]> Git Repo - linux.git/blob - drivers/clocksource/arm_arch_timer.c
Merge tag 'microblaze-v5.7-rc1' of git://git.monstr.eu/linux-2.6-microblaze
[linux.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
27
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
30
31 #include <clocksource/arm_arch_timer.h>
32
33 #define CNTTIDR         0x08
34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
35
36 #define CNTACR(n)       (0x40 + ((n) * 4))
37 #define CNTACR_RPCT     BIT(0)
38 #define CNTACR_RVCT     BIT(1)
39 #define CNTACR_RFRQ     BIT(2)
40 #define CNTACR_RVOFF    BIT(3)
41 #define CNTACR_RWVT     BIT(4)
42 #define CNTACR_RWPT     BIT(5)
43
44 #define CNTVCT_LO       0x08
45 #define CNTVCT_HI       0x0c
46 #define CNTFRQ          0x10
47 #define CNTP_TVAL       0x28
48 #define CNTP_CTL        0x2c
49 #define CNTV_TVAL       0x38
50 #define CNTV_CTL        0x3c
51
52 static unsigned arch_timers_present __initdata;
53
54 static void __iomem *arch_counter_base;
55
56 struct arch_timer {
57         void __iomem *base;
58         struct clock_event_device evt;
59 };
60
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
62
63 static u32 arch_timer_rate;
64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
65
66 static struct clock_event_device __percpu *arch_timer_evt;
67
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71 static bool arch_counter_suspend_stop;
72 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
73 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
74 #else
75 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
76 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
77
78 static cpumask_t evtstrm_available = CPU_MASK_NONE;
79 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
80
81 static int __init early_evtstrm_cfg(char *buf)
82 {
83         return strtobool(buf, &evtstrm_enable);
84 }
85 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
86
87 /*
88  * Architected system timer support.
89  */
90
91 static __always_inline
92 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
93                           struct clock_event_device *clk)
94 {
95         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
96                 struct arch_timer *timer = to_arch_timer(clk);
97                 switch (reg) {
98                 case ARCH_TIMER_REG_CTRL:
99                         writel_relaxed(val, timer->base + CNTP_CTL);
100                         break;
101                 case ARCH_TIMER_REG_TVAL:
102                         writel_relaxed(val, timer->base + CNTP_TVAL);
103                         break;
104                 }
105         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
106                 struct arch_timer *timer = to_arch_timer(clk);
107                 switch (reg) {
108                 case ARCH_TIMER_REG_CTRL:
109                         writel_relaxed(val, timer->base + CNTV_CTL);
110                         break;
111                 case ARCH_TIMER_REG_TVAL:
112                         writel_relaxed(val, timer->base + CNTV_TVAL);
113                         break;
114                 }
115         } else {
116                 arch_timer_reg_write_cp15(access, reg, val);
117         }
118 }
119
120 static __always_inline
121 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
122                         struct clock_event_device *clk)
123 {
124         u32 val;
125
126         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
127                 struct arch_timer *timer = to_arch_timer(clk);
128                 switch (reg) {
129                 case ARCH_TIMER_REG_CTRL:
130                         val = readl_relaxed(timer->base + CNTP_CTL);
131                         break;
132                 case ARCH_TIMER_REG_TVAL:
133                         val = readl_relaxed(timer->base + CNTP_TVAL);
134                         break;
135                 }
136         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
137                 struct arch_timer *timer = to_arch_timer(clk);
138                 switch (reg) {
139                 case ARCH_TIMER_REG_CTRL:
140                         val = readl_relaxed(timer->base + CNTV_CTL);
141                         break;
142                 case ARCH_TIMER_REG_TVAL:
143                         val = readl_relaxed(timer->base + CNTV_TVAL);
144                         break;
145                 }
146         } else {
147                 val = arch_timer_reg_read_cp15(access, reg);
148         }
149
150         return val;
151 }
152
153 static notrace u64 arch_counter_get_cntpct_stable(void)
154 {
155         return __arch_counter_get_cntpct_stable();
156 }
157
158 static notrace u64 arch_counter_get_cntpct(void)
159 {
160         return __arch_counter_get_cntpct();
161 }
162
163 static notrace u64 arch_counter_get_cntvct_stable(void)
164 {
165         return __arch_counter_get_cntvct_stable();
166 }
167
168 static notrace u64 arch_counter_get_cntvct(void)
169 {
170         return __arch_counter_get_cntvct();
171 }
172
173 /*
174  * Default to cp15 based access because arm64 uses this function for
175  * sched_clock() before DT is probed and the cp15 method is guaranteed
176  * to exist on arm64. arm doesn't use this before DT is probed so even
177  * if we don't have the cp15 accessors we won't have a problem.
178  */
179 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
180 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
181
182 static u64 arch_counter_read(struct clocksource *cs)
183 {
184         return arch_timer_read_counter();
185 }
186
187 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
188 {
189         return arch_timer_read_counter();
190 }
191
192 static struct clocksource clocksource_counter = {
193         .name   = "arch_sys_counter",
194         .rating = 400,
195         .read   = arch_counter_read,
196         .mask   = CLOCKSOURCE_MASK(56),
197         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
198 };
199
200 static struct cyclecounter cyclecounter __ro_after_init = {
201         .read   = arch_counter_read_cc,
202         .mask   = CLOCKSOURCE_MASK(56),
203 };
204
205 struct ate_acpi_oem_info {
206         char oem_id[ACPI_OEM_ID_SIZE + 1];
207         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
208         u32 oem_revision;
209 };
210
211 #ifdef CONFIG_FSL_ERRATUM_A008585
212 /*
213  * The number of retries is an arbitrary value well beyond the highest number
214  * of iterations the loop has been observed to take.
215  */
216 #define __fsl_a008585_read_reg(reg) ({                  \
217         u64 _old, _new;                                 \
218         int _retries = 200;                             \
219                                                         \
220         do {                                            \
221                 _old = read_sysreg(reg);                \
222                 _new = read_sysreg(reg);                \
223                 _retries--;                             \
224         } while (unlikely(_old != _new) && _retries);   \
225                                                         \
226         WARN_ON_ONCE(!_retries);                        \
227         _new;                                           \
228 })
229
230 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
231 {
232         return __fsl_a008585_read_reg(cntp_tval_el0);
233 }
234
235 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
236 {
237         return __fsl_a008585_read_reg(cntv_tval_el0);
238 }
239
240 static u64 notrace fsl_a008585_read_cntpct_el0(void)
241 {
242         return __fsl_a008585_read_reg(cntpct_el0);
243 }
244
245 static u64 notrace fsl_a008585_read_cntvct_el0(void)
246 {
247         return __fsl_a008585_read_reg(cntvct_el0);
248 }
249 #endif
250
251 #ifdef CONFIG_HISILICON_ERRATUM_161010101
252 /*
253  * Verify whether the value of the second read is larger than the first by
254  * less than 32 is the only way to confirm the value is correct, so clear the
255  * lower 5 bits to check whether the difference is greater than 32 or not.
256  * Theoretically the erratum should not occur more than twice in succession
257  * when reading the system counter, but it is possible that some interrupts
258  * may lead to more than twice read errors, triggering the warning, so setting
259  * the number of retries far beyond the number of iterations the loop has been
260  * observed to take.
261  */
262 #define __hisi_161010101_read_reg(reg) ({                               \
263         u64 _old, _new;                                         \
264         int _retries = 50;                                      \
265                                                                 \
266         do {                                                    \
267                 _old = read_sysreg(reg);                        \
268                 _new = read_sysreg(reg);                        \
269                 _retries--;                                     \
270         } while (unlikely((_new - _old) >> 5) && _retries);     \
271                                                                 \
272         WARN_ON_ONCE(!_retries);                                \
273         _new;                                                   \
274 })
275
276 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
277 {
278         return __hisi_161010101_read_reg(cntp_tval_el0);
279 }
280
281 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
282 {
283         return __hisi_161010101_read_reg(cntv_tval_el0);
284 }
285
286 static u64 notrace hisi_161010101_read_cntpct_el0(void)
287 {
288         return __hisi_161010101_read_reg(cntpct_el0);
289 }
290
291 static u64 notrace hisi_161010101_read_cntvct_el0(void)
292 {
293         return __hisi_161010101_read_reg(cntvct_el0);
294 }
295
296 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
297         /*
298          * Note that trailing spaces are required to properly match
299          * the OEM table information.
300          */
301         {
302                 .oem_id         = "HISI  ",
303                 .oem_table_id   = "HIP05   ",
304                 .oem_revision   = 0,
305         },
306         {
307                 .oem_id         = "HISI  ",
308                 .oem_table_id   = "HIP06   ",
309                 .oem_revision   = 0,
310         },
311         {
312                 .oem_id         = "HISI  ",
313                 .oem_table_id   = "HIP07   ",
314                 .oem_revision   = 0,
315         },
316         { /* Sentinel indicating the end of the OEM array */ },
317 };
318 #endif
319
320 #ifdef CONFIG_ARM64_ERRATUM_858921
321 static u64 notrace arm64_858921_read_cntpct_el0(void)
322 {
323         u64 old, new;
324
325         old = read_sysreg(cntpct_el0);
326         new = read_sysreg(cntpct_el0);
327         return (((old ^ new) >> 32) & 1) ? old : new;
328 }
329
330 static u64 notrace arm64_858921_read_cntvct_el0(void)
331 {
332         u64 old, new;
333
334         old = read_sysreg(cntvct_el0);
335         new = read_sysreg(cntvct_el0);
336         return (((old ^ new) >> 32) & 1) ? old : new;
337 }
338 #endif
339
340 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
341 /*
342  * The low bits of the counter registers are indeterminate while bit 10 or
343  * greater is rolling over. Since the counter value can jump both backward
344  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
345  * with all ones or all zeros in the low bits. Bound the loop by the maximum
346  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
347  */
348 #define __sun50i_a64_read_reg(reg) ({                                   \
349         u64 _val;                                                       \
350         int _retries = 150;                                             \
351                                                                         \
352         do {                                                            \
353                 _val = read_sysreg(reg);                                \
354                 _retries--;                                             \
355         } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);        \
356                                                                         \
357         WARN_ON_ONCE(!_retries);                                        \
358         _val;                                                           \
359 })
360
361 static u64 notrace sun50i_a64_read_cntpct_el0(void)
362 {
363         return __sun50i_a64_read_reg(cntpct_el0);
364 }
365
366 static u64 notrace sun50i_a64_read_cntvct_el0(void)
367 {
368         return __sun50i_a64_read_reg(cntvct_el0);
369 }
370
371 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
372 {
373         return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
374 }
375
376 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
377 {
378         return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
379 }
380 #endif
381
382 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
383 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
384 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
385
386 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
387
388 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
389                                                 struct clock_event_device *clk)
390 {
391         unsigned long ctrl;
392         u64 cval;
393
394         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
395         ctrl |= ARCH_TIMER_CTRL_ENABLE;
396         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
397
398         if (access == ARCH_TIMER_PHYS_ACCESS) {
399                 cval = evt + arch_counter_get_cntpct();
400                 write_sysreg(cval, cntp_cval_el0);
401         } else {
402                 cval = evt + arch_counter_get_cntvct();
403                 write_sysreg(cval, cntv_cval_el0);
404         }
405
406         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
407 }
408
409 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
410                                             struct clock_event_device *clk)
411 {
412         erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
413         return 0;
414 }
415
416 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
417                                             struct clock_event_device *clk)
418 {
419         erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
420         return 0;
421 }
422
423 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
424 #ifdef CONFIG_FSL_ERRATUM_A008585
425         {
426                 .match_type = ate_match_dt,
427                 .id = "fsl,erratum-a008585",
428                 .desc = "Freescale erratum a005858",
429                 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
430                 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
431                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
432                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
433                 .set_next_event_phys = erratum_set_next_event_tval_phys,
434                 .set_next_event_virt = erratum_set_next_event_tval_virt,
435         },
436 #endif
437 #ifdef CONFIG_HISILICON_ERRATUM_161010101
438         {
439                 .match_type = ate_match_dt,
440                 .id = "hisilicon,erratum-161010101",
441                 .desc = "HiSilicon erratum 161010101",
442                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
443                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
444                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
445                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
446                 .set_next_event_phys = erratum_set_next_event_tval_phys,
447                 .set_next_event_virt = erratum_set_next_event_tval_virt,
448         },
449         {
450                 .match_type = ate_match_acpi_oem_info,
451                 .id = hisi_161010101_oem_info,
452                 .desc = "HiSilicon erratum 161010101",
453                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
454                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
455                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
456                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
457                 .set_next_event_phys = erratum_set_next_event_tval_phys,
458                 .set_next_event_virt = erratum_set_next_event_tval_virt,
459         },
460 #endif
461 #ifdef CONFIG_ARM64_ERRATUM_858921
462         {
463                 .match_type = ate_match_local_cap_id,
464                 .id = (void *)ARM64_WORKAROUND_858921,
465                 .desc = "ARM erratum 858921",
466                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
467                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
468         },
469 #endif
470 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
471         {
472                 .match_type = ate_match_dt,
473                 .id = "allwinner,erratum-unknown1",
474                 .desc = "Allwinner erratum UNKNOWN1",
475                 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
476                 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
477                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
478                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
479                 .set_next_event_phys = erratum_set_next_event_tval_phys,
480                 .set_next_event_virt = erratum_set_next_event_tval_virt,
481         },
482 #endif
483 };
484
485 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
486                                const void *);
487
488 static
489 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
490                                  const void *arg)
491 {
492         const struct device_node *np = arg;
493
494         return of_property_read_bool(np, wa->id);
495 }
496
497 static
498 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
499                                         const void *arg)
500 {
501         return this_cpu_has_cap((uintptr_t)wa->id);
502 }
503
504
505 static
506 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
507                                        const void *arg)
508 {
509         static const struct ate_acpi_oem_info empty_oem_info = {};
510         const struct ate_acpi_oem_info *info = wa->id;
511         const struct acpi_table_header *table = arg;
512
513         /* Iterate over the ACPI OEM info array, looking for a match */
514         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
515                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
516                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
517                     info->oem_revision == table->oem_revision)
518                         return true;
519
520                 info++;
521         }
522
523         return false;
524 }
525
526 static const struct arch_timer_erratum_workaround *
527 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
528                           ate_match_fn_t match_fn,
529                           void *arg)
530 {
531         int i;
532
533         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
534                 if (ool_workarounds[i].match_type != type)
535                         continue;
536
537                 if (match_fn(&ool_workarounds[i], arg))
538                         return &ool_workarounds[i];
539         }
540
541         return NULL;
542 }
543
544 static
545 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
546                                   bool local)
547 {
548         int i;
549
550         if (local) {
551                 __this_cpu_write(timer_unstable_counter_workaround, wa);
552         } else {
553                 for_each_possible_cpu(i)
554                         per_cpu(timer_unstable_counter_workaround, i) = wa;
555         }
556
557         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
558                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
559
560         /*
561          * Don't use the vdso fastpath if errata require using the
562          * out-of-line counter accessor. We may change our mind pretty
563          * late in the game (with a per-CPU erratum, for example), so
564          * change both the default value and the vdso itself.
565          */
566         if (wa->read_cntvct_el0) {
567                 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
568                 vdso_default = VDSO_CLOCKMODE_NONE;
569         }
570 }
571
572 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
573                                             void *arg)
574 {
575         const struct arch_timer_erratum_workaround *wa, *__wa;
576         ate_match_fn_t match_fn = NULL;
577         bool local = false;
578
579         switch (type) {
580         case ate_match_dt:
581                 match_fn = arch_timer_check_dt_erratum;
582                 break;
583         case ate_match_local_cap_id:
584                 match_fn = arch_timer_check_local_cap_erratum;
585                 local = true;
586                 break;
587         case ate_match_acpi_oem_info:
588                 match_fn = arch_timer_check_acpi_oem_erratum;
589                 break;
590         default:
591                 WARN_ON(1);
592                 return;
593         }
594
595         wa = arch_timer_iterate_errata(type, match_fn, arg);
596         if (!wa)
597                 return;
598
599         __wa = __this_cpu_read(timer_unstable_counter_workaround);
600         if (__wa && wa != __wa)
601                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
602                         wa->desc, __wa->desc);
603
604         if (__wa)
605                 return;
606
607         arch_timer_enable_workaround(wa, local);
608         pr_info("Enabling %s workaround for %s\n",
609                 local ? "local" : "global", wa->desc);
610 }
611
612 static bool arch_timer_this_cpu_has_cntvct_wa(void)
613 {
614         return has_erratum_handler(read_cntvct_el0);
615 }
616
617 static bool arch_timer_counter_has_wa(void)
618 {
619         return atomic_read(&timer_unstable_counter_workaround_in_use);
620 }
621 #else
622 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
623 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
624 #define arch_timer_counter_has_wa()                     ({false;})
625 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
626
627 static __always_inline irqreturn_t timer_handler(const int access,
628                                         struct clock_event_device *evt)
629 {
630         unsigned long ctrl;
631
632         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
633         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
634                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
635                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
636                 evt->event_handler(evt);
637                 return IRQ_HANDLED;
638         }
639
640         return IRQ_NONE;
641 }
642
643 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
644 {
645         struct clock_event_device *evt = dev_id;
646
647         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
648 }
649
650 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
651 {
652         struct clock_event_device *evt = dev_id;
653
654         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
655 }
656
657 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
658 {
659         struct clock_event_device *evt = dev_id;
660
661         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
662 }
663
664 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
665 {
666         struct clock_event_device *evt = dev_id;
667
668         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
669 }
670
671 static __always_inline int timer_shutdown(const int access,
672                                           struct clock_event_device *clk)
673 {
674         unsigned long ctrl;
675
676         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
677         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
678         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
679
680         return 0;
681 }
682
683 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
684 {
685         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
686 }
687
688 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
689 {
690         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
691 }
692
693 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
694 {
695         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
696 }
697
698 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
699 {
700         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
701 }
702
703 static __always_inline void set_next_event(const int access, unsigned long evt,
704                                            struct clock_event_device *clk)
705 {
706         unsigned long ctrl;
707         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
708         ctrl |= ARCH_TIMER_CTRL_ENABLE;
709         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
710         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
711         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
712 }
713
714 static int arch_timer_set_next_event_virt(unsigned long evt,
715                                           struct clock_event_device *clk)
716 {
717         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
718         return 0;
719 }
720
721 static int arch_timer_set_next_event_phys(unsigned long evt,
722                                           struct clock_event_device *clk)
723 {
724         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
725         return 0;
726 }
727
728 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
729                                               struct clock_event_device *clk)
730 {
731         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
732         return 0;
733 }
734
735 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
736                                               struct clock_event_device *clk)
737 {
738         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
739         return 0;
740 }
741
742 static void __arch_timer_setup(unsigned type,
743                                struct clock_event_device *clk)
744 {
745         clk->features = CLOCK_EVT_FEAT_ONESHOT;
746
747         if (type == ARCH_TIMER_TYPE_CP15) {
748                 typeof(clk->set_next_event) sne;
749
750                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
751
752                 if (arch_timer_c3stop)
753                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
754                 clk->name = "arch_sys_timer";
755                 clk->rating = 450;
756                 clk->cpumask = cpumask_of(smp_processor_id());
757                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
758                 switch (arch_timer_uses_ppi) {
759                 case ARCH_TIMER_VIRT_PPI:
760                         clk->set_state_shutdown = arch_timer_shutdown_virt;
761                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
762                         sne = erratum_handler(set_next_event_virt);
763                         break;
764                 case ARCH_TIMER_PHYS_SECURE_PPI:
765                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
766                 case ARCH_TIMER_HYP_PPI:
767                         clk->set_state_shutdown = arch_timer_shutdown_phys;
768                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
769                         sne = erratum_handler(set_next_event_phys);
770                         break;
771                 default:
772                         BUG();
773                 }
774
775                 clk->set_next_event = sne;
776         } else {
777                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
778                 clk->name = "arch_mem_timer";
779                 clk->rating = 400;
780                 clk->cpumask = cpu_possible_mask;
781                 if (arch_timer_mem_use_virtual) {
782                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
783                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
784                         clk->set_next_event =
785                                 arch_timer_set_next_event_virt_mem;
786                 } else {
787                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
788                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
789                         clk->set_next_event =
790                                 arch_timer_set_next_event_phys_mem;
791                 }
792         }
793
794         clk->set_state_shutdown(clk);
795
796         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
797 }
798
799 static void arch_timer_evtstrm_enable(int divider)
800 {
801         u32 cntkctl = arch_timer_get_cntkctl();
802
803         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
804         /* Set the divider and enable virtual event stream */
805         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
806                         | ARCH_TIMER_VIRT_EVT_EN;
807         arch_timer_set_cntkctl(cntkctl);
808         arch_timer_set_evtstrm_feature();
809         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
810 }
811
812 static void arch_timer_configure_evtstream(void)
813 {
814         int evt_stream_div, pos;
815
816         /* Find the closest power of two to the divisor */
817         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
818         pos = fls(evt_stream_div);
819         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
820                 pos--;
821         /* enable event stream */
822         arch_timer_evtstrm_enable(min(pos, 15));
823 }
824
825 static void arch_counter_set_user_access(void)
826 {
827         u32 cntkctl = arch_timer_get_cntkctl();
828
829         /* Disable user access to the timers and both counters */
830         /* Also disable virtual event stream */
831         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
832                         | ARCH_TIMER_USR_VT_ACCESS_EN
833                         | ARCH_TIMER_USR_VCT_ACCESS_EN
834                         | ARCH_TIMER_VIRT_EVT_EN
835                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
836
837         /*
838          * Enable user access to the virtual counter if it doesn't
839          * need to be workaround. The vdso may have been already
840          * disabled though.
841          */
842         if (arch_timer_this_cpu_has_cntvct_wa())
843                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
844         else
845                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
846
847         arch_timer_set_cntkctl(cntkctl);
848 }
849
850 static bool arch_timer_has_nonsecure_ppi(void)
851 {
852         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
853                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
854 }
855
856 static u32 check_ppi_trigger(int irq)
857 {
858         u32 flags = irq_get_trigger_type(irq);
859
860         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
861                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
862                 pr_warn("WARNING: Please fix your firmware\n");
863                 flags = IRQF_TRIGGER_LOW;
864         }
865
866         return flags;
867 }
868
869 static int arch_timer_starting_cpu(unsigned int cpu)
870 {
871         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
872         u32 flags;
873
874         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
875
876         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
877         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
878
879         if (arch_timer_has_nonsecure_ppi()) {
880                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
881                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
882                                   flags);
883         }
884
885         arch_counter_set_user_access();
886         if (evtstrm_enable)
887                 arch_timer_configure_evtstream();
888
889         return 0;
890 }
891
892 /*
893  * For historical reasons, when probing with DT we use whichever (non-zero)
894  * rate was probed first, and don't verify that others match. If the first node
895  * probed has a clock-frequency property, this overrides the HW register.
896  */
897 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
898 {
899         /* Who has more than one independent system counter? */
900         if (arch_timer_rate)
901                 return;
902
903         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
904                 arch_timer_rate = rate;
905
906         /* Check the timer frequency. */
907         if (arch_timer_rate == 0)
908                 pr_warn("frequency not available\n");
909 }
910
911 static void arch_timer_banner(unsigned type)
912 {
913         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
914                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
915                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
916                         " and " : "",
917                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
918                 (unsigned long)arch_timer_rate / 1000000,
919                 (unsigned long)(arch_timer_rate / 10000) % 100,
920                 type & ARCH_TIMER_TYPE_CP15 ?
921                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
922                         "",
923                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
924                 type & ARCH_TIMER_TYPE_MEM ?
925                         arch_timer_mem_use_virtual ? "virt" : "phys" :
926                         "");
927 }
928
929 u32 arch_timer_get_rate(void)
930 {
931         return arch_timer_rate;
932 }
933
934 bool arch_timer_evtstrm_available(void)
935 {
936         /*
937          * We might get called from a preemptible context. This is fine
938          * because availability of the event stream should be always the same
939          * for a preemptible context and context where we might resume a task.
940          */
941         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
942 }
943
944 static u64 arch_counter_get_cntvct_mem(void)
945 {
946         u32 vct_lo, vct_hi, tmp_hi;
947
948         do {
949                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
950                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
951                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
952         } while (vct_hi != tmp_hi);
953
954         return ((u64) vct_hi << 32) | vct_lo;
955 }
956
957 static struct arch_timer_kvm_info arch_timer_kvm_info;
958
959 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
960 {
961         return &arch_timer_kvm_info;
962 }
963
964 static void __init arch_counter_register(unsigned type)
965 {
966         u64 start_count;
967
968         /* Register the CP15 based counter if we have one */
969         if (type & ARCH_TIMER_TYPE_CP15) {
970                 u64 (*rd)(void);
971
972                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
973                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
974                         if (arch_timer_counter_has_wa())
975                                 rd = arch_counter_get_cntvct_stable;
976                         else
977                                 rd = arch_counter_get_cntvct;
978                 } else {
979                         if (arch_timer_counter_has_wa())
980                                 rd = arch_counter_get_cntpct_stable;
981                         else
982                                 rd = arch_counter_get_cntpct;
983                 }
984
985                 arch_timer_read_counter = rd;
986                 clocksource_counter.vdso_clock_mode = vdso_default;
987         } else {
988                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
989         }
990
991         if (!arch_counter_suspend_stop)
992                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
993         start_count = arch_timer_read_counter();
994         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
995         cyclecounter.mult = clocksource_counter.mult;
996         cyclecounter.shift = clocksource_counter.shift;
997         timecounter_init(&arch_timer_kvm_info.timecounter,
998                          &cyclecounter, start_count);
999
1000         /* 56 bits minimum, so we assume worst case rollover */
1001         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1002 }
1003
1004 static void arch_timer_stop(struct clock_event_device *clk)
1005 {
1006         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1007
1008         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1009         if (arch_timer_has_nonsecure_ppi())
1010                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1011
1012         clk->set_state_shutdown(clk);
1013 }
1014
1015 static int arch_timer_dying_cpu(unsigned int cpu)
1016 {
1017         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1018
1019         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1020
1021         arch_timer_stop(clk);
1022         return 0;
1023 }
1024
1025 #ifdef CONFIG_CPU_PM
1026 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1027 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1028                                     unsigned long action, void *hcpu)
1029 {
1030         if (action == CPU_PM_ENTER) {
1031                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1032
1033                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1034         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1035                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1036
1037                 if (arch_timer_have_evtstrm_feature())
1038                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1039         }
1040         return NOTIFY_OK;
1041 }
1042
1043 static struct notifier_block arch_timer_cpu_pm_notifier = {
1044         .notifier_call = arch_timer_cpu_pm_notify,
1045 };
1046
1047 static int __init arch_timer_cpu_pm_init(void)
1048 {
1049         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1050 }
1051
1052 static void __init arch_timer_cpu_pm_deinit(void)
1053 {
1054         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1055 }
1056
1057 #else
1058 static int __init arch_timer_cpu_pm_init(void)
1059 {
1060         return 0;
1061 }
1062
1063 static void __init arch_timer_cpu_pm_deinit(void)
1064 {
1065 }
1066 #endif
1067
1068 static int __init arch_timer_register(void)
1069 {
1070         int err;
1071         int ppi;
1072
1073         arch_timer_evt = alloc_percpu(struct clock_event_device);
1074         if (!arch_timer_evt) {
1075                 err = -ENOMEM;
1076                 goto out;
1077         }
1078
1079         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1080         switch (arch_timer_uses_ppi) {
1081         case ARCH_TIMER_VIRT_PPI:
1082                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1083                                          "arch_timer", arch_timer_evt);
1084                 break;
1085         case ARCH_TIMER_PHYS_SECURE_PPI:
1086         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1087                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1088                                          "arch_timer", arch_timer_evt);
1089                 if (!err && arch_timer_has_nonsecure_ppi()) {
1090                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1091                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1092                                                  "arch_timer", arch_timer_evt);
1093                         if (err)
1094                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1095                                                 arch_timer_evt);
1096                 }
1097                 break;
1098         case ARCH_TIMER_HYP_PPI:
1099                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1100                                          "arch_timer", arch_timer_evt);
1101                 break;
1102         default:
1103                 BUG();
1104         }
1105
1106         if (err) {
1107                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1108                 goto out_free;
1109         }
1110
1111         err = arch_timer_cpu_pm_init();
1112         if (err)
1113                 goto out_unreg_notify;
1114
1115         /* Register and immediately configure the timer on the boot CPU */
1116         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1117                                 "clockevents/arm/arch_timer:starting",
1118                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1119         if (err)
1120                 goto out_unreg_cpupm;
1121         return 0;
1122
1123 out_unreg_cpupm:
1124         arch_timer_cpu_pm_deinit();
1125
1126 out_unreg_notify:
1127         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1128         if (arch_timer_has_nonsecure_ppi())
1129                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1130                                 arch_timer_evt);
1131
1132 out_free:
1133         free_percpu(arch_timer_evt);
1134 out:
1135         return err;
1136 }
1137
1138 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1139 {
1140         int ret;
1141         irq_handler_t func;
1142         struct arch_timer *t;
1143
1144         t = kzalloc(sizeof(*t), GFP_KERNEL);
1145         if (!t)
1146                 return -ENOMEM;
1147
1148         t->base = base;
1149         t->evt.irq = irq;
1150         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1151
1152         if (arch_timer_mem_use_virtual)
1153                 func = arch_timer_handler_virt_mem;
1154         else
1155                 func = arch_timer_handler_phys_mem;
1156
1157         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1158         if (ret) {
1159                 pr_err("Failed to request mem timer irq\n");
1160                 kfree(t);
1161         }
1162
1163         return ret;
1164 }
1165
1166 static const struct of_device_id arch_timer_of_match[] __initconst = {
1167         { .compatible   = "arm,armv7-timer",    },
1168         { .compatible   = "arm,armv8-timer",    },
1169         {},
1170 };
1171
1172 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1173         { .compatible   = "arm,armv7-timer-mem", },
1174         {},
1175 };
1176
1177 static bool __init arch_timer_needs_of_probing(void)
1178 {
1179         struct device_node *dn;
1180         bool needs_probing = false;
1181         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1182
1183         /* We have two timers, and both device-tree nodes are probed. */
1184         if ((arch_timers_present & mask) == mask)
1185                 return false;
1186
1187         /*
1188          * Only one type of timer is probed,
1189          * check if we have another type of timer node in device-tree.
1190          */
1191         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1192                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1193         else
1194                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1195
1196         if (dn && of_device_is_available(dn))
1197                 needs_probing = true;
1198
1199         of_node_put(dn);
1200
1201         return needs_probing;
1202 }
1203
1204 static int __init arch_timer_common_init(void)
1205 {
1206         arch_timer_banner(arch_timers_present);
1207         arch_counter_register(arch_timers_present);
1208         return arch_timer_arch_init();
1209 }
1210
1211 /**
1212  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1213  *
1214  * If HYP mode is available, we know that the physical timer
1215  * has been configured to be accessible from PL1. Use it, so
1216  * that a guest can use the virtual timer instead.
1217  *
1218  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1219  * accesses to CNTP_*_EL1 registers are silently redirected to
1220  * their CNTHP_*_EL2 counterparts, and use a different PPI
1221  * number.
1222  *
1223  * If no interrupt provided for virtual timer, we'll have to
1224  * stick to the physical timer. It'd better be accessible...
1225  * For arm64 we never use the secure interrupt.
1226  *
1227  * Return: a suitable PPI type for the current system.
1228  */
1229 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1230 {
1231         if (is_kernel_in_hyp_mode())
1232                 return ARCH_TIMER_HYP_PPI;
1233
1234         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1235                 return ARCH_TIMER_VIRT_PPI;
1236
1237         if (IS_ENABLED(CONFIG_ARM64))
1238                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1239
1240         return ARCH_TIMER_PHYS_SECURE_PPI;
1241 }
1242
1243 static void __init arch_timer_populate_kvm_info(void)
1244 {
1245         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1246         if (is_kernel_in_hyp_mode())
1247                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1248 }
1249
1250 static int __init arch_timer_of_init(struct device_node *np)
1251 {
1252         int i, ret;
1253         u32 rate;
1254
1255         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1256                 pr_warn("multiple nodes in dt, skipping\n");
1257                 return 0;
1258         }
1259
1260         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1261         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1262                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1263
1264         arch_timer_populate_kvm_info();
1265
1266         rate = arch_timer_get_cntfrq();
1267         arch_timer_of_configure_rate(rate, np);
1268
1269         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1270
1271         /* Check for globally applicable workarounds */
1272         arch_timer_check_ool_workaround(ate_match_dt, np);
1273
1274         /*
1275          * If we cannot rely on firmware initializing the timer registers then
1276          * we should use the physical timers instead.
1277          */
1278         if (IS_ENABLED(CONFIG_ARM) &&
1279             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1280                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1281         else
1282                 arch_timer_uses_ppi = arch_timer_select_ppi();
1283
1284         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1285                 pr_err("No interrupt available, giving up\n");
1286                 return -EINVAL;
1287         }
1288
1289         /* On some systems, the counter stops ticking when in suspend. */
1290         arch_counter_suspend_stop = of_property_read_bool(np,
1291                                                          "arm,no-tick-in-suspend");
1292
1293         ret = arch_timer_register();
1294         if (ret)
1295                 return ret;
1296
1297         if (arch_timer_needs_of_probing())
1298                 return 0;
1299
1300         return arch_timer_common_init();
1301 }
1302 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1303 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1304
1305 static u32 __init
1306 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1307 {
1308         void __iomem *base;
1309         u32 rate;
1310
1311         base = ioremap(frame->cntbase, frame->size);
1312         if (!base) {
1313                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1314                 return 0;
1315         }
1316
1317         rate = readl_relaxed(base + CNTFRQ);
1318
1319         iounmap(base);
1320
1321         return rate;
1322 }
1323
1324 static struct arch_timer_mem_frame * __init
1325 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1326 {
1327         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1328         void __iomem *cntctlbase;
1329         u32 cnttidr;
1330         int i;
1331
1332         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1333         if (!cntctlbase) {
1334                 pr_err("Can't map CNTCTLBase @ %pa\n",
1335                         &timer_mem->cntctlbase);
1336                 return NULL;
1337         }
1338
1339         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1340
1341         /*
1342          * Try to find a virtual capable frame. Otherwise fall back to a
1343          * physical capable frame.
1344          */
1345         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1346                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1347                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1348
1349                 frame = &timer_mem->frame[i];
1350                 if (!frame->valid)
1351                         continue;
1352
1353                 /* Try enabling everything, and see what sticks */
1354                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1355                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1356
1357                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1358                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1359                         best_frame = frame;
1360                         arch_timer_mem_use_virtual = true;
1361                         break;
1362                 }
1363
1364                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1365                         continue;
1366
1367                 best_frame = frame;
1368         }
1369
1370         iounmap(cntctlbase);
1371
1372         return best_frame;
1373 }
1374
1375 static int __init
1376 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1377 {
1378         void __iomem *base;
1379         int ret, irq = 0;
1380
1381         if (arch_timer_mem_use_virtual)
1382                 irq = frame->virt_irq;
1383         else
1384                 irq = frame->phys_irq;
1385
1386         if (!irq) {
1387                 pr_err("Frame missing %s irq.\n",
1388                        arch_timer_mem_use_virtual ? "virt" : "phys");
1389                 return -EINVAL;
1390         }
1391
1392         if (!request_mem_region(frame->cntbase, frame->size,
1393                                 "arch_mem_timer"))
1394                 return -EBUSY;
1395
1396         base = ioremap(frame->cntbase, frame->size);
1397         if (!base) {
1398                 pr_err("Can't map frame's registers\n");
1399                 return -ENXIO;
1400         }
1401
1402         ret = arch_timer_mem_register(base, irq);
1403         if (ret) {
1404                 iounmap(base);
1405                 return ret;
1406         }
1407
1408         arch_counter_base = base;
1409         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1410
1411         return 0;
1412 }
1413
1414 static int __init arch_timer_mem_of_init(struct device_node *np)
1415 {
1416         struct arch_timer_mem *timer_mem;
1417         struct arch_timer_mem_frame *frame;
1418         struct device_node *frame_node;
1419         struct resource res;
1420         int ret = -EINVAL;
1421         u32 rate;
1422
1423         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1424         if (!timer_mem)
1425                 return -ENOMEM;
1426
1427         if (of_address_to_resource(np, 0, &res))
1428                 goto out;
1429         timer_mem->cntctlbase = res.start;
1430         timer_mem->size = resource_size(&res);
1431
1432         for_each_available_child_of_node(np, frame_node) {
1433                 u32 n;
1434                 struct arch_timer_mem_frame *frame;
1435
1436                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1437                         pr_err(FW_BUG "Missing frame-number.\n");
1438                         of_node_put(frame_node);
1439                         goto out;
1440                 }
1441                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1442                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1443                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1444                         of_node_put(frame_node);
1445                         goto out;
1446                 }
1447                 frame = &timer_mem->frame[n];
1448
1449                 if (frame->valid) {
1450                         pr_err(FW_BUG "Duplicated frame-number.\n");
1451                         of_node_put(frame_node);
1452                         goto out;
1453                 }
1454
1455                 if (of_address_to_resource(frame_node, 0, &res)) {
1456                         of_node_put(frame_node);
1457                         goto out;
1458                 }
1459                 frame->cntbase = res.start;
1460                 frame->size = resource_size(&res);
1461
1462                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1463                                                        ARCH_TIMER_VIRT_SPI);
1464                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1465                                                        ARCH_TIMER_PHYS_SPI);
1466
1467                 frame->valid = true;
1468         }
1469
1470         frame = arch_timer_mem_find_best_frame(timer_mem);
1471         if (!frame) {
1472                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1473                         &timer_mem->cntctlbase);
1474                 ret = -EINVAL;
1475                 goto out;
1476         }
1477
1478         rate = arch_timer_mem_frame_get_cntfrq(frame);
1479         arch_timer_of_configure_rate(rate, np);
1480
1481         ret = arch_timer_mem_frame_register(frame);
1482         if (!ret && !arch_timer_needs_of_probing())
1483                 ret = arch_timer_common_init();
1484 out:
1485         kfree(timer_mem);
1486         return ret;
1487 }
1488 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1489                        arch_timer_mem_of_init);
1490
1491 #ifdef CONFIG_ACPI_GTDT
1492 static int __init
1493 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1494 {
1495         struct arch_timer_mem_frame *frame;
1496         u32 rate;
1497         int i;
1498
1499         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1500                 frame = &timer_mem->frame[i];
1501
1502                 if (!frame->valid)
1503                         continue;
1504
1505                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1506                 if (rate == arch_timer_rate)
1507                         continue;
1508
1509                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1510                         &frame->cntbase,
1511                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1512
1513                 return -EINVAL;
1514         }
1515
1516         return 0;
1517 }
1518
1519 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1520 {
1521         struct arch_timer_mem *timers, *timer;
1522         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1523         int timer_count, i, ret = 0;
1524
1525         timers = kcalloc(platform_timer_count, sizeof(*timers),
1526                             GFP_KERNEL);
1527         if (!timers)
1528                 return -ENOMEM;
1529
1530         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1531         if (ret || !timer_count)
1532                 goto out;
1533
1534         /*
1535          * While unlikely, it's theoretically possible that none of the frames
1536          * in a timer expose the combination of feature we want.
1537          */
1538         for (i = 0; i < timer_count; i++) {
1539                 timer = &timers[i];
1540
1541                 frame = arch_timer_mem_find_best_frame(timer);
1542                 if (!best_frame)
1543                         best_frame = frame;
1544
1545                 ret = arch_timer_mem_verify_cntfrq(timer);
1546                 if (ret) {
1547                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1548                         goto out;
1549                 }
1550
1551                 if (!best_frame) /* implies !frame */
1552                         /*
1553                          * Only complain about missing suitable frames if we
1554                          * haven't already found one in a previous iteration.
1555                          */
1556                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1557                                 &timer->cntctlbase);
1558         }
1559
1560         if (best_frame)
1561                 ret = arch_timer_mem_frame_register(best_frame);
1562 out:
1563         kfree(timers);
1564         return ret;
1565 }
1566
1567 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1568 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1569 {
1570         int ret, platform_timer_count;
1571
1572         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1573                 pr_warn("already initialized, skipping\n");
1574                 return -EINVAL;
1575         }
1576
1577         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1578
1579         ret = acpi_gtdt_init(table, &platform_timer_count);
1580         if (ret) {
1581                 pr_err("Failed to init GTDT table.\n");
1582                 return ret;
1583         }
1584
1585         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1586                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1587
1588         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1589                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1590
1591         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1592                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1593
1594         arch_timer_populate_kvm_info();
1595
1596         /*
1597          * When probing via ACPI, we have no mechanism to override the sysreg
1598          * CNTFRQ value. This *must* be correct.
1599          */
1600         arch_timer_rate = arch_timer_get_cntfrq();
1601         if (!arch_timer_rate) {
1602                 pr_err(FW_BUG "frequency not available.\n");
1603                 return -EINVAL;
1604         }
1605
1606         arch_timer_uses_ppi = arch_timer_select_ppi();
1607         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1608                 pr_err("No interrupt available, giving up\n");
1609                 return -EINVAL;
1610         }
1611
1612         /* Always-on capability */
1613         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1614
1615         /* Check for globally applicable workarounds */
1616         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1617
1618         ret = arch_timer_register();
1619         if (ret)
1620                 return ret;
1621
1622         if (platform_timer_count &&
1623             arch_timer_mem_acpi_init(platform_timer_count))
1624                 pr_err("Failed to initialize memory-mapped timer.\n");
1625
1626         return arch_timer_common_init();
1627 }
1628 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1629 #endif
This page took 0.130496 seconds and 4 git commands to generate.