2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
34 extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
36 static pgd_t *boot_hyp_pgd;
37 static pgd_t *hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
40 static void *init_bounce_page;
41 static unsigned long hyp_idmap_start;
42 static unsigned long hyp_idmap_end;
43 static phys_addr_t hyp_idmap_vector;
45 #define pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
47 #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
49 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
52 * This function also gets called when dealing with HYP page
53 * tables. As HYP doesn't have an associated struct kvm (and
54 * the HYP page tables are fairly static), we don't do
58 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
61 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
66 BUG_ON(max > KVM_NR_MEM_OBJS);
67 if (cache->nobjs >= min)
69 while (cache->nobjs < max) {
70 page = (void *)__get_free_page(PGALLOC_GFP);
73 cache->objects[cache->nobjs++] = page;
78 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
81 free_page((unsigned long)mc->objects[--mc->nobjs]);
84 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
88 BUG_ON(!mc || !mc->nobjs);
89 p = mc->objects[--mc->nobjs];
93 static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
95 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
97 kvm_tlb_flush_vmid_ipa(kvm, addr);
98 pud_free(NULL, pud_table);
99 put_page(virt_to_page(pgd));
102 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
104 pmd_t *pmd_table = pmd_offset(pud, 0);
105 VM_BUG_ON(pud_huge(*pud));
107 kvm_tlb_flush_vmid_ipa(kvm, addr);
108 pmd_free(NULL, pmd_table);
109 put_page(virt_to_page(pud));
112 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
114 pte_t *pte_table = pte_offset_kernel(pmd, 0);
115 VM_BUG_ON(kvm_pmd_huge(*pmd));
117 kvm_tlb_flush_vmid_ipa(kvm, addr);
118 pte_free_kernel(NULL, pte_table);
119 put_page(virt_to_page(pmd));
122 static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
123 phys_addr_t addr, phys_addr_t end)
125 phys_addr_t start_addr = addr;
126 pte_t *pte, *start_pte;
128 start_pte = pte = pte_offset_kernel(pmd, addr);
130 if (!pte_none(*pte)) {
131 kvm_set_pte(pte, __pte(0));
132 put_page(virt_to_page(pte));
133 kvm_tlb_flush_vmid_ipa(kvm, addr);
135 } while (pte++, addr += PAGE_SIZE, addr != end);
137 if (kvm_pte_table_empty(start_pte))
138 clear_pmd_entry(kvm, pmd, start_addr);
141 static void unmap_pmds(struct kvm *kvm, pud_t *pud,
142 phys_addr_t addr, phys_addr_t end)
144 phys_addr_t next, start_addr = addr;
145 pmd_t *pmd, *start_pmd;
147 start_pmd = pmd = pmd_offset(pud, addr);
149 next = kvm_pmd_addr_end(addr, end);
150 if (!pmd_none(*pmd)) {
151 if (kvm_pmd_huge(*pmd)) {
153 kvm_tlb_flush_vmid_ipa(kvm, addr);
154 put_page(virt_to_page(pmd));
156 unmap_ptes(kvm, pmd, addr, next);
159 } while (pmd++, addr = next, addr != end);
161 if (kvm_pmd_table_empty(start_pmd))
162 clear_pud_entry(kvm, pud, start_addr);
165 static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
166 phys_addr_t addr, phys_addr_t end)
168 phys_addr_t next, start_addr = addr;
169 pud_t *pud, *start_pud;
171 start_pud = pud = pud_offset(pgd, addr);
173 next = kvm_pud_addr_end(addr, end);
174 if (!pud_none(*pud)) {
175 if (pud_huge(*pud)) {
177 kvm_tlb_flush_vmid_ipa(kvm, addr);
178 put_page(virt_to_page(pud));
180 unmap_pmds(kvm, pud, addr, next);
183 } while (pud++, addr = next, addr != end);
185 if (kvm_pud_table_empty(start_pud))
186 clear_pgd_entry(kvm, pgd, start_addr);
190 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
191 phys_addr_t start, u64 size)
194 phys_addr_t addr = start, end = start + size;
197 pgd = pgdp + pgd_index(addr);
199 next = kvm_pgd_addr_end(addr, end);
200 unmap_puds(kvm, pgd, addr, next);
201 } while (pgd++, addr = next, addr != end);
204 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
205 phys_addr_t addr, phys_addr_t end)
209 pte = pte_offset_kernel(pmd, addr);
211 if (!pte_none(*pte)) {
212 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
213 kvm_flush_dcache_to_poc((void*)hva, PAGE_SIZE);
215 } while (pte++, addr += PAGE_SIZE, addr != end);
218 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
219 phys_addr_t addr, phys_addr_t end)
224 pmd = pmd_offset(pud, addr);
226 next = kvm_pmd_addr_end(addr, end);
227 if (!pmd_none(*pmd)) {
228 if (kvm_pmd_huge(*pmd)) {
229 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
230 kvm_flush_dcache_to_poc((void*)hva, PMD_SIZE);
232 stage2_flush_ptes(kvm, pmd, addr, next);
235 } while (pmd++, addr = next, addr != end);
238 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
239 phys_addr_t addr, phys_addr_t end)
244 pud = pud_offset(pgd, addr);
246 next = kvm_pud_addr_end(addr, end);
247 if (!pud_none(*pud)) {
248 if (pud_huge(*pud)) {
249 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
250 kvm_flush_dcache_to_poc((void*)hva, PUD_SIZE);
252 stage2_flush_pmds(kvm, pud, addr, next);
255 } while (pud++, addr = next, addr != end);
258 static void stage2_flush_memslot(struct kvm *kvm,
259 struct kvm_memory_slot *memslot)
261 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
262 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
266 pgd = kvm->arch.pgd + pgd_index(addr);
268 next = kvm_pgd_addr_end(addr, end);
269 stage2_flush_puds(kvm, pgd, addr, next);
270 } while (pgd++, addr = next, addr != end);
274 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
275 * @kvm: The struct kvm pointer
277 * Go through the stage 2 page tables and invalidate any cache lines
278 * backing memory already mapped to the VM.
280 void stage2_flush_vm(struct kvm *kvm)
282 struct kvm_memslots *slots;
283 struct kvm_memory_slot *memslot;
286 idx = srcu_read_lock(&kvm->srcu);
287 spin_lock(&kvm->mmu_lock);
289 slots = kvm_memslots(kvm);
290 kvm_for_each_memslot(memslot, slots)
291 stage2_flush_memslot(kvm, memslot);
293 spin_unlock(&kvm->mmu_lock);
294 srcu_read_unlock(&kvm->srcu, idx);
298 * free_boot_hyp_pgd - free HYP boot page tables
300 * Free the HYP boot page tables. The bounce page is also freed.
302 void free_boot_hyp_pgd(void)
304 mutex_lock(&kvm_hyp_pgd_mutex);
307 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
308 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
309 free_pages((unsigned long)boot_hyp_pgd, pgd_order);
314 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
316 free_page((unsigned long)init_bounce_page);
317 init_bounce_page = NULL;
319 mutex_unlock(&kvm_hyp_pgd_mutex);
323 * free_hyp_pgds - free Hyp-mode page tables
325 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
326 * therefore contains either mappings in the kernel memory area (above
327 * PAGE_OFFSET), or device mappings in the vmalloc range (from
328 * VMALLOC_START to VMALLOC_END).
330 * boot_hyp_pgd should only map two pages for the init code.
332 void free_hyp_pgds(void)
338 mutex_lock(&kvm_hyp_pgd_mutex);
341 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
342 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
343 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
344 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
346 free_pages((unsigned long)hyp_pgd, pgd_order);
350 mutex_unlock(&kvm_hyp_pgd_mutex);
353 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
354 unsigned long end, unsigned long pfn,
362 pte = pte_offset_kernel(pmd, addr);
363 kvm_set_pte(pte, pfn_pte(pfn, prot));
364 get_page(virt_to_page(pte));
365 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
367 } while (addr += PAGE_SIZE, addr != end);
370 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
371 unsigned long end, unsigned long pfn,
376 unsigned long addr, next;
380 pmd = pmd_offset(pud, addr);
382 BUG_ON(pmd_sect(*pmd));
384 if (pmd_none(*pmd)) {
385 pte = pte_alloc_one_kernel(NULL, addr);
387 kvm_err("Cannot allocate Hyp pte\n");
390 pmd_populate_kernel(NULL, pmd, pte);
391 get_page(virt_to_page(pmd));
392 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
395 next = pmd_addr_end(addr, end);
397 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
398 pfn += (next - addr) >> PAGE_SHIFT;
399 } while (addr = next, addr != end);
404 static int __create_hyp_mappings(pgd_t *pgdp,
405 unsigned long start, unsigned long end,
406 unsigned long pfn, pgprot_t prot)
411 unsigned long addr, next;
414 mutex_lock(&kvm_hyp_pgd_mutex);
415 addr = start & PAGE_MASK;
416 end = PAGE_ALIGN(end);
418 pgd = pgdp + pgd_index(addr);
419 pud = pud_offset(pgd, addr);
421 if (pud_none_or_clear_bad(pud)) {
422 pmd = pmd_alloc_one(NULL, addr);
424 kvm_err("Cannot allocate Hyp pmd\n");
428 pud_populate(NULL, pud, pmd);
429 get_page(virt_to_page(pud));
430 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
433 next = pgd_addr_end(addr, end);
434 err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
437 pfn += (next - addr) >> PAGE_SHIFT;
438 } while (addr = next, addr != end);
440 mutex_unlock(&kvm_hyp_pgd_mutex);
444 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
446 if (!is_vmalloc_addr(kaddr)) {
447 BUG_ON(!virt_addr_valid(kaddr));
450 return page_to_phys(vmalloc_to_page(kaddr)) +
451 offset_in_page(kaddr);
456 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
457 * @from: The virtual kernel start address of the range
458 * @to: The virtual kernel end address of the range (exclusive)
460 * The same virtual address as the kernel virtual address is also used
461 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
464 int create_hyp_mappings(void *from, void *to)
466 phys_addr_t phys_addr;
467 unsigned long virt_addr;
468 unsigned long start = KERN_TO_HYP((unsigned long)from);
469 unsigned long end = KERN_TO_HYP((unsigned long)to);
471 start = start & PAGE_MASK;
472 end = PAGE_ALIGN(end);
474 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
477 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
478 err = __create_hyp_mappings(hyp_pgd, virt_addr,
479 virt_addr + PAGE_SIZE,
480 __phys_to_pfn(phys_addr),
490 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
491 * @from: The kernel start VA of the range
492 * @to: The kernel end VA of the range (exclusive)
493 * @phys_addr: The physical start address which gets mapped
495 * The resulting HYP VA is the same as the kernel VA, modulo
498 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
500 unsigned long start = KERN_TO_HYP((unsigned long)from);
501 unsigned long end = KERN_TO_HYP((unsigned long)to);
503 /* Check for a valid kernel IO mapping */
504 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
507 return __create_hyp_mappings(hyp_pgd, start, end,
508 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
512 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
513 * @kvm: The KVM struct pointer for the VM.
515 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
516 * support either full 40-bit input addresses or limited to 32-bit input
517 * addresses). Clears the allocated pages.
519 * Note we don't need locking here as this is only called when the VM is
520 * created, which can only be done once.
522 int kvm_alloc_stage2_pgd(struct kvm *kvm)
526 if (kvm->arch.pgd != NULL) {
527 kvm_err("kvm_arch already initialized?\n");
531 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
535 memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
543 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
544 * @kvm: The VM pointer
545 * @start: The intermediate physical base address of the range to unmap
546 * @size: The size of the area to unmap
548 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
549 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
550 * destroying the VM), otherwise another faulting VCPU may come in and mess
551 * with things behind our backs.
553 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
555 unmap_range(kvm, kvm->arch.pgd, start, size);
559 * kvm_free_stage2_pgd - free all stage-2 tables
560 * @kvm: The KVM struct pointer for the VM.
562 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
563 * underlying level-2 and level-3 tables before freeing the actual level-1 table
564 * and setting the struct pointer to NULL.
566 * Note we don't need locking here as this is only called when the VM is
567 * destroyed, which can only be done once.
569 void kvm_free_stage2_pgd(struct kvm *kvm)
571 if (kvm->arch.pgd == NULL)
574 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
575 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
576 kvm->arch.pgd = NULL;
579 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
586 pgd = kvm->arch.pgd + pgd_index(addr);
587 pud = pud_offset(pgd, addr);
588 if (pud_none(*pud)) {
591 pmd = mmu_memory_cache_alloc(cache);
592 pud_populate(NULL, pud, pmd);
593 get_page(virt_to_page(pud));
596 return pmd_offset(pud, addr);
599 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
600 *cache, phys_addr_t addr, const pmd_t *new_pmd)
604 pmd = stage2_get_pmd(kvm, cache, addr);
608 * Mapping in huge pages should only happen through a fault. If a
609 * page is merged into a transparent huge page, the individual
610 * subpages of that huge page should be unmapped through MMU
611 * notifiers before we get here.
613 * Merging of CompoundPages is not supported; they should become
614 * splitting first, unmapped, merged, and mapped back in on-demand.
616 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
619 kvm_set_pmd(pmd, *new_pmd);
620 if (pmd_present(old_pmd))
621 kvm_tlb_flush_vmid_ipa(kvm, addr);
623 get_page(virt_to_page(pmd));
627 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
628 phys_addr_t addr, const pte_t *new_pte, bool iomap)
633 /* Create stage-2 page table mapping - Level 1 */
634 pmd = stage2_get_pmd(kvm, cache, addr);
637 * Ignore calls from kvm_set_spte_hva for unallocated
643 /* Create stage-2 page mappings - Level 2 */
644 if (pmd_none(*pmd)) {
646 return 0; /* ignore calls from kvm_set_spte_hva */
647 pte = mmu_memory_cache_alloc(cache);
649 pmd_populate_kernel(NULL, pmd, pte);
650 get_page(virt_to_page(pmd));
653 pte = pte_offset_kernel(pmd, addr);
655 if (iomap && pte_present(*pte))
658 /* Create 2nd stage page table mapping - Level 3 */
660 kvm_set_pte(pte, *new_pte);
661 if (pte_present(old_pte))
662 kvm_tlb_flush_vmid_ipa(kvm, addr);
664 get_page(virt_to_page(pte));
670 * kvm_phys_addr_ioremap - map a device range to guest IPA
672 * @kvm: The KVM pointer
673 * @guest_ipa: The IPA at which to insert the mapping
674 * @pa: The physical address of the device
675 * @size: The size of the mapping
677 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
678 phys_addr_t pa, unsigned long size)
680 phys_addr_t addr, end;
683 struct kvm_mmu_memory_cache cache = { 0, };
685 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
686 pfn = __phys_to_pfn(pa);
688 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
689 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
691 ret = mmu_topup_memory_cache(&cache, 2, 2);
694 spin_lock(&kvm->mmu_lock);
695 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
696 spin_unlock(&kvm->mmu_lock);
704 mmu_free_memory_cache(&cache);
708 static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
711 gfn_t gfn = *ipap >> PAGE_SHIFT;
713 if (PageTransCompound(pfn_to_page(pfn))) {
716 * The address we faulted on is backed by a transparent huge
717 * page. However, because we map the compound huge page and
718 * not the individual tail page, we need to transfer the
719 * refcount to the head page. We have to be careful that the
720 * THP doesn't start to split while we are adjusting the
723 * We are sure this doesn't happen, because mmu_notifier_retry
724 * was successful and we are holding the mmu_lock, so if this
725 * THP is trying to split, it will be blocked in the mmu
726 * notifier before touching any of the pages, specifically
727 * before being able to call __split_huge_page_refcount().
729 * We can therefore safely transfer the refcount from PG_tail
730 * to PG_head and switch the pfn from a tail page to the head
733 mask = PTRS_PER_PMD - 1;
734 VM_BUG_ON((gfn & mask) != (pfn & mask));
737 kvm_release_pfn_clean(pfn);
749 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
750 struct kvm_memory_slot *memslot,
751 unsigned long fault_status)
754 bool write_fault, writable, hugetlb = false, force_pte = false;
755 unsigned long mmu_seq;
756 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
757 unsigned long hva = gfn_to_hva(vcpu->kvm, gfn);
758 struct kvm *kvm = vcpu->kvm;
759 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
760 struct vm_area_struct *vma;
762 pgprot_t mem_type = PAGE_S2;
764 write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
765 if (fault_status == FSC_PERM && !write_fault) {
766 kvm_err("Unexpected L2 read permission error\n");
770 /* Let's check if we will get back a huge page backed by hugetlbfs */
771 down_read(¤t->mm->mmap_sem);
772 vma = find_vma_intersection(current->mm, hva, hva + 1);
773 if (is_vm_hugetlb_page(vma)) {
775 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
778 * Pages belonging to memslots that don't have the same
779 * alignment for userspace and IPA cannot be mapped using
780 * block descriptors even if the pages belong to a THP for
781 * the process, because the stage-2 block descriptor will
782 * cover more than a single THP and we loose atomicity for
783 * unmapping, updates, and splits of the THP or other pages
784 * in the stage-2 block range.
786 if ((memslot->userspace_addr & ~PMD_MASK) !=
787 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
790 up_read(¤t->mm->mmap_sem);
792 /* We need minimum second+third level pages */
793 ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
797 mmu_seq = vcpu->kvm->mmu_notifier_seq;
799 * Ensure the read of mmu_notifier_seq happens before we call
800 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
801 * the page we just got a reference to gets unmapped before we have a
802 * chance to grab the mmu_lock, which ensure that if the page gets
803 * unmapped afterwards, the call to kvm_unmap_hva will take it away
804 * from us again properly. This smp_rmb() interacts with the smp_wmb()
805 * in kvm_mmu_notifier_invalidate_<page|range_end>.
809 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
810 if (is_error_pfn(pfn))
813 if (kvm_is_mmio_pfn(pfn))
814 mem_type = PAGE_S2_DEVICE;
816 spin_lock(&kvm->mmu_lock);
817 if (mmu_notifier_retry(kvm, mmu_seq))
819 if (!hugetlb && !force_pte)
820 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
823 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
824 new_pmd = pmd_mkhuge(new_pmd);
826 kvm_set_s2pmd_writable(&new_pmd);
827 kvm_set_pfn_dirty(pfn);
829 coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE);
830 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
832 pte_t new_pte = pfn_pte(pfn, mem_type);
834 kvm_set_s2pte_writable(&new_pte);
835 kvm_set_pfn_dirty(pfn);
837 coherent_cache_guest_page(vcpu, hva, PAGE_SIZE);
838 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte,
839 mem_type == PAGE_S2_DEVICE);
844 spin_unlock(&kvm->mmu_lock);
845 kvm_release_pfn_clean(pfn);
850 * kvm_handle_guest_abort - handles all 2nd stage aborts
851 * @vcpu: the VCPU pointer
852 * @run: the kvm_run structure
854 * Any abort that gets to the host is almost guaranteed to be caused by a
855 * missing second stage translation table entry, which can mean that either the
856 * guest simply needs more memory and we must allocate an appropriate page or it
857 * can mean that the guest tried to access I/O memory, which is emulated by user
858 * space. The distinction is based on the IPA causing the fault and whether this
859 * memory region has been registered as standard RAM by user space.
861 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
863 unsigned long fault_status;
864 phys_addr_t fault_ipa;
865 struct kvm_memory_slot *memslot;
870 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
871 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
873 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
874 kvm_vcpu_get_hfar(vcpu), fault_ipa);
876 /* Check the stage-2 fault is trans. fault or write fault */
877 fault_status = kvm_vcpu_trap_get_fault(vcpu);
878 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
879 kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
880 kvm_vcpu_trap_get_class(vcpu), fault_status);
884 idx = srcu_read_lock(&vcpu->kvm->srcu);
886 gfn = fault_ipa >> PAGE_SHIFT;
887 if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
889 /* Prefetch Abort on I/O address */
890 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
895 if (fault_status != FSC_FAULT) {
896 kvm_err("Unsupported fault status on io memory: %#lx\n",
903 * The IPA is reported as [MAX:12], so we need to
904 * complement it with the bottom 12 bits from the
905 * faulting VA. This is always 12 bits, irrespective
908 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
909 ret = io_mem_abort(vcpu, run, fault_ipa);
913 memslot = gfn_to_memslot(vcpu->kvm, gfn);
915 ret = user_mem_abort(vcpu, fault_ipa, memslot, fault_status);
919 srcu_read_unlock(&vcpu->kvm->srcu, idx);
923 static void handle_hva_to_gpa(struct kvm *kvm,
926 void (*handler)(struct kvm *kvm,
927 gpa_t gpa, void *data),
930 struct kvm_memslots *slots;
931 struct kvm_memory_slot *memslot;
933 slots = kvm_memslots(kvm);
935 /* we only care about the pages that the guest sees */
936 kvm_for_each_memslot(memslot, slots) {
937 unsigned long hva_start, hva_end;
940 hva_start = max(start, memslot->userspace_addr);
941 hva_end = min(end, memslot->userspace_addr +
942 (memslot->npages << PAGE_SHIFT));
943 if (hva_start >= hva_end)
947 * {gfn(page) | page intersects with [hva_start, hva_end)} =
948 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
950 gfn = hva_to_gfn_memslot(hva_start, memslot);
951 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
953 for (; gfn < gfn_end; ++gfn) {
954 gpa_t gpa = gfn << PAGE_SHIFT;
955 handler(kvm, gpa, data);
960 static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
962 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
965 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
967 unsigned long end = hva + PAGE_SIZE;
972 trace_kvm_unmap_hva(hva);
973 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
977 int kvm_unmap_hva_range(struct kvm *kvm,
978 unsigned long start, unsigned long end)
983 trace_kvm_unmap_hva_range(start, end);
984 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
988 static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
990 pte_t *pte = (pte_t *)data;
992 stage2_set_pte(kvm, NULL, gpa, pte, false);
996 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
998 unsigned long end = hva + PAGE_SIZE;
1004 trace_kvm_set_spte_hva(hva);
1005 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1006 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1009 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1011 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1014 phys_addr_t kvm_mmu_get_httbr(void)
1016 return virt_to_phys(hyp_pgd);
1019 phys_addr_t kvm_mmu_get_boot_httbr(void)
1021 return virt_to_phys(boot_hyp_pgd);
1024 phys_addr_t kvm_get_idmap_vector(void)
1026 return hyp_idmap_vector;
1029 int kvm_mmu_init(void)
1033 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1034 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1035 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1037 if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
1039 * Our init code is crossing a page boundary. Allocate
1040 * a bounce page, copy the code over and use that.
1042 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
1043 phys_addr_t phys_base;
1045 init_bounce_page = (void *)__get_free_page(GFP_KERNEL);
1046 if (!init_bounce_page) {
1047 kvm_err("Couldn't allocate HYP init bounce page\n");
1052 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
1054 * Warning: the code we just copied to the bounce page
1055 * must be flushed to the point of coherency.
1056 * Otherwise, the data may be sitting in L2, and HYP
1057 * mode won't be able to observe it as it runs with
1058 * caches off at that point.
1060 kvm_flush_dcache_to_poc(init_bounce_page, len);
1062 phys_base = kvm_virt_to_phys(init_bounce_page);
1063 hyp_idmap_vector += phys_base - hyp_idmap_start;
1064 hyp_idmap_start = phys_base;
1065 hyp_idmap_end = phys_base + len;
1067 kvm_info("Using HYP init bounce page @%lx\n",
1068 (unsigned long)phys_base);
1071 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, pgd_order);
1072 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, pgd_order);
1074 if (!hyp_pgd || !boot_hyp_pgd) {
1075 kvm_err("Hyp mode PGD not allocated\n");
1080 /* Create the idmap in the boot page tables */
1081 err = __create_hyp_mappings(boot_hyp_pgd,
1082 hyp_idmap_start, hyp_idmap_end,
1083 __phys_to_pfn(hyp_idmap_start),
1087 kvm_err("Failed to idmap %lx-%lx\n",
1088 hyp_idmap_start, hyp_idmap_end);
1092 /* Map the very same page at the trampoline VA */
1093 err = __create_hyp_mappings(boot_hyp_pgd,
1094 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1095 __phys_to_pfn(hyp_idmap_start),
1098 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1103 /* Map the same page again into the runtime page tables */
1104 err = __create_hyp_mappings(hyp_pgd,
1105 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1106 __phys_to_pfn(hyp_idmap_start),
1109 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1120 void kvm_arch_commit_memory_region(struct kvm *kvm,
1121 struct kvm_userspace_memory_region *mem,
1122 const struct kvm_memory_slot *old,
1123 enum kvm_mr_change change)
1125 gpa_t gpa = old->base_gfn << PAGE_SHIFT;
1126 phys_addr_t size = old->npages << PAGE_SHIFT;
1127 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1128 spin_lock(&kvm->mmu_lock);
1129 unmap_stage2_range(kvm, gpa, size);
1130 spin_unlock(&kvm->mmu_lock);
1134 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1135 struct kvm_memory_slot *memslot,
1136 struct kvm_userspace_memory_region *mem,
1137 enum kvm_mr_change change)
1142 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1143 struct kvm_memory_slot *dont)
1147 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1148 unsigned long npages)
1153 void kvm_arch_memslots_updated(struct kvm *kvm)
1157 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1161 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1162 struct kvm_memory_slot *slot)