1 /* SPDX-License-Identifier: GPL-2.0-only */
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
43 #include <linux/kvm_types.h>
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
57 #define KVM_MEMSLOT_INVALID (1UL << 16)
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS 2
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES 1
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94 #define KVM_PFN_NOSLOT (0x1ULL << 63)
96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
102 * error pfns indicate that the gfn is in slot but faild to
103 * translate it to pfn on host.
105 static inline bool is_error_pfn(kvm_pfn_t pfn)
107 return !!(pfn & KVM_PFN_ERR_MASK);
111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112 * by a pending signal. Note, the signal may or may not be fatal.
114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
116 return pfn == KVM_PFN_ERR_SIGPENDING;
120 * error_noslot pfns indicate that the gfn can not be
121 * translated to pfn - it is not in slot or failed to
122 * translate it to pfn.
124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
129 /* noslot pfn indicates that the gfn is not in slot. */
130 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
132 return pfn == KVM_PFN_NOSLOT;
136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137 * provide own defines and kvm_is_error_hva
139 #ifndef KVM_HVA_ERR_BAD
141 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
142 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
144 static inline bool kvm_is_error_hva(unsigned long addr)
146 return addr >= PAGE_OFFSET;
151 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
153 static inline bool is_error_page(struct page *page)
158 #define KVM_REQUEST_MASK GENMASK(7,0)
159 #define KVM_REQUEST_NO_WAKEUP BIT(8)
160 #define KVM_REQUEST_WAIT BIT(9)
161 #define KVM_REQUEST_NO_ACTION BIT(10)
163 * Architecture-independent vcpu->requests bit members
164 * Bits 3-7 are reserved for more arch-independent bits.
166 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
168 #define KVM_REQ_UNBLOCK 2
169 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3
170 #define KVM_REQUEST_ARCH_BASE 8
173 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
174 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
175 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
176 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
177 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
178 * guarantee the vCPU received an IPI and has actually exited guest mode.
180 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
183 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
184 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
186 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
189 unsigned long *vcpu_bitmap);
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
191 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
192 struct kvm_vcpu *except);
194 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
195 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
197 extern struct mutex kvm_lock;
198 extern struct list_head vm_list;
200 struct kvm_io_range {
203 struct kvm_io_device *dev;
206 #define NR_IOBUS_DEVS 1000
211 struct kvm_io_range range[];
217 KVM_VIRTIO_CCW_NOTIFY_BUS,
222 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
223 int len, const void *val);
224 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
225 gpa_t addr, int len, const void *val, long cookie);
226 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
228 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
229 int len, struct kvm_io_device *dev);
230 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
231 struct kvm_io_device *dev);
232 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
235 #ifdef CONFIG_KVM_ASYNC_PF
236 struct kvm_async_pf {
237 struct work_struct work;
238 struct list_head link;
239 struct list_head queue;
240 struct kvm_vcpu *vcpu;
243 struct kvm_arch_async_pf arch;
245 bool notpresent_injected;
248 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
249 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
250 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
251 unsigned long hva, struct kvm_arch_async_pf *arch);
252 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
255 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
256 union kvm_mmu_notifier_arg {
258 unsigned long attributes;
261 struct kvm_gfn_range {
262 struct kvm_memory_slot *slot;
265 union kvm_mmu_notifier_arg arg;
268 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
269 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
270 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
271 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
278 READING_SHADOW_PAGE_TABLES,
281 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
283 struct kvm_host_map {
285 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
286 * a 'struct page' for it. When using mem= kernel parameter some memory
287 * can be used as guest memory but they are not managed by host
289 * If 'pfn' is not managed by the host kernel, this field is
290 * initialized to KVM_UNMAPPED_PAGE.
299 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
300 * directly to check for that.
302 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
307 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
309 return single_task_running() && !need_resched() && ktime_before(cur, stop);
313 * Sometimes a large or cross-page mmio needs to be broken up into separate
314 * exits for userspace servicing.
316 struct kvm_mmio_fragment {
324 #ifdef CONFIG_PREEMPT_NOTIFIERS
325 struct preempt_notifier preempt_notifier;
328 int vcpu_id; /* id given by userspace at creation */
329 int vcpu_idx; /* index into kvm->vcpu_array */
330 int ____srcu_idx; /* Don't use this directly. You've been warned. */
331 #ifdef CONFIG_PROVE_RCU
336 unsigned long guest_debug;
341 #ifndef __KVM_HAVE_ARCH_WQP
344 struct pid __rcu *pid;
347 unsigned int halt_poll_ns;
350 #ifdef CONFIG_HAS_IOMEM
352 int mmio_read_completed;
354 int mmio_cur_fragment;
355 int mmio_nr_fragments;
356 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
359 #ifdef CONFIG_KVM_ASYNC_PF
362 struct list_head queue;
363 struct list_head done;
368 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
370 * Cpu relax intercept or pause loop exit optimization
371 * in_spin_loop: set when a vcpu does a pause loop exit
372 * or cpu relax intercepted.
373 * dy_eligible: indicates whether vcpu is eligible for directed yield.
382 struct kvm_vcpu_arch arch;
383 struct kvm_vcpu_stat stat;
384 char stats_id[KVM_STATS_NAME_SIZE];
385 struct kvm_dirty_ring dirty_ring;
388 * The most recently used memslot by this vCPU and the slots generation
389 * for which it is valid.
390 * No wraparound protection is needed since generations won't overflow in
391 * thousands of years, even assuming 1M memslot operations per second.
393 struct kvm_memory_slot *last_used_slot;
394 u64 last_used_slot_gen;
398 * Start accounting time towards a guest.
399 * Must be called before entering guest context.
401 static __always_inline void guest_timing_enter_irqoff(void)
404 * This is running in ioctl context so its safe to assume that it's the
405 * stime pending cputime to flush.
407 instrumentation_begin();
408 vtime_account_guest_enter();
409 instrumentation_end();
413 * Enter guest context and enter an RCU extended quiescent state.
415 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
416 * unsafe to use any code which may directly or indirectly use RCU, tracing
417 * (including IRQ flag tracing), or lockdep. All code in this period must be
418 * non-instrumentable.
420 static __always_inline void guest_context_enter_irqoff(void)
423 * KVM does not hold any references to rcu protected data when it
424 * switches CPU into a guest mode. In fact switching to a guest mode
425 * is very similar to exiting to userspace from rcu point of view. In
426 * addition CPU may stay in a guest mode for quite a long time (up to
427 * one time slice). Lets treat guest mode as quiescent state, just like
428 * we do with user-mode execution.
430 if (!context_tracking_guest_enter()) {
431 instrumentation_begin();
432 rcu_virt_note_context_switch();
433 instrumentation_end();
438 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
439 * guest_state_enter_irqoff().
441 static __always_inline void guest_enter_irqoff(void)
443 guest_timing_enter_irqoff();
444 guest_context_enter_irqoff();
448 * guest_state_enter_irqoff - Fixup state when entering a guest
450 * Entry to a guest will enable interrupts, but the kernel state is interrupts
451 * disabled when this is invoked. Also tell RCU about it.
453 * 1) Trace interrupts on state
454 * 2) Invoke context tracking if enabled to adjust RCU state
455 * 3) Tell lockdep that interrupts are enabled
457 * Invoked from architecture specific code before entering a guest.
458 * Must be called with interrupts disabled and the caller must be
459 * non-instrumentable.
460 * The caller has to invoke guest_timing_enter_irqoff() before this.
462 * Note: this is analogous to exit_to_user_mode().
464 static __always_inline void guest_state_enter_irqoff(void)
466 instrumentation_begin();
467 trace_hardirqs_on_prepare();
468 lockdep_hardirqs_on_prepare();
469 instrumentation_end();
471 guest_context_enter_irqoff();
472 lockdep_hardirqs_on(CALLER_ADDR0);
476 * Exit guest context and exit an RCU extended quiescent state.
478 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
479 * unsafe to use any code which may directly or indirectly use RCU, tracing
480 * (including IRQ flag tracing), or lockdep. All code in this period must be
481 * non-instrumentable.
483 static __always_inline void guest_context_exit_irqoff(void)
485 context_tracking_guest_exit();
489 * Stop accounting time towards a guest.
490 * Must be called after exiting guest context.
492 static __always_inline void guest_timing_exit_irqoff(void)
494 instrumentation_begin();
495 /* Flush the guest cputime we spent on the guest */
496 vtime_account_guest_exit();
497 instrumentation_end();
501 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
502 * guest_timing_exit_irqoff().
504 static __always_inline void guest_exit_irqoff(void)
506 guest_context_exit_irqoff();
507 guest_timing_exit_irqoff();
510 static inline void guest_exit(void)
514 local_irq_save(flags);
516 local_irq_restore(flags);
520 * guest_state_exit_irqoff - Establish state when returning from guest mode
522 * Entry from a guest disables interrupts, but guest mode is traced as
523 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
525 * 1) Tell lockdep that interrupts are disabled
526 * 2) Invoke context tracking if enabled to reactivate RCU
527 * 3) Trace interrupts off state
529 * Invoked from architecture specific code after exiting a guest.
530 * Must be invoked with interrupts disabled and the caller must be
531 * non-instrumentable.
532 * The caller has to invoke guest_timing_exit_irqoff() after this.
534 * Note: this is analogous to enter_from_user_mode().
536 static __always_inline void guest_state_exit_irqoff(void)
538 lockdep_hardirqs_off(CALLER_ADDR0);
539 guest_context_exit_irqoff();
541 instrumentation_begin();
542 trace_hardirqs_off_finish();
543 instrumentation_end();
546 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
549 * The memory barrier ensures a previous write to vcpu->requests cannot
550 * be reordered with the read of vcpu->mode. It pairs with the general
551 * memory barrier following the write of vcpu->mode in VCPU RUN.
553 smp_mb__before_atomic();
554 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
558 * Some of the bitops functions do not support too long bitmaps.
559 * This number must be determined not to exceed such limits.
561 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
564 * Since at idle each memslot belongs to two memslot sets it has to contain
565 * two embedded nodes for each data structure that it forms a part of.
567 * Two memslot sets (one active and one inactive) are necessary so the VM
568 * continues to run on one memslot set while the other is being modified.
570 * These two memslot sets normally point to the same set of memslots.
571 * They can, however, be desynchronized when performing a memslot management
572 * operation by replacing the memslot to be modified by its copy.
573 * After the operation is complete, both memslot sets once again point to
574 * the same, common set of memslot data.
576 * The memslots themselves are independent of each other so they can be
577 * individually added or deleted.
579 struct kvm_memory_slot {
580 struct hlist_node id_node[2];
581 struct interval_tree_node hva_node[2];
582 struct rb_node gfn_node[2];
584 unsigned long npages;
585 unsigned long *dirty_bitmap;
586 struct kvm_arch_memory_slot arch;
587 unsigned long userspace_addr;
592 #ifdef CONFIG_KVM_PRIVATE_MEM
594 struct file __rcu *file;
600 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
602 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
605 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
607 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
610 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
612 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
615 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
617 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
619 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
622 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
623 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
626 struct kvm_s390_adapter_int {
639 struct kvm_xen_evtchn {
646 struct kvm_kernel_irq_routing_entry {
649 int (*set)(struct kvm_kernel_irq_routing_entry *e,
650 struct kvm *kvm, int irq_source_id, int level,
664 struct kvm_s390_adapter_int adapter;
665 struct kvm_hv_sint hv_sint;
666 struct kvm_xen_evtchn xen_evtchn;
668 struct hlist_node link;
671 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
672 struct kvm_irq_routing_table {
673 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
676 * Array indexed by gsi. Each entry contains list of irq chips
677 * the gsi is connected to.
679 struct hlist_head map[] __counted_by(nr_rt_entries);
683 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
685 #ifndef KVM_INTERNAL_MEM_SLOTS
686 #define KVM_INTERNAL_MEM_SLOTS 0
689 #define KVM_MEM_SLOTS_NUM SHRT_MAX
690 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
692 #if KVM_MAX_NR_ADDRESS_SPACES == 1
693 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
695 return KVM_MAX_NR_ADDRESS_SPACES;
698 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
705 * Arch code must define kvm_arch_has_private_mem if support for private memory
708 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
709 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
715 struct kvm_memslots {
717 atomic_long_t last_used_slot;
718 struct rb_root_cached hva_tree;
719 struct rb_root gfn_tree;
721 * The mapping table from slot id to memslot.
723 * 7-bit bucket count matches the size of the old id to index array for
724 * 512 slots, while giving good performance with this slot count.
725 * Higher bucket counts bring only small performance improvements but
726 * always result in higher memory usage (even for lower memslot counts).
728 DECLARE_HASHTABLE(id_hash, 7);
733 #ifdef KVM_HAVE_MMU_RWLOCK
737 #endif /* KVM_HAVE_MMU_RWLOCK */
739 struct mutex slots_lock;
742 * Protects the arch-specific fields of struct kvm_memory_slots in
743 * use by the VM. To be used under the slots_lock (above) or in a
744 * kvm->srcu critical section where acquiring the slots_lock would
745 * lead to deadlock with the synchronize_srcu in
746 * kvm_swap_active_memslots().
748 struct mutex slots_arch_lock;
749 struct mm_struct *mm; /* userspace tied to this vm */
750 unsigned long nr_memslot_pages;
751 /* The two memslot sets - active and inactive (per address space) */
752 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
753 /* The current active memslot set for each address space */
754 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
755 struct xarray vcpu_array;
757 * Protected by slots_lock, but can be read outside if an
758 * incorrect answer is acceptable.
760 atomic_t nr_memslots_dirty_logging;
762 /* Used to wait for completion of MMU notifiers. */
763 spinlock_t mn_invalidate_lock;
764 unsigned long mn_active_invalidate_count;
765 struct rcuwait mn_memslots_update_rcuwait;
767 /* For management / invalidation of gfn_to_pfn_caches */
769 struct list_head gpc_list;
772 * created_vcpus is protected by kvm->lock, and is incremented
773 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
774 * incremented after storing the kvm_vcpu pointer in vcpus,
775 * and is accessed atomically.
777 atomic_t online_vcpus;
780 int last_boosted_vcpu;
781 struct list_head vm_list;
783 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
784 #ifdef CONFIG_HAVE_KVM_IRQCHIP
787 struct list_head items;
788 /* resampler_list update side is protected by resampler_lock. */
789 struct list_head resampler_list;
790 struct mutex resampler_lock;
793 struct list_head ioeventfds;
794 struct kvm_vm_stat stat;
795 struct kvm_arch arch;
796 refcount_t users_count;
797 #ifdef CONFIG_KVM_MMIO
798 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
799 spinlock_t ring_lock;
800 struct list_head coalesced_zones;
803 struct mutex irq_lock;
804 #ifdef CONFIG_HAVE_KVM_IRQCHIP
806 * Update side is protected by irq_lock.
808 struct kvm_irq_routing_table __rcu *irq_routing;
810 struct hlist_head irq_ack_notifier_list;
813 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
814 struct mmu_notifier mmu_notifier;
815 unsigned long mmu_invalidate_seq;
816 long mmu_invalidate_in_progress;
817 gfn_t mmu_invalidate_range_start;
818 gfn_t mmu_invalidate_range_end;
820 struct list_head devices;
821 u64 manual_dirty_log_protect;
822 struct dentry *debugfs_dentry;
823 struct kvm_stat_data **debugfs_stat_data;
824 struct srcu_struct srcu;
825 struct srcu_struct irq_srcu;
827 bool override_halt_poll_ns;
828 unsigned int max_halt_poll_ns;
830 bool dirty_ring_with_bitmap;
834 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
835 struct notifier_block pm_notifier;
837 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
838 /* Protected by slots_locks (for writes) and RCU (for reads) */
839 struct xarray mem_attr_array;
841 char stats_id[KVM_STATS_NAME_SIZE];
844 #define kvm_err(fmt, ...) \
845 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
846 #define kvm_info(fmt, ...) \
847 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
848 #define kvm_debug(fmt, ...) \
849 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
850 #define kvm_debug_ratelimited(fmt, ...) \
851 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
853 #define kvm_pr_unimpl(fmt, ...) \
854 pr_err_ratelimited("kvm [%i]: " fmt, \
855 task_tgid_nr(current), ## __VA_ARGS__)
857 /* The guest did something we don't support. */
858 #define vcpu_unimpl(vcpu, fmt, ...) \
859 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
860 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
862 #define vcpu_debug(vcpu, fmt, ...) \
863 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
864 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
865 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
867 #define vcpu_err(vcpu, fmt, ...) \
868 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
870 static inline void kvm_vm_dead(struct kvm *kvm)
873 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
876 static inline void kvm_vm_bugged(struct kvm *kvm)
878 kvm->vm_bugged = true;
883 #define KVM_BUG(cond, kvm, fmt...) \
885 bool __ret = !!(cond); \
887 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
888 kvm_vm_bugged(kvm); \
892 #define KVM_BUG_ON(cond, kvm) \
894 bool __ret = !!(cond); \
896 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
897 kvm_vm_bugged(kvm); \
902 * Note, "data corruption" refers to corruption of host kernel data structures,
903 * not guest data. Guest data corruption, suspected or confirmed, that is tied
904 * and contained to a single VM should *never* BUG() and potentially panic the
905 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
906 * is corrupted and that corruption can have a cascading effect to other parts
907 * of the hosts and/or to other VMs.
909 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \
911 bool __ret = !!(cond); \
913 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \
915 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
916 kvm_vm_bugged(kvm); \
920 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
922 #ifdef CONFIG_PROVE_RCU
923 WARN_ONCE(vcpu->srcu_depth++,
924 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
926 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
929 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
931 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
933 #ifdef CONFIG_PROVE_RCU
934 WARN_ONCE(--vcpu->srcu_depth,
935 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
939 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
941 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
944 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
946 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
947 lockdep_is_held(&kvm->slots_lock) ||
948 !refcount_read(&kvm->users_count));
951 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
953 int num_vcpus = atomic_read(&kvm->online_vcpus);
954 i = array_index_nospec(i, num_vcpus);
956 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
958 return xa_load(&kvm->vcpu_array, i);
961 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
962 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
963 (atomic_read(&kvm->online_vcpus) - 1))
965 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
967 struct kvm_vcpu *vcpu = NULL;
972 if (id < KVM_MAX_VCPUS)
973 vcpu = kvm_get_vcpu(kvm, id);
974 if (vcpu && vcpu->vcpu_id == id)
976 kvm_for_each_vcpu(i, vcpu, kvm)
977 if (vcpu->vcpu_id == id)
982 void kvm_destroy_vcpus(struct kvm *kvm);
984 void vcpu_load(struct kvm_vcpu *vcpu);
985 void vcpu_put(struct kvm_vcpu *vcpu);
987 #ifdef __KVM_HAVE_IOAPIC
988 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
989 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
991 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
994 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
999 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1000 int kvm_irqfd_init(void);
1001 void kvm_irqfd_exit(void);
1003 static inline int kvm_irqfd_init(void)
1008 static inline void kvm_irqfd_exit(void)
1012 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1013 void kvm_exit(void);
1015 void kvm_get_kvm(struct kvm *kvm);
1016 bool kvm_get_kvm_safe(struct kvm *kvm);
1017 void kvm_put_kvm(struct kvm *kvm);
1018 bool file_is_kvm(struct file *file);
1019 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1021 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1023 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1024 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1025 lockdep_is_held(&kvm->slots_lock) ||
1026 !refcount_read(&kvm->users_count));
1029 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1031 return __kvm_memslots(kvm, 0);
1034 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1036 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1038 return __kvm_memslots(vcpu->kvm, as_id);
1041 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1043 return RB_EMPTY_ROOT(&slots->gfn_tree);
1046 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1048 #define kvm_for_each_memslot(memslot, bkt, slots) \
1049 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1050 if (WARN_ON_ONCE(!memslot->npages)) { \
1054 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1056 struct kvm_memory_slot *slot;
1057 int idx = slots->node_idx;
1059 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1067 /* Iterator used for walking memslots that overlap a gfn range. */
1068 struct kvm_memslot_iter {
1069 struct kvm_memslots *slots;
1070 struct rb_node *node;
1071 struct kvm_memory_slot *slot;
1074 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1076 iter->node = rb_next(iter->node);
1080 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1083 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1084 struct kvm_memslots *slots,
1087 int idx = slots->node_idx;
1088 struct rb_node *tmp;
1089 struct kvm_memory_slot *slot;
1091 iter->slots = slots;
1094 * Find the so called "upper bound" of a key - the first node that has
1095 * its key strictly greater than the searched one (the start gfn in our case).
1098 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1099 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1100 if (start < slot->base_gfn) {
1104 tmp = tmp->rb_right;
1109 * Find the slot with the lowest gfn that can possibly intersect with
1110 * the range, so we'll ideally have slot start <= range start
1114 * A NULL previous node means that the very first slot
1115 * already has a higher start gfn.
1116 * In this case slot start > range start.
1118 tmp = rb_prev(iter->node);
1122 /* a NULL node below means no slots */
1123 iter->node = rb_last(&slots->gfn_tree);
1127 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1130 * It is possible in the slot start < range start case that the
1131 * found slot ends before or at range start (slot end <= range start)
1132 * and so it does not overlap the requested range.
1134 * In such non-overlapping case the next slot (if it exists) will
1135 * already have slot start > range start, otherwise the logic above
1136 * would have found it instead of the current slot.
1138 if (iter->slot->base_gfn + iter->slot->npages <= start)
1139 kvm_memslot_iter_next(iter);
1143 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1149 * If this slot starts beyond or at the end of the range so does
1152 return iter->slot->base_gfn < end;
1155 /* Iterate over each memslot at least partially intersecting [start, end) range */
1156 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1157 for (kvm_memslot_iter_start(iter, slots, start); \
1158 kvm_memslot_iter_is_valid(iter, end); \
1159 kvm_memslot_iter_next(iter))
1162 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1163 * - create a new memory slot
1164 * - delete an existing memory slot
1165 * - modify an existing memory slot
1166 * -- move it in the guest physical memory space
1167 * -- just change its flags
1169 * Since flags can be changed by some of these operations, the following
1170 * differentiation is the best we can do for __kvm_set_memory_region():
1172 enum kvm_mr_change {
1179 int kvm_set_memory_region(struct kvm *kvm,
1180 const struct kvm_userspace_memory_region2 *mem);
1181 int __kvm_set_memory_region(struct kvm *kvm,
1182 const struct kvm_userspace_memory_region2 *mem);
1183 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1184 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1185 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1186 const struct kvm_memory_slot *old,
1187 struct kvm_memory_slot *new,
1188 enum kvm_mr_change change);
1189 void kvm_arch_commit_memory_region(struct kvm *kvm,
1190 struct kvm_memory_slot *old,
1191 const struct kvm_memory_slot *new,
1192 enum kvm_mr_change change);
1193 /* flush all memory translations */
1194 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1195 /* flush memory translations pointing to 'slot' */
1196 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1197 struct kvm_memory_slot *slot);
1199 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1200 struct page **pages, int nr_pages);
1202 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1203 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1204 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1205 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1206 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1208 void kvm_release_page_clean(struct page *page);
1209 void kvm_release_page_dirty(struct page *page);
1211 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1212 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1214 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1215 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1216 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1217 bool atomic, bool interruptible, bool *async,
1218 bool write_fault, bool *writable, hva_t *hva);
1220 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1221 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1222 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1223 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1225 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1226 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1228 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1229 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1230 void *data, unsigned long len);
1231 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1232 void *data, unsigned int offset,
1234 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1235 int offset, int len);
1236 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1238 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1239 void *data, unsigned long len);
1240 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1241 void *data, unsigned int offset,
1243 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1244 gpa_t gpa, unsigned long len);
1246 #define __kvm_get_guest(kvm, gfn, offset, v) \
1248 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1249 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1250 int __ret = -EFAULT; \
1252 if (!kvm_is_error_hva(__addr)) \
1253 __ret = get_user(v, __uaddr); \
1257 #define kvm_get_guest(kvm, gpa, v) \
1259 gpa_t __gpa = gpa; \
1260 struct kvm *__kvm = kvm; \
1262 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1263 offset_in_page(__gpa), v); \
1266 #define __kvm_put_guest(kvm, gfn, offset, v) \
1268 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1269 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1270 int __ret = -EFAULT; \
1272 if (!kvm_is_error_hva(__addr)) \
1273 __ret = put_user(v, __uaddr); \
1275 mark_page_dirty(kvm, gfn); \
1279 #define kvm_put_guest(kvm, gpa, v) \
1281 gpa_t __gpa = gpa; \
1282 struct kvm *__kvm = kvm; \
1284 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1285 offset_in_page(__gpa), v); \
1288 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1289 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1290 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1291 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1292 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1293 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1294 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1296 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1297 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1298 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1299 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1300 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1301 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1302 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1303 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1304 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1306 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1308 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1310 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1311 int offset, int len);
1312 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1314 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1317 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1319 * @gpc: struct gfn_to_pfn_cache object.
1320 * @kvm: pointer to kvm instance.
1321 * @vcpu: vCPU to be used for marking pages dirty and to be woken on
1323 * @usage: indicates if the resulting host physical PFN is used while
1324 * the @vcpu is IN_GUEST_MODE (in which case invalidation of
1325 * the cache from MMU notifiers---but not for KVM memslot
1326 * changes!---will also force @vcpu to exit the guest and
1327 * refresh the cache); and/or if the PFN used directly
1328 * by KVM (and thus needs a kernel virtual mapping).
1330 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1331 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1332 * the caller before init).
1334 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm,
1335 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage);
1338 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1341 * @gpc: struct gfn_to_pfn_cache object.
1342 * @gpa: guest physical address to map.
1343 * @len: sanity check; the range being access must fit a single page.
1345 * @return: 0 for success.
1346 * -EINVAL for a mapping which would cross a page boundary.
1347 * -EFAULT for an untranslatable guest physical address.
1349 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1350 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1351 * to ensure that the cache is valid before accessing the target page.
1353 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1356 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1358 * @gpc: struct gfn_to_pfn_cache object.
1359 * @len: sanity check; the range being access must fit a single page.
1361 * @return: %true if the cache is still valid and the address matches.
1362 * %false if the cache is not valid.
1364 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1365 * while calling this function, and then continue to hold the lock until the
1366 * access is complete.
1368 * Callers in IN_GUEST_MODE may do so without locking, although they should
1369 * still hold a read lock on kvm->scru for the memslot checks.
1371 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1374 * kvm_gpc_refresh - update a previously initialized cache.
1376 * @gpc: struct gfn_to_pfn_cache object.
1377 * @len: sanity check; the range being access must fit a single page.
1379 * @return: 0 for success.
1380 * -EINVAL for a mapping which would cross a page boundary.
1381 * -EFAULT for an untranslatable guest physical address.
1383 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1384 * return from this function does not mean the page can be immediately
1385 * accessed because it may have raced with an invalidation. Callers must
1386 * still lock and check the cache status, as this function does not return
1387 * with the lock still held to permit access.
1389 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1392 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1394 * @gpc: struct gfn_to_pfn_cache object.
1396 * This removes a cache from the VM's list to be processed on MMU notifier
1399 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1401 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1402 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1404 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1405 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1406 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1407 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1408 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1409 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1410 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1411 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1413 void kvm_flush_remote_tlbs(struct kvm *kvm);
1414 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1415 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1416 const struct kvm_memory_slot *memslot);
1418 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1419 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1420 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1421 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1422 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1423 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1426 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1427 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1428 void kvm_mmu_invalidate_end(struct kvm *kvm);
1429 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1431 long kvm_arch_dev_ioctl(struct file *filp,
1432 unsigned int ioctl, unsigned long arg);
1433 long kvm_arch_vcpu_ioctl(struct file *filp,
1434 unsigned int ioctl, unsigned long arg);
1435 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1437 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1439 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1440 struct kvm_memory_slot *slot,
1442 unsigned long mask);
1443 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1445 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1446 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1447 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1448 int *is_dirty, struct kvm_memory_slot **memslot);
1451 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1453 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1454 struct kvm_enable_cap *cap);
1455 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1456 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1459 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1460 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1462 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1463 struct kvm_translation *tr);
1465 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1466 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1467 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1468 struct kvm_sregs *sregs);
1469 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1470 struct kvm_sregs *sregs);
1471 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1472 struct kvm_mp_state *mp_state);
1473 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1474 struct kvm_mp_state *mp_state);
1475 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1476 struct kvm_guest_debug *dbg);
1477 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1479 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1481 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1482 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1483 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1484 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1485 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1486 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1488 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1489 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1492 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1493 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1495 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1498 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1499 int kvm_arch_hardware_enable(void);
1500 void kvm_arch_hardware_disable(void);
1502 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1503 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1504 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1505 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1506 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1507 int kvm_arch_post_init_vm(struct kvm *kvm);
1508 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1509 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1511 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1513 * All architectures that want to use vzalloc currently also
1514 * need their own kvm_arch_alloc_vm implementation.
1516 static inline struct kvm *kvm_arch_alloc_vm(void)
1518 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1522 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1527 #ifndef __KVM_HAVE_ARCH_VM_FREE
1528 static inline void kvm_arch_free_vm(struct kvm *kvm)
1530 __kvm_arch_free_vm(kvm);
1534 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1535 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1540 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1543 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1544 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1545 gfn_t gfn, u64 nr_pages)
1550 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1553 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1554 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1555 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1556 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1558 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1562 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1566 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1571 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1572 void kvm_arch_start_assignment(struct kvm *kvm);
1573 void kvm_arch_end_assignment(struct kvm *kvm);
1574 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1576 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1580 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1584 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1590 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1592 #ifdef __KVM_HAVE_ARCH_WQP
1593 return vcpu->arch.waitp;
1600 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1601 * true if the vCPU was blocking and was awakened, false otherwise.
1603 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1605 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1608 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1610 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1613 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1615 * returns true if the virtual interrupt controller is initialized and
1616 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1617 * controller is dynamically instantiated and this is not always true.
1619 bool kvm_arch_intc_initialized(struct kvm *kvm);
1621 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1627 #ifdef CONFIG_GUEST_PERF_EVENTS
1628 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1630 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1631 void kvm_unregister_perf_callbacks(void);
1633 static inline void kvm_register_perf_callbacks(void *ign) {}
1634 static inline void kvm_unregister_perf_callbacks(void) {}
1635 #endif /* CONFIG_GUEST_PERF_EVENTS */
1637 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1638 void kvm_arch_destroy_vm(struct kvm *kvm);
1639 void kvm_arch_sync_events(struct kvm *kvm);
1641 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1643 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1644 bool kvm_is_zone_device_page(struct page *page);
1646 struct kvm_irq_ack_notifier {
1647 struct hlist_node link;
1649 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1652 int kvm_irq_map_gsi(struct kvm *kvm,
1653 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1654 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1656 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1658 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1659 int irq_source_id, int level, bool line_status);
1660 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1661 struct kvm *kvm, int irq_source_id,
1662 int level, bool line_status);
1663 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1664 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1665 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1666 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1667 struct kvm_irq_ack_notifier *kian);
1668 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1669 struct kvm_irq_ack_notifier *kian);
1670 int kvm_request_irq_source_id(struct kvm *kvm);
1671 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1672 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1675 * Returns a pointer to the memslot if it contains gfn.
1676 * Otherwise returns NULL.
1678 static inline struct kvm_memory_slot *
1679 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1684 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1691 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1693 * With "approx" set returns the memslot also when the address falls
1694 * in a hole. In that case one of the memslots bordering the hole is
1697 static inline struct kvm_memory_slot *
1698 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1700 struct kvm_memory_slot *slot;
1701 struct rb_node *node;
1702 int idx = slots->node_idx;
1705 for (node = slots->gfn_tree.rb_node; node; ) {
1706 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1707 if (gfn >= slot->base_gfn) {
1708 if (gfn < slot->base_gfn + slot->npages)
1710 node = node->rb_right;
1712 node = node->rb_left;
1715 return approx ? slot : NULL;
1718 static inline struct kvm_memory_slot *
1719 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1721 struct kvm_memory_slot *slot;
1723 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1724 slot = try_get_memslot(slot, gfn);
1728 slot = search_memslots(slots, gfn, approx);
1730 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1738 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1739 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1740 * because that would bloat other code too much.
1742 static inline struct kvm_memory_slot *
1743 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1745 return ____gfn_to_memslot(slots, gfn, false);
1748 static inline unsigned long
1749 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1752 * The index was checked originally in search_memslots. To avoid
1753 * that a malicious guest builds a Spectre gadget out of e.g. page
1754 * table walks, do not let the processor speculate loads outside
1755 * the guest's registered memslots.
1757 unsigned long offset = gfn - slot->base_gfn;
1758 offset = array_index_nospec(offset, slot->npages);
1759 return slot->userspace_addr + offset * PAGE_SIZE;
1762 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1764 return gfn_to_memslot(kvm, gfn)->id;
1768 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1770 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1772 return slot->base_gfn + gfn_offset;
1775 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1777 return (gpa_t)gfn << PAGE_SHIFT;
1780 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1782 return (gfn_t)(gpa >> PAGE_SHIFT);
1785 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1787 return (hpa_t)pfn << PAGE_SHIFT;
1790 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1792 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1794 return kvm_is_error_hva(hva);
1797 enum kvm_stat_kind {
1802 struct kvm_stat_data {
1804 const struct _kvm_stats_desc *desc;
1805 enum kvm_stat_kind kind;
1808 struct _kvm_stats_desc {
1809 struct kvm_stats_desc desc;
1810 char name[KVM_STATS_NAME_SIZE];
1813 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1814 .flags = type | unit | base | \
1815 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1816 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1817 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1822 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1825 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1826 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1830 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1833 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1834 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1838 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1841 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1842 .offset = offsetof(struct kvm_vm_stat, stat) \
1846 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1849 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1850 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1854 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1855 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1856 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1858 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1859 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1860 unit, base, exponent, 1, 0)
1861 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1862 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1863 unit, base, exponent, 1, 0)
1864 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1865 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1866 unit, base, exponent, 1, 0)
1867 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1868 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1869 unit, base, exponent, sz, bsz)
1870 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1871 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1872 unit, base, exponent, sz, 0)
1874 /* Cumulative counter, read/write */
1875 #define STATS_DESC_COUNTER(SCOPE, name) \
1876 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1877 KVM_STATS_BASE_POW10, 0)
1878 /* Instantaneous counter, read only */
1879 #define STATS_DESC_ICOUNTER(SCOPE, name) \
1880 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1881 KVM_STATS_BASE_POW10, 0)
1882 /* Peak counter, read/write */
1883 #define STATS_DESC_PCOUNTER(SCOPE, name) \
1884 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1885 KVM_STATS_BASE_POW10, 0)
1887 /* Instantaneous boolean value, read only */
1888 #define STATS_DESC_IBOOLEAN(SCOPE, name) \
1889 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1890 KVM_STATS_BASE_POW10, 0)
1891 /* Peak (sticky) boolean value, read/write */
1892 #define STATS_DESC_PBOOLEAN(SCOPE, name) \
1893 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1894 KVM_STATS_BASE_POW10, 0)
1896 /* Cumulative time in nanosecond */
1897 #define STATS_DESC_TIME_NSEC(SCOPE, name) \
1898 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1899 KVM_STATS_BASE_POW10, -9)
1900 /* Linear histogram for time in nanosecond */
1901 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1902 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1903 KVM_STATS_BASE_POW10, -9, sz, bsz)
1904 /* Logarithmic histogram for time in nanosecond */
1905 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1906 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1907 KVM_STATS_BASE_POW10, -9, sz)
1909 #define KVM_GENERIC_VM_STATS() \
1910 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1911 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1913 #define KVM_GENERIC_VCPU_STATS() \
1914 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1915 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1916 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1917 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1918 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1919 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1920 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1921 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1922 HALT_POLL_HIST_COUNT), \
1923 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1924 HALT_POLL_HIST_COUNT), \
1925 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1926 HALT_POLL_HIST_COUNT), \
1927 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1929 extern struct dentry *kvm_debugfs_dir;
1931 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1932 const struct _kvm_stats_desc *desc,
1933 void *stats, size_t size_stats,
1934 char __user *user_buffer, size_t size, loff_t *offset);
1937 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1940 * @data: start address of the stats data
1941 * @size: the number of bucket of the stats data
1942 * @value: the new value used to update the linear histogram's bucket
1943 * @bucket_size: the size (width) of a bucket
1945 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1946 u64 value, size_t bucket_size)
1948 size_t index = div64_u64(value, bucket_size);
1950 index = min(index, size - 1);
1955 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1958 * @data: start address of the stats data
1959 * @size: the number of bucket of the stats data
1960 * @value: the new value used to update the logarithmic histogram's bucket
1962 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1964 size_t index = fls64(value);
1966 index = min(index, size - 1);
1970 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
1971 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1972 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \
1973 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1976 extern const struct kvm_stats_header kvm_vm_stats_header;
1977 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1978 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1979 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1981 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1982 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1984 if (unlikely(kvm->mmu_invalidate_in_progress))
1987 * Ensure the read of mmu_invalidate_in_progress happens before
1988 * the read of mmu_invalidate_seq. This interacts with the
1989 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1990 * that the caller either sees the old (non-zero) value of
1991 * mmu_invalidate_in_progress or the new (incremented) value of
1992 * mmu_invalidate_seq.
1994 * PowerPC Book3s HV KVM calls this under a per-page lock rather
1995 * than under kvm->mmu_lock, for scalability, so can't rely on
1996 * kvm->mmu_lock to keep things ordered.
1999 if (kvm->mmu_invalidate_seq != mmu_seq)
2004 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2005 unsigned long mmu_seq,
2008 lockdep_assert_held(&kvm->mmu_lock);
2010 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2011 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2012 * that might be being invalidated. Note that it may include some false
2013 * positives, due to shortcuts when handing concurrent invalidations.
2015 if (unlikely(kvm->mmu_invalidate_in_progress)) {
2017 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2018 * but before updating the range is a KVM bug.
2020 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2021 kvm->mmu_invalidate_range_end == INVALID_GPA))
2024 if (gfn >= kvm->mmu_invalidate_range_start &&
2025 gfn < kvm->mmu_invalidate_range_end)
2029 if (kvm->mmu_invalidate_seq != mmu_seq)
2035 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2037 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2039 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2040 int kvm_set_irq_routing(struct kvm *kvm,
2041 const struct kvm_irq_routing_entry *entries,
2044 int kvm_set_routing_entry(struct kvm *kvm,
2045 struct kvm_kernel_irq_routing_entry *e,
2046 const struct kvm_irq_routing_entry *ue);
2047 void kvm_free_irq_routing(struct kvm *kvm);
2051 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2055 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2057 void kvm_eventfd_init(struct kvm *kvm);
2058 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2060 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2061 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2062 void kvm_irqfd_release(struct kvm *kvm);
2063 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2064 unsigned int irqchip,
2066 void kvm_irq_routing_update(struct kvm *);
2068 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2073 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2075 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2076 unsigned int irqchip,
2081 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2083 void kvm_arch_irq_routing_update(struct kvm *kvm);
2085 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2088 * Ensure the rest of the request is published to kvm_check_request's
2089 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2092 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2095 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2098 * Request that don't require vCPU action should never be logged in
2099 * vcpu->requests. The vCPU won't clear the request, so it will stay
2100 * logged indefinitely and prevent the vCPU from entering the guest.
2102 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2103 (req & KVM_REQUEST_NO_ACTION));
2105 __kvm_make_request(req, vcpu);
2108 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2110 return READ_ONCE(vcpu->requests);
2113 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2115 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2118 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2120 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2123 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2125 if (kvm_test_request(req, vcpu)) {
2126 kvm_clear_request(req, vcpu);
2129 * Ensure the rest of the request is visible to kvm_check_request's
2130 * caller. Paired with the smp_wmb in kvm_make_request.
2132 smp_mb__after_atomic();
2139 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2140 extern bool kvm_rebooting;
2143 extern unsigned int halt_poll_ns;
2144 extern unsigned int halt_poll_ns_grow;
2145 extern unsigned int halt_poll_ns_grow_start;
2146 extern unsigned int halt_poll_ns_shrink;
2149 const struct kvm_device_ops *ops;
2152 struct list_head vm_node;
2155 /* create, destroy, and name are mandatory */
2156 struct kvm_device_ops {
2160 * create is called holding kvm->lock and any operations not suitable
2161 * to do while holding the lock should be deferred to init (see
2164 int (*create)(struct kvm_device *dev, u32 type);
2167 * init is called after create if create is successful and is called
2168 * outside of holding kvm->lock.
2170 void (*init)(struct kvm_device *dev);
2173 * Destroy is responsible for freeing dev.
2175 * Destroy may be called before or after destructors are called
2176 * on emulated I/O regions, depending on whether a reference is
2177 * held by a vcpu or other kvm component that gets destroyed
2178 * after the emulated I/O.
2180 void (*destroy)(struct kvm_device *dev);
2183 * Release is an alternative method to free the device. It is
2184 * called when the device file descriptor is closed. Once
2185 * release is called, the destroy method will not be called
2186 * anymore as the device is removed from the device list of
2187 * the VM. kvm->lock is held.
2189 void (*release)(struct kvm_device *dev);
2191 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2192 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2193 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2194 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2196 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2199 struct kvm_device *kvm_device_from_filp(struct file *filp);
2200 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2201 void kvm_unregister_device_ops(u32 type);
2203 extern struct kvm_device_ops kvm_mpic_ops;
2204 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2205 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2207 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2209 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2211 vcpu->spin_loop.in_spin_loop = val;
2213 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2215 vcpu->spin_loop.dy_eligible = val;
2218 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2220 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2224 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2227 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2229 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2231 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2232 !(memslot->flags & KVM_MEMSLOT_INVALID));
2235 struct kvm_vcpu *kvm_get_running_vcpu(void);
2236 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2238 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2239 bool kvm_arch_has_irq_bypass(void);
2240 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2241 struct irq_bypass_producer *);
2242 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2243 struct irq_bypass_producer *);
2244 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2245 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2246 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2247 uint32_t guest_irq, bool set);
2248 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2249 struct kvm_kernel_irq_routing_entry *);
2250 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2252 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2253 /* If we wakeup during the poll time, was it a sucessful poll? */
2254 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2256 return vcpu->valid_wakeup;
2260 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2264 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2266 #ifdef CONFIG_HAVE_KVM_NO_POLL
2267 /* Callback that tells if we must not poll */
2268 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2270 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2274 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2276 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2277 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2278 unsigned int ioctl, unsigned long arg);
2280 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2284 return -ENOIOCTLCMD;
2286 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2288 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2290 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2291 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2293 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2297 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2299 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2301 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2302 uintptr_t data, const char *name,
2303 struct task_struct **thread_ptr);
2305 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2306 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2308 vcpu->run->exit_reason = KVM_EXIT_INTR;
2309 vcpu->stat.signal_exits++;
2311 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2314 * If more than one page is being (un)accounted, @virt must be the address of
2315 * the first page of a block of pages what were allocated together (i.e
2316 * accounted together).
2318 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2321 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2323 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2327 * This defines how many reserved entries we want to keep before we
2328 * kick the vcpu to the userspace to avoid dirty ring full. This
2329 * value can be tuned to higher if e.g. PML is enabled on the host.
2331 #define KVM_DIRTY_RING_RSVD_ENTRIES 64
2333 /* Max number of entries allowed for each kvm dirty ring */
2334 #define KVM_DIRTY_RING_MAX_ENTRIES 65536
2336 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2337 gpa_t gpa, gpa_t size,
2338 bool is_write, bool is_exec,
2341 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2342 vcpu->run->memory_fault.gpa = gpa;
2343 vcpu->run->memory_fault.size = size;
2345 /* RWX flags are not (yet) defined or communicated to userspace. */
2346 vcpu->run->memory_fault.flags = 0;
2348 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2351 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2352 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2354 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2357 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2358 unsigned long attrs);
2359 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2360 struct kvm_gfn_range *range);
2361 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2362 struct kvm_gfn_range *range);
2364 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2366 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2367 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2370 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2374 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2376 #ifdef CONFIG_KVM_PRIVATE_MEM
2377 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2378 gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2380 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2381 struct kvm_memory_slot *slot, gfn_t gfn,
2382 kvm_pfn_t *pfn, int *max_order)
2387 #endif /* CONFIG_KVM_PRIVATE_MEM */