2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
40 * A fs_path is a helper to dynamically build path names with unknown size.
41 * It reallocates the internal buffer on demand.
42 * It allows fast adding of path elements on the right side (normal path) and
43 * fast adding to the left side (reversed path). A reversed path can also be
44 * unreversed if needed.
53 unsigned short buf_len:15;
54 unsigned short reversed:1;
58 * Average path length does not exceed 200 bytes, we'll have
59 * better packing in the slab and higher chance to satisfy
60 * a allocation later during send.
65 #define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
69 /* reused for each extent */
71 struct btrfs_root *root;
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
82 struct file *send_filp;
88 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
89 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
91 struct btrfs_root *send_root;
92 struct btrfs_root *parent_root;
93 struct clone_root *clone_roots;
96 /* current state of the compare_tree call */
97 struct btrfs_path *left_path;
98 struct btrfs_path *right_path;
99 struct btrfs_key *cmp_key;
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
108 int cur_inode_new_gen;
109 int cur_inode_deleted;
113 u64 cur_inode_last_extent;
117 struct list_head new_refs;
118 struct list_head deleted_refs;
120 struct radix_tree_root name_cache;
121 struct list_head name_cache_list;
124 struct file_ra_state ra;
129 * We process inodes by their increasing order, so if before an
130 * incremental send we reverse the parent/child relationship of
131 * directories such that a directory with a lower inode number was
132 * the parent of a directory with a higher inode number, and the one
133 * becoming the new parent got renamed too, we can't rename/move the
134 * directory with lower inode number when we finish processing it - we
135 * must process the directory with higher inode number first, then
136 * rename/move it and then rename/move the directory with lower inode
137 * number. Example follows.
139 * Tree state when the first send was performed:
151 * Tree state when the second (incremental) send is performed:
160 * The sequence of steps that lead to the second state was:
162 * mv /a/b/c/d /a/b/c2/d2
163 * mv /a/b/c /a/b/c2/d2/cc
165 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 * before we move "d", which has higher inode number.
168 * So we just memorize which move/rename operations must be performed
169 * later when their respective parent is processed and moved/renamed.
172 /* Indexed by parent directory inode number. */
173 struct rb_root pending_dir_moves;
176 * Reverse index, indexed by the inode number of a directory that
177 * is waiting for the move/rename of its immediate parent before its
178 * own move/rename can be performed.
180 struct rb_root waiting_dir_moves;
183 * A directory that is going to be rm'ed might have a child directory
184 * which is in the pending directory moves index above. In this case,
185 * the directory can only be removed after the move/rename of its child
186 * is performed. Example:
206 * Sequence of steps that lead to the send snapshot:
207 * rm -f /a/b/c/foo.txt
209 * mv /a/b/c/x /a/b/YY
212 * When the child is processed, its move/rename is delayed until its
213 * parent is processed (as explained above), but all other operations
214 * like update utimes, chown, chgrp, etc, are performed and the paths
215 * that it uses for those operations must use the orphanized name of
216 * its parent (the directory we're going to rm later), so we need to
217 * memorize that name.
219 * Indexed by the inode number of the directory to be deleted.
221 struct rb_root orphan_dirs;
224 struct pending_dir_move {
226 struct list_head list;
230 struct list_head update_refs;
233 struct waiting_dir_move {
237 * There might be some directory that could not be removed because it
238 * was waiting for this directory inode to be moved first. Therefore
239 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
245 struct orphan_dir_info {
251 struct name_cache_entry {
252 struct list_head list;
254 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 * more then one inum would fall into the same entry, we use radix_list
257 * to store the additional entries. radix_list is also used to store
258 * entries where two entries have the same inum but different
261 struct list_head radix_list;
267 int need_later_update;
272 static void inconsistent_snapshot_error(struct send_ctx *sctx,
273 enum btrfs_compare_tree_result result,
276 const char *result_string;
279 case BTRFS_COMPARE_TREE_NEW:
280 result_string = "new";
282 case BTRFS_COMPARE_TREE_DELETED:
283 result_string = "deleted";
285 case BTRFS_COMPARE_TREE_CHANGED:
286 result_string = "updated";
288 case BTRFS_COMPARE_TREE_SAME:
290 result_string = "unchanged";
294 result_string = "unexpected";
297 btrfs_err(sctx->send_root->fs_info,
298 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 result_string, what, sctx->cmp_key->objectid,
300 sctx->send_root->root_key.objectid,
302 sctx->parent_root->root_key.objectid : 0));
305 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
307 static struct waiting_dir_move *
308 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
310 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
312 static int need_send_hole(struct send_ctx *sctx)
314 return (sctx->parent_root && !sctx->cur_inode_new &&
315 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
316 S_ISREG(sctx->cur_inode_mode));
319 static void fs_path_reset(struct fs_path *p)
322 p->start = p->buf + p->buf_len - 1;
332 static struct fs_path *fs_path_alloc(void)
336 p = kmalloc(sizeof(*p), GFP_KERNEL);
340 p->buf = p->inline_buf;
341 p->buf_len = FS_PATH_INLINE_SIZE;
346 static struct fs_path *fs_path_alloc_reversed(void)
358 static void fs_path_free(struct fs_path *p)
362 if (p->buf != p->inline_buf)
367 static int fs_path_len(struct fs_path *p)
369 return p->end - p->start;
372 static int fs_path_ensure_buf(struct fs_path *p, int len)
380 if (p->buf_len >= len)
383 if (len > PATH_MAX) {
388 path_len = p->end - p->start;
389 old_buf_len = p->buf_len;
392 * First time the inline_buf does not suffice
394 if (p->buf == p->inline_buf) {
395 tmp_buf = kmalloc(len, GFP_KERNEL);
397 memcpy(tmp_buf, p->buf, old_buf_len);
399 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
405 * The real size of the buffer is bigger, this will let the fast path
406 * happen most of the time
408 p->buf_len = ksize(p->buf);
411 tmp_buf = p->buf + old_buf_len - path_len - 1;
412 p->end = p->buf + p->buf_len - 1;
413 p->start = p->end - path_len;
414 memmove(p->start, tmp_buf, path_len + 1);
417 p->end = p->start + path_len;
422 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
428 new_len = p->end - p->start + name_len;
429 if (p->start != p->end)
431 ret = fs_path_ensure_buf(p, new_len);
436 if (p->start != p->end)
438 p->start -= name_len;
439 *prepared = p->start;
441 if (p->start != p->end)
452 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
457 ret = fs_path_prepare_for_add(p, name_len, &prepared);
460 memcpy(prepared, name, name_len);
466 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
471 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
474 memcpy(prepared, p2->start, p2->end - p2->start);
480 static int fs_path_add_from_extent_buffer(struct fs_path *p,
481 struct extent_buffer *eb,
482 unsigned long off, int len)
487 ret = fs_path_prepare_for_add(p, len, &prepared);
491 read_extent_buffer(eb, prepared, off, len);
497 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
501 p->reversed = from->reversed;
504 ret = fs_path_add_path(p, from);
510 static void fs_path_unreverse(struct fs_path *p)
519 len = p->end - p->start;
521 p->end = p->start + len;
522 memmove(p->start, tmp, len + 1);
526 static struct btrfs_path *alloc_path_for_send(void)
528 struct btrfs_path *path;
530 path = btrfs_alloc_path();
533 path->search_commit_root = 1;
534 path->skip_locking = 1;
535 path->need_commit_sem = 1;
539 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
549 ret = vfs_write(filp, (__force const char __user *)buf + pos,
551 /* TODO handle that correctly */
552 /*if (ret == -ERESTARTSYS) {
571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
573 struct btrfs_tlv_header *hdr;
574 int total_len = sizeof(*hdr) + len;
575 int left = sctx->send_max_size - sctx->send_size;
577 if (unlikely(left < total_len))
580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 hdr->tlv_type = cpu_to_le16(attr);
582 hdr->tlv_len = cpu_to_le16(len);
583 memcpy(hdr + 1, data, len);
584 sctx->send_size += total_len;
589 #define TLV_PUT_DEFINE_INT(bits) \
590 static int tlv_put_u##bits(struct send_ctx *sctx, \
591 u##bits attr, u##bits value) \
593 __le##bits __tmp = cpu_to_le##bits(value); \
594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
597 TLV_PUT_DEFINE_INT(64)
599 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600 const char *str, int len)
604 return tlv_put(sctx, attr, str, len);
607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614 struct extent_buffer *eb,
615 struct btrfs_timespec *ts)
617 struct btrfs_timespec bts;
618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619 return tlv_put(sctx, attr, &bts, sizeof(bts));
623 #define TLV_PUT(sctx, attrtype, attrlen, data) \
625 ret = tlv_put(sctx, attrtype, attrlen, data); \
627 goto tlv_put_failure; \
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
632 ret = tlv_put_u##bits(sctx, attrtype, value); \
634 goto tlv_put_failure; \
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
643 ret = tlv_put_string(sctx, attrtype, str, len); \
645 goto tlv_put_failure; \
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
649 ret = tlv_put_string(sctx, attrtype, p->start, \
650 p->end - p->start); \
652 goto tlv_put_failure; \
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
656 ret = tlv_put_uuid(sctx, attrtype, uuid); \
658 goto tlv_put_failure; \
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
664 goto tlv_put_failure; \
667 static int send_header(struct send_ctx *sctx)
669 struct btrfs_stream_header hdr;
671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
679 * For each command/item we want to send to userspace, we call this function.
681 static int begin_cmd(struct send_ctx *sctx, int cmd)
683 struct btrfs_cmd_header *hdr;
685 if (WARN_ON(!sctx->send_buf))
688 BUG_ON(sctx->send_size);
690 sctx->send_size += sizeof(*hdr);
691 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692 hdr->cmd = cpu_to_le16(cmd);
697 static int send_cmd(struct send_ctx *sctx)
700 struct btrfs_cmd_header *hdr;
703 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708 hdr->crc = cpu_to_le32(crc);
710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
713 sctx->total_send_size += sctx->send_size;
714 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
721 * Sends a move instruction to user space
723 static int send_rename(struct send_ctx *sctx,
724 struct fs_path *from, struct fs_path *to)
726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
738 ret = send_cmd(sctx);
746 * Sends a link instruction to user space
748 static int send_link(struct send_ctx *sctx,
749 struct fs_path *path, struct fs_path *lnk)
751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
763 ret = send_cmd(sctx);
771 * Sends an unlink instruction to user space
773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
778 btrfs_debug(fs_info, "send_unlink %s", path->start);
780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
786 ret = send_cmd(sctx);
794 * Sends a rmdir instruction to user space
796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
801 btrfs_debug(fs_info, "send_rmdir %s", path->start);
803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
809 ret = send_cmd(sctx);
817 * Helper function to retrieve some fields from an inode item.
819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
824 struct btrfs_inode_item *ii;
825 struct btrfs_key key;
828 key.type = BTRFS_INODE_ITEM_KEY;
830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 struct btrfs_inode_item);
840 *size = btrfs_inode_size(path->nodes[0], ii);
842 *gen = btrfs_inode_generation(path->nodes[0], ii);
844 *mode = btrfs_inode_mode(path->nodes[0], ii);
846 *uid = btrfs_inode_uid(path->nodes[0], ii);
848 *gid = btrfs_inode_gid(path->nodes[0], ii);
850 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
855 static int get_inode_info(struct btrfs_root *root,
856 u64 ino, u64 *size, u64 *gen,
857 u64 *mode, u64 *uid, u64 *gid,
860 struct btrfs_path *path;
863 path = alloc_path_for_send();
866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
868 btrfs_free_path(path);
872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
882 * path must point to the INODE_REF or INODE_EXTREF when called.
884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 struct btrfs_key *found_key, int resolve,
886 iterate_inode_ref_t iterate, void *ctx)
888 struct extent_buffer *eb = path->nodes[0];
889 struct btrfs_item *item;
890 struct btrfs_inode_ref *iref;
891 struct btrfs_inode_extref *extref;
892 struct btrfs_path *tmp_path;
896 int slot = path->slots[0];
903 unsigned long name_off;
904 unsigned long elem_size;
907 p = fs_path_alloc_reversed();
911 tmp_path = alloc_path_for_send();
918 if (found_key->type == BTRFS_INODE_REF_KEY) {
919 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 struct btrfs_inode_ref);
921 item = btrfs_item_nr(slot);
922 total = btrfs_item_size(eb, item);
923 elem_size = sizeof(*iref);
925 ptr = btrfs_item_ptr_offset(eb, slot);
926 total = btrfs_item_size_nr(eb, slot);
927 elem_size = sizeof(*extref);
930 while (cur < total) {
933 if (found_key->type == BTRFS_INODE_REF_KEY) {
934 iref = (struct btrfs_inode_ref *)(ptr + cur);
935 name_len = btrfs_inode_ref_name_len(eb, iref);
936 name_off = (unsigned long)(iref + 1);
937 index = btrfs_inode_ref_index(eb, iref);
938 dir = found_key->offset;
940 extref = (struct btrfs_inode_extref *)(ptr + cur);
941 name_len = btrfs_inode_extref_name_len(eb, extref);
942 name_off = (unsigned long)&extref->name;
943 index = btrfs_inode_extref_index(eb, extref);
944 dir = btrfs_inode_extref_parent(eb, extref);
948 start = btrfs_ref_to_path(root, tmp_path, name_len,
952 ret = PTR_ERR(start);
955 if (start < p->buf) {
956 /* overflow , try again with larger buffer */
957 ret = fs_path_ensure_buf(p,
958 p->buf_len + p->buf - start);
961 start = btrfs_ref_to_path(root, tmp_path,
966 ret = PTR_ERR(start);
969 BUG_ON(start < p->buf);
973 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
979 cur += elem_size + name_len;
980 ret = iterate(num, dir, index, p, ctx);
987 btrfs_free_path(tmp_path);
992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 const char *name, int name_len,
994 const char *data, int data_len,
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1002 * path must point to the dir item when called.
1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 struct btrfs_key *found_key,
1006 iterate_dir_item_t iterate, void *ctx)
1009 struct extent_buffer *eb;
1010 struct btrfs_item *item;
1011 struct btrfs_dir_item *di;
1012 struct btrfs_key di_key;
1025 * Start with a small buffer (1 page). If later we end up needing more
1026 * space, which can happen for xattrs on a fs with a leaf size greater
1027 * then the page size, attempt to increase the buffer. Typically xattr
1031 buf = kmalloc(buf_len, GFP_KERNEL);
1037 eb = path->nodes[0];
1038 slot = path->slots[0];
1039 item = btrfs_item_nr(slot);
1040 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1043 total = btrfs_item_size(eb, item);
1046 while (cur < total) {
1047 name_len = btrfs_dir_name_len(eb, di);
1048 data_len = btrfs_dir_data_len(eb, di);
1049 type = btrfs_dir_type(eb, di);
1050 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1052 if (type == BTRFS_FT_XATTR) {
1053 if (name_len > XATTR_NAME_MAX) {
1054 ret = -ENAMETOOLONG;
1057 if (name_len + data_len >
1058 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1066 if (name_len + data_len > PATH_MAX) {
1067 ret = -ENAMETOOLONG;
1072 ret = btrfs_is_name_len_valid(eb, path->slots[0],
1073 (unsigned long)(di + 1), name_len + data_len);
1078 if (name_len + data_len > buf_len) {
1079 buf_len = name_len + data_len;
1080 if (is_vmalloc_addr(buf)) {
1084 char *tmp = krealloc(buf, buf_len,
1085 GFP_KERNEL | __GFP_NOWARN);
1092 buf = kvmalloc(buf_len, GFP_KERNEL);
1100 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1101 name_len + data_len);
1103 len = sizeof(*di) + name_len + data_len;
1104 di = (struct btrfs_dir_item *)((char *)di + len);
1107 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1108 data_len, type, ctx);
1124 static int __copy_first_ref(int num, u64 dir, int index,
1125 struct fs_path *p, void *ctx)
1128 struct fs_path *pt = ctx;
1130 ret = fs_path_copy(pt, p);
1134 /* we want the first only */
1139 * Retrieve the first path of an inode. If an inode has more then one
1140 * ref/hardlink, this is ignored.
1142 static int get_inode_path(struct btrfs_root *root,
1143 u64 ino, struct fs_path *path)
1146 struct btrfs_key key, found_key;
1147 struct btrfs_path *p;
1149 p = alloc_path_for_send();
1153 fs_path_reset(path);
1156 key.type = BTRFS_INODE_REF_KEY;
1159 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1166 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1167 if (found_key.objectid != ino ||
1168 (found_key.type != BTRFS_INODE_REF_KEY &&
1169 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1174 ret = iterate_inode_ref(root, p, &found_key, 1,
1175 __copy_first_ref, path);
1185 struct backref_ctx {
1186 struct send_ctx *sctx;
1188 struct btrfs_path *path;
1189 /* number of total found references */
1193 * used for clones found in send_root. clones found behind cur_objectid
1194 * and cur_offset are not considered as allowed clones.
1199 /* may be truncated in case it's the last extent in a file */
1202 /* data offset in the file extent item */
1205 /* Just to check for bugs in backref resolving */
1209 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1211 u64 root = (u64)(uintptr_t)key;
1212 struct clone_root *cr = (struct clone_root *)elt;
1214 if (root < cr->root->objectid)
1216 if (root > cr->root->objectid)
1221 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1223 struct clone_root *cr1 = (struct clone_root *)e1;
1224 struct clone_root *cr2 = (struct clone_root *)e2;
1226 if (cr1->root->objectid < cr2->root->objectid)
1228 if (cr1->root->objectid > cr2->root->objectid)
1234 * Called for every backref that is found for the current extent.
1235 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1237 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1239 struct backref_ctx *bctx = ctx_;
1240 struct clone_root *found;
1244 /* First check if the root is in the list of accepted clone sources */
1245 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1246 bctx->sctx->clone_roots_cnt,
1247 sizeof(struct clone_root),
1248 __clone_root_cmp_bsearch);
1252 if (found->root == bctx->sctx->send_root &&
1253 ino == bctx->cur_objectid &&
1254 offset == bctx->cur_offset) {
1255 bctx->found_itself = 1;
1259 * There are inodes that have extents that lie behind its i_size. Don't
1260 * accept clones from these extents.
1262 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1264 btrfs_release_path(bctx->path);
1268 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1272 * Make sure we don't consider clones from send_root that are
1273 * behind the current inode/offset.
1275 if (found->root == bctx->sctx->send_root) {
1277 * TODO for the moment we don't accept clones from the inode
1278 * that is currently send. We may change this when
1279 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1282 if (ino >= bctx->cur_objectid)
1285 if (ino > bctx->cur_objectid)
1287 if (offset + bctx->extent_len > bctx->cur_offset)
1293 found->found_refs++;
1294 if (ino < found->ino) {
1296 found->offset = offset;
1297 } else if (found->ino == ino) {
1299 * same extent found more then once in the same file.
1301 if (found->offset > offset + bctx->extent_len)
1302 found->offset = offset;
1309 * Given an inode, offset and extent item, it finds a good clone for a clone
1310 * instruction. Returns -ENOENT when none could be found. The function makes
1311 * sure that the returned clone is usable at the point where sending is at the
1312 * moment. This means, that no clones are accepted which lie behind the current
1315 * path must point to the extent item when called.
1317 static int find_extent_clone(struct send_ctx *sctx,
1318 struct btrfs_path *path,
1319 u64 ino, u64 data_offset,
1321 struct clone_root **found)
1323 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1329 u64 extent_item_pos;
1331 struct btrfs_file_extent_item *fi;
1332 struct extent_buffer *eb = path->nodes[0];
1333 struct backref_ctx *backref_ctx = NULL;
1334 struct clone_root *cur_clone_root;
1335 struct btrfs_key found_key;
1336 struct btrfs_path *tmp_path;
1340 tmp_path = alloc_path_for_send();
1344 /* We only use this path under the commit sem */
1345 tmp_path->need_commit_sem = 0;
1347 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1353 backref_ctx->path = tmp_path;
1355 if (data_offset >= ino_size) {
1357 * There may be extents that lie behind the file's size.
1358 * I at least had this in combination with snapshotting while
1359 * writing large files.
1365 fi = btrfs_item_ptr(eb, path->slots[0],
1366 struct btrfs_file_extent_item);
1367 extent_type = btrfs_file_extent_type(eb, fi);
1368 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1372 compressed = btrfs_file_extent_compression(eb, fi);
1374 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1375 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1376 if (disk_byte == 0) {
1380 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1382 down_read(&fs_info->commit_root_sem);
1383 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1384 &found_key, &flags);
1385 up_read(&fs_info->commit_root_sem);
1386 btrfs_release_path(tmp_path);
1390 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1396 * Setup the clone roots.
1398 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1399 cur_clone_root = sctx->clone_roots + i;
1400 cur_clone_root->ino = (u64)-1;
1401 cur_clone_root->offset = 0;
1402 cur_clone_root->found_refs = 0;
1405 backref_ctx->sctx = sctx;
1406 backref_ctx->found = 0;
1407 backref_ctx->cur_objectid = ino;
1408 backref_ctx->cur_offset = data_offset;
1409 backref_ctx->found_itself = 0;
1410 backref_ctx->extent_len = num_bytes;
1412 * For non-compressed extents iterate_extent_inodes() gives us extent
1413 * offsets that already take into account the data offset, but not for
1414 * compressed extents, since the offset is logical and not relative to
1415 * the physical extent locations. We must take this into account to
1416 * avoid sending clone offsets that go beyond the source file's size,
1417 * which would result in the clone ioctl failing with -EINVAL on the
1420 if (compressed == BTRFS_COMPRESS_NONE)
1421 backref_ctx->data_offset = 0;
1423 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1426 * The last extent of a file may be too large due to page alignment.
1427 * We need to adjust extent_len in this case so that the checks in
1428 * __iterate_backrefs work.
1430 if (data_offset + num_bytes >= ino_size)
1431 backref_ctx->extent_len = ino_size - data_offset;
1434 * Now collect all backrefs.
1436 if (compressed == BTRFS_COMPRESS_NONE)
1437 extent_item_pos = logical - found_key.objectid;
1439 extent_item_pos = 0;
1440 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1441 extent_item_pos, 1, __iterate_backrefs,
1447 if (!backref_ctx->found_itself) {
1448 /* found a bug in backref code? */
1451 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1452 ino, data_offset, disk_byte, found_key.objectid);
1456 btrfs_debug(fs_info,
1457 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1458 data_offset, ino, num_bytes, logical);
1460 if (!backref_ctx->found)
1461 btrfs_debug(fs_info, "no clones found");
1463 cur_clone_root = NULL;
1464 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1465 if (sctx->clone_roots[i].found_refs) {
1466 if (!cur_clone_root)
1467 cur_clone_root = sctx->clone_roots + i;
1468 else if (sctx->clone_roots[i].root == sctx->send_root)
1469 /* prefer clones from send_root over others */
1470 cur_clone_root = sctx->clone_roots + i;
1475 if (cur_clone_root) {
1476 *found = cur_clone_root;
1483 btrfs_free_path(tmp_path);
1488 static int read_symlink(struct btrfs_root *root,
1490 struct fs_path *dest)
1493 struct btrfs_path *path;
1494 struct btrfs_key key;
1495 struct btrfs_file_extent_item *ei;
1501 path = alloc_path_for_send();
1506 key.type = BTRFS_EXTENT_DATA_KEY;
1508 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1513 * An empty symlink inode. Can happen in rare error paths when
1514 * creating a symlink (transaction committed before the inode
1515 * eviction handler removed the symlink inode items and a crash
1516 * happened in between or the subvol was snapshoted in between).
1517 * Print an informative message to dmesg/syslog so that the user
1518 * can delete the symlink.
1520 btrfs_err(root->fs_info,
1521 "Found empty symlink inode %llu at root %llu",
1522 ino, root->root_key.objectid);
1527 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1528 struct btrfs_file_extent_item);
1529 type = btrfs_file_extent_type(path->nodes[0], ei);
1530 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1531 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1532 BUG_ON(compression);
1534 off = btrfs_file_extent_inline_start(ei);
1535 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1537 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1540 btrfs_free_path(path);
1545 * Helper function to generate a file name that is unique in the root of
1546 * send_root and parent_root. This is used to generate names for orphan inodes.
1548 static int gen_unique_name(struct send_ctx *sctx,
1550 struct fs_path *dest)
1553 struct btrfs_path *path;
1554 struct btrfs_dir_item *di;
1559 path = alloc_path_for_send();
1564 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1566 ASSERT(len < sizeof(tmp));
1568 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1569 path, BTRFS_FIRST_FREE_OBJECTID,
1570 tmp, strlen(tmp), 0);
1571 btrfs_release_path(path);
1577 /* not unique, try again */
1582 if (!sctx->parent_root) {
1588 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1589 path, BTRFS_FIRST_FREE_OBJECTID,
1590 tmp, strlen(tmp), 0);
1591 btrfs_release_path(path);
1597 /* not unique, try again */
1605 ret = fs_path_add(dest, tmp, strlen(tmp));
1608 btrfs_free_path(path);
1613 inode_state_no_change,
1614 inode_state_will_create,
1615 inode_state_did_create,
1616 inode_state_will_delete,
1617 inode_state_did_delete,
1620 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1628 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1630 if (ret < 0 && ret != -ENOENT)
1634 if (!sctx->parent_root) {
1635 right_ret = -ENOENT;
1637 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1638 NULL, NULL, NULL, NULL);
1639 if (ret < 0 && ret != -ENOENT)
1644 if (!left_ret && !right_ret) {
1645 if (left_gen == gen && right_gen == gen) {
1646 ret = inode_state_no_change;
1647 } else if (left_gen == gen) {
1648 if (ino < sctx->send_progress)
1649 ret = inode_state_did_create;
1651 ret = inode_state_will_create;
1652 } else if (right_gen == gen) {
1653 if (ino < sctx->send_progress)
1654 ret = inode_state_did_delete;
1656 ret = inode_state_will_delete;
1660 } else if (!left_ret) {
1661 if (left_gen == gen) {
1662 if (ino < sctx->send_progress)
1663 ret = inode_state_did_create;
1665 ret = inode_state_will_create;
1669 } else if (!right_ret) {
1670 if (right_gen == gen) {
1671 if (ino < sctx->send_progress)
1672 ret = inode_state_did_delete;
1674 ret = inode_state_will_delete;
1686 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1690 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1693 ret = get_cur_inode_state(sctx, ino, gen);
1697 if (ret == inode_state_no_change ||
1698 ret == inode_state_did_create ||
1699 ret == inode_state_will_delete)
1709 * Helper function to lookup a dir item in a dir.
1711 static int lookup_dir_item_inode(struct btrfs_root *root,
1712 u64 dir, const char *name, int name_len,
1717 struct btrfs_dir_item *di;
1718 struct btrfs_key key;
1719 struct btrfs_path *path;
1721 path = alloc_path_for_send();
1725 di = btrfs_lookup_dir_item(NULL, root, path,
1726 dir, name, name_len, 0);
1735 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1736 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1740 *found_inode = key.objectid;
1741 *found_type = btrfs_dir_type(path->nodes[0], di);
1744 btrfs_free_path(path);
1749 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1750 * generation of the parent dir and the name of the dir entry.
1752 static int get_first_ref(struct btrfs_root *root, u64 ino,
1753 u64 *dir, u64 *dir_gen, struct fs_path *name)
1756 struct btrfs_key key;
1757 struct btrfs_key found_key;
1758 struct btrfs_path *path;
1762 path = alloc_path_for_send();
1767 key.type = BTRFS_INODE_REF_KEY;
1770 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1774 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1776 if (ret || found_key.objectid != ino ||
1777 (found_key.type != BTRFS_INODE_REF_KEY &&
1778 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1783 if (found_key.type == BTRFS_INODE_REF_KEY) {
1784 struct btrfs_inode_ref *iref;
1785 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786 struct btrfs_inode_ref);
1787 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1788 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1789 (unsigned long)(iref + 1),
1791 parent_dir = found_key.offset;
1793 struct btrfs_inode_extref *extref;
1794 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1795 struct btrfs_inode_extref);
1796 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1797 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1798 (unsigned long)&extref->name, len);
1799 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1803 btrfs_release_path(path);
1806 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1815 btrfs_free_path(path);
1819 static int is_first_ref(struct btrfs_root *root,
1821 const char *name, int name_len)
1824 struct fs_path *tmp_name;
1827 tmp_name = fs_path_alloc();
1831 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1835 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1840 ret = !memcmp(tmp_name->start, name, name_len);
1843 fs_path_free(tmp_name);
1848 * Used by process_recorded_refs to determine if a new ref would overwrite an
1849 * already existing ref. In case it detects an overwrite, it returns the
1850 * inode/gen in who_ino/who_gen.
1851 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1852 * to make sure later references to the overwritten inode are possible.
1853 * Orphanizing is however only required for the first ref of an inode.
1854 * process_recorded_refs does an additional is_first_ref check to see if
1855 * orphanizing is really required.
1857 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1858 const char *name, int name_len,
1859 u64 *who_ino, u64 *who_gen)
1863 u64 other_inode = 0;
1866 if (!sctx->parent_root)
1869 ret = is_inode_existent(sctx, dir, dir_gen);
1874 * If we have a parent root we need to verify that the parent dir was
1875 * not deleted and then re-created, if it was then we have no overwrite
1876 * and we can just unlink this entry.
1878 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1879 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1881 if (ret < 0 && ret != -ENOENT)
1891 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1892 &other_inode, &other_type);
1893 if (ret < 0 && ret != -ENOENT)
1901 * Check if the overwritten ref was already processed. If yes, the ref
1902 * was already unlinked/moved, so we can safely assume that we will not
1903 * overwrite anything at this point in time.
1905 if (other_inode > sctx->send_progress ||
1906 is_waiting_for_move(sctx, other_inode)) {
1907 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1908 who_gen, NULL, NULL, NULL, NULL);
1913 *who_ino = other_inode;
1923 * Checks if the ref was overwritten by an already processed inode. This is
1924 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1925 * thus the orphan name needs be used.
1926 * process_recorded_refs also uses it to avoid unlinking of refs that were
1929 static int did_overwrite_ref(struct send_ctx *sctx,
1930 u64 dir, u64 dir_gen,
1931 u64 ino, u64 ino_gen,
1932 const char *name, int name_len)
1939 if (!sctx->parent_root)
1942 ret = is_inode_existent(sctx, dir, dir_gen);
1946 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1947 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1949 if (ret < 0 && ret != -ENOENT)
1959 /* check if the ref was overwritten by another ref */
1960 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1961 &ow_inode, &other_type);
1962 if (ret < 0 && ret != -ENOENT)
1965 /* was never and will never be overwritten */
1970 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1975 if (ow_inode == ino && gen == ino_gen) {
1981 * We know that it is or will be overwritten. Check this now.
1982 * The current inode being processed might have been the one that caused
1983 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1984 * the current inode being processed.
1986 if ((ow_inode < sctx->send_progress) ||
1987 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1988 gen == sctx->cur_inode_gen))
1998 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1999 * that got overwritten. This is used by process_recorded_refs to determine
2000 * if it has to use the path as returned by get_cur_path or the orphan name.
2002 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2005 struct fs_path *name = NULL;
2009 if (!sctx->parent_root)
2012 name = fs_path_alloc();
2016 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2020 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2021 name->start, fs_path_len(name));
2029 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2030 * so we need to do some special handling in case we have clashes. This function
2031 * takes care of this with the help of name_cache_entry::radix_list.
2032 * In case of error, nce is kfreed.
2034 static int name_cache_insert(struct send_ctx *sctx,
2035 struct name_cache_entry *nce)
2038 struct list_head *nce_head;
2040 nce_head = radix_tree_lookup(&sctx->name_cache,
2041 (unsigned long)nce->ino);
2043 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2048 INIT_LIST_HEAD(nce_head);
2050 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2057 list_add_tail(&nce->radix_list, nce_head);
2058 list_add_tail(&nce->list, &sctx->name_cache_list);
2059 sctx->name_cache_size++;
2064 static void name_cache_delete(struct send_ctx *sctx,
2065 struct name_cache_entry *nce)
2067 struct list_head *nce_head;
2069 nce_head = radix_tree_lookup(&sctx->name_cache,
2070 (unsigned long)nce->ino);
2072 btrfs_err(sctx->send_root->fs_info,
2073 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2074 nce->ino, sctx->name_cache_size);
2077 list_del(&nce->radix_list);
2078 list_del(&nce->list);
2079 sctx->name_cache_size--;
2082 * We may not get to the final release of nce_head if the lookup fails
2084 if (nce_head && list_empty(nce_head)) {
2085 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2090 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2093 struct list_head *nce_head;
2094 struct name_cache_entry *cur;
2096 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2100 list_for_each_entry(cur, nce_head, radix_list) {
2101 if (cur->ino == ino && cur->gen == gen)
2108 * Removes the entry from the list and adds it back to the end. This marks the
2109 * entry as recently used so that name_cache_clean_unused does not remove it.
2111 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2113 list_del(&nce->list);
2114 list_add_tail(&nce->list, &sctx->name_cache_list);
2118 * Remove some entries from the beginning of name_cache_list.
2120 static void name_cache_clean_unused(struct send_ctx *sctx)
2122 struct name_cache_entry *nce;
2124 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2127 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2128 nce = list_entry(sctx->name_cache_list.next,
2129 struct name_cache_entry, list);
2130 name_cache_delete(sctx, nce);
2135 static void name_cache_free(struct send_ctx *sctx)
2137 struct name_cache_entry *nce;
2139 while (!list_empty(&sctx->name_cache_list)) {
2140 nce = list_entry(sctx->name_cache_list.next,
2141 struct name_cache_entry, list);
2142 name_cache_delete(sctx, nce);
2148 * Used by get_cur_path for each ref up to the root.
2149 * Returns 0 if it succeeded.
2150 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2151 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2152 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2153 * Returns <0 in case of error.
2155 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2159 struct fs_path *dest)
2163 struct name_cache_entry *nce = NULL;
2166 * First check if we already did a call to this function with the same
2167 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2168 * return the cached result.
2170 nce = name_cache_search(sctx, ino, gen);
2172 if (ino < sctx->send_progress && nce->need_later_update) {
2173 name_cache_delete(sctx, nce);
2177 name_cache_used(sctx, nce);
2178 *parent_ino = nce->parent_ino;
2179 *parent_gen = nce->parent_gen;
2180 ret = fs_path_add(dest, nce->name, nce->name_len);
2189 * If the inode is not existent yet, add the orphan name and return 1.
2190 * This should only happen for the parent dir that we determine in
2193 ret = is_inode_existent(sctx, ino, gen);
2198 ret = gen_unique_name(sctx, ino, gen, dest);
2206 * Depending on whether the inode was already processed or not, use
2207 * send_root or parent_root for ref lookup.
2209 if (ino < sctx->send_progress)
2210 ret = get_first_ref(sctx->send_root, ino,
2211 parent_ino, parent_gen, dest);
2213 ret = get_first_ref(sctx->parent_root, ino,
2214 parent_ino, parent_gen, dest);
2219 * Check if the ref was overwritten by an inode's ref that was processed
2220 * earlier. If yes, treat as orphan and return 1.
2222 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2223 dest->start, dest->end - dest->start);
2227 fs_path_reset(dest);
2228 ret = gen_unique_name(sctx, ino, gen, dest);
2236 * Store the result of the lookup in the name cache.
2238 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2246 nce->parent_ino = *parent_ino;
2247 nce->parent_gen = *parent_gen;
2248 nce->name_len = fs_path_len(dest);
2250 strcpy(nce->name, dest->start);
2252 if (ino < sctx->send_progress)
2253 nce->need_later_update = 0;
2255 nce->need_later_update = 1;
2257 nce_ret = name_cache_insert(sctx, nce);
2260 name_cache_clean_unused(sctx);
2267 * Magic happens here. This function returns the first ref to an inode as it
2268 * would look like while receiving the stream at this point in time.
2269 * We walk the path up to the root. For every inode in between, we check if it
2270 * was already processed/sent. If yes, we continue with the parent as found
2271 * in send_root. If not, we continue with the parent as found in parent_root.
2272 * If we encounter an inode that was deleted at this point in time, we use the
2273 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2274 * that were not created yet and overwritten inodes/refs.
2276 * When do we have have orphan inodes:
2277 * 1. When an inode is freshly created and thus no valid refs are available yet
2278 * 2. When a directory lost all it's refs (deleted) but still has dir items
2279 * inside which were not processed yet (pending for move/delete). If anyone
2280 * tried to get the path to the dir items, it would get a path inside that
2282 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2283 * of an unprocessed inode. If in that case the first ref would be
2284 * overwritten, the overwritten inode gets "orphanized". Later when we
2285 * process this overwritten inode, it is restored at a new place by moving
2288 * sctx->send_progress tells this function at which point in time receiving
2291 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2292 struct fs_path *dest)
2295 struct fs_path *name = NULL;
2296 u64 parent_inode = 0;
2300 name = fs_path_alloc();
2307 fs_path_reset(dest);
2309 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2310 struct waiting_dir_move *wdm;
2312 fs_path_reset(name);
2314 if (is_waiting_for_rm(sctx, ino)) {
2315 ret = gen_unique_name(sctx, ino, gen, name);
2318 ret = fs_path_add_path(dest, name);
2322 wdm = get_waiting_dir_move(sctx, ino);
2323 if (wdm && wdm->orphanized) {
2324 ret = gen_unique_name(sctx, ino, gen, name);
2327 ret = get_first_ref(sctx->parent_root, ino,
2328 &parent_inode, &parent_gen, name);
2330 ret = __get_cur_name_and_parent(sctx, ino, gen,
2340 ret = fs_path_add_path(dest, name);
2351 fs_path_unreverse(dest);
2356 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2358 static int send_subvol_begin(struct send_ctx *sctx)
2361 struct btrfs_root *send_root = sctx->send_root;
2362 struct btrfs_root *parent_root = sctx->parent_root;
2363 struct btrfs_path *path;
2364 struct btrfs_key key;
2365 struct btrfs_root_ref *ref;
2366 struct extent_buffer *leaf;
2370 path = btrfs_alloc_path();
2374 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2376 btrfs_free_path(path);
2380 key.objectid = send_root->objectid;
2381 key.type = BTRFS_ROOT_BACKREF_KEY;
2384 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2393 leaf = path->nodes[0];
2394 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2395 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2396 key.objectid != send_root->objectid) {
2400 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2401 namelen = btrfs_root_ref_name_len(leaf, ref);
2402 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2403 btrfs_release_path(path);
2406 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2410 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2415 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2417 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2418 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2419 sctx->send_root->root_item.received_uuid);
2421 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2422 sctx->send_root->root_item.uuid);
2424 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2425 le64_to_cpu(sctx->send_root->root_item.ctransid));
2427 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2428 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2429 parent_root->root_item.received_uuid);
2431 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2432 parent_root->root_item.uuid);
2433 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2434 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2437 ret = send_cmd(sctx);
2441 btrfs_free_path(path);
2446 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2448 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2452 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2454 p = fs_path_alloc();
2458 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2462 ret = get_cur_path(sctx, ino, gen, p);
2465 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2466 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2468 ret = send_cmd(sctx);
2476 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2478 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2482 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2484 p = fs_path_alloc();
2488 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2492 ret = get_cur_path(sctx, ino, gen, p);
2495 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2496 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2498 ret = send_cmd(sctx);
2506 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2508 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2512 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2515 p = fs_path_alloc();
2519 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2523 ret = get_cur_path(sctx, ino, gen, p);
2526 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2527 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2528 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2530 ret = send_cmd(sctx);
2538 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2540 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2542 struct fs_path *p = NULL;
2543 struct btrfs_inode_item *ii;
2544 struct btrfs_path *path = NULL;
2545 struct extent_buffer *eb;
2546 struct btrfs_key key;
2549 btrfs_debug(fs_info, "send_utimes %llu", ino);
2551 p = fs_path_alloc();
2555 path = alloc_path_for_send();
2562 key.type = BTRFS_INODE_ITEM_KEY;
2564 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2570 eb = path->nodes[0];
2571 slot = path->slots[0];
2572 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2574 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2578 ret = get_cur_path(sctx, ino, gen, p);
2581 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2582 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2583 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2584 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2585 /* TODO Add otime support when the otime patches get into upstream */
2587 ret = send_cmd(sctx);
2592 btrfs_free_path(path);
2597 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2598 * a valid path yet because we did not process the refs yet. So, the inode
2599 * is created as orphan.
2601 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2603 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2611 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2613 p = fs_path_alloc();
2617 if (ino != sctx->cur_ino) {
2618 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2623 gen = sctx->cur_inode_gen;
2624 mode = sctx->cur_inode_mode;
2625 rdev = sctx->cur_inode_rdev;
2628 if (S_ISREG(mode)) {
2629 cmd = BTRFS_SEND_C_MKFILE;
2630 } else if (S_ISDIR(mode)) {
2631 cmd = BTRFS_SEND_C_MKDIR;
2632 } else if (S_ISLNK(mode)) {
2633 cmd = BTRFS_SEND_C_SYMLINK;
2634 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2635 cmd = BTRFS_SEND_C_MKNOD;
2636 } else if (S_ISFIFO(mode)) {
2637 cmd = BTRFS_SEND_C_MKFIFO;
2638 } else if (S_ISSOCK(mode)) {
2639 cmd = BTRFS_SEND_C_MKSOCK;
2641 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2642 (int)(mode & S_IFMT));
2647 ret = begin_cmd(sctx, cmd);
2651 ret = gen_unique_name(sctx, ino, gen, p);
2655 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2656 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2658 if (S_ISLNK(mode)) {
2660 ret = read_symlink(sctx->send_root, ino, p);
2663 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2664 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2665 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2666 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2667 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2670 ret = send_cmd(sctx);
2682 * We need some special handling for inodes that get processed before the parent
2683 * directory got created. See process_recorded_refs for details.
2684 * This function does the check if we already created the dir out of order.
2686 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2689 struct btrfs_path *path = NULL;
2690 struct btrfs_key key;
2691 struct btrfs_key found_key;
2692 struct btrfs_key di_key;
2693 struct extent_buffer *eb;
2694 struct btrfs_dir_item *di;
2697 path = alloc_path_for_send();
2704 key.type = BTRFS_DIR_INDEX_KEY;
2706 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2711 eb = path->nodes[0];
2712 slot = path->slots[0];
2713 if (slot >= btrfs_header_nritems(eb)) {
2714 ret = btrfs_next_leaf(sctx->send_root, path);
2717 } else if (ret > 0) {
2724 btrfs_item_key_to_cpu(eb, &found_key, slot);
2725 if (found_key.objectid != key.objectid ||
2726 found_key.type != key.type) {
2731 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2732 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2734 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2735 di_key.objectid < sctx->send_progress) {
2744 btrfs_free_path(path);
2749 * Only creates the inode if it is:
2750 * 1. Not a directory
2751 * 2. Or a directory which was not created already due to out of order
2752 * directories. See did_create_dir and process_recorded_refs for details.
2754 static int send_create_inode_if_needed(struct send_ctx *sctx)
2758 if (S_ISDIR(sctx->cur_inode_mode)) {
2759 ret = did_create_dir(sctx, sctx->cur_ino);
2768 ret = send_create_inode(sctx, sctx->cur_ino);
2776 struct recorded_ref {
2777 struct list_head list;
2779 struct fs_path *full_path;
2785 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2787 ref->full_path = path;
2788 ref->name = (char *)kbasename(ref->full_path->start);
2789 ref->name_len = ref->full_path->end - ref->name;
2793 * We need to process new refs before deleted refs, but compare_tree gives us
2794 * everything mixed. So we first record all refs and later process them.
2795 * This function is a helper to record one ref.
2797 static int __record_ref(struct list_head *head, u64 dir,
2798 u64 dir_gen, struct fs_path *path)
2800 struct recorded_ref *ref;
2802 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2807 ref->dir_gen = dir_gen;
2808 set_ref_path(ref, path);
2809 list_add_tail(&ref->list, head);
2813 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2815 struct recorded_ref *new;
2817 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2821 new->dir = ref->dir;
2822 new->dir_gen = ref->dir_gen;
2823 new->full_path = NULL;
2824 INIT_LIST_HEAD(&new->list);
2825 list_add_tail(&new->list, list);
2829 static void __free_recorded_refs(struct list_head *head)
2831 struct recorded_ref *cur;
2833 while (!list_empty(head)) {
2834 cur = list_entry(head->next, struct recorded_ref, list);
2835 fs_path_free(cur->full_path);
2836 list_del(&cur->list);
2841 static void free_recorded_refs(struct send_ctx *sctx)
2843 __free_recorded_refs(&sctx->new_refs);
2844 __free_recorded_refs(&sctx->deleted_refs);
2848 * Renames/moves a file/dir to its orphan name. Used when the first
2849 * ref of an unprocessed inode gets overwritten and for all non empty
2852 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2853 struct fs_path *path)
2856 struct fs_path *orphan;
2858 orphan = fs_path_alloc();
2862 ret = gen_unique_name(sctx, ino, gen, orphan);
2866 ret = send_rename(sctx, path, orphan);
2869 fs_path_free(orphan);
2873 static struct orphan_dir_info *
2874 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2876 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2877 struct rb_node *parent = NULL;
2878 struct orphan_dir_info *entry, *odi;
2880 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2882 return ERR_PTR(-ENOMEM);
2888 entry = rb_entry(parent, struct orphan_dir_info, node);
2889 if (dir_ino < entry->ino) {
2891 } else if (dir_ino > entry->ino) {
2892 p = &(*p)->rb_right;
2899 rb_link_node(&odi->node, parent, p);
2900 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2904 static struct orphan_dir_info *
2905 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2907 struct rb_node *n = sctx->orphan_dirs.rb_node;
2908 struct orphan_dir_info *entry;
2911 entry = rb_entry(n, struct orphan_dir_info, node);
2912 if (dir_ino < entry->ino)
2914 else if (dir_ino > entry->ino)
2922 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2924 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2929 static void free_orphan_dir_info(struct send_ctx *sctx,
2930 struct orphan_dir_info *odi)
2934 rb_erase(&odi->node, &sctx->orphan_dirs);
2939 * Returns 1 if a directory can be removed at this point in time.
2940 * We check this by iterating all dir items and checking if the inode behind
2941 * the dir item was already processed.
2943 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2947 struct btrfs_root *root = sctx->parent_root;
2948 struct btrfs_path *path;
2949 struct btrfs_key key;
2950 struct btrfs_key found_key;
2951 struct btrfs_key loc;
2952 struct btrfs_dir_item *di;
2955 * Don't try to rmdir the top/root subvolume dir.
2957 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2960 path = alloc_path_for_send();
2965 key.type = BTRFS_DIR_INDEX_KEY;
2967 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2972 struct waiting_dir_move *dm;
2974 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2975 ret = btrfs_next_leaf(root, path);
2982 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2984 if (found_key.objectid != key.objectid ||
2985 found_key.type != key.type)
2988 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2989 struct btrfs_dir_item);
2990 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2992 dm = get_waiting_dir_move(sctx, loc.objectid);
2994 struct orphan_dir_info *odi;
2996 odi = add_orphan_dir_info(sctx, dir);
3002 dm->rmdir_ino = dir;
3007 if (loc.objectid > send_progress) {
3008 struct orphan_dir_info *odi;
3010 odi = get_orphan_dir_info(sctx, dir);
3011 free_orphan_dir_info(sctx, odi);
3022 btrfs_free_path(path);
3026 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3028 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3030 return entry != NULL;
3033 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3035 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3036 struct rb_node *parent = NULL;
3037 struct waiting_dir_move *entry, *dm;
3039 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3044 dm->orphanized = orphanized;
3048 entry = rb_entry(parent, struct waiting_dir_move, node);
3049 if (ino < entry->ino) {
3051 } else if (ino > entry->ino) {
3052 p = &(*p)->rb_right;
3059 rb_link_node(&dm->node, parent, p);
3060 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3064 static struct waiting_dir_move *
3065 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3067 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3068 struct waiting_dir_move *entry;
3071 entry = rb_entry(n, struct waiting_dir_move, node);
3072 if (ino < entry->ino)
3074 else if (ino > entry->ino)
3082 static void free_waiting_dir_move(struct send_ctx *sctx,
3083 struct waiting_dir_move *dm)
3087 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3091 static int add_pending_dir_move(struct send_ctx *sctx,
3095 struct list_head *new_refs,
3096 struct list_head *deleted_refs,
3097 const bool is_orphan)
3099 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3100 struct rb_node *parent = NULL;
3101 struct pending_dir_move *entry = NULL, *pm;
3102 struct recorded_ref *cur;
3106 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3109 pm->parent_ino = parent_ino;
3112 INIT_LIST_HEAD(&pm->list);
3113 INIT_LIST_HEAD(&pm->update_refs);
3114 RB_CLEAR_NODE(&pm->node);
3118 entry = rb_entry(parent, struct pending_dir_move, node);
3119 if (parent_ino < entry->parent_ino) {
3121 } else if (parent_ino > entry->parent_ino) {
3122 p = &(*p)->rb_right;
3129 list_for_each_entry(cur, deleted_refs, list) {
3130 ret = dup_ref(cur, &pm->update_refs);
3134 list_for_each_entry(cur, new_refs, list) {
3135 ret = dup_ref(cur, &pm->update_refs);
3140 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3145 list_add_tail(&pm->list, &entry->list);
3147 rb_link_node(&pm->node, parent, p);
3148 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3153 __free_recorded_refs(&pm->update_refs);
3159 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3162 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3163 struct pending_dir_move *entry;
3166 entry = rb_entry(n, struct pending_dir_move, node);
3167 if (parent_ino < entry->parent_ino)
3169 else if (parent_ino > entry->parent_ino)
3177 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3178 u64 ino, u64 gen, u64 *ancestor_ino)
3181 u64 parent_inode = 0;
3183 u64 start_ino = ino;
3186 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3187 fs_path_reset(name);
3189 if (is_waiting_for_rm(sctx, ino))
3191 if (is_waiting_for_move(sctx, ino)) {
3192 if (*ancestor_ino == 0)
3193 *ancestor_ino = ino;
3194 ret = get_first_ref(sctx->parent_root, ino,
3195 &parent_inode, &parent_gen, name);
3197 ret = __get_cur_name_and_parent(sctx, ino, gen,
3207 if (parent_inode == start_ino) {
3209 if (*ancestor_ino == 0)
3210 *ancestor_ino = ino;
3219 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3221 struct fs_path *from_path = NULL;
3222 struct fs_path *to_path = NULL;
3223 struct fs_path *name = NULL;
3224 u64 orig_progress = sctx->send_progress;
3225 struct recorded_ref *cur;
3226 u64 parent_ino, parent_gen;
3227 struct waiting_dir_move *dm = NULL;
3233 name = fs_path_alloc();
3234 from_path = fs_path_alloc();
3235 if (!name || !from_path) {
3240 dm = get_waiting_dir_move(sctx, pm->ino);
3242 rmdir_ino = dm->rmdir_ino;
3243 is_orphan = dm->orphanized;
3244 free_waiting_dir_move(sctx, dm);
3247 ret = gen_unique_name(sctx, pm->ino,
3248 pm->gen, from_path);
3250 ret = get_first_ref(sctx->parent_root, pm->ino,
3251 &parent_ino, &parent_gen, name);
3254 ret = get_cur_path(sctx, parent_ino, parent_gen,
3258 ret = fs_path_add_path(from_path, name);
3263 sctx->send_progress = sctx->cur_ino + 1;
3264 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3268 LIST_HEAD(deleted_refs);
3269 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3270 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3271 &pm->update_refs, &deleted_refs,
3276 dm = get_waiting_dir_move(sctx, pm->ino);
3278 dm->rmdir_ino = rmdir_ino;
3282 fs_path_reset(name);
3285 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3289 ret = send_rename(sctx, from_path, to_path);
3294 struct orphan_dir_info *odi;
3296 odi = get_orphan_dir_info(sctx, rmdir_ino);
3298 /* already deleted */
3301 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3307 name = fs_path_alloc();
3312 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3315 ret = send_rmdir(sctx, name);
3318 free_orphan_dir_info(sctx, odi);
3322 ret = send_utimes(sctx, pm->ino, pm->gen);
3327 * After rename/move, need to update the utimes of both new parent(s)
3328 * and old parent(s).
3330 list_for_each_entry(cur, &pm->update_refs, list) {
3332 * The parent inode might have been deleted in the send snapshot
3334 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3335 NULL, NULL, NULL, NULL, NULL);
3336 if (ret == -ENOENT) {
3343 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3350 fs_path_free(from_path);
3351 fs_path_free(to_path);
3352 sctx->send_progress = orig_progress;
3357 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3359 if (!list_empty(&m->list))
3361 if (!RB_EMPTY_NODE(&m->node))
3362 rb_erase(&m->node, &sctx->pending_dir_moves);
3363 __free_recorded_refs(&m->update_refs);
3367 static void tail_append_pending_moves(struct pending_dir_move *moves,
3368 struct list_head *stack)
3370 if (list_empty(&moves->list)) {
3371 list_add_tail(&moves->list, stack);
3374 list_splice_init(&moves->list, &list);
3375 list_add_tail(&moves->list, stack);
3376 list_splice_tail(&list, stack);
3380 static int apply_children_dir_moves(struct send_ctx *sctx)
3382 struct pending_dir_move *pm;
3383 struct list_head stack;
3384 u64 parent_ino = sctx->cur_ino;
3387 pm = get_pending_dir_moves(sctx, parent_ino);
3391 INIT_LIST_HEAD(&stack);
3392 tail_append_pending_moves(pm, &stack);
3394 while (!list_empty(&stack)) {
3395 pm = list_first_entry(&stack, struct pending_dir_move, list);
3396 parent_ino = pm->ino;
3397 ret = apply_dir_move(sctx, pm);
3398 free_pending_move(sctx, pm);
3401 pm = get_pending_dir_moves(sctx, parent_ino);
3403 tail_append_pending_moves(pm, &stack);
3408 while (!list_empty(&stack)) {
3409 pm = list_first_entry(&stack, struct pending_dir_move, list);
3410 free_pending_move(sctx, pm);
3416 * We might need to delay a directory rename even when no ancestor directory
3417 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3418 * renamed. This happens when we rename a directory to the old name (the name
3419 * in the parent root) of some other unrelated directory that got its rename
3420 * delayed due to some ancestor with higher number that got renamed.
3426 * |---- a/ (ino 257)
3427 * | |---- file (ino 260)
3429 * |---- b/ (ino 258)
3430 * |---- c/ (ino 259)
3434 * |---- a/ (ino 258)
3435 * |---- x/ (ino 259)
3436 * |---- y/ (ino 257)
3437 * |----- file (ino 260)
3439 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3440 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3441 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3444 * 1 - rename 259 from 'c' to 'x'
3445 * 2 - rename 257 from 'a' to 'x/y'
3446 * 3 - rename 258 from 'b' to 'a'
3448 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3449 * be done right away and < 0 on error.
3451 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3452 struct recorded_ref *parent_ref,
3453 const bool is_orphan)
3455 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3456 struct btrfs_path *path;
3457 struct btrfs_key key;
3458 struct btrfs_key di_key;
3459 struct btrfs_dir_item *di;
3463 struct waiting_dir_move *wdm;
3465 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3468 path = alloc_path_for_send();
3472 key.objectid = parent_ref->dir;
3473 key.type = BTRFS_DIR_ITEM_KEY;
3474 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3476 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3479 } else if (ret > 0) {
3484 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3485 parent_ref->name_len);
3491 * di_key.objectid has the number of the inode that has a dentry in the
3492 * parent directory with the same name that sctx->cur_ino is being
3493 * renamed to. We need to check if that inode is in the send root as
3494 * well and if it is currently marked as an inode with a pending rename,
3495 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3496 * that it happens after that other inode is renamed.
3498 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3499 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3504 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3505 &left_gen, NULL, NULL, NULL, NULL);
3508 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3509 &right_gen, NULL, NULL, NULL, NULL);
3516 /* Different inode, no need to delay the rename of sctx->cur_ino */
3517 if (right_gen != left_gen) {
3522 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3523 if (wdm && !wdm->orphanized) {
3524 ret = add_pending_dir_move(sctx,
3526 sctx->cur_inode_gen,
3529 &sctx->deleted_refs,
3535 btrfs_free_path(path);
3540 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3541 * Return 1 if true, 0 if false and < 0 on error.
3543 static int is_ancestor(struct btrfs_root *root,
3547 struct fs_path *fs_path)
3550 bool free_path = false;
3554 fs_path = fs_path_alloc();
3560 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3564 fs_path_reset(fs_path);
3565 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3567 if (ret == -ENOENT && ino == ino2)
3571 if (parent == ino1) {
3572 ret = parent_gen == ino1_gen ? 1 : 0;
3579 fs_path_free(fs_path);
3583 static int wait_for_parent_move(struct send_ctx *sctx,
3584 struct recorded_ref *parent_ref,
3585 const bool is_orphan)
3588 u64 ino = parent_ref->dir;
3589 u64 ino_gen = parent_ref->dir_gen;
3590 u64 parent_ino_before, parent_ino_after;
3591 struct fs_path *path_before = NULL;
3592 struct fs_path *path_after = NULL;
3595 path_after = fs_path_alloc();
3596 path_before = fs_path_alloc();
3597 if (!path_after || !path_before) {
3603 * Our current directory inode may not yet be renamed/moved because some
3604 * ancestor (immediate or not) has to be renamed/moved first. So find if
3605 * such ancestor exists and make sure our own rename/move happens after
3606 * that ancestor is processed to avoid path build infinite loops (done
3607 * at get_cur_path()).
3609 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3610 u64 parent_ino_after_gen;
3612 if (is_waiting_for_move(sctx, ino)) {
3614 * If the current inode is an ancestor of ino in the
3615 * parent root, we need to delay the rename of the
3616 * current inode, otherwise don't delayed the rename
3617 * because we can end up with a circular dependency
3618 * of renames, resulting in some directories never
3619 * getting the respective rename operations issued in
3620 * the send stream or getting into infinite path build
3623 ret = is_ancestor(sctx->parent_root,
3624 sctx->cur_ino, sctx->cur_inode_gen,
3630 fs_path_reset(path_before);
3631 fs_path_reset(path_after);
3633 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3634 &parent_ino_after_gen, path_after);
3637 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3639 if (ret < 0 && ret != -ENOENT) {
3641 } else if (ret == -ENOENT) {
3646 len1 = fs_path_len(path_before);
3647 len2 = fs_path_len(path_after);
3648 if (ino > sctx->cur_ino &&
3649 (parent_ino_before != parent_ino_after || len1 != len2 ||
3650 memcmp(path_before->start, path_after->start, len1))) {
3653 ret = get_inode_info(sctx->parent_root, ino, NULL,
3654 &parent_ino_gen, NULL, NULL, NULL,
3658 if (ino_gen == parent_ino_gen) {
3663 ino = parent_ino_after;
3664 ino_gen = parent_ino_after_gen;
3668 fs_path_free(path_before);
3669 fs_path_free(path_after);
3672 ret = add_pending_dir_move(sctx,
3674 sctx->cur_inode_gen,
3677 &sctx->deleted_refs,
3687 * This does all the move/link/unlink/rmdir magic.
3689 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3691 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3693 struct recorded_ref *cur;
3694 struct recorded_ref *cur2;
3695 struct list_head check_dirs;
3696 struct fs_path *valid_path = NULL;
3699 int did_overwrite = 0;
3701 u64 last_dir_ino_rm = 0;
3702 bool can_rename = true;
3703 bool orphanized_ancestor = false;
3705 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3708 * This should never happen as the root dir always has the same ref
3709 * which is always '..'
3711 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3712 INIT_LIST_HEAD(&check_dirs);
3714 valid_path = fs_path_alloc();
3721 * First, check if the first ref of the current inode was overwritten
3722 * before. If yes, we know that the current inode was already orphanized
3723 * and thus use the orphan name. If not, we can use get_cur_path to
3724 * get the path of the first ref as it would like while receiving at
3725 * this point in time.
3726 * New inodes are always orphan at the beginning, so force to use the
3727 * orphan name in this case.
3728 * The first ref is stored in valid_path and will be updated if it
3729 * gets moved around.
3731 if (!sctx->cur_inode_new) {
3732 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3733 sctx->cur_inode_gen);
3739 if (sctx->cur_inode_new || did_overwrite) {
3740 ret = gen_unique_name(sctx, sctx->cur_ino,
3741 sctx->cur_inode_gen, valid_path);
3746 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3752 list_for_each_entry(cur, &sctx->new_refs, list) {
3754 * We may have refs where the parent directory does not exist
3755 * yet. This happens if the parent directories inum is higher
3756 * the the current inum. To handle this case, we create the
3757 * parent directory out of order. But we need to check if this
3758 * did already happen before due to other refs in the same dir.
3760 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3763 if (ret == inode_state_will_create) {
3766 * First check if any of the current inodes refs did
3767 * already create the dir.
3769 list_for_each_entry(cur2, &sctx->new_refs, list) {
3772 if (cur2->dir == cur->dir) {
3779 * If that did not happen, check if a previous inode
3780 * did already create the dir.
3783 ret = did_create_dir(sctx, cur->dir);
3787 ret = send_create_inode(sctx, cur->dir);
3794 * Check if this new ref would overwrite the first ref of
3795 * another unprocessed inode. If yes, orphanize the
3796 * overwritten inode. If we find an overwritten ref that is
3797 * not the first ref, simply unlink it.
3799 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3800 cur->name, cur->name_len,
3801 &ow_inode, &ow_gen);
3805 ret = is_first_ref(sctx->parent_root,
3806 ow_inode, cur->dir, cur->name,
3811 struct name_cache_entry *nce;
3812 struct waiting_dir_move *wdm;
3814 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3820 * If ow_inode has its rename operation delayed
3821 * make sure that its orphanized name is used in
3822 * the source path when performing its rename
3825 if (is_waiting_for_move(sctx, ow_inode)) {
3826 wdm = get_waiting_dir_move(sctx,
3829 wdm->orphanized = true;
3833 * Make sure we clear our orphanized inode's
3834 * name from the name cache. This is because the
3835 * inode ow_inode might be an ancestor of some
3836 * other inode that will be orphanized as well
3837 * later and has an inode number greater than
3838 * sctx->send_progress. We need to prevent
3839 * future name lookups from using the old name
3840 * and get instead the orphan name.
3842 nce = name_cache_search(sctx, ow_inode, ow_gen);
3844 name_cache_delete(sctx, nce);
3849 * ow_inode might currently be an ancestor of
3850 * cur_ino, therefore compute valid_path (the
3851 * current path of cur_ino) again because it
3852 * might contain the pre-orphanization name of
3853 * ow_inode, which is no longer valid.
3855 ret = is_ancestor(sctx->parent_root,
3857 sctx->cur_ino, NULL);
3859 orphanized_ancestor = true;
3860 fs_path_reset(valid_path);
3861 ret = get_cur_path(sctx, sctx->cur_ino,
3862 sctx->cur_inode_gen,
3868 ret = send_unlink(sctx, cur->full_path);
3874 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3875 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3884 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3886 ret = wait_for_parent_move(sctx, cur, is_orphan);
3896 * link/move the ref to the new place. If we have an orphan
3897 * inode, move it and update valid_path. If not, link or move
3898 * it depending on the inode mode.
3900 if (is_orphan && can_rename) {
3901 ret = send_rename(sctx, valid_path, cur->full_path);
3905 ret = fs_path_copy(valid_path, cur->full_path);
3908 } else if (can_rename) {
3909 if (S_ISDIR(sctx->cur_inode_mode)) {
3911 * Dirs can't be linked, so move it. For moved
3912 * dirs, we always have one new and one deleted
3913 * ref. The deleted ref is ignored later.
3915 ret = send_rename(sctx, valid_path,
3918 ret = fs_path_copy(valid_path,
3923 ret = send_link(sctx, cur->full_path,
3929 ret = dup_ref(cur, &check_dirs);
3934 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3936 * Check if we can already rmdir the directory. If not,
3937 * orphanize it. For every dir item inside that gets deleted
3938 * later, we do this check again and rmdir it then if possible.
3939 * See the use of check_dirs for more details.
3941 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3946 ret = send_rmdir(sctx, valid_path);
3949 } else if (!is_orphan) {
3950 ret = orphanize_inode(sctx, sctx->cur_ino,
3951 sctx->cur_inode_gen, valid_path);
3957 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3958 ret = dup_ref(cur, &check_dirs);
3962 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3963 !list_empty(&sctx->deleted_refs)) {
3965 * We have a moved dir. Add the old parent to check_dirs
3967 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3969 ret = dup_ref(cur, &check_dirs);
3972 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3974 * We have a non dir inode. Go through all deleted refs and
3975 * unlink them if they were not already overwritten by other
3978 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3979 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3980 sctx->cur_ino, sctx->cur_inode_gen,
3981 cur->name, cur->name_len);
3986 * If we orphanized any ancestor before, we need
3987 * to recompute the full path for deleted names,
3988 * since any such path was computed before we
3989 * processed any references and orphanized any
3992 if (orphanized_ancestor) {
3993 struct fs_path *new_path;
3996 * Our reference's name member points to
3997 * its full_path member string, so we
3998 * use here a new path.
4000 new_path = fs_path_alloc();
4005 ret = get_cur_path(sctx, cur->dir,
4009 fs_path_free(new_path);
4012 ret = fs_path_add(new_path,
4016 fs_path_free(new_path);
4019 fs_path_free(cur->full_path);
4020 set_ref_path(cur, new_path);
4022 ret = send_unlink(sctx, cur->full_path);
4026 ret = dup_ref(cur, &check_dirs);
4031 * If the inode is still orphan, unlink the orphan. This may
4032 * happen when a previous inode did overwrite the first ref
4033 * of this inode and no new refs were added for the current
4034 * inode. Unlinking does not mean that the inode is deleted in
4035 * all cases. There may still be links to this inode in other
4039 ret = send_unlink(sctx, valid_path);
4046 * We did collect all parent dirs where cur_inode was once located. We
4047 * now go through all these dirs and check if they are pending for
4048 * deletion and if it's finally possible to perform the rmdir now.
4049 * We also update the inode stats of the parent dirs here.
4051 list_for_each_entry(cur, &check_dirs, list) {
4053 * In case we had refs into dirs that were not processed yet,
4054 * we don't need to do the utime and rmdir logic for these dirs.
4055 * The dir will be processed later.
4057 if (cur->dir > sctx->cur_ino)
4060 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4064 if (ret == inode_state_did_create ||
4065 ret == inode_state_no_change) {
4066 /* TODO delayed utimes */
4067 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4070 } else if (ret == inode_state_did_delete &&
4071 cur->dir != last_dir_ino_rm) {
4072 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4077 ret = get_cur_path(sctx, cur->dir,
4078 cur->dir_gen, valid_path);
4081 ret = send_rmdir(sctx, valid_path);
4084 last_dir_ino_rm = cur->dir;
4092 __free_recorded_refs(&check_dirs);
4093 free_recorded_refs(sctx);
4094 fs_path_free(valid_path);
4098 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
4099 struct fs_path *name, void *ctx, struct list_head *refs)
4102 struct send_ctx *sctx = ctx;
4106 p = fs_path_alloc();
4110 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4115 ret = get_cur_path(sctx, dir, gen, p);
4118 ret = fs_path_add_path(p, name);
4122 ret = __record_ref(refs, dir, gen, p);
4130 static int __record_new_ref(int num, u64 dir, int index,
4131 struct fs_path *name,
4134 struct send_ctx *sctx = ctx;
4135 return record_ref(sctx->send_root, num, dir, index, name,
4136 ctx, &sctx->new_refs);
4140 static int __record_deleted_ref(int num, u64 dir, int index,
4141 struct fs_path *name,
4144 struct send_ctx *sctx = ctx;
4145 return record_ref(sctx->parent_root, num, dir, index, name,
4146 ctx, &sctx->deleted_refs);
4149 static int record_new_ref(struct send_ctx *sctx)
4153 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4154 sctx->cmp_key, 0, __record_new_ref, sctx);
4163 static int record_deleted_ref(struct send_ctx *sctx)
4167 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4168 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4177 struct find_ref_ctx {
4180 struct btrfs_root *root;
4181 struct fs_path *name;
4185 static int __find_iref(int num, u64 dir, int index,
4186 struct fs_path *name,
4189 struct find_ref_ctx *ctx = ctx_;
4193 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4194 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4196 * To avoid doing extra lookups we'll only do this if everything
4199 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4203 if (dir_gen != ctx->dir_gen)
4205 ctx->found_idx = num;
4211 static int find_iref(struct btrfs_root *root,
4212 struct btrfs_path *path,
4213 struct btrfs_key *key,
4214 u64 dir, u64 dir_gen, struct fs_path *name)
4217 struct find_ref_ctx ctx;
4221 ctx.dir_gen = dir_gen;
4225 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4229 if (ctx.found_idx == -1)
4232 return ctx.found_idx;
4235 static int __record_changed_new_ref(int num, u64 dir, int index,
4236 struct fs_path *name,
4241 struct send_ctx *sctx = ctx;
4243 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4248 ret = find_iref(sctx->parent_root, sctx->right_path,
4249 sctx->cmp_key, dir, dir_gen, name);
4251 ret = __record_new_ref(num, dir, index, name, sctx);
4258 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4259 struct fs_path *name,
4264 struct send_ctx *sctx = ctx;
4266 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4271 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4272 dir, dir_gen, name);
4274 ret = __record_deleted_ref(num, dir, index, name, sctx);
4281 static int record_changed_ref(struct send_ctx *sctx)
4285 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4286 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4289 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4290 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4300 * Record and process all refs at once. Needed when an inode changes the
4301 * generation number, which means that it was deleted and recreated.
4303 static int process_all_refs(struct send_ctx *sctx,
4304 enum btrfs_compare_tree_result cmd)
4307 struct btrfs_root *root;
4308 struct btrfs_path *path;
4309 struct btrfs_key key;
4310 struct btrfs_key found_key;
4311 struct extent_buffer *eb;
4313 iterate_inode_ref_t cb;
4314 int pending_move = 0;
4316 path = alloc_path_for_send();
4320 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4321 root = sctx->send_root;
4322 cb = __record_new_ref;
4323 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4324 root = sctx->parent_root;
4325 cb = __record_deleted_ref;
4327 btrfs_err(sctx->send_root->fs_info,
4328 "Wrong command %d in process_all_refs", cmd);
4333 key.objectid = sctx->cmp_key->objectid;
4334 key.type = BTRFS_INODE_REF_KEY;
4336 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4341 eb = path->nodes[0];
4342 slot = path->slots[0];
4343 if (slot >= btrfs_header_nritems(eb)) {
4344 ret = btrfs_next_leaf(root, path);
4352 btrfs_item_key_to_cpu(eb, &found_key, slot);
4354 if (found_key.objectid != key.objectid ||
4355 (found_key.type != BTRFS_INODE_REF_KEY &&
4356 found_key.type != BTRFS_INODE_EXTREF_KEY))
4359 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4365 btrfs_release_path(path);
4368 * We don't actually care about pending_move as we are simply
4369 * re-creating this inode and will be rename'ing it into place once we
4370 * rename the parent directory.
4372 ret = process_recorded_refs(sctx, &pending_move);
4374 btrfs_free_path(path);
4378 static int send_set_xattr(struct send_ctx *sctx,
4379 struct fs_path *path,
4380 const char *name, int name_len,
4381 const char *data, int data_len)
4385 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4389 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4390 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4391 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4393 ret = send_cmd(sctx);
4400 static int send_remove_xattr(struct send_ctx *sctx,
4401 struct fs_path *path,
4402 const char *name, int name_len)
4406 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4410 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4411 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4413 ret = send_cmd(sctx);
4420 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4421 const char *name, int name_len,
4422 const char *data, int data_len,
4426 struct send_ctx *sctx = ctx;
4428 struct posix_acl_xattr_header dummy_acl;
4430 p = fs_path_alloc();
4435 * This hack is needed because empty acls are stored as zero byte
4436 * data in xattrs. Problem with that is, that receiving these zero byte
4437 * acls will fail later. To fix this, we send a dummy acl list that
4438 * only contains the version number and no entries.
4440 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4441 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4442 if (data_len == 0) {
4443 dummy_acl.a_version =
4444 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4445 data = (char *)&dummy_acl;
4446 data_len = sizeof(dummy_acl);
4450 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4454 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4461 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4462 const char *name, int name_len,
4463 const char *data, int data_len,
4467 struct send_ctx *sctx = ctx;
4470 p = fs_path_alloc();
4474 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4478 ret = send_remove_xattr(sctx, p, name, name_len);
4485 static int process_new_xattr(struct send_ctx *sctx)
4489 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4490 sctx->cmp_key, __process_new_xattr, sctx);
4495 static int process_deleted_xattr(struct send_ctx *sctx)
4497 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4498 sctx->cmp_key, __process_deleted_xattr, sctx);
4501 struct find_xattr_ctx {
4509 static int __find_xattr(int num, struct btrfs_key *di_key,
4510 const char *name, int name_len,
4511 const char *data, int data_len,
4512 u8 type, void *vctx)
4514 struct find_xattr_ctx *ctx = vctx;
4516 if (name_len == ctx->name_len &&
4517 strncmp(name, ctx->name, name_len) == 0) {
4518 ctx->found_idx = num;
4519 ctx->found_data_len = data_len;
4520 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4521 if (!ctx->found_data)
4528 static int find_xattr(struct btrfs_root *root,
4529 struct btrfs_path *path,
4530 struct btrfs_key *key,
4531 const char *name, int name_len,
4532 char **data, int *data_len)
4535 struct find_xattr_ctx ctx;
4538 ctx.name_len = name_len;
4540 ctx.found_data = NULL;
4541 ctx.found_data_len = 0;
4543 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4547 if (ctx.found_idx == -1)
4550 *data = ctx.found_data;
4551 *data_len = ctx.found_data_len;
4553 kfree(ctx.found_data);
4555 return ctx.found_idx;
4559 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4560 const char *name, int name_len,
4561 const char *data, int data_len,
4565 struct send_ctx *sctx = ctx;
4566 char *found_data = NULL;
4567 int found_data_len = 0;
4569 ret = find_xattr(sctx->parent_root, sctx->right_path,
4570 sctx->cmp_key, name, name_len, &found_data,
4572 if (ret == -ENOENT) {
4573 ret = __process_new_xattr(num, di_key, name, name_len, data,
4574 data_len, type, ctx);
4575 } else if (ret >= 0) {
4576 if (data_len != found_data_len ||
4577 memcmp(data, found_data, data_len)) {
4578 ret = __process_new_xattr(num, di_key, name, name_len,
4579 data, data_len, type, ctx);
4589 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4590 const char *name, int name_len,
4591 const char *data, int data_len,
4595 struct send_ctx *sctx = ctx;
4597 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4598 name, name_len, NULL, NULL);
4600 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4601 data_len, type, ctx);
4608 static int process_changed_xattr(struct send_ctx *sctx)
4612 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4613 sctx->cmp_key, __process_changed_new_xattr, sctx);
4616 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4617 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4623 static int process_all_new_xattrs(struct send_ctx *sctx)
4626 struct btrfs_root *root;
4627 struct btrfs_path *path;
4628 struct btrfs_key key;
4629 struct btrfs_key found_key;
4630 struct extent_buffer *eb;
4633 path = alloc_path_for_send();
4637 root = sctx->send_root;
4639 key.objectid = sctx->cmp_key->objectid;
4640 key.type = BTRFS_XATTR_ITEM_KEY;
4642 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4647 eb = path->nodes[0];
4648 slot = path->slots[0];
4649 if (slot >= btrfs_header_nritems(eb)) {
4650 ret = btrfs_next_leaf(root, path);
4653 } else if (ret > 0) {
4660 btrfs_item_key_to_cpu(eb, &found_key, slot);
4661 if (found_key.objectid != key.objectid ||
4662 found_key.type != key.type) {
4667 ret = iterate_dir_item(root, path, &found_key,
4668 __process_new_xattr, sctx);
4676 btrfs_free_path(path);
4680 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4682 struct btrfs_root *root = sctx->send_root;
4683 struct btrfs_fs_info *fs_info = root->fs_info;
4684 struct inode *inode;
4687 struct btrfs_key key;
4688 pgoff_t index = offset >> PAGE_SHIFT;
4690 unsigned pg_offset = offset & ~PAGE_MASK;
4693 key.objectid = sctx->cur_ino;
4694 key.type = BTRFS_INODE_ITEM_KEY;
4697 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4699 return PTR_ERR(inode);
4701 if (offset + len > i_size_read(inode)) {
4702 if (offset > i_size_read(inode))
4705 len = offset - i_size_read(inode);
4710 last_index = (offset + len - 1) >> PAGE_SHIFT;
4712 /* initial readahead */
4713 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4714 file_ra_state_init(&sctx->ra, inode->i_mapping);
4715 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4716 last_index - index + 1);
4718 while (index <= last_index) {
4719 unsigned cur_len = min_t(unsigned, len,
4720 PAGE_SIZE - pg_offset);
4721 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4727 if (!PageUptodate(page)) {
4728 btrfs_readpage(NULL, page);
4730 if (!PageUptodate(page)) {
4739 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4754 * Read some bytes from the current inode/file and send a write command to
4757 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4759 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4762 ssize_t num_read = 0;
4764 p = fs_path_alloc();
4768 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4770 num_read = fill_read_buf(sctx, offset, len);
4771 if (num_read <= 0) {
4777 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4781 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4785 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4786 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4787 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4789 ret = send_cmd(sctx);
4800 * Send a clone command to user space.
4802 static int send_clone(struct send_ctx *sctx,
4803 u64 offset, u32 len,
4804 struct clone_root *clone_root)
4810 btrfs_debug(sctx->send_root->fs_info,
4811 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4812 offset, len, clone_root->root->objectid, clone_root->ino,
4813 clone_root->offset);
4815 p = fs_path_alloc();
4819 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4823 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4827 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4828 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4829 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4831 if (clone_root->root == sctx->send_root) {
4832 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4833 &gen, NULL, NULL, NULL, NULL);
4836 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4838 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4844 * If the parent we're using has a received_uuid set then use that as
4845 * our clone source as that is what we will look for when doing a
4848 * This covers the case that we create a snapshot off of a received
4849 * subvolume and then use that as the parent and try to receive on a
4852 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4853 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4854 clone_root->root->root_item.received_uuid);
4856 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4857 clone_root->root->root_item.uuid);
4858 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4859 le64_to_cpu(clone_root->root->root_item.ctransid));
4860 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4861 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4862 clone_root->offset);
4864 ret = send_cmd(sctx);
4873 * Send an update extent command to user space.
4875 static int send_update_extent(struct send_ctx *sctx,
4876 u64 offset, u32 len)
4881 p = fs_path_alloc();
4885 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4889 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4893 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4894 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4895 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4897 ret = send_cmd(sctx);
4905 static int send_hole(struct send_ctx *sctx, u64 end)
4907 struct fs_path *p = NULL;
4908 u64 offset = sctx->cur_inode_last_extent;
4912 p = fs_path_alloc();
4915 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4917 goto tlv_put_failure;
4918 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4919 while (offset < end) {
4920 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4922 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4925 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4926 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4927 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4928 ret = send_cmd(sctx);
4938 static int send_extent_data(struct send_ctx *sctx,
4944 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4945 return send_update_extent(sctx, offset, len);
4947 while (sent < len) {
4948 u64 size = len - sent;
4951 if (size > BTRFS_SEND_READ_SIZE)
4952 size = BTRFS_SEND_READ_SIZE;
4953 ret = send_write(sctx, offset + sent, size);
4963 static int clone_range(struct send_ctx *sctx,
4964 struct clone_root *clone_root,
4965 const u64 disk_byte,
4970 struct btrfs_path *path;
4971 struct btrfs_key key;
4974 path = alloc_path_for_send();
4979 * We can't send a clone operation for the entire range if we find
4980 * extent items in the respective range in the source file that
4981 * refer to different extents or if we find holes.
4982 * So check for that and do a mix of clone and regular write/copy
4983 * operations if needed.
4987 * mkfs.btrfs -f /dev/sda
4988 * mount /dev/sda /mnt
4989 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4990 * cp --reflink=always /mnt/foo /mnt/bar
4991 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4992 * btrfs subvolume snapshot -r /mnt /mnt/snap
4994 * If when we send the snapshot and we are processing file bar (which
4995 * has a higher inode number than foo) we blindly send a clone operation
4996 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4997 * a file bar that matches the content of file foo - iow, doesn't match
4998 * the content from bar in the original filesystem.
5000 key.objectid = clone_root->ino;
5001 key.type = BTRFS_EXTENT_DATA_KEY;
5002 key.offset = clone_root->offset;
5003 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5006 if (ret > 0 && path->slots[0] > 0) {
5007 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5008 if (key.objectid == clone_root->ino &&
5009 key.type == BTRFS_EXTENT_DATA_KEY)
5014 struct extent_buffer *leaf = path->nodes[0];
5015 int slot = path->slots[0];
5016 struct btrfs_file_extent_item *ei;
5021 if (slot >= btrfs_header_nritems(leaf)) {
5022 ret = btrfs_next_leaf(clone_root->root, path);
5030 btrfs_item_key_to_cpu(leaf, &key, slot);
5033 * We might have an implicit trailing hole (NO_HOLES feature
5034 * enabled). We deal with it after leaving this loop.
5036 if (key.objectid != clone_root->ino ||
5037 key.type != BTRFS_EXTENT_DATA_KEY)
5040 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5041 type = btrfs_file_extent_type(leaf, ei);
5042 if (type == BTRFS_FILE_EXTENT_INLINE) {
5043 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5044 ext_len = PAGE_ALIGN(ext_len);
5046 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5049 if (key.offset + ext_len <= clone_root->offset)
5052 if (key.offset > clone_root->offset) {
5053 /* Implicit hole, NO_HOLES feature enabled. */
5054 u64 hole_len = key.offset - clone_root->offset;
5058 ret = send_extent_data(sctx, offset, hole_len);
5066 clone_root->offset += hole_len;
5067 data_offset += hole_len;
5070 if (key.offset >= clone_root->offset + len)
5073 clone_len = min_t(u64, ext_len, len);
5075 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5076 btrfs_file_extent_offset(leaf, ei) == data_offset)
5077 ret = send_clone(sctx, offset, clone_len, clone_root);
5079 ret = send_extent_data(sctx, offset, clone_len);
5087 offset += clone_len;
5088 clone_root->offset += clone_len;
5089 data_offset += clone_len;
5095 ret = send_extent_data(sctx, offset, len);
5099 btrfs_free_path(path);
5103 static int send_write_or_clone(struct send_ctx *sctx,
5104 struct btrfs_path *path,
5105 struct btrfs_key *key,
5106 struct clone_root *clone_root)
5109 struct btrfs_file_extent_item *ei;
5110 u64 offset = key->offset;
5113 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5115 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5116 struct btrfs_file_extent_item);
5117 type = btrfs_file_extent_type(path->nodes[0], ei);
5118 if (type == BTRFS_FILE_EXTENT_INLINE) {
5119 len = btrfs_file_extent_inline_len(path->nodes[0],
5120 path->slots[0], ei);
5122 * it is possible the inline item won't cover the whole page,
5123 * but there may be items after this page. Make
5124 * sure to send the whole thing
5126 len = PAGE_ALIGN(len);
5128 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5131 if (offset + len > sctx->cur_inode_size)
5132 len = sctx->cur_inode_size - offset;
5138 if (clone_root && IS_ALIGNED(offset + len, bs)) {
5142 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5143 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5144 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5147 ret = send_extent_data(sctx, offset, len);
5153 static int is_extent_unchanged(struct send_ctx *sctx,
5154 struct btrfs_path *left_path,
5155 struct btrfs_key *ekey)
5158 struct btrfs_key key;
5159 struct btrfs_path *path = NULL;
5160 struct extent_buffer *eb;
5162 struct btrfs_key found_key;
5163 struct btrfs_file_extent_item *ei;
5168 u64 left_offset_fixed;
5176 path = alloc_path_for_send();
5180 eb = left_path->nodes[0];
5181 slot = left_path->slots[0];
5182 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5183 left_type = btrfs_file_extent_type(eb, ei);
5185 if (left_type != BTRFS_FILE_EXTENT_REG) {
5189 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5190 left_len = btrfs_file_extent_num_bytes(eb, ei);
5191 left_offset = btrfs_file_extent_offset(eb, ei);
5192 left_gen = btrfs_file_extent_generation(eb, ei);
5195 * Following comments will refer to these graphics. L is the left
5196 * extents which we are checking at the moment. 1-8 are the right
5197 * extents that we iterate.
5200 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5203 * |--1--|-2b-|...(same as above)
5205 * Alternative situation. Happens on files where extents got split.
5207 * |-----------7-----------|-6-|
5209 * Alternative situation. Happens on files which got larger.
5212 * Nothing follows after 8.
5215 key.objectid = ekey->objectid;
5216 key.type = BTRFS_EXTENT_DATA_KEY;
5217 key.offset = ekey->offset;
5218 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5227 * Handle special case where the right side has no extents at all.
5229 eb = path->nodes[0];
5230 slot = path->slots[0];
5231 btrfs_item_key_to_cpu(eb, &found_key, slot);
5232 if (found_key.objectid != key.objectid ||
5233 found_key.type != key.type) {
5234 /* If we're a hole then just pretend nothing changed */
5235 ret = (left_disknr) ? 0 : 1;
5240 * We're now on 2a, 2b or 7.
5243 while (key.offset < ekey->offset + left_len) {
5244 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5245 right_type = btrfs_file_extent_type(eb, ei);
5246 if (right_type != BTRFS_FILE_EXTENT_REG &&
5247 right_type != BTRFS_FILE_EXTENT_INLINE) {
5252 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5253 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5254 right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5255 right_len = PAGE_ALIGN(right_len);
5257 right_len = btrfs_file_extent_num_bytes(eb, ei);
5259 right_offset = btrfs_file_extent_offset(eb, ei);
5260 right_gen = btrfs_file_extent_generation(eb, ei);
5263 * Are we at extent 8? If yes, we know the extent is changed.
5264 * This may only happen on the first iteration.
5266 if (found_key.offset + right_len <= ekey->offset) {
5267 /* If we're a hole just pretend nothing changed */
5268 ret = (left_disknr) ? 0 : 1;
5273 * We just wanted to see if when we have an inline extent, what
5274 * follows it is a regular extent (wanted to check the above
5275 * condition for inline extents too). This should normally not
5276 * happen but it's possible for example when we have an inline
5277 * compressed extent representing data with a size matching
5278 * the page size (currently the same as sector size).
5280 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5285 left_offset_fixed = left_offset;
5286 if (key.offset < ekey->offset) {
5287 /* Fix the right offset for 2a and 7. */
5288 right_offset += ekey->offset - key.offset;
5290 /* Fix the left offset for all behind 2a and 2b */
5291 left_offset_fixed += key.offset - ekey->offset;
5295 * Check if we have the same extent.
5297 if (left_disknr != right_disknr ||
5298 left_offset_fixed != right_offset ||
5299 left_gen != right_gen) {
5305 * Go to the next extent.
5307 ret = btrfs_next_item(sctx->parent_root, path);
5311 eb = path->nodes[0];
5312 slot = path->slots[0];
5313 btrfs_item_key_to_cpu(eb, &found_key, slot);
5315 if (ret || found_key.objectid != key.objectid ||
5316 found_key.type != key.type) {
5317 key.offset += right_len;
5320 if (found_key.offset != key.offset + right_len) {
5328 * We're now behind the left extent (treat as unchanged) or at the end
5329 * of the right side (treat as changed).
5331 if (key.offset >= ekey->offset + left_len)
5338 btrfs_free_path(path);
5342 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5344 struct btrfs_path *path;
5345 struct btrfs_root *root = sctx->send_root;
5346 struct btrfs_file_extent_item *fi;
5347 struct btrfs_key key;
5352 path = alloc_path_for_send();
5356 sctx->cur_inode_last_extent = 0;
5358 key.objectid = sctx->cur_ino;
5359 key.type = BTRFS_EXTENT_DATA_KEY;
5360 key.offset = offset;
5361 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5365 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5366 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5369 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5370 struct btrfs_file_extent_item);
5371 type = btrfs_file_extent_type(path->nodes[0], fi);
5372 if (type == BTRFS_FILE_EXTENT_INLINE) {
5373 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5374 path->slots[0], fi);
5375 extent_end = ALIGN(key.offset + size,
5376 sctx->send_root->fs_info->sectorsize);
5378 extent_end = key.offset +
5379 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5381 sctx->cur_inode_last_extent = extent_end;
5383 btrfs_free_path(path);
5387 static int range_is_hole_in_parent(struct send_ctx *sctx,
5391 struct btrfs_path *path;
5392 struct btrfs_key key;
5393 struct btrfs_root *root = sctx->parent_root;
5394 u64 search_start = start;
5397 path = alloc_path_for_send();
5401 key.objectid = sctx->cur_ino;
5402 key.type = BTRFS_EXTENT_DATA_KEY;
5403 key.offset = search_start;
5404 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5407 if (ret > 0 && path->slots[0] > 0)
5410 while (search_start < end) {
5411 struct extent_buffer *leaf = path->nodes[0];
5412 int slot = path->slots[0];
5413 struct btrfs_file_extent_item *fi;
5416 if (slot >= btrfs_header_nritems(leaf)) {
5417 ret = btrfs_next_leaf(root, path);
5425 btrfs_item_key_to_cpu(leaf, &key, slot);
5426 if (key.objectid < sctx->cur_ino ||
5427 key.type < BTRFS_EXTENT_DATA_KEY)
5429 if (key.objectid > sctx->cur_ino ||
5430 key.type > BTRFS_EXTENT_DATA_KEY ||
5434 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5435 if (btrfs_file_extent_type(leaf, fi) ==
5436 BTRFS_FILE_EXTENT_INLINE) {
5437 u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5439 extent_end = ALIGN(key.offset + size,
5440 root->fs_info->sectorsize);
5442 extent_end = key.offset +
5443 btrfs_file_extent_num_bytes(leaf, fi);
5445 if (extent_end <= start)
5447 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5448 search_start = extent_end;
5458 btrfs_free_path(path);
5462 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5463 struct btrfs_key *key)
5465 struct btrfs_file_extent_item *fi;
5470 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5473 if (sctx->cur_inode_last_extent == (u64)-1) {
5474 ret = get_last_extent(sctx, key->offset - 1);
5479 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5480 struct btrfs_file_extent_item);
5481 type = btrfs_file_extent_type(path->nodes[0], fi);
5482 if (type == BTRFS_FILE_EXTENT_INLINE) {
5483 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5484 path->slots[0], fi);
5485 extent_end = ALIGN(key->offset + size,
5486 sctx->send_root->fs_info->sectorsize);
5488 extent_end = key->offset +
5489 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5492 if (path->slots[0] == 0 &&
5493 sctx->cur_inode_last_extent < key->offset) {
5495 * We might have skipped entire leafs that contained only
5496 * file extent items for our current inode. These leafs have
5497 * a generation number smaller (older) than the one in the
5498 * current leaf and the leaf our last extent came from, and
5499 * are located between these 2 leafs.
5501 ret = get_last_extent(sctx, key->offset - 1);
5506 if (sctx->cur_inode_last_extent < key->offset) {
5507 ret = range_is_hole_in_parent(sctx,
5508 sctx->cur_inode_last_extent,
5513 ret = send_hole(sctx, key->offset);
5517 sctx->cur_inode_last_extent = extent_end;
5521 static int process_extent(struct send_ctx *sctx,
5522 struct btrfs_path *path,
5523 struct btrfs_key *key)
5525 struct clone_root *found_clone = NULL;
5528 if (S_ISLNK(sctx->cur_inode_mode))
5531 if (sctx->parent_root && !sctx->cur_inode_new) {
5532 ret = is_extent_unchanged(sctx, path, key);
5540 struct btrfs_file_extent_item *ei;
5543 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5544 struct btrfs_file_extent_item);
5545 type = btrfs_file_extent_type(path->nodes[0], ei);
5546 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5547 type == BTRFS_FILE_EXTENT_REG) {
5549 * The send spec does not have a prealloc command yet,
5550 * so just leave a hole for prealloc'ed extents until
5551 * we have enough commands queued up to justify rev'ing
5554 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5559 /* Have a hole, just skip it. */
5560 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5567 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5568 sctx->cur_inode_size, &found_clone);
5569 if (ret != -ENOENT && ret < 0)
5572 ret = send_write_or_clone(sctx, path, key, found_clone);
5576 ret = maybe_send_hole(sctx, path, key);
5581 static int process_all_extents(struct send_ctx *sctx)
5584 struct btrfs_root *root;
5585 struct btrfs_path *path;
5586 struct btrfs_key key;
5587 struct btrfs_key found_key;
5588 struct extent_buffer *eb;
5591 root = sctx->send_root;
5592 path = alloc_path_for_send();
5596 key.objectid = sctx->cmp_key->objectid;
5597 key.type = BTRFS_EXTENT_DATA_KEY;
5599 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5604 eb = path->nodes[0];
5605 slot = path->slots[0];
5607 if (slot >= btrfs_header_nritems(eb)) {
5608 ret = btrfs_next_leaf(root, path);
5611 } else if (ret > 0) {
5618 btrfs_item_key_to_cpu(eb, &found_key, slot);
5620 if (found_key.objectid != key.objectid ||
5621 found_key.type != key.type) {
5626 ret = process_extent(sctx, path, &found_key);
5634 btrfs_free_path(path);
5638 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5640 int *refs_processed)
5644 if (sctx->cur_ino == 0)
5646 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5647 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5649 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5652 ret = process_recorded_refs(sctx, pending_move);
5656 *refs_processed = 1;
5661 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5672 int pending_move = 0;
5673 int refs_processed = 0;
5675 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5681 * We have processed the refs and thus need to advance send_progress.
5682 * Now, calls to get_cur_xxx will take the updated refs of the current
5683 * inode into account.
5685 * On the other hand, if our current inode is a directory and couldn't
5686 * be moved/renamed because its parent was renamed/moved too and it has
5687 * a higher inode number, we can only move/rename our current inode
5688 * after we moved/renamed its parent. Therefore in this case operate on
5689 * the old path (pre move/rename) of our current inode, and the
5690 * move/rename will be performed later.
5692 if (refs_processed && !pending_move)
5693 sctx->send_progress = sctx->cur_ino + 1;
5695 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5697 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5700 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5701 &left_mode, &left_uid, &left_gid, NULL);
5705 if (!sctx->parent_root || sctx->cur_inode_new) {
5707 if (!S_ISLNK(sctx->cur_inode_mode))
5710 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5711 NULL, NULL, &right_mode, &right_uid,
5716 if (left_uid != right_uid || left_gid != right_gid)
5718 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5722 if (S_ISREG(sctx->cur_inode_mode)) {
5723 if (need_send_hole(sctx)) {
5724 if (sctx->cur_inode_last_extent == (u64)-1 ||
5725 sctx->cur_inode_last_extent <
5726 sctx->cur_inode_size) {
5727 ret = get_last_extent(sctx, (u64)-1);
5731 if (sctx->cur_inode_last_extent <
5732 sctx->cur_inode_size) {
5733 ret = send_hole(sctx, sctx->cur_inode_size);
5738 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5739 sctx->cur_inode_size);
5745 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5746 left_uid, left_gid);
5751 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5758 * If other directory inodes depended on our current directory
5759 * inode's move/rename, now do their move/rename operations.
5761 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5762 ret = apply_children_dir_moves(sctx);
5766 * Need to send that every time, no matter if it actually
5767 * changed between the two trees as we have done changes to
5768 * the inode before. If our inode is a directory and it's
5769 * waiting to be moved/renamed, we will send its utimes when
5770 * it's moved/renamed, therefore we don't need to do it here.
5772 sctx->send_progress = sctx->cur_ino + 1;
5773 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5782 static int changed_inode(struct send_ctx *sctx,
5783 enum btrfs_compare_tree_result result)
5786 struct btrfs_key *key = sctx->cmp_key;
5787 struct btrfs_inode_item *left_ii = NULL;
5788 struct btrfs_inode_item *right_ii = NULL;
5792 sctx->cur_ino = key->objectid;
5793 sctx->cur_inode_new_gen = 0;
5794 sctx->cur_inode_last_extent = (u64)-1;
5797 * Set send_progress to current inode. This will tell all get_cur_xxx
5798 * functions that the current inode's refs are not updated yet. Later,
5799 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5801 sctx->send_progress = sctx->cur_ino;
5803 if (result == BTRFS_COMPARE_TREE_NEW ||
5804 result == BTRFS_COMPARE_TREE_CHANGED) {
5805 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5806 sctx->left_path->slots[0],
5807 struct btrfs_inode_item);
5808 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5811 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5812 sctx->right_path->slots[0],
5813 struct btrfs_inode_item);
5814 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5817 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5818 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5819 sctx->right_path->slots[0],
5820 struct btrfs_inode_item);
5822 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5826 * The cur_ino = root dir case is special here. We can't treat
5827 * the inode as deleted+reused because it would generate a
5828 * stream that tries to delete/mkdir the root dir.
5830 if (left_gen != right_gen &&
5831 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5832 sctx->cur_inode_new_gen = 1;
5835 if (result == BTRFS_COMPARE_TREE_NEW) {
5836 sctx->cur_inode_gen = left_gen;
5837 sctx->cur_inode_new = 1;
5838 sctx->cur_inode_deleted = 0;
5839 sctx->cur_inode_size = btrfs_inode_size(
5840 sctx->left_path->nodes[0], left_ii);
5841 sctx->cur_inode_mode = btrfs_inode_mode(
5842 sctx->left_path->nodes[0], left_ii);
5843 sctx->cur_inode_rdev = btrfs_inode_rdev(
5844 sctx->left_path->nodes[0], left_ii);
5845 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5846 ret = send_create_inode_if_needed(sctx);
5847 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5848 sctx->cur_inode_gen = right_gen;
5849 sctx->cur_inode_new = 0;
5850 sctx->cur_inode_deleted = 1;
5851 sctx->cur_inode_size = btrfs_inode_size(
5852 sctx->right_path->nodes[0], right_ii);
5853 sctx->cur_inode_mode = btrfs_inode_mode(
5854 sctx->right_path->nodes[0], right_ii);
5855 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5857 * We need to do some special handling in case the inode was
5858 * reported as changed with a changed generation number. This
5859 * means that the original inode was deleted and new inode
5860 * reused the same inum. So we have to treat the old inode as
5861 * deleted and the new one as new.
5863 if (sctx->cur_inode_new_gen) {
5865 * First, process the inode as if it was deleted.
5867 sctx->cur_inode_gen = right_gen;
5868 sctx->cur_inode_new = 0;
5869 sctx->cur_inode_deleted = 1;
5870 sctx->cur_inode_size = btrfs_inode_size(
5871 sctx->right_path->nodes[0], right_ii);
5872 sctx->cur_inode_mode = btrfs_inode_mode(
5873 sctx->right_path->nodes[0], right_ii);
5874 ret = process_all_refs(sctx,
5875 BTRFS_COMPARE_TREE_DELETED);
5880 * Now process the inode as if it was new.
5882 sctx->cur_inode_gen = left_gen;
5883 sctx->cur_inode_new = 1;
5884 sctx->cur_inode_deleted = 0;
5885 sctx->cur_inode_size = btrfs_inode_size(
5886 sctx->left_path->nodes[0], left_ii);
5887 sctx->cur_inode_mode = btrfs_inode_mode(
5888 sctx->left_path->nodes[0], left_ii);
5889 sctx->cur_inode_rdev = btrfs_inode_rdev(
5890 sctx->left_path->nodes[0], left_ii);
5891 ret = send_create_inode_if_needed(sctx);
5895 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5899 * Advance send_progress now as we did not get into
5900 * process_recorded_refs_if_needed in the new_gen case.
5902 sctx->send_progress = sctx->cur_ino + 1;
5905 * Now process all extents and xattrs of the inode as if
5906 * they were all new.
5908 ret = process_all_extents(sctx);
5911 ret = process_all_new_xattrs(sctx);
5915 sctx->cur_inode_gen = left_gen;
5916 sctx->cur_inode_new = 0;
5917 sctx->cur_inode_new_gen = 0;
5918 sctx->cur_inode_deleted = 0;
5919 sctx->cur_inode_size = btrfs_inode_size(
5920 sctx->left_path->nodes[0], left_ii);
5921 sctx->cur_inode_mode = btrfs_inode_mode(
5922 sctx->left_path->nodes[0], left_ii);
5931 * We have to process new refs before deleted refs, but compare_trees gives us
5932 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5933 * first and later process them in process_recorded_refs.
5934 * For the cur_inode_new_gen case, we skip recording completely because
5935 * changed_inode did already initiate processing of refs. The reason for this is
5936 * that in this case, compare_tree actually compares the refs of 2 different
5937 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5938 * refs of the right tree as deleted and all refs of the left tree as new.
5940 static int changed_ref(struct send_ctx *sctx,
5941 enum btrfs_compare_tree_result result)
5945 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5946 inconsistent_snapshot_error(sctx, result, "reference");
5950 if (!sctx->cur_inode_new_gen &&
5951 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5952 if (result == BTRFS_COMPARE_TREE_NEW)
5953 ret = record_new_ref(sctx);
5954 else if (result == BTRFS_COMPARE_TREE_DELETED)
5955 ret = record_deleted_ref(sctx);
5956 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5957 ret = record_changed_ref(sctx);
5964 * Process new/deleted/changed xattrs. We skip processing in the
5965 * cur_inode_new_gen case because changed_inode did already initiate processing
5966 * of xattrs. The reason is the same as in changed_ref
5968 static int changed_xattr(struct send_ctx *sctx,
5969 enum btrfs_compare_tree_result result)
5973 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5974 inconsistent_snapshot_error(sctx, result, "xattr");
5978 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5979 if (result == BTRFS_COMPARE_TREE_NEW)
5980 ret = process_new_xattr(sctx);
5981 else if (result == BTRFS_COMPARE_TREE_DELETED)
5982 ret = process_deleted_xattr(sctx);
5983 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5984 ret = process_changed_xattr(sctx);
5991 * Process new/deleted/changed extents. We skip processing in the
5992 * cur_inode_new_gen case because changed_inode did already initiate processing
5993 * of extents. The reason is the same as in changed_ref
5995 static int changed_extent(struct send_ctx *sctx,
5996 enum btrfs_compare_tree_result result)
6000 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6002 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6003 struct extent_buffer *leaf_l;
6004 struct extent_buffer *leaf_r;
6005 struct btrfs_file_extent_item *ei_l;
6006 struct btrfs_file_extent_item *ei_r;
6008 leaf_l = sctx->left_path->nodes[0];
6009 leaf_r = sctx->right_path->nodes[0];
6010 ei_l = btrfs_item_ptr(leaf_l,
6011 sctx->left_path->slots[0],
6012 struct btrfs_file_extent_item);
6013 ei_r = btrfs_item_ptr(leaf_r,
6014 sctx->right_path->slots[0],
6015 struct btrfs_file_extent_item);
6018 * We may have found an extent item that has changed
6019 * only its disk_bytenr field and the corresponding
6020 * inode item was not updated. This case happens due to
6021 * very specific timings during relocation when a leaf
6022 * that contains file extent items is COWed while
6023 * relocation is ongoing and its in the stage where it
6024 * updates data pointers. So when this happens we can
6025 * safely ignore it since we know it's the same extent,
6026 * but just at different logical and physical locations
6027 * (when an extent is fully replaced with a new one, we
6028 * know the generation number must have changed too,
6029 * since snapshot creation implies committing the current
6030 * transaction, and the inode item must have been updated
6032 * This replacement of the disk_bytenr happens at
6033 * relocation.c:replace_file_extents() through
6034 * relocation.c:btrfs_reloc_cow_block().
6036 if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6037 btrfs_file_extent_generation(leaf_r, ei_r) &&
6038 btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6039 btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6040 btrfs_file_extent_compression(leaf_l, ei_l) ==
6041 btrfs_file_extent_compression(leaf_r, ei_r) &&
6042 btrfs_file_extent_encryption(leaf_l, ei_l) ==
6043 btrfs_file_extent_encryption(leaf_r, ei_r) &&
6044 btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6045 btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6046 btrfs_file_extent_type(leaf_l, ei_l) ==
6047 btrfs_file_extent_type(leaf_r, ei_r) &&
6048 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6049 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6050 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6051 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6052 btrfs_file_extent_offset(leaf_l, ei_l) ==
6053 btrfs_file_extent_offset(leaf_r, ei_r) &&
6054 btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6055 btrfs_file_extent_num_bytes(leaf_r, ei_r))
6059 inconsistent_snapshot_error(sctx, result, "extent");
6063 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6064 if (result != BTRFS_COMPARE_TREE_DELETED)
6065 ret = process_extent(sctx, sctx->left_path,
6072 static int dir_changed(struct send_ctx *sctx, u64 dir)
6074 u64 orig_gen, new_gen;
6077 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6082 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6087 return (orig_gen != new_gen) ? 1 : 0;
6090 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6091 struct btrfs_key *key)
6093 struct btrfs_inode_extref *extref;
6094 struct extent_buffer *leaf;
6095 u64 dirid = 0, last_dirid = 0;
6102 /* Easy case, just check this one dirid */
6103 if (key->type == BTRFS_INODE_REF_KEY) {
6104 dirid = key->offset;
6106 ret = dir_changed(sctx, dirid);
6110 leaf = path->nodes[0];
6111 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6112 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6113 while (cur_offset < item_size) {
6114 extref = (struct btrfs_inode_extref *)(ptr +
6116 dirid = btrfs_inode_extref_parent(leaf, extref);
6117 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6118 cur_offset += ref_name_len + sizeof(*extref);
6119 if (dirid == last_dirid)
6121 ret = dir_changed(sctx, dirid);
6131 * Updates compare related fields in sctx and simply forwards to the actual
6132 * changed_xxx functions.
6134 static int changed_cb(struct btrfs_root *left_root,
6135 struct btrfs_root *right_root,
6136 struct btrfs_path *left_path,
6137 struct btrfs_path *right_path,
6138 struct btrfs_key *key,
6139 enum btrfs_compare_tree_result result,
6143 struct send_ctx *sctx = ctx;
6145 if (result == BTRFS_COMPARE_TREE_SAME) {
6146 if (key->type == BTRFS_INODE_REF_KEY ||
6147 key->type == BTRFS_INODE_EXTREF_KEY) {
6148 ret = compare_refs(sctx, left_path, key);
6153 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6154 return maybe_send_hole(sctx, left_path, key);
6158 result = BTRFS_COMPARE_TREE_CHANGED;
6162 sctx->left_path = left_path;
6163 sctx->right_path = right_path;
6164 sctx->cmp_key = key;
6166 ret = finish_inode_if_needed(sctx, 0);
6170 /* Ignore non-FS objects */
6171 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6172 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6175 if (key->type == BTRFS_INODE_ITEM_KEY)
6176 ret = changed_inode(sctx, result);
6177 else if (key->type == BTRFS_INODE_REF_KEY ||
6178 key->type == BTRFS_INODE_EXTREF_KEY)
6179 ret = changed_ref(sctx, result);
6180 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6181 ret = changed_xattr(sctx, result);
6182 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6183 ret = changed_extent(sctx, result);
6189 static int full_send_tree(struct send_ctx *sctx)
6192 struct btrfs_root *send_root = sctx->send_root;
6193 struct btrfs_key key;
6194 struct btrfs_key found_key;
6195 struct btrfs_path *path;
6196 struct extent_buffer *eb;
6199 path = alloc_path_for_send();
6203 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6204 key.type = BTRFS_INODE_ITEM_KEY;
6207 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6214 eb = path->nodes[0];
6215 slot = path->slots[0];
6216 btrfs_item_key_to_cpu(eb, &found_key, slot);
6218 ret = changed_cb(send_root, NULL, path, NULL,
6219 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
6223 key.objectid = found_key.objectid;
6224 key.type = found_key.type;
6225 key.offset = found_key.offset + 1;
6227 ret = btrfs_next_item(send_root, path);
6237 ret = finish_inode_if_needed(sctx, 1);
6240 btrfs_free_path(path);
6244 static int send_subvol(struct send_ctx *sctx)
6248 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6249 ret = send_header(sctx);
6254 ret = send_subvol_begin(sctx);
6258 if (sctx->parent_root) {
6259 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6263 ret = finish_inode_if_needed(sctx, 1);
6267 ret = full_send_tree(sctx);
6273 free_recorded_refs(sctx);
6278 * If orphan cleanup did remove any orphans from a root, it means the tree
6279 * was modified and therefore the commit root is not the same as the current
6280 * root anymore. This is a problem, because send uses the commit root and
6281 * therefore can see inode items that don't exist in the current root anymore,
6282 * and for example make calls to btrfs_iget, which will do tree lookups based
6283 * on the current root and not on the commit root. Those lookups will fail,
6284 * returning a -ESTALE error, and making send fail with that error. So make
6285 * sure a send does not see any orphans we have just removed, and that it will
6286 * see the same inodes regardless of whether a transaction commit happened
6287 * before it started (meaning that the commit root will be the same as the
6288 * current root) or not.
6290 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6293 struct btrfs_trans_handle *trans = NULL;
6296 if (sctx->parent_root &&
6297 sctx->parent_root->node != sctx->parent_root->commit_root)
6300 for (i = 0; i < sctx->clone_roots_cnt; i++)
6301 if (sctx->clone_roots[i].root->node !=
6302 sctx->clone_roots[i].root->commit_root)
6306 return btrfs_end_transaction(trans);
6311 /* Use any root, all fs roots will get their commit roots updated. */
6313 trans = btrfs_join_transaction(sctx->send_root);
6315 return PTR_ERR(trans);
6319 return btrfs_commit_transaction(trans);
6322 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6324 spin_lock(&root->root_item_lock);
6325 root->send_in_progress--;
6327 * Not much left to do, we don't know why it's unbalanced and
6328 * can't blindly reset it to 0.
6330 if (root->send_in_progress < 0)
6331 btrfs_err(root->fs_info,
6332 "send_in_progres unbalanced %d root %llu",
6333 root->send_in_progress, root->root_key.objectid);
6334 spin_unlock(&root->root_item_lock);
6337 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6340 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6341 struct btrfs_fs_info *fs_info = send_root->fs_info;
6342 struct btrfs_root *clone_root;
6343 struct btrfs_ioctl_send_args *arg = NULL;
6344 struct btrfs_key key;
6345 struct send_ctx *sctx = NULL;
6347 u64 *clone_sources_tmp = NULL;
6348 int clone_sources_to_rollback = 0;
6349 unsigned alloc_size;
6350 int sort_clone_roots = 0;
6353 if (!capable(CAP_SYS_ADMIN))
6357 * The subvolume must remain read-only during send, protect against
6358 * making it RW. This also protects against deletion.
6360 spin_lock(&send_root->root_item_lock);
6361 send_root->send_in_progress++;
6362 spin_unlock(&send_root->root_item_lock);
6365 * This is done when we lookup the root, it should already be complete
6366 * by the time we get here.
6368 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6371 * Userspace tools do the checks and warn the user if it's
6374 if (!btrfs_root_readonly(send_root)) {
6379 arg = memdup_user(arg_, sizeof(*arg));
6387 * Check that we don't overflow at later allocations, we request
6388 * clone_sources_count + 1 items, and compare to unsigned long inside
6391 if (arg->clone_sources_count >
6392 ULONG_MAX / sizeof(struct clone_root) - 1) {
6397 if (!access_ok(VERIFY_READ, arg->clone_sources,
6398 sizeof(*arg->clone_sources) *
6399 arg->clone_sources_count)) {
6404 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6409 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6415 INIT_LIST_HEAD(&sctx->new_refs);
6416 INIT_LIST_HEAD(&sctx->deleted_refs);
6417 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6418 INIT_LIST_HEAD(&sctx->name_cache_list);
6420 sctx->flags = arg->flags;
6422 sctx->send_filp = fget(arg->send_fd);
6423 if (!sctx->send_filp) {
6428 sctx->send_root = send_root;
6430 * Unlikely but possible, if the subvolume is marked for deletion but
6431 * is slow to remove the directory entry, send can still be started
6433 if (btrfs_root_dead(sctx->send_root)) {
6438 sctx->clone_roots_cnt = arg->clone_sources_count;
6440 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6441 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6442 if (!sctx->send_buf) {
6447 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6448 if (!sctx->read_buf) {
6453 sctx->pending_dir_moves = RB_ROOT;
6454 sctx->waiting_dir_moves = RB_ROOT;
6455 sctx->orphan_dirs = RB_ROOT;
6457 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6459 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6460 if (!sctx->clone_roots) {
6465 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6467 if (arg->clone_sources_count) {
6468 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6469 if (!clone_sources_tmp) {
6474 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6481 for (i = 0; i < arg->clone_sources_count; i++) {
6482 key.objectid = clone_sources_tmp[i];
6483 key.type = BTRFS_ROOT_ITEM_KEY;
6484 key.offset = (u64)-1;
6486 index = srcu_read_lock(&fs_info->subvol_srcu);
6488 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6489 if (IS_ERR(clone_root)) {
6490 srcu_read_unlock(&fs_info->subvol_srcu, index);
6491 ret = PTR_ERR(clone_root);
6494 spin_lock(&clone_root->root_item_lock);
6495 if (!btrfs_root_readonly(clone_root) ||
6496 btrfs_root_dead(clone_root)) {
6497 spin_unlock(&clone_root->root_item_lock);
6498 srcu_read_unlock(&fs_info->subvol_srcu, index);
6502 clone_root->send_in_progress++;
6503 spin_unlock(&clone_root->root_item_lock);
6504 srcu_read_unlock(&fs_info->subvol_srcu, index);
6506 sctx->clone_roots[i].root = clone_root;
6507 clone_sources_to_rollback = i + 1;
6509 kvfree(clone_sources_tmp);
6510 clone_sources_tmp = NULL;
6513 if (arg->parent_root) {
6514 key.objectid = arg->parent_root;
6515 key.type = BTRFS_ROOT_ITEM_KEY;
6516 key.offset = (u64)-1;
6518 index = srcu_read_lock(&fs_info->subvol_srcu);
6520 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6521 if (IS_ERR(sctx->parent_root)) {
6522 srcu_read_unlock(&fs_info->subvol_srcu, index);
6523 ret = PTR_ERR(sctx->parent_root);
6527 spin_lock(&sctx->parent_root->root_item_lock);
6528 sctx->parent_root->send_in_progress++;
6529 if (!btrfs_root_readonly(sctx->parent_root) ||
6530 btrfs_root_dead(sctx->parent_root)) {
6531 spin_unlock(&sctx->parent_root->root_item_lock);
6532 srcu_read_unlock(&fs_info->subvol_srcu, index);
6536 spin_unlock(&sctx->parent_root->root_item_lock);
6538 srcu_read_unlock(&fs_info->subvol_srcu, index);
6542 * Clones from send_root are allowed, but only if the clone source
6543 * is behind the current send position. This is checked while searching
6544 * for possible clone sources.
6546 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6548 /* We do a bsearch later */
6549 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6550 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6552 sort_clone_roots = 1;
6554 ret = ensure_commit_roots_uptodate(sctx);
6558 current->journal_info = BTRFS_SEND_TRANS_STUB;
6559 ret = send_subvol(sctx);
6560 current->journal_info = NULL;
6564 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6565 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6568 ret = send_cmd(sctx);
6574 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6575 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6577 struct pending_dir_move *pm;
6579 n = rb_first(&sctx->pending_dir_moves);
6580 pm = rb_entry(n, struct pending_dir_move, node);
6581 while (!list_empty(&pm->list)) {
6582 struct pending_dir_move *pm2;
6584 pm2 = list_first_entry(&pm->list,
6585 struct pending_dir_move, list);
6586 free_pending_move(sctx, pm2);
6588 free_pending_move(sctx, pm);
6591 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6592 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6594 struct waiting_dir_move *dm;
6596 n = rb_first(&sctx->waiting_dir_moves);
6597 dm = rb_entry(n, struct waiting_dir_move, node);
6598 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6602 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6603 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6605 struct orphan_dir_info *odi;
6607 n = rb_first(&sctx->orphan_dirs);
6608 odi = rb_entry(n, struct orphan_dir_info, node);
6609 free_orphan_dir_info(sctx, odi);
6612 if (sort_clone_roots) {
6613 for (i = 0; i < sctx->clone_roots_cnt; i++)
6614 btrfs_root_dec_send_in_progress(
6615 sctx->clone_roots[i].root);
6617 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6618 btrfs_root_dec_send_in_progress(
6619 sctx->clone_roots[i].root);
6621 btrfs_root_dec_send_in_progress(send_root);
6623 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6624 btrfs_root_dec_send_in_progress(sctx->parent_root);
6627 kvfree(clone_sources_tmp);
6630 if (sctx->send_filp)
6631 fput(sctx->send_filp);
6633 kvfree(sctx->clone_roots);
6634 kvfree(sctx->send_buf);
6635 kvfree(sctx->read_buf);
6637 name_cache_free(sctx);