2 * Copyright (C) STMicroelectronics 2016
6 * License terms: GNU General Public License (GPL), version 2
8 * Inspired by timer-stm32.c from Maxime Coquelin
9 * pwm-atmel.c from Bo Shen
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/pwm.h>
18 #define CCMR_CHANNEL_SHIFT 8
19 #define CCMR_CHANNEL_MASK 0xFF
20 #define MAX_BREAKINPUT 2
26 struct regmap *regmap;
28 bool have_complementary_output;
31 struct stm32_breakinput {
37 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
39 return container_of(chip, struct stm32_pwm, chip);
42 static u32 active_channels(struct stm32_pwm *dev)
46 regmap_read(dev->regmap, TIM_CCER, &ccer);
48 return ccer & TIM_CCER_CCXE;
51 static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
55 return regmap_write(dev->regmap, TIM_CCR1, value);
57 return regmap_write(dev->regmap, TIM_CCR2, value);
59 return regmap_write(dev->regmap, TIM_CCR3, value);
61 return regmap_write(dev->regmap, TIM_CCR4, value);
66 static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
67 int duty_ns, int period_ns)
69 unsigned long long prd, div, dty;
70 unsigned int prescaler = 0;
71 u32 ccmr, mask, shift;
73 /* Period and prescaler values depends on clock rate */
74 div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
76 do_div(div, NSEC_PER_SEC);
79 while (div > priv->max_arr) {
82 do_div(div, prescaler + 1);
87 if (prescaler > MAX_TIM_PSC)
91 * All channels share the same prescaler and counter so when two
92 * channels are active at the same time we can't change them
94 if (active_channels(priv) & ~(1 << ch * 4)) {
97 regmap_read(priv->regmap, TIM_PSC, &psc);
98 regmap_read(priv->regmap, TIM_ARR, &arr);
100 if ((psc != prescaler) || (arr != prd - 1))
104 regmap_write(priv->regmap, TIM_PSC, prescaler);
105 regmap_write(priv->regmap, TIM_ARR, prd - 1);
106 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
108 /* Calculate the duty cycles */
110 do_div(dty, period_ns);
112 write_ccrx(priv, ch, dty);
114 /* Configure output mode */
115 shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
116 ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
117 mask = CCMR_CHANNEL_MASK << shift;
120 regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
122 regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
124 regmap_update_bits(priv->regmap, TIM_BDTR,
125 TIM_BDTR_MOE | TIM_BDTR_AOE,
126 TIM_BDTR_MOE | TIM_BDTR_AOE);
131 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
132 enum pwm_polarity polarity)
136 mask = TIM_CCER_CC1P << (ch * 4);
137 if (priv->have_complementary_output)
138 mask |= TIM_CCER_CC1NP << (ch * 4);
140 regmap_update_bits(priv->regmap, TIM_CCER, mask,
141 polarity == PWM_POLARITY_NORMAL ? 0 : mask);
146 static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
151 ret = clk_enable(priv->clk);
156 mask = TIM_CCER_CC1E << (ch * 4);
157 if (priv->have_complementary_output)
158 mask |= TIM_CCER_CC1NE << (ch * 4);
160 regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
162 /* Make sure that registers are updated */
163 regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
165 /* Enable controller */
166 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
171 static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
175 /* Disable channel */
176 mask = TIM_CCER_CC1E << (ch * 4);
177 if (priv->have_complementary_output)
178 mask |= TIM_CCER_CC1NE << (ch * 4);
180 regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
182 /* When all channels are disabled, we can disable the controller */
183 if (!active_channels(priv))
184 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
186 clk_disable(priv->clk);
189 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
190 struct pwm_state *state)
193 struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
196 enabled = pwm->state.enabled;
198 if (enabled && !state->enabled) {
199 stm32_pwm_disable(priv, pwm->hwpwm);
203 if (state->polarity != pwm->state.polarity)
204 stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
206 ret = stm32_pwm_config(priv, pwm->hwpwm,
207 state->duty_cycle, state->period);
211 if (!enabled && state->enabled)
212 ret = stm32_pwm_enable(priv, pwm->hwpwm);
217 static const struct pwm_ops stm32pwm_ops = {
218 .owner = THIS_MODULE,
219 .apply = stm32_pwm_apply,
222 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
223 int index, int level, int filter)
225 u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E;
226 int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT;
227 u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF
228 : TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F;
232 * The both bits could be set since only one will be wrote
236 bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P;
238 bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift;
240 regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
242 regmap_read(priv->regmap, TIM_BDTR, &bdtr);
244 return (bdtr & bke) ? 0 : -EINVAL;
247 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv,
248 struct device_node *np)
250 struct stm32_breakinput breakinput[MAX_BREAKINPUT];
251 int nb, ret, i, array_size;
253 nb = of_property_count_elems_of_size(np, "st,breakinput",
254 sizeof(struct stm32_breakinput));
257 * Because "st,breakinput" parameter is optional do not make probe
258 * failed if it doesn't exist.
263 if (nb > MAX_BREAKINPUT)
266 array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
267 ret = of_property_read_u32_array(np, "st,breakinput",
268 (u32 *)breakinput, array_size);
272 for (i = 0; i < nb && !ret; i++) {
273 ret = stm32_pwm_set_breakinput(priv,
276 breakinput[i].filter);
282 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
287 * If complementary bit doesn't exist writing 1 will have no
288 * effect so we can detect it.
290 regmap_update_bits(priv->regmap,
291 TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
292 regmap_read(priv->regmap, TIM_CCER, &ccer);
293 regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
295 priv->have_complementary_output = (ccer != 0);
298 static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
304 * If channels enable bits don't exist writing 1 will have no
305 * effect so we can detect and count them.
307 regmap_update_bits(priv->regmap,
308 TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
309 regmap_read(priv->regmap, TIM_CCER, &ccer);
310 regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
312 if (ccer & TIM_CCER_CC1E)
315 if (ccer & TIM_CCER_CC2E)
318 if (ccer & TIM_CCER_CC3E)
321 if (ccer & TIM_CCER_CC4E)
327 static int stm32_pwm_probe(struct platform_device *pdev)
329 struct device *dev = &pdev->dev;
330 struct device_node *np = dev->of_node;
331 struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
332 struct stm32_pwm *priv;
335 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
339 priv->regmap = ddata->regmap;
340 priv->clk = ddata->clk;
341 priv->max_arr = ddata->max_arr;
343 if (!priv->regmap || !priv->clk)
346 ret = stm32_pwm_apply_breakinputs(priv, np);
350 stm32_pwm_detect_complementary(priv);
352 priv->chip.base = -1;
353 priv->chip.dev = dev;
354 priv->chip.ops = &stm32pwm_ops;
355 priv->chip.npwm = stm32_pwm_detect_channels(priv);
357 ret = pwmchip_add(&priv->chip);
361 platform_set_drvdata(pdev, priv);
366 static int stm32_pwm_remove(struct platform_device *pdev)
368 struct stm32_pwm *priv = platform_get_drvdata(pdev);
371 for (i = 0; i < priv->chip.npwm; i++)
372 pwm_disable(&priv->chip.pwms[i]);
374 pwmchip_remove(&priv->chip);
379 static const struct of_device_id stm32_pwm_of_match[] = {
380 { .compatible = "st,stm32-pwm", },
383 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
385 static struct platform_driver stm32_pwm_driver = {
386 .probe = stm32_pwm_probe,
387 .remove = stm32_pwm_remove,
390 .of_match_table = stm32_pwm_of_match,
393 module_platform_driver(stm32_pwm_driver);
395 MODULE_ALIAS("platform:stm32-pwm");
396 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
397 MODULE_LICENSE("GPL v2");