1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/clocksource/arm_arch_timer.c
5 * Copyright (C) 2011 ARM Ltd.
9 #define pr_fmt(fmt) "arch_timer: " fmt
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
28 #include <asm/arch_timer.h>
31 #include <clocksource/arm_arch_timer.h>
34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
36 #define CNTACR(n) (0x40 + ((n) * 4))
37 #define CNTACR_RPCT BIT(0)
38 #define CNTACR_RVCT BIT(1)
39 #define CNTACR_RFRQ BIT(2)
40 #define CNTACR_RVOFF BIT(3)
41 #define CNTACR_RWVT BIT(4)
42 #define CNTACR_RWPT BIT(5)
44 #define CNTVCT_LO 0x08
45 #define CNTVCT_HI 0x0c
47 #define CNTP_TVAL 0x28
49 #define CNTV_TVAL 0x38
52 static unsigned arch_timers_present __initdata;
54 static void __iomem *arch_counter_base;
58 struct clock_event_device evt;
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
63 static u32 arch_timer_rate;
64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
66 static struct clock_event_device __percpu *arch_timer_evt;
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71 static bool arch_counter_suspend_stop;
72 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
73 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
75 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
76 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
78 static cpumask_t evtstrm_available = CPU_MASK_NONE;
79 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
81 static int __init early_evtstrm_cfg(char *buf)
83 return strtobool(buf, &evtstrm_enable);
85 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
88 * Architected system timer support.
91 static __always_inline
92 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
93 struct clock_event_device *clk)
95 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
96 struct arch_timer *timer = to_arch_timer(clk);
98 case ARCH_TIMER_REG_CTRL:
99 writel_relaxed(val, timer->base + CNTP_CTL);
101 case ARCH_TIMER_REG_TVAL:
102 writel_relaxed(val, timer->base + CNTP_TVAL);
105 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
106 struct arch_timer *timer = to_arch_timer(clk);
108 case ARCH_TIMER_REG_CTRL:
109 writel_relaxed(val, timer->base + CNTV_CTL);
111 case ARCH_TIMER_REG_TVAL:
112 writel_relaxed(val, timer->base + CNTV_TVAL);
116 arch_timer_reg_write_cp15(access, reg, val);
120 static __always_inline
121 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
122 struct clock_event_device *clk)
126 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
127 struct arch_timer *timer = to_arch_timer(clk);
129 case ARCH_TIMER_REG_CTRL:
130 val = readl_relaxed(timer->base + CNTP_CTL);
132 case ARCH_TIMER_REG_TVAL:
133 val = readl_relaxed(timer->base + CNTP_TVAL);
136 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
137 struct arch_timer *timer = to_arch_timer(clk);
139 case ARCH_TIMER_REG_CTRL:
140 val = readl_relaxed(timer->base + CNTV_CTL);
142 case ARCH_TIMER_REG_TVAL:
143 val = readl_relaxed(timer->base + CNTV_TVAL);
147 val = arch_timer_reg_read_cp15(access, reg);
153 static notrace u64 arch_counter_get_cntpct_stable(void)
155 return __arch_counter_get_cntpct_stable();
158 static notrace u64 arch_counter_get_cntpct(void)
160 return __arch_counter_get_cntpct();
163 static notrace u64 arch_counter_get_cntvct_stable(void)
165 return __arch_counter_get_cntvct_stable();
168 static notrace u64 arch_counter_get_cntvct(void)
170 return __arch_counter_get_cntvct();
174 * Default to cp15 based access because arm64 uses this function for
175 * sched_clock() before DT is probed and the cp15 method is guaranteed
176 * to exist on arm64. arm doesn't use this before DT is probed so even
177 * if we don't have the cp15 accessors we won't have a problem.
179 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
180 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
182 static u64 arch_counter_read(struct clocksource *cs)
184 return arch_timer_read_counter();
187 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
189 return arch_timer_read_counter();
192 static struct clocksource clocksource_counter = {
193 .name = "arch_sys_counter",
195 .read = arch_counter_read,
196 .mask = CLOCKSOURCE_MASK(56),
197 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
200 static struct cyclecounter cyclecounter __ro_after_init = {
201 .read = arch_counter_read_cc,
202 .mask = CLOCKSOURCE_MASK(56),
205 struct ate_acpi_oem_info {
206 char oem_id[ACPI_OEM_ID_SIZE + 1];
207 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
211 #ifdef CONFIG_FSL_ERRATUM_A008585
213 * The number of retries is an arbitrary value well beyond the highest number
214 * of iterations the loop has been observed to take.
216 #define __fsl_a008585_read_reg(reg) ({ \
218 int _retries = 200; \
221 _old = read_sysreg(reg); \
222 _new = read_sysreg(reg); \
224 } while (unlikely(_old != _new) && _retries); \
226 WARN_ON_ONCE(!_retries); \
230 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
232 return __fsl_a008585_read_reg(cntp_tval_el0);
235 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
237 return __fsl_a008585_read_reg(cntv_tval_el0);
240 static u64 notrace fsl_a008585_read_cntpct_el0(void)
242 return __fsl_a008585_read_reg(cntpct_el0);
245 static u64 notrace fsl_a008585_read_cntvct_el0(void)
247 return __fsl_a008585_read_reg(cntvct_el0);
251 #ifdef CONFIG_HISILICON_ERRATUM_161010101
253 * Verify whether the value of the second read is larger than the first by
254 * less than 32 is the only way to confirm the value is correct, so clear the
255 * lower 5 bits to check whether the difference is greater than 32 or not.
256 * Theoretically the erratum should not occur more than twice in succession
257 * when reading the system counter, but it is possible that some interrupts
258 * may lead to more than twice read errors, triggering the warning, so setting
259 * the number of retries far beyond the number of iterations the loop has been
262 #define __hisi_161010101_read_reg(reg) ({ \
267 _old = read_sysreg(reg); \
268 _new = read_sysreg(reg); \
270 } while (unlikely((_new - _old) >> 5) && _retries); \
272 WARN_ON_ONCE(!_retries); \
276 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
278 return __hisi_161010101_read_reg(cntp_tval_el0);
281 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
283 return __hisi_161010101_read_reg(cntv_tval_el0);
286 static u64 notrace hisi_161010101_read_cntpct_el0(void)
288 return __hisi_161010101_read_reg(cntpct_el0);
291 static u64 notrace hisi_161010101_read_cntvct_el0(void)
293 return __hisi_161010101_read_reg(cntvct_el0);
296 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
298 * Note that trailing spaces are required to properly match
299 * the OEM table information.
303 .oem_table_id = "HIP05 ",
308 .oem_table_id = "HIP06 ",
313 .oem_table_id = "HIP07 ",
316 { /* Sentinel indicating the end of the OEM array */ },
320 #ifdef CONFIG_ARM64_ERRATUM_858921
321 static u64 notrace arm64_858921_read_cntpct_el0(void)
325 old = read_sysreg(cntpct_el0);
326 new = read_sysreg(cntpct_el0);
327 return (((old ^ new) >> 32) & 1) ? old : new;
330 static u64 notrace arm64_858921_read_cntvct_el0(void)
334 old = read_sysreg(cntvct_el0);
335 new = read_sysreg(cntvct_el0);
336 return (((old ^ new) >> 32) & 1) ? old : new;
340 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
342 * The low bits of the counter registers are indeterminate while bit 10 or
343 * greater is rolling over. Since the counter value can jump both backward
344 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
345 * with all ones or all zeros in the low bits. Bound the loop by the maximum
346 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
348 #define __sun50i_a64_read_reg(reg) ({ \
350 int _retries = 150; \
353 _val = read_sysreg(reg); \
355 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \
357 WARN_ON_ONCE(!_retries); \
361 static u64 notrace sun50i_a64_read_cntpct_el0(void)
363 return __sun50i_a64_read_reg(cntpct_el0);
366 static u64 notrace sun50i_a64_read_cntvct_el0(void)
368 return __sun50i_a64_read_reg(cntvct_el0);
371 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
373 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
376 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
378 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
382 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
383 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
384 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
386 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
388 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
389 struct clock_event_device *clk)
394 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
395 ctrl |= ARCH_TIMER_CTRL_ENABLE;
396 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
398 if (access == ARCH_TIMER_PHYS_ACCESS) {
399 cval = evt + arch_counter_get_cntpct();
400 write_sysreg(cval, cntp_cval_el0);
402 cval = evt + arch_counter_get_cntvct();
403 write_sysreg(cval, cntv_cval_el0);
406 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
409 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
410 struct clock_event_device *clk)
412 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
416 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
417 struct clock_event_device *clk)
419 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
423 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
424 #ifdef CONFIG_FSL_ERRATUM_A008585
426 .match_type = ate_match_dt,
427 .id = "fsl,erratum-a008585",
428 .desc = "Freescale erratum a005858",
429 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
430 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
431 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
432 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
433 .set_next_event_phys = erratum_set_next_event_tval_phys,
434 .set_next_event_virt = erratum_set_next_event_tval_virt,
437 #ifdef CONFIG_HISILICON_ERRATUM_161010101
439 .match_type = ate_match_dt,
440 .id = "hisilicon,erratum-161010101",
441 .desc = "HiSilicon erratum 161010101",
442 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
443 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
444 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
445 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
446 .set_next_event_phys = erratum_set_next_event_tval_phys,
447 .set_next_event_virt = erratum_set_next_event_tval_virt,
450 .match_type = ate_match_acpi_oem_info,
451 .id = hisi_161010101_oem_info,
452 .desc = "HiSilicon erratum 161010101",
453 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
454 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
455 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
456 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
457 .set_next_event_phys = erratum_set_next_event_tval_phys,
458 .set_next_event_virt = erratum_set_next_event_tval_virt,
461 #ifdef CONFIG_ARM64_ERRATUM_858921
463 .match_type = ate_match_local_cap_id,
464 .id = (void *)ARM64_WORKAROUND_858921,
465 .desc = "ARM erratum 858921",
466 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
467 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
470 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
472 .match_type = ate_match_dt,
473 .id = "allwinner,erratum-unknown1",
474 .desc = "Allwinner erratum UNKNOWN1",
475 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
476 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
477 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
478 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
479 .set_next_event_phys = erratum_set_next_event_tval_phys,
480 .set_next_event_virt = erratum_set_next_event_tval_virt,
485 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
489 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
492 const struct device_node *np = arg;
494 return of_property_read_bool(np, wa->id);
498 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
501 return this_cpu_has_cap((uintptr_t)wa->id);
506 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
509 static const struct ate_acpi_oem_info empty_oem_info = {};
510 const struct ate_acpi_oem_info *info = wa->id;
511 const struct acpi_table_header *table = arg;
513 /* Iterate over the ACPI OEM info array, looking for a match */
514 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
515 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
516 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
517 info->oem_revision == table->oem_revision)
526 static const struct arch_timer_erratum_workaround *
527 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
528 ate_match_fn_t match_fn,
533 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
534 if (ool_workarounds[i].match_type != type)
537 if (match_fn(&ool_workarounds[i], arg))
538 return &ool_workarounds[i];
545 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
551 __this_cpu_write(timer_unstable_counter_workaround, wa);
553 for_each_possible_cpu(i)
554 per_cpu(timer_unstable_counter_workaround, i) = wa;
557 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
558 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
561 * Don't use the vdso fastpath if errata require using the
562 * out-of-line counter accessor. We may change our mind pretty
563 * late in the game (with a per-CPU erratum, for example), so
564 * change both the default value and the vdso itself.
566 if (wa->read_cntvct_el0) {
567 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
568 vdso_default = VDSO_CLOCKMODE_NONE;
572 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
575 const struct arch_timer_erratum_workaround *wa, *__wa;
576 ate_match_fn_t match_fn = NULL;
581 match_fn = arch_timer_check_dt_erratum;
583 case ate_match_local_cap_id:
584 match_fn = arch_timer_check_local_cap_erratum;
587 case ate_match_acpi_oem_info:
588 match_fn = arch_timer_check_acpi_oem_erratum;
595 wa = arch_timer_iterate_errata(type, match_fn, arg);
599 __wa = __this_cpu_read(timer_unstable_counter_workaround);
600 if (__wa && wa != __wa)
601 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
602 wa->desc, __wa->desc);
607 arch_timer_enable_workaround(wa, local);
608 pr_info("Enabling %s workaround for %s\n",
609 local ? "local" : "global", wa->desc);
612 static bool arch_timer_this_cpu_has_cntvct_wa(void)
614 return has_erratum_handler(read_cntvct_el0);
617 static bool arch_timer_counter_has_wa(void)
619 return atomic_read(&timer_unstable_counter_workaround_in_use);
622 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
623 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
624 #define arch_timer_counter_has_wa() ({false;})
625 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
627 static __always_inline irqreturn_t timer_handler(const int access,
628 struct clock_event_device *evt)
632 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
633 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
634 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
635 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
636 evt->event_handler(evt);
643 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
645 struct clock_event_device *evt = dev_id;
647 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
650 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
652 struct clock_event_device *evt = dev_id;
654 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
657 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
659 struct clock_event_device *evt = dev_id;
661 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
664 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
666 struct clock_event_device *evt = dev_id;
668 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
671 static __always_inline int timer_shutdown(const int access,
672 struct clock_event_device *clk)
676 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
677 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
678 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
683 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
685 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
688 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
690 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
693 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
695 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
698 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
700 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
703 static __always_inline void set_next_event(const int access, unsigned long evt,
704 struct clock_event_device *clk)
707 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
708 ctrl |= ARCH_TIMER_CTRL_ENABLE;
709 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
710 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
711 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
714 static int arch_timer_set_next_event_virt(unsigned long evt,
715 struct clock_event_device *clk)
717 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
721 static int arch_timer_set_next_event_phys(unsigned long evt,
722 struct clock_event_device *clk)
724 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
728 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
729 struct clock_event_device *clk)
731 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
735 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
736 struct clock_event_device *clk)
738 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
742 static void __arch_timer_setup(unsigned type,
743 struct clock_event_device *clk)
745 clk->features = CLOCK_EVT_FEAT_ONESHOT;
747 if (type == ARCH_TIMER_TYPE_CP15) {
748 typeof(clk->set_next_event) sne;
750 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
752 if (arch_timer_c3stop)
753 clk->features |= CLOCK_EVT_FEAT_C3STOP;
754 clk->name = "arch_sys_timer";
756 clk->cpumask = cpumask_of(smp_processor_id());
757 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
758 switch (arch_timer_uses_ppi) {
759 case ARCH_TIMER_VIRT_PPI:
760 clk->set_state_shutdown = arch_timer_shutdown_virt;
761 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
762 sne = erratum_handler(set_next_event_virt);
764 case ARCH_TIMER_PHYS_SECURE_PPI:
765 case ARCH_TIMER_PHYS_NONSECURE_PPI:
766 case ARCH_TIMER_HYP_PPI:
767 clk->set_state_shutdown = arch_timer_shutdown_phys;
768 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
769 sne = erratum_handler(set_next_event_phys);
775 clk->set_next_event = sne;
777 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
778 clk->name = "arch_mem_timer";
780 clk->cpumask = cpu_possible_mask;
781 if (arch_timer_mem_use_virtual) {
782 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
783 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
784 clk->set_next_event =
785 arch_timer_set_next_event_virt_mem;
787 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
788 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
789 clk->set_next_event =
790 arch_timer_set_next_event_phys_mem;
794 clk->set_state_shutdown(clk);
796 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
799 static void arch_timer_evtstrm_enable(int divider)
801 u32 cntkctl = arch_timer_get_cntkctl();
803 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
804 /* Set the divider and enable virtual event stream */
805 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
806 | ARCH_TIMER_VIRT_EVT_EN;
807 arch_timer_set_cntkctl(cntkctl);
808 arch_timer_set_evtstrm_feature();
809 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
812 static void arch_timer_configure_evtstream(void)
814 int evt_stream_div, pos;
816 /* Find the closest power of two to the divisor */
817 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
818 pos = fls(evt_stream_div);
819 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
821 /* enable event stream */
822 arch_timer_evtstrm_enable(min(pos, 15));
825 static void arch_counter_set_user_access(void)
827 u32 cntkctl = arch_timer_get_cntkctl();
829 /* Disable user access to the timers and both counters */
830 /* Also disable virtual event stream */
831 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
832 | ARCH_TIMER_USR_VT_ACCESS_EN
833 | ARCH_TIMER_USR_VCT_ACCESS_EN
834 | ARCH_TIMER_VIRT_EVT_EN
835 | ARCH_TIMER_USR_PCT_ACCESS_EN);
838 * Enable user access to the virtual counter if it doesn't
839 * need to be workaround. The vdso may have been already
842 if (arch_timer_this_cpu_has_cntvct_wa())
843 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
845 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
847 arch_timer_set_cntkctl(cntkctl);
850 static bool arch_timer_has_nonsecure_ppi(void)
852 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
853 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
856 static u32 check_ppi_trigger(int irq)
858 u32 flags = irq_get_trigger_type(irq);
860 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
861 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
862 pr_warn("WARNING: Please fix your firmware\n");
863 flags = IRQF_TRIGGER_LOW;
869 static int arch_timer_starting_cpu(unsigned int cpu)
871 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
874 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
876 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
877 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
879 if (arch_timer_has_nonsecure_ppi()) {
880 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
881 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
885 arch_counter_set_user_access();
887 arch_timer_configure_evtstream();
893 * For historical reasons, when probing with DT we use whichever (non-zero)
894 * rate was probed first, and don't verify that others match. If the first node
895 * probed has a clock-frequency property, this overrides the HW register.
897 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
899 /* Who has more than one independent system counter? */
903 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
904 arch_timer_rate = rate;
906 /* Check the timer frequency. */
907 if (arch_timer_rate == 0)
908 pr_warn("frequency not available\n");
911 static void arch_timer_banner(unsigned type)
913 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
914 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
915 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
917 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
918 (unsigned long)arch_timer_rate / 1000000,
919 (unsigned long)(arch_timer_rate / 10000) % 100,
920 type & ARCH_TIMER_TYPE_CP15 ?
921 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
923 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
924 type & ARCH_TIMER_TYPE_MEM ?
925 arch_timer_mem_use_virtual ? "virt" : "phys" :
929 u32 arch_timer_get_rate(void)
931 return arch_timer_rate;
934 bool arch_timer_evtstrm_available(void)
937 * We might get called from a preemptible context. This is fine
938 * because availability of the event stream should be always the same
939 * for a preemptible context and context where we might resume a task.
941 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
944 static u64 arch_counter_get_cntvct_mem(void)
946 u32 vct_lo, vct_hi, tmp_hi;
949 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
950 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
951 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
952 } while (vct_hi != tmp_hi);
954 return ((u64) vct_hi << 32) | vct_lo;
957 static struct arch_timer_kvm_info arch_timer_kvm_info;
959 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
961 return &arch_timer_kvm_info;
964 static void __init arch_counter_register(unsigned type)
968 /* Register the CP15 based counter if we have one */
969 if (type & ARCH_TIMER_TYPE_CP15) {
972 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
973 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
974 if (arch_timer_counter_has_wa())
975 rd = arch_counter_get_cntvct_stable;
977 rd = arch_counter_get_cntvct;
979 if (arch_timer_counter_has_wa())
980 rd = arch_counter_get_cntpct_stable;
982 rd = arch_counter_get_cntpct;
985 arch_timer_read_counter = rd;
986 clocksource_counter.vdso_clock_mode = vdso_default;
988 arch_timer_read_counter = arch_counter_get_cntvct_mem;
991 if (!arch_counter_suspend_stop)
992 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
993 start_count = arch_timer_read_counter();
994 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
995 cyclecounter.mult = clocksource_counter.mult;
996 cyclecounter.shift = clocksource_counter.shift;
997 timecounter_init(&arch_timer_kvm_info.timecounter,
998 &cyclecounter, start_count);
1000 /* 56 bits minimum, so we assume worst case rollover */
1001 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1004 static void arch_timer_stop(struct clock_event_device *clk)
1006 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1008 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1009 if (arch_timer_has_nonsecure_ppi())
1010 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1012 clk->set_state_shutdown(clk);
1015 static int arch_timer_dying_cpu(unsigned int cpu)
1017 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1019 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1021 arch_timer_stop(clk);
1025 #ifdef CONFIG_CPU_PM
1026 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1027 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1028 unsigned long action, void *hcpu)
1030 if (action == CPU_PM_ENTER) {
1031 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1033 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1034 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1035 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1037 if (arch_timer_have_evtstrm_feature())
1038 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1043 static struct notifier_block arch_timer_cpu_pm_notifier = {
1044 .notifier_call = arch_timer_cpu_pm_notify,
1047 static int __init arch_timer_cpu_pm_init(void)
1049 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1052 static void __init arch_timer_cpu_pm_deinit(void)
1054 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1058 static int __init arch_timer_cpu_pm_init(void)
1063 static void __init arch_timer_cpu_pm_deinit(void)
1068 static int __init arch_timer_register(void)
1073 arch_timer_evt = alloc_percpu(struct clock_event_device);
1074 if (!arch_timer_evt) {
1079 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1080 switch (arch_timer_uses_ppi) {
1081 case ARCH_TIMER_VIRT_PPI:
1082 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1083 "arch_timer", arch_timer_evt);
1085 case ARCH_TIMER_PHYS_SECURE_PPI:
1086 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1087 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1088 "arch_timer", arch_timer_evt);
1089 if (!err && arch_timer_has_nonsecure_ppi()) {
1090 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1091 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1092 "arch_timer", arch_timer_evt);
1094 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1098 case ARCH_TIMER_HYP_PPI:
1099 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1100 "arch_timer", arch_timer_evt);
1107 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1111 err = arch_timer_cpu_pm_init();
1113 goto out_unreg_notify;
1115 /* Register and immediately configure the timer on the boot CPU */
1116 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1117 "clockevents/arm/arch_timer:starting",
1118 arch_timer_starting_cpu, arch_timer_dying_cpu);
1120 goto out_unreg_cpupm;
1124 arch_timer_cpu_pm_deinit();
1127 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1128 if (arch_timer_has_nonsecure_ppi())
1129 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1133 free_percpu(arch_timer_evt);
1138 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1142 struct arch_timer *t;
1144 t = kzalloc(sizeof(*t), GFP_KERNEL);
1150 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1152 if (arch_timer_mem_use_virtual)
1153 func = arch_timer_handler_virt_mem;
1155 func = arch_timer_handler_phys_mem;
1157 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1159 pr_err("Failed to request mem timer irq\n");
1166 static const struct of_device_id arch_timer_of_match[] __initconst = {
1167 { .compatible = "arm,armv7-timer", },
1168 { .compatible = "arm,armv8-timer", },
1172 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1173 { .compatible = "arm,armv7-timer-mem", },
1177 static bool __init arch_timer_needs_of_probing(void)
1179 struct device_node *dn;
1180 bool needs_probing = false;
1181 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1183 /* We have two timers, and both device-tree nodes are probed. */
1184 if ((arch_timers_present & mask) == mask)
1188 * Only one type of timer is probed,
1189 * check if we have another type of timer node in device-tree.
1191 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1192 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1194 dn = of_find_matching_node(NULL, arch_timer_of_match);
1196 if (dn && of_device_is_available(dn))
1197 needs_probing = true;
1201 return needs_probing;
1204 static int __init arch_timer_common_init(void)
1206 arch_timer_banner(arch_timers_present);
1207 arch_counter_register(arch_timers_present);
1208 return arch_timer_arch_init();
1212 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1214 * If HYP mode is available, we know that the physical timer
1215 * has been configured to be accessible from PL1. Use it, so
1216 * that a guest can use the virtual timer instead.
1218 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1219 * accesses to CNTP_*_EL1 registers are silently redirected to
1220 * their CNTHP_*_EL2 counterparts, and use a different PPI
1223 * If no interrupt provided for virtual timer, we'll have to
1224 * stick to the physical timer. It'd better be accessible...
1225 * For arm64 we never use the secure interrupt.
1227 * Return: a suitable PPI type for the current system.
1229 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1231 if (is_kernel_in_hyp_mode())
1232 return ARCH_TIMER_HYP_PPI;
1234 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1235 return ARCH_TIMER_VIRT_PPI;
1237 if (IS_ENABLED(CONFIG_ARM64))
1238 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1240 return ARCH_TIMER_PHYS_SECURE_PPI;
1243 static void __init arch_timer_populate_kvm_info(void)
1245 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1246 if (is_kernel_in_hyp_mode())
1247 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1250 static int __init arch_timer_of_init(struct device_node *np)
1255 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1256 pr_warn("multiple nodes in dt, skipping\n");
1260 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1261 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1262 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1264 arch_timer_populate_kvm_info();
1266 rate = arch_timer_get_cntfrq();
1267 arch_timer_of_configure_rate(rate, np);
1269 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1271 /* Check for globally applicable workarounds */
1272 arch_timer_check_ool_workaround(ate_match_dt, np);
1275 * If we cannot rely on firmware initializing the timer registers then
1276 * we should use the physical timers instead.
1278 if (IS_ENABLED(CONFIG_ARM) &&
1279 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1280 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1282 arch_timer_uses_ppi = arch_timer_select_ppi();
1284 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1285 pr_err("No interrupt available, giving up\n");
1289 /* On some systems, the counter stops ticking when in suspend. */
1290 arch_counter_suspend_stop = of_property_read_bool(np,
1291 "arm,no-tick-in-suspend");
1293 ret = arch_timer_register();
1297 if (arch_timer_needs_of_probing())
1300 return arch_timer_common_init();
1302 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1303 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1306 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1311 base = ioremap(frame->cntbase, frame->size);
1313 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1317 rate = readl_relaxed(base + CNTFRQ);
1324 static struct arch_timer_mem_frame * __init
1325 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1327 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1328 void __iomem *cntctlbase;
1332 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1334 pr_err("Can't map CNTCTLBase @ %pa\n",
1335 &timer_mem->cntctlbase);
1339 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1342 * Try to find a virtual capable frame. Otherwise fall back to a
1343 * physical capable frame.
1345 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1346 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1347 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1349 frame = &timer_mem->frame[i];
1353 /* Try enabling everything, and see what sticks */
1354 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1355 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1357 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1358 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1360 arch_timer_mem_use_virtual = true;
1364 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1370 iounmap(cntctlbase);
1376 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1381 if (arch_timer_mem_use_virtual)
1382 irq = frame->virt_irq;
1384 irq = frame->phys_irq;
1387 pr_err("Frame missing %s irq.\n",
1388 arch_timer_mem_use_virtual ? "virt" : "phys");
1392 if (!request_mem_region(frame->cntbase, frame->size,
1396 base = ioremap(frame->cntbase, frame->size);
1398 pr_err("Can't map frame's registers\n");
1402 ret = arch_timer_mem_register(base, irq);
1408 arch_counter_base = base;
1409 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1414 static int __init arch_timer_mem_of_init(struct device_node *np)
1416 struct arch_timer_mem *timer_mem;
1417 struct arch_timer_mem_frame *frame;
1418 struct device_node *frame_node;
1419 struct resource res;
1423 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1427 if (of_address_to_resource(np, 0, &res))
1429 timer_mem->cntctlbase = res.start;
1430 timer_mem->size = resource_size(&res);
1432 for_each_available_child_of_node(np, frame_node) {
1434 struct arch_timer_mem_frame *frame;
1436 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1437 pr_err(FW_BUG "Missing frame-number.\n");
1438 of_node_put(frame_node);
1441 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1442 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1443 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1444 of_node_put(frame_node);
1447 frame = &timer_mem->frame[n];
1450 pr_err(FW_BUG "Duplicated frame-number.\n");
1451 of_node_put(frame_node);
1455 if (of_address_to_resource(frame_node, 0, &res)) {
1456 of_node_put(frame_node);
1459 frame->cntbase = res.start;
1460 frame->size = resource_size(&res);
1462 frame->virt_irq = irq_of_parse_and_map(frame_node,
1463 ARCH_TIMER_VIRT_SPI);
1464 frame->phys_irq = irq_of_parse_and_map(frame_node,
1465 ARCH_TIMER_PHYS_SPI);
1467 frame->valid = true;
1470 frame = arch_timer_mem_find_best_frame(timer_mem);
1472 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1473 &timer_mem->cntctlbase);
1478 rate = arch_timer_mem_frame_get_cntfrq(frame);
1479 arch_timer_of_configure_rate(rate, np);
1481 ret = arch_timer_mem_frame_register(frame);
1482 if (!ret && !arch_timer_needs_of_probing())
1483 ret = arch_timer_common_init();
1488 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1489 arch_timer_mem_of_init);
1491 #ifdef CONFIG_ACPI_GTDT
1493 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1495 struct arch_timer_mem_frame *frame;
1499 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1500 frame = &timer_mem->frame[i];
1505 rate = arch_timer_mem_frame_get_cntfrq(frame);
1506 if (rate == arch_timer_rate)
1509 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1511 (unsigned long)rate, (unsigned long)arch_timer_rate);
1519 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1521 struct arch_timer_mem *timers, *timer;
1522 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1523 int timer_count, i, ret = 0;
1525 timers = kcalloc(platform_timer_count, sizeof(*timers),
1530 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1531 if (ret || !timer_count)
1535 * While unlikely, it's theoretically possible that none of the frames
1536 * in a timer expose the combination of feature we want.
1538 for (i = 0; i < timer_count; i++) {
1541 frame = arch_timer_mem_find_best_frame(timer);
1545 ret = arch_timer_mem_verify_cntfrq(timer);
1547 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1551 if (!best_frame) /* implies !frame */
1553 * Only complain about missing suitable frames if we
1554 * haven't already found one in a previous iteration.
1556 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1557 &timer->cntctlbase);
1561 ret = arch_timer_mem_frame_register(best_frame);
1567 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1568 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1570 int ret, platform_timer_count;
1572 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1573 pr_warn("already initialized, skipping\n");
1577 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1579 ret = acpi_gtdt_init(table, &platform_timer_count);
1581 pr_err("Failed to init GTDT table.\n");
1585 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1586 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1588 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1589 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1591 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1592 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1594 arch_timer_populate_kvm_info();
1597 * When probing via ACPI, we have no mechanism to override the sysreg
1598 * CNTFRQ value. This *must* be correct.
1600 arch_timer_rate = arch_timer_get_cntfrq();
1601 if (!arch_timer_rate) {
1602 pr_err(FW_BUG "frequency not available.\n");
1606 arch_timer_uses_ppi = arch_timer_select_ppi();
1607 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1608 pr_err("No interrupt available, giving up\n");
1612 /* Always-on capability */
1613 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1615 /* Check for globally applicable workarounds */
1616 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1618 ret = arch_timer_register();
1622 if (platform_timer_count &&
1623 arch_timer_mem_acpi_init(platform_timer_count))
1624 pr_err("Failed to initialize memory-mapped timer.\n");
1626 return arch_timer_common_init();
1628 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);