_max_uV;
2899 int best_supply_uV = 0;
2900 int supply_change_uV = 0;
2902 /* If we're setting the same range as last time the change
2903 * should be a noop (some cpufreq implementations use the same
2904 * voltage for multiple frequencies, for example).
2906 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2909 /* If we're trying to set a range that overlaps the current voltage,
2910 * return successfully even though the regulator does not support
2911 * changing the voltage.
2913 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2914 current_uV = _regulator_get_voltage(rdev);
2915 if (min_uV <= current_uV && current_uV <= max_uV) {
2916 regulator->min_uV = min_uV;
2917 regulator->max_uV = max_uV;
2923 if (!rdev->desc->ops->set_voltage &&
2924 !rdev->desc->ops->set_voltage_sel) {
2929 /* constraints check */
2930 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2934 /* restore original values in case of error */
2935 old_min_uV = regulator->min_uV;
2936 old_max_uV = regulator->max_uV;
2937 regulator->min_uV = min_uV;
2938 regulator->max_uV = max_uV;
2940 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2944 if (rdev->supply && (rdev->desc->min_dropout_uV ||
2945 !rdev->desc->ops->get_voltage)) {
2946 int current_supply_uV;
2949 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2955 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2956 if (best_supply_uV < 0) {
2957 ret = best_supply_uV;
2961 best_supply_uV += rdev->desc->min_dropout_uV;
2963 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2964 if (current_supply_uV < 0) {
2965 ret = current_supply_uV;
2969 supply_change_uV = best_supply_uV - current_supply_uV;
2972 if (supply_change_uV > 0) {
2973 ret = regulator_set_voltage_unlocked(rdev->supply,
2974 best_supply_uV, INT_MAX);
2976 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2982 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2986 if (supply_change_uV < 0) {
2987 ret = regulator_set_voltage_unlocked(rdev->supply,
2988 best_supply_uV, INT_MAX);
2990 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2992 /* No need to fail here */
2999 regulator->min_uV = old_min_uV;
3000 regulator->max_uV = old_max_uV;
3006 * regulator_set_voltage - set regulator output voltage
3007 * @regulator: regulator source
3008 * @min_uV: Minimum required voltage in uV
3009 * @max_uV: Maximum acceptable voltage in uV
3011 * Sets a voltage regulator to the desired output voltage. This can be set
3012 * during any regulator state. IOW, regulator can be disabled or enabled.
3014 * If the regulator is enabled then the voltage will change to the new value
3015 * immediately otherwise if the regulator is disabled the regulator will
3016 * output at the new voltage when enabled.
3018 * NOTE: If the regulator is shared between several devices then the lowest
3019 * request voltage that meets the system constraints will be used.
3020 * Regulator system constraints must be set for this regulator before
3021 * calling this function otherwise this call will fail.
3023 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3027 regulator_lock_supply(regulator->rdev);
3029 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
3031 regulator_unlock_supply(regulator->rdev);
3035 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3038 * regulator_set_voltage_time - get raise/fall time
3039 * @regulator: regulator source
3040 * @old_uV: starting voltage in microvolts
3041 * @new_uV: target voltage in microvolts
3043 * Provided with the starting and ending voltage, this function attempts to
3044 * calculate the time in microseconds required to rise or fall to this new
3047 int regulator_set_voltage_time(struct regulator *regulator,
3048 int old_uV, int new_uV)
3050 struct regulator_dev *rdev = regulator->rdev;
3051 const struct regulator_ops *ops = rdev->desc->ops;
3057 if (ops->set_voltage_time)
3058 return ops->set_voltage_time(rdev, old_uV, new_uV);
3059 else if (!ops->set_voltage_time_sel)
3060 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3062 /* Currently requires operations to do this */
3063 if (!ops->list_voltage || !rdev->desc->n_voltages)
3066 for (i = 0; i < rdev->desc->n_voltages; i++) {
3067 /* We only look for exact voltage matches here */
3068 voltage = regulator_list_voltage(regulator, i);
3073 if (voltage == old_uV)
3075 if (voltage == new_uV)
3079 if (old_sel < 0 || new_sel < 0)
3082 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3084 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3087 * regulator_set_voltage_time_sel - get raise/fall time
3088 * @rdev: regulator source device
3089 * @old_selector: selector for starting voltage
3090 * @new_selector: selector for target voltage
3092 * Provided with the starting and target voltage selectors, this function
3093 * returns time in microseconds required to rise or fall to this new voltage
3095 * Drivers providing ramp_delay in regulation_constraints can use this as their
3096 * set_voltage_time_sel() operation.
3098 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3099 unsigned int old_selector,
3100 unsigned int new_selector)
3102 int old_volt, new_volt;
3105 if (!rdev->desc->ops->list_voltage)
3108 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3109 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3111 if (rdev->desc->ops->set_voltage_time)
3112 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3115 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3117 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3120 * regulator_sync_voltage - re-apply last regulator output voltage
3121 * @regulator: regulator source
3123 * Re-apply the last configured voltage. This is intended to be used
3124 * where some external control source the consumer is cooperating with
3125 * has caused the configured voltage to change.
3127 int regulator_sync_voltage(struct regulator *regulator)
3129 struct regulator_dev *rdev = regulator->rdev;
3130 int ret, min_uV, max_uV;
3132 mutex_lock(&rdev->mutex);
3134 if (!rdev->desc->ops->set_voltage &&
3135 !rdev->desc->ops->set_voltage_sel) {
3140 /* This is only going to work if we've had a voltage configured. */
3141 if (!regulator->min_uV && !regulator->max_uV) {
3146 min_uV = regulator->min_uV;
3147 max_uV = regulator->max_uV;
3149 /* This should be a paranoia check... */
3150 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3154 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3158 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3161 mutex_unlock(&rdev->mutex);
3164 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3166 static int _regulator_get_voltage(struct regulator_dev *rdev)
3171 if (rdev->desc->ops->get_bypass) {
3172 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3176 /* if bypassed the regulator must have a supply */
3177 if (!rdev->supply) {
3179 "bypassed regulator has no supply!\n");
3180 return -EPROBE_DEFER;
3183 return _regulator_get_voltage(rdev->supply->rdev);
3187 if (rdev->desc->ops->get_voltage_sel) {
3188 sel = rdev->desc->ops->get_voltage_sel(rdev);
3191 ret = rdev->desc->ops->list_voltage(rdev, sel);
3192 } else if (rdev->desc->ops->get_voltage) {
3193 ret = rdev->desc->ops->get_voltage(rdev);
3194 } else if (rdev->desc->ops->list_voltage) {
3195 ret = rdev->desc->ops->list_voltage(rdev, 0);
3196 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3197 ret = rdev->desc->fixed_uV;
3198 } else if (rdev->supply) {
3199 ret = _regulator_get_voltage(rdev->supply->rdev);
3206 return ret - rdev->constraints->uV_offset;
3210 * regulator_get_voltage - get regulator output voltage
3211 * @regulator: regulator source
3213 * This returns the current regulator voltage in uV.
3215 * NOTE: If the regulator is disabled it will return the voltage value. This
3216 * function should not be used to determine regulator state.
3218 int regulator_get_voltage(struct regulator *regulator)
3222 regulator_lock_supply(regulator->rdev);
3224 ret = _regulator_get_voltage(regulator->rdev);
3226 regulator_unlock_supply(regulator->rdev);
3230 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3233 * regulator_set_current_limit - set regulator output current limit
3234 * @regulator: regulator source
3235 * @min_uA: Minimum supported current in uA
3236 * @max_uA: Maximum supported current in uA
3238 * Sets current sink to the desired output current. This can be set during
3239 * any regulator state. IOW, regulator can be disabled or enabled.
3241 * If the regulator is enabled then the current will change to the new value
3242 * immediately otherwise if the regulator is disabled the regulator will
3243 * output at the new current when enabled.
3245 * NOTE: Regulator system constraints must be set for this regulator before
3246 * calling this function otherwise this call will fail.
3248 int regulator_set_current_limit(struct regulator *regulator,
3249 int min_uA, int max_uA)
3251 struct regulator_dev *rdev = regulator->rdev;
3254 mutex_lock(&rdev->mutex);
3257 if (!rdev->desc->ops->set_current_limit) {
3262 /* constraints check */
3263 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3267 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3269 mutex_unlock(&rdev->mutex);
3272 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3274 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3278 mutex_lock(&rdev->mutex);
3281 if (!rdev->desc->ops->get_current_limit) {
3286 ret = rdev->desc->ops->get_current_limit(rdev);
3288 mutex_unlock(&rdev->mutex);
3293 * regulator_get_current_limit - get regulator output current
3294 * @regulator: regulator source
3296 * This returns the current supplied by the specified current sink in uA.
3298 * NOTE: If the regulator is disabled it will return the current value. This
3299 * function should not be used to determine regulator state.
3301 int regulator_get_current_limit(struct regulator *regulator)
3303 return _regulator_get_current_limit(regulator->rdev);
3305 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3308 * regulator_set_mode - set regulator operating mode
3309 * @regulator: regulator source
3310 * @mode: operating mode - one of the REGULATOR_MODE constants
3312 * Set regulator operating mode to increase regulator efficiency or improve
3313 * regulation performance.
3315 * NOTE: Regulator system constraints must be set for this regulator before
3316 * calling this function otherwise this call will fail.
3318 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3320 struct regulator_dev *rdev = regulator->rdev;
3322 int regulator_curr_mode;
3324 mutex_lock(&rdev->mutex);
3327 if (!rdev->desc->ops->set_mode) {
3332 /* return if the same mode is requested */
3333 if (rdev->desc->ops->get_mode) {
3334 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3335 if (regulator_curr_mode == mode) {
3341 /* constraints check */
3342 ret = regulator_mode_constrain(rdev, &mode);
3346 ret = rdev->desc->ops->set_mode(rdev, mode);
3348 mutex_unlock(&rdev->mutex);
3351 EXPORT_SYMBOL_GPL(regulator_set_mode);
3353 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3357 mutex_lock(&rdev->mutex);
3360 if (!rdev->desc->ops->get_mode) {
3365 ret = rdev->desc->ops->get_mode(rdev);
3367 mutex_unlock(&rdev->mutex);
3372 * regulator_get_mode - get regulator operating mode
3373 * @regulator: regulator source
3375 * Get the current regulator operating mode.
3377 unsigned int regulator_get_mode(struct regulator *regulator)
3379 return _regulator_get_mode(regulator->rdev);
3381 EXPORT_SYMBOL_GPL(regulator_get_mode);
3383 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3384 unsigned int *flags)
3388 mutex_lock(&rdev->mutex);
3391 if (!rdev->desc->ops->get_error_flags) {
3396 ret = rdev->desc->ops->get_error_flags(rdev, flags);
3398 mutex_unlock(&rdev->mutex);
3403 * regulator_get_error_flags - get regulator error information
3404 * @regulator: regulator source
3405 * @flags: pointer to store error flags
3407 * Get the current regulator error information.
3409 int regulator_get_error_flags(struct regulator *regulator,
3410 unsigned int *flags)
3412 return _regulator_get_error_flags(regulator->rdev, flags);
3414 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3417 * regulator_set_load - set regulator load
3418 * @regulator: regulator source
3419 * @uA_load: load current
3421 * Notifies the regulator core of a new device load. This is then used by
3422 * DRMS (if enabled by constraints) to set the most efficient regulator
3423 * operating mode for the new regulator loading.
3425 * Consumer devices notify their supply regulator of the maximum power
3426 * they will require (can be taken from device datasheet in the power
3427 * consumption tables) when they change operational status and hence power
3428 * state. Examples of operational state changes that can affect power
3429 * consumption are :-
3431 * o Device is opened / closed.
3432 * o Device I/O is about to begin or has just finished.
3433 * o Device is idling in between work.
3435 * This information is also exported via sysfs to userspace.
3437 * DRMS will sum the total requested load on the regulator and change
3438 * to the most efficient operating mode if platform constraints allow.
3440 * On error a negative errno is returned.
3442 int regulator_set_load(struct regulator *regulator, int uA_load)
3444 struct regulator_dev *rdev = regulator->rdev;
3447 mutex_lock(&rdev->mutex);
3448 regulator->uA_load = uA_load;
3449 ret = drms_uA_update(rdev);
3450 mutex_unlock(&rdev->mutex);
3454 EXPORT_SYMBOL_GPL(regulator_set_load);
3457 * regulator_allow_bypass - allow the regulator to go into bypass mode
3459 * @regulator: Regulator to configure
3460 * @enable: enable or disable bypass mode
3462 * Allow the regulator to go into bypass mode if all other consumers
3463 * for the regulator also enable bypass mode and the machine
3464 * constraints allow this. Bypass mode means that the regulator is
3465 * simply passing the input directly to the output with no regulation.
3467 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3469 struct regulator_dev *rdev = regulator->rdev;
3472 if (!rdev->desc->ops->set_bypass)
3475 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3478 mutex_lock(&rdev->mutex);
3480 if (enable && !regulator->bypass) {
3481 rdev->bypass_count++;
3483 if (rdev->bypass_count == rdev->open_count) {
3484 ret = rdev->desc->ops->set_bypass(rdev, enable);
3486 rdev->bypass_count--;
3489 } else if (!enable && regulator->bypass) {
3490 rdev->bypass_count--;
3492 if (rdev->bypass_count != rdev->open_count) {
3493 ret = rdev->desc->ops->set_bypass(rdev, enable);
3495 rdev->bypass_count++;
3500 regulator->bypass = enable;
3502 mutex_unlock(&rdev->mutex);
3506 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3509 * regulator_register_notifier - register regulator event notifier
3510 * @regulator: regulator source
3511 * @nb: notifier block
3513 * Register notifier block to receive regulator events.
3515 int regulator_register_notifier(struct regulator *regulator,
3516 struct notifier_block *nb)
3518 return blocking_notifier_chain_register(®ulator->rdev->notifier,
3521 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3524 * regulator_unregister_notifier - unregister regulator event notifier
3525 * @regulator: regulator source
3526 * @nb: notifier block
3528 * Unregister regulator event notifier block.
3530 int regulator_unregister_notifier(struct regulator *regulator,
3531 struct notifier_block *nb)
3533 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
3536 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3538 /* notify regulator consumers and downstream regulator consumers.
3539 * Note mutex must be held by caller.
3541 static int _notifier_call_chain(struct regulator_dev *rdev,
3542 unsigned long event, void *data)
3544 /* call rdev chain first */
3545 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3549 * regulator_bulk_get - get multiple regulator consumers
3551 * @dev: Device to supply
3552 * @num_consumers: Number of consumers to register
3553 * @consumers: Configuration of consumers; clients are stored here.
3555 * @return 0 on success, an errno on failure.
3557 * This helper function allows drivers to get several regulator
3558 * consumers in one operation. If any of the regulators cannot be
3559 * acquired then any regulators that were allocated will be freed
3560 * before returning to the caller.
3562 int regulator_bulk_get(struct device *dev, int num_consumers,
3563 struct regulator_bulk_data *consumers)
3568 for (i = 0; i < num_consumers; i++)
3569 consumers[i].consumer = NULL;
3571 for (i = 0; i < num_consumers; i++) {
3572 consumers[i].consumer = regulator_get(dev,
3573 consumers[i].supply);
3574 if (IS_ERR(consumers[i].consumer)) {
3575 ret = PTR_ERR(consumers[i].consumer);
3576 dev_err(dev, "Failed to get supply '%s': %d\n",
3577 consumers[i].supply, ret);
3578 consumers[i].consumer = NULL;
3587 regulator_put(consumers[i].consumer);
3591 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3593 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3595 struct regulator_bulk_data *bulk = data;
3597 bulk->ret = regulator_enable(bulk->consumer);
3601 * regulator_bulk_enable - enable multiple regulator consumers
3603 * @num_consumers: Number of consumers
3604 * @consumers: Consumer data; clients are stored here.
3605 * @return 0 on success, an errno on failure
3607 * This convenience API allows consumers to enable multiple regulator
3608 * clients in a single API call. If any consumers cannot be enabled
3609 * then any others that were enabled will be disabled again prior to
3612 int regulator_bulk_enable(int num_consumers,
3613 struct regulator_bulk_data *consumers)
3615 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3619 for (i = 0; i < num_consumers; i++) {
3620 if (consumers[i].consumer->always_on)
3621 consumers[i].ret = 0;
3623 async_schedule_domain(regulator_bulk_enable_async,
3624 &consumers[i], &async_domain);
3627 async_synchronize_full_domain(&async_domain);
3629 /* If any consumer failed we need to unwind any that succeeded */
3630 for (i = 0; i < num_consumers; i++) {
3631 if (consumers[i].ret != 0) {
3632 ret = consumers[i].ret;
3640 for (i = 0; i < num_consumers; i++) {
3641 if (consumers[i].ret < 0)
3642 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3645 regulator_disable(consumers[i].consumer);
3650 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3653 * regulator_bulk_disable - disable multiple regulator consumers
3655 * @num_consumers: Number of consumers
3656 * @consumers: Consumer data; clients are stored here.
3657 * @return 0 on success, an errno on failure
3659 * This convenience API allows consumers to disable multiple regulator
3660 * clients in a single API call. If any consumers cannot be disabled
3661 * then any others that were disabled will be enabled again prior to
3664 int regulator_bulk_disable(int num_consumers,
3665 struct regulator_bulk_data *consumers)
3670 for (i = num_consumers - 1; i >= 0; --i) {
3671 ret = regulator_disable(consumers[i].consumer);
3679 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3680 for (++i; i < num_consumers; ++i) {
3681 r = regulator_enable(consumers[i].consumer);
3683 pr_err("Failed to re-enable %s: %d\n",
3684 consumers[i].supply, r);
3689 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3692 * regulator_bulk_force_disable - force disable multiple regulator consumers
3694 * @num_consumers: Number of consumers
3695 * @consumers: Consumer data; clients are stored here.
3696 * @return 0 on success, an errno on failure
3698 * This convenience API allows consumers to forcibly disable multiple regulator
3699 * clients in a single API call.
3700 * NOTE: This should be used for situations when device damage will
3701 * likely occur if the regulators are not disabled (e.g. over temp).
3702 * Although regulator_force_disable function call for some consumers can
3703 * return error numbers, the function is called for all consumers.
3705 int regulator_bulk_force_disable(int num_consumers,
3706 struct regulator_bulk_data *consumers)
3711 for (i = 0; i < num_consumers; i++) {
3713 regulator_force_disable(consumers[i].consumer);
3715 /* Store first error for reporting */
3716 if (consumers[i].ret && !ret)
3717 ret = consumers[i].ret;
3722 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3725 * regulator_bulk_free - free multiple regulator consumers
3727 * @num_consumers: Number of consumers
3728 * @consumers: Consumer data; clients are stored here.
3730 * This convenience API allows consumers to free multiple regulator
3731 * clients in a single API call.
3733 void regulator_bulk_free(int num_consumers,
3734 struct regulator_bulk_data *consumers)
3738 for (i = 0; i < num_consumers; i++) {
3739 regulator_put(consumers[i].consumer);
3740 consumers[i].consumer = NULL;
3743 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3746 * regulator_notifier_call_chain - call regulator event notifier
3747 * @rdev: regulator source
3748 * @event: notifier block
3749 * @data: callback-specific data.
3751 * Called by regulator drivers to notify clients a regulator event has
3752 * occurred. We also notify regulator clients downstream.
3753 * Note lock must be held by caller.
3755 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3756 unsigned long event, void *data)
3758 lockdep_assert_held_once(&rdev->mutex);
3760 _notifier_call_chain(rdev, event, data);
3764 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3767 * regulator_mode_to_status - convert a regulator mode into a status
3769 * @mode: Mode to convert
3771 * Convert a regulator mode into a status.
3773 int regulator_mode_to_status(unsigned int mode)
3776 case REGULATOR_MODE_FAST:
3777 return REGULATOR_STATUS_FAST;
3778 case REGULATOR_MODE_NORMAL:
3779 return REGULATOR_STATUS_NORMAL;
3780 case REGULATOR_MODE_IDLE:
3781 return REGULATOR_STATUS_IDLE;
3782 case REGULATOR_MODE_STANDBY:
3783 return REGULATOR_STATUS_STANDBY;
3785 return REGULATOR_STATUS_UNDEFINED;
3788 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3790 static struct attribute *regulator_dev_attrs[] = {
3791 &dev_attr_name.attr,
3792 &dev_attr_num_users.attr,
3793 &dev_attr_type.attr,
3794 &dev_attr_microvolts.attr,
3795 &dev_attr_microamps.attr,
3796 &dev_attr_opmode.attr,
3797 &dev_attr_state.attr,
3798 &dev_attr_status.attr,
3799 &dev_attr_bypass.attr,
3800 &dev_attr_requested_microamps.attr,
3801 &dev_attr_min_microvolts.attr,
3802 &dev_attr_max_microvolts.attr,
3803 &dev_attr_min_microamps.attr,
3804 &dev_attr_max_microamps.attr,
3805 &dev_attr_suspend_standby_state.attr,
3806 &dev_attr_suspend_mem_state.attr,
3807 &dev_attr_suspend_disk_state.attr,
3808 &dev_attr_suspend_standby_microvolts.attr,
3809 &dev_attr_suspend_mem_microvolts.attr,
3810 &dev_attr_suspend_disk_microvolts.attr,
3811 &dev_attr_suspend_standby_mode.attr,
3812 &dev_attr_suspend_mem_mode.attr,
3813 &dev_attr_suspend_disk_mode.attr,
3818 * To avoid cluttering sysfs (and memory) with useless state, only
3819 * create attributes that can be meaningfully displayed.
3821 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3822 struct attribute *attr, int idx)
3824 struct device *dev = kobj_to_dev(kobj);
3825 struct regulator_dev *rdev = dev_to_rdev(dev);
3826 const struct regulator_ops *ops = rdev->desc->ops;
3827 umode_t mode = attr->mode;
3829 /* these three are always present */
3830 if (attr == &dev_attr_name.attr ||
3831 attr == &dev_attr_num_users.attr ||
3832 attr == &dev_attr_type.attr)
3835 /* some attributes need specific methods to be displayed */
3836 if (attr == &dev_attr_microvolts.attr) {
3837 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3838 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3839 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3840 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3845 if (attr == &dev_attr_microamps.attr)
3846 return ops->get_current_limit ? mode : 0;
3848 if (attr == &dev_attr_opmode.attr)
3849 return ops->get_mode ? mode : 0;
3851 if (attr == &dev_attr_state.attr)
3852 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3854 if (attr == &dev_attr_status.attr)
3855 return ops->get_status ? mode : 0;
3857 if (attr == &dev_attr_bypass.attr)
3858 return ops->get_bypass ? mode : 0;
3860 /* some attributes are type-specific */
3861 if (attr == &dev_attr_requested_microamps.attr)
3862 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3864 /* constraints need specific supporting methods */
3865 if (attr == &dev_attr_min_microvolts.attr ||
3866 attr == &dev_attr_max_microvolts.attr)
3867 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3869 if (attr == &dev_attr_min_microamps.attr ||
3870 attr == &dev_attr_max_microamps.attr)
3871 return ops->set_current_limit ? mode : 0;
3873 if (attr == &dev_attr_suspend_standby_state.attr ||
3874 attr == &dev_attr_suspend_mem_state.attr ||
3875 attr == &dev_attr_suspend_disk_state.attr)
3878 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3879 attr == &dev_attr_suspend_mem_microvolts.attr ||
3880 attr == &dev_attr_suspend_disk_microvolts.attr)
3881 return ops->set_suspend_voltage ? mode : 0;
3883 if (attr == &dev_attr_suspend_standby_mode.attr ||
3884 attr == &dev_attr_suspend_mem_mode.attr ||
3885 attr == &dev_attr_suspend_disk_mode.attr)
3886 return ops->set_suspend_mode ? mode : 0;
3891 static const struct attribute_group regulator_dev_group = {
3892 .attrs = regulator_dev_attrs,
3893 .is_visible = regulator_attr_is_visible,
3896 static const struct attribute_group *regulator_dev_groups[] = {
3897 ®ulator_dev_group,
3901 static void regulator_dev_release(struct device *dev)
3903 struct regulator_dev *rdev = dev_get_drvdata(dev);
3905 kfree(rdev->constraints);
3906 of_node_put(rdev->dev.of_node);
3910 static struct class regulator_class = {
3911 .name = "regulator",
3912 .dev_release = regulator_dev_release,
3913 .dev_groups = regulator_dev_groups,
3916 static void rdev_init_debugfs(struct regulator_dev *rdev)
3918 struct device *parent = rdev->dev.parent;
3919 const char *rname = rdev_get_name(rdev);
3920 char name[NAME_MAX];
3922 /* Avoid duplicate debugfs directory names */
3923 if (parent && rname == rdev->desc->name) {
3924 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3929 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3930 if (!rdev->debugfs) {
3931 rdev_warn(rdev, "Failed to create debugfs directory\n");
3935 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3937 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3939 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3940 &rdev->bypass_count);
3943 static int regulator_register_resolve_supply(struct device *dev, void *data)
3945 struct regulator_dev *rdev = dev_to_rdev(dev);
3947 if (regulator_resolve_supply(rdev))
3948 rdev_dbg(rdev, "unable to resolve supply\n");
3954 * regulator_register - register regulator
3955 * @regulator_desc: regulator to register
3956 * @cfg: runtime configuration for regulator
3958 * Called by regulator drivers to register a regulator.
3959 * Returns a valid pointer to struct regulator_dev on success
3960 * or an ERR_PTR() on error.
3962 struct regulator_dev *
3963 regulator_register(const struct regulator_desc *regulator_desc,
3964 const struct regulator_config *cfg)
3966 const struct regulation_constraints *constraints = NULL;
3967 const struct regulator_init_data *init_data;
3968 struct regulator_config *config = NULL;
3969 static atomic_t regulator_no = ATOMIC_INIT(-1);
3970 struct regulator_dev *rdev;
3974 if (regulator_desc == NULL || cfg == NULL)
3975 return ERR_PTR(-EINVAL);
3980 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3981 return ERR_PTR(-EINVAL);
3983 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3984 regulator_desc->type != REGULATOR_CURRENT)
3985 return ERR_PTR(-EINVAL);
3987 /* Only one of each should be implemented */
3988 WARN_ON(regulator_desc->ops->get_voltage &&
3989 regulator_desc->ops->get_voltage_sel);
3990 WARN_ON(regulator_desc->ops->set_voltage &&
3991 regulator_desc->ops->set_voltage_sel);
3993 /* If we're using selectors we must implement list_voltage. */
3994 if (regulator_desc->ops->get_voltage_sel &&
3995 !regulator_desc->ops->list_voltage) {
3996 return ERR_PTR(-EINVAL);
3998 if (regulator_desc->ops->set_voltage_sel &&
3999 !regulator_desc->ops->list_voltage) {
4000 return ERR_PTR(-EINVAL);
4003 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4005 return ERR_PTR(-ENOMEM);
4008 * Duplicate the config so the driver could override it after
4009 * parsing init data.
4011 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4012 if (config == NULL) {
4014 return ERR_PTR(-ENOMEM);
4017 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4018 &rdev->dev.of_node);
4020 init_data = config->init_data;
4021 rdev->dev.of_node = of_node_get(config->of_node);
4024 mutex_init(&rdev->mutex);
4025 rdev->reg_data = config->driver_data;
4026 rdev->owner = regulator_desc->owner;
4027 rdev->desc = regulator_desc;
4029 rdev->regmap = config->regmap;
4030 else if (dev_get_regmap(dev, NULL))
4031 rdev->regmap = dev_get_regmap(dev, NULL);
4032 else if (dev->parent)
4033 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4034 INIT_LIST_HEAD(&rdev->consumer_list);
4035 INIT_LIST_HEAD(&rdev->list);
4036 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4037 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4039 /* preform any regulator specific init */
4040 if (init_data && init_data->regulator_init) {
4041 ret = init_data->regulator_init(rdev->reg_data);
4046 if ((config->ena_gpio || config->ena_gpio_initialized) &&
4047 gpio_is_valid(config->ena_gpio)) {
4048 mutex_lock(®ulator_list_mutex);
4049 ret = regulator_ena_gpio_request(rdev, config);
4050 mutex_unlock(®ulator_list_mutex);
4052 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4053 config->ena_gpio, ret);
4058 /* register with sysfs */
4059 rdev->dev.class = ®ulator_class;
4060 rdev->dev.parent = dev;
4061 dev_set_name(&rdev->dev, "regulator.%lu",
4062 (unsigned long) atomic_inc_return(®ulator_no));
4064 /* set regulator constraints */
4066 constraints = &init_data->constraints;
4068 if (init_data && init_data->supply_regulator)
4069 rdev->supply_name = init_data->supply_regulator;
4070 else if (regulator_desc->supply_name)
4071 rdev->supply_name = regulator_desc->supply_name;
4074 * Attempt to resolve the regulator supply, if specified,
4075 * but don't return an error if we fail because we will try
4076 * to resolve it again later as more regulators are added.
4078 if (regulator_resolve_supply(rdev))
4079 rdev_dbg(rdev, "unable to resolve supply\n");
4081 ret = set_machine_constraints(rdev, constraints);
4085 /* add consumers devices */
4087 mutex_lock(®ulator_list_mutex);
4088 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4089 ret = set_consumer_device_supply(rdev,
4090 init_data->consumer_supplies[i].dev_name,
4091 init_data->consumer_supplies[i].supply);
4093 mutex_unlock(®ulator_list_mutex);
4094 dev_err(dev, "Failed to set supply %s\n",
4095 init_data->consumer_supplies[i].supply);
4096 goto unset_supplies;
4099 mutex_unlock(®ulator_list_mutex);
4102 ret = device_register(&rdev->dev);
4104 put_device(&rdev->dev);
4105 goto unset_supplies;
4108 dev_set_drvdata(&rdev->dev, rdev);
4109 rdev_init_debugfs(rdev);
4111 /* try to resolve regulators supply since a new one was registered */
4112 class_for_each_device(®ulator_class, NULL, NULL,
4113 regulator_register_resolve_supply);
4118 mutex_lock(®ulator_list_mutex);
4119 unset_regulator_supplies(rdev);
4120 mutex_unlock(®ulator_list_mutex);
4122 kfree(rdev->constraints);
4123 mutex_lock(®ulator_list_mutex);
4124 regulator_ena_gpio_free(rdev);
4125 mutex_unlock(®ulator_list_mutex);
4129 return ERR_PTR(ret);
4131 EXPORT_SYMBOL_GPL(regulator_register);
4134 * regulator_unregister - unregister regulator
4135 * @rdev: regulator to unregister
4137 * Called by regulator drivers to unregister a regulator.
4139 void regulator_unregister(struct regulator_dev *rdev)
4145 while (rdev->use_count--)
4146 regulator_disable(rdev->supply);
4147 regulator_put(rdev->supply);
4149 mutex_lock(®ulator_list_mutex);
4150 debugfs_remove_recursive(rdev->debugfs);
4151 flush_work(&rdev->disable_work.work);
4152 WARN_ON(rdev->open_count);
4153 unset_regulator_supplies(rdev);
4154 list_del(&rdev->list);
4155 regulator_ena_gpio_free(rdev);
4156 mutex_unlock(®ulator_list_mutex);
4157 device_unregister(&rdev->dev);
4159 EXPORT_SYMBOL_GPL(regulator_unregister);
4161 static int _regulator_suspend_prepare(struct device *dev, void *data)
4163 struct regulator_dev *rdev = dev_to_rdev(dev);
4164 const suspend_state_t *state = data;
4167 mutex_lock(&rdev->mutex);
4168 ret = suspend_prepare(rdev, *state);
4169 mutex_unlock(&rdev->mutex);
4175 * regulator_suspend_prepare - prepare regulators for system wide suspend
4176 * @state: system suspend state
4178 * Configure each regulator with it's suspend operating parameters for state.
4179 * This will usually be called by machine suspend code prior to supending.
4181 int regulator_suspend_prepare(suspend_state_t state)
4183 /* ON is handled by regulator active state */
4184 if (state == PM_SUSPEND_ON)
4187 return class_for_each_device(®ulator_class, NULL, &state,
4188 _regulator_suspend_prepare);
4190 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4192 static int _regulator_suspend_finish(struct device *dev, void *data)
4194 struct regulator_dev *rdev = dev_to_rdev(dev);
4197 mutex_lock(&rdev->mutex);
4198 if (rdev->use_count > 0 || rdev->constraints->always_on) {
4199 if (!_regulator_is_enabled(rdev)) {
4200 ret = _regulator_do_enable(rdev);
4203 "Failed to resume regulator %d\n",
4207 if (!have_full_constraints())
4209 if (!_regulator_is_enabled(rdev))
4212 ret = _regulator_do_disable(rdev);
4214 dev_err(dev, "Failed to suspend regulator %d\n", ret);
4217 mutex_unlock(&rdev->mutex);
4219 /* Keep processing regulators in spite of any errors */
4224 * regulator_suspend_finish - resume regulators from system wide suspend
4226 * Turn on regulators that might be turned off by regulator_suspend_prepare
4227 * and that should be turned on according to the regulators properties.
4229 int regulator_suspend_finish(void)
4231 return class_for_each_device(®ulator_class, NULL, NULL,
4232 _regulator_suspend_finish);
4234 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4237 * regulator_has_full_constraints - the system has fully specified constraints
4239 * Calling this function will cause the regulator API to disable all
4240 * regulators which have a zero use count and don't have an always_on
4241 * constraint in a late_initcall.
4243 * The intention is that this will become the default behaviour in a
4244 * future kernel release so users are encouraged to use this facility
4247 void regulator_has_full_constraints(void)
4249 has_full_constraints = 1;
4251 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4254 * rdev_get_drvdata - get rdev regulator driver data
4257 * Get rdev regulator driver private data. This call can be used in the
4258 * regulator driver context.
4260 void *rdev_get_drvdata(struct regulator_dev *rdev)
4262 return rdev->reg_data;
4264 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4267 * regulator_get_drvdata - get regulator driver data
4268 * @regulator: regulator
4270 * Get regulator driver private data. This call can be used in the consumer
4271 * driver context when non API regulator specific functions need to be called.
4273 void *regulator_get_drvdata(struct regulator *regulator)
4275 return regulator->rdev->reg_data;
4277 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4280 * regulator_set_drvdata - set regulator driver data
4281 * @regulator: regulator
4284 void regulator_set_drvdata(struct regulator *regulator, void *data)
4286 regulator->rdev->reg_data = data;
4288 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4291 * regulator_get_id - get regulator ID
4294 int rdev_get_id(struct regulator_dev *rdev)
4296 return rdev->desc->id;
4298 EXPORT_SYMBOL_GPL(rdev_get_id);
4300 struct device *rdev_get_dev(struct regulator_dev *rdev)
4304 EXPORT_SYMBOL_GPL(rdev_get_dev);
4306 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4308 return reg_init_data->driver_data;
4310 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4312 #ifdef CONFIG_DEBUG_FS
4313 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4314 size_t count, loff_t *ppos)
4316 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4317 ssize_t len, ret = 0;
4318 struct regulator_map *map;
4323 list_for_each_entry(map, ®ulator_map_list, list) {
4324 len = snprintf(buf + ret, PAGE_SIZE - ret,
4326 rdev_get_name(map->regulator), map->dev_name,
4330 if (ret > PAGE_SIZE) {
4336 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4344 static const struct file_operations supply_map_fops = {
4345 #ifdef CONFIG_DEBUG_FS
4346 .read = supply_map_read_file,
4347 .llseek = default_llseek,
4351 #ifdef CONFIG_DEBUG_FS
4352 struct summary_data {
4354 struct regulator_dev *parent;
4358 static void regulator_summary_show_subtree(struct seq_file *s,
4359 struct regulator_dev *rdev,
4362 static int regulator_summary_show_children(struct device *dev, void *data)
4364 struct regulator_dev *rdev = dev_to_rdev(dev);
4365 struct summary_data *summary_data = data;
4367 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4368 regulator_summary_show_subtree(summary_data->s, rdev,
4369 summary_data->level + 1);
4374 static void regulator_summary_show_subtree(struct seq_file *s,
4375 struct regulator_dev *rdev,
4378 struct regulation_constraints *c;
4379 struct regulator *consumer;
4380 struct summary_data summary_data;
4385 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4387 30 - level * 3, rdev_get_name(rdev),
4388 rdev->use_count, rdev->open_count, rdev->bypass_count);
4390 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4391 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4393 c = rdev->constraints;
4395 switch (rdev->desc->type) {
4396 case REGULATOR_VOLTAGE:
4397 seq_printf(s, "%5dmV %5dmV ",
4398 c->min_uV / 1000, c->max_uV / 1000);
4400 case REGULATOR_CURRENT:
4401 seq_printf(s, "%5dmA %5dmA ",
4402 c->min_uA / 1000, c->max_uA / 1000);
4409 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4410 if (consumer->dev && consumer->dev->class == ®ulator_class)
4413 seq_printf(s, "%*s%-*s ",
4414 (level + 1) * 3 + 1, "",
4415 30 - (level + 1) * 3,
4416 consumer->dev ? dev_name(consumer->dev) : "deviceless");
4418 switch (rdev->desc->type) {
4419 case REGULATOR_VOLTAGE:
4420 seq_printf(s, "%37dmV %5dmV",
4421 consumer->min_uV / 1000,
4422 consumer->max_uV / 1000);
4424 case REGULATOR_CURRENT:
4432 summary_data.level = level;
4433 summary_data.parent = rdev;
4435 class_for_each_device(®ulator_class, NULL, &summary_data,
4436 regulator_summary_show_children);
4439 static int regulator_summary_show_roots(struct device *dev, void *data)
4441 struct regulator_dev *rdev = dev_to_rdev(dev);
4442 struct seq_file *s = data;
4445 regulator_summary_show_subtree(s, rdev, 0);
4450 static int regulator_summary_show(struct seq_file *s, void *data)
4452 seq_puts(s, " regulator use open bypass voltage current min max\n");
4453 seq_puts(s, "-------------------------------------------------------------------------------\n");
4455 class_for_each_device(®ulator_class, NULL, s,
4456 regulator_summary_show_roots);
4461 static int regulator_summary_open(struct inode *inode, struct file *file)
4463 return single_open(file, regulator_summary_show, inode->i_private);
4467 static const struct file_operations regulator_summary_fops = {
4468 #ifdef CONFIG_DEBUG_FS
4469 .open = regulator_summary_open,
4471 .llseek = seq_lseek,
4472 .release = single_release,
4476 static int __init regulator_init(void)
4480 ret = class_register(®ulator_class);
4482 debugfs_root = debugfs_create_dir("regulator", NULL);
4484 pr_warn("regulator: Failed to create debugfs directory\n");
4486 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4489 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4490 NULL, ®ulator_summary_fops);
4492 regulator_dummy_init();
4497 /* init early to allow our consumers to complete system booting */
4498 core_initcall(regulator_init);
4500 static int __init regulator_late_cleanup(struct device *dev, void *data)
4502 struct regulator_dev *rdev = dev_to_rdev(dev);
4503 const struct regulator_ops *ops = rdev->desc->ops;
4504 struct regulation_constraints *c = rdev->constraints;
4507 if (c && c->always_on)
4510 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4513 mutex_lock(&rdev->mutex);
4515 if (rdev->use_count)
4518 /* If we can't read the status assume it's on. */
4519 if (ops->is_enabled)
4520 enabled = ops->is_enabled(rdev);
4527 if (have_full_constraints()) {
4528 /* We log since this may kill the system if it goes
4530 rdev_info(rdev, "disabling\n");
4531 ret = _regulator_do_disable(rdev);
4533 rdev_err(rdev, "couldn't disable: %d\n", ret);
4535 /* The intention is that in future we will
4536 * assume that full constraints are provided
4537 * so warn even if we aren't going to do
4540 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4544 mutex_unlock(&rdev->mutex);
4549 static int __init regulator_init_complete(void)
4552 * Since DT doesn't provide an idiomatic mechanism for
4553 * enabling full constraints and since it's much more natural
4554 * with DT to provide them just assume that a DT enabled
4555 * system has full constraints.
4557 if (of_have_populated_dt())
4558 has_full_constraints = true;
4561 * Regulators may had failed to resolve their input supplies
4562 * when were registered, either because the input supply was
4563 * not registered yet or because its parent device was not
4564 * bound yet. So attempt to resolve the input supplies for
4565 * pending regulators before trying to disable unused ones.
4567 class_for_each_device(®ulator_class, NULL, NULL,
4568 regulator_register_resolve_supply);
4570 /* If we have a full configuration then disable any regulators
4571 * we have permission to change the status for and which are
4572 * not in use or always_on. This is effectively the default
4573 * for DT and ACPI as they have full constraints.
4575 class_for_each_device(®ulator_class, NULL, NULL,
4576 regulator_late_cleanup);
4580 late_initcall_sync(regulator_init_complete);