2 * Copyright (C) 2012 Red Hat, Inc.
6 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8 * This file is released under the GPLv2.
10 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12 * hash device. Setting this greatly improves performance when data and hash
13 * are on the same disk on different partitions on devices with poor random
17 #include "dm-verity.h"
18 #include "dm-verity-fec.h"
20 #include <linux/module.h>
21 #include <linux/reboot.h>
23 #define DM_MSG_PREFIX "verity"
25 #define DM_VERITY_ENV_LENGTH 42
26 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR"
28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
30 #define DM_VERITY_MAX_CORRUPTED_ERRS 100
32 #define DM_VERITY_OPT_LOGGING "ignore_corruption"
33 #define DM_VERITY_OPT_RESTART "restart_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks"
36 #define DM_VERITY_OPTS_MAX (2 + DM_VERITY_OPTS_FEC)
38 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
40 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
42 struct dm_verity_prefetch_work {
43 struct work_struct work;
50 * Auxiliary structure appended to each dm-bufio buffer. If the value
51 * hash_verified is nonzero, hash of the block has been verified.
53 * The variable hash_verified is set to 0 when allocating the buffer, then
54 * it can be changed to 1 and it is never reset to 0 again.
56 * There is no lock around this value, a race condition can at worst cause
57 * that multiple processes verify the hash of the same buffer simultaneously
58 * and write 1 to hash_verified simultaneously.
59 * This condition is harmless, so we don't need locking.
66 * Initialize struct buffer_aux for a freshly created buffer.
68 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
70 struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
72 aux->hash_verified = 0;
76 * Translate input sector number to the sector number on the target device.
78 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
80 return v->data_start + dm_target_offset(v->ti, bi_sector);
84 * Return hash position of a specified block at a specified tree level
85 * (0 is the lowest level).
86 * The lowest "hash_per_block_bits"-bits of the result denote hash position
87 * inside a hash block. The remaining bits denote location of the hash block.
89 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
92 return block >> (level * v->hash_per_block_bits);
96 * Wrapper for crypto_shash_init, which handles verity salting.
98 static int verity_hash_init(struct dm_verity *v, struct shash_desc *desc)
103 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
105 r = crypto_shash_init(desc);
107 if (unlikely(r < 0)) {
108 DMERR("crypto_shash_init failed: %d", r);
112 if (likely(v->version >= 1)) {
113 r = crypto_shash_update(desc, v->salt, v->salt_size);
115 if (unlikely(r < 0)) {
116 DMERR("crypto_shash_update failed: %d", r);
124 static int verity_hash_update(struct dm_verity *v, struct shash_desc *desc,
125 const u8 *data, size_t len)
127 int r = crypto_shash_update(desc, data, len);
130 DMERR("crypto_shash_update failed: %d", r);
135 static int verity_hash_final(struct dm_verity *v, struct shash_desc *desc,
140 if (unlikely(!v->version)) {
141 r = crypto_shash_update(desc, v->salt, v->salt_size);
144 DMERR("crypto_shash_update failed: %d", r);
149 r = crypto_shash_final(desc, digest);
152 DMERR("crypto_shash_final failed: %d", r);
157 int verity_hash(struct dm_verity *v, struct shash_desc *desc,
158 const u8 *data, size_t len, u8 *digest)
162 r = verity_hash_init(v, desc);
166 r = verity_hash_update(v, desc, data, len);
170 return verity_hash_final(v, desc, digest);
173 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
174 sector_t *hash_block, unsigned *offset)
176 sector_t position = verity_position_at_level(v, block, level);
179 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
184 idx = position & ((1 << v->hash_per_block_bits) - 1);
186 *offset = idx * v->digest_size;
188 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
192 * Handle verification errors.
194 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
195 unsigned long long block)
197 char verity_env[DM_VERITY_ENV_LENGTH];
198 char *envp[] = { verity_env, NULL };
199 const char *type_str = "";
200 struct mapped_device *md = dm_table_get_md(v->ti->table);
202 /* Corruption should be visible in device status in all modes */
205 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
211 case DM_VERITY_BLOCK_TYPE_DATA:
214 case DM_VERITY_BLOCK_TYPE_METADATA:
215 type_str = "metadata";
221 DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str,
224 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
225 DMERR("%s: reached maximum errors", v->data_dev->name);
227 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
228 DM_VERITY_ENV_VAR_NAME, type, block);
230 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
233 if (v->mode == DM_VERITY_MODE_LOGGING)
236 if (v->mode == DM_VERITY_MODE_RESTART)
237 kernel_restart("dm-verity device corrupted");
243 * Verify hash of a metadata block pertaining to the specified data block
244 * ("block" argument) at a specified level ("level" argument).
246 * On successful return, verity_io_want_digest(v, io) contains the hash value
247 * for a lower tree level or for the data block (if we're at the lowest level).
249 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
250 * If "skip_unverified" is false, unverified buffer is hashed and verified
251 * against current value of verity_io_want_digest(v, io).
253 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
254 sector_t block, int level, bool skip_unverified,
257 struct dm_buffer *buf;
258 struct buffer_aux *aux;
264 verity_hash_at_level(v, block, level, &hash_block, &offset);
266 data = dm_bufio_read(v->bufio, hash_block, &buf);
268 return PTR_ERR(data);
270 aux = dm_bufio_get_aux_data(buf);
272 if (!aux->hash_verified) {
273 if (skip_unverified) {
278 r = verity_hash(v, verity_io_hash_desc(v, io),
279 data, 1 << v->hash_dev_block_bits,
280 verity_io_real_digest(v, io));
284 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
285 v->digest_size) == 0))
286 aux->hash_verified = 1;
287 else if (verity_fec_decode(v, io,
288 DM_VERITY_BLOCK_TYPE_METADATA,
289 hash_block, data, NULL) == 0)
290 aux->hash_verified = 1;
291 else if (verity_handle_err(v,
292 DM_VERITY_BLOCK_TYPE_METADATA,
300 memcpy(want_digest, data, v->digest_size);
304 dm_bufio_release(buf);
309 * Find a hash for a given block, write it to digest and verify the integrity
310 * of the hash tree if necessary.
312 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
313 sector_t block, u8 *digest, bool *is_zero)
317 if (likely(v->levels)) {
319 * First, we try to get the requested hash for
320 * the current block. If the hash block itself is
321 * verified, zero is returned. If it isn't, this
322 * function returns 1 and we fall back to whole
323 * chain verification.
325 r = verity_verify_level(v, io, block, 0, true, digest);
330 memcpy(digest, v->root_digest, v->digest_size);
332 for (i = v->levels - 1; i >= 0; i--) {
333 r = verity_verify_level(v, io, block, i, false, digest);
338 if (!r && v->zero_digest)
339 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
347 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
348 * starting from iter.
350 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
351 struct bvec_iter *iter,
352 int (*process)(struct dm_verity *v,
353 struct dm_verity_io *io, u8 *data,
356 unsigned todo = 1 << v->data_dev_block_bits;
357 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
363 struct bio_vec bv = bio_iter_iovec(bio, *iter);
365 page = kmap_atomic(bv.bv_page);
368 if (likely(len >= todo))
371 r = process(v, io, page + bv.bv_offset, len);
377 bio_advance_iter(bio, iter, len);
384 static int verity_bv_hash_update(struct dm_verity *v, struct dm_verity_io *io,
385 u8 *data, size_t len)
387 return verity_hash_update(v, verity_io_hash_desc(v, io), data, len);
390 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
391 u8 *data, size_t len)
393 memset(data, 0, len);
398 * Verify one "dm_verity_io" structure.
400 static int verity_verify_io(struct dm_verity_io *io)
403 struct dm_verity *v = io->v;
404 struct bvec_iter start;
407 for (b = 0; b < io->n_blocks; b++) {
409 struct shash_desc *desc = verity_io_hash_desc(v, io);
411 r = verity_hash_for_block(v, io, io->block + b,
412 verity_io_want_digest(v, io),
419 * If we expect a zero block, don't validate, just
422 r = verity_for_bv_block(v, io, &io->iter,
430 r = verity_hash_init(v, desc);
435 r = verity_for_bv_block(v, io, &io->iter, verity_bv_hash_update);
439 r = verity_hash_final(v, desc, verity_io_real_digest(v, io));
443 if (likely(memcmp(verity_io_real_digest(v, io),
444 verity_io_want_digest(v, io), v->digest_size) == 0))
446 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
447 io->block + b, NULL, &start) == 0)
449 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
458 * End one "io" structure with a given error.
460 static void verity_finish_io(struct dm_verity_io *io, int error)
462 struct dm_verity *v = io->v;
463 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
465 bio->bi_end_io = io->orig_bi_end_io;
466 bio->bi_error = error;
468 verity_fec_finish_io(io);
473 static void verity_work(struct work_struct *w)
475 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
477 verity_finish_io(io, verity_verify_io(io));
480 static void verity_end_io(struct bio *bio)
482 struct dm_verity_io *io = bio->bi_private;
484 if (bio->bi_error && !verity_fec_is_enabled(io->v)) {
485 verity_finish_io(io, bio->bi_error);
489 INIT_WORK(&io->work, verity_work);
490 queue_work(io->v->verify_wq, &io->work);
494 * Prefetch buffers for the specified io.
495 * The root buffer is not prefetched, it is assumed that it will be cached
498 static void verity_prefetch_io(struct work_struct *work)
500 struct dm_verity_prefetch_work *pw =
501 container_of(work, struct dm_verity_prefetch_work, work);
502 struct dm_verity *v = pw->v;
505 for (i = v->levels - 2; i >= 0; i--) {
506 sector_t hash_block_start;
507 sector_t hash_block_end;
508 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
509 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
511 unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
513 cluster >>= v->data_dev_block_bits;
514 if (unlikely(!cluster))
515 goto no_prefetch_cluster;
517 if (unlikely(cluster & (cluster - 1)))
518 cluster = 1 << __fls(cluster);
520 hash_block_start &= ~(sector_t)(cluster - 1);
521 hash_block_end |= cluster - 1;
522 if (unlikely(hash_block_end >= v->hash_blocks))
523 hash_block_end = v->hash_blocks - 1;
526 dm_bufio_prefetch(v->bufio, hash_block_start,
527 hash_block_end - hash_block_start + 1);
533 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
535 struct dm_verity_prefetch_work *pw;
537 pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
538 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
543 INIT_WORK(&pw->work, verity_prefetch_io);
545 pw->block = io->block;
546 pw->n_blocks = io->n_blocks;
547 queue_work(v->verify_wq, &pw->work);
551 * Bio map function. It allocates dm_verity_io structure and bio vector and
552 * fills them. Then it issues prefetches and the I/O.
554 static int verity_map(struct dm_target *ti, struct bio *bio)
556 struct dm_verity *v = ti->private;
557 struct dm_verity_io *io;
559 bio->bi_bdev = v->data_dev->bdev;
560 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
562 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
563 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
564 DMERR_LIMIT("unaligned io");
568 if (bio_end_sector(bio) >>
569 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
570 DMERR_LIMIT("io out of range");
574 if (bio_data_dir(bio) == WRITE)
577 io = dm_per_bio_data(bio, ti->per_io_data_size);
579 io->orig_bi_end_io = bio->bi_end_io;
580 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
581 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
583 bio->bi_end_io = verity_end_io;
584 bio->bi_private = io;
585 io->iter = bio->bi_iter;
587 verity_fec_init_io(io);
589 verity_submit_prefetch(v, io);
591 generic_make_request(bio);
593 return DM_MAPIO_SUBMITTED;
597 * Status: V (valid) or C (corruption found)
599 static void verity_status(struct dm_target *ti, status_type_t type,
600 unsigned status_flags, char *result, unsigned maxlen)
602 struct dm_verity *v = ti->private;
608 case STATUSTYPE_INFO:
609 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
611 case STATUSTYPE_TABLE:
612 DMEMIT("%u %s %s %u %u %llu %llu %s ",
616 1 << v->data_dev_block_bits,
617 1 << v->hash_dev_block_bits,
618 (unsigned long long)v->data_blocks,
619 (unsigned long long)v->hash_start,
622 for (x = 0; x < v->digest_size; x++)
623 DMEMIT("%02x", v->root_digest[x]);
628 for (x = 0; x < v->salt_size; x++)
629 DMEMIT("%02x", v->salt[x]);
630 if (v->mode != DM_VERITY_MODE_EIO)
632 if (verity_fec_is_enabled(v))
633 args += DM_VERITY_OPTS_FEC;
639 if (v->mode != DM_VERITY_MODE_EIO) {
642 case DM_VERITY_MODE_LOGGING:
643 DMEMIT(DM_VERITY_OPT_LOGGING);
645 case DM_VERITY_MODE_RESTART:
646 DMEMIT(DM_VERITY_OPT_RESTART);
653 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
654 sz = verity_fec_status_table(v, sz, result, maxlen);
659 static int verity_prepare_ioctl(struct dm_target *ti,
660 struct block_device **bdev, fmode_t *mode)
662 struct dm_verity *v = ti->private;
664 *bdev = v->data_dev->bdev;
667 ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
672 static int verity_iterate_devices(struct dm_target *ti,
673 iterate_devices_callout_fn fn, void *data)
675 struct dm_verity *v = ti->private;
677 return fn(ti, v->data_dev, v->data_start, ti->len, data);
680 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
682 struct dm_verity *v = ti->private;
684 if (limits->logical_block_size < 1 << v->data_dev_block_bits)
685 limits->logical_block_size = 1 << v->data_dev_block_bits;
687 if (limits->physical_block_size < 1 << v->data_dev_block_bits)
688 limits->physical_block_size = 1 << v->data_dev_block_bits;
690 blk_limits_io_min(limits, limits->logical_block_size);
693 static void verity_dtr(struct dm_target *ti)
695 struct dm_verity *v = ti->private;
698 destroy_workqueue(v->verify_wq);
701 dm_bufio_client_destroy(v->bufio);
704 kfree(v->root_digest);
705 kfree(v->zero_digest);
708 crypto_free_shash(v->tfm);
713 dm_put_device(ti, v->hash_dev);
716 dm_put_device(ti, v->data_dev);
723 static int verity_alloc_zero_digest(struct dm_verity *v)
726 struct shash_desc *desc;
729 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
734 desc = kmalloc(v->shash_descsize, GFP_KERNEL);
737 return r; /* verity_dtr will free zero_digest */
739 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
744 r = verity_hash(v, desc, zero_data, 1 << v->data_dev_block_bits,
754 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
758 struct dm_target *ti = v->ti;
759 const char *arg_name;
761 static struct dm_arg _args[] = {
762 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
765 r = dm_read_arg_group(_args, as, &argc, &ti->error);
773 arg_name = dm_shift_arg(as);
776 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
777 v->mode = DM_VERITY_MODE_LOGGING;
780 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
781 v->mode = DM_VERITY_MODE_RESTART;
784 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
785 r = verity_alloc_zero_digest(v);
787 ti->error = "Cannot allocate zero digest";
792 } else if (verity_is_fec_opt_arg(arg_name)) {
793 r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
799 ti->error = "Unrecognized verity feature request";
801 } while (argc && !r);
808 * <version> The current format is version 1.
809 * Vsn 0 is compatible with original Chromium OS releases.
814 * <the number of data blocks>
818 * <salt> Hex string or "-" if no salt.
820 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
823 struct dm_arg_set as;
825 unsigned long long num_ll;
828 sector_t hash_position;
831 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
833 ti->error = "Cannot allocate verity structure";
839 r = verity_fec_ctr_alloc(v);
843 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
844 ti->error = "Device must be readonly";
850 ti->error = "Not enough arguments";
855 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
857 ti->error = "Invalid version";
863 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
865 ti->error = "Data device lookup failed";
869 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
871 ti->error = "Hash device lookup failed";
875 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
876 !num || (num & (num - 1)) ||
877 num < bdev_logical_block_size(v->data_dev->bdev) ||
879 ti->error = "Invalid data device block size";
883 v->data_dev_block_bits = __ffs(num);
885 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
886 !num || (num & (num - 1)) ||
887 num < bdev_logical_block_size(v->hash_dev->bdev) ||
889 ti->error = "Invalid hash device block size";
893 v->hash_dev_block_bits = __ffs(num);
895 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
896 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
897 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
898 ti->error = "Invalid data blocks";
902 v->data_blocks = num_ll;
904 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
905 ti->error = "Data device is too small";
910 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
911 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
912 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
913 ti->error = "Invalid hash start";
917 v->hash_start = num_ll;
919 v->alg_name = kstrdup(argv[7], GFP_KERNEL);
921 ti->error = "Cannot allocate algorithm name";
926 v->tfm = crypto_alloc_shash(v->alg_name, 0, 0);
927 if (IS_ERR(v->tfm)) {
928 ti->error = "Cannot initialize hash function";
933 v->digest_size = crypto_shash_digestsize(v->tfm);
934 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
935 ti->error = "Digest size too big";
940 sizeof(struct shash_desc) + crypto_shash_descsize(v->tfm);
942 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
943 if (!v->root_digest) {
944 ti->error = "Cannot allocate root digest";
948 if (strlen(argv[8]) != v->digest_size * 2 ||
949 hex2bin(v->root_digest, argv[8], v->digest_size)) {
950 ti->error = "Invalid root digest";
955 if (strcmp(argv[9], "-")) {
956 v->salt_size = strlen(argv[9]) / 2;
957 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
959 ti->error = "Cannot allocate salt";
963 if (strlen(argv[9]) != v->salt_size * 2 ||
964 hex2bin(v->salt, argv[9], v->salt_size)) {
965 ti->error = "Invalid salt";
974 /* Optional parameters */
979 r = verity_parse_opt_args(&as, v);
984 v->hash_per_block_bits =
985 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
989 while (v->hash_per_block_bits * v->levels < 64 &&
990 (unsigned long long)(v->data_blocks - 1) >>
991 (v->hash_per_block_bits * v->levels))
994 if (v->levels > DM_VERITY_MAX_LEVELS) {
995 ti->error = "Too many tree levels";
1000 hash_position = v->hash_start;
1001 for (i = v->levels - 1; i >= 0; i--) {
1003 v->hash_level_block[i] = hash_position;
1004 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1005 >> ((i + 1) * v->hash_per_block_bits);
1006 if (hash_position + s < hash_position) {
1007 ti->error = "Hash device offset overflow";
1013 v->hash_blocks = hash_position;
1015 v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1016 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1017 dm_bufio_alloc_callback, NULL);
1018 if (IS_ERR(v->bufio)) {
1019 ti->error = "Cannot initialize dm-bufio";
1020 r = PTR_ERR(v->bufio);
1025 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1026 ti->error = "Hash device is too small";
1031 /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1032 v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1033 if (!v->verify_wq) {
1034 ti->error = "Cannot allocate workqueue";
1039 ti->per_io_data_size = sizeof(struct dm_verity_io) +
1040 v->shash_descsize + v->digest_size * 2;
1042 r = verity_fec_ctr(v);
1046 ti->per_io_data_size = roundup(ti->per_io_data_size,
1047 __alignof__(struct dm_verity_io));
1057 static struct target_type verity_target = {
1059 .version = {1, 3, 0},
1060 .module = THIS_MODULE,
1064 .status = verity_status,
1065 .prepare_ioctl = verity_prepare_ioctl,
1066 .iterate_devices = verity_iterate_devices,
1067 .io_hints = verity_io_hints,
1070 static int __init dm_verity_init(void)
1074 r = dm_register_target(&verity_target);
1076 DMERR("register failed %d", r);
1081 static void __exit dm_verity_exit(void)
1083 dm_unregister_target(&verity_target);
1086 module_init(dm_verity_init);
1087 module_exit(dm_verity_exit);
1092 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1093 MODULE_LICENSE("GPL");