1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
53 * 1. slab_mutex (Global Mutex)
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
56 * 4. slab_lock(slab) (Only on some arches)
57 * 5. object_map_lock (Only for debugging)
61 * The role of the slab_mutex is to protect the list of all the slabs
62 * and to synchronize major metadata changes to slab cache structures.
63 * Also synchronizes memory hotplug callbacks.
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
83 * slab is the one who can perform list operations on the slab. Other
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
119 * cpu_slab->lock local lock
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
140 * irq, preemption, migration considerations
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
156 * freed then the slab will show up again on the partial lists.
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
164 * slab->frozen The slab is frozen and exempt from list processing.
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
176 * freelist that allows lockless access to
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
181 * options set. This moves slab handling out of
182 * the fast path and disables lockless freelists.
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH() (true)
194 #define slub_get_cpu_ptr(var) \
199 #define slub_put_cpu_ptr(var) \
204 #define USE_LOCKLESS_FAST_PATH() (false)
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
210 #define __fastpath_inline
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
219 #endif /* CONFIG_SLUB_DEBUG */
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
224 unsigned int orig_size;
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 (s->flags & SLAB_KMALLOC));
239 void *fixup_red_left(struct kmem_cache *s, void *p)
241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 p += s->red_left_pad;
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 return !kmem_cache_debug(s);
257 * Issues still to be resolved:
259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
261 * - Variable sizing of the per node arrays
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
267 #ifndef CONFIG_SLUB_TINY
269 * Minimum number of partial slabs. These will be left on the partial
270 * lists even if they are empty. kmem_cache_shrink may reclaim them.
272 #define MIN_PARTIAL 5
275 * Maximum number of desirable partial slabs.
276 * The existence of more partial slabs makes kmem_cache_shrink
277 * sort the partial list by the number of objects in use.
279 #define MAX_PARTIAL 10
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 SLAB_POISON | SLAB_STORE_USER)
289 * These debug flags cannot use CMPXCHG because there might be consistency
290 * issues when checking or reading debug information
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
297 * Debugging flags that require metadata to be stored in the slab. These get
298 * disabled when slab_debug=O is used and a cache's min order increases with
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
304 #define OO_MASK ((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
307 /* Internal SLUB flags */
309 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
315 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
319 * Tracking user of a slab.
321 #define TRACK_ADDRS_COUNT 16
323 unsigned long addr; /* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 depot_stack_handle_t handle;
327 int cpu; /* Was running on cpu */
328 int pid; /* Pid context */
329 unsigned long when; /* When did the operation occur */
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
350 ALLOC_FASTPATH, /* Allocation from cpu slab */
351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
352 FREE_FASTPATH, /* Free to cpu slab */
353 FREE_SLOWPATH, /* Freeing not to cpu slab */
354 FREE_FROZEN, /* Freeing to frozen slab */
355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
361 FREE_SLAB, /* Slab freed to the page allocator */
362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 DEACTIVATE_BYPASS, /* Implicit deactivation */
369 ORDER_FALLBACK, /* Number of times fallback was necessary */
370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
379 #ifndef CONFIG_SLUB_TINY
381 * When changing the layout, make sure freelist and tid are still compatible
382 * with this_cpu_cmpxchg_double() alignment requirements.
384 struct kmem_cache_cpu {
387 void **freelist; /* Pointer to next available object */
388 unsigned long tid; /* Globally unique transaction id */
390 freelist_aba_t freelist_tid;
392 struct slab *slab; /* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 struct slab *partial; /* Partially allocated slabs */
396 local_lock_t lock; /* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 unsigned int stat[NR_SLUB_STAT_ITEMS];
401 #endif /* CONFIG_SLUB_TINY */
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
405 #ifdef CONFIG_SLUB_STATS
407 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 * avoid this_cpu_add()'s irq-disable overhead.
410 raw_cpu_inc(s->cpu_slab->stat[si]);
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
417 #ifdef CONFIG_SLUB_STATS
418 raw_cpu_add(s->cpu_slab->stat[si], v);
423 * The slab lists for all objects.
425 struct kmem_cache_node {
426 spinlock_t list_lock;
427 unsigned long nr_partial;
428 struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 atomic_long_t nr_slabs;
431 atomic_long_t total_objects;
432 struct list_head full;
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
438 return s->node[node];
442 * Iterator over all nodes. The body will be executed for each node that has
443 * a kmem_cache_node structure allocated (which is true for all online nodes)
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 for (__node = 0; __node < nr_node_ids; __node++) \
447 if ((__n = get_node(__s, __node)))
450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452 * differ during memory hotplug/hotremove operations.
453 * Protected by slab_mutex.
455 static nodemask_t slab_nodes;
457 #ifndef CONFIG_SLUB_TINY
459 * Workqueue used for flush_cpu_slab().
461 static struct workqueue_struct *flushwq;
464 /********************************************************************
465 * Core slab cache functions
466 *******************************************************************/
469 * freeptr_t represents a SLUB freelist pointer, which might be encoded
470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
472 typedef struct { unsigned long v; } freeptr_t;
475 * Returns freelist pointer (ptr). With hardening, this is obfuscated
476 * with an XOR of the address where the pointer is held and a per-cache
479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 void *ptr, unsigned long ptr_addr)
482 unsigned long encoded;
484 #ifdef CONFIG_SLAB_FREELIST_HARDENED
485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
487 encoded = (unsigned long)ptr;
489 return (freeptr_t){.v = encoded};
492 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 freeptr_t ptr, unsigned long ptr_addr)
497 #ifdef CONFIG_SLAB_FREELIST_HARDENED
498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
500 decoded = (void *)ptr.v;
505 static inline void *get_freepointer(struct kmem_cache *s, void *object)
507 unsigned long ptr_addr;
510 object = kasan_reset_tag(object);
511 ptr_addr = (unsigned long)object + s->offset;
512 p = *(freeptr_t *)(ptr_addr);
513 return freelist_ptr_decode(s, p, ptr_addr);
516 #ifndef CONFIG_SLUB_TINY
517 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
519 prefetchw(object + s->offset);
524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525 * pointer value in the case the current thread loses the race for the next
526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528 * KMSAN will still check all arguments of cmpxchg because of imperfect
529 * handling of inline assembly.
530 * To work around this problem, we apply __no_kmsan_checks to ensure that
531 * get_freepointer_safe() returns initialized memory.
534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
536 unsigned long freepointer_addr;
539 if (!debug_pagealloc_enabled_static())
540 return get_freepointer(s, object);
542 object = kasan_reset_tag(object);
543 freepointer_addr = (unsigned long)object + s->offset;
544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 return freelist_ptr_decode(s, p, freepointer_addr);
548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
550 unsigned long freeptr_addr = (unsigned long)object + s->offset;
552 #ifdef CONFIG_SLAB_FREELIST_HARDENED
553 BUG_ON(object == fp); /* naive detection of double free or corruption */
556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
561 * See comment in calculate_sizes().
563 static inline bool freeptr_outside_object(struct kmem_cache *s)
565 return s->offset >= s->inuse;
569 * Return offset of the end of info block which is inuse + free pointer if
570 * not overlapping with object.
572 static inline unsigned int get_info_end(struct kmem_cache *s)
574 if (freeptr_outside_object(s))
575 return s->inuse + sizeof(void *);
580 /* Loop over all objects in a slab */
581 #define for_each_object(__p, __s, __addr, __objects) \
582 for (__p = fixup_red_left(__s, __addr); \
583 __p < (__addr) + (__objects) * (__s)->size; \
586 static inline unsigned int order_objects(unsigned int order, unsigned int size)
588 return ((unsigned int)PAGE_SIZE << order) / size;
591 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
594 struct kmem_cache_order_objects x = {
595 (order << OO_SHIFT) + order_objects(order, size)
601 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
603 return x.x >> OO_SHIFT;
606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
608 return x.x & OO_MASK;
611 #ifdef CONFIG_SLUB_CPU_PARTIAL
612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
614 unsigned int nr_slabs;
616 s->cpu_partial = nr_objects;
619 * We take the number of objects but actually limit the number of
620 * slabs on the per cpu partial list, in order to limit excessive
621 * growth of the list. For simplicity we assume that the slabs will
624 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
625 s->cpu_partial_slabs = nr_slabs;
628 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
630 return s->cpu_partial_slabs;
634 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
642 #endif /* CONFIG_SLUB_CPU_PARTIAL */
645 * Per slab locking using the pagelock
647 static __always_inline void slab_lock(struct slab *slab)
649 bit_spin_lock(PG_locked, &slab->__page_flags);
652 static __always_inline void slab_unlock(struct slab *slab)
654 bit_spin_unlock(PG_locked, &slab->__page_flags);
658 __update_freelist_fast(struct slab *slab,
659 void *freelist_old, unsigned long counters_old,
660 void *freelist_new, unsigned long counters_new)
662 #ifdef system_has_freelist_aba
663 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
664 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
666 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
673 __update_freelist_slow(struct slab *slab,
674 void *freelist_old, unsigned long counters_old,
675 void *freelist_new, unsigned long counters_new)
680 if (slab->freelist == freelist_old &&
681 slab->counters == counters_old) {
682 slab->freelist = freelist_new;
683 slab->counters = counters_new;
692 * Interrupts must be disabled (for the fallback code to work right), typically
693 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
694 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
695 * allocation/ free operation in hardirq context. Therefore nothing can
696 * interrupt the operation.
698 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
699 void *freelist_old, unsigned long counters_old,
700 void *freelist_new, unsigned long counters_new,
705 if (USE_LOCKLESS_FAST_PATH())
706 lockdep_assert_irqs_disabled();
708 if (s->flags & __CMPXCHG_DOUBLE) {
709 ret = __update_freelist_fast(slab, freelist_old, counters_old,
710 freelist_new, counters_new);
712 ret = __update_freelist_slow(slab, freelist_old, counters_old,
713 freelist_new, counters_new);
719 stat(s, CMPXCHG_DOUBLE_FAIL);
721 #ifdef SLUB_DEBUG_CMPXCHG
722 pr_info("%s %s: cmpxchg double redo ", n, s->name);
728 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
729 void *freelist_old, unsigned long counters_old,
730 void *freelist_new, unsigned long counters_new,
735 if (s->flags & __CMPXCHG_DOUBLE) {
736 ret = __update_freelist_fast(slab, freelist_old, counters_old,
737 freelist_new, counters_new);
741 local_irq_save(flags);
742 ret = __update_freelist_slow(slab, freelist_old, counters_old,
743 freelist_new, counters_new);
744 local_irq_restore(flags);
750 stat(s, CMPXCHG_DOUBLE_FAIL);
752 #ifdef SLUB_DEBUG_CMPXCHG
753 pr_info("%s %s: cmpxchg double redo ", n, s->name);
760 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
761 * family will round up the real request size to these fixed ones, so
762 * there could be an extra area than what is requested. Save the original
763 * request size in the meta data area, for better debug and sanity check.
765 static inline void set_orig_size(struct kmem_cache *s,
766 void *object, unsigned int orig_size)
768 void *p = kasan_reset_tag(object);
769 unsigned int kasan_meta_size;
771 if (!slub_debug_orig_size(s))
775 * KASAN can save its free meta data inside of the object at offset 0.
776 * If this meta data size is larger than 'orig_size', it will overlap
777 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
778 * 'orig_size' to be as at least as big as KASAN's meta data.
780 kasan_meta_size = kasan_metadata_size(s, true);
781 if (kasan_meta_size > orig_size)
782 orig_size = kasan_meta_size;
784 p += get_info_end(s);
785 p += sizeof(struct track) * 2;
787 *(unsigned int *)p = orig_size;
790 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
792 void *p = kasan_reset_tag(object);
794 if (!slub_debug_orig_size(s))
795 return s->object_size;
797 p += get_info_end(s);
798 p += sizeof(struct track) * 2;
800 return *(unsigned int *)p;
803 #ifdef CONFIG_SLUB_DEBUG
804 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
805 static DEFINE_SPINLOCK(object_map_lock);
807 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
810 void *addr = slab_address(slab);
813 bitmap_zero(obj_map, slab->objects);
815 for (p = slab->freelist; p; p = get_freepointer(s, p))
816 set_bit(__obj_to_index(s, addr, p), obj_map);
819 #if IS_ENABLED(CONFIG_KUNIT)
820 static bool slab_add_kunit_errors(void)
822 struct kunit_resource *resource;
824 if (!kunit_get_current_test())
827 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
831 (*(int *)resource->data)++;
832 kunit_put_resource(resource);
836 static bool slab_in_kunit_test(void)
838 struct kunit_resource *resource;
840 if (!kunit_get_current_test())
843 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
847 kunit_put_resource(resource);
851 static inline bool slab_add_kunit_errors(void) { return false; }
852 static inline bool slab_in_kunit_test(void) { return false; }
855 static inline unsigned int size_from_object(struct kmem_cache *s)
857 if (s->flags & SLAB_RED_ZONE)
858 return s->size - s->red_left_pad;
863 static inline void *restore_red_left(struct kmem_cache *s, void *p)
865 if (s->flags & SLAB_RED_ZONE)
866 p -= s->red_left_pad;
874 #if defined(CONFIG_SLUB_DEBUG_ON)
875 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
877 static slab_flags_t slub_debug;
880 static char *slub_debug_string;
881 static int disable_higher_order_debug;
884 * slub is about to manipulate internal object metadata. This memory lies
885 * outside the range of the allocated object, so accessing it would normally
886 * be reported by kasan as a bounds error. metadata_access_enable() is used
887 * to tell kasan that these accesses are OK.
889 static inline void metadata_access_enable(void)
891 kasan_disable_current();
892 kmsan_disable_current();
895 static inline void metadata_access_disable(void)
897 kmsan_enable_current();
898 kasan_enable_current();
905 /* Verify that a pointer has an address that is valid within a slab page */
906 static inline int check_valid_pointer(struct kmem_cache *s,
907 struct slab *slab, void *object)
914 base = slab_address(slab);
915 object = kasan_reset_tag(object);
916 object = restore_red_left(s, object);
917 if (object < base || object >= base + slab->objects * s->size ||
918 (object - base) % s->size) {
925 static void print_section(char *level, char *text, u8 *addr,
928 metadata_access_enable();
929 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
930 16, 1, kasan_reset_tag((void *)addr), length, 1);
931 metadata_access_disable();
934 static struct track *get_track(struct kmem_cache *s, void *object,
935 enum track_item alloc)
939 p = object + get_info_end(s);
941 return kasan_reset_tag(p + alloc);
944 #ifdef CONFIG_STACKDEPOT
945 static noinline depot_stack_handle_t set_track_prepare(void)
947 depot_stack_handle_t handle;
948 unsigned long entries[TRACK_ADDRS_COUNT];
949 unsigned int nr_entries;
951 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
952 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
957 static inline depot_stack_handle_t set_track_prepare(void)
963 static void set_track_update(struct kmem_cache *s, void *object,
964 enum track_item alloc, unsigned long addr,
965 depot_stack_handle_t handle)
967 struct track *p = get_track(s, object, alloc);
969 #ifdef CONFIG_STACKDEPOT
973 p->cpu = smp_processor_id();
974 p->pid = current->pid;
978 static __always_inline void set_track(struct kmem_cache *s, void *object,
979 enum track_item alloc, unsigned long addr)
981 depot_stack_handle_t handle = set_track_prepare();
983 set_track_update(s, object, alloc, addr, handle);
986 static void init_tracking(struct kmem_cache *s, void *object)
990 if (!(s->flags & SLAB_STORE_USER))
993 p = get_track(s, object, TRACK_ALLOC);
994 memset(p, 0, 2*sizeof(struct track));
997 static void print_track(const char *s, struct track *t, unsigned long pr_time)
999 depot_stack_handle_t handle __maybe_unused;
1004 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
1005 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1006 #ifdef CONFIG_STACKDEPOT
1007 handle = READ_ONCE(t->handle);
1009 stack_depot_print(handle);
1011 pr_err("object allocation/free stack trace missing\n");
1015 void print_tracking(struct kmem_cache *s, void *object)
1017 unsigned long pr_time = jiffies;
1018 if (!(s->flags & SLAB_STORE_USER))
1021 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1022 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1025 static void print_slab_info(const struct slab *slab)
1027 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1028 slab, slab->objects, slab->inuse, slab->freelist,
1029 &slab->__page_flags);
1032 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1034 set_orig_size(s, (void *)object, s->object_size);
1037 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1039 struct va_format vaf;
1042 va_start(args, fmt);
1045 pr_err("=============================================================================\n");
1046 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1047 pr_err("-----------------------------------------------------------------------------\n\n");
1052 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1054 struct va_format vaf;
1057 if (slab_add_kunit_errors())
1060 va_start(args, fmt);
1063 pr_err("FIX %s: %pV\n", s->name, &vaf);
1067 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1069 unsigned int off; /* Offset of last byte */
1070 u8 *addr = slab_address(slab);
1072 print_tracking(s, p);
1074 print_slab_info(slab);
1076 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1077 p, p - addr, get_freepointer(s, p));
1079 if (s->flags & SLAB_RED_ZONE)
1080 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1082 else if (p > addr + 16)
1083 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1085 print_section(KERN_ERR, "Object ", p,
1086 min_t(unsigned int, s->object_size, PAGE_SIZE));
1087 if (s->flags & SLAB_RED_ZONE)
1088 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1089 s->inuse - s->object_size);
1091 off = get_info_end(s);
1093 if (s->flags & SLAB_STORE_USER)
1094 off += 2 * sizeof(struct track);
1096 if (slub_debug_orig_size(s))
1097 off += sizeof(unsigned int);
1099 off += kasan_metadata_size(s, false);
1101 if (off != size_from_object(s))
1102 /* Beginning of the filler is the free pointer */
1103 print_section(KERN_ERR, "Padding ", p + off,
1104 size_from_object(s) - off);
1109 static void object_err(struct kmem_cache *s, struct slab *slab,
1110 u8 *object, char *reason)
1112 if (slab_add_kunit_errors())
1115 slab_bug(s, "%s", reason);
1116 print_trailer(s, slab, object);
1117 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1120 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1121 void **freelist, void *nextfree)
1123 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1124 !check_valid_pointer(s, slab, nextfree) && freelist) {
1125 object_err(s, slab, *freelist, "Freechain corrupt");
1127 slab_fix(s, "Isolate corrupted freechain");
1134 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1135 const char *fmt, ...)
1140 if (slab_add_kunit_errors())
1143 va_start(args, fmt);
1144 vsnprintf(buf, sizeof(buf), fmt, args);
1146 slab_bug(s, "%s", buf);
1147 print_slab_info(slab);
1149 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1152 static void init_object(struct kmem_cache *s, void *object, u8 val)
1154 u8 *p = kasan_reset_tag(object);
1155 unsigned int poison_size = s->object_size;
1157 if (s->flags & SLAB_RED_ZONE) {
1159 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1160 * the shadow makes it possible to distinguish uninit-value
1161 * from use-after-free.
1163 memset_no_sanitize_memory(p - s->red_left_pad, val,
1166 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1168 * Redzone the extra allocated space by kmalloc than
1169 * requested, and the poison size will be limited to
1170 * the original request size accordingly.
1172 poison_size = get_orig_size(s, object);
1176 if (s->flags & __OBJECT_POISON) {
1177 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1178 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1181 if (s->flags & SLAB_RED_ZONE)
1182 memset_no_sanitize_memory(p + poison_size, val,
1183 s->inuse - poison_size);
1186 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1187 void *from, void *to)
1189 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1190 memset(from, data, to - from);
1194 #define pad_check_attributes noinline __no_kmsan_checks
1196 #define pad_check_attributes
1199 static pad_check_attributes int
1200 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1201 u8 *object, char *what,
1202 u8 *start, unsigned int value, unsigned int bytes)
1206 u8 *addr = slab_address(slab);
1208 metadata_access_enable();
1209 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1210 metadata_access_disable();
1214 end = start + bytes;
1215 while (end > fault && end[-1] == value)
1218 if (slab_add_kunit_errors())
1219 goto skip_bug_print;
1221 slab_bug(s, "%s overwritten", what);
1222 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1223 fault, end - 1, fault - addr,
1227 restore_bytes(s, what, value, fault, end);
1235 * Bytes of the object to be managed.
1236 * If the freepointer may overlay the object then the free
1237 * pointer is at the middle of the object.
1239 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1242 * object + s->object_size
1243 * Padding to reach word boundary. This is also used for Redzoning.
1244 * Padding is extended by another word if Redzoning is enabled and
1245 * object_size == inuse.
1247 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1248 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1251 * Meta data starts here.
1253 * A. Free pointer (if we cannot overwrite object on free)
1254 * B. Tracking data for SLAB_STORE_USER
1255 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1256 * D. Padding to reach required alignment boundary or at minimum
1257 * one word if debugging is on to be able to detect writes
1258 * before the word boundary.
1260 * Padding is done using 0x5a (POISON_INUSE)
1263 * Nothing is used beyond s->size.
1265 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1266 * ignored. And therefore no slab options that rely on these boundaries
1267 * may be used with merged slabcaches.
1270 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1272 unsigned long off = get_info_end(s); /* The end of info */
1274 if (s->flags & SLAB_STORE_USER) {
1275 /* We also have user information there */
1276 off += 2 * sizeof(struct track);
1278 if (s->flags & SLAB_KMALLOC)
1279 off += sizeof(unsigned int);
1282 off += kasan_metadata_size(s, false);
1284 if (size_from_object(s) == off)
1287 return check_bytes_and_report(s, slab, p, "Object padding",
1288 p + off, POISON_INUSE, size_from_object(s) - off);
1291 /* Check the pad bytes at the end of a slab page */
1292 static pad_check_attributes void
1293 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1302 if (!(s->flags & SLAB_POISON))
1305 start = slab_address(slab);
1306 length = slab_size(slab);
1307 end = start + length;
1308 remainder = length % s->size;
1312 pad = end - remainder;
1313 metadata_access_enable();
1314 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1315 metadata_access_disable();
1318 while (end > fault && end[-1] == POISON_INUSE)
1321 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1322 fault, end - 1, fault - start);
1323 print_section(KERN_ERR, "Padding ", pad, remainder);
1325 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1328 static int check_object(struct kmem_cache *s, struct slab *slab,
1329 void *object, u8 val)
1332 u8 *endobject = object + s->object_size;
1333 unsigned int orig_size, kasan_meta_size;
1336 if (s->flags & SLAB_RED_ZONE) {
1337 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1338 object - s->red_left_pad, val, s->red_left_pad))
1341 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1342 endobject, val, s->inuse - s->object_size))
1345 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1346 orig_size = get_orig_size(s, object);
1348 if (s->object_size > orig_size &&
1349 !check_bytes_and_report(s, slab, object,
1350 "kmalloc Redzone", p + orig_size,
1351 val, s->object_size - orig_size)) {
1356 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1357 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1358 endobject, POISON_INUSE,
1359 s->inuse - s->object_size))
1364 if (s->flags & SLAB_POISON) {
1365 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1367 * KASAN can save its free meta data inside of the
1368 * object at offset 0. Thus, skip checking the part of
1369 * the redzone that overlaps with the meta data.
1371 kasan_meta_size = kasan_metadata_size(s, true);
1372 if (kasan_meta_size < s->object_size - 1 &&
1373 !check_bytes_and_report(s, slab, p, "Poison",
1374 p + kasan_meta_size, POISON_FREE,
1375 s->object_size - kasan_meta_size - 1))
1377 if (kasan_meta_size < s->object_size &&
1378 !check_bytes_and_report(s, slab, p, "End Poison",
1379 p + s->object_size - 1, POISON_END, 1))
1383 * check_pad_bytes cleans up on its own.
1385 if (!check_pad_bytes(s, slab, p))
1390 * Cannot check freepointer while object is allocated if
1391 * object and freepointer overlap.
1393 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1394 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1395 object_err(s, slab, p, "Freepointer corrupt");
1397 * No choice but to zap it and thus lose the remainder
1398 * of the free objects in this slab. May cause
1399 * another error because the object count is now wrong.
1401 set_freepointer(s, p, NULL);
1405 if (!ret && !slab_in_kunit_test()) {
1406 print_trailer(s, slab, object);
1407 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1413 static int check_slab(struct kmem_cache *s, struct slab *slab)
1417 if (!folio_test_slab(slab_folio(slab))) {
1418 slab_err(s, slab, "Not a valid slab page");
1422 maxobj = order_objects(slab_order(slab), s->size);
1423 if (slab->objects > maxobj) {
1424 slab_err(s, slab, "objects %u > max %u",
1425 slab->objects, maxobj);
1428 if (slab->inuse > slab->objects) {
1429 slab_err(s, slab, "inuse %u > max %u",
1430 slab->inuse, slab->objects);
1433 /* Slab_pad_check fixes things up after itself */
1434 slab_pad_check(s, slab);
1439 * Determine if a certain object in a slab is on the freelist. Must hold the
1440 * slab lock to guarantee that the chains are in a consistent state.
1442 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1446 void *object = NULL;
1449 fp = slab->freelist;
1450 while (fp && nr <= slab->objects) {
1453 if (!check_valid_pointer(s, slab, fp)) {
1455 object_err(s, slab, object,
1456 "Freechain corrupt");
1457 set_freepointer(s, object, NULL);
1459 slab_err(s, slab, "Freepointer corrupt");
1460 slab->freelist = NULL;
1461 slab->inuse = slab->objects;
1462 slab_fix(s, "Freelist cleared");
1468 fp = get_freepointer(s, object);
1472 max_objects = order_objects(slab_order(slab), s->size);
1473 if (max_objects > MAX_OBJS_PER_PAGE)
1474 max_objects = MAX_OBJS_PER_PAGE;
1476 if (slab->objects != max_objects) {
1477 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1478 slab->objects, max_objects);
1479 slab->objects = max_objects;
1480 slab_fix(s, "Number of objects adjusted");
1482 if (slab->inuse != slab->objects - nr) {
1483 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1484 slab->inuse, slab->objects - nr);
1485 slab->inuse = slab->objects - nr;
1486 slab_fix(s, "Object count adjusted");
1488 return search == NULL;
1491 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1494 if (s->flags & SLAB_TRACE) {
1495 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1497 alloc ? "alloc" : "free",
1498 object, slab->inuse,
1502 print_section(KERN_INFO, "Object ", (void *)object,
1510 * Tracking of fully allocated slabs for debugging purposes.
1512 static void add_full(struct kmem_cache *s,
1513 struct kmem_cache_node *n, struct slab *slab)
1515 if (!(s->flags & SLAB_STORE_USER))
1518 lockdep_assert_held(&n->list_lock);
1519 list_add(&slab->slab_list, &n->full);
1522 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1524 if (!(s->flags & SLAB_STORE_USER))
1527 lockdep_assert_held(&n->list_lock);
1528 list_del(&slab->slab_list);
1531 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1533 return atomic_long_read(&n->nr_slabs);
1536 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1538 struct kmem_cache_node *n = get_node(s, node);
1540 atomic_long_inc(&n->nr_slabs);
1541 atomic_long_add(objects, &n->total_objects);
1543 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1545 struct kmem_cache_node *n = get_node(s, node);
1547 atomic_long_dec(&n->nr_slabs);
1548 atomic_long_sub(objects, &n->total_objects);
1551 /* Object debug checks for alloc/free paths */
1552 static void setup_object_debug(struct kmem_cache *s, void *object)
1554 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1557 init_object(s, object, SLUB_RED_INACTIVE);
1558 init_tracking(s, object);
1562 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1564 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1567 metadata_access_enable();
1568 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1569 metadata_access_disable();
1572 static inline int alloc_consistency_checks(struct kmem_cache *s,
1573 struct slab *slab, void *object)
1575 if (!check_slab(s, slab))
1578 if (!check_valid_pointer(s, slab, object)) {
1579 object_err(s, slab, object, "Freelist Pointer check fails");
1583 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1589 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1590 struct slab *slab, void *object, int orig_size)
1592 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1593 if (!alloc_consistency_checks(s, slab, object))
1597 /* Success. Perform special debug activities for allocs */
1598 trace(s, slab, object, 1);
1599 set_orig_size(s, object, orig_size);
1600 init_object(s, object, SLUB_RED_ACTIVE);
1604 if (folio_test_slab(slab_folio(slab))) {
1606 * If this is a slab page then lets do the best we can
1607 * to avoid issues in the future. Marking all objects
1608 * as used avoids touching the remaining objects.
1610 slab_fix(s, "Marking all objects used");
1611 slab->inuse = slab->objects;
1612 slab->freelist = NULL;
1617 static inline int free_consistency_checks(struct kmem_cache *s,
1618 struct slab *slab, void *object, unsigned long addr)
1620 if (!check_valid_pointer(s, slab, object)) {
1621 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1625 if (on_freelist(s, slab, object)) {
1626 object_err(s, slab, object, "Object already free");
1630 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1633 if (unlikely(s != slab->slab_cache)) {
1634 if (!folio_test_slab(slab_folio(slab))) {
1635 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1637 } else if (!slab->slab_cache) {
1638 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1642 object_err(s, slab, object,
1643 "page slab pointer corrupt.");
1650 * Parse a block of slab_debug options. Blocks are delimited by ';'
1652 * @str: start of block
1653 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1654 * @slabs: return start of list of slabs, or NULL when there's no list
1655 * @init: assume this is initial parsing and not per-kmem-create parsing
1657 * returns the start of next block if there's any, or NULL
1660 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1662 bool higher_order_disable = false;
1664 /* Skip any completely empty blocks */
1665 while (*str && *str == ';')
1670 * No options but restriction on slabs. This means full
1671 * debugging for slabs matching a pattern.
1673 *flags = DEBUG_DEFAULT_FLAGS;
1678 /* Determine which debug features should be switched on */
1679 for (; *str && *str != ',' && *str != ';'; str++) {
1680 switch (tolower(*str)) {
1685 *flags |= SLAB_CONSISTENCY_CHECKS;
1688 *flags |= SLAB_RED_ZONE;
1691 *flags |= SLAB_POISON;
1694 *flags |= SLAB_STORE_USER;
1697 *flags |= SLAB_TRACE;
1700 *flags |= SLAB_FAILSLAB;
1704 * Avoid enabling debugging on caches if its minimum
1705 * order would increase as a result.
1707 higher_order_disable = true;
1711 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1720 /* Skip over the slab list */
1721 while (*str && *str != ';')
1724 /* Skip any completely empty blocks */
1725 while (*str && *str == ';')
1728 if (init && higher_order_disable)
1729 disable_higher_order_debug = 1;
1737 static int __init setup_slub_debug(char *str)
1740 slab_flags_t global_flags;
1743 bool global_slub_debug_changed = false;
1744 bool slab_list_specified = false;
1746 global_flags = DEBUG_DEFAULT_FLAGS;
1747 if (*str++ != '=' || !*str)
1749 * No options specified. Switch on full debugging.
1755 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1758 global_flags = flags;
1759 global_slub_debug_changed = true;
1761 slab_list_specified = true;
1762 if (flags & SLAB_STORE_USER)
1763 stack_depot_request_early_init();
1768 * For backwards compatibility, a single list of flags with list of
1769 * slabs means debugging is only changed for those slabs, so the global
1770 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1771 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1772 * long as there is no option specifying flags without a slab list.
1774 if (slab_list_specified) {
1775 if (!global_slub_debug_changed)
1776 global_flags = slub_debug;
1777 slub_debug_string = saved_str;
1780 slub_debug = global_flags;
1781 if (slub_debug & SLAB_STORE_USER)
1782 stack_depot_request_early_init();
1783 if (slub_debug != 0 || slub_debug_string)
1784 static_branch_enable(&slub_debug_enabled);
1786 static_branch_disable(&slub_debug_enabled);
1787 if ((static_branch_unlikely(&init_on_alloc) ||
1788 static_branch_unlikely(&init_on_free)) &&
1789 (slub_debug & SLAB_POISON))
1790 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1794 __setup("slab_debug", setup_slub_debug);
1795 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1798 * kmem_cache_flags - apply debugging options to the cache
1799 * @flags: flags to set
1800 * @name: name of the cache
1802 * Debug option(s) are applied to @flags. In addition to the debug
1803 * option(s), if a slab name (or multiple) is specified i.e.
1804 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1805 * then only the select slabs will receive the debug option(s).
1807 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1812 slab_flags_t block_flags;
1813 slab_flags_t slub_debug_local = slub_debug;
1815 if (flags & SLAB_NO_USER_FLAGS)
1819 * If the slab cache is for debugging (e.g. kmemleak) then
1820 * don't store user (stack trace) information by default,
1821 * but let the user enable it via the command line below.
1823 if (flags & SLAB_NOLEAKTRACE)
1824 slub_debug_local &= ~SLAB_STORE_USER;
1827 next_block = slub_debug_string;
1828 /* Go through all blocks of debug options, see if any matches our slab's name */
1829 while (next_block) {
1830 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1833 /* Found a block that has a slab list, search it */
1838 end = strchrnul(iter, ',');
1839 if (next_block && next_block < end)
1840 end = next_block - 1;
1842 glob = strnchr(iter, end - iter, '*');
1844 cmplen = glob - iter;
1846 cmplen = max_t(size_t, len, (end - iter));
1848 if (!strncmp(name, iter, cmplen)) {
1849 flags |= block_flags;
1853 if (!*end || *end == ';')
1859 return flags | slub_debug_local;
1861 #else /* !CONFIG_SLUB_DEBUG */
1862 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1864 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1866 static inline bool alloc_debug_processing(struct kmem_cache *s,
1867 struct slab *slab, void *object, int orig_size) { return true; }
1869 static inline bool free_debug_processing(struct kmem_cache *s,
1870 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1871 unsigned long addr, depot_stack_handle_t handle) { return true; }
1873 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1874 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1875 void *object, u8 val) { return 1; }
1876 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1877 static inline void set_track(struct kmem_cache *s, void *object,
1878 enum track_item alloc, unsigned long addr) {}
1879 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1880 struct slab *slab) {}
1881 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1882 struct slab *slab) {}
1883 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1887 #define slub_debug 0
1889 #define disable_higher_order_debug 0
1891 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1893 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1895 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1897 #ifndef CONFIG_SLUB_TINY
1898 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1899 void **freelist, void *nextfree)
1904 #endif /* CONFIG_SLUB_DEBUG */
1906 #ifdef CONFIG_SLAB_OBJ_EXT
1908 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1910 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1912 struct slabobj_ext *slab_exts;
1913 struct slab *obj_exts_slab;
1915 obj_exts_slab = virt_to_slab(obj_exts);
1916 slab_exts = slab_obj_exts(obj_exts_slab);
1918 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1919 obj_exts_slab, obj_exts);
1920 /* codetag should be NULL */
1921 WARN_ON(slab_exts[offs].ref.ct);
1922 set_codetag_empty(&slab_exts[offs].ref);
1926 static inline void mark_failed_objexts_alloc(struct slab *slab)
1928 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1931 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1932 struct slabobj_ext *vec, unsigned int objects)
1935 * If vector previously failed to allocate then we have live
1936 * objects with no tag reference. Mark all references in this
1937 * vector as empty to avoid warnings later on.
1939 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1942 for (i = 0; i < objects; i++)
1943 set_codetag_empty(&vec[i].ref);
1947 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1949 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1950 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1951 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1952 struct slabobj_ext *vec, unsigned int objects) {}
1954 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1957 * The allocated objcg pointers array is not accounted directly.
1958 * Moreover, it should not come from DMA buffer and is not readily
1959 * reclaimable. So those GFP bits should be masked off.
1961 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1962 __GFP_ACCOUNT | __GFP_NOFAIL)
1964 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1965 gfp_t gfp, bool new_slab)
1967 unsigned int objects = objs_per_slab(s, slab);
1968 unsigned long new_exts;
1969 unsigned long old_exts;
1970 struct slabobj_ext *vec;
1972 gfp &= ~OBJCGS_CLEAR_MASK;
1973 /* Prevent recursive extension vector allocation */
1974 gfp |= __GFP_NO_OBJ_EXT;
1975 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1978 /* Mark vectors which failed to allocate */
1980 mark_failed_objexts_alloc(slab);
1985 new_exts = (unsigned long)vec;
1987 new_exts |= MEMCG_DATA_OBJEXTS;
1989 old_exts = READ_ONCE(slab->obj_exts);
1990 handle_failed_objexts_alloc(old_exts, vec, objects);
1993 * If the slab is brand new and nobody can yet access its
1994 * obj_exts, no synchronization is required and obj_exts can
1995 * be simply assigned.
1997 slab->obj_exts = new_exts;
1998 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1999 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2001 * If the slab is already in use, somebody can allocate and
2002 * assign slabobj_exts in parallel. In this case the existing
2003 * objcg vector should be reused.
2005 mark_objexts_empty(vec);
2010 kmemleak_not_leak(vec);
2014 static inline void free_slab_obj_exts(struct slab *slab)
2016 struct slabobj_ext *obj_exts;
2018 obj_exts = slab_obj_exts(slab);
2023 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2024 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2025 * warning if slab has extensions but the extension of an object is
2026 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2027 * the extension for obj_exts is expected to be NULL.
2029 mark_objexts_empty(obj_exts);
2034 static inline bool need_slab_obj_ext(void)
2036 if (mem_alloc_profiling_enabled())
2040 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2041 * inside memcg_slab_post_alloc_hook. No other users for now.
2046 #else /* CONFIG_SLAB_OBJ_EXT */
2048 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2049 gfp_t gfp, bool new_slab)
2054 static inline void free_slab_obj_exts(struct slab *slab)
2058 static inline bool need_slab_obj_ext(void)
2063 #endif /* CONFIG_SLAB_OBJ_EXT */
2065 #ifdef CONFIG_MEM_ALLOC_PROFILING
2067 static inline struct slabobj_ext *
2068 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2075 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2078 if (flags & __GFP_NO_OBJ_EXT)
2081 slab = virt_to_slab(p);
2082 if (!slab_obj_exts(slab) &&
2083 WARN(alloc_slab_obj_exts(slab, s, flags, false),
2084 "%s, %s: Failed to create slab extension vector!\n",
2088 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2092 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2094 if (need_slab_obj_ext()) {
2095 struct slabobj_ext *obj_exts;
2097 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2099 * Currently obj_exts is used only for allocation profiling.
2100 * If other users appear then mem_alloc_profiling_enabled()
2101 * check should be added before alloc_tag_add().
2103 if (likely(obj_exts))
2104 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2109 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2112 struct slabobj_ext *obj_exts;
2115 if (!mem_alloc_profiling_enabled())
2118 obj_exts = slab_obj_exts(slab);
2122 for (i = 0; i < objects; i++) {
2123 unsigned int off = obj_to_index(s, slab, p[i]);
2125 alloc_tag_sub(&obj_exts[off].ref, s->size);
2129 #else /* CONFIG_MEM_ALLOC_PROFILING */
2132 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2137 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2142 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2147 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2149 static __fastpath_inline
2150 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2151 gfp_t flags, size_t size, void **p)
2153 if (likely(!memcg_kmem_online()))
2156 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2159 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2162 if (likely(size == 1)) {
2163 memcg_alloc_abort_single(s, *p);
2166 kmem_cache_free_bulk(s, size, p);
2172 static __fastpath_inline
2173 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2176 struct slabobj_ext *obj_exts;
2178 if (!memcg_kmem_online())
2181 obj_exts = slab_obj_exts(slab);
2182 if (likely(!obj_exts))
2185 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2188 static __fastpath_inline
2189 bool memcg_slab_post_charge(void *p, gfp_t flags)
2191 struct slabobj_ext *slab_exts;
2192 struct kmem_cache *s;
2193 struct folio *folio;
2197 folio = virt_to_folio(p);
2198 if (!folio_test_slab(folio)) {
2199 return folio_memcg_kmem(folio) ||
2200 (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2201 folio_order(folio)) == 0);
2204 slab = folio_slab(folio);
2205 s = slab->slab_cache;
2208 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2209 * of slab_obj_exts being allocated from the same slab and thus the slab
2210 * becoming effectively unfreeable.
2212 if (is_kmalloc_normal(s))
2215 /* Ignore already charged objects. */
2216 slab_exts = slab_obj_exts(slab);
2218 off = obj_to_index(s, slab, p);
2219 if (unlikely(slab_exts[off].objcg))
2223 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2226 #else /* CONFIG_MEMCG */
2227 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2228 struct list_lru *lru,
2229 gfp_t flags, size_t size,
2235 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2236 void **p, int objects)
2240 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2244 #endif /* CONFIG_MEMCG */
2246 #ifdef CONFIG_SLUB_RCU_DEBUG
2247 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2249 struct rcu_delayed_free {
2250 struct rcu_head head;
2256 * Hooks for other subsystems that check memory allocations. In a typical
2257 * production configuration these hooks all should produce no code at all.
2259 * Returns true if freeing of the object can proceed, false if its reuse
2260 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2263 static __always_inline
2264 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2265 bool after_rcu_delay)
2267 /* Are the object contents still accessible? */
2268 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2270 kmemleak_free_recursive(x, s->flags);
2271 kmsan_slab_free(s, x);
2273 debug_check_no_locks_freed(x, s->object_size);
2275 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2276 debug_check_no_obj_freed(x, s->object_size);
2278 /* Use KCSAN to help debug racy use-after-free. */
2279 if (!still_accessible)
2280 __kcsan_check_access(x, s->object_size,
2281 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2287 * Give KASAN a chance to notice an invalid free operation before we
2288 * modify the object.
2290 if (kasan_slab_pre_free(s, x))
2293 #ifdef CONFIG_SLUB_RCU_DEBUG
2294 if (still_accessible) {
2295 struct rcu_delayed_free *delayed_free;
2297 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2300 * Let KASAN track our call stack as a "related work
2301 * creation", just like if the object had been freed
2302 * normally via kfree_rcu().
2303 * We have to do this manually because the rcu_head is
2304 * not located inside the object.
2306 kasan_record_aux_stack_noalloc(x);
2308 delayed_free->object = x;
2309 call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2313 #endif /* CONFIG_SLUB_RCU_DEBUG */
2316 * As memory initialization might be integrated into KASAN,
2317 * kasan_slab_free and initialization memset's must be
2318 * kept together to avoid discrepancies in behavior.
2320 * The initialization memset's clear the object and the metadata,
2321 * but don't touch the SLAB redzone.
2323 * The object's freepointer is also avoided if stored outside the
2326 if (unlikely(init)) {
2328 unsigned int inuse, orig_size;
2330 inuse = get_info_end(s);
2331 orig_size = get_orig_size(s, x);
2332 if (!kasan_has_integrated_init())
2333 memset(kasan_reset_tag(x), 0, orig_size);
2334 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2335 memset((char *)kasan_reset_tag(x) + inuse, 0,
2336 s->size - inuse - rsize);
2338 * Restore orig_size, otherwize kmalloc redzone overwritten
2341 set_orig_size(s, x, orig_size);
2344 /* KASAN might put x into memory quarantine, delaying its reuse. */
2345 return !kasan_slab_free(s, x, init, still_accessible);
2348 static __fastpath_inline
2349 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2355 void *old_tail = *tail;
2358 if (is_kfence_address(next)) {
2359 slab_free_hook(s, next, false, false);
2363 /* Head and tail of the reconstructed freelist */
2367 init = slab_want_init_on_free(s);
2371 next = get_freepointer(s, object);
2373 /* If object's reuse doesn't have to be delayed */
2374 if (likely(slab_free_hook(s, object, init, false))) {
2375 /* Move object to the new freelist */
2376 set_freepointer(s, object, *head);
2382 * Adjust the reconstructed freelist depth
2383 * accordingly if object's reuse is delayed.
2387 } while (object != old_tail);
2389 return *head != NULL;
2392 static void *setup_object(struct kmem_cache *s, void *object)
2394 setup_object_debug(s, object);
2395 object = kasan_init_slab_obj(s, object);
2396 if (unlikely(s->ctor)) {
2397 kasan_unpoison_new_object(s, object);
2399 kasan_poison_new_object(s, object);
2405 * Slab allocation and freeing
2407 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2408 struct kmem_cache_order_objects oo)
2410 struct folio *folio;
2412 unsigned int order = oo_order(oo);
2414 if (node == NUMA_NO_NODE)
2415 folio = (struct folio *)alloc_pages(flags, order);
2417 folio = (struct folio *)__alloc_pages_node(node, flags, order);
2422 slab = folio_slab(folio);
2423 __folio_set_slab(folio);
2424 /* Make the flag visible before any changes to folio->mapping */
2426 if (folio_is_pfmemalloc(folio))
2427 slab_set_pfmemalloc(slab);
2432 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2433 /* Pre-initialize the random sequence cache */
2434 static int init_cache_random_seq(struct kmem_cache *s)
2436 unsigned int count = oo_objects(s->oo);
2439 /* Bailout if already initialised */
2443 err = cache_random_seq_create(s, count, GFP_KERNEL);
2445 pr_err("SLUB: Unable to initialize free list for %s\n",
2450 /* Transform to an offset on the set of pages */
2451 if (s->random_seq) {
2454 for (i = 0; i < count; i++)
2455 s->random_seq[i] *= s->size;
2460 /* Initialize each random sequence freelist per cache */
2461 static void __init init_freelist_randomization(void)
2463 struct kmem_cache *s;
2465 mutex_lock(&slab_mutex);
2467 list_for_each_entry(s, &slab_caches, list)
2468 init_cache_random_seq(s);
2470 mutex_unlock(&slab_mutex);
2473 /* Get the next entry on the pre-computed freelist randomized */
2474 static void *next_freelist_entry(struct kmem_cache *s,
2475 unsigned long *pos, void *start,
2476 unsigned long page_limit,
2477 unsigned long freelist_count)
2482 * If the target page allocation failed, the number of objects on the
2483 * page might be smaller than the usual size defined by the cache.
2486 idx = s->random_seq[*pos];
2488 if (*pos >= freelist_count)
2490 } while (unlikely(idx >= page_limit));
2492 return (char *)start + idx;
2495 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2496 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2501 unsigned long idx, pos, page_limit, freelist_count;
2503 if (slab->objects < 2 || !s->random_seq)
2506 freelist_count = oo_objects(s->oo);
2507 pos = get_random_u32_below(freelist_count);
2509 page_limit = slab->objects * s->size;
2510 start = fixup_red_left(s, slab_address(slab));
2512 /* First entry is used as the base of the freelist */
2513 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2514 cur = setup_object(s, cur);
2515 slab->freelist = cur;
2517 for (idx = 1; idx < slab->objects; idx++) {
2518 next = next_freelist_entry(s, &pos, start, page_limit,
2520 next = setup_object(s, next);
2521 set_freepointer(s, cur, next);
2524 set_freepointer(s, cur, NULL);
2529 static inline int init_cache_random_seq(struct kmem_cache *s)
2533 static inline void init_freelist_randomization(void) { }
2534 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2538 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2540 static __always_inline void account_slab(struct slab *slab, int order,
2541 struct kmem_cache *s, gfp_t gfp)
2543 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2544 alloc_slab_obj_exts(slab, s, gfp, true);
2546 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2547 PAGE_SIZE << order);
2550 static __always_inline void unaccount_slab(struct slab *slab, int order,
2551 struct kmem_cache *s)
2553 if (memcg_kmem_online() || need_slab_obj_ext())
2554 free_slab_obj_exts(slab);
2556 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2557 -(PAGE_SIZE << order));
2560 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2563 struct kmem_cache_order_objects oo = s->oo;
2565 void *start, *p, *next;
2569 flags &= gfp_allowed_mask;
2571 flags |= s->allocflags;
2574 * Let the initial higher-order allocation fail under memory pressure
2575 * so we fall-back to the minimum order allocation.
2577 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2578 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2579 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2581 slab = alloc_slab_page(alloc_gfp, node, oo);
2582 if (unlikely(!slab)) {
2586 * Allocation may have failed due to fragmentation.
2587 * Try a lower order alloc if possible
2589 slab = alloc_slab_page(alloc_gfp, node, oo);
2590 if (unlikely(!slab))
2592 stat(s, ORDER_FALLBACK);
2595 slab->objects = oo_objects(oo);
2599 account_slab(slab, oo_order(oo), s, flags);
2601 slab->slab_cache = s;
2603 kasan_poison_slab(slab);
2605 start = slab_address(slab);
2607 setup_slab_debug(s, slab, start);
2609 shuffle = shuffle_freelist(s, slab);
2612 start = fixup_red_left(s, start);
2613 start = setup_object(s, start);
2614 slab->freelist = start;
2615 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2617 next = setup_object(s, next);
2618 set_freepointer(s, p, next);
2621 set_freepointer(s, p, NULL);
2627 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2629 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2630 flags = kmalloc_fix_flags(flags);
2632 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2634 return allocate_slab(s,
2635 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2638 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2640 struct folio *folio = slab_folio(slab);
2641 int order = folio_order(folio);
2642 int pages = 1 << order;
2644 __slab_clear_pfmemalloc(slab);
2645 folio->mapping = NULL;
2646 /* Make the mapping reset visible before clearing the flag */
2648 __folio_clear_slab(folio);
2649 mm_account_reclaimed_pages(pages);
2650 unaccount_slab(slab, order, s);
2651 __free_pages(&folio->page, order);
2654 static void rcu_free_slab(struct rcu_head *h)
2656 struct slab *slab = container_of(h, struct slab, rcu_head);
2658 __free_slab(slab->slab_cache, slab);
2661 static void free_slab(struct kmem_cache *s, struct slab *slab)
2663 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2666 slab_pad_check(s, slab);
2667 for_each_object(p, s, slab_address(slab), slab->objects)
2668 check_object(s, slab, p, SLUB_RED_INACTIVE);
2671 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2672 call_rcu(&slab->rcu_head, rcu_free_slab);
2674 __free_slab(s, slab);
2677 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2679 dec_slabs_node(s, slab_nid(slab), slab->objects);
2684 * SLUB reuses PG_workingset bit to keep track of whether it's on
2685 * the per-node partial list.
2687 static inline bool slab_test_node_partial(const struct slab *slab)
2689 return folio_test_workingset(slab_folio(slab));
2692 static inline void slab_set_node_partial(struct slab *slab)
2694 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2697 static inline void slab_clear_node_partial(struct slab *slab)
2699 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2703 * Management of partially allocated slabs.
2706 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2709 if (tail == DEACTIVATE_TO_TAIL)
2710 list_add_tail(&slab->slab_list, &n->partial);
2712 list_add(&slab->slab_list, &n->partial);
2713 slab_set_node_partial(slab);
2716 static inline void add_partial(struct kmem_cache_node *n,
2717 struct slab *slab, int tail)
2719 lockdep_assert_held(&n->list_lock);
2720 __add_partial(n, slab, tail);
2723 static inline void remove_partial(struct kmem_cache_node *n,
2726 lockdep_assert_held(&n->list_lock);
2727 list_del(&slab->slab_list);
2728 slab_clear_node_partial(slab);
2733 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2734 * slab from the n->partial list. Remove only a single object from the slab, do
2735 * the alloc_debug_processing() checks and leave the slab on the list, or move
2736 * it to full list if it was the last free object.
2738 static void *alloc_single_from_partial(struct kmem_cache *s,
2739 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2743 lockdep_assert_held(&n->list_lock);
2745 object = slab->freelist;
2746 slab->freelist = get_freepointer(s, object);
2749 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2750 remove_partial(n, slab);
2754 if (slab->inuse == slab->objects) {
2755 remove_partial(n, slab);
2756 add_full(s, n, slab);
2763 * Called only for kmem_cache_debug() caches to allocate from a freshly
2764 * allocated slab. Allocate a single object instead of whole freelist
2765 * and put the slab to the partial (or full) list.
2767 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2768 struct slab *slab, int orig_size)
2770 int nid = slab_nid(slab);
2771 struct kmem_cache_node *n = get_node(s, nid);
2772 unsigned long flags;
2776 object = slab->freelist;
2777 slab->freelist = get_freepointer(s, object);
2780 if (!alloc_debug_processing(s, slab, object, orig_size))
2782 * It's not really expected that this would fail on a
2783 * freshly allocated slab, but a concurrent memory
2784 * corruption in theory could cause that.
2788 spin_lock_irqsave(&n->list_lock, flags);
2790 if (slab->inuse == slab->objects)
2791 add_full(s, n, slab);
2793 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2795 inc_slabs_node(s, nid, slab->objects);
2796 spin_unlock_irqrestore(&n->list_lock, flags);
2801 #ifdef CONFIG_SLUB_CPU_PARTIAL
2802 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2804 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2807 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2810 * Try to allocate a partial slab from a specific node.
2812 static struct slab *get_partial_node(struct kmem_cache *s,
2813 struct kmem_cache_node *n,
2814 struct partial_context *pc)
2816 struct slab *slab, *slab2, *partial = NULL;
2817 unsigned long flags;
2818 unsigned int partial_slabs = 0;
2821 * Racy check. If we mistakenly see no partial slabs then we
2822 * just allocate an empty slab. If we mistakenly try to get a
2823 * partial slab and there is none available then get_partial()
2826 if (!n || !n->nr_partial)
2829 spin_lock_irqsave(&n->list_lock, flags);
2830 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2831 if (!pfmemalloc_match(slab, pc->flags))
2834 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2835 void *object = alloc_single_from_partial(s, n, slab,
2839 pc->object = object;
2845 remove_partial(n, slab);
2849 stat(s, ALLOC_FROM_PARTIAL);
2851 if ((slub_get_cpu_partial(s) == 0)) {
2855 put_cpu_partial(s, slab, 0);
2856 stat(s, CPU_PARTIAL_NODE);
2858 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2863 spin_unlock_irqrestore(&n->list_lock, flags);
2868 * Get a slab from somewhere. Search in increasing NUMA distances.
2870 static struct slab *get_any_partial(struct kmem_cache *s,
2871 struct partial_context *pc)
2874 struct zonelist *zonelist;
2877 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2879 unsigned int cpuset_mems_cookie;
2882 * The defrag ratio allows a configuration of the tradeoffs between
2883 * inter node defragmentation and node local allocations. A lower
2884 * defrag_ratio increases the tendency to do local allocations
2885 * instead of attempting to obtain partial slabs from other nodes.
2887 * If the defrag_ratio is set to 0 then kmalloc() always
2888 * returns node local objects. If the ratio is higher then kmalloc()
2889 * may return off node objects because partial slabs are obtained
2890 * from other nodes and filled up.
2892 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2893 * (which makes defrag_ratio = 1000) then every (well almost)
2894 * allocation will first attempt to defrag slab caches on other nodes.
2895 * This means scanning over all nodes to look for partial slabs which
2896 * may be expensive if we do it every time we are trying to find a slab
2897 * with available objects.
2899 if (!s->remote_node_defrag_ratio ||
2900 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2904 cpuset_mems_cookie = read_mems_allowed_begin();
2905 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2906 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2907 struct kmem_cache_node *n;
2909 n = get_node(s, zone_to_nid(zone));
2911 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2912 n->nr_partial > s->min_partial) {
2913 slab = get_partial_node(s, n, pc);
2916 * Don't check read_mems_allowed_retry()
2917 * here - if mems_allowed was updated in
2918 * parallel, that was a harmless race
2919 * between allocation and the cpuset
2926 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2927 #endif /* CONFIG_NUMA */
2932 * Get a partial slab, lock it and return it.
2934 static struct slab *get_partial(struct kmem_cache *s, int node,
2935 struct partial_context *pc)
2938 int searchnode = node;
2940 if (node == NUMA_NO_NODE)
2941 searchnode = numa_mem_id();
2943 slab = get_partial_node(s, get_node(s, searchnode), pc);
2944 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2947 return get_any_partial(s, pc);
2950 #ifndef CONFIG_SLUB_TINY
2952 #ifdef CONFIG_PREEMPTION
2954 * Calculate the next globally unique transaction for disambiguation
2955 * during cmpxchg. The transactions start with the cpu number and are then
2956 * incremented by CONFIG_NR_CPUS.
2958 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2961 * No preemption supported therefore also no need to check for
2965 #endif /* CONFIG_PREEMPTION */
2967 static inline unsigned long next_tid(unsigned long tid)
2969 return tid + TID_STEP;
2972 #ifdef SLUB_DEBUG_CMPXCHG
2973 static inline unsigned int tid_to_cpu(unsigned long tid)
2975 return tid % TID_STEP;
2978 static inline unsigned long tid_to_event(unsigned long tid)
2980 return tid / TID_STEP;
2984 static inline unsigned int init_tid(int cpu)
2989 static inline void note_cmpxchg_failure(const char *n,
2990 const struct kmem_cache *s, unsigned long tid)
2992 #ifdef SLUB_DEBUG_CMPXCHG
2993 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2995 pr_info("%s %s: cmpxchg redo ", n, s->name);
2997 #ifdef CONFIG_PREEMPTION
2998 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2999 pr_warn("due to cpu change %d -> %d\n",
3000 tid_to_cpu(tid), tid_to_cpu(actual_tid));
3003 if (tid_to_event(tid) != tid_to_event(actual_tid))
3004 pr_warn("due to cpu running other code. Event %ld->%ld\n",
3005 tid_to_event(tid), tid_to_event(actual_tid));
3007 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3008 actual_tid, tid, next_tid(tid));
3010 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3013 static void init_kmem_cache_cpus(struct kmem_cache *s)
3016 struct kmem_cache_cpu *c;
3018 for_each_possible_cpu(cpu) {
3019 c = per_cpu_ptr(s->cpu_slab, cpu);
3020 local_lock_init(&c->lock);
3021 c->tid = init_tid(cpu);
3026 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3027 * unfreezes the slabs and puts it on the proper list.
3028 * Assumes the slab has been already safely taken away from kmem_cache_cpu
3031 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3034 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3036 void *nextfree, *freelist_iter, *freelist_tail;
3037 int tail = DEACTIVATE_TO_HEAD;
3038 unsigned long flags = 0;
3042 if (READ_ONCE(slab->freelist)) {
3043 stat(s, DEACTIVATE_REMOTE_FREES);
3044 tail = DEACTIVATE_TO_TAIL;
3048 * Stage one: Count the objects on cpu's freelist as free_delta and
3049 * remember the last object in freelist_tail for later splicing.
3051 freelist_tail = NULL;
3052 freelist_iter = freelist;
3053 while (freelist_iter) {
3054 nextfree = get_freepointer(s, freelist_iter);
3057 * If 'nextfree' is invalid, it is possible that the object at
3058 * 'freelist_iter' is already corrupted. So isolate all objects
3059 * starting at 'freelist_iter' by skipping them.
3061 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3064 freelist_tail = freelist_iter;
3067 freelist_iter = nextfree;
3071 * Stage two: Unfreeze the slab while splicing the per-cpu
3072 * freelist to the head of slab's freelist.
3075 old.freelist = READ_ONCE(slab->freelist);
3076 old.counters = READ_ONCE(slab->counters);
3077 VM_BUG_ON(!old.frozen);
3079 /* Determine target state of the slab */
3080 new.counters = old.counters;
3082 if (freelist_tail) {
3083 new.inuse -= free_delta;
3084 set_freepointer(s, freelist_tail, old.freelist);
3085 new.freelist = freelist;
3087 new.freelist = old.freelist;
3089 } while (!slab_update_freelist(s, slab,
3090 old.freelist, old.counters,
3091 new.freelist, new.counters,
3092 "unfreezing slab"));
3095 * Stage three: Manipulate the slab list based on the updated state.
3097 if (!new.inuse && n->nr_partial >= s->min_partial) {
3098 stat(s, DEACTIVATE_EMPTY);
3099 discard_slab(s, slab);
3101 } else if (new.freelist) {
3102 spin_lock_irqsave(&n->list_lock, flags);
3103 add_partial(n, slab, tail);
3104 spin_unlock_irqrestore(&n->list_lock, flags);
3107 stat(s, DEACTIVATE_FULL);
3111 #ifdef CONFIG_SLUB_CPU_PARTIAL
3112 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3114 struct kmem_cache_node *n = NULL, *n2 = NULL;
3115 struct slab *slab, *slab_to_discard = NULL;
3116 unsigned long flags = 0;
3118 while (partial_slab) {
3119 slab = partial_slab;
3120 partial_slab = slab->next;
3122 n2 = get_node(s, slab_nid(slab));
3125 spin_unlock_irqrestore(&n->list_lock, flags);
3128 spin_lock_irqsave(&n->list_lock, flags);
3131 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3132 slab->next = slab_to_discard;
3133 slab_to_discard = slab;
3135 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3136 stat(s, FREE_ADD_PARTIAL);
3141 spin_unlock_irqrestore(&n->list_lock, flags);
3143 while (slab_to_discard) {
3144 slab = slab_to_discard;
3145 slab_to_discard = slab_to_discard->next;
3147 stat(s, DEACTIVATE_EMPTY);
3148 discard_slab(s, slab);
3154 * Put all the cpu partial slabs to the node partial list.
3156 static void put_partials(struct kmem_cache *s)
3158 struct slab *partial_slab;
3159 unsigned long flags;
3161 local_lock_irqsave(&s->cpu_slab->lock, flags);
3162 partial_slab = this_cpu_read(s->cpu_slab->partial);
3163 this_cpu_write(s->cpu_slab->partial, NULL);
3164 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3167 __put_partials(s, partial_slab);
3170 static void put_partials_cpu(struct kmem_cache *s,
3171 struct kmem_cache_cpu *c)
3173 struct slab *partial_slab;
3175 partial_slab = slub_percpu_partial(c);
3179 __put_partials(s, partial_slab);
3183 * Put a slab into a partial slab slot if available.
3185 * If we did not find a slot then simply move all the partials to the
3186 * per node partial list.
3188 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3190 struct slab *oldslab;
3191 struct slab *slab_to_put = NULL;
3192 unsigned long flags;
3195 local_lock_irqsave(&s->cpu_slab->lock, flags);
3197 oldslab = this_cpu_read(s->cpu_slab->partial);
3200 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3202 * Partial array is full. Move the existing set to the
3203 * per node partial list. Postpone the actual unfreezing
3204 * outside of the critical section.
3206 slab_to_put = oldslab;
3209 slabs = oldslab->slabs;
3215 slab->slabs = slabs;
3216 slab->next = oldslab;
3218 this_cpu_write(s->cpu_slab->partial, slab);
3220 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3223 __put_partials(s, slab_to_put);
3224 stat(s, CPU_PARTIAL_DRAIN);
3228 #else /* CONFIG_SLUB_CPU_PARTIAL */
3230 static inline void put_partials(struct kmem_cache *s) { }
3231 static inline void put_partials_cpu(struct kmem_cache *s,
3232 struct kmem_cache_cpu *c) { }
3234 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3236 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3238 unsigned long flags;
3242 local_lock_irqsave(&s->cpu_slab->lock, flags);
3245 freelist = c->freelist;
3249 c->tid = next_tid(c->tid);
3251 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3254 deactivate_slab(s, slab, freelist);
3255 stat(s, CPUSLAB_FLUSH);
3259 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3261 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3262 void *freelist = c->freelist;
3263 struct slab *slab = c->slab;
3267 c->tid = next_tid(c->tid);
3270 deactivate_slab(s, slab, freelist);
3271 stat(s, CPUSLAB_FLUSH);
3274 put_partials_cpu(s, c);
3277 struct slub_flush_work {
3278 struct work_struct work;
3279 struct kmem_cache *s;
3286 * Called from CPU work handler with migration disabled.
3288 static void flush_cpu_slab(struct work_struct *w)
3290 struct kmem_cache *s;
3291 struct kmem_cache_cpu *c;
3292 struct slub_flush_work *sfw;
3294 sfw = container_of(w, struct slub_flush_work, work);
3297 c = this_cpu_ptr(s->cpu_slab);
3305 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3307 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3309 return c->slab || slub_percpu_partial(c);
3312 static DEFINE_MUTEX(flush_lock);
3313 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3315 static void flush_all_cpus_locked(struct kmem_cache *s)
3317 struct slub_flush_work *sfw;
3320 lockdep_assert_cpus_held();
3321 mutex_lock(&flush_lock);
3323 for_each_online_cpu(cpu) {
3324 sfw = &per_cpu(slub_flush, cpu);
3325 if (!has_cpu_slab(cpu, s)) {
3329 INIT_WORK(&sfw->work, flush_cpu_slab);
3332 queue_work_on(cpu, flushwq, &sfw->work);
3335 for_each_online_cpu(cpu) {
3336 sfw = &per_cpu(slub_flush, cpu);
3339 flush_work(&sfw->work);
3342 mutex_unlock(&flush_lock);
3345 static void flush_all(struct kmem_cache *s)
3348 flush_all_cpus_locked(s);
3353 * Use the cpu notifier to insure that the cpu slabs are flushed when
3356 static int slub_cpu_dead(unsigned int cpu)
3358 struct kmem_cache *s;
3360 mutex_lock(&slab_mutex);
3361 list_for_each_entry(s, &slab_caches, list)
3362 __flush_cpu_slab(s, cpu);
3363 mutex_unlock(&slab_mutex);
3367 #else /* CONFIG_SLUB_TINY */
3368 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3369 static inline void flush_all(struct kmem_cache *s) { }
3370 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3371 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3372 #endif /* CONFIG_SLUB_TINY */
3375 * Check if the objects in a per cpu structure fit numa
3376 * locality expectations.
3378 static inline int node_match(struct slab *slab, int node)
3381 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3387 #ifdef CONFIG_SLUB_DEBUG
3388 static int count_free(struct slab *slab)
3390 return slab->objects - slab->inuse;
3393 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3395 return atomic_long_read(&n->total_objects);
3398 /* Supports checking bulk free of a constructed freelist */
3399 static inline bool free_debug_processing(struct kmem_cache *s,
3400 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3401 unsigned long addr, depot_stack_handle_t handle)
3403 bool checks_ok = false;
3404 void *object = head;
3407 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3408 if (!check_slab(s, slab))
3412 if (slab->inuse < *bulk_cnt) {
3413 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3414 slab->inuse, *bulk_cnt);
3420 if (++cnt > *bulk_cnt)
3423 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3424 if (!free_consistency_checks(s, slab, object, addr))
3428 if (s->flags & SLAB_STORE_USER)
3429 set_track_update(s, object, TRACK_FREE, addr, handle);
3430 trace(s, slab, object, 0);
3431 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3432 init_object(s, object, SLUB_RED_INACTIVE);
3434 /* Reached end of constructed freelist yet? */
3435 if (object != tail) {
3436 object = get_freepointer(s, object);
3442 if (cnt != *bulk_cnt) {
3443 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3451 slab_fix(s, "Object at 0x%p not freed", object);
3455 #endif /* CONFIG_SLUB_DEBUG */
3457 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3458 static unsigned long count_partial(struct kmem_cache_node *n,
3459 int (*get_count)(struct slab *))
3461 unsigned long flags;
3462 unsigned long x = 0;
3465 spin_lock_irqsave(&n->list_lock, flags);
3466 list_for_each_entry(slab, &n->partial, slab_list)
3467 x += get_count(slab);
3468 spin_unlock_irqrestore(&n->list_lock, flags);
3471 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3473 #ifdef CONFIG_SLUB_DEBUG
3474 #define MAX_PARTIAL_TO_SCAN 10000
3476 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3478 unsigned long flags;
3479 unsigned long x = 0;
3482 spin_lock_irqsave(&n->list_lock, flags);
3483 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3484 list_for_each_entry(slab, &n->partial, slab_list)
3485 x += slab->objects - slab->inuse;
3488 * For a long list, approximate the total count of objects in
3489 * it to meet the limit on the number of slabs to scan.
3490 * Scan from both the list's head and tail for better accuracy.
3492 unsigned long scanned = 0;
3494 list_for_each_entry(slab, &n->partial, slab_list) {
3495 x += slab->objects - slab->inuse;
3496 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3499 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3500 x += slab->objects - slab->inuse;
3501 if (++scanned == MAX_PARTIAL_TO_SCAN)
3504 x = mult_frac(x, n->nr_partial, scanned);
3505 x = min(x, node_nr_objs(n));
3507 spin_unlock_irqrestore(&n->list_lock, flags);
3511 static noinline void
3512 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3514 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3515 DEFAULT_RATELIMIT_BURST);
3516 int cpu = raw_smp_processor_id();
3518 struct kmem_cache_node *n;
3520 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3523 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3524 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3525 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3526 s->name, s->object_size, s->size, oo_order(s->oo),
3529 if (oo_order(s->min) > get_order(s->object_size))
3530 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3533 for_each_kmem_cache_node(s, node, n) {
3534 unsigned long nr_slabs;
3535 unsigned long nr_objs;
3536 unsigned long nr_free;
3538 nr_free = count_partial_free_approx(n);
3539 nr_slabs = node_nr_slabs(n);
3540 nr_objs = node_nr_objs(n);
3542 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3543 node, nr_slabs, nr_objs, nr_free);
3546 #else /* CONFIG_SLUB_DEBUG */
3548 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3551 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3553 if (unlikely(slab_test_pfmemalloc(slab)))
3554 return gfp_pfmemalloc_allowed(gfpflags);
3559 #ifndef CONFIG_SLUB_TINY
3561 __update_cpu_freelist_fast(struct kmem_cache *s,
3562 void *freelist_old, void *freelist_new,
3565 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3566 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3568 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3569 &old.full, new.full);
3573 * Check the slab->freelist and either transfer the freelist to the
3574 * per cpu freelist or deactivate the slab.
3576 * The slab is still frozen if the return value is not NULL.
3578 * If this function returns NULL then the slab has been unfrozen.
3580 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3583 unsigned long counters;
3586 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3589 freelist = slab->freelist;
3590 counters = slab->counters;
3592 new.counters = counters;
3594 new.inuse = slab->objects;
3595 new.frozen = freelist != NULL;
3597 } while (!__slab_update_freelist(s, slab,
3606 * Freeze the partial slab and return the pointer to the freelist.
3608 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3611 unsigned long counters;
3615 freelist = slab->freelist;
3616 counters = slab->counters;
3618 new.counters = counters;
3619 VM_BUG_ON(new.frozen);
3621 new.inuse = slab->objects;
3624 } while (!slab_update_freelist(s, slab,
3633 * Slow path. The lockless freelist is empty or we need to perform
3636 * Processing is still very fast if new objects have been freed to the
3637 * regular freelist. In that case we simply take over the regular freelist
3638 * as the lockless freelist and zap the regular freelist.
3640 * If that is not working then we fall back to the partial lists. We take the
3641 * first element of the freelist as the object to allocate now and move the
3642 * rest of the freelist to the lockless freelist.
3644 * And if we were unable to get a new slab from the partial slab lists then
3645 * we need to allocate a new slab. This is the slowest path since it involves
3646 * a call to the page allocator and the setup of a new slab.
3648 * Version of __slab_alloc to use when we know that preemption is
3649 * already disabled (which is the case for bulk allocation).
3651 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3652 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3656 unsigned long flags;
3657 struct partial_context pc;
3658 bool try_thisnode = true;
3660 stat(s, ALLOC_SLOWPATH);
3664 slab = READ_ONCE(c->slab);
3667 * if the node is not online or has no normal memory, just
3668 * ignore the node constraint
3670 if (unlikely(node != NUMA_NO_NODE &&
3671 !node_isset(node, slab_nodes)))
3672 node = NUMA_NO_NODE;
3676 if (unlikely(!node_match(slab, node))) {
3678 * same as above but node_match() being false already
3679 * implies node != NUMA_NO_NODE
3681 if (!node_isset(node, slab_nodes)) {
3682 node = NUMA_NO_NODE;
3684 stat(s, ALLOC_NODE_MISMATCH);
3685 goto deactivate_slab;
3690 * By rights, we should be searching for a slab page that was
3691 * PFMEMALLOC but right now, we are losing the pfmemalloc
3692 * information when the page leaves the per-cpu allocator
3694 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3695 goto deactivate_slab;
3697 /* must check again c->slab in case we got preempted and it changed */
3698 local_lock_irqsave(&s->cpu_slab->lock, flags);
3699 if (unlikely(slab != c->slab)) {
3700 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3703 freelist = c->freelist;
3707 freelist = get_freelist(s, slab);
3711 c->tid = next_tid(c->tid);
3712 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3713 stat(s, DEACTIVATE_BYPASS);
3717 stat(s, ALLOC_REFILL);
3721 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3724 * freelist is pointing to the list of objects to be used.
3725 * slab is pointing to the slab from which the objects are obtained.
3726 * That slab must be frozen for per cpu allocations to work.
3728 VM_BUG_ON(!c->slab->frozen);
3729 c->freelist = get_freepointer(s, freelist);
3730 c->tid = next_tid(c->tid);
3731 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3736 local_lock_irqsave(&s->cpu_slab->lock, flags);
3737 if (slab != c->slab) {
3738 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3741 freelist = c->freelist;
3744 c->tid = next_tid(c->tid);
3745 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3746 deactivate_slab(s, slab, freelist);
3750 #ifdef CONFIG_SLUB_CPU_PARTIAL
3751 while (slub_percpu_partial(c)) {
3752 local_lock_irqsave(&s->cpu_slab->lock, flags);
3753 if (unlikely(c->slab)) {
3754 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3757 if (unlikely(!slub_percpu_partial(c))) {
3758 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3759 /* we were preempted and partial list got empty */
3763 slab = slub_percpu_partial(c);
3764 slub_set_percpu_partial(c, slab);
3766 if (likely(node_match(slab, node) &&
3767 pfmemalloc_match(slab, gfpflags))) {
3769 freelist = get_freelist(s, slab);
3770 VM_BUG_ON(!freelist);
3771 stat(s, CPU_PARTIAL_ALLOC);
3775 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3778 __put_partials(s, slab);
3784 pc.flags = gfpflags;
3786 * When a preferred node is indicated but no __GFP_THISNODE
3788 * 1) try to get a partial slab from target node only by having
3789 * __GFP_THISNODE in pc.flags for get_partial()
3790 * 2) if 1) failed, try to allocate a new slab from target node with
3791 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3792 * 3) if 2) failed, retry with original gfpflags which will allow
3793 * get_partial() try partial lists of other nodes before potentially
3794 * allocating new page from other nodes
3796 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3798 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3800 pc.orig_size = orig_size;
3801 slab = get_partial(s, node, &pc);
3803 if (kmem_cache_debug(s)) {
3804 freelist = pc.object;
3806 * For debug caches here we had to go through
3807 * alloc_single_from_partial() so just store the
3808 * tracking info and return the object.
3810 if (s->flags & SLAB_STORE_USER)
3811 set_track(s, freelist, TRACK_ALLOC, addr);
3816 freelist = freeze_slab(s, slab);
3817 goto retry_load_slab;
3820 slub_put_cpu_ptr(s->cpu_slab);
3821 slab = new_slab(s, pc.flags, node);
3822 c = slub_get_cpu_ptr(s->cpu_slab);
3824 if (unlikely(!slab)) {
3825 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3827 try_thisnode = false;
3830 slab_out_of_memory(s, gfpflags, node);
3834 stat(s, ALLOC_SLAB);
3836 if (kmem_cache_debug(s)) {
3837 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3839 if (unlikely(!freelist))
3842 if (s->flags & SLAB_STORE_USER)
3843 set_track(s, freelist, TRACK_ALLOC, addr);
3849 * No other reference to the slab yet so we can
3850 * muck around with it freely without cmpxchg
3852 freelist = slab->freelist;
3853 slab->freelist = NULL;
3854 slab->inuse = slab->objects;
3857 inc_slabs_node(s, slab_nid(slab), slab->objects);
3859 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3861 * For !pfmemalloc_match() case we don't load freelist so that
3862 * we don't make further mismatched allocations easier.
3864 deactivate_slab(s, slab, get_freepointer(s, freelist));
3870 local_lock_irqsave(&s->cpu_slab->lock, flags);
3871 if (unlikely(c->slab)) {
3872 void *flush_freelist = c->freelist;
3873 struct slab *flush_slab = c->slab;
3877 c->tid = next_tid(c->tid);
3879 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3881 deactivate_slab(s, flush_slab, flush_freelist);
3883 stat(s, CPUSLAB_FLUSH);
3885 goto retry_load_slab;
3893 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3894 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3897 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3898 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3902 #ifdef CONFIG_PREEMPT_COUNT
3904 * We may have been preempted and rescheduled on a different
3905 * cpu before disabling preemption. Need to reload cpu area
3908 c = slub_get_cpu_ptr(s->cpu_slab);
3911 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3912 #ifdef CONFIG_PREEMPT_COUNT
3913 slub_put_cpu_ptr(s->cpu_slab);
3918 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3919 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3921 struct kmem_cache_cpu *c;
3928 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3929 * enabled. We may switch back and forth between cpus while
3930 * reading from one cpu area. That does not matter as long
3931 * as we end up on the original cpu again when doing the cmpxchg.
3933 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3934 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3935 * the tid. If we are preempted and switched to another cpu between the
3936 * two reads, it's OK as the two are still associated with the same cpu
3937 * and cmpxchg later will validate the cpu.
3939 c = raw_cpu_ptr(s->cpu_slab);
3940 tid = READ_ONCE(c->tid);
3943 * Irqless object alloc/free algorithm used here depends on sequence
3944 * of fetching cpu_slab's data. tid should be fetched before anything
3945 * on c to guarantee that object and slab associated with previous tid
3946 * won't be used with current tid. If we fetch tid first, object and
3947 * slab could be one associated with next tid and our alloc/free
3948 * request will be failed. In this case, we will retry. So, no problem.
3953 * The transaction ids are globally unique per cpu and per operation on
3954 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3955 * occurs on the right processor and that there was no operation on the
3956 * linked list in between.
3959 object = c->freelist;
3962 if (!USE_LOCKLESS_FAST_PATH() ||
3963 unlikely(!object || !slab || !node_match(slab, node))) {
3964 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3966 void *next_object = get_freepointer_safe(s, object);
3969 * The cmpxchg will only match if there was no additional
3970 * operation and if we are on the right processor.
3972 * The cmpxchg does the following atomically (without lock
3974 * 1. Relocate first pointer to the current per cpu area.
3975 * 2. Verify that tid and freelist have not been changed
3976 * 3. If they were not changed replace tid and freelist
3978 * Since this is without lock semantics the protection is only
3979 * against code executing on this cpu *not* from access by
3982 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3983 note_cmpxchg_failure("slab_alloc", s, tid);
3986 prefetch_freepointer(s, next_object);
3987 stat(s, ALLOC_FASTPATH);
3992 #else /* CONFIG_SLUB_TINY */
3993 static void *__slab_alloc_node(struct kmem_cache *s,
3994 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3996 struct partial_context pc;
4000 pc.flags = gfpflags;
4001 pc.orig_size = orig_size;
4002 slab = get_partial(s, node, &pc);
4007 slab = new_slab(s, gfpflags, node);
4008 if (unlikely(!slab)) {
4009 slab_out_of_memory(s, gfpflags, node);
4013 object = alloc_single_from_new_slab(s, slab, orig_size);
4017 #endif /* CONFIG_SLUB_TINY */
4020 * If the object has been wiped upon free, make sure it's fully initialized by
4021 * zeroing out freelist pointer.
4023 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4026 if (unlikely(slab_want_init_on_free(s)) && obj &&
4027 !freeptr_outside_object(s))
4028 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4032 static __fastpath_inline
4033 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4035 flags &= gfp_allowed_mask;
4039 if (unlikely(should_failslab(s, flags)))
4045 static __fastpath_inline
4046 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4047 gfp_t flags, size_t size, void **p, bool init,
4048 unsigned int orig_size)
4050 unsigned int zero_size = s->object_size;
4051 bool kasan_init = init;
4053 gfp_t init_flags = flags & gfp_allowed_mask;
4056 * For kmalloc object, the allocated memory size(object_size) is likely
4057 * larger than the requested size(orig_size). If redzone check is
4058 * enabled for the extra space, don't zero it, as it will be redzoned
4059 * soon. The redzone operation for this extra space could be seen as a
4060 * replacement of current poisoning under certain debug option, and
4061 * won't break other sanity checks.
4063 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4064 (s->flags & SLAB_KMALLOC))
4065 zero_size = orig_size;
4068 * When slab_debug is enabled, avoid memory initialization integrated
4069 * into KASAN and instead zero out the memory via the memset below with
4070 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4071 * cause false-positive reports. This does not lead to a performance
4072 * penalty on production builds, as slab_debug is not intended to be
4075 if (__slub_debug_enabled())
4079 * As memory initialization might be integrated into KASAN,
4080 * kasan_slab_alloc and initialization memset must be
4081 * kept together to avoid discrepancies in behavior.
4083 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4085 for (i = 0; i < size; i++) {
4086 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4087 if (p[i] && init && (!kasan_init ||
4088 !kasan_has_integrated_init()))
4089 memset(p[i], 0, zero_size);
4090 kmemleak_alloc_recursive(p[i], s->object_size, 1,
4091 s->flags, init_flags);
4092 kmsan_slab_alloc(s, p[i], init_flags);
4093 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4096 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4100 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4101 * have the fastpath folded into their functions. So no function call
4102 * overhead for requests that can be satisfied on the fastpath.
4104 * The fastpath works by first checking if the lockless freelist can be used.
4105 * If not then __slab_alloc is called for slow processing.
4107 * Otherwise we can simply pick the next object from the lockless free list.
4109 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4110 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4115 s = slab_pre_alloc_hook(s, gfpflags);
4119 object = kfence_alloc(s, orig_size, gfpflags);
4120 if (unlikely(object))
4123 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4125 maybe_wipe_obj_freeptr(s, object);
4126 init = slab_want_init_on_alloc(gfpflags, s);
4130 * When init equals 'true', like for kzalloc() family, only
4131 * @orig_size bytes might be zeroed instead of s->object_size
4132 * In case this fails due to memcg_slab_post_alloc_hook(),
4133 * object is set to NULL
4135 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4140 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4142 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4145 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4149 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4151 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4154 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4157 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4161 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4163 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4165 if (!memcg_kmem_online())
4168 return memcg_slab_post_charge(objp, gfpflags);
4170 EXPORT_SYMBOL(kmem_cache_charge);
4173 * kmem_cache_alloc_node - Allocate an object on the specified node
4174 * @s: The cache to allocate from.
4175 * @gfpflags: See kmalloc().
4176 * @node: node number of the target node.
4178 * Identical to kmem_cache_alloc but it will allocate memory on the given
4179 * node, which can improve the performance for cpu bound structures.
4181 * Fallback to other node is possible if __GFP_THISNODE is not set.
4183 * Return: pointer to the new object or %NULL in case of error
4185 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4187 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4189 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4193 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4196 * To avoid unnecessary overhead, we pass through large allocation requests
4197 * directly to the page allocator. We use __GFP_COMP, because we will need to
4198 * know the allocation order to free the pages properly in kfree.
4200 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4202 struct folio *folio;
4204 unsigned int order = get_order(size);
4206 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4207 flags = kmalloc_fix_flags(flags);
4209 flags |= __GFP_COMP;
4210 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4212 ptr = folio_address(folio);
4213 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4214 PAGE_SIZE << order);
4217 ptr = kasan_kmalloc_large(ptr, size, flags);
4218 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4219 kmemleak_alloc(ptr, size, 1, flags);
4220 kmsan_kmalloc_large(ptr, size, flags);
4225 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4227 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4229 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4230 flags, NUMA_NO_NODE);
4233 EXPORT_SYMBOL(__kmalloc_large_noprof);
4235 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4237 void *ret = ___kmalloc_large_node(size, flags, node);
4239 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4243 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4245 static __always_inline
4246 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4247 unsigned long caller)
4249 struct kmem_cache *s;
4252 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4253 ret = __kmalloc_large_node_noprof(size, flags, node);
4254 trace_kmalloc(caller, ret, size,
4255 PAGE_SIZE << get_order(size), flags, node);
4259 if (unlikely(!size))
4260 return ZERO_SIZE_PTR;
4262 s = kmalloc_slab(size, b, flags, caller);
4264 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4265 ret = kasan_kmalloc(s, ret, size, flags);
4266 trace_kmalloc(caller, ret, size, s->size, flags, node);
4269 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4271 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4273 EXPORT_SYMBOL(__kmalloc_node_noprof);
4275 void *__kmalloc_noprof(size_t size, gfp_t flags)
4277 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4279 EXPORT_SYMBOL(__kmalloc_noprof);
4281 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4282 int node, unsigned long caller)
4284 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4287 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4289 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4291 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4294 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4296 ret = kasan_kmalloc(s, ret, size, gfpflags);
4299 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4301 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4302 int node, size_t size)
4304 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4306 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4308 ret = kasan_kmalloc(s, ret, size, gfpflags);
4311 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4313 static noinline void free_to_partial_list(
4314 struct kmem_cache *s, struct slab *slab,
4315 void *head, void *tail, int bulk_cnt,
4318 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4319 struct slab *slab_free = NULL;
4321 unsigned long flags;
4322 depot_stack_handle_t handle = 0;
4324 if (s->flags & SLAB_STORE_USER)
4325 handle = set_track_prepare();
4327 spin_lock_irqsave(&n->list_lock, flags);
4329 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4330 void *prior = slab->freelist;
4332 /* Perform the actual freeing while we still hold the locks */
4334 set_freepointer(s, tail, prior);
4335 slab->freelist = head;
4338 * If the slab is empty, and node's partial list is full,
4339 * it should be discarded anyway no matter it's on full or
4342 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4346 /* was on full list */
4347 remove_full(s, n, slab);
4349 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4350 stat(s, FREE_ADD_PARTIAL);
4352 } else if (slab_free) {
4353 remove_partial(n, slab);
4354 stat(s, FREE_REMOVE_PARTIAL);
4360 * Update the counters while still holding n->list_lock to
4361 * prevent spurious validation warnings
4363 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4366 spin_unlock_irqrestore(&n->list_lock, flags);
4370 free_slab(s, slab_free);
4375 * Slow path handling. This may still be called frequently since objects
4376 * have a longer lifetime than the cpu slabs in most processing loads.
4378 * So we still attempt to reduce cache line usage. Just take the slab
4379 * lock and free the item. If there is no additional partial slab
4380 * handling required then we can return immediately.
4382 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4383 void *head, void *tail, int cnt,
4390 unsigned long counters;
4391 struct kmem_cache_node *n = NULL;
4392 unsigned long flags;
4393 bool on_node_partial;
4395 stat(s, FREE_SLOWPATH);
4397 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4398 free_to_partial_list(s, slab, head, tail, cnt, addr);
4404 spin_unlock_irqrestore(&n->list_lock, flags);
4407 prior = slab->freelist;
4408 counters = slab->counters;
4409 set_freepointer(s, tail, prior);
4410 new.counters = counters;
4411 was_frozen = new.frozen;
4413 if ((!new.inuse || !prior) && !was_frozen) {
4414 /* Needs to be taken off a list */
4415 if (!kmem_cache_has_cpu_partial(s) || prior) {
4417 n = get_node(s, slab_nid(slab));
4419 * Speculatively acquire the list_lock.
4420 * If the cmpxchg does not succeed then we may
4421 * drop the list_lock without any processing.
4423 * Otherwise the list_lock will synchronize with
4424 * other processors updating the list of slabs.
4426 spin_lock_irqsave(&n->list_lock, flags);
4428 on_node_partial = slab_test_node_partial(slab);
4432 } while (!slab_update_freelist(s, slab,
4439 if (likely(was_frozen)) {
4441 * The list lock was not taken therefore no list
4442 * activity can be necessary.
4444 stat(s, FREE_FROZEN);
4445 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4447 * If we started with a full slab then put it onto the
4448 * per cpu partial list.
4450 put_cpu_partial(s, slab, 1);
4451 stat(s, CPU_PARTIAL_FREE);
4458 * This slab was partially empty but not on the per-node partial list,
4459 * in which case we shouldn't manipulate its list, just return.
4461 if (prior && !on_node_partial) {
4462 spin_unlock_irqrestore(&n->list_lock, flags);
4466 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4470 * Objects left in the slab. If it was not on the partial list before
4473 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4474 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4475 stat(s, FREE_ADD_PARTIAL);
4477 spin_unlock_irqrestore(&n->list_lock, flags);
4483 * Slab on the partial list.
4485 remove_partial(n, slab);
4486 stat(s, FREE_REMOVE_PARTIAL);
4489 spin_unlock_irqrestore(&n->list_lock, flags);
4491 discard_slab(s, slab);
4494 #ifndef CONFIG_SLUB_TINY
4496 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4497 * can perform fastpath freeing without additional function calls.
4499 * The fastpath is only possible if we are freeing to the current cpu slab
4500 * of this processor. This typically the case if we have just allocated
4503 * If fastpath is not possible then fall back to __slab_free where we deal
4504 * with all sorts of special processing.
4506 * Bulk free of a freelist with several objects (all pointing to the
4507 * same slab) possible by specifying head and tail ptr, plus objects
4508 * count (cnt). Bulk free indicated by tail pointer being set.
4510 static __always_inline void do_slab_free(struct kmem_cache *s,
4511 struct slab *slab, void *head, void *tail,
4512 int cnt, unsigned long addr)
4514 struct kmem_cache_cpu *c;
4520 * Determine the currently cpus per cpu slab.
4521 * The cpu may change afterward. However that does not matter since
4522 * data is retrieved via this pointer. If we are on the same cpu
4523 * during the cmpxchg then the free will succeed.
4525 c = raw_cpu_ptr(s->cpu_slab);
4526 tid = READ_ONCE(c->tid);
4528 /* Same with comment on barrier() in __slab_alloc_node() */
4531 if (unlikely(slab != c->slab)) {
4532 __slab_free(s, slab, head, tail, cnt, addr);
4536 if (USE_LOCKLESS_FAST_PATH()) {
4537 freelist = READ_ONCE(c->freelist);
4539 set_freepointer(s, tail, freelist);
4541 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4542 note_cmpxchg_failure("slab_free", s, tid);
4546 /* Update the free list under the local lock */
4547 local_lock(&s->cpu_slab->lock);
4548 c = this_cpu_ptr(s->cpu_slab);
4549 if (unlikely(slab != c->slab)) {
4550 local_unlock(&s->cpu_slab->lock);
4554 freelist = c->freelist;
4556 set_freepointer(s, tail, freelist);
4558 c->tid = next_tid(tid);
4560 local_unlock(&s->cpu_slab->lock);
4562 stat_add(s, FREE_FASTPATH, cnt);
4564 #else /* CONFIG_SLUB_TINY */
4565 static void do_slab_free(struct kmem_cache *s,
4566 struct slab *slab, void *head, void *tail,
4567 int cnt, unsigned long addr)
4569 __slab_free(s, slab, head, tail, cnt, addr);
4571 #endif /* CONFIG_SLUB_TINY */
4573 static __fastpath_inline
4574 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4577 memcg_slab_free_hook(s, slab, &object, 1);
4578 alloc_tagging_slab_free_hook(s, slab, &object, 1);
4580 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4581 do_slab_free(s, slab, object, object, 1, addr);
4585 /* Do not inline the rare memcg charging failed path into the allocation path */
4587 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4589 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4590 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4594 static __fastpath_inline
4595 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4596 void *tail, void **p, int cnt, unsigned long addr)
4598 memcg_slab_free_hook(s, slab, p, cnt);
4599 alloc_tagging_slab_free_hook(s, slab, p, cnt);
4601 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4602 * to remove objects, whose reuse must be delayed.
4604 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4605 do_slab_free(s, slab, head, tail, cnt, addr);
4608 #ifdef CONFIG_SLUB_RCU_DEBUG
4609 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4611 struct rcu_delayed_free *delayed_free =
4612 container_of(rcu_head, struct rcu_delayed_free, head);
4613 void *object = delayed_free->object;
4614 struct slab *slab = virt_to_slab(object);
4615 struct kmem_cache *s;
4617 kfree(delayed_free);
4619 if (WARN_ON(is_kfence_address(object)))
4622 /* find the object and the cache again */
4625 s = slab->slab_cache;
4626 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4629 /* resume freeing */
4630 if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4631 do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4633 #endif /* CONFIG_SLUB_RCU_DEBUG */
4635 #ifdef CONFIG_KASAN_GENERIC
4636 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4638 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4642 static inline struct kmem_cache *virt_to_cache(const void *obj)
4646 slab = virt_to_slab(obj);
4647 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4649 return slab->slab_cache;
4652 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4654 struct kmem_cache *cachep;
4656 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4657 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4660 cachep = virt_to_cache(x);
4661 if (WARN(cachep && cachep != s,
4662 "%s: Wrong slab cache. %s but object is from %s\n",
4663 __func__, s->name, cachep->name))
4664 print_tracking(cachep, x);
4669 * kmem_cache_free - Deallocate an object
4670 * @s: The cache the allocation was from.
4671 * @x: The previously allocated object.
4673 * Free an object which was previously allocated from this
4676 void kmem_cache_free(struct kmem_cache *s, void *x)
4678 s = cache_from_obj(s, x);
4681 trace_kmem_cache_free(_RET_IP_, x, s);
4682 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4684 EXPORT_SYMBOL(kmem_cache_free);
4686 static void free_large_kmalloc(struct folio *folio, void *object)
4688 unsigned int order = folio_order(folio);
4690 if (WARN_ON_ONCE(order == 0))
4691 pr_warn_once("object pointer: 0x%p\n", object);
4693 kmemleak_free(object);
4694 kasan_kfree_large(object);
4695 kmsan_kfree_large(object);
4697 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4698 -(PAGE_SIZE << order));
4703 * kfree - free previously allocated memory
4704 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4706 * If @object is NULL, no operation is performed.
4708 void kfree(const void *object)
4710 struct folio *folio;
4712 struct kmem_cache *s;
4713 void *x = (void *)object;
4715 trace_kfree(_RET_IP_, object);
4717 if (unlikely(ZERO_OR_NULL_PTR(object)))
4720 folio = virt_to_folio(object);
4721 if (unlikely(!folio_test_slab(folio))) {
4722 free_large_kmalloc(folio, (void *)object);
4726 slab = folio_slab(folio);
4727 s = slab->slab_cache;
4728 slab_free(s, slab, x, _RET_IP_);
4730 EXPORT_SYMBOL(kfree);
4732 struct detached_freelist {
4737 struct kmem_cache *s;
4741 * This function progressively scans the array with free objects (with
4742 * a limited look ahead) and extract objects belonging to the same
4743 * slab. It builds a detached freelist directly within the given
4744 * slab/objects. This can happen without any need for
4745 * synchronization, because the objects are owned by running process.
4746 * The freelist is build up as a single linked list in the objects.
4747 * The idea is, that this detached freelist can then be bulk
4748 * transferred to the real freelist(s), but only requiring a single
4749 * synchronization primitive. Look ahead in the array is limited due
4750 * to performance reasons.
4753 int build_detached_freelist(struct kmem_cache *s, size_t size,
4754 void **p, struct detached_freelist *df)
4758 struct folio *folio;
4762 folio = virt_to_folio(object);
4764 /* Handle kalloc'ed objects */
4765 if (unlikely(!folio_test_slab(folio))) {
4766 free_large_kmalloc(folio, object);
4770 /* Derive kmem_cache from object */
4771 df->slab = folio_slab(folio);
4772 df->s = df->slab->slab_cache;
4774 df->slab = folio_slab(folio);
4775 df->s = cache_from_obj(s, object); /* Support for memcg */
4778 /* Start new detached freelist */
4780 df->freelist = object;
4783 if (is_kfence_address(object))
4786 set_freepointer(df->s, object, NULL);
4791 /* df->slab is always set at this point */
4792 if (df->slab == virt_to_slab(object)) {
4793 /* Opportunity build freelist */
4794 set_freepointer(df->s, object, df->freelist);
4795 df->freelist = object;
4799 swap(p[size], p[same]);
4803 /* Limit look ahead search */
4812 * Internal bulk free of objects that were not initialised by the post alloc
4813 * hooks and thus should not be processed by the free hooks
4815 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4821 struct detached_freelist df;
4823 size = build_detached_freelist(s, size, p, &df);
4827 if (kfence_free(df.freelist))
4830 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4832 } while (likely(size));
4835 /* Note that interrupts must be enabled when calling this function. */
4836 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4842 struct detached_freelist df;
4844 size = build_detached_freelist(s, size, p, &df);
4848 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4850 } while (likely(size));
4852 EXPORT_SYMBOL(kmem_cache_free_bulk);
4854 #ifndef CONFIG_SLUB_TINY
4856 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4859 struct kmem_cache_cpu *c;
4860 unsigned long irqflags;
4864 * Drain objects in the per cpu slab, while disabling local
4865 * IRQs, which protects against PREEMPT and interrupts
4866 * handlers invoking normal fastpath.
4868 c = slub_get_cpu_ptr(s->cpu_slab);
4869 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4871 for (i = 0; i < size; i++) {
4872 void *object = kfence_alloc(s, s->object_size, flags);
4874 if (unlikely(object)) {
4879 object = c->freelist;
4880 if (unlikely(!object)) {
4882 * We may have removed an object from c->freelist using
4883 * the fastpath in the previous iteration; in that case,
4884 * c->tid has not been bumped yet.
4885 * Since ___slab_alloc() may reenable interrupts while
4886 * allocating memory, we should bump c->tid now.
4888 c->tid = next_tid(c->tid);
4890 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4893 * Invoking slow path likely have side-effect
4894 * of re-populating per CPU c->freelist
4896 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4897 _RET_IP_, c, s->object_size);
4898 if (unlikely(!p[i]))
4901 c = this_cpu_ptr(s->cpu_slab);
4902 maybe_wipe_obj_freeptr(s, p[i]);
4904 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4906 continue; /* goto for-loop */
4908 c->freelist = get_freepointer(s, object);
4910 maybe_wipe_obj_freeptr(s, p[i]);
4911 stat(s, ALLOC_FASTPATH);
4913 c->tid = next_tid(c->tid);
4914 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4915 slub_put_cpu_ptr(s->cpu_slab);
4920 slub_put_cpu_ptr(s->cpu_slab);
4921 __kmem_cache_free_bulk(s, i, p);
4925 #else /* CONFIG_SLUB_TINY */
4926 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4927 size_t size, void **p)
4931 for (i = 0; i < size; i++) {
4932 void *object = kfence_alloc(s, s->object_size, flags);
4934 if (unlikely(object)) {
4939 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4940 _RET_IP_, s->object_size);
4941 if (unlikely(!p[i]))
4944 maybe_wipe_obj_freeptr(s, p[i]);
4950 __kmem_cache_free_bulk(s, i, p);
4953 #endif /* CONFIG_SLUB_TINY */
4955 /* Note that interrupts must be enabled when calling this function. */
4956 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4964 s = slab_pre_alloc_hook(s, flags);
4968 i = __kmem_cache_alloc_bulk(s, flags, size, p);
4969 if (unlikely(i == 0))
4973 * memcg and kmem_cache debug support and memory initialization.
4974 * Done outside of the IRQ disabled fastpath loop.
4976 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4977 slab_want_init_on_alloc(flags, s), s->object_size))) {
4982 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
4986 * Object placement in a slab is made very easy because we always start at
4987 * offset 0. If we tune the size of the object to the alignment then we can
4988 * get the required alignment by putting one properly sized object after
4991 * Notice that the allocation order determines the sizes of the per cpu
4992 * caches. Each processor has always one slab available for allocations.
4993 * Increasing the allocation order reduces the number of times that slabs
4994 * must be moved on and off the partial lists and is therefore a factor in
4999 * Minimum / Maximum order of slab pages. This influences locking overhead
5000 * and slab fragmentation. A higher order reduces the number of partial slabs
5001 * and increases the number of allocations possible without having to
5002 * take the list_lock.
5004 static unsigned int slub_min_order;
5005 static unsigned int slub_max_order =
5006 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5007 static unsigned int slub_min_objects;
5010 * Calculate the order of allocation given an slab object size.
5012 * The order of allocation has significant impact on performance and other
5013 * system components. Generally order 0 allocations should be preferred since
5014 * order 0 does not cause fragmentation in the page allocator. Larger objects
5015 * be problematic to put into order 0 slabs because there may be too much
5016 * unused space left. We go to a higher order if more than 1/16th of the slab
5019 * In order to reach satisfactory performance we must ensure that a minimum
5020 * number of objects is in one slab. Otherwise we may generate too much
5021 * activity on the partial lists which requires taking the list_lock. This is
5022 * less a concern for large slabs though which are rarely used.
5024 * slab_max_order specifies the order where we begin to stop considering the
5025 * number of objects in a slab as critical. If we reach slab_max_order then
5026 * we try to keep the page order as low as possible. So we accept more waste
5027 * of space in favor of a small page order.
5029 * Higher order allocations also allow the placement of more objects in a
5030 * slab and thereby reduce object handling overhead. If the user has
5031 * requested a higher minimum order then we start with that one instead of
5032 * the smallest order which will fit the object.
5034 static inline unsigned int calc_slab_order(unsigned int size,
5035 unsigned int min_order, unsigned int max_order,
5036 unsigned int fract_leftover)
5040 for (order = min_order; order <= max_order; order++) {
5042 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5045 rem = slab_size % size;
5047 if (rem <= slab_size / fract_leftover)
5054 static inline int calculate_order(unsigned int size)
5057 unsigned int min_objects;
5058 unsigned int max_objects;
5059 unsigned int min_order;
5061 min_objects = slub_min_objects;
5064 * Some architectures will only update present cpus when
5065 * onlining them, so don't trust the number if it's just 1. But
5066 * we also don't want to use nr_cpu_ids always, as on some other
5067 * architectures, there can be many possible cpus, but never
5068 * onlined. Here we compromise between trying to avoid too high
5069 * order on systems that appear larger than they are, and too
5070 * low order on systems that appear smaller than they are.
5072 unsigned int nr_cpus = num_present_cpus();
5074 nr_cpus = nr_cpu_ids;
5075 min_objects = 4 * (fls(nr_cpus) + 1);
5077 /* min_objects can't be 0 because get_order(0) is undefined */
5078 max_objects = max(order_objects(slub_max_order, size), 1U);
5079 min_objects = min(min_objects, max_objects);
5081 min_order = max_t(unsigned int, slub_min_order,
5082 get_order(min_objects * size));
5083 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5084 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5087 * Attempt to find best configuration for a slab. This works by first
5088 * attempting to generate a layout with the best possible configuration
5089 * and backing off gradually.
5091 * We start with accepting at most 1/16 waste and try to find the
5092 * smallest order from min_objects-derived/slab_min_order up to
5093 * slab_max_order that will satisfy the constraint. Note that increasing
5094 * the order can only result in same or less fractional waste, not more.
5096 * If that fails, we increase the acceptable fraction of waste and try
5097 * again. The last iteration with fraction of 1/2 would effectively
5098 * accept any waste and give us the order determined by min_objects, as
5099 * long as at least single object fits within slab_max_order.
5101 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5102 order = calc_slab_order(size, min_order, slub_max_order,
5104 if (order <= slub_max_order)
5109 * Doh this slab cannot be placed using slab_max_order.
5111 order = get_order(size);
5112 if (order <= MAX_PAGE_ORDER)
5118 init_kmem_cache_node(struct kmem_cache_node *n)
5121 spin_lock_init(&n->list_lock);
5122 INIT_LIST_HEAD(&n->partial);
5123 #ifdef CONFIG_SLUB_DEBUG
5124 atomic_long_set(&n->nr_slabs, 0);
5125 atomic_long_set(&n->total_objects, 0);
5126 INIT_LIST_HEAD(&n->full);
5130 #ifndef CONFIG_SLUB_TINY
5131 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5133 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5134 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5135 sizeof(struct kmem_cache_cpu));
5138 * Must align to double word boundary for the double cmpxchg
5139 * instructions to work; see __pcpu_double_call_return_bool().
5141 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5142 2 * sizeof(void *));
5147 init_kmem_cache_cpus(s);
5152 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5156 #endif /* CONFIG_SLUB_TINY */
5158 static struct kmem_cache *kmem_cache_node;
5161 * No kmalloc_node yet so do it by hand. We know that this is the first
5162 * slab on the node for this slabcache. There are no concurrent accesses
5165 * Note that this function only works on the kmem_cache_node
5166 * when allocating for the kmem_cache_node. This is used for bootstrapping
5167 * memory on a fresh node that has no slab structures yet.
5169 static void early_kmem_cache_node_alloc(int node)
5172 struct kmem_cache_node *n;
5174 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5176 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5179 if (slab_nid(slab) != node) {
5180 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5181 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5186 #ifdef CONFIG_SLUB_DEBUG
5187 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5189 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5190 slab->freelist = get_freepointer(kmem_cache_node, n);
5192 kmem_cache_node->node[node] = n;
5193 init_kmem_cache_node(n);
5194 inc_slabs_node(kmem_cache_node, node, slab->objects);
5197 * No locks need to be taken here as it has just been
5198 * initialized and there is no concurrent access.
5200 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
5203 static void free_kmem_cache_nodes(struct kmem_cache *s)
5206 struct kmem_cache_node *n;
5208 for_each_kmem_cache_node(s, node, n) {
5209 s->node[node] = NULL;
5210 kmem_cache_free(kmem_cache_node, n);
5214 void __kmem_cache_release(struct kmem_cache *s)
5216 cache_random_seq_destroy(s);
5217 #ifndef CONFIG_SLUB_TINY
5218 free_percpu(s->cpu_slab);
5220 free_kmem_cache_nodes(s);
5223 static int init_kmem_cache_nodes(struct kmem_cache *s)
5227 for_each_node_mask(node, slab_nodes) {
5228 struct kmem_cache_node *n;
5230 if (slab_state == DOWN) {
5231 early_kmem_cache_node_alloc(node);
5234 n = kmem_cache_alloc_node(kmem_cache_node,
5238 free_kmem_cache_nodes(s);
5242 init_kmem_cache_node(n);
5248 static void set_cpu_partial(struct kmem_cache *s)
5250 #ifdef CONFIG_SLUB_CPU_PARTIAL
5251 unsigned int nr_objects;
5254 * cpu_partial determined the maximum number of objects kept in the
5255 * per cpu partial lists of a processor.
5257 * Per cpu partial lists mainly contain slabs that just have one
5258 * object freed. If they are used for allocation then they can be
5259 * filled up again with minimal effort. The slab will never hit the
5260 * per node partial lists and therefore no locking will be required.
5262 * For backwards compatibility reasons, this is determined as number
5263 * of objects, even though we now limit maximum number of pages, see
5264 * slub_set_cpu_partial()
5266 if (!kmem_cache_has_cpu_partial(s))
5268 else if (s->size >= PAGE_SIZE)
5270 else if (s->size >= 1024)
5272 else if (s->size >= 256)
5277 slub_set_cpu_partial(s, nr_objects);
5282 * calculate_sizes() determines the order and the distribution of data within
5285 static int calculate_sizes(struct kmem_cache *s)
5287 slab_flags_t flags = s->flags;
5288 unsigned int size = s->object_size;
5292 * Round up object size to the next word boundary. We can only
5293 * place the free pointer at word boundaries and this determines
5294 * the possible location of the free pointer.
5296 size = ALIGN(size, sizeof(void *));
5298 #ifdef CONFIG_SLUB_DEBUG
5300 * Determine if we can poison the object itself. If the user of
5301 * the slab may touch the object after free or before allocation
5302 * then we should never poison the object itself.
5304 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5306 s->flags |= __OBJECT_POISON;
5308 s->flags &= ~__OBJECT_POISON;
5312 * If we are Redzoning then check if there is some space between the
5313 * end of the object and the free pointer. If not then add an
5314 * additional word to have some bytes to store Redzone information.
5316 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5317 size += sizeof(void *);
5321 * With that we have determined the number of bytes in actual use
5322 * by the object and redzoning.
5326 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || s->ctor ||
5327 ((flags & SLAB_RED_ZONE) &&
5328 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5330 * Relocate free pointer after the object if it is not
5331 * permitted to overwrite the first word of the object on
5334 * This is the case if we do RCU, have a constructor or
5335 * destructor, are poisoning the objects, or are
5336 * redzoning an object smaller than sizeof(void *) or are
5337 * redzoning an object with slub_debug_orig_size() enabled,
5338 * in which case the right redzone may be extended.
5340 * The assumption that s->offset >= s->inuse means free
5341 * pointer is outside of the object is used in the
5342 * freeptr_outside_object() function. If that is no
5343 * longer true, the function needs to be modified.
5346 size += sizeof(void *);
5349 * Store freelist pointer near middle of object to keep
5350 * it away from the edges of the object to avoid small
5351 * sized over/underflows from neighboring allocations.
5353 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5356 #ifdef CONFIG_SLUB_DEBUG
5357 if (flags & SLAB_STORE_USER) {
5359 * Need to store information about allocs and frees after
5362 size += 2 * sizeof(struct track);
5364 /* Save the original kmalloc request size */
5365 if (flags & SLAB_KMALLOC)
5366 size += sizeof(unsigned int);
5370 kasan_cache_create(s, &size, &s->flags);
5371 #ifdef CONFIG_SLUB_DEBUG
5372 if (flags & SLAB_RED_ZONE) {
5374 * Add some empty padding so that we can catch
5375 * overwrites from earlier objects rather than let
5376 * tracking information or the free pointer be
5377 * corrupted if a user writes before the start
5380 size += sizeof(void *);
5382 s->red_left_pad = sizeof(void *);
5383 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5384 size += s->red_left_pad;
5389 * SLUB stores one object immediately after another beginning from
5390 * offset 0. In order to align the objects we have to simply size
5391 * each object to conform to the alignment.
5393 size = ALIGN(size, s->align);
5395 s->reciprocal_size = reciprocal_value(size);
5396 order = calculate_order(size);
5401 s->allocflags = __GFP_COMP;
5403 if (s->flags & SLAB_CACHE_DMA)
5404 s->allocflags |= GFP_DMA;
5406 if (s->flags & SLAB_CACHE_DMA32)
5407 s->allocflags |= GFP_DMA32;
5409 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5410 s->allocflags |= __GFP_RECLAIMABLE;
5413 * Determine the number of objects per slab
5415 s->oo = oo_make(order, size);
5416 s->min = oo_make(get_order(size), size);
5418 return !!oo_objects(s->oo);
5421 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5423 s->flags = kmem_cache_flags(flags, s->name);
5424 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5425 s->random = get_random_long();
5428 if (!calculate_sizes(s))
5430 if (disable_higher_order_debug) {
5432 * Disable debugging flags that store metadata if the min slab
5435 if (get_order(s->size) > get_order(s->object_size)) {
5436 s->flags &= ~DEBUG_METADATA_FLAGS;
5438 if (!calculate_sizes(s))
5443 #ifdef system_has_freelist_aba
5444 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5445 /* Enable fast mode */
5446 s->flags |= __CMPXCHG_DOUBLE;
5451 * The larger the object size is, the more slabs we want on the partial
5452 * list to avoid pounding the page allocator excessively.
5454 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5455 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5460 s->remote_node_defrag_ratio = 1000;
5463 /* Initialize the pre-computed randomized freelist if slab is up */
5464 if (slab_state >= UP) {
5465 if (init_cache_random_seq(s))
5469 if (!init_kmem_cache_nodes(s))
5472 if (alloc_kmem_cache_cpus(s))
5476 __kmem_cache_release(s);
5480 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5483 #ifdef CONFIG_SLUB_DEBUG
5484 void *addr = slab_address(slab);
5487 slab_err(s, slab, text, s->name);
5489 spin_lock(&object_map_lock);
5490 __fill_map(object_map, s, slab);
5492 for_each_object(p, s, addr, slab->objects) {
5494 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5495 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5496 print_tracking(s, p);
5499 spin_unlock(&object_map_lock);
5504 * Attempt to free all partial slabs on a node.
5505 * This is called from __kmem_cache_shutdown(). We must take list_lock
5506 * because sysfs file might still access partial list after the shutdowning.
5508 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5511 struct slab *slab, *h;
5513 BUG_ON(irqs_disabled());
5514 spin_lock_irq(&n->list_lock);
5515 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5517 remove_partial(n, slab);
5518 list_add(&slab->slab_list, &discard);
5520 list_slab_objects(s, slab,
5521 "Objects remaining in %s on __kmem_cache_shutdown()");
5524 spin_unlock_irq(&n->list_lock);
5526 list_for_each_entry_safe(slab, h, &discard, slab_list)
5527 discard_slab(s, slab);
5530 bool __kmem_cache_empty(struct kmem_cache *s)
5533 struct kmem_cache_node *n;
5535 for_each_kmem_cache_node(s, node, n)
5536 if (n->nr_partial || node_nr_slabs(n))
5542 * Release all resources used by a slab cache.
5544 int __kmem_cache_shutdown(struct kmem_cache *s)
5547 struct kmem_cache_node *n;
5549 flush_all_cpus_locked(s);
5550 /* Attempt to free all objects */
5551 for_each_kmem_cache_node(s, node, n) {
5553 if (n->nr_partial || node_nr_slabs(n))
5559 #ifdef CONFIG_PRINTK
5560 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5563 int __maybe_unused i;
5567 struct kmem_cache *s = slab->slab_cache;
5568 struct track __maybe_unused *trackp;
5570 kpp->kp_ptr = object;
5571 kpp->kp_slab = slab;
5572 kpp->kp_slab_cache = s;
5573 base = slab_address(slab);
5574 objp0 = kasan_reset_tag(object);
5575 #ifdef CONFIG_SLUB_DEBUG
5576 objp = restore_red_left(s, objp0);
5580 objnr = obj_to_index(s, slab, objp);
5581 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5582 objp = base + s->size * objnr;
5583 kpp->kp_objp = objp;
5584 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5585 || (objp - base) % s->size) ||
5586 !(s->flags & SLAB_STORE_USER))
5588 #ifdef CONFIG_SLUB_DEBUG
5589 objp = fixup_red_left(s, objp);
5590 trackp = get_track(s, objp, TRACK_ALLOC);
5591 kpp->kp_ret = (void *)trackp->addr;
5592 #ifdef CONFIG_STACKDEPOT
5594 depot_stack_handle_t handle;
5595 unsigned long *entries;
5596 unsigned int nr_entries;
5598 handle = READ_ONCE(trackp->handle);
5600 nr_entries = stack_depot_fetch(handle, &entries);
5601 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5602 kpp->kp_stack[i] = (void *)entries[i];
5605 trackp = get_track(s, objp, TRACK_FREE);
5606 handle = READ_ONCE(trackp->handle);
5608 nr_entries = stack_depot_fetch(handle, &entries);
5609 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5610 kpp->kp_free_stack[i] = (void *)entries[i];
5618 /********************************************************************
5620 *******************************************************************/
5622 static int __init setup_slub_min_order(char *str)
5624 get_option(&str, (int *)&slub_min_order);
5626 if (slub_min_order > slub_max_order)
5627 slub_max_order = slub_min_order;
5632 __setup("slab_min_order=", setup_slub_min_order);
5633 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5636 static int __init setup_slub_max_order(char *str)
5638 get_option(&str, (int *)&slub_max_order);
5639 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5641 if (slub_min_order > slub_max_order)
5642 slub_min_order = slub_max_order;
5647 __setup("slab_max_order=", setup_slub_max_order);
5648 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5650 static int __init setup_slub_min_objects(char *str)
5652 get_option(&str, (int *)&slub_min_objects);
5657 __setup("slab_min_objects=", setup_slub_min_objects);
5658 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5660 #ifdef CONFIG_HARDENED_USERCOPY
5662 * Rejects incorrectly sized objects and objects that are to be copied
5663 * to/from userspace but do not fall entirely within the containing slab
5664 * cache's usercopy region.
5666 * Returns NULL if check passes, otherwise const char * to name of cache
5667 * to indicate an error.
5669 void __check_heap_object(const void *ptr, unsigned long n,
5670 const struct slab *slab, bool to_user)
5672 struct kmem_cache *s;
5673 unsigned int offset;
5674 bool is_kfence = is_kfence_address(ptr);
5676 ptr = kasan_reset_tag(ptr);
5678 /* Find object and usable object size. */
5679 s = slab->slab_cache;
5681 /* Reject impossible pointers. */
5682 if (ptr < slab_address(slab))
5683 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5686 /* Find offset within object. */
5688 offset = ptr - kfence_object_start(ptr);
5690 offset = (ptr - slab_address(slab)) % s->size;
5692 /* Adjust for redzone and reject if within the redzone. */
5693 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5694 if (offset < s->red_left_pad)
5695 usercopy_abort("SLUB object in left red zone",
5696 s->name, to_user, offset, n);
5697 offset -= s->red_left_pad;
5700 /* Allow address range falling entirely within usercopy region. */
5701 if (offset >= s->useroffset &&
5702 offset - s->useroffset <= s->usersize &&
5703 n <= s->useroffset - offset + s->usersize)
5706 usercopy_abort("SLUB object", s->name, to_user, offset, n);
5708 #endif /* CONFIG_HARDENED_USERCOPY */
5710 #define SHRINK_PROMOTE_MAX 32
5713 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5714 * up most to the head of the partial lists. New allocations will then
5715 * fill those up and thus they can be removed from the partial lists.
5717 * The slabs with the least items are placed last. This results in them
5718 * being allocated from last increasing the chance that the last objects
5719 * are freed in them.
5721 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5725 struct kmem_cache_node *n;
5728 struct list_head discard;
5729 struct list_head promote[SHRINK_PROMOTE_MAX];
5730 unsigned long flags;
5733 for_each_kmem_cache_node(s, node, n) {
5734 INIT_LIST_HEAD(&discard);
5735 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5736 INIT_LIST_HEAD(promote + i);
5738 spin_lock_irqsave(&n->list_lock, flags);
5741 * Build lists of slabs to discard or promote.
5743 * Note that concurrent frees may occur while we hold the
5744 * list_lock. slab->inuse here is the upper limit.
5746 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5747 int free = slab->objects - slab->inuse;
5749 /* Do not reread slab->inuse */
5752 /* We do not keep full slabs on the list */
5755 if (free == slab->objects) {
5756 list_move(&slab->slab_list, &discard);
5757 slab_clear_node_partial(slab);
5759 dec_slabs_node(s, node, slab->objects);
5760 } else if (free <= SHRINK_PROMOTE_MAX)
5761 list_move(&slab->slab_list, promote + free - 1);
5765 * Promote the slabs filled up most to the head of the
5768 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5769 list_splice(promote + i, &n->partial);
5771 spin_unlock_irqrestore(&n->list_lock, flags);
5773 /* Release empty slabs */
5774 list_for_each_entry_safe(slab, t, &discard, slab_list)
5777 if (node_nr_slabs(n))
5784 int __kmem_cache_shrink(struct kmem_cache *s)
5787 return __kmem_cache_do_shrink(s);
5790 static int slab_mem_going_offline_callback(void *arg)
5792 struct kmem_cache *s;
5794 mutex_lock(&slab_mutex);
5795 list_for_each_entry(s, &slab_caches, list) {
5796 flush_all_cpus_locked(s);
5797 __kmem_cache_do_shrink(s);
5799 mutex_unlock(&slab_mutex);
5804 static void slab_mem_offline_callback(void *arg)
5806 struct memory_notify *marg = arg;
5809 offline_node = marg->status_change_nid_normal;
5812 * If the node still has available memory. we need kmem_cache_node
5815 if (offline_node < 0)
5818 mutex_lock(&slab_mutex);
5819 node_clear(offline_node, slab_nodes);
5821 * We no longer free kmem_cache_node structures here, as it would be
5822 * racy with all get_node() users, and infeasible to protect them with
5825 mutex_unlock(&slab_mutex);
5828 static int slab_mem_going_online_callback(void *arg)
5830 struct kmem_cache_node *n;
5831 struct kmem_cache *s;
5832 struct memory_notify *marg = arg;
5833 int nid = marg->status_change_nid_normal;
5837 * If the node's memory is already available, then kmem_cache_node is
5838 * already created. Nothing to do.
5844 * We are bringing a node online. No memory is available yet. We must
5845 * allocate a kmem_cache_node structure in order to bring the node
5848 mutex_lock(&slab_mutex);
5849 list_for_each_entry(s, &slab_caches, list) {
5851 * The structure may already exist if the node was previously
5852 * onlined and offlined.
5854 if (get_node(s, nid))
5857 * XXX: kmem_cache_alloc_node will fallback to other nodes
5858 * since memory is not yet available from the node that
5861 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5866 init_kmem_cache_node(n);
5870 * Any cache created after this point will also have kmem_cache_node
5871 * initialized for the new node.
5873 node_set(nid, slab_nodes);
5875 mutex_unlock(&slab_mutex);
5879 static int slab_memory_callback(struct notifier_block *self,
5880 unsigned long action, void *arg)
5885 case MEM_GOING_ONLINE:
5886 ret = slab_mem_going_online_callback(arg);
5888 case MEM_GOING_OFFLINE:
5889 ret = slab_mem_going_offline_callback(arg);
5892 case MEM_CANCEL_ONLINE:
5893 slab_mem_offline_callback(arg);
5896 case MEM_CANCEL_OFFLINE:
5900 ret = notifier_from_errno(ret);
5906 /********************************************************************
5907 * Basic setup of slabs
5908 *******************************************************************/
5911 * Used for early kmem_cache structures that were allocated using
5912 * the page allocator. Allocate them properly then fix up the pointers
5913 * that may be pointing to the wrong kmem_cache structure.
5916 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5919 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5920 struct kmem_cache_node *n;
5922 memcpy(s, static_cache, kmem_cache->object_size);
5925 * This runs very early, and only the boot processor is supposed to be
5926 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5929 __flush_cpu_slab(s, smp_processor_id());
5930 for_each_kmem_cache_node(s, node, n) {
5933 list_for_each_entry(p, &n->partial, slab_list)
5936 #ifdef CONFIG_SLUB_DEBUG
5937 list_for_each_entry(p, &n->full, slab_list)
5941 list_add(&s->list, &slab_caches);
5945 void __init kmem_cache_init(void)
5947 static __initdata struct kmem_cache boot_kmem_cache,
5948 boot_kmem_cache_node;
5951 if (debug_guardpage_minorder())
5954 /* Print slub debugging pointers without hashing */
5955 if (__slub_debug_enabled())
5956 no_hash_pointers_enable(NULL);
5958 kmem_cache_node = &boot_kmem_cache_node;
5959 kmem_cache = &boot_kmem_cache;
5962 * Initialize the nodemask for which we will allocate per node
5963 * structures. Here we don't need taking slab_mutex yet.
5965 for_each_node_state(node, N_NORMAL_MEMORY)
5966 node_set(node, slab_nodes);
5968 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5969 sizeof(struct kmem_cache_node),
5970 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5972 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5974 /* Able to allocate the per node structures */
5975 slab_state = PARTIAL;
5977 create_boot_cache(kmem_cache, "kmem_cache",
5978 offsetof(struct kmem_cache, node) +
5979 nr_node_ids * sizeof(struct kmem_cache_node *),
5980 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5982 kmem_cache = bootstrap(&boot_kmem_cache);
5983 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5985 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5986 setup_kmalloc_cache_index_table();
5987 create_kmalloc_caches();
5989 /* Setup random freelists for each cache */
5990 init_freelist_randomization();
5992 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5995 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5997 slub_min_order, slub_max_order, slub_min_objects,
5998 nr_cpu_ids, nr_node_ids);
6001 void __init kmem_cache_init_late(void)
6003 #ifndef CONFIG_SLUB_TINY
6004 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6010 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6011 slab_flags_t flags, void (*ctor)(void *))
6013 struct kmem_cache *s;
6015 s = find_mergeable(size, align, flags, name, ctor);
6017 if (sysfs_slab_alias(s, name))
6023 * Adjust the object sizes so that we clear
6024 * the complete object on kzalloc.
6026 s->object_size = max(s->object_size, size);
6027 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6033 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
6037 err = kmem_cache_open(s, flags);
6041 /* Mutex is not taken during early boot */
6042 if (slab_state <= UP)
6045 err = sysfs_slab_add(s);
6047 __kmem_cache_release(s);
6051 if (s->flags & SLAB_STORE_USER)
6052 debugfs_slab_add(s);
6057 #ifdef SLAB_SUPPORTS_SYSFS
6058 static int count_inuse(struct slab *slab)
6063 static int count_total(struct slab *slab)
6065 return slab->objects;
6069 #ifdef CONFIG_SLUB_DEBUG
6070 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6071 unsigned long *obj_map)
6074 void *addr = slab_address(slab);
6076 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6079 /* Now we know that a valid freelist exists */
6080 __fill_map(obj_map, s, slab);
6081 for_each_object(p, s, addr, slab->objects) {
6082 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6083 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6085 if (!check_object(s, slab, p, val))
6090 static int validate_slab_node(struct kmem_cache *s,
6091 struct kmem_cache_node *n, unsigned long *obj_map)
6093 unsigned long count = 0;
6095 unsigned long flags;
6097 spin_lock_irqsave(&n->list_lock, flags);
6099 list_for_each_entry(slab, &n->partial, slab_list) {
6100 validate_slab(s, slab, obj_map);
6103 if (count != n->nr_partial) {
6104 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6105 s->name, count, n->nr_partial);
6106 slab_add_kunit_errors();
6109 if (!(s->flags & SLAB_STORE_USER))
6112 list_for_each_entry(slab, &n->full, slab_list) {
6113 validate_slab(s, slab, obj_map);
6116 if (count != node_nr_slabs(n)) {
6117 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6118 s->name, count, node_nr_slabs(n));
6119 slab_add_kunit_errors();
6123 spin_unlock_irqrestore(&n->list_lock, flags);
6127 long validate_slab_cache(struct kmem_cache *s)
6130 unsigned long count = 0;
6131 struct kmem_cache_node *n;
6132 unsigned long *obj_map;
6134 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6139 for_each_kmem_cache_node(s, node, n)
6140 count += validate_slab_node(s, n, obj_map);
6142 bitmap_free(obj_map);
6146 EXPORT_SYMBOL(validate_slab_cache);
6148 #ifdef CONFIG_DEBUG_FS
6150 * Generate lists of code addresses where slabcache objects are allocated
6155 depot_stack_handle_t handle;
6156 unsigned long count;
6158 unsigned long waste;
6164 DECLARE_BITMAP(cpus, NR_CPUS);
6170 unsigned long count;
6171 struct location *loc;
6175 static struct dentry *slab_debugfs_root;
6177 static void free_loc_track(struct loc_track *t)
6180 free_pages((unsigned long)t->loc,
6181 get_order(sizeof(struct location) * t->max));
6184 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6189 order = get_order(sizeof(struct location) * max);
6191 l = (void *)__get_free_pages(flags, order);
6196 memcpy(l, t->loc, sizeof(struct location) * t->count);
6204 static int add_location(struct loc_track *t, struct kmem_cache *s,
6205 const struct track *track,
6206 unsigned int orig_size)
6208 long start, end, pos;
6210 unsigned long caddr, chandle, cwaste;
6211 unsigned long age = jiffies - track->when;
6212 depot_stack_handle_t handle = 0;
6213 unsigned int waste = s->object_size - orig_size;
6215 #ifdef CONFIG_STACKDEPOT
6216 handle = READ_ONCE(track->handle);
6222 pos = start + (end - start + 1) / 2;
6225 * There is nothing at "end". If we end up there
6226 * we need to add something to before end.
6233 chandle = l->handle;
6235 if ((track->addr == caddr) && (handle == chandle) &&
6236 (waste == cwaste)) {
6241 if (age < l->min_time)
6243 if (age > l->max_time)
6246 if (track->pid < l->min_pid)
6247 l->min_pid = track->pid;
6248 if (track->pid > l->max_pid)
6249 l->max_pid = track->pid;
6251 cpumask_set_cpu(track->cpu,
6252 to_cpumask(l->cpus));
6254 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6258 if (track->addr < caddr)
6260 else if (track->addr == caddr && handle < chandle)
6262 else if (track->addr == caddr && handle == chandle &&
6270 * Not found. Insert new tracking element.
6272 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6278 (t->count - pos) * sizeof(struct location));
6281 l->addr = track->addr;
6285 l->min_pid = track->pid;
6286 l->max_pid = track->pid;
6289 cpumask_clear(to_cpumask(l->cpus));
6290 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6291 nodes_clear(l->nodes);
6292 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6296 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6297 struct slab *slab, enum track_item alloc,
6298 unsigned long *obj_map)
6300 void *addr = slab_address(slab);
6301 bool is_alloc = (alloc == TRACK_ALLOC);
6304 __fill_map(obj_map, s, slab);
6306 for_each_object(p, s, addr, slab->objects)
6307 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6308 add_location(t, s, get_track(s, p, alloc),
6309 is_alloc ? get_orig_size(s, p) :
6312 #endif /* CONFIG_DEBUG_FS */
6313 #endif /* CONFIG_SLUB_DEBUG */
6315 #ifdef SLAB_SUPPORTS_SYSFS
6316 enum slab_stat_type {
6317 SL_ALL, /* All slabs */
6318 SL_PARTIAL, /* Only partially allocated slabs */
6319 SL_CPU, /* Only slabs used for cpu caches */
6320 SL_OBJECTS, /* Determine allocated objects not slabs */
6321 SL_TOTAL /* Determine object capacity not slabs */
6324 #define SO_ALL (1 << SL_ALL)
6325 #define SO_PARTIAL (1 << SL_PARTIAL)
6326 #define SO_CPU (1 << SL_CPU)
6327 #define SO_OBJECTS (1 << SL_OBJECTS)
6328 #define SO_TOTAL (1 << SL_TOTAL)
6330 static ssize_t show_slab_objects(struct kmem_cache *s,
6331 char *buf, unsigned long flags)
6333 unsigned long total = 0;
6336 unsigned long *nodes;
6339 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6343 if (flags & SO_CPU) {
6346 for_each_possible_cpu(cpu) {
6347 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6352 slab = READ_ONCE(c->slab);
6356 node = slab_nid(slab);
6357 if (flags & SO_TOTAL)
6359 else if (flags & SO_OBJECTS)
6367 #ifdef CONFIG_SLUB_CPU_PARTIAL
6368 slab = slub_percpu_partial_read_once(c);
6370 node = slab_nid(slab);
6371 if (flags & SO_TOTAL)
6373 else if (flags & SO_OBJECTS)
6376 x = data_race(slab->slabs);
6385 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6386 * already held which will conflict with an existing lock order:
6388 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6390 * We don't really need mem_hotplug_lock (to hold off
6391 * slab_mem_going_offline_callback) here because slab's memory hot
6392 * unplug code doesn't destroy the kmem_cache->node[] data.
6395 #ifdef CONFIG_SLUB_DEBUG
6396 if (flags & SO_ALL) {
6397 struct kmem_cache_node *n;
6399 for_each_kmem_cache_node(s, node, n) {
6401 if (flags & SO_TOTAL)
6402 x = node_nr_objs(n);
6403 else if (flags & SO_OBJECTS)
6404 x = node_nr_objs(n) - count_partial(n, count_free);
6406 x = node_nr_slabs(n);
6413 if (flags & SO_PARTIAL) {
6414 struct kmem_cache_node *n;
6416 for_each_kmem_cache_node(s, node, n) {
6417 if (flags & SO_TOTAL)
6418 x = count_partial(n, count_total);
6419 else if (flags & SO_OBJECTS)
6420 x = count_partial(n, count_inuse);
6428 len += sysfs_emit_at(buf, len, "%lu", total);
6430 for (node = 0; node < nr_node_ids; node++) {
6432 len += sysfs_emit_at(buf, len, " N%d=%lu",
6436 len += sysfs_emit_at(buf, len, "\n");
6442 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6443 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6445 struct slab_attribute {
6446 struct attribute attr;
6447 ssize_t (*show)(struct kmem_cache *s, char *buf);
6448 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6451 #define SLAB_ATTR_RO(_name) \
6452 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6454 #define SLAB_ATTR(_name) \
6455 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6457 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6459 return sysfs_emit(buf, "%u\n", s->size);
6461 SLAB_ATTR_RO(slab_size);
6463 static ssize_t align_show(struct kmem_cache *s, char *buf)
6465 return sysfs_emit(buf, "%u\n", s->align);
6467 SLAB_ATTR_RO(align);
6469 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6471 return sysfs_emit(buf, "%u\n", s->object_size);
6473 SLAB_ATTR_RO(object_size);
6475 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6477 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6479 SLAB_ATTR_RO(objs_per_slab);
6481 static ssize_t order_show(struct kmem_cache *s, char *buf)
6483 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6485 SLAB_ATTR_RO(order);
6487 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6489 return sysfs_emit(buf, "%lu\n", s->min_partial);
6492 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6498 err = kstrtoul(buf, 10, &min);
6502 s->min_partial = min;
6505 SLAB_ATTR(min_partial);
6507 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6509 unsigned int nr_partial = 0;
6510 #ifdef CONFIG_SLUB_CPU_PARTIAL
6511 nr_partial = s->cpu_partial;
6514 return sysfs_emit(buf, "%u\n", nr_partial);
6517 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6520 unsigned int objects;
6523 err = kstrtouint(buf, 10, &objects);
6526 if (objects && !kmem_cache_has_cpu_partial(s))
6529 slub_set_cpu_partial(s, objects);
6533 SLAB_ATTR(cpu_partial);
6535 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6539 return sysfs_emit(buf, "%pS\n", s->ctor);
6543 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6545 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6547 SLAB_ATTR_RO(aliases);
6549 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6551 return show_slab_objects(s, buf, SO_PARTIAL);
6553 SLAB_ATTR_RO(partial);
6555 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6557 return show_slab_objects(s, buf, SO_CPU);
6559 SLAB_ATTR_RO(cpu_slabs);
6561 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6563 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6565 SLAB_ATTR_RO(objects_partial);
6567 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6571 int cpu __maybe_unused;
6574 #ifdef CONFIG_SLUB_CPU_PARTIAL
6575 for_each_online_cpu(cpu) {
6578 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6581 slabs += data_race(slab->slabs);
6585 /* Approximate half-full slabs, see slub_set_cpu_partial() */
6586 objects = (slabs * oo_objects(s->oo)) / 2;
6587 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6589 #ifdef CONFIG_SLUB_CPU_PARTIAL
6590 for_each_online_cpu(cpu) {
6593 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6595 slabs = data_race(slab->slabs);
6596 objects = (slabs * oo_objects(s->oo)) / 2;
6597 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6598 cpu, objects, slabs);
6602 len += sysfs_emit_at(buf, len, "\n");
6606 SLAB_ATTR_RO(slabs_cpu_partial);
6608 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6610 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6612 SLAB_ATTR_RO(reclaim_account);
6614 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6616 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6618 SLAB_ATTR_RO(hwcache_align);
6620 #ifdef CONFIG_ZONE_DMA
6621 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6623 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6625 SLAB_ATTR_RO(cache_dma);
6628 #ifdef CONFIG_HARDENED_USERCOPY
6629 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6631 return sysfs_emit(buf, "%u\n", s->usersize);
6633 SLAB_ATTR_RO(usersize);
6636 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6638 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6640 SLAB_ATTR_RO(destroy_by_rcu);
6642 #ifdef CONFIG_SLUB_DEBUG
6643 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6645 return show_slab_objects(s, buf, SO_ALL);
6647 SLAB_ATTR_RO(slabs);
6649 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6651 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6653 SLAB_ATTR_RO(total_objects);
6655 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6657 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6659 SLAB_ATTR_RO(objects);
6661 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6663 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6665 SLAB_ATTR_RO(sanity_checks);
6667 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6669 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6671 SLAB_ATTR_RO(trace);
6673 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6675 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6678 SLAB_ATTR_RO(red_zone);
6680 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6682 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6685 SLAB_ATTR_RO(poison);
6687 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6689 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6692 SLAB_ATTR_RO(store_user);
6694 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6699 static ssize_t validate_store(struct kmem_cache *s,
6700 const char *buf, size_t length)
6704 if (buf[0] == '1' && kmem_cache_debug(s)) {
6705 ret = validate_slab_cache(s);
6711 SLAB_ATTR(validate);
6713 #endif /* CONFIG_SLUB_DEBUG */
6715 #ifdef CONFIG_FAILSLAB
6716 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6718 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6721 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6724 if (s->refcount > 1)
6728 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6730 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6734 SLAB_ATTR(failslab);
6737 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6742 static ssize_t shrink_store(struct kmem_cache *s,
6743 const char *buf, size_t length)
6746 kmem_cache_shrink(s);
6754 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6756 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6759 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6760 const char *buf, size_t length)
6765 err = kstrtouint(buf, 10, &ratio);
6771 s->remote_node_defrag_ratio = ratio * 10;
6775 SLAB_ATTR(remote_node_defrag_ratio);
6778 #ifdef CONFIG_SLUB_STATS
6779 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6781 unsigned long sum = 0;
6784 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6789 for_each_online_cpu(cpu) {
6790 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6796 len += sysfs_emit_at(buf, len, "%lu", sum);
6799 for_each_online_cpu(cpu) {
6801 len += sysfs_emit_at(buf, len, " C%d=%u",
6806 len += sysfs_emit_at(buf, len, "\n");
6811 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6815 for_each_online_cpu(cpu)
6816 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6819 #define STAT_ATTR(si, text) \
6820 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
6822 return show_stat(s, buf, si); \
6824 static ssize_t text##_store(struct kmem_cache *s, \
6825 const char *buf, size_t length) \
6827 if (buf[0] != '0') \
6829 clear_stat(s, si); \
6834 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6835 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6836 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6837 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6838 STAT_ATTR(FREE_FROZEN, free_frozen);
6839 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6840 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6841 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6842 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6843 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6844 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6845 STAT_ATTR(FREE_SLAB, free_slab);
6846 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6847 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6848 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6849 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6850 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6851 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6852 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6853 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6854 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6855 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6856 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6857 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6858 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6859 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6860 #endif /* CONFIG_SLUB_STATS */
6862 #ifdef CONFIG_KFENCE
6863 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6865 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6868 static ssize_t skip_kfence_store(struct kmem_cache *s,
6869 const char *buf, size_t length)
6874 s->flags &= ~SLAB_SKIP_KFENCE;
6875 else if (buf[0] == '1')
6876 s->flags |= SLAB_SKIP_KFENCE;
6882 SLAB_ATTR(skip_kfence);
6885 static struct attribute *slab_attrs[] = {
6886 &slab_size_attr.attr,
6887 &object_size_attr.attr,
6888 &objs_per_slab_attr.attr,
6890 &min_partial_attr.attr,
6891 &cpu_partial_attr.attr,
6892 &objects_partial_attr.attr,
6894 &cpu_slabs_attr.attr,
6898 &hwcache_align_attr.attr,
6899 &reclaim_account_attr.attr,
6900 &destroy_by_rcu_attr.attr,
6902 &slabs_cpu_partial_attr.attr,
6903 #ifdef CONFIG_SLUB_DEBUG
6904 &total_objects_attr.attr,
6907 &sanity_checks_attr.attr,
6909 &red_zone_attr.attr,
6911 &store_user_attr.attr,
6912 &validate_attr.attr,
6914 #ifdef CONFIG_ZONE_DMA
6915 &cache_dma_attr.attr,
6918 &remote_node_defrag_ratio_attr.attr,
6920 #ifdef CONFIG_SLUB_STATS
6921 &alloc_fastpath_attr.attr,
6922 &alloc_slowpath_attr.attr,
6923 &free_fastpath_attr.attr,
6924 &free_slowpath_attr.attr,
6925 &free_frozen_attr.attr,
6926 &free_add_partial_attr.attr,
6927 &free_remove_partial_attr.attr,
6928 &alloc_from_partial_attr.attr,
6929 &alloc_slab_attr.attr,
6930 &alloc_refill_attr.attr,
6931 &alloc_node_mismatch_attr.attr,
6932 &free_slab_attr.attr,
6933 &cpuslab_flush_attr.attr,
6934 &deactivate_full_attr.attr,
6935 &deactivate_empty_attr.attr,
6936 &deactivate_to_head_attr.attr,
6937 &deactivate_to_tail_attr.attr,
6938 &deactivate_remote_frees_attr.attr,
6939 &deactivate_bypass_attr.attr,
6940 &order_fallback_attr.attr,
6941 &cmpxchg_double_fail_attr.attr,
6942 &cmpxchg_double_cpu_fail_attr.attr,
6943 &cpu_partial_alloc_attr.attr,
6944 &cpu_partial_free_attr.attr,
6945 &cpu_partial_node_attr.attr,
6946 &cpu_partial_drain_attr.attr,
6948 #ifdef CONFIG_FAILSLAB
6949 &failslab_attr.attr,
6951 #ifdef CONFIG_HARDENED_USERCOPY
6952 &usersize_attr.attr,
6954 #ifdef CONFIG_KFENCE
6955 &skip_kfence_attr.attr,
6961 static const struct attribute_group slab_attr_group = {
6962 .attrs = slab_attrs,
6965 static ssize_t slab_attr_show(struct kobject *kobj,
6966 struct attribute *attr,
6969 struct slab_attribute *attribute;
6970 struct kmem_cache *s;
6972 attribute = to_slab_attr(attr);
6975 if (!attribute->show)
6978 return attribute->show(s, buf);
6981 static ssize_t slab_attr_store(struct kobject *kobj,
6982 struct attribute *attr,
6983 const char *buf, size_t len)
6985 struct slab_attribute *attribute;
6986 struct kmem_cache *s;
6988 attribute = to_slab_attr(attr);
6991 if (!attribute->store)
6994 return attribute->store(s, buf, len);
6997 static void kmem_cache_release(struct kobject *k)
6999 slab_kmem_cache_release(to_slab(k));
7002 static const struct sysfs_ops slab_sysfs_ops = {
7003 .show = slab_attr_show,
7004 .store = slab_attr_store,
7007 static const struct kobj_type slab_ktype = {
7008 .sysfs_ops = &slab_sysfs_ops,
7009 .release = kmem_cache_release,
7012 static struct kset *slab_kset;
7014 static inline struct kset *cache_kset(struct kmem_cache *s)
7019 #define ID_STR_LENGTH 32
7021 /* Create a unique string id for a slab cache:
7023 * Format :[flags-]size
7025 static char *create_unique_id(struct kmem_cache *s)
7027 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7031 return ERR_PTR(-ENOMEM);
7035 * First flags affecting slabcache operations. We will only
7036 * get here for aliasable slabs so we do not need to support
7037 * too many flags. The flags here must cover all flags that
7038 * are matched during merging to guarantee that the id is
7041 if (s->flags & SLAB_CACHE_DMA)
7043 if (s->flags & SLAB_CACHE_DMA32)
7045 if (s->flags & SLAB_RECLAIM_ACCOUNT)
7047 if (s->flags & SLAB_CONSISTENCY_CHECKS)
7049 if (s->flags & SLAB_ACCOUNT)
7053 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7055 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7057 return ERR_PTR(-EINVAL);
7059 kmsan_unpoison_memory(name, p - name);
7063 static int sysfs_slab_add(struct kmem_cache *s)
7067 struct kset *kset = cache_kset(s);
7068 int unmergeable = slab_unmergeable(s);
7070 if (!unmergeable && disable_higher_order_debug &&
7071 (slub_debug & DEBUG_METADATA_FLAGS))
7076 * Slabcache can never be merged so we can use the name proper.
7077 * This is typically the case for debug situations. In that
7078 * case we can catch duplicate names easily.
7080 sysfs_remove_link(&slab_kset->kobj, s->name);
7084 * Create a unique name for the slab as a target
7087 name = create_unique_id(s);
7089 return PTR_ERR(name);
7092 s->kobj.kset = kset;
7093 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7097 err = sysfs_create_group(&s->kobj, &slab_attr_group);
7102 /* Setup first alias */
7103 sysfs_slab_alias(s, s->name);
7110 kobject_del(&s->kobj);
7114 void sysfs_slab_unlink(struct kmem_cache *s)
7116 kobject_del(&s->kobj);
7119 void sysfs_slab_release(struct kmem_cache *s)
7121 kobject_put(&s->kobj);
7125 * Need to buffer aliases during bootup until sysfs becomes
7126 * available lest we lose that information.
7128 struct saved_alias {
7129 struct kmem_cache *s;
7131 struct saved_alias *next;
7134 static struct saved_alias *alias_list;
7136 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7138 struct saved_alias *al;
7140 if (slab_state == FULL) {
7142 * If we have a leftover link then remove it.
7144 sysfs_remove_link(&slab_kset->kobj, name);
7145 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7148 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7154 al->next = alias_list;
7156 kmsan_unpoison_memory(al, sizeof(*al));
7160 static int __init slab_sysfs_init(void)
7162 struct kmem_cache *s;
7165 mutex_lock(&slab_mutex);
7167 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7169 mutex_unlock(&slab_mutex);
7170 pr_err("Cannot register slab subsystem.\n");
7176 list_for_each_entry(s, &slab_caches, list) {
7177 err = sysfs_slab_add(s);
7179 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7183 while (alias_list) {
7184 struct saved_alias *al = alias_list;
7186 alias_list = alias_list->next;
7187 err = sysfs_slab_alias(al->s, al->name);
7189 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7194 mutex_unlock(&slab_mutex);
7197 late_initcall(slab_sysfs_init);
7198 #endif /* SLAB_SUPPORTS_SYSFS */
7200 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7201 static int slab_debugfs_show(struct seq_file *seq, void *v)
7203 struct loc_track *t = seq->private;
7207 idx = (unsigned long) t->idx;
7208 if (idx < t->count) {
7211 seq_printf(seq, "%7ld ", l->count);
7214 seq_printf(seq, "%pS", (void *)l->addr);
7216 seq_puts(seq, "<not-available>");
7219 seq_printf(seq, " waste=%lu/%lu",
7220 l->count * l->waste, l->waste);
7222 if (l->sum_time != l->min_time) {
7223 seq_printf(seq, " age=%ld/%llu/%ld",
7224 l->min_time, div_u64(l->sum_time, l->count),
7227 seq_printf(seq, " age=%ld", l->min_time);
7229 if (l->min_pid != l->max_pid)
7230 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7232 seq_printf(seq, " pid=%ld",
7235 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7236 seq_printf(seq, " cpus=%*pbl",
7237 cpumask_pr_args(to_cpumask(l->cpus)));
7239 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7240 seq_printf(seq, " nodes=%*pbl",
7241 nodemask_pr_args(&l->nodes));
7243 #ifdef CONFIG_STACKDEPOT
7245 depot_stack_handle_t handle;
7246 unsigned long *entries;
7247 unsigned int nr_entries, j;
7249 handle = READ_ONCE(l->handle);
7251 nr_entries = stack_depot_fetch(handle, &entries);
7252 seq_puts(seq, "\n");
7253 for (j = 0; j < nr_entries; j++)
7254 seq_printf(seq, " %pS\n", (void *)entries[j]);
7258 seq_puts(seq, "\n");
7261 if (!idx && !t->count)
7262 seq_puts(seq, "No data\n");
7267 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7271 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7273 struct loc_track *t = seq->private;
7276 if (*ppos <= t->count)
7282 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7284 struct location *loc1 = (struct location *)a;
7285 struct location *loc2 = (struct location *)b;
7287 if (loc1->count > loc2->count)
7293 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7295 struct loc_track *t = seq->private;
7301 static const struct seq_operations slab_debugfs_sops = {
7302 .start = slab_debugfs_start,
7303 .next = slab_debugfs_next,
7304 .stop = slab_debugfs_stop,
7305 .show = slab_debugfs_show,
7308 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7311 struct kmem_cache_node *n;
7312 enum track_item alloc;
7314 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7315 sizeof(struct loc_track));
7316 struct kmem_cache *s = file_inode(filep)->i_private;
7317 unsigned long *obj_map;
7322 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7324 seq_release_private(inode, filep);
7328 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7329 alloc = TRACK_ALLOC;
7333 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7334 bitmap_free(obj_map);
7335 seq_release_private(inode, filep);
7339 for_each_kmem_cache_node(s, node, n) {
7340 unsigned long flags;
7343 if (!node_nr_slabs(n))
7346 spin_lock_irqsave(&n->list_lock, flags);
7347 list_for_each_entry(slab, &n->partial, slab_list)
7348 process_slab(t, s, slab, alloc, obj_map);
7349 list_for_each_entry(slab, &n->full, slab_list)
7350 process_slab(t, s, slab, alloc, obj_map);
7351 spin_unlock_irqrestore(&n->list_lock, flags);
7354 /* Sort locations by count */
7355 sort_r(t->loc, t->count, sizeof(struct location),
7356 cmp_loc_by_count, NULL, NULL);
7358 bitmap_free(obj_map);
7362 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7364 struct seq_file *seq = file->private_data;
7365 struct loc_track *t = seq->private;
7368 return seq_release_private(inode, file);
7371 static const struct file_operations slab_debugfs_fops = {
7372 .open = slab_debug_trace_open,
7374 .llseek = seq_lseek,
7375 .release = slab_debug_trace_release,
7378 static void debugfs_slab_add(struct kmem_cache *s)
7380 struct dentry *slab_cache_dir;
7382 if (unlikely(!slab_debugfs_root))
7385 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7387 debugfs_create_file("alloc_traces", 0400,
7388 slab_cache_dir, s, &slab_debugfs_fops);
7390 debugfs_create_file("free_traces", 0400,
7391 slab_cache_dir, s, &slab_debugfs_fops);
7394 void debugfs_slab_release(struct kmem_cache *s)
7396 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7399 static int __init slab_debugfs_init(void)
7401 struct kmem_cache *s;
7403 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7405 list_for_each_entry(s, &slab_caches, list)
7406 if (s->flags & SLAB_STORE_USER)
7407 debugfs_slab_add(s);
7412 __initcall(slab_debugfs_init);
7415 * The /proc/slabinfo ABI
7417 #ifdef CONFIG_SLUB_DEBUG
7418 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7420 unsigned long nr_slabs = 0;
7421 unsigned long nr_objs = 0;
7422 unsigned long nr_free = 0;
7424 struct kmem_cache_node *n;
7426 for_each_kmem_cache_node(s, node, n) {
7427 nr_slabs += node_nr_slabs(n);
7428 nr_objs += node_nr_objs(n);
7429 nr_free += count_partial_free_approx(n);
7432 sinfo->active_objs = nr_objs - nr_free;
7433 sinfo->num_objs = nr_objs;
7434 sinfo->active_slabs = nr_slabs;
7435 sinfo->num_slabs = nr_slabs;
7436 sinfo->objects_per_slab = oo_objects(s->oo);
7437 sinfo->cache_order = oo_order(s->oo);
7439 #endif /* CONFIG_SLUB_DEBUG */