4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/export.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
39 #include <linux/uaccess.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
46 EXPORT_SYMBOL(high_memory);
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
54 atomic_long_t mmap_pages_allocated;
56 EXPORT_SYMBOL(mem_map);
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
63 const struct vm_operations_struct generic_file_vm_ops = {
67 * Return the total memory allocated for this pointer, not
68 * just what the caller asked for.
70 * Doesn't have to be accurate, i.e. may have races.
72 unsigned int kobjsize(const void *objp)
77 * If the object we have should not have ksize performed on it,
80 if (!objp || !virt_addr_valid(objp))
83 page = virt_to_head_page(objp);
86 * If the allocator sets PageSlab, we know the pointer came from
93 * If it's not a compound page, see if we have a matching VMA
94 * region. This test is intentionally done in reverse order,
95 * so if there's no VMA, we still fall through and hand back
96 * PAGE_SIZE for 0-order pages.
98 if (!PageCompound(page)) {
99 struct vm_area_struct *vma;
101 vma = find_vma(current->mm, (unsigned long)objp);
103 return vma->vm_end - vma->vm_start;
107 * The ksize() function is only guaranteed to work for pointers
108 * returned by kmalloc(). So handle arbitrary pointers here.
110 return PAGE_SIZE << compound_order(page);
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114 unsigned long start, unsigned long nr_pages,
115 unsigned int foll_flags, struct page **pages,
116 struct vm_area_struct **vmas, int *nonblocking)
118 struct vm_area_struct *vma;
119 unsigned long vm_flags;
122 /* calculate required read or write permissions.
123 * If FOLL_FORCE is set, we only require the "MAY" flags.
125 vm_flags = (foll_flags & FOLL_WRITE) ?
126 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127 vm_flags &= (foll_flags & FOLL_FORCE) ?
128 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
130 for (i = 0; i < nr_pages; i++) {
131 vma = find_vma(mm, start);
133 goto finish_or_fault;
135 /* protect what we can, including chardevs */
136 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137 !(vm_flags & vma->vm_flags))
138 goto finish_or_fault;
141 pages[i] = virt_to_page(start);
147 start = (start + PAGE_SIZE) & PAGE_MASK;
153 return i ? : -EFAULT;
157 * get a list of pages in an address range belonging to the specified process
158 * and indicate the VMA that covers each page
159 * - this is potentially dodgy as we may end incrementing the page count of a
160 * slab page or a secondary page from a compound page
161 * - don't permit access to VMAs that don't support it, such as I/O mappings
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164 unsigned int gup_flags, struct page **pages,
165 struct vm_area_struct **vmas)
167 return __get_user_pages(current, current->mm, start, nr_pages,
168 gup_flags, pages, vmas, NULL);
170 EXPORT_SYMBOL(get_user_pages);
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173 unsigned int gup_flags, struct page **pages,
176 return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
178 EXPORT_SYMBOL(get_user_pages_locked);
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181 struct mm_struct *mm, unsigned long start,
182 unsigned long nr_pages, struct page **pages,
183 unsigned int gup_flags)
186 down_read(&mm->mmap_sem);
187 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
189 up_read(&mm->mmap_sem);
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194 struct page **pages, unsigned int gup_flags)
196 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
199 EXPORT_SYMBOL(get_user_pages_unlocked);
202 * follow_pfn - look up PFN at a user virtual address
203 * @vma: memory mapping
204 * @address: user virtual address
205 * @pfn: location to store found PFN
207 * Only IO mappings and raw PFN mappings are allowed.
209 * Returns zero and the pfn at @pfn on success, -ve otherwise.
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
214 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
217 *pfn = address >> PAGE_SHIFT;
220 EXPORT_SYMBOL(follow_pfn);
222 LIST_HEAD(vmap_area_list);
224 void vfree(const void *addr)
228 EXPORT_SYMBOL(vfree);
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
233 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234 * returns only a logical address.
236 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
238 EXPORT_SYMBOL(__vmalloc);
240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
242 return __vmalloc(size, flags, PAGE_KERNEL);
245 void *vmalloc_user(unsigned long size)
249 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
252 struct vm_area_struct *vma;
254 down_write(¤t->mm->mmap_sem);
255 vma = find_vma(current->mm, (unsigned long)ret);
257 vma->vm_flags |= VM_USERMAP;
258 up_write(¤t->mm->mmap_sem);
263 EXPORT_SYMBOL(vmalloc_user);
265 struct page *vmalloc_to_page(const void *addr)
267 return virt_to_page(addr);
269 EXPORT_SYMBOL(vmalloc_to_page);
271 unsigned long vmalloc_to_pfn(const void *addr)
273 return page_to_pfn(virt_to_page(addr));
275 EXPORT_SYMBOL(vmalloc_to_pfn);
277 long vread(char *buf, char *addr, unsigned long count)
279 /* Don't allow overflow */
280 if ((unsigned long) buf + count < count)
281 count = -(unsigned long) buf;
283 memcpy(buf, addr, count);
287 long vwrite(char *buf, char *addr, unsigned long count)
289 /* Don't allow overflow */
290 if ((unsigned long) addr + count < count)
291 count = -(unsigned long) addr;
293 memcpy(addr, buf, count);
298 * vmalloc - allocate virtually contiguous memory
300 * @size: allocation size
302 * Allocate enough pages to cover @size from the page level
303 * allocator and map them into contiguous kernel virtual space.
305 * For tight control over page level allocator and protection flags
306 * use __vmalloc() instead.
308 void *vmalloc(unsigned long size)
310 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
312 EXPORT_SYMBOL(vmalloc);
315 * vzalloc - allocate virtually contiguous memory with zero fill
317 * @size: allocation size
319 * Allocate enough pages to cover @size from the page level
320 * allocator and map them into contiguous kernel virtual space.
321 * The memory allocated is set to zero.
323 * For tight control over page level allocator and protection flags
324 * use __vmalloc() instead.
326 void *vzalloc(unsigned long size)
328 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
331 EXPORT_SYMBOL(vzalloc);
334 * vmalloc_node - allocate memory on a specific node
335 * @size: allocation size
338 * Allocate enough pages to cover @size from the page level
339 * allocator and map them into contiguous kernel virtual space.
341 * For tight control over page level allocator and protection flags
342 * use __vmalloc() instead.
344 void *vmalloc_node(unsigned long size, int node)
346 return vmalloc(size);
348 EXPORT_SYMBOL(vmalloc_node);
351 * vzalloc_node - allocate memory on a specific node with zero fill
352 * @size: allocation size
355 * Allocate enough pages to cover @size from the page level
356 * allocator and map them into contiguous kernel virtual space.
357 * The memory allocated is set to zero.
359 * For tight control over page level allocator and protection flags
360 * use __vmalloc() instead.
362 void *vzalloc_node(unsigned long size, int node)
364 return vzalloc(size);
366 EXPORT_SYMBOL(vzalloc_node);
368 #ifndef PAGE_KERNEL_EXEC
369 # define PAGE_KERNEL_EXEC PAGE_KERNEL
373 * vmalloc_exec - allocate virtually contiguous, executable memory
374 * @size: allocation size
376 * Kernel-internal function to allocate enough pages to cover @size
377 * the page level allocator and map them into contiguous and
378 * executable kernel virtual space.
380 * For tight control over page level allocator and protection flags
381 * use __vmalloc() instead.
384 void *vmalloc_exec(unsigned long size)
386 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
390 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
391 * @size: allocation size
393 * Allocate enough 32bit PA addressable pages to cover @size from the
394 * page level allocator and map them into contiguous kernel virtual space.
396 void *vmalloc_32(unsigned long size)
398 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
400 EXPORT_SYMBOL(vmalloc_32);
403 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
404 * @size: allocation size
406 * The resulting memory area is 32bit addressable and zeroed so it can be
407 * mapped to userspace without leaking data.
409 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
410 * remap_vmalloc_range() are permissible.
412 void *vmalloc_32_user(unsigned long size)
415 * We'll have to sort out the ZONE_DMA bits for 64-bit,
416 * but for now this can simply use vmalloc_user() directly.
418 return vmalloc_user(size);
420 EXPORT_SYMBOL(vmalloc_32_user);
422 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
429 void vunmap(const void *addr)
433 EXPORT_SYMBOL(vunmap);
435 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
440 EXPORT_SYMBOL(vm_map_ram);
442 void vm_unmap_ram(const void *mem, unsigned int count)
446 EXPORT_SYMBOL(vm_unmap_ram);
448 void vm_unmap_aliases(void)
451 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
454 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
457 void __weak vmalloc_sync_all(void)
462 * alloc_vm_area - allocate a range of kernel address space
463 * @size: size of the area
465 * Returns: NULL on failure, vm_struct on success
467 * This function reserves a range of kernel address space, and
468 * allocates pagetables to map that range. No actual mappings
469 * are created. If the kernel address space is not shared
470 * between processes, it syncs the pagetable across all
473 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
478 EXPORT_SYMBOL_GPL(alloc_vm_area);
480 void free_vm_area(struct vm_struct *area)
484 EXPORT_SYMBOL_GPL(free_vm_area);
486 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
491 EXPORT_SYMBOL(vm_insert_page);
494 * sys_brk() for the most part doesn't need the global kernel
495 * lock, except when an application is doing something nasty
496 * like trying to un-brk an area that has already been mapped
497 * to a regular file. in this case, the unmapping will need
498 * to invoke file system routines that need the global lock.
500 SYSCALL_DEFINE1(brk, unsigned long, brk)
502 struct mm_struct *mm = current->mm;
504 if (brk < mm->start_brk || brk > mm->context.end_brk)
511 * Always allow shrinking brk
513 if (brk <= mm->brk) {
519 * Ok, looks good - let it rip.
521 flush_icache_range(mm->brk, brk);
522 return mm->brk = brk;
526 * initialise the percpu counter for VM and region record slabs
528 void __init mmap_init(void)
532 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
534 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
538 * validate the region tree
539 * - the caller must hold the region lock
541 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
542 static noinline void validate_nommu_regions(void)
544 struct vm_region *region, *last;
545 struct rb_node *p, *lastp;
547 lastp = rb_first(&nommu_region_tree);
551 last = rb_entry(lastp, struct vm_region, vm_rb);
552 BUG_ON(last->vm_end <= last->vm_start);
553 BUG_ON(last->vm_top < last->vm_end);
555 while ((p = rb_next(lastp))) {
556 region = rb_entry(p, struct vm_region, vm_rb);
557 last = rb_entry(lastp, struct vm_region, vm_rb);
559 BUG_ON(region->vm_end <= region->vm_start);
560 BUG_ON(region->vm_top < region->vm_end);
561 BUG_ON(region->vm_start < last->vm_top);
567 static void validate_nommu_regions(void)
573 * add a region into the global tree
575 static void add_nommu_region(struct vm_region *region)
577 struct vm_region *pregion;
578 struct rb_node **p, *parent;
580 validate_nommu_regions();
583 p = &nommu_region_tree.rb_node;
586 pregion = rb_entry(parent, struct vm_region, vm_rb);
587 if (region->vm_start < pregion->vm_start)
589 else if (region->vm_start > pregion->vm_start)
591 else if (pregion == region)
597 rb_link_node(®ion->vm_rb, parent, p);
598 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
600 validate_nommu_regions();
604 * delete a region from the global tree
606 static void delete_nommu_region(struct vm_region *region)
608 BUG_ON(!nommu_region_tree.rb_node);
610 validate_nommu_regions();
611 rb_erase(®ion->vm_rb, &nommu_region_tree);
612 validate_nommu_regions();
616 * free a contiguous series of pages
618 static void free_page_series(unsigned long from, unsigned long to)
620 for (; from < to; from += PAGE_SIZE) {
621 struct page *page = virt_to_page(from);
623 atomic_long_dec(&mmap_pages_allocated);
629 * release a reference to a region
630 * - the caller must hold the region semaphore for writing, which this releases
631 * - the region may not have been added to the tree yet, in which case vm_top
632 * will equal vm_start
634 static void __put_nommu_region(struct vm_region *region)
635 __releases(nommu_region_sem)
637 BUG_ON(!nommu_region_tree.rb_node);
639 if (--region->vm_usage == 0) {
640 if (region->vm_top > region->vm_start)
641 delete_nommu_region(region);
642 up_write(&nommu_region_sem);
645 fput(region->vm_file);
647 /* IO memory and memory shared directly out of the pagecache
648 * from ramfs/tmpfs mustn't be released here */
649 if (region->vm_flags & VM_MAPPED_COPY)
650 free_page_series(region->vm_start, region->vm_top);
651 kmem_cache_free(vm_region_jar, region);
653 up_write(&nommu_region_sem);
658 * release a reference to a region
660 static void put_nommu_region(struct vm_region *region)
662 down_write(&nommu_region_sem);
663 __put_nommu_region(region);
667 * update protection on a vma
669 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
672 struct mm_struct *mm = vma->vm_mm;
673 long start = vma->vm_start & PAGE_MASK;
674 while (start < vma->vm_end) {
675 protect_page(mm, start, flags);
678 update_protections(mm);
683 * add a VMA into a process's mm_struct in the appropriate place in the list
684 * and tree and add to the address space's page tree also if not an anonymous
686 * - should be called with mm->mmap_sem held writelocked
688 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
690 struct vm_area_struct *pvma, *prev;
691 struct address_space *mapping;
692 struct rb_node **p, *parent, *rb_prev;
694 BUG_ON(!vma->vm_region);
699 protect_vma(vma, vma->vm_flags);
701 /* add the VMA to the mapping */
703 mapping = vma->vm_file->f_mapping;
705 i_mmap_lock_write(mapping);
706 flush_dcache_mmap_lock(mapping);
707 vma_interval_tree_insert(vma, &mapping->i_mmap);
708 flush_dcache_mmap_unlock(mapping);
709 i_mmap_unlock_write(mapping);
712 /* add the VMA to the tree */
713 parent = rb_prev = NULL;
714 p = &mm->mm_rb.rb_node;
717 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
719 /* sort by: start addr, end addr, VMA struct addr in that order
720 * (the latter is necessary as we may get identical VMAs) */
721 if (vma->vm_start < pvma->vm_start)
723 else if (vma->vm_start > pvma->vm_start) {
726 } else if (vma->vm_end < pvma->vm_end)
728 else if (vma->vm_end > pvma->vm_end) {
731 } else if (vma < pvma)
733 else if (vma > pvma) {
740 rb_link_node(&vma->vm_rb, parent, p);
741 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
743 /* add VMA to the VMA list also */
746 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
748 __vma_link_list(mm, vma, prev, parent);
752 * delete a VMA from its owning mm_struct and address space
754 static void delete_vma_from_mm(struct vm_area_struct *vma)
757 struct address_space *mapping;
758 struct mm_struct *mm = vma->vm_mm;
759 struct task_struct *curr = current;
764 for (i = 0; i < VMACACHE_SIZE; i++) {
765 /* if the vma is cached, invalidate the entire cache */
766 if (curr->vmacache.vmas[i] == vma) {
767 vmacache_invalidate(mm);
772 /* remove the VMA from the mapping */
774 mapping = vma->vm_file->f_mapping;
776 i_mmap_lock_write(mapping);
777 flush_dcache_mmap_lock(mapping);
778 vma_interval_tree_remove(vma, &mapping->i_mmap);
779 flush_dcache_mmap_unlock(mapping);
780 i_mmap_unlock_write(mapping);
783 /* remove from the MM's tree and list */
784 rb_erase(&vma->vm_rb, &mm->mm_rb);
787 vma->vm_prev->vm_next = vma->vm_next;
789 mm->mmap = vma->vm_next;
792 vma->vm_next->vm_prev = vma->vm_prev;
796 * destroy a VMA record
798 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
800 if (vma->vm_ops && vma->vm_ops->close)
801 vma->vm_ops->close(vma);
804 put_nommu_region(vma->vm_region);
805 kmem_cache_free(vm_area_cachep, vma);
809 * look up the first VMA in which addr resides, NULL if none
810 * - should be called with mm->mmap_sem at least held readlocked
812 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
814 struct vm_area_struct *vma;
816 /* check the cache first */
817 vma = vmacache_find(mm, addr);
821 /* trawl the list (there may be multiple mappings in which addr
823 for (vma = mm->mmap; vma; vma = vma->vm_next) {
824 if (vma->vm_start > addr)
826 if (vma->vm_end > addr) {
827 vmacache_update(addr, vma);
834 EXPORT_SYMBOL(find_vma);
838 * - we don't extend stack VMAs under NOMMU conditions
840 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
842 return find_vma(mm, addr);
846 * expand a stack to a given address
847 * - not supported under NOMMU conditions
849 int expand_stack(struct vm_area_struct *vma, unsigned long address)
855 * look up the first VMA exactly that exactly matches addr
856 * - should be called with mm->mmap_sem at least held readlocked
858 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
862 struct vm_area_struct *vma;
863 unsigned long end = addr + len;
865 /* check the cache first */
866 vma = vmacache_find_exact(mm, addr, end);
870 /* trawl the list (there may be multiple mappings in which addr
872 for (vma = mm->mmap; vma; vma = vma->vm_next) {
873 if (vma->vm_start < addr)
875 if (vma->vm_start > addr)
877 if (vma->vm_end == end) {
878 vmacache_update(addr, vma);
887 * determine whether a mapping should be permitted and, if so, what sort of
888 * mapping we're capable of supporting
890 static int validate_mmap_request(struct file *file,
896 unsigned long *_capabilities)
898 unsigned long capabilities, rlen;
901 /* do the simple checks first */
902 if (flags & MAP_FIXED)
905 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
906 (flags & MAP_TYPE) != MAP_SHARED)
912 /* Careful about overflows.. */
913 rlen = PAGE_ALIGN(len);
914 if (!rlen || rlen > TASK_SIZE)
917 /* offset overflow? */
918 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
922 /* files must support mmap */
923 if (!file->f_op->mmap)
926 /* work out if what we've got could possibly be shared
927 * - we support chardevs that provide their own "memory"
928 * - we support files/blockdevs that are memory backed
930 if (file->f_op->mmap_capabilities) {
931 capabilities = file->f_op->mmap_capabilities(file);
933 /* no explicit capabilities set, so assume some
935 switch (file_inode(file)->i_mode & S_IFMT) {
938 capabilities = NOMMU_MAP_COPY;
953 /* eliminate any capabilities that we can't support on this
955 if (!file->f_op->get_unmapped_area)
956 capabilities &= ~NOMMU_MAP_DIRECT;
957 if (!(file->f_mode & FMODE_CAN_READ))
958 capabilities &= ~NOMMU_MAP_COPY;
960 /* The file shall have been opened with read permission. */
961 if (!(file->f_mode & FMODE_READ))
964 if (flags & MAP_SHARED) {
965 /* do checks for writing, appending and locking */
966 if ((prot & PROT_WRITE) &&
967 !(file->f_mode & FMODE_WRITE))
970 if (IS_APPEND(file_inode(file)) &&
971 (file->f_mode & FMODE_WRITE))
974 if (locks_verify_locked(file))
977 if (!(capabilities & NOMMU_MAP_DIRECT))
980 /* we mustn't privatise shared mappings */
981 capabilities &= ~NOMMU_MAP_COPY;
983 /* we're going to read the file into private memory we
985 if (!(capabilities & NOMMU_MAP_COPY))
988 /* we don't permit a private writable mapping to be
989 * shared with the backing device */
990 if (prot & PROT_WRITE)
991 capabilities &= ~NOMMU_MAP_DIRECT;
994 if (capabilities & NOMMU_MAP_DIRECT) {
995 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
996 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
997 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
999 capabilities &= ~NOMMU_MAP_DIRECT;
1000 if (flags & MAP_SHARED) {
1001 pr_warn("MAP_SHARED not completely supported on !MMU\n");
1007 /* handle executable mappings and implied executable
1009 if (path_noexec(&file->f_path)) {
1010 if (prot & PROT_EXEC)
1012 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1013 /* handle implication of PROT_EXEC by PROT_READ */
1014 if (current->personality & READ_IMPLIES_EXEC) {
1015 if (capabilities & NOMMU_MAP_EXEC)
1018 } else if ((prot & PROT_READ) &&
1019 (prot & PROT_EXEC) &&
1020 !(capabilities & NOMMU_MAP_EXEC)
1022 /* backing file is not executable, try to copy */
1023 capabilities &= ~NOMMU_MAP_DIRECT;
1026 /* anonymous mappings are always memory backed and can be
1029 capabilities = NOMMU_MAP_COPY;
1031 /* handle PROT_EXEC implication by PROT_READ */
1032 if ((prot & PROT_READ) &&
1033 (current->personality & READ_IMPLIES_EXEC))
1037 /* allow the security API to have its say */
1038 ret = security_mmap_addr(addr);
1043 *_capabilities = capabilities;
1048 * we've determined that we can make the mapping, now translate what we
1049 * now know into VMA flags
1051 static unsigned long determine_vm_flags(struct file *file,
1053 unsigned long flags,
1054 unsigned long capabilities)
1056 unsigned long vm_flags;
1058 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1059 /* vm_flags |= mm->def_flags; */
1061 if (!(capabilities & NOMMU_MAP_DIRECT)) {
1062 /* attempt to share read-only copies of mapped file chunks */
1063 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1064 if (file && !(prot & PROT_WRITE))
1065 vm_flags |= VM_MAYSHARE;
1067 /* overlay a shareable mapping on the backing device or inode
1068 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1070 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1071 if (flags & MAP_SHARED)
1072 vm_flags |= VM_SHARED;
1075 /* refuse to let anyone share private mappings with this process if
1076 * it's being traced - otherwise breakpoints set in it may interfere
1077 * with another untraced process
1079 if ((flags & MAP_PRIVATE) && current->ptrace)
1080 vm_flags &= ~VM_MAYSHARE;
1086 * set up a shared mapping on a file (the driver or filesystem provides and
1089 static int do_mmap_shared_file(struct vm_area_struct *vma)
1093 ret = call_mmap(vma->vm_file, vma);
1095 vma->vm_region->vm_top = vma->vm_region->vm_end;
1101 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1102 * opposed to tried but failed) so we can only give a suitable error as
1103 * it's not possible to make a private copy if MAP_SHARED was given */
1108 * set up a private mapping or an anonymous shared mapping
1110 static int do_mmap_private(struct vm_area_struct *vma,
1111 struct vm_region *region,
1113 unsigned long capabilities)
1115 unsigned long total, point;
1119 /* invoke the file's mapping function so that it can keep track of
1120 * shared mappings on devices or memory
1121 * - VM_MAYSHARE will be set if it may attempt to share
1123 if (capabilities & NOMMU_MAP_DIRECT) {
1124 ret = call_mmap(vma->vm_file, vma);
1126 /* shouldn't return success if we're not sharing */
1127 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1128 vma->vm_region->vm_top = vma->vm_region->vm_end;
1134 /* getting an ENOSYS error indicates that direct mmap isn't
1135 * possible (as opposed to tried but failed) so we'll try to
1136 * make a private copy of the data and map that instead */
1140 /* allocate some memory to hold the mapping
1141 * - note that this may not return a page-aligned address if the object
1142 * we're allocating is smaller than a page
1144 order = get_order(len);
1146 point = len >> PAGE_SHIFT;
1148 /* we don't want to allocate a power-of-2 sized page set */
1149 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1152 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1156 atomic_long_add(total, &mmap_pages_allocated);
1158 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1159 region->vm_start = (unsigned long) base;
1160 region->vm_end = region->vm_start + len;
1161 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1163 vma->vm_start = region->vm_start;
1164 vma->vm_end = region->vm_start + len;
1167 /* read the contents of a file into the copy */
1168 mm_segment_t old_fs;
1171 fpos = vma->vm_pgoff;
1172 fpos <<= PAGE_SHIFT;
1176 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1182 /* clear the last little bit */
1184 memset(base + ret, 0, len - ret);
1191 free_page_series(region->vm_start, region->vm_top);
1192 region->vm_start = vma->vm_start = 0;
1193 region->vm_end = vma->vm_end = 0;
1198 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1199 len, current->pid, current->comm);
1200 show_free_areas(0, NULL);
1205 * handle mapping creation for uClinux
1207 unsigned long do_mmap(struct file *file,
1211 unsigned long flags,
1212 vm_flags_t vm_flags,
1213 unsigned long pgoff,
1214 unsigned long *populate,
1215 struct list_head *uf)
1217 struct vm_area_struct *vma;
1218 struct vm_region *region;
1220 unsigned long capabilities, result;
1225 /* decide whether we should attempt the mapping, and if so what sort of
1227 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1232 /* we ignore the address hint */
1234 len = PAGE_ALIGN(len);
1236 /* we've determined that we can make the mapping, now translate what we
1237 * now know into VMA flags */
1238 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1240 /* we're going to need to record the mapping */
1241 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1243 goto error_getting_region;
1245 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1247 goto error_getting_vma;
1249 region->vm_usage = 1;
1250 region->vm_flags = vm_flags;
1251 region->vm_pgoff = pgoff;
1253 INIT_LIST_HEAD(&vma->anon_vma_chain);
1254 vma->vm_flags = vm_flags;
1255 vma->vm_pgoff = pgoff;
1258 region->vm_file = get_file(file);
1259 vma->vm_file = get_file(file);
1262 down_write(&nommu_region_sem);
1264 /* if we want to share, we need to check for regions created by other
1265 * mmap() calls that overlap with our proposed mapping
1266 * - we can only share with a superset match on most regular files
1267 * - shared mappings on character devices and memory backed files are
1268 * permitted to overlap inexactly as far as we are concerned for in
1269 * these cases, sharing is handled in the driver or filesystem rather
1272 if (vm_flags & VM_MAYSHARE) {
1273 struct vm_region *pregion;
1274 unsigned long pglen, rpglen, pgend, rpgend, start;
1276 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1277 pgend = pgoff + pglen;
1279 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1280 pregion = rb_entry(rb, struct vm_region, vm_rb);
1282 if (!(pregion->vm_flags & VM_MAYSHARE))
1285 /* search for overlapping mappings on the same file */
1286 if (file_inode(pregion->vm_file) !=
1290 if (pregion->vm_pgoff >= pgend)
1293 rpglen = pregion->vm_end - pregion->vm_start;
1294 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1295 rpgend = pregion->vm_pgoff + rpglen;
1296 if (pgoff >= rpgend)
1299 /* handle inexactly overlapping matches between
1301 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1302 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1303 /* new mapping is not a subset of the region */
1304 if (!(capabilities & NOMMU_MAP_DIRECT))
1305 goto sharing_violation;
1309 /* we've found a region we can share */
1310 pregion->vm_usage++;
1311 vma->vm_region = pregion;
1312 start = pregion->vm_start;
1313 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1314 vma->vm_start = start;
1315 vma->vm_end = start + len;
1317 if (pregion->vm_flags & VM_MAPPED_COPY)
1318 vma->vm_flags |= VM_MAPPED_COPY;
1320 ret = do_mmap_shared_file(vma);
1322 vma->vm_region = NULL;
1325 pregion->vm_usage--;
1327 goto error_just_free;
1330 fput(region->vm_file);
1331 kmem_cache_free(vm_region_jar, region);
1337 /* obtain the address at which to make a shared mapping
1338 * - this is the hook for quasi-memory character devices to
1339 * tell us the location of a shared mapping
1341 if (capabilities & NOMMU_MAP_DIRECT) {
1342 addr = file->f_op->get_unmapped_area(file, addr, len,
1344 if (IS_ERR_VALUE(addr)) {
1347 goto error_just_free;
1349 /* the driver refused to tell us where to site
1350 * the mapping so we'll have to attempt to copy
1353 if (!(capabilities & NOMMU_MAP_COPY))
1354 goto error_just_free;
1356 capabilities &= ~NOMMU_MAP_DIRECT;
1358 vma->vm_start = region->vm_start = addr;
1359 vma->vm_end = region->vm_end = addr + len;
1364 vma->vm_region = region;
1366 /* set up the mapping
1367 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1369 if (file && vma->vm_flags & VM_SHARED)
1370 ret = do_mmap_shared_file(vma);
1372 ret = do_mmap_private(vma, region, len, capabilities);
1374 goto error_just_free;
1375 add_nommu_region(region);
1377 /* clear anonymous mappings that don't ask for uninitialized data */
1378 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1379 memset((void *)region->vm_start, 0,
1380 region->vm_end - region->vm_start);
1382 /* okay... we have a mapping; now we have to register it */
1383 result = vma->vm_start;
1385 current->mm->total_vm += len >> PAGE_SHIFT;
1388 add_vma_to_mm(current->mm, vma);
1390 /* we flush the region from the icache only when the first executable
1391 * mapping of it is made */
1392 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1393 flush_icache_range(region->vm_start, region->vm_end);
1394 region->vm_icache_flushed = true;
1397 up_write(&nommu_region_sem);
1402 up_write(&nommu_region_sem);
1404 if (region->vm_file)
1405 fput(region->vm_file);
1406 kmem_cache_free(vm_region_jar, region);
1409 kmem_cache_free(vm_area_cachep, vma);
1413 up_write(&nommu_region_sem);
1414 pr_warn("Attempt to share mismatched mappings\n");
1419 kmem_cache_free(vm_region_jar, region);
1420 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1422 show_free_areas(0, NULL);
1425 error_getting_region:
1426 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1428 show_free_areas(0, NULL);
1432 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1433 unsigned long, prot, unsigned long, flags,
1434 unsigned long, fd, unsigned long, pgoff)
1436 struct file *file = NULL;
1437 unsigned long retval = -EBADF;
1439 audit_mmap_fd(fd, flags);
1440 if (!(flags & MAP_ANONYMOUS)) {
1446 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1448 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1456 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1457 struct mmap_arg_struct {
1461 unsigned long flags;
1463 unsigned long offset;
1466 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1468 struct mmap_arg_struct a;
1470 if (copy_from_user(&a, arg, sizeof(a)))
1472 if (offset_in_page(a.offset))
1475 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1476 a.offset >> PAGE_SHIFT);
1478 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1481 * split a vma into two pieces at address 'addr', a new vma is allocated either
1482 * for the first part or the tail.
1484 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1485 unsigned long addr, int new_below)
1487 struct vm_area_struct *new;
1488 struct vm_region *region;
1489 unsigned long npages;
1491 /* we're only permitted to split anonymous regions (these should have
1492 * only a single usage on the region) */
1496 if (mm->map_count >= sysctl_max_map_count)
1499 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1503 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1505 kmem_cache_free(vm_region_jar, region);
1509 /* most fields are the same, copy all, and then fixup */
1511 *region = *vma->vm_region;
1512 new->vm_region = region;
1514 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1517 region->vm_top = region->vm_end = new->vm_end = addr;
1519 region->vm_start = new->vm_start = addr;
1520 region->vm_pgoff = new->vm_pgoff += npages;
1523 if (new->vm_ops && new->vm_ops->open)
1524 new->vm_ops->open(new);
1526 delete_vma_from_mm(vma);
1527 down_write(&nommu_region_sem);
1528 delete_nommu_region(vma->vm_region);
1530 vma->vm_region->vm_start = vma->vm_start = addr;
1531 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1533 vma->vm_region->vm_end = vma->vm_end = addr;
1534 vma->vm_region->vm_top = addr;
1536 add_nommu_region(vma->vm_region);
1537 add_nommu_region(new->vm_region);
1538 up_write(&nommu_region_sem);
1539 add_vma_to_mm(mm, vma);
1540 add_vma_to_mm(mm, new);
1545 * shrink a VMA by removing the specified chunk from either the beginning or
1548 static int shrink_vma(struct mm_struct *mm,
1549 struct vm_area_struct *vma,
1550 unsigned long from, unsigned long to)
1552 struct vm_region *region;
1554 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1556 delete_vma_from_mm(vma);
1557 if (from > vma->vm_start)
1561 add_vma_to_mm(mm, vma);
1563 /* cut the backing region down to size */
1564 region = vma->vm_region;
1565 BUG_ON(region->vm_usage != 1);
1567 down_write(&nommu_region_sem);
1568 delete_nommu_region(region);
1569 if (from > region->vm_start) {
1570 to = region->vm_top;
1571 region->vm_top = region->vm_end = from;
1573 region->vm_start = to;
1575 add_nommu_region(region);
1576 up_write(&nommu_region_sem);
1578 free_page_series(from, to);
1584 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1585 * VMA, though it need not cover the whole VMA
1587 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1589 struct vm_area_struct *vma;
1593 len = PAGE_ALIGN(len);
1599 /* find the first potentially overlapping VMA */
1600 vma = find_vma(mm, start);
1604 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1605 current->pid, current->comm,
1606 start, start + len - 1);
1612 /* we're allowed to split an anonymous VMA but not a file-backed one */
1615 if (start > vma->vm_start)
1617 if (end == vma->vm_end)
1618 goto erase_whole_vma;
1623 /* the chunk must be a subset of the VMA found */
1624 if (start == vma->vm_start && end == vma->vm_end)
1625 goto erase_whole_vma;
1626 if (start < vma->vm_start || end > vma->vm_end)
1628 if (offset_in_page(start))
1630 if (end != vma->vm_end && offset_in_page(end))
1632 if (start != vma->vm_start && end != vma->vm_end) {
1633 ret = split_vma(mm, vma, start, 1);
1637 return shrink_vma(mm, vma, start, end);
1641 delete_vma_from_mm(vma);
1642 delete_vma(mm, vma);
1645 EXPORT_SYMBOL(do_munmap);
1647 int vm_munmap(unsigned long addr, size_t len)
1649 struct mm_struct *mm = current->mm;
1652 down_write(&mm->mmap_sem);
1653 ret = do_munmap(mm, addr, len, NULL);
1654 up_write(&mm->mmap_sem);
1657 EXPORT_SYMBOL(vm_munmap);
1659 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1661 return vm_munmap(addr, len);
1665 * release all the mappings made in a process's VM space
1667 void exit_mmap(struct mm_struct *mm)
1669 struct vm_area_struct *vma;
1676 while ((vma = mm->mmap)) {
1677 mm->mmap = vma->vm_next;
1678 delete_vma_from_mm(vma);
1679 delete_vma(mm, vma);
1684 int vm_brk(unsigned long addr, unsigned long len)
1690 * expand (or shrink) an existing mapping, potentially moving it at the same
1691 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1693 * under NOMMU conditions, we only permit changing a mapping's size, and only
1694 * as long as it stays within the region allocated by do_mmap_private() and the
1695 * block is not shareable
1697 * MREMAP_FIXED is not supported under NOMMU conditions
1699 static unsigned long do_mremap(unsigned long addr,
1700 unsigned long old_len, unsigned long new_len,
1701 unsigned long flags, unsigned long new_addr)
1703 struct vm_area_struct *vma;
1705 /* insanity checks first */
1706 old_len = PAGE_ALIGN(old_len);
1707 new_len = PAGE_ALIGN(new_len);
1708 if (old_len == 0 || new_len == 0)
1709 return (unsigned long) -EINVAL;
1711 if (offset_in_page(addr))
1714 if (flags & MREMAP_FIXED && new_addr != addr)
1715 return (unsigned long) -EINVAL;
1717 vma = find_vma_exact(current->mm, addr, old_len);
1719 return (unsigned long) -EINVAL;
1721 if (vma->vm_end != vma->vm_start + old_len)
1722 return (unsigned long) -EFAULT;
1724 if (vma->vm_flags & VM_MAYSHARE)
1725 return (unsigned long) -EPERM;
1727 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1728 return (unsigned long) -ENOMEM;
1730 /* all checks complete - do it */
1731 vma->vm_end = vma->vm_start + new_len;
1732 return vma->vm_start;
1735 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1736 unsigned long, new_len, unsigned long, flags,
1737 unsigned long, new_addr)
1741 down_write(¤t->mm->mmap_sem);
1742 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1743 up_write(¤t->mm->mmap_sem);
1747 struct page *follow_page_mask(struct vm_area_struct *vma,
1748 unsigned long address, unsigned int flags,
1749 unsigned int *page_mask)
1755 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1756 unsigned long pfn, unsigned long size, pgprot_t prot)
1758 if (addr != (pfn << PAGE_SHIFT))
1761 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1764 EXPORT_SYMBOL(remap_pfn_range);
1766 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1768 unsigned long pfn = start >> PAGE_SHIFT;
1769 unsigned long vm_len = vma->vm_end - vma->vm_start;
1771 pfn += vma->vm_pgoff;
1772 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1774 EXPORT_SYMBOL(vm_iomap_memory);
1776 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1777 unsigned long pgoff)
1779 unsigned int size = vma->vm_end - vma->vm_start;
1781 if (!(vma->vm_flags & VM_USERMAP))
1784 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1785 vma->vm_end = vma->vm_start + size;
1789 EXPORT_SYMBOL(remap_vmalloc_range);
1791 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1792 unsigned long len, unsigned long pgoff, unsigned long flags)
1797 void unmap_mapping_range(struct address_space *mapping,
1798 loff_t const holebegin, loff_t const holelen,
1802 EXPORT_SYMBOL(unmap_mapping_range);
1804 int filemap_fault(struct vm_fault *vmf)
1809 EXPORT_SYMBOL(filemap_fault);
1811 void filemap_map_pages(struct vm_fault *vmf,
1812 pgoff_t start_pgoff, pgoff_t end_pgoff)
1816 EXPORT_SYMBOL(filemap_map_pages);
1818 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1819 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1821 struct vm_area_struct *vma;
1822 int write = gup_flags & FOLL_WRITE;
1824 down_read(&mm->mmap_sem);
1826 /* the access must start within one of the target process's mappings */
1827 vma = find_vma(mm, addr);
1829 /* don't overrun this mapping */
1830 if (addr + len >= vma->vm_end)
1831 len = vma->vm_end - addr;
1833 /* only read or write mappings where it is permitted */
1834 if (write && vma->vm_flags & VM_MAYWRITE)
1835 copy_to_user_page(vma, NULL, addr,
1836 (void *) addr, buf, len);
1837 else if (!write && vma->vm_flags & VM_MAYREAD)
1838 copy_from_user_page(vma, NULL, addr,
1839 buf, (void *) addr, len);
1846 up_read(&mm->mmap_sem);
1852 * @access_remote_vm - access another process' address space
1853 * @mm: the mm_struct of the target address space
1854 * @addr: start address to access
1855 * @buf: source or destination buffer
1856 * @len: number of bytes to transfer
1857 * @gup_flags: flags modifying lookup behaviour
1859 * The caller must hold a reference on @mm.
1861 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1862 void *buf, int len, unsigned int gup_flags)
1864 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1868 * Access another process' address space.
1869 * - source/target buffer must be kernel space
1871 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1872 unsigned int gup_flags)
1874 struct mm_struct *mm;
1876 if (addr + len < addr)
1879 mm = get_task_mm(tsk);
1883 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1888 EXPORT_SYMBOL_GPL(access_process_vm);
1891 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1892 * @inode: The inode to check
1893 * @size: The current filesize of the inode
1894 * @newsize: The proposed filesize of the inode
1896 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1897 * make sure that that any outstanding VMAs aren't broken and then shrink the
1898 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1899 * automatically grant mappings that are too large.
1901 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1904 struct vm_area_struct *vma;
1905 struct vm_region *region;
1907 size_t r_size, r_top;
1909 low = newsize >> PAGE_SHIFT;
1910 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1912 down_write(&nommu_region_sem);
1913 i_mmap_lock_read(inode->i_mapping);
1915 /* search for VMAs that fall within the dead zone */
1916 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1917 /* found one - only interested if it's shared out of the page
1919 if (vma->vm_flags & VM_SHARED) {
1920 i_mmap_unlock_read(inode->i_mapping);
1921 up_write(&nommu_region_sem);
1922 return -ETXTBSY; /* not quite true, but near enough */
1926 /* reduce any regions that overlap the dead zone - if in existence,
1927 * these will be pointed to by VMAs that don't overlap the dead zone
1929 * we don't check for any regions that start beyond the EOF as there
1932 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1933 if (!(vma->vm_flags & VM_SHARED))
1936 region = vma->vm_region;
1937 r_size = region->vm_top - region->vm_start;
1938 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1940 if (r_top > newsize) {
1941 region->vm_top -= r_top - newsize;
1942 if (region->vm_end > region->vm_top)
1943 region->vm_end = region->vm_top;
1947 i_mmap_unlock_read(inode->i_mapping);
1948 up_write(&nommu_region_sem);
1953 * Initialise sysctl_user_reserve_kbytes.
1955 * This is intended to prevent a user from starting a single memory hogging
1956 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1959 * The default value is min(3% of free memory, 128MB)
1960 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1962 static int __meminit init_user_reserve(void)
1964 unsigned long free_kbytes;
1966 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1968 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1971 subsys_initcall(init_user_reserve);
1974 * Initialise sysctl_admin_reserve_kbytes.
1976 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1977 * to log in and kill a memory hogging process.
1979 * Systems with more than 256MB will reserve 8MB, enough to recover
1980 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1981 * only reserve 3% of free pages by default.
1983 static int __meminit init_admin_reserve(void)
1985 unsigned long free_kbytes;
1987 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1989 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1992 subsys_initcall(init_admin_reserve);