2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
7 * Copyright(c) 2012 Intel Corporation. All rights reserved.
8 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
16 * Copyright(c) 2012 Intel Corporation. All rights reserved.
17 * Copyright (C) 2015 EMC Corporation. All Rights Reserved.
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
23 * * Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * * Redistributions in binary form must reproduce the above copy
26 * notice, this list of conditions and the following disclaimer in
27 * the documentation and/or other materials provided with the
29 * * Neither the name of Intel Corporation nor the names of its
30 * contributors may be used to endorse or promote products derived
31 * from this software without specific prior written permission.
33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
34 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
35 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
36 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
37 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
38 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
39 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
40 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
41 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
43 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 * PCIe NTB Transport Linux driver
47 * Contact Information:
50 #include <linux/debugfs.h>
51 #include <linux/delay.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/errno.h>
55 #include <linux/export.h>
56 #include <linux/interrupt.h>
57 #include <linux/module.h>
58 #include <linux/pci.h>
59 #include <linux/slab.h>
60 #include <linux/types.h>
61 #include <linux/uaccess.h>
62 #include "linux/ntb.h"
63 #include "linux/ntb_transport.h"
65 #define NTB_TRANSPORT_VERSION 4
66 #define NTB_TRANSPORT_VER "4"
67 #define NTB_TRANSPORT_NAME "ntb_transport"
68 #define NTB_TRANSPORT_DESC "Software Queue-Pair Transport over NTB"
69 #define NTB_TRANSPORT_MIN_SPADS (MW0_SZ_HIGH + 2)
71 MODULE_DESCRIPTION(NTB_TRANSPORT_DESC);
72 MODULE_VERSION(NTB_TRANSPORT_VER);
73 MODULE_LICENSE("Dual BSD/GPL");
74 MODULE_AUTHOR("Intel Corporation");
76 static unsigned long max_mw_size;
77 module_param(max_mw_size, ulong, 0644);
78 MODULE_PARM_DESC(max_mw_size, "Limit size of large memory windows");
80 static unsigned int transport_mtu = 0x10000;
81 module_param(transport_mtu, uint, 0644);
82 MODULE_PARM_DESC(transport_mtu, "Maximum size of NTB transport packets");
84 static unsigned char max_num_clients;
85 module_param(max_num_clients, byte, 0644);
86 MODULE_PARM_DESC(max_num_clients, "Maximum number of NTB transport clients");
88 static unsigned int copy_bytes = 1024;
89 module_param(copy_bytes, uint, 0644);
90 MODULE_PARM_DESC(copy_bytes, "Threshold under which NTB will use the CPU to copy instead of DMA");
93 module_param(use_dma, bool, 0644);
94 MODULE_PARM_DESC(use_dma, "Use DMA engine to perform large data copy");
96 static struct dentry *nt_debugfs_dir;
98 struct ntb_queue_entry {
99 /* ntb_queue list reference */
100 struct list_head entry;
101 /* pointers to data to be transferred */
108 unsigned int tx_index;
109 unsigned int rx_index;
111 struct ntb_transport_qp *qp;
113 struct ntb_payload_header __iomem *tx_hdr;
114 struct ntb_payload_header *rx_hdr;
122 struct ntb_transport_qp {
123 struct ntb_transport_ctx *transport;
124 struct ntb_dev *ndev;
126 struct dma_chan *tx_dma_chan;
127 struct dma_chan *rx_dma_chan;
133 u8 qp_num; /* Only 64 QP's are allowed. 0-63 */
136 struct ntb_rx_info __iomem *rx_info;
137 struct ntb_rx_info *remote_rx_info;
139 void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data,
140 void *data, int len);
141 struct list_head tx_free_q;
142 spinlock_t ntb_tx_free_q_lock;
144 dma_addr_t tx_mw_phys;
145 unsigned int tx_index;
146 unsigned int tx_max_entry;
147 unsigned int tx_max_frame;
149 void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data,
150 void *data, int len);
151 struct list_head rx_post_q;
152 struct list_head rx_pend_q;
153 struct list_head rx_free_q;
154 /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */
155 spinlock_t ntb_rx_q_lock;
157 unsigned int rx_index;
158 unsigned int rx_max_entry;
159 unsigned int rx_max_frame;
160 unsigned int rx_alloc_entry;
161 dma_cookie_t last_cookie;
162 struct tasklet_struct rxc_db_work;
164 void (*event_handler)(void *data, int status);
165 struct delayed_work link_work;
166 struct work_struct link_cleanup;
168 struct dentry *debugfs_dir;
169 struct dentry *debugfs_stats;
190 struct ntb_transport_mw {
191 phys_addr_t phys_addr;
192 resource_size_t phys_size;
193 resource_size_t xlat_align;
194 resource_size_t xlat_align_size;
202 struct ntb_transport_client_dev {
203 struct list_head entry;
204 struct ntb_transport_ctx *nt;
208 struct ntb_transport_ctx {
209 struct list_head entry;
210 struct list_head client_devs;
212 struct ntb_dev *ndev;
214 struct ntb_transport_mw *mw_vec;
215 struct ntb_transport_qp *qp_vec;
216 unsigned int mw_count;
217 unsigned int qp_count;
222 struct delayed_work link_work;
223 struct work_struct link_cleanup;
225 struct dentry *debugfs_node_dir;
229 DESC_DONE_FLAG = BIT(0),
230 LINK_DOWN_FLAG = BIT(1),
233 struct ntb_payload_header {
248 #define dev_client_dev(__dev) \
249 container_of((__dev), struct ntb_transport_client_dev, dev)
251 #define drv_client(__drv) \
252 container_of((__drv), struct ntb_transport_client, driver)
254 #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count)
255 #define NTB_QP_DEF_NUM_ENTRIES 100
256 #define NTB_LINK_DOWN_TIMEOUT 10
257 #define DMA_RETRIES 20
258 #define DMA_OUT_RESOURCE_TO msecs_to_jiffies(50)
260 static void ntb_transport_rxc_db(unsigned long data);
261 static const struct ntb_ctx_ops ntb_transport_ops;
262 static struct ntb_client ntb_transport_client;
263 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
264 struct ntb_queue_entry *entry);
265 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset);
266 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset);
267 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset);
270 static int ntb_transport_bus_match(struct device *dev,
271 struct device_driver *drv)
273 return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
276 static int ntb_transport_bus_probe(struct device *dev)
278 const struct ntb_transport_client *client;
283 client = drv_client(dev->driver);
284 rc = client->probe(dev);
291 static int ntb_transport_bus_remove(struct device *dev)
293 const struct ntb_transport_client *client;
295 client = drv_client(dev->driver);
303 static struct bus_type ntb_transport_bus = {
304 .name = "ntb_transport",
305 .match = ntb_transport_bus_match,
306 .probe = ntb_transport_bus_probe,
307 .remove = ntb_transport_bus_remove,
310 static LIST_HEAD(ntb_transport_list);
312 static int ntb_bus_init(struct ntb_transport_ctx *nt)
314 list_add_tail(&nt->entry, &ntb_transport_list);
318 static void ntb_bus_remove(struct ntb_transport_ctx *nt)
320 struct ntb_transport_client_dev *client_dev, *cd;
322 list_for_each_entry_safe(client_dev, cd, &nt->client_devs, entry) {
323 dev_err(client_dev->dev.parent, "%s still attached to bus, removing\n",
324 dev_name(&client_dev->dev));
325 list_del(&client_dev->entry);
326 device_unregister(&client_dev->dev);
329 list_del(&nt->entry);
332 static void ntb_transport_client_release(struct device *dev)
334 struct ntb_transport_client_dev *client_dev;
336 client_dev = dev_client_dev(dev);
341 * ntb_transport_unregister_client_dev - Unregister NTB client device
342 * @device_name: Name of NTB client device
344 * Unregister an NTB client device with the NTB transport layer
346 void ntb_transport_unregister_client_dev(char *device_name)
348 struct ntb_transport_client_dev *client, *cd;
349 struct ntb_transport_ctx *nt;
351 list_for_each_entry(nt, &ntb_transport_list, entry)
352 list_for_each_entry_safe(client, cd, &nt->client_devs, entry)
353 if (!strncmp(dev_name(&client->dev), device_name,
354 strlen(device_name))) {
355 list_del(&client->entry);
356 device_unregister(&client->dev);
359 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client_dev);
362 * ntb_transport_register_client_dev - Register NTB client device
363 * @device_name: Name of NTB client device
365 * Register an NTB client device with the NTB transport layer
367 int ntb_transport_register_client_dev(char *device_name)
369 struct ntb_transport_client_dev *client_dev;
370 struct ntb_transport_ctx *nt;
374 if (list_empty(&ntb_transport_list))
377 list_for_each_entry(nt, &ntb_transport_list, entry) {
380 node = dev_to_node(&nt->ndev->dev);
382 client_dev = kzalloc_node(sizeof(*client_dev),
389 dev = &client_dev->dev;
391 /* setup and register client devices */
392 dev_set_name(dev, "%s%d", device_name, i);
393 dev->bus = &ntb_transport_bus;
394 dev->release = ntb_transport_client_release;
395 dev->parent = &nt->ndev->dev;
397 rc = device_register(dev);
403 list_add_tail(&client_dev->entry, &nt->client_devs);
410 ntb_transport_unregister_client_dev(device_name);
414 EXPORT_SYMBOL_GPL(ntb_transport_register_client_dev);
417 * ntb_transport_register_client - Register NTB client driver
418 * @drv: NTB client driver to be registered
420 * Register an NTB client driver with the NTB transport layer
422 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
424 int ntb_transport_register_client(struct ntb_transport_client *drv)
426 drv->driver.bus = &ntb_transport_bus;
428 if (list_empty(&ntb_transport_list))
431 return driver_register(&drv->driver);
433 EXPORT_SYMBOL_GPL(ntb_transport_register_client);
436 * ntb_transport_unregister_client - Unregister NTB client driver
437 * @drv: NTB client driver to be unregistered
439 * Unregister an NTB client driver with the NTB transport layer
441 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
443 void ntb_transport_unregister_client(struct ntb_transport_client *drv)
445 driver_unregister(&drv->driver);
447 EXPORT_SYMBOL_GPL(ntb_transport_unregister_client);
449 static ssize_t debugfs_read(struct file *filp, char __user *ubuf, size_t count,
452 struct ntb_transport_qp *qp;
454 ssize_t ret, out_offset, out_count;
456 qp = filp->private_data;
458 if (!qp || !qp->link_is_up)
463 buf = kmalloc(out_count, GFP_KERNEL);
468 out_offset += snprintf(buf + out_offset, out_count - out_offset,
469 "\nNTB QP stats:\n\n");
470 out_offset += snprintf(buf + out_offset, out_count - out_offset,
471 "rx_bytes - \t%llu\n", qp->rx_bytes);
472 out_offset += snprintf(buf + out_offset, out_count - out_offset,
473 "rx_pkts - \t%llu\n", qp->rx_pkts);
474 out_offset += snprintf(buf + out_offset, out_count - out_offset,
475 "rx_memcpy - \t%llu\n", qp->rx_memcpy);
476 out_offset += snprintf(buf + out_offset, out_count - out_offset,
477 "rx_async - \t%llu\n", qp->rx_async);
478 out_offset += snprintf(buf + out_offset, out_count - out_offset,
479 "rx_ring_empty - %llu\n", qp->rx_ring_empty);
480 out_offset += snprintf(buf + out_offset, out_count - out_offset,
481 "rx_err_no_buf - %llu\n", qp->rx_err_no_buf);
482 out_offset += snprintf(buf + out_offset, out_count - out_offset,
483 "rx_err_oflow - \t%llu\n", qp->rx_err_oflow);
484 out_offset += snprintf(buf + out_offset, out_count - out_offset,
485 "rx_err_ver - \t%llu\n", qp->rx_err_ver);
486 out_offset += snprintf(buf + out_offset, out_count - out_offset,
487 "rx_buff - \t0x%p\n", qp->rx_buff);
488 out_offset += snprintf(buf + out_offset, out_count - out_offset,
489 "rx_index - \t%u\n", qp->rx_index);
490 out_offset += snprintf(buf + out_offset, out_count - out_offset,
491 "rx_max_entry - \t%u\n", qp->rx_max_entry);
492 out_offset += snprintf(buf + out_offset, out_count - out_offset,
493 "rx_alloc_entry - \t%u\n\n", qp->rx_alloc_entry);
495 out_offset += snprintf(buf + out_offset, out_count - out_offset,
496 "tx_bytes - \t%llu\n", qp->tx_bytes);
497 out_offset += snprintf(buf + out_offset, out_count - out_offset,
498 "tx_pkts - \t%llu\n", qp->tx_pkts);
499 out_offset += snprintf(buf + out_offset, out_count - out_offset,
500 "tx_memcpy - \t%llu\n", qp->tx_memcpy);
501 out_offset += snprintf(buf + out_offset, out_count - out_offset,
502 "tx_async - \t%llu\n", qp->tx_async);
503 out_offset += snprintf(buf + out_offset, out_count - out_offset,
504 "tx_ring_full - \t%llu\n", qp->tx_ring_full);
505 out_offset += snprintf(buf + out_offset, out_count - out_offset,
506 "tx_err_no_buf - %llu\n", qp->tx_err_no_buf);
507 out_offset += snprintf(buf + out_offset, out_count - out_offset,
508 "tx_mw - \t0x%p\n", qp->tx_mw);
509 out_offset += snprintf(buf + out_offset, out_count - out_offset,
510 "tx_index (H) - \t%u\n", qp->tx_index);
511 out_offset += snprintf(buf + out_offset, out_count - out_offset,
513 qp->remote_rx_info->entry);
514 out_offset += snprintf(buf + out_offset, out_count - out_offset,
515 "tx_max_entry - \t%u\n", qp->tx_max_entry);
516 out_offset += snprintf(buf + out_offset, out_count - out_offset,
518 ntb_transport_tx_free_entry(qp));
519 out_offset += snprintf(buf + out_offset, out_count - out_offset,
520 "DMA tx prep err - \t%llu\n",
521 qp->dma_tx_prep_err);
522 out_offset += snprintf(buf + out_offset, out_count - out_offset,
523 "DMA rx prep err - \t%llu\n",
524 qp->dma_rx_prep_err);
526 out_offset += snprintf(buf + out_offset, out_count - out_offset,
528 out_offset += snprintf(buf + out_offset, out_count - out_offset,
529 "Using TX DMA - \t%s\n",
530 qp->tx_dma_chan ? "Yes" : "No");
531 out_offset += snprintf(buf + out_offset, out_count - out_offset,
532 "Using RX DMA - \t%s\n",
533 qp->rx_dma_chan ? "Yes" : "No");
534 out_offset += snprintf(buf + out_offset, out_count - out_offset,
536 qp->link_is_up ? "Up" : "Down");
537 out_offset += snprintf(buf + out_offset, out_count - out_offset,
540 if (out_offset > out_count)
541 out_offset = out_count;
543 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
548 static const struct file_operations ntb_qp_debugfs_stats = {
549 .owner = THIS_MODULE,
551 .read = debugfs_read,
554 static void ntb_list_add(spinlock_t *lock, struct list_head *entry,
555 struct list_head *list)
559 spin_lock_irqsave(lock, flags);
560 list_add_tail(entry, list);
561 spin_unlock_irqrestore(lock, flags);
564 static struct ntb_queue_entry *ntb_list_rm(spinlock_t *lock,
565 struct list_head *list)
567 struct ntb_queue_entry *entry;
570 spin_lock_irqsave(lock, flags);
571 if (list_empty(list)) {
575 entry = list_first_entry(list, struct ntb_queue_entry, entry);
576 list_del(&entry->entry);
579 spin_unlock_irqrestore(lock, flags);
584 static struct ntb_queue_entry *ntb_list_mv(spinlock_t *lock,
585 struct list_head *list,
586 struct list_head *to_list)
588 struct ntb_queue_entry *entry;
591 spin_lock_irqsave(lock, flags);
593 if (list_empty(list)) {
596 entry = list_first_entry(list, struct ntb_queue_entry, entry);
597 list_move_tail(&entry->entry, to_list);
600 spin_unlock_irqrestore(lock, flags);
605 static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt,
608 struct ntb_transport_qp *qp = &nt->qp_vec[qp_num];
609 struct ntb_transport_mw *mw;
610 struct ntb_dev *ndev = nt->ndev;
611 struct ntb_queue_entry *entry;
612 unsigned int rx_size, num_qps_mw;
613 unsigned int mw_num, mw_count, qp_count;
617 mw_count = nt->mw_count;
618 qp_count = nt->qp_count;
620 mw_num = QP_TO_MW(nt, qp_num);
621 mw = &nt->mw_vec[mw_num];
626 if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
627 num_qps_mw = qp_count / mw_count + 1;
629 num_qps_mw = qp_count / mw_count;
631 rx_size = (unsigned int)mw->xlat_size / num_qps_mw;
632 qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count);
633 rx_size -= sizeof(struct ntb_rx_info);
635 qp->remote_rx_info = qp->rx_buff + rx_size;
637 /* Due to housekeeping, there must be atleast 2 buffs */
638 qp->rx_max_frame = min(transport_mtu, rx_size / 2);
639 qp->rx_max_entry = rx_size / qp->rx_max_frame;
643 * Checking to see if we have more entries than the default.
644 * We should add additional entries if that is the case so we
645 * can be in sync with the transport frames.
647 node = dev_to_node(&ndev->dev);
648 for (i = qp->rx_alloc_entry; i < qp->rx_max_entry; i++) {
649 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
654 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
656 qp->rx_alloc_entry++;
659 qp->remote_rx_info->entry = qp->rx_max_entry - 1;
661 /* setup the hdr offsets with 0's */
662 for (i = 0; i < qp->rx_max_entry; i++) {
663 void *offset = (qp->rx_buff + qp->rx_max_frame * (i + 1) -
664 sizeof(struct ntb_payload_header));
665 memset(offset, 0, sizeof(struct ntb_payload_header));
675 static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw)
677 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
678 struct pci_dev *pdev = nt->ndev->pdev;
683 ntb_mw_clear_trans(nt->ndev, num_mw);
684 dma_free_coherent(&pdev->dev, mw->buff_size,
685 mw->virt_addr, mw->dma_addr);
688 mw->virt_addr = NULL;
691 static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw,
692 resource_size_t size)
694 struct ntb_transport_mw *mw = &nt->mw_vec[num_mw];
695 struct pci_dev *pdev = nt->ndev->pdev;
696 size_t xlat_size, buff_size;
702 xlat_size = round_up(size, mw->xlat_align_size);
703 buff_size = round_up(size, mw->xlat_align);
705 /* No need to re-setup */
706 if (mw->xlat_size == xlat_size)
710 ntb_free_mw(nt, num_mw);
712 /* Alloc memory for receiving data. Must be aligned */
713 mw->xlat_size = xlat_size;
714 mw->buff_size = buff_size;
716 mw->virt_addr = dma_alloc_coherent(&pdev->dev, buff_size,
717 &mw->dma_addr, GFP_KERNEL);
718 if (!mw->virt_addr) {
721 dev_err(&pdev->dev, "Unable to alloc MW buff of size %zu\n",
727 * we must ensure that the memory address allocated is BAR size
728 * aligned in order for the XLAT register to take the value. This
729 * is a requirement of the hardware. It is recommended to setup CMA
730 * for BAR sizes equal or greater than 4MB.
732 if (!IS_ALIGNED(mw->dma_addr, mw->xlat_align)) {
733 dev_err(&pdev->dev, "DMA memory %pad is not aligned\n",
735 ntb_free_mw(nt, num_mw);
739 /* Notify HW the memory location of the receive buffer */
740 rc = ntb_mw_set_trans(nt->ndev, num_mw, mw->dma_addr, mw->xlat_size);
742 dev_err(&pdev->dev, "Unable to set mw%d translation", num_mw);
743 ntb_free_mw(nt, num_mw);
750 static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp)
752 qp->link_is_up = false;
759 qp->rx_ring_empty = 0;
760 qp->rx_err_no_buf = 0;
761 qp->rx_err_oflow = 0;
767 qp->tx_ring_full = 0;
768 qp->tx_err_no_buf = 0;
771 qp->dma_tx_prep_err = 0;
772 qp->dma_rx_prep_err = 0;
775 static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp)
777 struct ntb_transport_ctx *nt = qp->transport;
778 struct pci_dev *pdev = nt->ndev->pdev;
780 dev_info(&pdev->dev, "qp %d: Link Cleanup\n", qp->qp_num);
782 cancel_delayed_work_sync(&qp->link_work);
783 ntb_qp_link_down_reset(qp);
785 if (qp->event_handler)
786 qp->event_handler(qp->cb_data, qp->link_is_up);
789 static void ntb_qp_link_cleanup_work(struct work_struct *work)
791 struct ntb_transport_qp *qp = container_of(work,
792 struct ntb_transport_qp,
794 struct ntb_transport_ctx *nt = qp->transport;
796 ntb_qp_link_cleanup(qp);
799 schedule_delayed_work(&qp->link_work,
800 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
803 static void ntb_qp_link_down(struct ntb_transport_qp *qp)
805 schedule_work(&qp->link_cleanup);
808 static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt)
810 struct ntb_transport_qp *qp;
812 unsigned int i, count;
814 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
816 /* Pass along the info to any clients */
817 for (i = 0; i < nt->qp_count; i++)
818 if (qp_bitmap_alloc & BIT_ULL(i)) {
820 ntb_qp_link_cleanup(qp);
821 cancel_work_sync(&qp->link_cleanup);
822 cancel_delayed_work_sync(&qp->link_work);
826 cancel_delayed_work_sync(&nt->link_work);
828 /* The scratchpad registers keep the values if the remote side
829 * goes down, blast them now to give them a sane value the next
830 * time they are accessed
832 count = ntb_spad_count(nt->ndev);
833 for (i = 0; i < count; i++)
834 ntb_spad_write(nt->ndev, i, 0);
837 static void ntb_transport_link_cleanup_work(struct work_struct *work)
839 struct ntb_transport_ctx *nt =
840 container_of(work, struct ntb_transport_ctx, link_cleanup);
842 ntb_transport_link_cleanup(nt);
845 static void ntb_transport_event_callback(void *data)
847 struct ntb_transport_ctx *nt = data;
849 if (ntb_link_is_up(nt->ndev, NULL, NULL) == 1)
850 schedule_delayed_work(&nt->link_work, 0);
852 schedule_work(&nt->link_cleanup);
855 static void ntb_transport_link_work(struct work_struct *work)
857 struct ntb_transport_ctx *nt =
858 container_of(work, struct ntb_transport_ctx, link_work.work);
859 struct ntb_dev *ndev = nt->ndev;
860 struct pci_dev *pdev = ndev->pdev;
861 resource_size_t size;
865 /* send the local info, in the opposite order of the way we read it */
866 for (i = 0; i < nt->mw_count; i++) {
867 size = nt->mw_vec[i].phys_size;
869 if (max_mw_size && size > max_mw_size)
872 spad = MW0_SZ_HIGH + (i * 2);
873 ntb_peer_spad_write(ndev, spad, upper_32_bits(size));
875 spad = MW0_SZ_LOW + (i * 2);
876 ntb_peer_spad_write(ndev, spad, lower_32_bits(size));
879 ntb_peer_spad_write(ndev, NUM_MWS, nt->mw_count);
881 ntb_peer_spad_write(ndev, NUM_QPS, nt->qp_count);
883 ntb_peer_spad_write(ndev, VERSION, NTB_TRANSPORT_VERSION);
885 /* Query the remote side for its info */
886 val = ntb_spad_read(ndev, VERSION);
887 dev_dbg(&pdev->dev, "Remote version = %d\n", val);
888 if (val != NTB_TRANSPORT_VERSION)
891 val = ntb_spad_read(ndev, NUM_QPS);
892 dev_dbg(&pdev->dev, "Remote max number of qps = %d\n", val);
893 if (val != nt->qp_count)
896 val = ntb_spad_read(ndev, NUM_MWS);
897 dev_dbg(&pdev->dev, "Remote number of mws = %d\n", val);
898 if (val != nt->mw_count)
901 for (i = 0; i < nt->mw_count; i++) {
904 val = ntb_spad_read(ndev, MW0_SZ_HIGH + (i * 2));
905 val64 = (u64)val << 32;
907 val = ntb_spad_read(ndev, MW0_SZ_LOW + (i * 2));
910 dev_dbg(&pdev->dev, "Remote MW%d size = %#llx\n", i, val64);
912 rc = ntb_set_mw(nt, i, val64);
917 nt->link_is_up = true;
919 for (i = 0; i < nt->qp_count; i++) {
920 struct ntb_transport_qp *qp = &nt->qp_vec[i];
922 ntb_transport_setup_qp_mw(nt, i);
924 if (qp->client_ready)
925 schedule_delayed_work(&qp->link_work, 0);
931 for (i = 0; i < nt->mw_count; i++)
934 /* if there's an actual failure, we should just bail */
936 ntb_link_disable(ndev);
941 if (ntb_link_is_up(ndev, NULL, NULL) == 1)
942 schedule_delayed_work(&nt->link_work,
943 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
946 static void ntb_qp_link_work(struct work_struct *work)
948 struct ntb_transport_qp *qp = container_of(work,
949 struct ntb_transport_qp,
951 struct pci_dev *pdev = qp->ndev->pdev;
952 struct ntb_transport_ctx *nt = qp->transport;
955 WARN_ON(!nt->link_is_up);
957 val = ntb_spad_read(nt->ndev, QP_LINKS);
959 ntb_peer_spad_write(nt->ndev, QP_LINKS, val | BIT(qp->qp_num));
961 /* query remote spad for qp ready bits */
962 dev_dbg_ratelimited(&pdev->dev, "Remote QP link status = %x\n", val);
964 /* See if the remote side is up */
965 if (val & BIT(qp->qp_num)) {
966 dev_info(&pdev->dev, "qp %d: Link Up\n", qp->qp_num);
967 qp->link_is_up = true;
970 if (qp->event_handler)
971 qp->event_handler(qp->cb_data, qp->link_is_up);
974 tasklet_schedule(&qp->rxc_db_work);
975 } else if (nt->link_is_up)
976 schedule_delayed_work(&qp->link_work,
977 msecs_to_jiffies(NTB_LINK_DOWN_TIMEOUT));
980 static int ntb_transport_init_queue(struct ntb_transport_ctx *nt,
983 struct ntb_transport_qp *qp;
985 resource_size_t mw_size;
986 unsigned int num_qps_mw, tx_size;
987 unsigned int mw_num, mw_count, qp_count;
990 mw_count = nt->mw_count;
991 qp_count = nt->qp_count;
993 mw_num = QP_TO_MW(nt, qp_num);
995 qp = &nt->qp_vec[qp_num];
999 qp->client_ready = false;
1000 qp->event_handler = NULL;
1001 ntb_qp_link_down_reset(qp);
1003 if (qp_count % mw_count && mw_num + 1 < qp_count / mw_count)
1004 num_qps_mw = qp_count / mw_count + 1;
1006 num_qps_mw = qp_count / mw_count;
1008 mw_base = nt->mw_vec[mw_num].phys_addr;
1009 mw_size = nt->mw_vec[mw_num].phys_size;
1011 tx_size = (unsigned int)mw_size / num_qps_mw;
1012 qp_offset = tx_size * (qp_num / mw_count);
1014 qp->tx_mw = nt->mw_vec[mw_num].vbase + qp_offset;
1018 qp->tx_mw_phys = mw_base + qp_offset;
1019 if (!qp->tx_mw_phys)
1022 tx_size -= sizeof(struct ntb_rx_info);
1023 qp->rx_info = qp->tx_mw + tx_size;
1025 /* Due to housekeeping, there must be atleast 2 buffs */
1026 qp->tx_max_frame = min(transport_mtu, tx_size / 2);
1027 qp->tx_max_entry = tx_size / qp->tx_max_frame;
1029 if (nt->debugfs_node_dir) {
1030 char debugfs_name[4];
1032 snprintf(debugfs_name, 4, "qp%d", qp_num);
1033 qp->debugfs_dir = debugfs_create_dir(debugfs_name,
1034 nt->debugfs_node_dir);
1036 qp->debugfs_stats = debugfs_create_file("stats", S_IRUSR,
1037 qp->debugfs_dir, qp,
1038 &ntb_qp_debugfs_stats);
1040 qp->debugfs_dir = NULL;
1041 qp->debugfs_stats = NULL;
1044 INIT_DELAYED_WORK(&qp->link_work, ntb_qp_link_work);
1045 INIT_WORK(&qp->link_cleanup, ntb_qp_link_cleanup_work);
1047 spin_lock_init(&qp->ntb_rx_q_lock);
1048 spin_lock_init(&qp->ntb_tx_free_q_lock);
1050 INIT_LIST_HEAD(&qp->rx_post_q);
1051 INIT_LIST_HEAD(&qp->rx_pend_q);
1052 INIT_LIST_HEAD(&qp->rx_free_q);
1053 INIT_LIST_HEAD(&qp->tx_free_q);
1055 tasklet_init(&qp->rxc_db_work, ntb_transport_rxc_db,
1061 static int ntb_transport_probe(struct ntb_client *self, struct ntb_dev *ndev)
1063 struct ntb_transport_ctx *nt;
1064 struct ntb_transport_mw *mw;
1065 unsigned int mw_count, qp_count, spad_count, max_mw_count_for_spads;
1070 mw_count = ntb_mw_count(ndev);
1072 if (ntb_db_is_unsafe(ndev))
1074 "doorbell is unsafe, proceed anyway...\n");
1075 if (ntb_spad_is_unsafe(ndev))
1077 "scratchpad is unsafe, proceed anyway...\n");
1079 node = dev_to_node(&ndev->dev);
1081 nt = kzalloc_node(sizeof(*nt), GFP_KERNEL, node);
1086 spad_count = ntb_spad_count(ndev);
1088 /* Limit the MW's based on the availability of scratchpads */
1090 if (spad_count < NTB_TRANSPORT_MIN_SPADS) {
1096 max_mw_count_for_spads = (spad_count - MW0_SZ_HIGH) / 2;
1097 nt->mw_count = min(mw_count, max_mw_count_for_spads);
1099 nt->mw_vec = kzalloc_node(mw_count * sizeof(*nt->mw_vec),
1106 for (i = 0; i < mw_count; i++) {
1107 mw = &nt->mw_vec[i];
1109 rc = ntb_mw_get_range(ndev, i, &mw->phys_addr, &mw->phys_size,
1110 &mw->xlat_align, &mw->xlat_align_size);
1114 mw->vbase = ioremap_wc(mw->phys_addr, mw->phys_size);
1122 mw->virt_addr = NULL;
1126 qp_bitmap = ntb_db_valid_mask(ndev);
1128 qp_count = ilog2(qp_bitmap);
1129 if (max_num_clients && max_num_clients < qp_count)
1130 qp_count = max_num_clients;
1131 else if (mw_count < qp_count)
1132 qp_count = mw_count;
1134 qp_bitmap &= BIT_ULL(qp_count) - 1;
1136 nt->qp_count = qp_count;
1137 nt->qp_bitmap = qp_bitmap;
1138 nt->qp_bitmap_free = qp_bitmap;
1140 nt->qp_vec = kzalloc_node(qp_count * sizeof(*nt->qp_vec),
1147 if (nt_debugfs_dir) {
1148 nt->debugfs_node_dir =
1149 debugfs_create_dir(pci_name(ndev->pdev),
1153 for (i = 0; i < qp_count; i++) {
1154 rc = ntb_transport_init_queue(nt, i);
1159 INIT_DELAYED_WORK(&nt->link_work, ntb_transport_link_work);
1160 INIT_WORK(&nt->link_cleanup, ntb_transport_link_cleanup_work);
1162 rc = ntb_set_ctx(ndev, nt, &ntb_transport_ops);
1166 INIT_LIST_HEAD(&nt->client_devs);
1167 rc = ntb_bus_init(nt);
1171 nt->link_is_up = false;
1172 ntb_link_enable(ndev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
1173 ntb_link_event(ndev);
1178 ntb_clear_ctx(ndev);
1183 mw = &nt->mw_vec[i];
1192 static void ntb_transport_free(struct ntb_client *self, struct ntb_dev *ndev)
1194 struct ntb_transport_ctx *nt = ndev->ctx;
1195 struct ntb_transport_qp *qp;
1196 u64 qp_bitmap_alloc;
1199 ntb_transport_link_cleanup(nt);
1200 cancel_work_sync(&nt->link_cleanup);
1201 cancel_delayed_work_sync(&nt->link_work);
1203 qp_bitmap_alloc = nt->qp_bitmap & ~nt->qp_bitmap_free;
1205 /* verify that all the qp's are freed */
1206 for (i = 0; i < nt->qp_count; i++) {
1207 qp = &nt->qp_vec[i];
1208 if (qp_bitmap_alloc & BIT_ULL(i))
1209 ntb_transport_free_queue(qp);
1210 debugfs_remove_recursive(qp->debugfs_dir);
1213 ntb_link_disable(ndev);
1214 ntb_clear_ctx(ndev);
1218 for (i = nt->mw_count; i--; ) {
1220 iounmap(nt->mw_vec[i].vbase);
1228 static void ntb_complete_rxc(struct ntb_transport_qp *qp)
1230 struct ntb_queue_entry *entry;
1233 unsigned long irqflags;
1235 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1237 while (!list_empty(&qp->rx_post_q)) {
1238 entry = list_first_entry(&qp->rx_post_q,
1239 struct ntb_queue_entry, entry);
1240 if (!(entry->flags & DESC_DONE_FLAG))
1243 entry->rx_hdr->flags = 0;
1244 iowrite32(entry->rx_index, &qp->rx_info->entry);
1246 cb_data = entry->cb_data;
1249 list_move_tail(&entry->entry, &qp->rx_free_q);
1251 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1253 if (qp->rx_handler && qp->client_ready)
1254 qp->rx_handler(qp, qp->cb_data, cb_data, len);
1256 spin_lock_irqsave(&qp->ntb_rx_q_lock, irqflags);
1259 spin_unlock_irqrestore(&qp->ntb_rx_q_lock, irqflags);
1262 static void ntb_rx_copy_callback(void *data,
1263 const struct dmaengine_result *res)
1265 struct ntb_queue_entry *entry = data;
1267 /* we need to check DMA results if we are using DMA */
1269 enum dmaengine_tx_result dma_err = res->result;
1272 case DMA_TRANS_READ_FAILED:
1273 case DMA_TRANS_WRITE_FAILED:
1275 case DMA_TRANS_ABORTED:
1277 struct ntb_transport_qp *qp = entry->qp;
1278 void *offset = qp->rx_buff + qp->rx_max_frame *
1281 ntb_memcpy_rx(entry, offset);
1286 case DMA_TRANS_NOERROR:
1292 entry->flags |= DESC_DONE_FLAG;
1294 ntb_complete_rxc(entry->qp);
1297 static void ntb_memcpy_rx(struct ntb_queue_entry *entry, void *offset)
1299 void *buf = entry->buf;
1300 size_t len = entry->len;
1302 memcpy(buf, offset, len);
1304 /* Ensure that the data is fully copied out before clearing the flag */
1307 ntb_rx_copy_callback(entry, NULL);
1310 static int ntb_async_rx_submit(struct ntb_queue_entry *entry, void *offset)
1312 struct dma_async_tx_descriptor *txd;
1313 struct ntb_transport_qp *qp = entry->qp;
1314 struct dma_chan *chan = qp->rx_dma_chan;
1315 struct dma_device *device;
1316 size_t pay_off, buff_off, len;
1317 struct dmaengine_unmap_data *unmap;
1318 dma_cookie_t cookie;
1319 void *buf = entry->buf;
1323 device = chan->device;
1324 pay_off = (size_t)offset & ~PAGE_MASK;
1325 buff_off = (size_t)buf & ~PAGE_MASK;
1327 if (!is_dma_copy_aligned(device, pay_off, buff_off, len))
1330 unmap = dmaengine_get_unmap_data(device->dev, 2, GFP_NOWAIT);
1335 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(offset),
1336 pay_off, len, DMA_TO_DEVICE);
1337 if (dma_mapping_error(device->dev, unmap->addr[0]))
1342 unmap->addr[1] = dma_map_page(device->dev, virt_to_page(buf),
1343 buff_off, len, DMA_FROM_DEVICE);
1344 if (dma_mapping_error(device->dev, unmap->addr[1]))
1347 unmap->from_cnt = 1;
1349 for (retries = 0; retries < DMA_RETRIES; retries++) {
1350 txd = device->device_prep_dma_memcpy(chan,
1352 unmap->addr[0], len,
1353 DMA_PREP_INTERRUPT);
1357 set_current_state(TASK_INTERRUPTIBLE);
1358 schedule_timeout(DMA_OUT_RESOURCE_TO);
1362 qp->dma_rx_prep_err++;
1366 txd->callback_result = ntb_rx_copy_callback;
1367 txd->callback_param = entry;
1368 dma_set_unmap(txd, unmap);
1370 cookie = dmaengine_submit(txd);
1371 if (dma_submit_error(cookie))
1374 dmaengine_unmap_put(unmap);
1376 qp->last_cookie = cookie;
1383 dmaengine_unmap_put(unmap);
1385 dmaengine_unmap_put(unmap);
1390 static void ntb_async_rx(struct ntb_queue_entry *entry, void *offset)
1392 struct ntb_transport_qp *qp = entry->qp;
1393 struct dma_chan *chan = qp->rx_dma_chan;
1399 if (entry->len < copy_bytes)
1402 res = ntb_async_rx_submit(entry, offset);
1406 if (!entry->retries)
1412 ntb_memcpy_rx(entry, offset);
1416 static int ntb_process_rxc(struct ntb_transport_qp *qp)
1418 struct ntb_payload_header *hdr;
1419 struct ntb_queue_entry *entry;
1422 offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index;
1423 hdr = offset + qp->rx_max_frame - sizeof(struct ntb_payload_header);
1425 dev_dbg(&qp->ndev->pdev->dev, "qp %d: RX ver %u len %d flags %x\n",
1426 qp->qp_num, hdr->ver, hdr->len, hdr->flags);
1428 if (!(hdr->flags & DESC_DONE_FLAG)) {
1429 dev_dbg(&qp->ndev->pdev->dev, "done flag not set\n");
1430 qp->rx_ring_empty++;
1434 if (hdr->flags & LINK_DOWN_FLAG) {
1435 dev_dbg(&qp->ndev->pdev->dev, "link down flag set\n");
1436 ntb_qp_link_down(qp);
1441 if (hdr->ver != (u32)qp->rx_pkts) {
1442 dev_dbg(&qp->ndev->pdev->dev,
1443 "version mismatch, expected %llu - got %u\n",
1444 qp->rx_pkts, hdr->ver);
1449 entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q);
1451 dev_dbg(&qp->ndev->pdev->dev, "no receive buffer\n");
1452 qp->rx_err_no_buf++;
1456 entry->rx_hdr = hdr;
1457 entry->rx_index = qp->rx_index;
1459 if (hdr->len > entry->len) {
1460 dev_dbg(&qp->ndev->pdev->dev,
1461 "receive buffer overflow! Wanted %d got %d\n",
1462 hdr->len, entry->len);
1466 entry->flags |= DESC_DONE_FLAG;
1468 ntb_complete_rxc(qp);
1470 dev_dbg(&qp->ndev->pdev->dev,
1471 "RX OK index %u ver %u size %d into buf size %d\n",
1472 qp->rx_index, hdr->ver, hdr->len, entry->len);
1474 qp->rx_bytes += hdr->len;
1477 entry->len = hdr->len;
1479 ntb_async_rx(entry, offset);
1483 qp->rx_index %= qp->rx_max_entry;
1488 static void ntb_transport_rxc_db(unsigned long data)
1490 struct ntb_transport_qp *qp = (void *)data;
1493 dev_dbg(&qp->ndev->pdev->dev, "%s: doorbell %d received\n",
1494 __func__, qp->qp_num);
1496 /* Limit the number of packets processed in a single interrupt to
1497 * provide fairness to others
1499 for (i = 0; i < qp->rx_max_entry; i++) {
1500 rc = ntb_process_rxc(qp);
1505 if (i && qp->rx_dma_chan)
1506 dma_async_issue_pending(qp->rx_dma_chan);
1508 if (i == qp->rx_max_entry) {
1509 /* there is more work to do */
1511 tasklet_schedule(&qp->rxc_db_work);
1512 } else if (ntb_db_read(qp->ndev) & BIT_ULL(qp->qp_num)) {
1513 /* the doorbell bit is set: clear it */
1514 ntb_db_clear(qp->ndev, BIT_ULL(qp->qp_num));
1515 /* ntb_db_read ensures ntb_db_clear write is committed */
1516 ntb_db_read(qp->ndev);
1518 /* an interrupt may have arrived between finishing
1519 * ntb_process_rxc and clearing the doorbell bit:
1520 * there might be some more work to do.
1523 tasklet_schedule(&qp->rxc_db_work);
1527 static void ntb_tx_copy_callback(void *data,
1528 const struct dmaengine_result *res)
1530 struct ntb_queue_entry *entry = data;
1531 struct ntb_transport_qp *qp = entry->qp;
1532 struct ntb_payload_header __iomem *hdr = entry->tx_hdr;
1534 /* we need to check DMA results if we are using DMA */
1536 enum dmaengine_tx_result dma_err = res->result;
1539 case DMA_TRANS_READ_FAILED:
1540 case DMA_TRANS_WRITE_FAILED:
1542 case DMA_TRANS_ABORTED:
1544 void __iomem *offset =
1545 qp->tx_mw + qp->tx_max_frame *
1548 /* resubmit via CPU */
1549 ntb_memcpy_tx(entry, offset);
1554 case DMA_TRANS_NOERROR:
1560 iowrite32(entry->flags | DESC_DONE_FLAG, &hdr->flags);
1562 ntb_peer_db_set(qp->ndev, BIT_ULL(qp->qp_num));
1564 /* The entry length can only be zero if the packet is intended to be a
1565 * "link down" or similar. Since no payload is being sent in these
1566 * cases, there is nothing to add to the completion queue.
1568 if (entry->len > 0) {
1569 qp->tx_bytes += entry->len;
1572 qp->tx_handler(qp, qp->cb_data, entry->cb_data,
1576 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry, &qp->tx_free_q);
1579 static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void __iomem *offset)
1581 #ifdef ARCH_HAS_NOCACHE_UACCESS
1583 * Using non-temporal mov to improve performance on non-cached
1584 * writes, even though we aren't actually copying from user space.
1586 __copy_from_user_inatomic_nocache(offset, entry->buf, entry->len);
1588 memcpy_toio(offset, entry->buf, entry->len);
1591 /* Ensure that the data is fully copied out before setting the flags */
1594 ntb_tx_copy_callback(entry, NULL);
1597 static int ntb_async_tx_submit(struct ntb_transport_qp *qp,
1598 struct ntb_queue_entry *entry)
1600 struct dma_async_tx_descriptor *txd;
1601 struct dma_chan *chan = qp->tx_dma_chan;
1602 struct dma_device *device;
1603 size_t len = entry->len;
1604 void *buf = entry->buf;
1605 size_t dest_off, buff_off;
1606 struct dmaengine_unmap_data *unmap;
1608 dma_cookie_t cookie;
1611 device = chan->device;
1612 dest = qp->tx_mw_phys + qp->tx_max_frame * entry->tx_index;
1613 buff_off = (size_t)buf & ~PAGE_MASK;
1614 dest_off = (size_t)dest & ~PAGE_MASK;
1616 if (!is_dma_copy_aligned(device, buff_off, dest_off, len))
1619 unmap = dmaengine_get_unmap_data(device->dev, 1, GFP_NOWAIT);
1624 unmap->addr[0] = dma_map_page(device->dev, virt_to_page(buf),
1625 buff_off, len, DMA_TO_DEVICE);
1626 if (dma_mapping_error(device->dev, unmap->addr[0]))
1631 for (retries = 0; retries < DMA_RETRIES; retries++) {
1632 txd = device->device_prep_dma_memcpy(chan, dest,
1633 unmap->addr[0], len,
1634 DMA_PREP_INTERRUPT);
1638 set_current_state(TASK_INTERRUPTIBLE);
1639 schedule_timeout(DMA_OUT_RESOURCE_TO);
1643 qp->dma_tx_prep_err++;
1647 txd->callback_result = ntb_tx_copy_callback;
1648 txd->callback_param = entry;
1649 dma_set_unmap(txd, unmap);
1651 cookie = dmaengine_submit(txd);
1652 if (dma_submit_error(cookie))
1655 dmaengine_unmap_put(unmap);
1657 dma_async_issue_pending(chan);
1661 dmaengine_unmap_put(unmap);
1663 dmaengine_unmap_put(unmap);
1668 static void ntb_async_tx(struct ntb_transport_qp *qp,
1669 struct ntb_queue_entry *entry)
1671 struct ntb_payload_header __iomem *hdr;
1672 struct dma_chan *chan = qp->tx_dma_chan;
1673 void __iomem *offset;
1676 entry->tx_index = qp->tx_index;
1677 offset = qp->tx_mw + qp->tx_max_frame * entry->tx_index;
1678 hdr = offset + qp->tx_max_frame - sizeof(struct ntb_payload_header);
1679 entry->tx_hdr = hdr;
1681 iowrite32(entry->len, &hdr->len);
1682 iowrite32((u32)qp->tx_pkts, &hdr->ver);
1687 if (entry->len < copy_bytes)
1690 res = ntb_async_tx_submit(qp, entry);
1694 if (!entry->retries)
1700 ntb_memcpy_tx(entry, offset);
1704 static int ntb_process_tx(struct ntb_transport_qp *qp,
1705 struct ntb_queue_entry *entry)
1707 if (qp->tx_index == qp->remote_rx_info->entry) {
1712 if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) {
1714 qp->tx_handler(qp, qp->cb_data, NULL, -EIO);
1716 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1721 ntb_async_tx(qp, entry);
1724 qp->tx_index %= qp->tx_max_entry;
1731 static void ntb_send_link_down(struct ntb_transport_qp *qp)
1733 struct pci_dev *pdev = qp->ndev->pdev;
1734 struct ntb_queue_entry *entry;
1737 if (!qp->link_is_up)
1740 dev_info(&pdev->dev, "qp %d: Send Link Down\n", qp->qp_num);
1742 for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) {
1743 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
1752 entry->cb_data = NULL;
1755 entry->flags = LINK_DOWN_FLAG;
1757 rc = ntb_process_tx(qp, entry);
1759 dev_err(&pdev->dev, "ntb: QP%d unable to send linkdown msg\n",
1762 ntb_qp_link_down_reset(qp);
1765 static bool ntb_dma_filter_fn(struct dma_chan *chan, void *node)
1767 return dev_to_node(&chan->dev->device) == (int)(unsigned long)node;
1771 * ntb_transport_create_queue - Create a new NTB transport layer queue
1772 * @rx_handler: receive callback function
1773 * @tx_handler: transmit callback function
1774 * @event_handler: event callback function
1776 * Create a new NTB transport layer queue and provide the queue with a callback
1777 * routine for both transmit and receive. The receive callback routine will be
1778 * used to pass up data when the transport has received it on the queue. The
1779 * transmit callback routine will be called when the transport has completed the
1780 * transmission of the data on the queue and the data is ready to be freed.
1782 * RETURNS: pointer to newly created ntb_queue, NULL on error.
1784 struct ntb_transport_qp *
1785 ntb_transport_create_queue(void *data, struct device *client_dev,
1786 const struct ntb_queue_handlers *handlers)
1788 struct ntb_dev *ndev;
1789 struct pci_dev *pdev;
1790 struct ntb_transport_ctx *nt;
1791 struct ntb_queue_entry *entry;
1792 struct ntb_transport_qp *qp;
1794 unsigned int free_queue;
1795 dma_cap_mask_t dma_mask;
1799 ndev = dev_ntb(client_dev->parent);
1803 node = dev_to_node(&ndev->dev);
1805 free_queue = ffs(nt->qp_bitmap_free);
1809 /* decrement free_queue to make it zero based */
1812 qp = &nt->qp_vec[free_queue];
1813 qp_bit = BIT_ULL(qp->qp_num);
1815 nt->qp_bitmap_free &= ~qp_bit;
1818 qp->rx_handler = handlers->rx_handler;
1819 qp->tx_handler = handlers->tx_handler;
1820 qp->event_handler = handlers->event_handler;
1822 dma_cap_zero(dma_mask);
1823 dma_cap_set(DMA_MEMCPY, dma_mask);
1827 dma_request_channel(dma_mask, ntb_dma_filter_fn,
1828 (void *)(unsigned long)node);
1829 if (!qp->tx_dma_chan)
1830 dev_info(&pdev->dev, "Unable to allocate TX DMA channel\n");
1833 dma_request_channel(dma_mask, ntb_dma_filter_fn,
1834 (void *)(unsigned long)node);
1835 if (!qp->rx_dma_chan)
1836 dev_info(&pdev->dev, "Unable to allocate RX DMA channel\n");
1838 qp->tx_dma_chan = NULL;
1839 qp->rx_dma_chan = NULL;
1842 dev_dbg(&pdev->dev, "Using %s memcpy for TX\n",
1843 qp->tx_dma_chan ? "DMA" : "CPU");
1845 dev_dbg(&pdev->dev, "Using %s memcpy for RX\n",
1846 qp->rx_dma_chan ? "DMA" : "CPU");
1848 for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) {
1849 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1854 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry,
1857 qp->rx_alloc_entry = NTB_QP_DEF_NUM_ENTRIES;
1859 for (i = 0; i < qp->tx_max_entry; i++) {
1860 entry = kzalloc_node(sizeof(*entry), GFP_ATOMIC, node);
1865 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
1869 ntb_db_clear(qp->ndev, qp_bit);
1870 ntb_db_clear_mask(qp->ndev, qp_bit);
1872 dev_info(&pdev->dev, "NTB Transport QP %d created\n", qp->qp_num);
1877 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1880 qp->rx_alloc_entry = 0;
1881 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1883 if (qp->tx_dma_chan)
1884 dma_release_channel(qp->tx_dma_chan);
1885 if (qp->rx_dma_chan)
1886 dma_release_channel(qp->rx_dma_chan);
1887 nt->qp_bitmap_free |= qp_bit;
1891 EXPORT_SYMBOL_GPL(ntb_transport_create_queue);
1894 * ntb_transport_free_queue - Frees NTB transport queue
1895 * @qp: NTB queue to be freed
1897 * Frees NTB transport queue
1899 void ntb_transport_free_queue(struct ntb_transport_qp *qp)
1901 struct pci_dev *pdev;
1902 struct ntb_queue_entry *entry;
1908 pdev = qp->ndev->pdev;
1912 if (qp->tx_dma_chan) {
1913 struct dma_chan *chan = qp->tx_dma_chan;
1914 /* Putting the dma_chan to NULL will force any new traffic to be
1915 * processed by the CPU instead of the DAM engine
1917 qp->tx_dma_chan = NULL;
1919 /* Try to be nice and wait for any queued DMA engine
1920 * transactions to process before smashing it with a rock
1922 dma_sync_wait(chan, qp->last_cookie);
1923 dmaengine_terminate_all(chan);
1924 dma_release_channel(chan);
1927 if (qp->rx_dma_chan) {
1928 struct dma_chan *chan = qp->rx_dma_chan;
1929 /* Putting the dma_chan to NULL will force any new traffic to be
1930 * processed by the CPU instead of the DAM engine
1932 qp->rx_dma_chan = NULL;
1934 /* Try to be nice and wait for any queued DMA engine
1935 * transactions to process before smashing it with a rock
1937 dma_sync_wait(chan, qp->last_cookie);
1938 dmaengine_terminate_all(chan);
1939 dma_release_channel(chan);
1942 qp_bit = BIT_ULL(qp->qp_num);
1944 ntb_db_set_mask(qp->ndev, qp_bit);
1945 tasklet_kill(&qp->rxc_db_work);
1947 cancel_delayed_work_sync(&qp->link_work);
1950 qp->rx_handler = NULL;
1951 qp->tx_handler = NULL;
1952 qp->event_handler = NULL;
1954 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q)))
1957 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) {
1958 dev_warn(&pdev->dev, "Freeing item from non-empty rx_pend_q\n");
1962 while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) {
1963 dev_warn(&pdev->dev, "Freeing item from non-empty rx_post_q\n");
1967 while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q)))
1970 qp->transport->qp_bitmap_free |= qp_bit;
1972 dev_info(&pdev->dev, "NTB Transport QP %d freed\n", qp->qp_num);
1974 EXPORT_SYMBOL_GPL(ntb_transport_free_queue);
1977 * ntb_transport_rx_remove - Dequeues enqueued rx packet
1978 * @qp: NTB queue to be freed
1979 * @len: pointer to variable to write enqueued buffers length
1981 * Dequeues unused buffers from receive queue. Should only be used during
1984 * RETURNS: NULL error value on error, or void* for success.
1986 void *ntb_transport_rx_remove(struct ntb_transport_qp *qp, unsigned int *len)
1988 struct ntb_queue_entry *entry;
1991 if (!qp || qp->client_ready)
1994 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q);
1998 buf = entry->cb_data;
2001 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_free_q);
2005 EXPORT_SYMBOL_GPL(ntb_transport_rx_remove);
2008 * ntb_transport_rx_enqueue - Enqueue a new NTB queue entry
2009 * @qp: NTB transport layer queue the entry is to be enqueued on
2010 * @cb: per buffer pointer for callback function to use
2011 * @data: pointer to data buffer that incoming packets will be copied into
2012 * @len: length of the data buffer
2014 * Enqueue a new receive buffer onto the transport queue into which a NTB
2015 * payload can be received into.
2017 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2019 int ntb_transport_rx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2022 struct ntb_queue_entry *entry;
2027 entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_free_q);
2031 entry->cb_data = cb;
2037 entry->rx_index = 0;
2039 ntb_list_add(&qp->ntb_rx_q_lock, &entry->entry, &qp->rx_pend_q);
2042 tasklet_schedule(&qp->rxc_db_work);
2046 EXPORT_SYMBOL_GPL(ntb_transport_rx_enqueue);
2049 * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry
2050 * @qp: NTB transport layer queue the entry is to be enqueued on
2051 * @cb: per buffer pointer for callback function to use
2052 * @data: pointer to data buffer that will be sent
2053 * @len: length of the data buffer
2055 * Enqueue a new transmit buffer onto the transport queue from which a NTB
2056 * payload will be transmitted. This assumes that a lock is being held to
2057 * serialize access to the qp.
2059 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2061 int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data,
2064 struct ntb_queue_entry *entry;
2067 if (!qp || !qp->link_is_up || !len)
2070 entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q);
2072 qp->tx_err_no_buf++;
2076 entry->cb_data = cb;
2082 entry->tx_index = 0;
2084 rc = ntb_process_tx(qp, entry);
2086 ntb_list_add(&qp->ntb_tx_free_q_lock, &entry->entry,
2091 EXPORT_SYMBOL_GPL(ntb_transport_tx_enqueue);
2094 * ntb_transport_link_up - Notify NTB transport of client readiness to use queue
2095 * @qp: NTB transport layer queue to be enabled
2097 * Notify NTB transport layer of client readiness to use queue
2099 void ntb_transport_link_up(struct ntb_transport_qp *qp)
2104 qp->client_ready = true;
2106 if (qp->transport->link_is_up)
2107 schedule_delayed_work(&qp->link_work, 0);
2109 EXPORT_SYMBOL_GPL(ntb_transport_link_up);
2112 * ntb_transport_link_down - Notify NTB transport to no longer enqueue data
2113 * @qp: NTB transport layer queue to be disabled
2115 * Notify NTB transport layer of client's desire to no longer receive data on
2116 * transport queue specified. It is the client's responsibility to ensure all
2117 * entries on queue are purged or otherwise handled appropriately.
2119 void ntb_transport_link_down(struct ntb_transport_qp *qp)
2126 qp->client_ready = false;
2128 val = ntb_spad_read(qp->ndev, QP_LINKS);
2130 ntb_peer_spad_write(qp->ndev, QP_LINKS,
2131 val & ~BIT(qp->qp_num));
2134 ntb_send_link_down(qp);
2136 cancel_delayed_work_sync(&qp->link_work);
2138 EXPORT_SYMBOL_GPL(ntb_transport_link_down);
2141 * ntb_transport_link_query - Query transport link state
2142 * @qp: NTB transport layer queue to be queried
2144 * Query connectivity to the remote system of the NTB transport queue
2146 * RETURNS: true for link up or false for link down
2148 bool ntb_transport_link_query(struct ntb_transport_qp *qp)
2153 return qp->link_is_up;
2155 EXPORT_SYMBOL_GPL(ntb_transport_link_query);
2158 * ntb_transport_qp_num - Query the qp number
2159 * @qp: NTB transport layer queue to be queried
2161 * Query qp number of the NTB transport queue
2163 * RETURNS: a zero based number specifying the qp number
2165 unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp)
2172 EXPORT_SYMBOL_GPL(ntb_transport_qp_num);
2175 * ntb_transport_max_size - Query the max payload size of a qp
2176 * @qp: NTB transport layer queue to be queried
2178 * Query the maximum payload size permissible on the given qp
2180 * RETURNS: the max payload size of a qp
2182 unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp)
2184 unsigned int max_size;
2185 unsigned int copy_align;
2186 struct dma_chan *rx_chan, *tx_chan;
2191 rx_chan = qp->rx_dma_chan;
2192 tx_chan = qp->tx_dma_chan;
2194 copy_align = max(rx_chan ? rx_chan->device->copy_align : 0,
2195 tx_chan ? tx_chan->device->copy_align : 0);
2197 /* If DMA engine usage is possible, try to find the max size for that */
2198 max_size = qp->tx_max_frame - sizeof(struct ntb_payload_header);
2199 max_size = round_down(max_size, 1 << copy_align);
2203 EXPORT_SYMBOL_GPL(ntb_transport_max_size);
2205 unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp)
2207 unsigned int head = qp->tx_index;
2208 unsigned int tail = qp->remote_rx_info->entry;
2210 return tail > head ? tail - head : qp->tx_max_entry + tail - head;
2212 EXPORT_SYMBOL_GPL(ntb_transport_tx_free_entry);
2214 static void ntb_transport_doorbell_callback(void *data, int vector)
2216 struct ntb_transport_ctx *nt = data;
2217 struct ntb_transport_qp *qp;
2219 unsigned int qp_num;
2221 db_bits = (nt->qp_bitmap & ~nt->qp_bitmap_free &
2222 ntb_db_vector_mask(nt->ndev, vector));
2225 qp_num = __ffs(db_bits);
2226 qp = &nt->qp_vec[qp_num];
2229 tasklet_schedule(&qp->rxc_db_work);
2231 db_bits &= ~BIT_ULL(qp_num);
2235 static const struct ntb_ctx_ops ntb_transport_ops = {
2236 .link_event = ntb_transport_event_callback,
2237 .db_event = ntb_transport_doorbell_callback,
2240 static struct ntb_client ntb_transport_client = {
2242 .probe = ntb_transport_probe,
2243 .remove = ntb_transport_free,
2247 static int __init ntb_transport_init(void)
2251 pr_info("%s, version %s\n", NTB_TRANSPORT_DESC, NTB_TRANSPORT_VER);
2253 if (debugfs_initialized())
2254 nt_debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2256 rc = bus_register(&ntb_transport_bus);
2260 rc = ntb_register_client(&ntb_transport_client);
2267 bus_unregister(&ntb_transport_bus);
2269 debugfs_remove_recursive(nt_debugfs_dir);
2272 module_init(ntb_transport_init);
2274 static void __exit ntb_transport_exit(void)
2276 ntb_unregister_client(&ntb_transport_client);
2277 bus_unregister(&ntb_transport_bus);
2278 debugfs_remove_recursive(nt_debugfs_dir);
2280 module_exit(ntb_transport_exit);