1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
21 #include <trace/events/f2fs.h>
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
31 * Check whether the given nid is within node id range.
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
100 static void clear_node_page_dirty(struct page *page)
102 if (PageDirty(page)) {
103 f2fs_clear_page_cache_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
107 ClearPageUptodate(page);
110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
112 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
117 struct page *src_page;
118 struct page *dst_page;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
139 set_to_next_nat(nm_i, nid);
144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
146 struct nat_entry *new;
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
153 nat_set_nid(new, nid);
159 static void __free_nat_entry(struct nat_entry *e)
161 kmem_cache_free(nat_entry_slab, e);
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
174 node_info_from_raw_nat(&ne->ni, raw_ne);
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 struct nat_entry *ne;
188 ne = radix_tree_lookup(&nm_i->nat_root, n);
190 /* for recent accessed nat entry, move it to tail of lru list */
191 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192 spin_lock(&nm_i->nat_list_lock);
193 if (!list_empty(&ne->list))
194 list_move_tail(&ne->list, &nm_i->nat_entries);
195 spin_unlock(&nm_i->nat_list_lock);
201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202 nid_t start, unsigned int nr, struct nat_entry **ep)
204 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
214 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215 struct nat_entry *ne)
217 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218 struct nat_entry_set *head;
220 head = radix_tree_lookup(&nm_i->nat_set_root, set);
222 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
224 INIT_LIST_HEAD(&head->entry_list);
225 INIT_LIST_HEAD(&head->set_list);
228 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
233 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234 struct nat_entry *ne)
236 struct nat_entry_set *head;
237 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240 head = __grab_nat_entry_set(nm_i, ne);
243 * update entry_cnt in below condition:
244 * 1. update NEW_ADDR to valid block address;
245 * 2. update old block address to new one;
247 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248 !get_nat_flag(ne, IS_DIRTY)))
251 set_nat_flag(ne, IS_PREALLOC, new_ne);
253 if (get_nat_flag(ne, IS_DIRTY))
256 nm_i->dirty_nat_cnt++;
257 set_nat_flag(ne, IS_DIRTY, true);
259 spin_lock(&nm_i->nat_list_lock);
261 list_del_init(&ne->list);
263 list_move_tail(&ne->list, &head->entry_list);
264 spin_unlock(&nm_i->nat_list_lock);
267 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268 struct nat_entry_set *set, struct nat_entry *ne)
270 spin_lock(&nm_i->nat_list_lock);
271 list_move_tail(&ne->list, &nm_i->nat_entries);
272 spin_unlock(&nm_i->nat_list_lock);
274 set_nat_flag(ne, IS_DIRTY, false);
276 nm_i->dirty_nat_cnt--;
279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280 nid_t start, unsigned int nr, struct nat_entry_set **ep)
282 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
286 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
288 return NODE_MAPPING(sbi) == page->mapping &&
289 IS_DNODE(page) && is_cold_node(page);
292 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
294 spin_lock_init(&sbi->fsync_node_lock);
295 INIT_LIST_HEAD(&sbi->fsync_node_list);
296 sbi->fsync_seg_id = 0;
297 sbi->fsync_node_num = 0;
300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
303 struct fsync_node_entry *fn;
307 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
311 INIT_LIST_HEAD(&fn->list);
313 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314 list_add_tail(&fn->list, &sbi->fsync_node_list);
315 fn->seq_id = sbi->fsync_seg_id++;
317 sbi->fsync_node_num++;
318 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
325 struct fsync_node_entry *fn;
328 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330 if (fn->page == page) {
332 sbi->fsync_node_num--;
333 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334 kmem_cache_free(fsync_node_entry_slab, fn);
339 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
347 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348 sbi->fsync_seg_id = 0;
349 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
352 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
354 struct f2fs_nm_info *nm_i = NM_I(sbi);
358 down_read(&nm_i->nat_tree_lock);
359 e = __lookup_nat_cache(nm_i, nid);
361 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362 !get_nat_flag(e, HAS_FSYNCED_INODE))
365 up_read(&nm_i->nat_tree_lock);
369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
371 struct f2fs_nm_info *nm_i = NM_I(sbi);
375 down_read(&nm_i->nat_tree_lock);
376 e = __lookup_nat_cache(nm_i, nid);
377 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
379 up_read(&nm_i->nat_tree_lock);
383 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
385 struct f2fs_nm_info *nm_i = NM_I(sbi);
387 bool need_update = true;
389 down_read(&nm_i->nat_tree_lock);
390 e = __lookup_nat_cache(nm_i, ino);
391 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392 (get_nat_flag(e, IS_CHECKPOINTED) ||
393 get_nat_flag(e, HAS_FSYNCED_INODE)))
395 up_read(&nm_i->nat_tree_lock);
399 /* must be locked by nat_tree_lock */
400 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401 struct f2fs_nat_entry *ne)
403 struct f2fs_nm_info *nm_i = NM_I(sbi);
404 struct nat_entry *new, *e;
406 new = __alloc_nat_entry(nid, false);
410 down_write(&nm_i->nat_tree_lock);
411 e = __lookup_nat_cache(nm_i, nid);
413 e = __init_nat_entry(nm_i, new, ne, false);
415 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416 nat_get_blkaddr(e) !=
417 le32_to_cpu(ne->block_addr) ||
418 nat_get_version(e) != ne->version);
419 up_write(&nm_i->nat_tree_lock);
421 __free_nat_entry(new);
424 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425 block_t new_blkaddr, bool fsync_done)
427 struct f2fs_nm_info *nm_i = NM_I(sbi);
429 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
431 down_write(&nm_i->nat_tree_lock);
432 e = __lookup_nat_cache(nm_i, ni->nid);
434 e = __init_nat_entry(nm_i, new, NULL, true);
435 copy_node_info(&e->ni, ni);
436 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437 } else if (new_blkaddr == NEW_ADDR) {
439 * when nid is reallocated,
440 * previous nat entry can be remained in nat cache.
441 * So, reinitialize it with new information.
443 copy_node_info(&e->ni, ni);
444 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
446 /* let's free early to reduce memory consumption */
448 __free_nat_entry(new);
451 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453 new_blkaddr == NULL_ADDR);
454 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455 new_blkaddr == NEW_ADDR);
456 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457 new_blkaddr == NEW_ADDR);
459 /* increment version no as node is removed */
460 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461 unsigned char version = nat_get_version(e);
462 nat_set_version(e, inc_node_version(version));
466 nat_set_blkaddr(e, new_blkaddr);
467 if (!__is_valid_data_blkaddr(new_blkaddr))
468 set_nat_flag(e, IS_CHECKPOINTED, false);
469 __set_nat_cache_dirty(nm_i, e);
471 /* update fsync_mark if its inode nat entry is still alive */
472 if (ni->nid != ni->ino)
473 e = __lookup_nat_cache(nm_i, ni->ino);
475 if (fsync_done && ni->nid == ni->ino)
476 set_nat_flag(e, HAS_FSYNCED_INODE, true);
477 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
479 up_write(&nm_i->nat_tree_lock);
482 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
484 struct f2fs_nm_info *nm_i = NM_I(sbi);
487 if (!down_write_trylock(&nm_i->nat_tree_lock))
490 spin_lock(&nm_i->nat_list_lock);
492 struct nat_entry *ne;
494 if (list_empty(&nm_i->nat_entries))
497 ne = list_first_entry(&nm_i->nat_entries,
498 struct nat_entry, list);
500 spin_unlock(&nm_i->nat_list_lock);
502 __del_from_nat_cache(nm_i, ne);
505 spin_lock(&nm_i->nat_list_lock);
507 spin_unlock(&nm_i->nat_list_lock);
509 up_write(&nm_i->nat_tree_lock);
510 return nr - nr_shrink;
513 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
514 struct node_info *ni)
516 struct f2fs_nm_info *nm_i = NM_I(sbi);
517 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
518 struct f2fs_journal *journal = curseg->journal;
519 nid_t start_nid = START_NID(nid);
520 struct f2fs_nat_block *nat_blk;
521 struct page *page = NULL;
522 struct f2fs_nat_entry ne;
530 /* Check nat cache */
531 down_read(&nm_i->nat_tree_lock);
532 e = __lookup_nat_cache(nm_i, nid);
534 ni->ino = nat_get_ino(e);
535 ni->blk_addr = nat_get_blkaddr(e);
536 ni->version = nat_get_version(e);
537 up_read(&nm_i->nat_tree_lock);
541 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
543 /* Check current segment summary */
544 down_read(&curseg->journal_rwsem);
545 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
547 ne = nat_in_journal(journal, i);
548 node_info_from_raw_nat(ni, &ne);
550 up_read(&curseg->journal_rwsem);
552 up_read(&nm_i->nat_tree_lock);
556 /* Fill node_info from nat page */
557 index = current_nat_addr(sbi, nid);
558 up_read(&nm_i->nat_tree_lock);
560 page = f2fs_get_meta_page(sbi, index);
562 return PTR_ERR(page);
564 nat_blk = (struct f2fs_nat_block *)page_address(page);
565 ne = nat_blk->entries[nid - start_nid];
566 node_info_from_raw_nat(ni, &ne);
567 f2fs_put_page(page, 1);
569 blkaddr = le32_to_cpu(ne.block_addr);
570 if (__is_valid_data_blkaddr(blkaddr) &&
571 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
574 /* cache nat entry */
575 cache_nat_entry(sbi, nid, &ne);
580 * readahead MAX_RA_NODE number of node pages.
582 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
584 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
585 struct blk_plug plug;
589 blk_start_plug(&plug);
591 /* Then, try readahead for siblings of the desired node */
593 end = min(end, NIDS_PER_BLOCK);
594 for (i = start; i < end; i++) {
595 nid = get_nid(parent, i, false);
596 f2fs_ra_node_page(sbi, nid);
599 blk_finish_plug(&plug);
602 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
604 const long direct_index = ADDRS_PER_INODE(dn->inode);
605 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
606 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
607 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
608 int cur_level = dn->cur_level;
609 int max_level = dn->max_level;
615 while (max_level-- > cur_level)
616 skipped_unit *= NIDS_PER_BLOCK;
618 switch (dn->max_level) {
620 base += 2 * indirect_blks;
623 base += 2 * direct_blks;
626 base += direct_index;
629 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
632 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
636 * The maximum depth is four.
637 * Offset[0] will have raw inode offset.
639 static int get_node_path(struct inode *inode, long block,
640 int offset[4], unsigned int noffset[4])
642 const long direct_index = ADDRS_PER_INODE(inode);
643 const long direct_blks = ADDRS_PER_BLOCK(inode);
644 const long dptrs_per_blk = NIDS_PER_BLOCK;
645 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
646 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
652 if (block < direct_index) {
656 block -= direct_index;
657 if (block < direct_blks) {
658 offset[n++] = NODE_DIR1_BLOCK;
664 block -= direct_blks;
665 if (block < direct_blks) {
666 offset[n++] = NODE_DIR2_BLOCK;
672 block -= direct_blks;
673 if (block < indirect_blks) {
674 offset[n++] = NODE_IND1_BLOCK;
676 offset[n++] = block / direct_blks;
677 noffset[n] = 4 + offset[n - 1];
678 offset[n] = block % direct_blks;
682 block -= indirect_blks;
683 if (block < indirect_blks) {
684 offset[n++] = NODE_IND2_BLOCK;
685 noffset[n] = 4 + dptrs_per_blk;
686 offset[n++] = block / direct_blks;
687 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
688 offset[n] = block % direct_blks;
692 block -= indirect_blks;
693 if (block < dindirect_blks) {
694 offset[n++] = NODE_DIND_BLOCK;
695 noffset[n] = 5 + (dptrs_per_blk * 2);
696 offset[n++] = block / indirect_blks;
697 noffset[n] = 6 + (dptrs_per_blk * 2) +
698 offset[n - 1] * (dptrs_per_blk + 1);
699 offset[n++] = (block / direct_blks) % dptrs_per_blk;
700 noffset[n] = 7 + (dptrs_per_blk * 2) +
701 offset[n - 2] * (dptrs_per_blk + 1) +
703 offset[n] = block % direct_blks;
714 * Caller should call f2fs_put_dnode(dn).
715 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
716 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
718 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
720 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
721 struct page *npage[4];
722 struct page *parent = NULL;
724 unsigned int noffset[4];
729 level = get_node_path(dn->inode, index, offset, noffset);
733 nids[0] = dn->inode->i_ino;
734 npage[0] = dn->inode_page;
737 npage[0] = f2fs_get_node_page(sbi, nids[0]);
738 if (IS_ERR(npage[0]))
739 return PTR_ERR(npage[0]);
742 /* if inline_data is set, should not report any block indices */
743 if (f2fs_has_inline_data(dn->inode) && index) {
745 f2fs_put_page(npage[0], 1);
751 nids[1] = get_nid(parent, offset[0], true);
752 dn->inode_page = npage[0];
753 dn->inode_page_locked = true;
755 /* get indirect or direct nodes */
756 for (i = 1; i <= level; i++) {
759 if (!nids[i] && mode == ALLOC_NODE) {
761 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
767 npage[i] = f2fs_new_node_page(dn, noffset[i]);
768 if (IS_ERR(npage[i])) {
769 f2fs_alloc_nid_failed(sbi, nids[i]);
770 err = PTR_ERR(npage[i]);
774 set_nid(parent, offset[i - 1], nids[i], i == 1);
775 f2fs_alloc_nid_done(sbi, nids[i]);
777 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
778 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
779 if (IS_ERR(npage[i])) {
780 err = PTR_ERR(npage[i]);
786 dn->inode_page_locked = false;
789 f2fs_put_page(parent, 1);
793 npage[i] = f2fs_get_node_page(sbi, nids[i]);
794 if (IS_ERR(npage[i])) {
795 err = PTR_ERR(npage[i]);
796 f2fs_put_page(npage[0], 0);
802 nids[i + 1] = get_nid(parent, offset[i], false);
805 dn->nid = nids[level];
806 dn->ofs_in_node = offset[level];
807 dn->node_page = npage[level];
808 dn->data_blkaddr = f2fs_data_blkaddr(dn);
812 f2fs_put_page(parent, 1);
814 f2fs_put_page(npage[0], 0);
816 dn->inode_page = NULL;
817 dn->node_page = NULL;
818 if (err == -ENOENT) {
820 dn->max_level = level;
821 dn->ofs_in_node = offset[level];
826 static int truncate_node(struct dnode_of_data *dn)
828 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
833 err = f2fs_get_node_info(sbi, dn->nid, &ni);
837 /* Deallocate node address */
838 f2fs_invalidate_blocks(sbi, ni.blk_addr);
839 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
840 set_node_addr(sbi, &ni, NULL_ADDR, false);
842 if (dn->nid == dn->inode->i_ino) {
843 f2fs_remove_orphan_inode(sbi, dn->nid);
844 dec_valid_inode_count(sbi);
845 f2fs_inode_synced(dn->inode);
848 clear_node_page_dirty(dn->node_page);
849 set_sbi_flag(sbi, SBI_IS_DIRTY);
851 index = dn->node_page->index;
852 f2fs_put_page(dn->node_page, 1);
854 invalidate_mapping_pages(NODE_MAPPING(sbi),
857 dn->node_page = NULL;
858 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
863 static int truncate_dnode(struct dnode_of_data *dn)
871 /* get direct node */
872 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
873 if (PTR_ERR(page) == -ENOENT)
875 else if (IS_ERR(page))
876 return PTR_ERR(page);
878 /* Make dnode_of_data for parameter */
879 dn->node_page = page;
881 f2fs_truncate_data_blocks(dn);
882 err = truncate_node(dn);
889 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
892 struct dnode_of_data rdn = *dn;
894 struct f2fs_node *rn;
896 unsigned int child_nofs;
901 return NIDS_PER_BLOCK + 1;
903 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
905 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
907 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
908 return PTR_ERR(page);
911 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
913 rn = F2FS_NODE(page);
915 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
916 child_nid = le32_to_cpu(rn->in.nid[i]);
920 ret = truncate_dnode(&rdn);
923 if (set_nid(page, i, 0, false))
924 dn->node_changed = true;
927 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
928 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
929 child_nid = le32_to_cpu(rn->in.nid[i]);
930 if (child_nid == 0) {
931 child_nofs += NIDS_PER_BLOCK + 1;
935 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
936 if (ret == (NIDS_PER_BLOCK + 1)) {
937 if (set_nid(page, i, 0, false))
938 dn->node_changed = true;
940 } else if (ret < 0 && ret != -ENOENT) {
948 /* remove current indirect node */
949 dn->node_page = page;
950 ret = truncate_node(dn);
955 f2fs_put_page(page, 1);
957 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
961 f2fs_put_page(page, 1);
962 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
966 static int truncate_partial_nodes(struct dnode_of_data *dn,
967 struct f2fs_inode *ri, int *offset, int depth)
969 struct page *pages[2];
976 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
980 /* get indirect nodes in the path */
981 for (i = 0; i < idx + 1; i++) {
982 /* reference count'll be increased */
983 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
984 if (IS_ERR(pages[i])) {
985 err = PTR_ERR(pages[i]);
989 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
992 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
994 /* free direct nodes linked to a partial indirect node */
995 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
996 child_nid = get_nid(pages[idx], i, false);
1000 err = truncate_dnode(dn);
1003 if (set_nid(pages[idx], i, 0, false))
1004 dn->node_changed = true;
1007 if (offset[idx + 1] == 0) {
1008 dn->node_page = pages[idx];
1010 err = truncate_node(dn);
1014 f2fs_put_page(pages[idx], 1);
1017 offset[idx + 1] = 0;
1020 for (i = idx; i >= 0; i--)
1021 f2fs_put_page(pages[i], 1);
1023 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1029 * All the block addresses of data and nodes should be nullified.
1031 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1033 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034 int err = 0, cont = 1;
1035 int level, offset[4], noffset[4];
1036 unsigned int nofs = 0;
1037 struct f2fs_inode *ri;
1038 struct dnode_of_data dn;
1041 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1043 level = get_node_path(inode, from, offset, noffset);
1045 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1049 page = f2fs_get_node_page(sbi, inode->i_ino);
1051 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1052 return PTR_ERR(page);
1055 set_new_dnode(&dn, inode, page, NULL, 0);
1058 ri = F2FS_INODE(page);
1066 if (!offset[level - 1])
1068 err = truncate_partial_nodes(&dn, ri, offset, level);
1069 if (err < 0 && err != -ENOENT)
1071 nofs += 1 + NIDS_PER_BLOCK;
1074 nofs = 5 + 2 * NIDS_PER_BLOCK;
1075 if (!offset[level - 1])
1077 err = truncate_partial_nodes(&dn, ri, offset, level);
1078 if (err < 0 && err != -ENOENT)
1087 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1088 switch (offset[0]) {
1089 case NODE_DIR1_BLOCK:
1090 case NODE_DIR2_BLOCK:
1091 err = truncate_dnode(&dn);
1094 case NODE_IND1_BLOCK:
1095 case NODE_IND2_BLOCK:
1096 err = truncate_nodes(&dn, nofs, offset[1], 2);
1099 case NODE_DIND_BLOCK:
1100 err = truncate_nodes(&dn, nofs, offset[1], 3);
1107 if (err < 0 && err != -ENOENT)
1109 if (offset[1] == 0 &&
1110 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1112 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1113 f2fs_wait_on_page_writeback(page, NODE, true, true);
1114 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1115 set_page_dirty(page);
1123 f2fs_put_page(page, 0);
1124 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1125 return err > 0 ? 0 : err;
1128 /* caller must lock inode page */
1129 int f2fs_truncate_xattr_node(struct inode *inode)
1131 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1132 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1133 struct dnode_of_data dn;
1140 npage = f2fs_get_node_page(sbi, nid);
1142 return PTR_ERR(npage);
1144 set_new_dnode(&dn, inode, NULL, npage, nid);
1145 err = truncate_node(&dn);
1147 f2fs_put_page(npage, 1);
1151 f2fs_i_xnid_write(inode, 0);
1157 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1160 int f2fs_remove_inode_page(struct inode *inode)
1162 struct dnode_of_data dn;
1165 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1166 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170 err = f2fs_truncate_xattr_node(inode);
1172 f2fs_put_dnode(&dn);
1176 /* remove potential inline_data blocks */
1177 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1178 S_ISLNK(inode->i_mode))
1179 f2fs_truncate_data_blocks_range(&dn, 1);
1181 /* 0 is possible, after f2fs_new_inode() has failed */
1182 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1183 f2fs_put_dnode(&dn);
1187 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1188 f2fs_warn(F2FS_I_SB(inode),
1189 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1190 inode->i_ino, (unsigned long long)inode->i_blocks);
1191 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1194 /* will put inode & node pages */
1195 err = truncate_node(&dn);
1197 f2fs_put_dnode(&dn);
1203 struct page *f2fs_new_inode_page(struct inode *inode)
1205 struct dnode_of_data dn;
1207 /* allocate inode page for new inode */
1208 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1210 /* caller should f2fs_put_page(page, 1); */
1211 return f2fs_new_node_page(&dn, 0);
1214 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1216 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1217 struct node_info new_ni;
1221 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1222 return ERR_PTR(-EPERM);
1224 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1226 return ERR_PTR(-ENOMEM);
1228 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1231 #ifdef CONFIG_F2FS_CHECK_FS
1232 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1234 dec_valid_node_count(sbi, dn->inode, !ofs);
1237 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1239 new_ni.nid = dn->nid;
1240 new_ni.ino = dn->inode->i_ino;
1241 new_ni.blk_addr = NULL_ADDR;
1244 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1246 f2fs_wait_on_page_writeback(page, NODE, true, true);
1247 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1248 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1249 if (!PageUptodate(page))
1250 SetPageUptodate(page);
1251 if (set_page_dirty(page))
1252 dn->node_changed = true;
1254 if (f2fs_has_xattr_block(ofs))
1255 f2fs_i_xnid_write(dn->inode, dn->nid);
1258 inc_valid_inode_count(sbi);
1262 clear_node_page_dirty(page);
1263 f2fs_put_page(page, 1);
1264 return ERR_PTR(err);
1268 * Caller should do after getting the following values.
1269 * 0: f2fs_put_page(page, 0)
1270 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1272 static int read_node_page(struct page *page, int op_flags)
1274 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1275 struct node_info ni;
1276 struct f2fs_io_info fio = {
1280 .op_flags = op_flags,
1282 .encrypted_page = NULL,
1286 if (PageUptodate(page)) {
1287 if (!f2fs_inode_chksum_verify(sbi, page)) {
1288 ClearPageUptodate(page);
1294 err = f2fs_get_node_info(sbi, page->index, &ni);
1298 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1299 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1300 ClearPageUptodate(page);
1304 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1306 err = f2fs_submit_page_bio(&fio);
1309 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1315 * Readahead a node page
1317 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1324 if (f2fs_check_nid_range(sbi, nid))
1327 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1331 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1335 err = read_node_page(apage, REQ_RAHEAD);
1336 f2fs_put_page(apage, err ? 1 : 0);
1339 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1340 struct page *parent, int start)
1346 return ERR_PTR(-ENOENT);
1347 if (f2fs_check_nid_range(sbi, nid))
1348 return ERR_PTR(-EINVAL);
1350 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1352 return ERR_PTR(-ENOMEM);
1354 err = read_node_page(page, 0);
1356 f2fs_put_page(page, 1);
1357 return ERR_PTR(err);
1358 } else if (err == LOCKED_PAGE) {
1364 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1368 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1369 f2fs_put_page(page, 1);
1373 if (unlikely(!PageUptodate(page))) {
1378 if (!f2fs_inode_chksum_verify(sbi, page)) {
1383 if(unlikely(nid != nid_of_node(page))) {
1384 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1385 nid, nid_of_node(page), ino_of_node(page),
1386 ofs_of_node(page), cpver_of_node(page),
1387 next_blkaddr_of_node(page));
1390 ClearPageUptodate(page);
1391 f2fs_put_page(page, 1);
1392 return ERR_PTR(err);
1397 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1399 return __get_node_page(sbi, nid, NULL, 0);
1402 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1404 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1405 nid_t nid = get_nid(parent, start, false);
1407 return __get_node_page(sbi, nid, parent, start);
1410 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1412 struct inode *inode;
1416 /* should flush inline_data before evict_inode */
1417 inode = ilookup(sbi->sb, ino);
1421 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1422 FGP_LOCK|FGP_NOWAIT, 0);
1426 if (!PageUptodate(page))
1429 if (!PageDirty(page))
1432 if (!clear_page_dirty_for_io(page))
1435 ret = f2fs_write_inline_data(inode, page);
1436 inode_dec_dirty_pages(inode);
1437 f2fs_remove_dirty_inode(inode);
1439 set_page_dirty(page);
1441 f2fs_put_page(page, 1);
1446 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1449 struct pagevec pvec;
1450 struct page *last_page = NULL;
1453 pagevec_init(&pvec);
1456 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1457 PAGECACHE_TAG_DIRTY))) {
1460 for (i = 0; i < nr_pages; i++) {
1461 struct page *page = pvec.pages[i];
1463 if (unlikely(f2fs_cp_error(sbi))) {
1464 f2fs_put_page(last_page, 0);
1465 pagevec_release(&pvec);
1466 return ERR_PTR(-EIO);
1469 if (!IS_DNODE(page) || !is_cold_node(page))
1471 if (ino_of_node(page) != ino)
1476 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1481 if (ino_of_node(page) != ino)
1482 goto continue_unlock;
1484 if (!PageDirty(page)) {
1485 /* someone wrote it for us */
1486 goto continue_unlock;
1490 f2fs_put_page(last_page, 0);
1496 pagevec_release(&pvec);
1502 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1503 struct writeback_control *wbc, bool do_balance,
1504 enum iostat_type io_type, unsigned int *seq_id)
1506 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1508 struct node_info ni;
1509 struct f2fs_io_info fio = {
1511 .ino = ino_of_node(page),
1514 .op_flags = wbc_to_write_flags(wbc),
1516 .encrypted_page = NULL,
1523 trace_f2fs_writepage(page, NODE);
1525 if (unlikely(f2fs_cp_error(sbi))) {
1526 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1527 ClearPageUptodate(page);
1528 dec_page_count(sbi, F2FS_DIRTY_NODES);
1535 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1538 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1539 wbc->sync_mode == WB_SYNC_NONE &&
1540 IS_DNODE(page) && is_cold_node(page))
1543 /* get old block addr of this node page */
1544 nid = nid_of_node(page);
1545 f2fs_bug_on(sbi, page->index != nid);
1547 if (f2fs_get_node_info(sbi, nid, &ni))
1550 if (wbc->for_reclaim) {
1551 if (!down_read_trylock(&sbi->node_write))
1554 down_read(&sbi->node_write);
1557 /* This page is already truncated */
1558 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1559 ClearPageUptodate(page);
1560 dec_page_count(sbi, F2FS_DIRTY_NODES);
1561 up_read(&sbi->node_write);
1566 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1567 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1568 DATA_GENERIC_ENHANCE)) {
1569 up_read(&sbi->node_write);
1573 if (atomic && !test_opt(sbi, NOBARRIER))
1574 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1576 /* should add to global list before clearing PAGECACHE status */
1577 if (f2fs_in_warm_node_list(sbi, page)) {
1578 seq = f2fs_add_fsync_node_entry(sbi, page);
1583 set_page_writeback(page);
1584 ClearPageError(page);
1586 fio.old_blkaddr = ni.blk_addr;
1587 f2fs_do_write_node_page(nid, &fio);
1588 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1589 dec_page_count(sbi, F2FS_DIRTY_NODES);
1590 up_read(&sbi->node_write);
1592 if (wbc->for_reclaim) {
1593 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1599 if (unlikely(f2fs_cp_error(sbi))) {
1600 f2fs_submit_merged_write(sbi, NODE);
1604 *submitted = fio.submitted;
1607 f2fs_balance_fs(sbi, false);
1611 redirty_page_for_writepage(wbc, page);
1612 return AOP_WRITEPAGE_ACTIVATE;
1615 int f2fs_move_node_page(struct page *node_page, int gc_type)
1619 if (gc_type == FG_GC) {
1620 struct writeback_control wbc = {
1621 .sync_mode = WB_SYNC_ALL,
1626 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1628 set_page_dirty(node_page);
1630 if (!clear_page_dirty_for_io(node_page)) {
1635 if (__write_node_page(node_page, false, NULL,
1636 &wbc, false, FS_GC_NODE_IO, NULL)) {
1638 unlock_page(node_page);
1642 /* set page dirty and write it */
1643 if (!PageWriteback(node_page))
1644 set_page_dirty(node_page);
1647 unlock_page(node_page);
1649 f2fs_put_page(node_page, 0);
1653 static int f2fs_write_node_page(struct page *page,
1654 struct writeback_control *wbc)
1656 return __write_node_page(page, false, NULL, wbc, false,
1660 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1661 struct writeback_control *wbc, bool atomic,
1662 unsigned int *seq_id)
1665 struct pagevec pvec;
1667 struct page *last_page = NULL;
1668 bool marked = false;
1669 nid_t ino = inode->i_ino;
1674 last_page = last_fsync_dnode(sbi, ino);
1675 if (IS_ERR_OR_NULL(last_page))
1676 return PTR_ERR_OR_ZERO(last_page);
1679 pagevec_init(&pvec);
1682 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1683 PAGECACHE_TAG_DIRTY))) {
1686 for (i = 0; i < nr_pages; i++) {
1687 struct page *page = pvec.pages[i];
1688 bool submitted = false;
1690 if (unlikely(f2fs_cp_error(sbi))) {
1691 f2fs_put_page(last_page, 0);
1692 pagevec_release(&pvec);
1697 if (!IS_DNODE(page) || !is_cold_node(page))
1699 if (ino_of_node(page) != ino)
1704 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1709 if (ino_of_node(page) != ino)
1710 goto continue_unlock;
1712 if (!PageDirty(page) && page != last_page) {
1713 /* someone wrote it for us */
1714 goto continue_unlock;
1717 f2fs_wait_on_page_writeback(page, NODE, true, true);
1719 set_fsync_mark(page, 0);
1720 set_dentry_mark(page, 0);
1722 if (!atomic || page == last_page) {
1723 set_fsync_mark(page, 1);
1724 if (IS_INODE(page)) {
1725 if (is_inode_flag_set(inode,
1727 f2fs_update_inode(inode, page);
1728 set_dentry_mark(page,
1729 f2fs_need_dentry_mark(sbi, ino));
1731 /* may be written by other thread */
1732 if (!PageDirty(page))
1733 set_page_dirty(page);
1736 if (!clear_page_dirty_for_io(page))
1737 goto continue_unlock;
1739 ret = __write_node_page(page, atomic &&
1741 &submitted, wbc, true,
1742 FS_NODE_IO, seq_id);
1745 f2fs_put_page(last_page, 0);
1747 } else if (submitted) {
1751 if (page == last_page) {
1752 f2fs_put_page(page, 0);
1757 pagevec_release(&pvec);
1763 if (!ret && atomic && !marked) {
1764 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1765 ino, last_page->index);
1766 lock_page(last_page);
1767 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1768 set_page_dirty(last_page);
1769 unlock_page(last_page);
1774 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1775 return ret ? -EIO: 0;
1778 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1780 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1783 if (inode->i_ino != ino)
1786 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1789 spin_lock(&sbi->inode_lock[DIRTY_META]);
1790 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1791 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1796 inode = igrab(inode);
1802 static bool flush_dirty_inode(struct page *page)
1804 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1805 struct inode *inode;
1806 nid_t ino = ino_of_node(page);
1808 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1812 f2fs_update_inode(inode, page);
1819 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1822 struct pagevec pvec;
1825 pagevec_init(&pvec);
1827 while ((nr_pages = pagevec_lookup_tag(&pvec,
1828 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1831 for (i = 0; i < nr_pages; i++) {
1832 struct page *page = pvec.pages[i];
1834 if (!IS_DNODE(page))
1839 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1845 if (!PageDirty(page)) {
1846 /* someone wrote it for us */
1847 goto continue_unlock;
1850 /* flush inline_data, if it's async context. */
1851 if (is_inline_node(page)) {
1852 clear_inline_node(page);
1854 flush_inline_data(sbi, ino_of_node(page));
1859 pagevec_release(&pvec);
1864 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1865 struct writeback_control *wbc,
1866 bool do_balance, enum iostat_type io_type)
1869 struct pagevec pvec;
1873 int nr_pages, done = 0;
1875 pagevec_init(&pvec);
1880 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1881 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1884 for (i = 0; i < nr_pages; i++) {
1885 struct page *page = pvec.pages[i];
1886 bool submitted = false;
1887 bool may_dirty = true;
1889 /* give a priority to WB_SYNC threads */
1890 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1891 wbc->sync_mode == WB_SYNC_NONE) {
1897 * flushing sequence with step:
1902 if (step == 0 && IS_DNODE(page))
1904 if (step == 1 && (!IS_DNODE(page) ||
1905 is_cold_node(page)))
1907 if (step == 2 && (!IS_DNODE(page) ||
1908 !is_cold_node(page)))
1911 if (wbc->sync_mode == WB_SYNC_ALL)
1913 else if (!trylock_page(page))
1916 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1922 if (!PageDirty(page)) {
1923 /* someone wrote it for us */
1924 goto continue_unlock;
1927 /* flush inline_data/inode, if it's async context. */
1931 /* flush inline_data */
1932 if (is_inline_node(page)) {
1933 clear_inline_node(page);
1935 flush_inline_data(sbi, ino_of_node(page));
1939 /* flush dirty inode */
1940 if (IS_INODE(page) && may_dirty) {
1942 if (flush_dirty_inode(page))
1946 f2fs_wait_on_page_writeback(page, NODE, true, true);
1948 if (!clear_page_dirty_for_io(page))
1949 goto continue_unlock;
1951 set_fsync_mark(page, 0);
1952 set_dentry_mark(page, 0);
1954 ret = __write_node_page(page, false, &submitted,
1955 wbc, do_balance, io_type, NULL);
1961 if (--wbc->nr_to_write == 0)
1964 pagevec_release(&pvec);
1967 if (wbc->nr_to_write == 0) {
1974 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1975 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1982 f2fs_submit_merged_write(sbi, NODE);
1984 if (unlikely(f2fs_cp_error(sbi)))
1989 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1990 unsigned int seq_id)
1992 struct fsync_node_entry *fn;
1994 struct list_head *head = &sbi->fsync_node_list;
1995 unsigned long flags;
1996 unsigned int cur_seq_id = 0;
1999 while (seq_id && cur_seq_id < seq_id) {
2000 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2001 if (list_empty(head)) {
2002 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2005 fn = list_first_entry(head, struct fsync_node_entry, list);
2006 if (fn->seq_id > seq_id) {
2007 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2010 cur_seq_id = fn->seq_id;
2013 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2015 f2fs_wait_on_page_writeback(page, NODE, true, false);
2016 if (TestClearPageError(page))
2025 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2032 static int f2fs_write_node_pages(struct address_space *mapping,
2033 struct writeback_control *wbc)
2035 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2036 struct blk_plug plug;
2039 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2042 /* balancing f2fs's metadata in background */
2043 f2fs_balance_fs_bg(sbi, true);
2045 /* collect a number of dirty node pages and write together */
2046 if (wbc->sync_mode != WB_SYNC_ALL &&
2047 get_pages(sbi, F2FS_DIRTY_NODES) <
2048 nr_pages_to_skip(sbi, NODE))
2051 if (wbc->sync_mode == WB_SYNC_ALL)
2052 atomic_inc(&sbi->wb_sync_req[NODE]);
2053 else if (atomic_read(&sbi->wb_sync_req[NODE]))
2056 trace_f2fs_writepages(mapping->host, wbc, NODE);
2058 diff = nr_pages_to_write(sbi, NODE, wbc);
2059 blk_start_plug(&plug);
2060 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2061 blk_finish_plug(&plug);
2062 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2064 if (wbc->sync_mode == WB_SYNC_ALL)
2065 atomic_dec(&sbi->wb_sync_req[NODE]);
2069 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2070 trace_f2fs_writepages(mapping->host, wbc, NODE);
2074 static int f2fs_set_node_page_dirty(struct page *page)
2076 trace_f2fs_set_page_dirty(page, NODE);
2078 if (!PageUptodate(page))
2079 SetPageUptodate(page);
2080 #ifdef CONFIG_F2FS_CHECK_FS
2082 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2084 if (!PageDirty(page)) {
2085 __set_page_dirty_nobuffers(page);
2086 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2087 f2fs_set_page_private(page, 0);
2088 f2fs_trace_pid(page);
2095 * Structure of the f2fs node operations
2097 const struct address_space_operations f2fs_node_aops = {
2098 .writepage = f2fs_write_node_page,
2099 .writepages = f2fs_write_node_pages,
2100 .set_page_dirty = f2fs_set_node_page_dirty,
2101 .invalidatepage = f2fs_invalidate_page,
2102 .releasepage = f2fs_release_page,
2103 #ifdef CONFIG_MIGRATION
2104 .migratepage = f2fs_migrate_page,
2108 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2111 return radix_tree_lookup(&nm_i->free_nid_root, n);
2114 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2117 struct f2fs_nm_info *nm_i = NM_I(sbi);
2119 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2123 nm_i->nid_cnt[FREE_NID]++;
2124 list_add_tail(&i->list, &nm_i->free_nid_list);
2128 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2129 struct free_nid *i, enum nid_state state)
2131 struct f2fs_nm_info *nm_i = NM_I(sbi);
2133 f2fs_bug_on(sbi, state != i->state);
2134 nm_i->nid_cnt[state]--;
2135 if (state == FREE_NID)
2137 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2140 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2141 enum nid_state org_state, enum nid_state dst_state)
2143 struct f2fs_nm_info *nm_i = NM_I(sbi);
2145 f2fs_bug_on(sbi, org_state != i->state);
2146 i->state = dst_state;
2147 nm_i->nid_cnt[org_state]--;
2148 nm_i->nid_cnt[dst_state]++;
2150 switch (dst_state) {
2155 list_add_tail(&i->list, &nm_i->free_nid_list);
2162 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2163 bool set, bool build)
2165 struct f2fs_nm_info *nm_i = NM_I(sbi);
2166 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2167 unsigned int nid_ofs = nid - START_NID(nid);
2169 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2173 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2175 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2176 nm_i->free_nid_count[nat_ofs]++;
2178 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2180 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2182 nm_i->free_nid_count[nat_ofs]--;
2186 /* return if the nid is recognized as free */
2187 static bool add_free_nid(struct f2fs_sb_info *sbi,
2188 nid_t nid, bool build, bool update)
2190 struct f2fs_nm_info *nm_i = NM_I(sbi);
2191 struct free_nid *i, *e;
2192 struct nat_entry *ne;
2196 /* 0 nid should not be used */
2197 if (unlikely(nid == 0))
2200 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2203 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2205 i->state = FREE_NID;
2207 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2209 spin_lock(&nm_i->nid_list_lock);
2217 * - __insert_nid_to_list(PREALLOC_NID)
2218 * - f2fs_balance_fs_bg
2219 * - f2fs_build_free_nids
2220 * - __f2fs_build_free_nids
2223 * - __lookup_nat_cache
2225 * - f2fs_init_inode_metadata
2226 * - f2fs_new_inode_page
2227 * - f2fs_new_node_page
2229 * - f2fs_alloc_nid_done
2230 * - __remove_nid_from_list(PREALLOC_NID)
2231 * - __insert_nid_to_list(FREE_NID)
2233 ne = __lookup_nat_cache(nm_i, nid);
2234 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2235 nat_get_blkaddr(ne) != NULL_ADDR))
2238 e = __lookup_free_nid_list(nm_i, nid);
2240 if (e->state == FREE_NID)
2246 err = __insert_free_nid(sbi, i);
2249 update_free_nid_bitmap(sbi, nid, ret, build);
2251 nm_i->available_nids++;
2253 spin_unlock(&nm_i->nid_list_lock);
2254 radix_tree_preload_end();
2257 kmem_cache_free(free_nid_slab, i);
2261 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2263 struct f2fs_nm_info *nm_i = NM_I(sbi);
2265 bool need_free = false;
2267 spin_lock(&nm_i->nid_list_lock);
2268 i = __lookup_free_nid_list(nm_i, nid);
2269 if (i && i->state == FREE_NID) {
2270 __remove_free_nid(sbi, i, FREE_NID);
2273 spin_unlock(&nm_i->nid_list_lock);
2276 kmem_cache_free(free_nid_slab, i);
2279 static int scan_nat_page(struct f2fs_sb_info *sbi,
2280 struct page *nat_page, nid_t start_nid)
2282 struct f2fs_nm_info *nm_i = NM_I(sbi);
2283 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2285 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2288 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2290 i = start_nid % NAT_ENTRY_PER_BLOCK;
2292 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2293 if (unlikely(start_nid >= nm_i->max_nid))
2296 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2298 if (blk_addr == NEW_ADDR)
2301 if (blk_addr == NULL_ADDR) {
2302 add_free_nid(sbi, start_nid, true, true);
2304 spin_lock(&NM_I(sbi)->nid_list_lock);
2305 update_free_nid_bitmap(sbi, start_nid, false, true);
2306 spin_unlock(&NM_I(sbi)->nid_list_lock);
2313 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2315 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2316 struct f2fs_journal *journal = curseg->journal;
2319 down_read(&curseg->journal_rwsem);
2320 for (i = 0; i < nats_in_cursum(journal); i++) {
2324 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2325 nid = le32_to_cpu(nid_in_journal(journal, i));
2326 if (addr == NULL_ADDR)
2327 add_free_nid(sbi, nid, true, false);
2329 remove_free_nid(sbi, nid);
2331 up_read(&curseg->journal_rwsem);
2334 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2336 struct f2fs_nm_info *nm_i = NM_I(sbi);
2337 unsigned int i, idx;
2340 down_read(&nm_i->nat_tree_lock);
2342 for (i = 0; i < nm_i->nat_blocks; i++) {
2343 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2345 if (!nm_i->free_nid_count[i])
2347 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2348 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2349 NAT_ENTRY_PER_BLOCK, idx);
2350 if (idx >= NAT_ENTRY_PER_BLOCK)
2353 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2354 add_free_nid(sbi, nid, true, false);
2356 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2361 scan_curseg_cache(sbi);
2363 up_read(&nm_i->nat_tree_lock);
2366 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2367 bool sync, bool mount)
2369 struct f2fs_nm_info *nm_i = NM_I(sbi);
2371 nid_t nid = nm_i->next_scan_nid;
2373 if (unlikely(nid >= nm_i->max_nid))
2376 /* Enough entries */
2377 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2380 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2384 /* try to find free nids in free_nid_bitmap */
2385 scan_free_nid_bits(sbi);
2387 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2391 /* readahead nat pages to be scanned */
2392 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2395 down_read(&nm_i->nat_tree_lock);
2398 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2399 nm_i->nat_block_bitmap)) {
2400 struct page *page = get_current_nat_page(sbi, nid);
2403 ret = PTR_ERR(page);
2405 ret = scan_nat_page(sbi, page, nid);
2406 f2fs_put_page(page, 1);
2410 up_read(&nm_i->nat_tree_lock);
2411 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2416 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2417 if (unlikely(nid >= nm_i->max_nid))
2420 if (++i >= FREE_NID_PAGES)
2424 /* go to the next free nat pages to find free nids abundantly */
2425 nm_i->next_scan_nid = nid;
2427 /* find free nids from current sum_pages */
2428 scan_curseg_cache(sbi);
2430 up_read(&nm_i->nat_tree_lock);
2432 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2433 nm_i->ra_nid_pages, META_NAT, false);
2438 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2442 mutex_lock(&NM_I(sbi)->build_lock);
2443 ret = __f2fs_build_free_nids(sbi, sync, mount);
2444 mutex_unlock(&NM_I(sbi)->build_lock);
2450 * If this function returns success, caller can obtain a new nid
2451 * from second parameter of this function.
2452 * The returned nid could be used ino as well as nid when inode is created.
2454 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2456 struct f2fs_nm_info *nm_i = NM_I(sbi);
2457 struct free_nid *i = NULL;
2459 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2460 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2464 spin_lock(&nm_i->nid_list_lock);
2466 if (unlikely(nm_i->available_nids == 0)) {
2467 spin_unlock(&nm_i->nid_list_lock);
2471 /* We should not use stale free nids created by f2fs_build_free_nids */
2472 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2473 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2474 i = list_first_entry(&nm_i->free_nid_list,
2475 struct free_nid, list);
2478 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2479 nm_i->available_nids--;
2481 update_free_nid_bitmap(sbi, *nid, false, false);
2483 spin_unlock(&nm_i->nid_list_lock);
2486 spin_unlock(&nm_i->nid_list_lock);
2488 /* Let's scan nat pages and its caches to get free nids */
2489 if (!f2fs_build_free_nids(sbi, true, false))
2495 * f2fs_alloc_nid() should be called prior to this function.
2497 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2499 struct f2fs_nm_info *nm_i = NM_I(sbi);
2502 spin_lock(&nm_i->nid_list_lock);
2503 i = __lookup_free_nid_list(nm_i, nid);
2504 f2fs_bug_on(sbi, !i);
2505 __remove_free_nid(sbi, i, PREALLOC_NID);
2506 spin_unlock(&nm_i->nid_list_lock);
2508 kmem_cache_free(free_nid_slab, i);
2512 * f2fs_alloc_nid() should be called prior to this function.
2514 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2516 struct f2fs_nm_info *nm_i = NM_I(sbi);
2518 bool need_free = false;
2523 spin_lock(&nm_i->nid_list_lock);
2524 i = __lookup_free_nid_list(nm_i, nid);
2525 f2fs_bug_on(sbi, !i);
2527 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2528 __remove_free_nid(sbi, i, PREALLOC_NID);
2531 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2534 nm_i->available_nids++;
2536 update_free_nid_bitmap(sbi, nid, true, false);
2538 spin_unlock(&nm_i->nid_list_lock);
2541 kmem_cache_free(free_nid_slab, i);
2544 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2546 struct f2fs_nm_info *nm_i = NM_I(sbi);
2549 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2552 if (!mutex_trylock(&nm_i->build_lock))
2555 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2556 struct free_nid *i, *next;
2557 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2559 spin_lock(&nm_i->nid_list_lock);
2560 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2561 if (!nr_shrink || !batch ||
2562 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2564 __remove_free_nid(sbi, i, FREE_NID);
2565 kmem_cache_free(free_nid_slab, i);
2569 spin_unlock(&nm_i->nid_list_lock);
2572 mutex_unlock(&nm_i->build_lock);
2574 return nr - nr_shrink;
2577 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2579 void *src_addr, *dst_addr;
2582 struct f2fs_inode *ri;
2584 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2586 return PTR_ERR(ipage);
2588 ri = F2FS_INODE(page);
2589 if (ri->i_inline & F2FS_INLINE_XATTR) {
2590 set_inode_flag(inode, FI_INLINE_XATTR);
2592 clear_inode_flag(inode, FI_INLINE_XATTR);
2596 dst_addr = inline_xattr_addr(inode, ipage);
2597 src_addr = inline_xattr_addr(inode, page);
2598 inline_size = inline_xattr_size(inode);
2600 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2601 memcpy(dst_addr, src_addr, inline_size);
2603 f2fs_update_inode(inode, ipage);
2604 f2fs_put_page(ipage, 1);
2608 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2610 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2611 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2613 struct dnode_of_data dn;
2614 struct node_info ni;
2621 /* 1: invalidate the previous xattr nid */
2622 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2626 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2627 dec_valid_node_count(sbi, inode, false);
2628 set_node_addr(sbi, &ni, NULL_ADDR, false);
2631 /* 2: update xattr nid in inode */
2632 if (!f2fs_alloc_nid(sbi, &new_xnid))
2635 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2636 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2637 if (IS_ERR(xpage)) {
2638 f2fs_alloc_nid_failed(sbi, new_xnid);
2639 return PTR_ERR(xpage);
2642 f2fs_alloc_nid_done(sbi, new_xnid);
2643 f2fs_update_inode_page(inode);
2645 /* 3: update and set xattr node page dirty */
2646 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2648 set_page_dirty(xpage);
2649 f2fs_put_page(xpage, 1);
2654 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2656 struct f2fs_inode *src, *dst;
2657 nid_t ino = ino_of_node(page);
2658 struct node_info old_ni, new_ni;
2662 err = f2fs_get_node_info(sbi, ino, &old_ni);
2666 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2669 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2671 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2675 /* Should not use this inode from free nid list */
2676 remove_free_nid(sbi, ino);
2678 if (!PageUptodate(ipage))
2679 SetPageUptodate(ipage);
2680 fill_node_footer(ipage, ino, ino, 0, true);
2681 set_cold_node(ipage, false);
2683 src = F2FS_INODE(page);
2684 dst = F2FS_INODE(ipage);
2686 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2688 dst->i_blocks = cpu_to_le64(1);
2689 dst->i_links = cpu_to_le32(1);
2690 dst->i_xattr_nid = 0;
2691 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2692 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2693 dst->i_extra_isize = src->i_extra_isize;
2695 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2696 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2697 i_inline_xattr_size))
2698 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2700 if (f2fs_sb_has_project_quota(sbi) &&
2701 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2703 dst->i_projid = src->i_projid;
2705 if (f2fs_sb_has_inode_crtime(sbi) &&
2706 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2708 dst->i_crtime = src->i_crtime;
2709 dst->i_crtime_nsec = src->i_crtime_nsec;
2716 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2718 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2719 inc_valid_inode_count(sbi);
2720 set_page_dirty(ipage);
2721 f2fs_put_page(ipage, 1);
2725 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2726 unsigned int segno, struct f2fs_summary_block *sum)
2728 struct f2fs_node *rn;
2729 struct f2fs_summary *sum_entry;
2731 int i, idx, last_offset, nrpages;
2733 /* scan the node segment */
2734 last_offset = sbi->blocks_per_seg;
2735 addr = START_BLOCK(sbi, segno);
2736 sum_entry = &sum->entries[0];
2738 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2739 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2741 /* readahead node pages */
2742 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2744 for (idx = addr; idx < addr + nrpages; idx++) {
2745 struct page *page = f2fs_get_tmp_page(sbi, idx);
2748 return PTR_ERR(page);
2750 rn = F2FS_NODE(page);
2751 sum_entry->nid = rn->footer.nid;
2752 sum_entry->version = 0;
2753 sum_entry->ofs_in_node = 0;
2755 f2fs_put_page(page, 1);
2758 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2764 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2766 struct f2fs_nm_info *nm_i = NM_I(sbi);
2767 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2768 struct f2fs_journal *journal = curseg->journal;
2771 down_write(&curseg->journal_rwsem);
2772 for (i = 0; i < nats_in_cursum(journal); i++) {
2773 struct nat_entry *ne;
2774 struct f2fs_nat_entry raw_ne;
2775 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2777 raw_ne = nat_in_journal(journal, i);
2779 ne = __lookup_nat_cache(nm_i, nid);
2781 ne = __alloc_nat_entry(nid, true);
2782 __init_nat_entry(nm_i, ne, &raw_ne, true);
2786 * if a free nat in journal has not been used after last
2787 * checkpoint, we should remove it from available nids,
2788 * since later we will add it again.
2790 if (!get_nat_flag(ne, IS_DIRTY) &&
2791 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2792 spin_lock(&nm_i->nid_list_lock);
2793 nm_i->available_nids--;
2794 spin_unlock(&nm_i->nid_list_lock);
2797 __set_nat_cache_dirty(nm_i, ne);
2799 update_nats_in_cursum(journal, -i);
2800 up_write(&curseg->journal_rwsem);
2803 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2804 struct list_head *head, int max)
2806 struct nat_entry_set *cur;
2808 if (nes->entry_cnt >= max)
2811 list_for_each_entry(cur, head, set_list) {
2812 if (cur->entry_cnt >= nes->entry_cnt) {
2813 list_add(&nes->set_list, cur->set_list.prev);
2818 list_add_tail(&nes->set_list, head);
2821 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2824 struct f2fs_nm_info *nm_i = NM_I(sbi);
2825 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2826 struct f2fs_nat_block *nat_blk = page_address(page);
2830 if (!enabled_nat_bits(sbi, NULL))
2833 if (nat_index == 0) {
2837 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2838 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2842 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2843 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2847 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2848 if (valid == NAT_ENTRY_PER_BLOCK)
2849 __set_bit_le(nat_index, nm_i->full_nat_bits);
2851 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2854 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2855 struct nat_entry_set *set, struct cp_control *cpc)
2857 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2858 struct f2fs_journal *journal = curseg->journal;
2859 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2860 bool to_journal = true;
2861 struct f2fs_nat_block *nat_blk;
2862 struct nat_entry *ne, *cur;
2863 struct page *page = NULL;
2866 * there are two steps to flush nat entries:
2867 * #1, flush nat entries to journal in current hot data summary block.
2868 * #2, flush nat entries to nat page.
2870 if (enabled_nat_bits(sbi, cpc) ||
2871 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2875 down_write(&curseg->journal_rwsem);
2877 page = get_next_nat_page(sbi, start_nid);
2879 return PTR_ERR(page);
2881 nat_blk = page_address(page);
2882 f2fs_bug_on(sbi, !nat_blk);
2885 /* flush dirty nats in nat entry set */
2886 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2887 struct f2fs_nat_entry *raw_ne;
2888 nid_t nid = nat_get_nid(ne);
2891 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2894 offset = f2fs_lookup_journal_in_cursum(journal,
2895 NAT_JOURNAL, nid, 1);
2896 f2fs_bug_on(sbi, offset < 0);
2897 raw_ne = &nat_in_journal(journal, offset);
2898 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2900 raw_ne = &nat_blk->entries[nid - start_nid];
2902 raw_nat_from_node_info(raw_ne, &ne->ni);
2904 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2905 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2906 add_free_nid(sbi, nid, false, true);
2908 spin_lock(&NM_I(sbi)->nid_list_lock);
2909 update_free_nid_bitmap(sbi, nid, false, false);
2910 spin_unlock(&NM_I(sbi)->nid_list_lock);
2915 up_write(&curseg->journal_rwsem);
2917 __update_nat_bits(sbi, start_nid, page);
2918 f2fs_put_page(page, 1);
2921 /* Allow dirty nats by node block allocation in write_begin */
2922 if (!set->entry_cnt) {
2923 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2924 kmem_cache_free(nat_entry_set_slab, set);
2930 * This function is called during the checkpointing process.
2932 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2934 struct f2fs_nm_info *nm_i = NM_I(sbi);
2935 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2936 struct f2fs_journal *journal = curseg->journal;
2937 struct nat_entry_set *setvec[SETVEC_SIZE];
2938 struct nat_entry_set *set, *tmp;
2944 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2945 if (enabled_nat_bits(sbi, cpc)) {
2946 down_write(&nm_i->nat_tree_lock);
2947 remove_nats_in_journal(sbi);
2948 up_write(&nm_i->nat_tree_lock);
2951 if (!nm_i->dirty_nat_cnt)
2954 down_write(&nm_i->nat_tree_lock);
2957 * if there are no enough space in journal to store dirty nat
2958 * entries, remove all entries from journal and merge them
2959 * into nat entry set.
2961 if (enabled_nat_bits(sbi, cpc) ||
2962 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2963 remove_nats_in_journal(sbi);
2965 while ((found = __gang_lookup_nat_set(nm_i,
2966 set_idx, SETVEC_SIZE, setvec))) {
2968 set_idx = setvec[found - 1]->set + 1;
2969 for (idx = 0; idx < found; idx++)
2970 __adjust_nat_entry_set(setvec[idx], &sets,
2971 MAX_NAT_JENTRIES(journal));
2974 /* flush dirty nats in nat entry set */
2975 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2976 err = __flush_nat_entry_set(sbi, set, cpc);
2981 up_write(&nm_i->nat_tree_lock);
2982 /* Allow dirty nats by node block allocation in write_begin */
2987 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2989 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2990 struct f2fs_nm_info *nm_i = NM_I(sbi);
2991 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2993 __u64 cp_ver = cur_cp_version(ckpt);
2994 block_t nat_bits_addr;
2996 if (!enabled_nat_bits(sbi, NULL))
2999 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3000 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3001 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3002 if (!nm_i->nat_bits)
3005 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3006 nm_i->nat_bits_blocks;
3007 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3010 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3012 return PTR_ERR(page);
3014 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3015 page_address(page), F2FS_BLKSIZE);
3016 f2fs_put_page(page, 1);
3019 cp_ver |= (cur_cp_crc(ckpt) << 32);
3020 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3021 disable_nat_bits(sbi, true);
3025 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3026 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3028 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3032 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3034 struct f2fs_nm_info *nm_i = NM_I(sbi);
3036 nid_t nid, last_nid;
3038 if (!enabled_nat_bits(sbi, NULL))
3041 for (i = 0; i < nm_i->nat_blocks; i++) {
3042 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3043 if (i >= nm_i->nat_blocks)
3046 __set_bit_le(i, nm_i->nat_block_bitmap);
3048 nid = i * NAT_ENTRY_PER_BLOCK;
3049 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3051 spin_lock(&NM_I(sbi)->nid_list_lock);
3052 for (; nid < last_nid; nid++)
3053 update_free_nid_bitmap(sbi, nid, true, true);
3054 spin_unlock(&NM_I(sbi)->nid_list_lock);
3057 for (i = 0; i < nm_i->nat_blocks; i++) {
3058 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3059 if (i >= nm_i->nat_blocks)
3062 __set_bit_le(i, nm_i->nat_block_bitmap);
3066 static int init_node_manager(struct f2fs_sb_info *sbi)
3068 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3069 struct f2fs_nm_info *nm_i = NM_I(sbi);
3070 unsigned char *version_bitmap;
3071 unsigned int nat_segs;
3074 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3076 /* segment_count_nat includes pair segment so divide to 2. */
3077 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3078 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3079 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3081 /* not used nids: 0, node, meta, (and root counted as valid node) */
3082 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3083 F2FS_RESERVED_NODE_NUM;
3084 nm_i->nid_cnt[FREE_NID] = 0;
3085 nm_i->nid_cnt[PREALLOC_NID] = 0;
3087 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3088 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3089 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3091 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3092 INIT_LIST_HEAD(&nm_i->free_nid_list);
3093 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3094 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3095 INIT_LIST_HEAD(&nm_i->nat_entries);
3096 spin_lock_init(&nm_i->nat_list_lock);
3098 mutex_init(&nm_i->build_lock);
3099 spin_lock_init(&nm_i->nid_list_lock);
3100 init_rwsem(&nm_i->nat_tree_lock);
3102 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3103 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3104 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3105 if (!version_bitmap)
3108 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3110 if (!nm_i->nat_bitmap)
3113 err = __get_nat_bitmaps(sbi);
3117 #ifdef CONFIG_F2FS_CHECK_FS
3118 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3120 if (!nm_i->nat_bitmap_mir)
3127 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3129 struct f2fs_nm_info *nm_i = NM_I(sbi);
3132 nm_i->free_nid_bitmap =
3133 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3136 if (!nm_i->free_nid_bitmap)
3139 for (i = 0; i < nm_i->nat_blocks; i++) {
3140 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3141 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3142 if (!nm_i->free_nid_bitmap[i])
3146 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3148 if (!nm_i->nat_block_bitmap)
3151 nm_i->free_nid_count =
3152 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3155 if (!nm_i->free_nid_count)
3160 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3164 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3169 err = init_node_manager(sbi);
3173 err = init_free_nid_cache(sbi);
3177 /* load free nid status from nat_bits table */
3178 load_free_nid_bitmap(sbi);
3180 return f2fs_build_free_nids(sbi, true, true);
3183 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3185 struct f2fs_nm_info *nm_i = NM_I(sbi);
3186 struct free_nid *i, *next_i;
3187 struct nat_entry *natvec[NATVEC_SIZE];
3188 struct nat_entry_set *setvec[SETVEC_SIZE];
3195 /* destroy free nid list */
3196 spin_lock(&nm_i->nid_list_lock);
3197 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3198 __remove_free_nid(sbi, i, FREE_NID);
3199 spin_unlock(&nm_i->nid_list_lock);
3200 kmem_cache_free(free_nid_slab, i);
3201 spin_lock(&nm_i->nid_list_lock);
3203 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3204 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3205 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3206 spin_unlock(&nm_i->nid_list_lock);
3208 /* destroy nat cache */
3209 down_write(&nm_i->nat_tree_lock);
3210 while ((found = __gang_lookup_nat_cache(nm_i,
3211 nid, NATVEC_SIZE, natvec))) {
3214 nid = nat_get_nid(natvec[found - 1]) + 1;
3215 for (idx = 0; idx < found; idx++) {
3216 spin_lock(&nm_i->nat_list_lock);
3217 list_del(&natvec[idx]->list);
3218 spin_unlock(&nm_i->nat_list_lock);
3220 __del_from_nat_cache(nm_i, natvec[idx]);
3223 f2fs_bug_on(sbi, nm_i->nat_cnt);
3225 /* destroy nat set cache */
3227 while ((found = __gang_lookup_nat_set(nm_i,
3228 nid, SETVEC_SIZE, setvec))) {
3231 nid = setvec[found - 1]->set + 1;
3232 for (idx = 0; idx < found; idx++) {
3233 /* entry_cnt is not zero, when cp_error was occurred */
3234 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3235 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3236 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3239 up_write(&nm_i->nat_tree_lock);
3241 kvfree(nm_i->nat_block_bitmap);
3242 if (nm_i->free_nid_bitmap) {
3245 for (i = 0; i < nm_i->nat_blocks; i++)
3246 kvfree(nm_i->free_nid_bitmap[i]);
3247 kvfree(nm_i->free_nid_bitmap);
3249 kvfree(nm_i->free_nid_count);
3251 kvfree(nm_i->nat_bitmap);
3252 kvfree(nm_i->nat_bits);
3253 #ifdef CONFIG_F2FS_CHECK_FS
3254 kvfree(nm_i->nat_bitmap_mir);
3256 sbi->nm_info = NULL;
3260 int __init f2fs_create_node_manager_caches(void)
3262 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3263 sizeof(struct nat_entry));
3264 if (!nat_entry_slab)
3267 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3268 sizeof(struct free_nid));
3270 goto destroy_nat_entry;
3272 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3273 sizeof(struct nat_entry_set));
3274 if (!nat_entry_set_slab)
3275 goto destroy_free_nid;
3277 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3278 sizeof(struct fsync_node_entry));
3279 if (!fsync_node_entry_slab)
3280 goto destroy_nat_entry_set;
3283 destroy_nat_entry_set:
3284 kmem_cache_destroy(nat_entry_set_slab);
3286 kmem_cache_destroy(free_nid_slab);
3288 kmem_cache_destroy(nat_entry_slab);
3293 void f2fs_destroy_node_manager_caches(void)
3295 kmem_cache_destroy(fsync_node_entry_slab);
3296 kmem_cache_destroy(nat_entry_set_slab);
3297 kmem_cache_destroy(free_nid_slab);
3298 kmem_cache_destroy(nat_entry_slab);