2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
51 #include "xfs_filestream.h"
53 #include <linux/log2.h>
55 kmem_zone_t *xfs_ifork_zone;
56 kmem_zone_t *xfs_inode_zone;
57 kmem_zone_t *xfs_chashlist_zone;
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
63 #define XFS_ITRUNC_MAX_EXTENTS 2
65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
72 * Make sure that the extents in the given memory buffer
82 xfs_bmbt_rec_host_t rec;
85 for (i = 0; i < nrecs; i++) {
86 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 rec.l0 = get_unaligned(&ep->l0);
88 rec.l1 = get_unaligned(&ep->l1);
89 xfs_bmbt_get_all(&rec, &irec);
90 if (fmt == XFS_EXTFMT_NOSTATE)
91 ASSERT(irec.br_state == XFS_EXT_NORM);
95 #define xfs_validate_extents(ifp, nrecs, fmt)
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
112 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
114 for (i = 0; i < j; i++) {
115 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 i * mp->m_sb.sb_inodesize);
117 if (!dip->di_next_unlinked) {
118 xfs_fs_cmn_err(CE_ALERT, mp,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
121 ASSERT(dip->di_next_unlinked);
128 * This routine is called to map an inode number within a file
129 * system to the buffer containing the on-disk version of the
130 * inode. It returns a pointer to the buffer containing the
131 * on-disk inode in the bpp parameter, and in the dip parameter
132 * it returns a pointer to the on-disk inode within that buffer.
134 * If a non-zero error is returned, then the contents of bpp and
135 * dipp are undefined.
137 * Use xfs_imap() to determine the size and location of the
138 * buffer to read from disk.
156 * Call the space management code to find the location of the
160 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
163 "xfs_inotobp: xfs_imap() returned an "
164 "error %d on %s. Returning error.", error, mp->m_fsname);
169 * If the inode number maps to a block outside the bounds of the
170 * file system then return NULL rather than calling read_buf
171 * and panicing when we get an error from the driver.
173 if ((imap.im_blkno + imap.im_len) >
174 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
176 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
177 "of the file system %s. Returning EINVAL.",
178 (unsigned long long)imap.im_blkno,
179 imap.im_len, mp->m_fsname);
180 return XFS_ERROR(EINVAL);
184 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
185 * default to just a read_buf() call.
187 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
188 (int)imap.im_len, XFS_BUF_LOCK, &bp);
192 "xfs_inotobp: xfs_trans_read_buf() returned an "
193 "error %d on %s. Returning error.", error, mp->m_fsname);
196 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
198 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
199 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
200 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
201 XFS_RANDOM_ITOBP_INOTOBP))) {
202 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
203 xfs_trans_brelse(tp, bp);
205 "xfs_inotobp: XFS_TEST_ERROR() returned an "
206 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
207 return XFS_ERROR(EFSCORRUPTED);
210 xfs_inobp_check(mp, bp);
213 * Set *dipp to point to the on-disk inode in the buffer.
215 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
217 *offset = imap.im_boffset;
223 * This routine is called to map an inode to the buffer containing
224 * the on-disk version of the inode. It returns a pointer to the
225 * buffer containing the on-disk inode in the bpp parameter, and in
226 * the dip parameter it returns a pointer to the on-disk inode within
229 * If a non-zero error is returned, then the contents of bpp and
230 * dipp are undefined.
232 * If the inode is new and has not yet been initialized, use xfs_imap()
233 * to determine the size and location of the buffer to read from disk.
234 * If the inode has already been mapped to its buffer and read in once,
235 * then use the mapping information stored in the inode rather than
236 * calling xfs_imap(). This allows us to avoid the overhead of looking
237 * at the inode btree for small block file systems (see xfs_dilocate()).
238 * We can tell whether the inode has been mapped in before by comparing
239 * its disk block address to 0. Only uninitialized inodes will have
240 * 0 for the disk block address.
258 if (ip->i_blkno == (xfs_daddr_t)0) {
260 * Call the space management code to find the location of the
264 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
265 XFS_IMAP_LOOKUP | imap_flags)))
269 * If the inode number maps to a block outside the bounds
270 * of the file system then return NULL rather than calling
271 * read_buf and panicing when we get an error from the
274 if ((imap.im_blkno + imap.im_len) >
275 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
277 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
278 "(imap.im_blkno (0x%llx) "
279 "+ imap.im_len (0x%llx)) > "
280 " XFS_FSB_TO_BB(mp, "
281 "mp->m_sb.sb_dblocks) (0x%llx)",
282 (unsigned long long) imap.im_blkno,
283 (unsigned long long) imap.im_len,
284 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
286 return XFS_ERROR(EINVAL);
290 * Fill in the fields in the inode that will be used to
291 * map the inode to its buffer from now on.
293 ip->i_blkno = imap.im_blkno;
294 ip->i_len = imap.im_len;
295 ip->i_boffset = imap.im_boffset;
298 * We've already mapped the inode once, so just use the
299 * mapping that we saved the first time.
301 imap.im_blkno = ip->i_blkno;
302 imap.im_len = ip->i_len;
303 imap.im_boffset = ip->i_boffset;
305 ASSERT(bno == 0 || bno == imap.im_blkno);
308 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
309 * default to just a read_buf() call.
311 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
312 (int)imap.im_len, XFS_BUF_LOCK, &bp);
315 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
316 "xfs_trans_read_buf() returned error %d, "
317 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
318 error, (unsigned long long) imap.im_blkno,
319 (unsigned long long) imap.im_len);
325 * Validate the magic number and version of every inode in the buffer
326 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
327 * No validation is done here in userspace (xfs_repair).
329 #if !defined(__KERNEL__)
332 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
333 #else /* usual case */
337 for (i = 0; i < ni; i++) {
341 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
342 (i << mp->m_sb.sb_inodelog));
343 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
344 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
345 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
346 XFS_ERRTAG_ITOBP_INOTOBP,
347 XFS_RANDOM_ITOBP_INOTOBP))) {
348 if (imap_flags & XFS_IMAP_BULKSTAT) {
349 xfs_trans_brelse(tp, bp);
350 return XFS_ERROR(EINVAL);
354 "Device %s - bad inode magic/vsn "
355 "daddr %lld #%d (magic=%x)",
356 XFS_BUFTARG_NAME(mp->m_ddev_targp),
357 (unsigned long long)imap.im_blkno, i,
358 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
360 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
362 xfs_trans_brelse(tp, bp);
363 return XFS_ERROR(EFSCORRUPTED);
367 xfs_inobp_check(mp, bp);
370 * Mark the buffer as an inode buffer now that it looks good
372 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
375 * Set *dipp to point to the on-disk inode in the buffer.
377 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
383 * Move inode type and inode format specific information from the
384 * on-disk inode to the in-core inode. For fifos, devs, and sockets
385 * this means set if_rdev to the proper value. For files, directories,
386 * and symlinks this means to bring in the in-line data or extent
387 * pointers. For a file in B-tree format, only the root is immediately
388 * brought in-core. The rest will be in-lined in if_extents when it
389 * is first referenced (see xfs_iread_extents()).
396 xfs_attr_shortform_t *atp;
400 ip->i_df.if_ext_max =
401 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
405 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
406 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
407 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
408 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
409 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
410 (unsigned long long)ip->i_ino,
411 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
412 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
414 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
415 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
417 return XFS_ERROR(EFSCORRUPTED);
420 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
421 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
422 "corrupt dinode %Lu, forkoff = 0x%x.",
423 (unsigned long long)ip->i_ino,
424 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
425 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
427 return XFS_ERROR(EFSCORRUPTED);
430 switch (ip->i_d.di_mode & S_IFMT) {
435 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
436 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
438 return XFS_ERROR(EFSCORRUPTED);
442 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
448 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
449 case XFS_DINODE_FMT_LOCAL:
451 * no local regular files yet
453 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
454 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
456 "(local format for regular file).",
457 (unsigned long long) ip->i_ino);
458 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
461 return XFS_ERROR(EFSCORRUPTED);
464 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
465 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
466 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
468 "(bad size %Ld for local inode).",
469 (unsigned long long) ip->i_ino,
470 (long long) di_size);
471 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
474 return XFS_ERROR(EFSCORRUPTED);
478 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
480 case XFS_DINODE_FMT_EXTENTS:
481 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
483 case XFS_DINODE_FMT_BTREE:
484 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
487 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
489 return XFS_ERROR(EFSCORRUPTED);
494 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
495 return XFS_ERROR(EFSCORRUPTED);
500 if (!XFS_DFORK_Q(dip))
502 ASSERT(ip->i_afp == NULL);
503 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
504 ip->i_afp->if_ext_max =
505 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
506 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
507 case XFS_DINODE_FMT_LOCAL:
508 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
509 size = be16_to_cpu(atp->hdr.totsize);
510 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
512 case XFS_DINODE_FMT_EXTENTS:
513 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
515 case XFS_DINODE_FMT_BTREE:
516 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
519 error = XFS_ERROR(EFSCORRUPTED);
523 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
525 xfs_idestroy_fork(ip, XFS_DATA_FORK);
531 * The file is in-lined in the on-disk inode.
532 * If it fits into if_inline_data, then copy
533 * it there, otherwise allocate a buffer for it
534 * and copy the data there. Either way, set
535 * if_data to point at the data.
536 * If we allocate a buffer for the data, make
537 * sure that its size is a multiple of 4 and
538 * record the real size in i_real_bytes.
551 * If the size is unreasonable, then something
552 * is wrong and we just bail out rather than crash in
553 * kmem_alloc() or memcpy() below.
555 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
556 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
558 "(bad size %d for local fork, size = %d).",
559 (unsigned long long) ip->i_ino, size,
560 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
561 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
563 return XFS_ERROR(EFSCORRUPTED);
565 ifp = XFS_IFORK_PTR(ip, whichfork);
568 ifp->if_u1.if_data = NULL;
569 else if (size <= sizeof(ifp->if_u2.if_inline_data))
570 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
572 real_size = roundup(size, 4);
573 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
575 ifp->if_bytes = size;
576 ifp->if_real_bytes = real_size;
578 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
579 ifp->if_flags &= ~XFS_IFEXTENTS;
580 ifp->if_flags |= XFS_IFINLINE;
585 * The file consists of a set of extents all
586 * of which fit into the on-disk inode.
587 * If there are few enough extents to fit into
588 * the if_inline_ext, then copy them there.
589 * Otherwise allocate a buffer for them and copy
590 * them into it. Either way, set if_extents
591 * to point at the extents.
605 ifp = XFS_IFORK_PTR(ip, whichfork);
606 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
607 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
610 * If the number of extents is unreasonable, then something
611 * is wrong and we just bail out rather than crash in
612 * kmem_alloc() or memcpy() below.
614 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
615 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
616 "corrupt inode %Lu ((a)extents = %d).",
617 (unsigned long long) ip->i_ino, nex);
618 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
620 return XFS_ERROR(EFSCORRUPTED);
623 ifp->if_real_bytes = 0;
625 ifp->if_u1.if_extents = NULL;
626 else if (nex <= XFS_INLINE_EXTS)
627 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
629 xfs_iext_add(ifp, 0, nex);
631 ifp->if_bytes = size;
633 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
634 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
635 for (i = 0; i < nex; i++, dp++) {
636 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
637 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
639 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
642 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
643 if (whichfork != XFS_DATA_FORK ||
644 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
645 if (unlikely(xfs_check_nostate_extents(
647 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
650 return XFS_ERROR(EFSCORRUPTED);
653 ifp->if_flags |= XFS_IFEXTENTS;
658 * The file has too many extents to fit into
659 * the inode, so they are in B-tree format.
660 * Allocate a buffer for the root of the B-tree
661 * and copy the root into it. The i_extents
662 * field will remain NULL until all of the
663 * extents are read in (when they are needed).
671 xfs_bmdr_block_t *dfp;
677 ifp = XFS_IFORK_PTR(ip, whichfork);
678 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
679 size = XFS_BMAP_BROOT_SPACE(dfp);
680 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
683 * blow out if -- fork has less extents than can fit in
684 * fork (fork shouldn't be a btree format), root btree
685 * block has more records than can fit into the fork,
686 * or the number of extents is greater than the number of
689 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
690 || XFS_BMDR_SPACE_CALC(nrecs) >
691 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
692 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
693 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
694 "corrupt inode %Lu (btree).",
695 (unsigned long long) ip->i_ino);
696 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
698 return XFS_ERROR(EFSCORRUPTED);
701 ifp->if_broot_bytes = size;
702 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
703 ASSERT(ifp->if_broot != NULL);
705 * Copy and convert from the on-disk structure
706 * to the in-memory structure.
708 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
709 ifp->if_broot, size);
710 ifp->if_flags &= ~XFS_IFEXTENTS;
711 ifp->if_flags |= XFS_IFBROOT;
717 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
720 * buf = on-disk representation
721 * dip = native representation
722 * dir = direction - +ve -> disk to native
723 * -ve -> native to disk
726 xfs_xlate_dinode_core(
728 xfs_dinode_core_t *dip,
731 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
732 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
733 xfs_arch_t arch = ARCH_CONVERT;
737 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
738 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
739 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
740 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
741 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
742 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
743 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
744 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
745 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
748 memcpy(mem_core->di_pad, buf_core->di_pad,
749 sizeof(buf_core->di_pad));
751 memcpy(buf_core->di_pad, mem_core->di_pad,
752 sizeof(buf_core->di_pad));
755 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
757 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
759 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
761 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
763 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
765 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
767 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
769 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
770 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
771 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
772 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
773 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
774 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
775 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
776 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
777 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
778 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
779 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
788 if (di_flags & XFS_DIFLAG_ANY) {
789 if (di_flags & XFS_DIFLAG_REALTIME)
790 flags |= XFS_XFLAG_REALTIME;
791 if (di_flags & XFS_DIFLAG_PREALLOC)
792 flags |= XFS_XFLAG_PREALLOC;
793 if (di_flags & XFS_DIFLAG_IMMUTABLE)
794 flags |= XFS_XFLAG_IMMUTABLE;
795 if (di_flags & XFS_DIFLAG_APPEND)
796 flags |= XFS_XFLAG_APPEND;
797 if (di_flags & XFS_DIFLAG_SYNC)
798 flags |= XFS_XFLAG_SYNC;
799 if (di_flags & XFS_DIFLAG_NOATIME)
800 flags |= XFS_XFLAG_NOATIME;
801 if (di_flags & XFS_DIFLAG_NODUMP)
802 flags |= XFS_XFLAG_NODUMP;
803 if (di_flags & XFS_DIFLAG_RTINHERIT)
804 flags |= XFS_XFLAG_RTINHERIT;
805 if (di_flags & XFS_DIFLAG_PROJINHERIT)
806 flags |= XFS_XFLAG_PROJINHERIT;
807 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
808 flags |= XFS_XFLAG_NOSYMLINKS;
809 if (di_flags & XFS_DIFLAG_EXTSIZE)
810 flags |= XFS_XFLAG_EXTSIZE;
811 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
812 flags |= XFS_XFLAG_EXTSZINHERIT;
813 if (di_flags & XFS_DIFLAG_NODEFRAG)
814 flags |= XFS_XFLAG_NODEFRAG;
815 if (di_flags & XFS_DIFLAG_FILESTREAM)
816 flags |= XFS_XFLAG_FILESTREAM;
826 xfs_dinode_core_t *dic = &ip->i_d;
828 return _xfs_dic2xflags(dic->di_flags) |
829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
834 xfs_dinode_core_t *dic)
836 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
841 * Given a mount structure and an inode number, return a pointer
842 * to a newly allocated in-core inode corresponding to the given
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
862 ASSERT(xfs_inode_zone != NULL);
864 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
867 spin_lock_init(&ip->i_flags_lock);
870 * Get pointer's to the on-disk inode and the buffer containing it.
871 * If the inode number refers to a block outside the file system
872 * then xfs_itobp() will return NULL. In this case we should
873 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
874 * know that this is a new incore inode.
876 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
878 kmem_zone_free(xfs_inode_zone, ip);
883 * Initialize inode's trace buffers.
884 * Do this before xfs_iformat in case it adds entries.
886 #ifdef XFS_BMAP_TRACE
887 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
889 #ifdef XFS_BMBT_TRACE
890 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
893 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
895 #ifdef XFS_ILOCK_TRACE
896 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
898 #ifdef XFS_DIR2_TRACE
899 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
903 * If we got something that isn't an inode it means someone
904 * (nfs or dmi) has a stale handle.
906 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
907 kmem_zone_free(xfs_inode_zone, ip);
908 xfs_trans_brelse(tp, bp);
910 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
911 "dip->di_core.di_magic (0x%x) != "
912 "XFS_DINODE_MAGIC (0x%x)",
913 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
916 return XFS_ERROR(EINVAL);
920 * If the on-disk inode is already linked to a directory
921 * entry, copy all of the inode into the in-core inode.
922 * xfs_iformat() handles copying in the inode format
923 * specific information.
924 * Otherwise, just get the truly permanent information.
926 if (dip->di_core.di_mode) {
927 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
929 error = xfs_iformat(ip, dip);
931 kmem_zone_free(xfs_inode_zone, ip);
932 xfs_trans_brelse(tp, bp);
934 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
935 "xfs_iformat() returned error %d",
941 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
942 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
943 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
944 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
946 * Make sure to pull in the mode here as well in
947 * case the inode is released without being used.
948 * This ensures that xfs_inactive() will see that
949 * the inode is already free and not try to mess
950 * with the uninitialized part of it.
954 * Initialize the per-fork minima and maxima for a new
955 * inode here. xfs_iformat will do it for old inodes.
957 ip->i_df.if_ext_max =
958 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
961 INIT_LIST_HEAD(&ip->i_reclaim);
964 * The inode format changed when we moved the link count and
965 * made it 32 bits long. If this is an old format inode,
966 * convert it in memory to look like a new one. If it gets
967 * flushed to disk we will convert back before flushing or
968 * logging it. We zero out the new projid field and the old link
969 * count field. We'll handle clearing the pad field (the remains
970 * of the old uuid field) when we actually convert the inode to
971 * the new format. We don't change the version number so that we
972 * can distinguish this from a real new format inode.
974 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
975 ip->i_d.di_nlink = ip->i_d.di_onlink;
976 ip->i_d.di_onlink = 0;
977 ip->i_d.di_projid = 0;
980 ip->i_delayed_blks = 0;
981 ip->i_size = ip->i_d.di_size;
984 * Mark the buffer containing the inode as something to keep
985 * around for a while. This helps to keep recently accessed
986 * meta-data in-core longer.
988 XFS_BUF_SET_REF(bp, XFS_INO_REF);
991 * Use xfs_trans_brelse() to release the buffer containing the
992 * on-disk inode, because it was acquired with xfs_trans_read_buf()
993 * in xfs_itobp() above. If tp is NULL, this is just a normal
994 * brelse(). If we're within a transaction, then xfs_trans_brelse()
995 * will only release the buffer if it is not dirty within the
996 * transaction. It will be OK to release the buffer in this case,
997 * because inodes on disk are never destroyed and we will be
998 * locking the new in-core inode before putting it in the hash
999 * table where other processes can find it. Thus we don't have
1000 * to worry about the inode being changed just because we released
1003 xfs_trans_brelse(tp, bp);
1009 * Read in extents from a btree-format inode.
1010 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1020 xfs_extnum_t nextents;
1023 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1024 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1026 return XFS_ERROR(EFSCORRUPTED);
1028 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1029 size = nextents * sizeof(xfs_bmbt_rec_t);
1030 ifp = XFS_IFORK_PTR(ip, whichfork);
1033 * We know that the size is valid (it's checked in iformat_btree)
1035 ifp->if_lastex = NULLEXTNUM;
1036 ifp->if_bytes = ifp->if_real_bytes = 0;
1037 ifp->if_flags |= XFS_IFEXTENTS;
1038 xfs_iext_add(ifp, 0, nextents);
1039 error = xfs_bmap_read_extents(tp, ip, whichfork);
1041 xfs_iext_destroy(ifp);
1042 ifp->if_flags &= ~XFS_IFEXTENTS;
1045 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1050 * Allocate an inode on disk and return a copy of its in-core version.
1051 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1052 * appropriately within the inode. The uid and gid for the inode are
1053 * set according to the contents of the given cred structure.
1055 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1056 * has a free inode available, call xfs_iget()
1057 * to obtain the in-core version of the allocated inode. Finally,
1058 * fill in the inode and log its initial contents. In this case,
1059 * ialloc_context would be set to NULL and call_again set to false.
1061 * If xfs_dialloc() does not have an available inode,
1062 * it will replenish its supply by doing an allocation. Since we can
1063 * only do one allocation within a transaction without deadlocks, we
1064 * must commit the current transaction before returning the inode itself.
1065 * In this case, therefore, we will set call_again to true and return.
1066 * The caller should then commit the current transaction, start a new
1067 * transaction, and call xfs_ialloc() again to actually get the inode.
1069 * To ensure that some other process does not grab the inode that
1070 * was allocated during the first call to xfs_ialloc(), this routine
1071 * also returns the [locked] bp pointing to the head of the freelist
1072 * as ialloc_context. The caller should hold this buffer across
1073 * the commit and pass it back into this routine on the second call.
1075 * If we are allocating quota inodes, we do not have a parent inode
1076 * to attach to or associate with (i.e. pip == NULL) because they
1077 * are not linked into the directory structure - they are attached
1078 * directly to the superblock - and so have no parent.
1090 xfs_buf_t **ialloc_context,
1091 boolean_t *call_again,
1101 * Call the space management code to pick
1102 * the on-disk inode to be allocated.
1104 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1105 ialloc_context, call_again, &ino);
1109 if (*call_again || ino == NULLFSINO) {
1113 ASSERT(*ialloc_context == NULL);
1116 * Get the in-core inode with the lock held exclusively.
1117 * This is because we're setting fields here we need
1118 * to prevent others from looking at until we're done.
1120 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1121 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1128 ip->i_d.di_mode = (__uint16_t)mode;
1129 ip->i_d.di_onlink = 0;
1130 ip->i_d.di_nlink = nlink;
1131 ASSERT(ip->i_d.di_nlink == nlink);
1132 ip->i_d.di_uid = current_fsuid(cr);
1133 ip->i_d.di_gid = current_fsgid(cr);
1134 ip->i_d.di_projid = prid;
1135 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1138 * If the superblock version is up to where we support new format
1139 * inodes and this is currently an old format inode, then change
1140 * the inode version number now. This way we only do the conversion
1141 * here rather than here and in the flush/logging code.
1143 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1144 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1145 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1147 * We've already zeroed the old link count, the projid field,
1148 * and the pad field.
1153 * Project ids won't be stored on disk if we are using a version 1 inode.
1155 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1156 xfs_bump_ino_vers2(tp, ip);
1158 if (pip && XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1159 ip->i_d.di_gid = pip->i_d.di_gid;
1160 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1161 ip->i_d.di_mode |= S_ISGID;
1166 * If the group ID of the new file does not match the effective group
1167 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1168 * (and only if the irix_sgid_inherit compatibility variable is set).
1170 if ((irix_sgid_inherit) &&
1171 (ip->i_d.di_mode & S_ISGID) &&
1172 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1173 ip->i_d.di_mode &= ~S_ISGID;
1176 ip->i_d.di_size = 0;
1178 ip->i_d.di_nextents = 0;
1179 ASSERT(ip->i_d.di_nblocks == 0);
1180 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1182 * di_gen will have been taken care of in xfs_iread.
1184 ip->i_d.di_extsize = 0;
1185 ip->i_d.di_dmevmask = 0;
1186 ip->i_d.di_dmstate = 0;
1187 ip->i_d.di_flags = 0;
1188 flags = XFS_ILOG_CORE;
1189 switch (mode & S_IFMT) {
1194 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1195 ip->i_df.if_u2.if_rdev = rdev;
1196 ip->i_df.if_flags = 0;
1197 flags |= XFS_ILOG_DEV;
1200 if (pip && xfs_inode_is_filestream(pip)) {
1201 error = xfs_filestream_associate(pip, ip);
1205 xfs_iflags_set(ip, XFS_IFILESTREAM);
1209 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1212 if ((mode & S_IFMT) == S_IFDIR) {
1213 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1214 di_flags |= XFS_DIFLAG_RTINHERIT;
1215 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1216 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1217 ip->i_d.di_extsize = pip->i_d.di_extsize;
1219 } else if ((mode & S_IFMT) == S_IFREG) {
1220 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1221 di_flags |= XFS_DIFLAG_REALTIME;
1222 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1224 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1225 di_flags |= XFS_DIFLAG_EXTSIZE;
1226 ip->i_d.di_extsize = pip->i_d.di_extsize;
1229 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1230 xfs_inherit_noatime)
1231 di_flags |= XFS_DIFLAG_NOATIME;
1232 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1234 di_flags |= XFS_DIFLAG_NODUMP;
1235 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1237 di_flags |= XFS_DIFLAG_SYNC;
1238 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1239 xfs_inherit_nosymlinks)
1240 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1241 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1242 di_flags |= XFS_DIFLAG_PROJINHERIT;
1243 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1244 xfs_inherit_nodefrag)
1245 di_flags |= XFS_DIFLAG_NODEFRAG;
1246 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1247 di_flags |= XFS_DIFLAG_FILESTREAM;
1248 ip->i_d.di_flags |= di_flags;
1252 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1253 ip->i_df.if_flags = XFS_IFEXTENTS;
1254 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1255 ip->i_df.if_u1.if_extents = NULL;
1261 * Attribute fork settings for new inode.
1263 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1264 ip->i_d.di_anextents = 0;
1267 * Log the new values stuffed into the inode.
1269 xfs_trans_log_inode(tp, ip, flags);
1271 /* now that we have an i_mode we can setup inode ops and unlock */
1272 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1279 * Check to make sure that there are no blocks allocated to the
1280 * file beyond the size of the file. We don't check this for
1281 * files with fixed size extents or real time extents, but we
1282 * at least do it for regular files.
1291 xfs_fileoff_t map_first;
1293 xfs_bmbt_irec_t imaps[2];
1295 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1298 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1302 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1304 * The filesystem could be shutting down, so bmapi may return
1307 if (xfs_bmapi(NULL, ip, map_first,
1309 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1311 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1314 ASSERT(nimaps == 1);
1315 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1320 * Calculate the last possible buffered byte in a file. This must
1321 * include data that was buffered beyond the EOF by the write code.
1322 * This also needs to deal with overflowing the xfs_fsize_t type
1323 * which can happen for sizes near the limit.
1325 * We also need to take into account any blocks beyond the EOF. It
1326 * may be the case that they were buffered by a write which failed.
1327 * In that case the pages will still be in memory, but the inode size
1328 * will never have been updated.
1335 xfs_fsize_t last_byte;
1336 xfs_fileoff_t last_block;
1337 xfs_fileoff_t size_last_block;
1340 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1344 * Only check for blocks beyond the EOF if the extents have
1345 * been read in. This eliminates the need for the inode lock,
1346 * and it also saves us from looking when it really isn't
1349 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1350 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1358 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1359 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1361 last_byte = XFS_FSB_TO_B(mp, last_block);
1362 if (last_byte < 0) {
1363 return XFS_MAXIOFFSET(mp);
1365 last_byte += (1 << mp->m_writeio_log);
1366 if (last_byte < 0) {
1367 return XFS_MAXIOFFSET(mp);
1372 #if defined(XFS_RW_TRACE)
1378 xfs_fsize_t new_size,
1379 xfs_off_t toss_start,
1380 xfs_off_t toss_finish)
1382 if (ip->i_rwtrace == NULL) {
1386 ktrace_enter(ip->i_rwtrace,
1389 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1390 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1391 (void*)((long)flag),
1392 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1393 (void*)(unsigned long)(new_size & 0xffffffff),
1394 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1395 (void*)(unsigned long)(toss_start & 0xffffffff),
1396 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1397 (void*)(unsigned long)(toss_finish & 0xffffffff),
1398 (void*)(unsigned long)current_cpu(),
1399 (void*)(unsigned long)current_pid(),
1405 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1409 * Start the truncation of the file to new_size. The new size
1410 * must be smaller than the current size. This routine will
1411 * clear the buffer and page caches of file data in the removed
1412 * range, and xfs_itruncate_finish() will remove the underlying
1415 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1416 * must NOT have the inode lock held at all. This is because we're
1417 * calling into the buffer/page cache code and we can't hold the
1418 * inode lock when we do so.
1420 * We need to wait for any direct I/Os in flight to complete before we
1421 * proceed with the truncate. This is needed to prevent the extents
1422 * being read or written by the direct I/Os from being removed while the
1423 * I/O is in flight as there is no other method of synchronising
1424 * direct I/O with the truncate operation. Also, because we hold
1425 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1426 * started until the truncate completes and drops the lock. Essentially,
1427 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1428 * between direct I/Os and the truncate operation.
1430 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1431 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1432 * in the case that the caller is locking things out of order and
1433 * may not be able to call xfs_itruncate_finish() with the inode lock
1434 * held without dropping the I/O lock. If the caller must drop the
1435 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1436 * must be called again with all the same restrictions as the initial
1440 xfs_itruncate_start(
1443 xfs_fsize_t new_size)
1445 xfs_fsize_t last_byte;
1446 xfs_off_t toss_start;
1451 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1452 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1453 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1454 (flags == XFS_ITRUNC_MAYBE));
1459 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1462 * Call toss_pages or flushinval_pages to get rid of pages
1463 * overlapping the region being removed. We have to use
1464 * the less efficient flushinval_pages in the case that the
1465 * caller may not be able to finish the truncate without
1466 * dropping the inode's I/O lock. Make sure
1467 * to catch any pages brought in by buffers overlapping
1468 * the EOF by searching out beyond the isize by our
1469 * block size. We round new_size up to a block boundary
1470 * so that we don't toss things on the same block as
1471 * new_size but before it.
1473 * Before calling toss_page or flushinval_pages, make sure to
1474 * call remapf() over the same region if the file is mapped.
1475 * This frees up mapped file references to the pages in the
1476 * given range and for the flushinval_pages case it ensures
1477 * that we get the latest mapped changes flushed out.
1479 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1480 toss_start = XFS_FSB_TO_B(mp, toss_start);
1481 if (toss_start < 0) {
1483 * The place to start tossing is beyond our maximum
1484 * file size, so there is no way that the data extended
1489 last_byte = xfs_file_last_byte(ip);
1490 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1492 if (last_byte > toss_start) {
1493 if (flags & XFS_ITRUNC_DEFINITE) {
1494 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1496 error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1501 if (new_size == 0) {
1502 ASSERT(VN_CACHED(vp) == 0);
1509 * Shrink the file to the given new_size. The new
1510 * size must be smaller than the current size.
1511 * This will free up the underlying blocks
1512 * in the removed range after a call to xfs_itruncate_start()
1513 * or xfs_atruncate_start().
1515 * The transaction passed to this routine must have made
1516 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1517 * This routine may commit the given transaction and
1518 * start new ones, so make sure everything involved in
1519 * the transaction is tidy before calling here.
1520 * Some transaction will be returned to the caller to be
1521 * committed. The incoming transaction must already include
1522 * the inode, and both inode locks must be held exclusively.
1523 * The inode must also be "held" within the transaction. On
1524 * return the inode will be "held" within the returned transaction.
1525 * This routine does NOT require any disk space to be reserved
1526 * for it within the transaction.
1528 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1529 * and it indicates the fork which is to be truncated. For the
1530 * attribute fork we only support truncation to size 0.
1532 * We use the sync parameter to indicate whether or not the first
1533 * transaction we perform might have to be synchronous. For the attr fork,
1534 * it needs to be so if the unlink of the inode is not yet known to be
1535 * permanent in the log. This keeps us from freeing and reusing the
1536 * blocks of the attribute fork before the unlink of the inode becomes
1539 * For the data fork, we normally have to run synchronously if we're
1540 * being called out of the inactive path or we're being called
1541 * out of the create path where we're truncating an existing file.
1542 * Either way, the truncate needs to be sync so blocks don't reappear
1543 * in the file with altered data in case of a crash. wsync filesystems
1544 * can run the first case async because anything that shrinks the inode
1545 * has to run sync so by the time we're called here from inactive, the
1546 * inode size is permanently set to 0.
1548 * Calls from the truncate path always need to be sync unless we're
1549 * in a wsync filesystem and the file has already been unlinked.
1551 * The caller is responsible for correctly setting the sync parameter.
1552 * It gets too hard for us to guess here which path we're being called
1553 * out of just based on inode state.
1556 xfs_itruncate_finish(
1559 xfs_fsize_t new_size,
1563 xfs_fsblock_t first_block;
1564 xfs_fileoff_t first_unmap_block;
1565 xfs_fileoff_t last_block;
1566 xfs_filblks_t unmap_len=0;
1571 xfs_bmap_free_t free_list;
1574 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1575 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1576 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1577 ASSERT(*tp != NULL);
1578 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1579 ASSERT(ip->i_transp == *tp);
1580 ASSERT(ip->i_itemp != NULL);
1581 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1585 mp = (ntp)->t_mountp;
1586 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1589 * We only support truncating the entire attribute fork.
1591 if (fork == XFS_ATTR_FORK) {
1594 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1595 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1597 * The first thing we do is set the size to new_size permanently
1598 * on disk. This way we don't have to worry about anyone ever
1599 * being able to look at the data being freed even in the face
1600 * of a crash. What we're getting around here is the case where
1601 * we free a block, it is allocated to another file, it is written
1602 * to, and then we crash. If the new data gets written to the
1603 * file but the log buffers containing the free and reallocation
1604 * don't, then we'd end up with garbage in the blocks being freed.
1605 * As long as we make the new_size permanent before actually
1606 * freeing any blocks it doesn't matter if they get writtten to.
1608 * The callers must signal into us whether or not the size
1609 * setting here must be synchronous. There are a few cases
1610 * where it doesn't have to be synchronous. Those cases
1611 * occur if the file is unlinked and we know the unlink is
1612 * permanent or if the blocks being truncated are guaranteed
1613 * to be beyond the inode eof (regardless of the link count)
1614 * and the eof value is permanent. Both of these cases occur
1615 * only on wsync-mounted filesystems. In those cases, we're
1616 * guaranteed that no user will ever see the data in the blocks
1617 * that are being truncated so the truncate can run async.
1618 * In the free beyond eof case, the file may wind up with
1619 * more blocks allocated to it than it needs if we crash
1620 * and that won't get fixed until the next time the file
1621 * is re-opened and closed but that's ok as that shouldn't
1622 * be too many blocks.
1624 * However, we can't just make all wsync xactions run async
1625 * because there's one call out of the create path that needs
1626 * to run sync where it's truncating an existing file to size
1627 * 0 whose size is > 0.
1629 * It's probably possible to come up with a test in this
1630 * routine that would correctly distinguish all the above
1631 * cases from the values of the function parameters and the
1632 * inode state but for sanity's sake, I've decided to let the
1633 * layers above just tell us. It's simpler to correctly figure
1634 * out in the layer above exactly under what conditions we
1635 * can run async and I think it's easier for others read and
1636 * follow the logic in case something has to be changed.
1637 * cscope is your friend -- rcc.
1639 * The attribute fork is much simpler.
1641 * For the attribute fork we allow the caller to tell us whether
1642 * the unlink of the inode that led to this call is yet permanent
1643 * in the on disk log. If it is not and we will be freeing extents
1644 * in this inode then we make the first transaction synchronous
1645 * to make sure that the unlink is permanent by the time we free
1648 if (fork == XFS_DATA_FORK) {
1649 if (ip->i_d.di_nextents > 0) {
1651 * If we are not changing the file size then do
1652 * not update the on-disk file size - we may be
1653 * called from xfs_inactive_free_eofblocks(). If we
1654 * update the on-disk file size and then the system
1655 * crashes before the contents of the file are
1656 * flushed to disk then the files may be full of
1657 * holes (ie NULL files bug).
1659 if (ip->i_size != new_size) {
1660 ip->i_d.di_size = new_size;
1661 ip->i_size = new_size;
1662 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1666 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1667 if (ip->i_d.di_anextents > 0)
1668 xfs_trans_set_sync(ntp);
1670 ASSERT(fork == XFS_DATA_FORK ||
1671 (fork == XFS_ATTR_FORK &&
1672 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1673 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1676 * Since it is possible for space to become allocated beyond
1677 * the end of the file (in a crash where the space is allocated
1678 * but the inode size is not yet updated), simply remove any
1679 * blocks which show up between the new EOF and the maximum
1680 * possible file size. If the first block to be removed is
1681 * beyond the maximum file size (ie it is the same as last_block),
1682 * then there is nothing to do.
1684 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1685 ASSERT(first_unmap_block <= last_block);
1687 if (last_block == first_unmap_block) {
1690 unmap_len = last_block - first_unmap_block + 1;
1694 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1695 * will tell us whether it freed the entire range or
1696 * not. If this is a synchronous mount (wsync),
1697 * then we can tell bunmapi to keep all the
1698 * transactions asynchronous since the unlink
1699 * transaction that made this inode inactive has
1700 * already hit the disk. There's no danger of
1701 * the freed blocks being reused, there being a
1702 * crash, and the reused blocks suddenly reappearing
1703 * in this file with garbage in them once recovery
1706 XFS_BMAP_INIT(&free_list, &first_block);
1707 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1708 first_unmap_block, unmap_len,
1709 XFS_BMAPI_AFLAG(fork) |
1710 (sync ? 0 : XFS_BMAPI_ASYNC),
1711 XFS_ITRUNC_MAX_EXTENTS,
1712 &first_block, &free_list,
1716 * If the bunmapi call encounters an error,
1717 * return to the caller where the transaction
1718 * can be properly aborted. We just need to
1719 * make sure we're not holding any resources
1720 * that we were not when we came in.
1722 xfs_bmap_cancel(&free_list);
1727 * Duplicate the transaction that has the permanent
1728 * reservation and commit the old transaction.
1730 error = xfs_bmap_finish(tp, &free_list, &committed);
1734 * If the bmap finish call encounters an error,
1735 * return to the caller where the transaction
1736 * can be properly aborted. We just need to
1737 * make sure we're not holding any resources
1738 * that we were not when we came in.
1740 * Aborting from this point might lose some
1741 * blocks in the file system, but oh well.
1743 xfs_bmap_cancel(&free_list);
1746 * If the passed in transaction committed
1747 * in xfs_bmap_finish(), then we want to
1748 * add the inode to this one before returning.
1749 * This keeps things simple for the higher
1750 * level code, because it always knows that
1751 * the inode is locked and held in the
1752 * transaction that returns to it whether
1753 * errors occur or not. We don't mark the
1754 * inode dirty so that this transaction can
1755 * be easily aborted if possible.
1757 xfs_trans_ijoin(ntp, ip,
1758 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1759 xfs_trans_ihold(ntp, ip);
1766 * The first xact was committed,
1767 * so add the inode to the new one.
1768 * Mark it dirty so it will be logged
1769 * and moved forward in the log as
1770 * part of every commit.
1772 xfs_trans_ijoin(ntp, ip,
1773 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1774 xfs_trans_ihold(ntp, ip);
1775 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1777 ntp = xfs_trans_dup(ntp);
1778 (void) xfs_trans_commit(*tp, 0);
1780 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1781 XFS_TRANS_PERM_LOG_RES,
1782 XFS_ITRUNCATE_LOG_COUNT);
1784 * Add the inode being truncated to the next chained
1787 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1788 xfs_trans_ihold(ntp, ip);
1793 * Only update the size in the case of the data fork, but
1794 * always re-log the inode so that our permanent transaction
1795 * can keep on rolling it forward in the log.
1797 if (fork == XFS_DATA_FORK) {
1798 xfs_isize_check(mp, ip, new_size);
1800 * If we are not changing the file size then do
1801 * not update the on-disk file size - we may be
1802 * called from xfs_inactive_free_eofblocks(). If we
1803 * update the on-disk file size and then the system
1804 * crashes before the contents of the file are
1805 * flushed to disk then the files may be full of
1806 * holes (ie NULL files bug).
1808 if (ip->i_size != new_size) {
1809 ip->i_d.di_size = new_size;
1810 ip->i_size = new_size;
1813 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1814 ASSERT((new_size != 0) ||
1815 (fork == XFS_ATTR_FORK) ||
1816 (ip->i_delayed_blks == 0));
1817 ASSERT((new_size != 0) ||
1818 (fork == XFS_ATTR_FORK) ||
1819 (ip->i_d.di_nextents == 0));
1820 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1828 * Do the first part of growing a file: zero any data in the last
1829 * block that is beyond the old EOF. We need to do this before
1830 * the inode is joined to the transaction to modify the i_size.
1831 * That way we can drop the inode lock and call into the buffer
1832 * cache to get the buffer mapping the EOF.
1837 xfs_fsize_t new_size,
1842 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1843 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1844 ASSERT(new_size > ip->i_size);
1847 * Zero any pages that may have been created by
1848 * xfs_write_file() beyond the end of the file
1849 * and any blocks between the old and new file sizes.
1851 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1859 * This routine is called to extend the size of a file.
1860 * The inode must have both the iolock and the ilock locked
1861 * for update and it must be a part of the current transaction.
1862 * The xfs_igrow_start() function must have been called previously.
1863 * If the change_flag is not zero, the inode change timestamp will
1870 xfs_fsize_t new_size,
1873 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1874 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1875 ASSERT(ip->i_transp == tp);
1876 ASSERT(new_size > ip->i_size);
1879 * Update the file size. Update the inode change timestamp
1880 * if change_flag set.
1882 ip->i_d.di_size = new_size;
1883 ip->i_size = new_size;
1885 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1886 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1892 * This is called when the inode's link count goes to 0.
1893 * We place the on-disk inode on a list in the AGI. It
1894 * will be pulled from this list when the inode is freed.
1906 xfs_agnumber_t agno;
1907 xfs_daddr_t agdaddr;
1914 ASSERT(ip->i_d.di_nlink == 0);
1915 ASSERT(ip->i_d.di_mode != 0);
1916 ASSERT(ip->i_transp == tp);
1920 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1921 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1924 * Get the agi buffer first. It ensures lock ordering
1927 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1928 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1933 * Validate the magic number of the agi block.
1935 agi = XFS_BUF_TO_AGI(agibp);
1937 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1938 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1939 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1940 XFS_RANDOM_IUNLINK))) {
1941 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1942 xfs_trans_brelse(tp, agibp);
1943 return XFS_ERROR(EFSCORRUPTED);
1946 * Get the index into the agi hash table for the
1947 * list this inode will go on.
1949 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1951 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1952 ASSERT(agi->agi_unlinked[bucket_index]);
1953 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1955 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1957 * There is already another inode in the bucket we need
1958 * to add ourselves to. Add us at the front of the list.
1959 * Here we put the head pointer into our next pointer,
1960 * and then we fall through to point the head at us.
1962 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1966 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1967 ASSERT(dip->di_next_unlinked);
1968 /* both on-disk, don't endian flip twice */
1969 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1970 offset = ip->i_boffset +
1971 offsetof(xfs_dinode_t, di_next_unlinked);
1972 xfs_trans_inode_buf(tp, ibp);
1973 xfs_trans_log_buf(tp, ibp, offset,
1974 (offset + sizeof(xfs_agino_t) - 1));
1975 xfs_inobp_check(mp, ibp);
1979 * Point the bucket head pointer at the inode being inserted.
1982 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1983 offset = offsetof(xfs_agi_t, agi_unlinked) +
1984 (sizeof(xfs_agino_t) * bucket_index);
1985 xfs_trans_log_buf(tp, agibp, offset,
1986 (offset + sizeof(xfs_agino_t) - 1));
1991 * Pull the on-disk inode from the AGI unlinked list.
2004 xfs_agnumber_t agno;
2005 xfs_daddr_t agdaddr;
2007 xfs_agino_t next_agino;
2008 xfs_buf_t *last_ibp;
2009 xfs_dinode_t *last_dip = NULL;
2011 int offset, last_offset = 0;
2016 * First pull the on-disk inode from the AGI unlinked list.
2020 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2021 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2024 * Get the agi buffer first. It ensures lock ordering
2027 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2028 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2031 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2032 error, mp->m_fsname);
2036 * Validate the magic number of the agi block.
2038 agi = XFS_BUF_TO_AGI(agibp);
2040 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2041 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
2042 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2043 XFS_RANDOM_IUNLINK_REMOVE))) {
2044 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2046 xfs_trans_brelse(tp, agibp);
2048 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2050 return XFS_ERROR(EFSCORRUPTED);
2053 * Get the index into the agi hash table for the
2054 * list this inode will go on.
2056 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2058 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2059 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
2060 ASSERT(agi->agi_unlinked[bucket_index]);
2062 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2064 * We're at the head of the list. Get the inode's
2065 * on-disk buffer to see if there is anyone after us
2066 * on the list. Only modify our next pointer if it
2067 * is not already NULLAGINO. This saves us the overhead
2068 * of dealing with the buffer when there is no need to
2071 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2074 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2075 error, mp->m_fsname);
2078 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2079 ASSERT(next_agino != 0);
2080 if (next_agino != NULLAGINO) {
2081 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2082 offset = ip->i_boffset +
2083 offsetof(xfs_dinode_t, di_next_unlinked);
2084 xfs_trans_inode_buf(tp, ibp);
2085 xfs_trans_log_buf(tp, ibp, offset,
2086 (offset + sizeof(xfs_agino_t) - 1));
2087 xfs_inobp_check(mp, ibp);
2089 xfs_trans_brelse(tp, ibp);
2092 * Point the bucket head pointer at the next inode.
2094 ASSERT(next_agino != 0);
2095 ASSERT(next_agino != agino);
2096 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2097 offset = offsetof(xfs_agi_t, agi_unlinked) +
2098 (sizeof(xfs_agino_t) * bucket_index);
2099 xfs_trans_log_buf(tp, agibp, offset,
2100 (offset + sizeof(xfs_agino_t) - 1));
2103 * We need to search the list for the inode being freed.
2105 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2107 while (next_agino != agino) {
2109 * If the last inode wasn't the one pointing to
2110 * us, then release its buffer since we're not
2111 * going to do anything with it.
2113 if (last_ibp != NULL) {
2114 xfs_trans_brelse(tp, last_ibp);
2116 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2117 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2118 &last_ibp, &last_offset);
2121 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2122 error, mp->m_fsname);
2125 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2126 ASSERT(next_agino != NULLAGINO);
2127 ASSERT(next_agino != 0);
2130 * Now last_ibp points to the buffer previous to us on
2131 * the unlinked list. Pull us from the list.
2133 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
2136 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2137 error, mp->m_fsname);
2140 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2141 ASSERT(next_agino != 0);
2142 ASSERT(next_agino != agino);
2143 if (next_agino != NULLAGINO) {
2144 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2145 offset = ip->i_boffset +
2146 offsetof(xfs_dinode_t, di_next_unlinked);
2147 xfs_trans_inode_buf(tp, ibp);
2148 xfs_trans_log_buf(tp, ibp, offset,
2149 (offset + sizeof(xfs_agino_t) - 1));
2150 xfs_inobp_check(mp, ibp);
2152 xfs_trans_brelse(tp, ibp);
2155 * Point the previous inode on the list to the next inode.
2157 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2158 ASSERT(next_agino != 0);
2159 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2160 xfs_trans_inode_buf(tp, last_ibp);
2161 xfs_trans_log_buf(tp, last_ibp, offset,
2162 (offset + sizeof(xfs_agino_t) - 1));
2163 xfs_inobp_check(mp, last_ibp);
2168 STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
2170 return (((ip->i_itemp == NULL) ||
2171 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2172 (ip->i_update_core == 0));
2177 xfs_inode_t *free_ip,
2181 xfs_mount_t *mp = free_ip->i_mount;
2182 int blks_per_cluster;
2185 int i, j, found, pre_flushed;
2189 xfs_inode_t *ip, **ip_found;
2190 xfs_inode_log_item_t *iip;
2191 xfs_log_item_t *lip;
2194 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2195 blks_per_cluster = 1;
2196 ninodes = mp->m_sb.sb_inopblock;
2197 nbufs = XFS_IALLOC_BLOCKS(mp);
2199 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2200 mp->m_sb.sb_blocksize;
2201 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2202 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2205 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2207 for (j = 0; j < nbufs; j++, inum += ninodes) {
2208 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2209 XFS_INO_TO_AGBNO(mp, inum));
2213 * Look for each inode in memory and attempt to lock it,
2214 * we can be racing with flush and tail pushing here.
2215 * any inode we get the locks on, add to an array of
2216 * inode items to process later.
2218 * The get the buffer lock, we could beat a flush
2219 * or tail pushing thread to the lock here, in which
2220 * case they will go looking for the inode buffer
2221 * and fail, we need some other form of interlock
2225 for (i = 0; i < ninodes; i++) {
2226 ih = XFS_IHASH(mp, inum + i);
2227 read_lock(&ih->ih_lock);
2228 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2229 if (ip->i_ino == inum + i)
2233 /* Inode not in memory or we found it already,
2236 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2237 read_unlock(&ih->ih_lock);
2241 if (xfs_inode_clean(ip)) {
2242 read_unlock(&ih->ih_lock);
2246 /* If we can get the locks then add it to the
2247 * list, otherwise by the time we get the bp lock
2248 * below it will already be attached to the
2252 /* This inode will already be locked - by us, lets
2256 if (ip == free_ip) {
2257 if (xfs_iflock_nowait(ip)) {
2258 xfs_iflags_set(ip, XFS_ISTALE);
2259 if (xfs_inode_clean(ip)) {
2262 ip_found[found++] = ip;
2265 read_unlock(&ih->ih_lock);
2269 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2270 if (xfs_iflock_nowait(ip)) {
2271 xfs_iflags_set(ip, XFS_ISTALE);
2273 if (xfs_inode_clean(ip)) {
2275 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2277 ip_found[found++] = ip;
2280 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2284 read_unlock(&ih->ih_lock);
2287 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2288 mp->m_bsize * blks_per_cluster,
2292 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2294 if (lip->li_type == XFS_LI_INODE) {
2295 iip = (xfs_inode_log_item_t *)lip;
2296 ASSERT(iip->ili_logged == 1);
2297 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2299 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2301 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2304 lip = lip->li_bio_list;
2307 for (i = 0; i < found; i++) {
2312 ip->i_update_core = 0;
2314 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2318 iip->ili_last_fields = iip->ili_format.ilf_fields;
2319 iip->ili_format.ilf_fields = 0;
2320 iip->ili_logged = 1;
2322 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2325 xfs_buf_attach_iodone(bp,
2326 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2327 xfs_istale_done, (xfs_log_item_t *)iip);
2328 if (ip != free_ip) {
2329 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2333 if (found || pre_flushed)
2334 xfs_trans_stale_inode_buf(tp, bp);
2335 xfs_trans_binval(tp, bp);
2338 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2342 * This is called to return an inode to the inode free list.
2343 * The inode should already be truncated to 0 length and have
2344 * no pages associated with it. This routine also assumes that
2345 * the inode is already a part of the transaction.
2347 * The on-disk copy of the inode will have been added to the list
2348 * of unlinked inodes in the AGI. We need to remove the inode from
2349 * that list atomically with respect to freeing it here.
2355 xfs_bmap_free_t *flist)
2359 xfs_ino_t first_ino;
2361 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2362 ASSERT(ip->i_transp == tp);
2363 ASSERT(ip->i_d.di_nlink == 0);
2364 ASSERT(ip->i_d.di_nextents == 0);
2365 ASSERT(ip->i_d.di_anextents == 0);
2366 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2367 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2368 ASSERT(ip->i_d.di_nblocks == 0);
2371 * Pull the on-disk inode from the AGI unlinked list.
2373 error = xfs_iunlink_remove(tp, ip);
2378 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2382 ip->i_d.di_mode = 0; /* mark incore inode as free */
2383 ip->i_d.di_flags = 0;
2384 ip->i_d.di_dmevmask = 0;
2385 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2386 ip->i_df.if_ext_max =
2387 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2388 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2389 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2391 * Bump the generation count so no one will be confused
2392 * by reincarnations of this inode.
2395 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2398 xfs_ifree_cluster(ip, tp, first_ino);
2405 * Reallocate the space for if_broot based on the number of records
2406 * being added or deleted as indicated in rec_diff. Move the records
2407 * and pointers in if_broot to fit the new size. When shrinking this
2408 * will eliminate holes between the records and pointers created by
2409 * the caller. When growing this will create holes to be filled in
2412 * The caller must not request to add more records than would fit in
2413 * the on-disk inode root. If the if_broot is currently NULL, then
2414 * if we adding records one will be allocated. The caller must also
2415 * not request that the number of records go below zero, although
2416 * it can go to zero.
2418 * ip -- the inode whose if_broot area is changing
2419 * ext_diff -- the change in the number of records, positive or negative,
2420 * requested for the if_broot array.
2430 xfs_bmbt_block_t *new_broot;
2437 * Handle the degenerate case quietly.
2439 if (rec_diff == 0) {
2443 ifp = XFS_IFORK_PTR(ip, whichfork);
2446 * If there wasn't any memory allocated before, just
2447 * allocate it now and get out.
2449 if (ifp->if_broot_bytes == 0) {
2450 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2451 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2453 ifp->if_broot_bytes = (int)new_size;
2458 * If there is already an existing if_broot, then we need
2459 * to realloc() it and shift the pointers to their new
2460 * location. The records don't change location because
2461 * they are kept butted up against the btree block header.
2463 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2464 new_max = cur_max + rec_diff;
2465 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2466 ifp->if_broot = (xfs_bmbt_block_t *)
2467 kmem_realloc(ifp->if_broot,
2469 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2471 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2472 ifp->if_broot_bytes);
2473 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2475 ifp->if_broot_bytes = (int)new_size;
2476 ASSERT(ifp->if_broot_bytes <=
2477 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2478 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2483 * rec_diff is less than 0. In this case, we are shrinking the
2484 * if_broot buffer. It must already exist. If we go to zero
2485 * records, just get rid of the root and clear the status bit.
2487 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2488 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2489 new_max = cur_max + rec_diff;
2490 ASSERT(new_max >= 0);
2492 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2496 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2498 * First copy over the btree block header.
2500 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2503 ifp->if_flags &= ~XFS_IFBROOT;
2507 * Only copy the records and pointers if there are any.
2511 * First copy the records.
2513 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2514 ifp->if_broot_bytes);
2515 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2517 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2520 * Then copy the pointers.
2522 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2523 ifp->if_broot_bytes);
2524 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2526 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2528 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2529 ifp->if_broot = new_broot;
2530 ifp->if_broot_bytes = (int)new_size;
2531 ASSERT(ifp->if_broot_bytes <=
2532 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2538 * This is called when the amount of space needed for if_data
2539 * is increased or decreased. The change in size is indicated by
2540 * the number of bytes that need to be added or deleted in the
2541 * byte_diff parameter.
2543 * If the amount of space needed has decreased below the size of the
2544 * inline buffer, then switch to using the inline buffer. Otherwise,
2545 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2546 * to what is needed.
2548 * ip -- the inode whose if_data area is changing
2549 * byte_diff -- the change in the number of bytes, positive or negative,
2550 * requested for the if_data array.
2562 if (byte_diff == 0) {
2566 ifp = XFS_IFORK_PTR(ip, whichfork);
2567 new_size = (int)ifp->if_bytes + byte_diff;
2568 ASSERT(new_size >= 0);
2570 if (new_size == 0) {
2571 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2572 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2574 ifp->if_u1.if_data = NULL;
2576 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2578 * If the valid extents/data can fit in if_inline_ext/data,
2579 * copy them from the malloc'd vector and free it.
2581 if (ifp->if_u1.if_data == NULL) {
2582 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2583 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2584 ASSERT(ifp->if_real_bytes != 0);
2585 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2587 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2588 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2593 * Stuck with malloc/realloc.
2594 * For inline data, the underlying buffer must be
2595 * a multiple of 4 bytes in size so that it can be
2596 * logged and stay on word boundaries. We enforce
2599 real_size = roundup(new_size, 4);
2600 if (ifp->if_u1.if_data == NULL) {
2601 ASSERT(ifp->if_real_bytes == 0);
2602 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2603 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2605 * Only do the realloc if the underlying size
2606 * is really changing.
2608 if (ifp->if_real_bytes != real_size) {
2609 ifp->if_u1.if_data =
2610 kmem_realloc(ifp->if_u1.if_data,
2616 ASSERT(ifp->if_real_bytes == 0);
2617 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2618 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2622 ifp->if_real_bytes = real_size;
2623 ifp->if_bytes = new_size;
2624 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2631 * Map inode to disk block and offset.
2633 * mp -- the mount point structure for the current file system
2634 * tp -- the current transaction
2635 * ino -- the inode number of the inode to be located
2636 * imap -- this structure is filled in with the information necessary
2637 * to retrieve the given inode from disk
2638 * flags -- flags to pass to xfs_dilocate indicating whether or not
2639 * lookups in the inode btree were OK or not
2649 xfs_fsblock_t fsbno;
2654 fsbno = imap->im_blkno ?
2655 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2656 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2660 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2661 imap->im_len = XFS_FSB_TO_BB(mp, len);
2662 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2663 imap->im_ioffset = (ushort)off;
2664 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2675 ifp = XFS_IFORK_PTR(ip, whichfork);
2676 if (ifp->if_broot != NULL) {
2677 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2678 ifp->if_broot = NULL;
2682 * If the format is local, then we can't have an extents
2683 * array so just look for an inline data array. If we're
2684 * not local then we may or may not have an extents list,
2685 * so check and free it up if we do.
2687 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2688 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2689 (ifp->if_u1.if_data != NULL)) {
2690 ASSERT(ifp->if_real_bytes != 0);
2691 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2692 ifp->if_u1.if_data = NULL;
2693 ifp->if_real_bytes = 0;
2695 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2696 ((ifp->if_flags & XFS_IFEXTIREC) ||
2697 ((ifp->if_u1.if_extents != NULL) &&
2698 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2699 ASSERT(ifp->if_real_bytes != 0);
2700 xfs_iext_destroy(ifp);
2702 ASSERT(ifp->if_u1.if_extents == NULL ||
2703 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2704 ASSERT(ifp->if_real_bytes == 0);
2705 if (whichfork == XFS_ATTR_FORK) {
2706 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2712 * This is called free all the memory associated with an inode.
2713 * It must free the inode itself and any buffers allocated for
2714 * if_extents/if_data and if_broot. It must also free the lock
2715 * associated with the inode.
2722 switch (ip->i_d.di_mode & S_IFMT) {
2726 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2730 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2731 mrfree(&ip->i_lock);
2732 mrfree(&ip->i_iolock);
2733 freesema(&ip->i_flock);
2734 #ifdef XFS_BMAP_TRACE
2735 ktrace_free(ip->i_xtrace);
2737 #ifdef XFS_BMBT_TRACE
2738 ktrace_free(ip->i_btrace);
2741 ktrace_free(ip->i_rwtrace);
2743 #ifdef XFS_ILOCK_TRACE
2744 ktrace_free(ip->i_lock_trace);
2746 #ifdef XFS_DIR2_TRACE
2747 ktrace_free(ip->i_dir_trace);
2751 * Only if we are shutting down the fs will we see an
2752 * inode still in the AIL. If it is there, we should remove
2753 * it to prevent a use-after-free from occurring.
2755 xfs_mount_t *mp = ip->i_mount;
2756 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2759 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2760 XFS_FORCED_SHUTDOWN(ip->i_mount));
2761 if (lip->li_flags & XFS_LI_IN_AIL) {
2763 if (lip->li_flags & XFS_LI_IN_AIL)
2764 xfs_trans_delete_ail(mp, lip, s);
2768 xfs_inode_item_destroy(ip);
2770 kmem_zone_free(xfs_inode_zone, ip);
2775 * Increment the pin count of the given buffer.
2776 * This value is protected by ipinlock spinlock in the mount structure.
2782 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2784 atomic_inc(&ip->i_pincount);
2788 * Decrement the pin count of the given inode, and wake up
2789 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2790 * inode must have been previously pinned with a call to xfs_ipin().
2796 ASSERT(atomic_read(&ip->i_pincount) > 0);
2798 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2801 * If the inode is currently being reclaimed, the link between
2802 * the bhv_vnode and the xfs_inode will be broken after the
2803 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2804 * set, then we can move forward and mark the linux inode dirty
2805 * knowing that it is still valid as it won't freed until after
2806 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2807 * i_flags_lock is used to synchronise the setting of the
2808 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2809 * can execute atomically w.r.t to reclaim by holding this lock
2812 * However, we still need to issue the unpin wakeup call as the
2813 * inode reclaim may be blocked waiting for the inode to become
2817 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
2818 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
2819 struct inode *inode = NULL;
2822 inode = vn_to_inode(vp);
2823 BUG_ON(inode->i_state & I_CLEAR);
2825 /* make sync come back and flush this inode */
2826 if (!(inode->i_state & (I_NEW|I_FREEING)))
2827 mark_inode_dirty_sync(inode);
2829 spin_unlock(&ip->i_flags_lock);
2830 wake_up(&ip->i_ipin_wait);
2835 * This is called to wait for the given inode to be unpinned.
2836 * It will sleep until this happens. The caller must have the
2837 * inode locked in at least shared mode so that the buffer cannot
2838 * be subsequently pinned once someone is waiting for it to be
2845 xfs_inode_log_item_t *iip;
2848 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2850 if (atomic_read(&ip->i_pincount) == 0) {
2855 if (iip && iip->ili_last_lsn) {
2856 lsn = iip->ili_last_lsn;
2862 * Give the log a push so we don't wait here too long.
2864 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2866 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2871 * xfs_iextents_copy()
2873 * This is called to copy the REAL extents (as opposed to the delayed
2874 * allocation extents) from the inode into the given buffer. It
2875 * returns the number of bytes copied into the buffer.
2877 * If there are no delayed allocation extents, then we can just
2878 * memcpy() the extents into the buffer. Otherwise, we need to
2879 * examine each extent in turn and skip those which are delayed.
2891 xfs_fsblock_t start_block;
2893 ifp = XFS_IFORK_PTR(ip, whichfork);
2894 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2895 ASSERT(ifp->if_bytes > 0);
2897 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2898 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2902 * There are some delayed allocation extents in the
2903 * inode, so copy the extents one at a time and skip
2904 * the delayed ones. There must be at least one
2905 * non-delayed extent.
2908 for (i = 0; i < nrecs; i++) {
2909 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2910 start_block = xfs_bmbt_get_startblock(ep);
2911 if (ISNULLSTARTBLOCK(start_block)) {
2913 * It's a delayed allocation extent, so skip it.
2918 /* Translate to on disk format */
2919 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2920 (__uint64_t*)&dp->l0);
2921 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2922 (__uint64_t*)&dp->l1);
2926 ASSERT(copied != 0);
2927 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2929 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2933 * Each of the following cases stores data into the same region
2934 * of the on-disk inode, so only one of them can be valid at
2935 * any given time. While it is possible to have conflicting formats
2936 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2937 * in EXTENTS format, this can only happen when the fork has
2938 * changed formats after being modified but before being flushed.
2939 * In these cases, the format always takes precedence, because the
2940 * format indicates the current state of the fork.
2947 xfs_inode_log_item_t *iip,
2954 #ifdef XFS_TRANS_DEBUG
2957 static const short brootflag[2] =
2958 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2959 static const short dataflag[2] =
2960 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2961 static const short extflag[2] =
2962 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2966 ifp = XFS_IFORK_PTR(ip, whichfork);
2968 * This can happen if we gave up in iformat in an error path,
2969 * for the attribute fork.
2972 ASSERT(whichfork == XFS_ATTR_FORK);
2975 cp = XFS_DFORK_PTR(dip, whichfork);
2977 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2978 case XFS_DINODE_FMT_LOCAL:
2979 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2980 (ifp->if_bytes > 0)) {
2981 ASSERT(ifp->if_u1.if_data != NULL);
2982 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2983 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2987 case XFS_DINODE_FMT_EXTENTS:
2988 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2989 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2990 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2991 (ifp->if_bytes == 0));
2992 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2993 (ifp->if_bytes > 0));
2994 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2995 (ifp->if_bytes > 0)) {
2996 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2997 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3002 case XFS_DINODE_FMT_BTREE:
3003 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3004 (ifp->if_broot_bytes > 0)) {
3005 ASSERT(ifp->if_broot != NULL);
3006 ASSERT(ifp->if_broot_bytes <=
3007 (XFS_IFORK_SIZE(ip, whichfork) +
3008 XFS_BROOT_SIZE_ADJ));
3009 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3010 (xfs_bmdr_block_t *)cp,
3011 XFS_DFORK_SIZE(dip, mp, whichfork));
3015 case XFS_DINODE_FMT_DEV:
3016 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3017 ASSERT(whichfork == XFS_DATA_FORK);
3018 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3022 case XFS_DINODE_FMT_UUID:
3023 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3024 ASSERT(whichfork == XFS_DATA_FORK);
3025 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3039 * xfs_iflush() will write a modified inode's changes out to the
3040 * inode's on disk home. The caller must have the inode lock held
3041 * in at least shared mode and the inode flush semaphore must be
3042 * held as well. The inode lock will still be held upon return from
3043 * the call and the caller is free to unlock it.
3044 * The inode flush lock will be unlocked when the inode reaches the disk.
3045 * The flags indicate how the inode's buffer should be written out.
3052 xfs_inode_log_item_t *iip;
3060 int clcount; /* count of inodes clustered */
3062 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3065 XFS_STATS_INC(xs_iflush_count);
3067 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3068 ASSERT(issemalocked(&(ip->i_flock)));
3069 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3070 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3076 * If the inode isn't dirty, then just release the inode
3077 * flush lock and do nothing.
3079 if ((ip->i_update_core == 0) &&
3080 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3081 ASSERT((iip != NULL) ?
3082 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3088 * We can't flush the inode until it is unpinned, so
3089 * wait for it. We know noone new can pin it, because
3090 * we are holding the inode lock shared and you need
3091 * to hold it exclusively to pin the inode.
3093 xfs_iunpin_wait(ip);
3096 * This may have been unpinned because the filesystem is shutting
3097 * down forcibly. If that's the case we must not write this inode
3098 * to disk, because the log record didn't make it to disk!
3100 if (XFS_FORCED_SHUTDOWN(mp)) {
3101 ip->i_update_core = 0;
3103 iip->ili_format.ilf_fields = 0;
3105 return XFS_ERROR(EIO);
3109 * Get the buffer containing the on-disk inode.
3111 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3118 * Decide how buffer will be flushed out. This is done before
3119 * the call to xfs_iflush_int because this field is zeroed by it.
3121 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3123 * Flush out the inode buffer according to the directions
3124 * of the caller. In the cases where the caller has given
3125 * us a choice choose the non-delwri case. This is because
3126 * the inode is in the AIL and we need to get it out soon.
3129 case XFS_IFLUSH_SYNC:
3130 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3133 case XFS_IFLUSH_ASYNC:
3134 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3137 case XFS_IFLUSH_DELWRI:
3147 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3148 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3149 case XFS_IFLUSH_DELWRI:
3152 case XFS_IFLUSH_ASYNC:
3155 case XFS_IFLUSH_SYNC:
3166 * First flush out the inode that xfs_iflush was called with.
3168 error = xfs_iflush_int(ip, bp);
3175 * see if other inodes can be gathered into this write
3178 ip->i_chash->chl_buf = bp;
3180 ch = XFS_CHASH(mp, ip->i_blkno);
3181 s = mutex_spinlock(&ch->ch_lock);
3184 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3186 * Do an un-protected check to see if the inode is dirty and
3187 * is a candidate for flushing. These checks will be repeated
3188 * later after the appropriate locks are acquired.
3191 if ((iq->i_update_core == 0) &&
3193 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3194 xfs_ipincount(iq) == 0) {
3199 * Try to get locks. If any are unavailable,
3200 * then this inode cannot be flushed and is skipped.
3203 /* get inode locks (just i_lock) */
3204 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3205 /* get inode flush lock */
3206 if (xfs_iflock_nowait(iq)) {
3207 /* check if pinned */
3208 if (xfs_ipincount(iq) == 0) {
3209 /* arriving here means that
3210 * this inode can be flushed.
3211 * first re-check that it's
3215 if ((iq->i_update_core != 0)||
3217 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3219 error = xfs_iflush_int(iq, bp);
3223 goto cluster_corrupt_out;
3232 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3235 mutex_spinunlock(&ch->ch_lock, s);
3238 XFS_STATS_INC(xs_icluster_flushcnt);
3239 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3243 * If the buffer is pinned then push on the log so we won't
3244 * get stuck waiting in the write for too long.
3246 if (XFS_BUF_ISPINNED(bp)){
3247 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3250 if (flags & INT_DELWRI) {
3251 xfs_bdwrite(mp, bp);
3252 } else if (flags & INT_ASYNC) {
3253 xfs_bawrite(mp, bp);
3255 error = xfs_bwrite(mp, bp);
3261 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3262 xfs_iflush_abort(ip);
3264 * Unlocks the flush lock
3266 return XFS_ERROR(EFSCORRUPTED);
3268 cluster_corrupt_out:
3269 /* Corruption detected in the clustering loop. Invalidate the
3270 * inode buffer and shut down the filesystem.
3272 mutex_spinunlock(&ch->ch_lock, s);
3275 * Clean up the buffer. If it was B_DELWRI, just release it --
3276 * brelse can handle it with no problems. If not, shut down the
3277 * filesystem before releasing the buffer.
3279 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3283 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3287 * Just like incore_relse: if we have b_iodone functions,
3288 * mark the buffer as an error and call them. Otherwise
3289 * mark it as stale and brelse.
3291 if (XFS_BUF_IODONE_FUNC(bp)) {
3292 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3296 XFS_BUF_ERROR(bp,EIO);
3304 xfs_iflush_abort(iq);
3306 * Unlocks the flush lock
3308 return XFS_ERROR(EFSCORRUPTED);
3317 xfs_inode_log_item_t *iip;
3320 #ifdef XFS_TRANS_DEBUG
3325 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3326 ASSERT(issemalocked(&(ip->i_flock)));
3327 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3328 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3335 * If the inode isn't dirty, then just release the inode
3336 * flush lock and do nothing.
3338 if ((ip->i_update_core == 0) &&
3339 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3344 /* set *dip = inode's place in the buffer */
3345 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3348 * Clear i_update_core before copying out the data.
3349 * This is for coordination with our timestamp updates
3350 * that don't hold the inode lock. They will always
3351 * update the timestamps BEFORE setting i_update_core,
3352 * so if we clear i_update_core after they set it we
3353 * are guaranteed to see their updates to the timestamps.
3354 * I believe that this depends on strongly ordered memory
3355 * semantics, but we have that. We use the SYNCHRONIZE
3356 * macro to make sure that the compiler does not reorder
3357 * the i_update_core access below the data copy below.
3359 ip->i_update_core = 0;
3363 * Make sure to get the latest atime from the Linux inode.
3365 xfs_synchronize_atime(ip);
3367 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3368 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3369 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3370 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3371 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3374 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3375 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3376 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3377 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3378 ip->i_ino, ip, ip->i_d.di_magic);
3381 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3383 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3384 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3385 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3386 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3387 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3391 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3393 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3394 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3395 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3396 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3397 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3398 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3403 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3404 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3405 XFS_RANDOM_IFLUSH_5)) {
3406 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3407 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3409 ip->i_d.di_nextents + ip->i_d.di_anextents,
3414 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3415 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3416 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3417 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3418 ip->i_ino, ip->i_d.di_forkoff, ip);
3422 * bump the flush iteration count, used to detect flushes which
3423 * postdate a log record during recovery.
3426 ip->i_d.di_flushiter++;
3429 * Copy the dirty parts of the inode into the on-disk
3430 * inode. We always copy out the core of the inode,
3431 * because if the inode is dirty at all the core must
3434 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3436 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3437 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3438 ip->i_d.di_flushiter = 0;
3441 * If this is really an old format inode and the superblock version
3442 * has not been updated to support only new format inodes, then
3443 * convert back to the old inode format. If the superblock version
3444 * has been updated, then make the conversion permanent.
3446 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3447 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3448 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3449 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3453 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3454 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3457 * The superblock version has already been bumped,
3458 * so just make the conversion to the new inode
3461 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3462 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3463 ip->i_d.di_onlink = 0;
3464 dip->di_core.di_onlink = 0;
3465 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3466 memset(&(dip->di_core.di_pad[0]), 0,
3467 sizeof(dip->di_core.di_pad));
3468 ASSERT(ip->i_d.di_projid == 0);
3472 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3476 if (XFS_IFORK_Q(ip)) {
3478 * The only error from xfs_iflush_fork is on the data fork.
3480 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3482 xfs_inobp_check(mp, bp);
3485 * We've recorded everything logged in the inode, so we'd
3486 * like to clear the ilf_fields bits so we don't log and
3487 * flush things unnecessarily. However, we can't stop
3488 * logging all this information until the data we've copied
3489 * into the disk buffer is written to disk. If we did we might
3490 * overwrite the copy of the inode in the log with all the
3491 * data after re-logging only part of it, and in the face of
3492 * a crash we wouldn't have all the data we need to recover.
3494 * What we do is move the bits to the ili_last_fields field.
3495 * When logging the inode, these bits are moved back to the
3496 * ilf_fields field. In the xfs_iflush_done() routine we
3497 * clear ili_last_fields, since we know that the information
3498 * those bits represent is permanently on disk. As long as
3499 * the flush completes before the inode is logged again, then
3500 * both ilf_fields and ili_last_fields will be cleared.
3502 * We can play with the ilf_fields bits here, because the inode
3503 * lock must be held exclusively in order to set bits there
3504 * and the flush lock protects the ili_last_fields bits.
3505 * Set ili_logged so the flush done
3506 * routine can tell whether or not to look in the AIL.
3507 * Also, store the current LSN of the inode so that we can tell
3508 * whether the item has moved in the AIL from xfs_iflush_done().
3509 * In order to read the lsn we need the AIL lock, because
3510 * it is a 64 bit value that cannot be read atomically.
3512 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3513 iip->ili_last_fields = iip->ili_format.ilf_fields;
3514 iip->ili_format.ilf_fields = 0;
3515 iip->ili_logged = 1;
3517 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3519 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3523 * Attach the function xfs_iflush_done to the inode's
3524 * buffer. This will remove the inode from the AIL
3525 * and unlock the inode's flush lock when the inode is
3526 * completely written to disk.
3528 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3529 xfs_iflush_done, (xfs_log_item_t *)iip);
3531 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3532 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3535 * We're flushing an inode which is not in the AIL and has
3536 * not been logged but has i_update_core set. For this
3537 * case we can use a B_DELWRI flush and immediately drop
3538 * the inode flush lock because we can avoid the whole
3539 * AIL state thing. It's OK to drop the flush lock now,
3540 * because we've already locked the buffer and to do anything
3541 * you really need both.
3544 ASSERT(iip->ili_logged == 0);
3545 ASSERT(iip->ili_last_fields == 0);
3546 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3554 return XFS_ERROR(EFSCORRUPTED);
3559 * Flush all inactive inodes in mp.
3569 XFS_MOUNT_ILOCK(mp);
3575 /* Make sure we skip markers inserted by sync */
3576 if (ip->i_mount == NULL) {
3581 vp = XFS_ITOV_NULL(ip);
3583 XFS_MOUNT_IUNLOCK(mp);
3584 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3588 ASSERT(vn_count(vp) == 0);
3591 } while (ip != mp->m_inodes);
3593 XFS_MOUNT_IUNLOCK(mp);
3597 * xfs_iaccess: check accessibility of inode for mode.
3606 mode_t orgmode = mode;
3607 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
3609 if (mode & S_IWUSR) {
3610 umode_t imode = inode->i_mode;
3612 if (IS_RDONLY(inode) &&
3613 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3614 return XFS_ERROR(EROFS);
3616 if (IS_IMMUTABLE(inode))
3617 return XFS_ERROR(EACCES);
3621 * If there's an Access Control List it's used instead of
3624 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3625 return error ? XFS_ERROR(error) : 0;
3627 if (current_fsuid(cr) != ip->i_d.di_uid) {
3629 if (!in_group_p((gid_t)ip->i_d.di_gid))
3634 * If the DACs are ok we don't need any capability check.
3636 if ((ip->i_d.di_mode & mode) == mode)
3639 * Read/write DACs are always overridable.
3640 * Executable DACs are overridable if at least one exec bit is set.
3642 if (!(orgmode & S_IXUSR) ||
3643 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3644 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3647 if ((orgmode == S_IRUSR) ||
3648 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3649 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3652 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3654 return XFS_ERROR(EACCES);
3656 return XFS_ERROR(EACCES);
3660 * xfs_iroundup: round up argument to next power of two
3669 if ((v & (v - 1)) == 0)
3671 ASSERT((v & 0x80000000) == 0);
3672 if ((v & (v + 1)) == 0)
3674 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3678 if ((v & (v + 1)) == 0)
3685 #ifdef XFS_ILOCK_TRACE
3686 ktrace_t *xfs_ilock_trace_buf;
3689 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3691 ktrace_enter(ip->i_lock_trace,
3693 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3694 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3695 (void *)ra, /* caller of ilock */
3696 (void *)(unsigned long)current_cpu(),
3697 (void *)(unsigned long)current_pid(),
3698 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3703 * Return a pointer to the extent record at file index idx.
3705 xfs_bmbt_rec_host_t *
3707 xfs_ifork_t *ifp, /* inode fork pointer */
3708 xfs_extnum_t idx) /* index of target extent */
3711 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3712 return ifp->if_u1.if_ext_irec->er_extbuf;
3713 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3714 xfs_ext_irec_t *erp; /* irec pointer */
3715 int erp_idx = 0; /* irec index */
3716 xfs_extnum_t page_idx = idx; /* ext index in target list */
3718 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3719 return &erp->er_extbuf[page_idx];
3720 } else if (ifp->if_bytes) {
3721 return &ifp->if_u1.if_extents[idx];
3728 * Insert new item(s) into the extent records for incore inode
3729 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3733 xfs_ifork_t *ifp, /* inode fork pointer */
3734 xfs_extnum_t idx, /* starting index of new items */
3735 xfs_extnum_t count, /* number of inserted items */
3736 xfs_bmbt_irec_t *new) /* items to insert */
3738 xfs_extnum_t i; /* extent record index */
3740 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3741 xfs_iext_add(ifp, idx, count);
3742 for (i = idx; i < idx + count; i++, new++)
3743 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3747 * This is called when the amount of space required for incore file
3748 * extents needs to be increased. The ext_diff parameter stores the
3749 * number of new extents being added and the idx parameter contains
3750 * the extent index where the new extents will be added. If the new
3751 * extents are being appended, then we just need to (re)allocate and
3752 * initialize the space. Otherwise, if the new extents are being
3753 * inserted into the middle of the existing entries, a bit more work
3754 * is required to make room for the new extents to be inserted. The
3755 * caller is responsible for filling in the new extent entries upon
3760 xfs_ifork_t *ifp, /* inode fork pointer */
3761 xfs_extnum_t idx, /* index to begin adding exts */
3762 int ext_diff) /* number of extents to add */
3764 int byte_diff; /* new bytes being added */
3765 int new_size; /* size of extents after adding */
3766 xfs_extnum_t nextents; /* number of extents in file */
3768 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3769 ASSERT((idx >= 0) && (idx <= nextents));
3770 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3771 new_size = ifp->if_bytes + byte_diff;
3773 * If the new number of extents (nextents + ext_diff)
3774 * fits inside the inode, then continue to use the inline
3777 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3778 if (idx < nextents) {
3779 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3780 &ifp->if_u2.if_inline_ext[idx],
3781 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3782 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3784 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3785 ifp->if_real_bytes = 0;
3786 ifp->if_lastex = nextents + ext_diff;
3789 * Otherwise use a linear (direct) extent list.
3790 * If the extents are currently inside the inode,
3791 * xfs_iext_realloc_direct will switch us from
3792 * inline to direct extent allocation mode.
3794 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3795 xfs_iext_realloc_direct(ifp, new_size);
3796 if (idx < nextents) {
3797 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3798 &ifp->if_u1.if_extents[idx],
3799 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3800 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3803 /* Indirection array */
3805 xfs_ext_irec_t *erp;
3809 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3810 if (ifp->if_flags & XFS_IFEXTIREC) {
3811 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3813 xfs_iext_irec_init(ifp);
3814 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3815 erp = ifp->if_u1.if_ext_irec;
3817 /* Extents fit in target extent page */
3818 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3819 if (page_idx < erp->er_extcount) {
3820 memmove(&erp->er_extbuf[page_idx + ext_diff],
3821 &erp->er_extbuf[page_idx],
3822 (erp->er_extcount - page_idx) *
3823 sizeof(xfs_bmbt_rec_t));
3824 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3826 erp->er_extcount += ext_diff;
3827 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3829 /* Insert a new extent page */
3831 xfs_iext_add_indirect_multi(ifp,
3832 erp_idx, page_idx, ext_diff);
3835 * If extent(s) are being appended to the last page in
3836 * the indirection array and the new extent(s) don't fit
3837 * in the page, then erp is NULL and erp_idx is set to
3838 * the next index needed in the indirection array.
3841 int count = ext_diff;
3844 erp = xfs_iext_irec_new(ifp, erp_idx);
3845 erp->er_extcount = count;
3846 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3853 ifp->if_bytes = new_size;
3857 * This is called when incore extents are being added to the indirection
3858 * array and the new extents do not fit in the target extent list. The
3859 * erp_idx parameter contains the irec index for the target extent list
3860 * in the indirection array, and the idx parameter contains the extent
3861 * index within the list. The number of extents being added is stored
3862 * in the count parameter.
3864 * |-------| |-------|
3865 * | | | | idx - number of extents before idx
3867 * | | | | count - number of extents being inserted at idx
3868 * |-------| |-------|
3869 * | count | | nex2 | nex2 - number of extents after idx + count
3870 * |-------| |-------|
3873 xfs_iext_add_indirect_multi(
3874 xfs_ifork_t *ifp, /* inode fork pointer */
3875 int erp_idx, /* target extent irec index */
3876 xfs_extnum_t idx, /* index within target list */
3877 int count) /* new extents being added */
3879 int byte_diff; /* new bytes being added */
3880 xfs_ext_irec_t *erp; /* pointer to irec entry */
3881 xfs_extnum_t ext_diff; /* number of extents to add */
3882 xfs_extnum_t ext_cnt; /* new extents still needed */
3883 xfs_extnum_t nex2; /* extents after idx + count */
3884 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3885 int nlists; /* number of irec's (lists) */
3887 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3888 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3889 nex2 = erp->er_extcount - idx;
3890 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3893 * Save second part of target extent list
3894 * (all extents past */
3896 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3897 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3898 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3899 erp->er_extcount -= nex2;
3900 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3901 memset(&erp->er_extbuf[idx], 0, byte_diff);
3905 * Add the new extents to the end of the target
3906 * list, then allocate new irec record(s) and
3907 * extent buffer(s) as needed to store the rest
3908 * of the new extents.
3911 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3913 erp->er_extcount += ext_diff;
3914 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3915 ext_cnt -= ext_diff;
3919 erp = xfs_iext_irec_new(ifp, erp_idx);
3920 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3921 erp->er_extcount = ext_diff;
3922 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3923 ext_cnt -= ext_diff;
3926 /* Add nex2 extents back to indirection array */
3928 xfs_extnum_t ext_avail;
3931 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3932 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3935 * If nex2 extents fit in the current page, append
3936 * nex2_ep after the new extents.
3938 if (nex2 <= ext_avail) {
3939 i = erp->er_extcount;
3942 * Otherwise, check if space is available in the
3945 else if ((erp_idx < nlists - 1) &&
3946 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3947 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3950 /* Create a hole for nex2 extents */
3951 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3952 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3955 * Final choice, create a new extent page for
3960 erp = xfs_iext_irec_new(ifp, erp_idx);
3962 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3963 kmem_free(nex2_ep, byte_diff);
3964 erp->er_extcount += nex2;
3965 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3970 * This is called when the amount of space required for incore file
3971 * extents needs to be decreased. The ext_diff parameter stores the
3972 * number of extents to be removed and the idx parameter contains
3973 * the extent index where the extents will be removed from.
3975 * If the amount of space needed has decreased below the linear
3976 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3977 * extent array. Otherwise, use kmem_realloc() to adjust the
3978 * size to what is needed.
3982 xfs_ifork_t *ifp, /* inode fork pointer */
3983 xfs_extnum_t idx, /* index to begin removing exts */
3984 int ext_diff) /* number of extents to remove */
3986 xfs_extnum_t nextents; /* number of extents in file */
3987 int new_size; /* size of extents after removal */
3989 ASSERT(ext_diff > 0);
3990 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3991 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3993 if (new_size == 0) {
3994 xfs_iext_destroy(ifp);
3995 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3996 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3997 } else if (ifp->if_real_bytes) {
3998 xfs_iext_remove_direct(ifp, idx, ext_diff);
4000 xfs_iext_remove_inline(ifp, idx, ext_diff);
4002 ifp->if_bytes = new_size;
4006 * This removes ext_diff extents from the inline buffer, beginning
4007 * at extent index idx.
4010 xfs_iext_remove_inline(
4011 xfs_ifork_t *ifp, /* inode fork pointer */
4012 xfs_extnum_t idx, /* index to begin removing exts */
4013 int ext_diff) /* number of extents to remove */
4015 int nextents; /* number of extents in file */
4017 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4018 ASSERT(idx < XFS_INLINE_EXTS);
4019 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4020 ASSERT(((nextents - ext_diff) > 0) &&
4021 (nextents - ext_diff) < XFS_INLINE_EXTS);
4023 if (idx + ext_diff < nextents) {
4024 memmove(&ifp->if_u2.if_inline_ext[idx],
4025 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4026 (nextents - (idx + ext_diff)) *
4027 sizeof(xfs_bmbt_rec_t));
4028 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4029 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4031 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4032 ext_diff * sizeof(xfs_bmbt_rec_t));
4037 * This removes ext_diff extents from a linear (direct) extent list,
4038 * beginning at extent index idx. If the extents are being removed
4039 * from the end of the list (ie. truncate) then we just need to re-
4040 * allocate the list to remove the extra space. Otherwise, if the
4041 * extents are being removed from the middle of the existing extent
4042 * entries, then we first need to move the extent records beginning
4043 * at idx + ext_diff up in the list to overwrite the records being
4044 * removed, then remove the extra space via kmem_realloc.
4047 xfs_iext_remove_direct(
4048 xfs_ifork_t *ifp, /* inode fork pointer */
4049 xfs_extnum_t idx, /* index to begin removing exts */
4050 int ext_diff) /* number of extents to remove */
4052 xfs_extnum_t nextents; /* number of extents in file */
4053 int new_size; /* size of extents after removal */
4055 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4056 new_size = ifp->if_bytes -
4057 (ext_diff * sizeof(xfs_bmbt_rec_t));
4058 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4060 if (new_size == 0) {
4061 xfs_iext_destroy(ifp);
4064 /* Move extents up in the list (if needed) */
4065 if (idx + ext_diff < nextents) {
4066 memmove(&ifp->if_u1.if_extents[idx],
4067 &ifp->if_u1.if_extents[idx + ext_diff],
4068 (nextents - (idx + ext_diff)) *
4069 sizeof(xfs_bmbt_rec_t));
4071 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4072 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4074 * Reallocate the direct extent list. If the extents
4075 * will fit inside the inode then xfs_iext_realloc_direct
4076 * will switch from direct to inline extent allocation
4079 xfs_iext_realloc_direct(ifp, new_size);
4080 ifp->if_bytes = new_size;
4084 * This is called when incore extents are being removed from the
4085 * indirection array and the extents being removed span multiple extent
4086 * buffers. The idx parameter contains the file extent index where we
4087 * want to begin removing extents, and the count parameter contains
4088 * how many extents need to be removed.
4090 * |-------| |-------|
4091 * | nex1 | | | nex1 - number of extents before idx
4092 * |-------| | count |
4093 * | | | | count - number of extents being removed at idx
4094 * | count | |-------|
4095 * | | | nex2 | nex2 - number of extents after idx + count
4096 * |-------| |-------|
4099 xfs_iext_remove_indirect(
4100 xfs_ifork_t *ifp, /* inode fork pointer */
4101 xfs_extnum_t idx, /* index to begin removing extents */
4102 int count) /* number of extents to remove */
4104 xfs_ext_irec_t *erp; /* indirection array pointer */
4105 int erp_idx = 0; /* indirection array index */
4106 xfs_extnum_t ext_cnt; /* extents left to remove */
4107 xfs_extnum_t ext_diff; /* extents to remove in current list */
4108 xfs_extnum_t nex1; /* number of extents before idx */
4109 xfs_extnum_t nex2; /* extents after idx + count */
4110 int nlists; /* entries in indirection array */
4111 int page_idx = idx; /* index in target extent list */
4113 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4114 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4115 ASSERT(erp != NULL);
4116 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4120 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4121 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4123 * Check for deletion of entire list;
4124 * xfs_iext_irec_remove() updates extent offsets.
4126 if (ext_diff == erp->er_extcount) {
4127 xfs_iext_irec_remove(ifp, erp_idx);
4128 ext_cnt -= ext_diff;
4131 ASSERT(erp_idx < ifp->if_real_bytes /
4133 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4140 /* Move extents up (if needed) */
4142 memmove(&erp->er_extbuf[nex1],
4143 &erp->er_extbuf[nex1 + ext_diff],
4144 nex2 * sizeof(xfs_bmbt_rec_t));
4146 /* Zero out rest of page */
4147 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4148 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4149 /* Update remaining counters */
4150 erp->er_extcount -= ext_diff;
4151 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4152 ext_cnt -= ext_diff;
4157 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4158 xfs_iext_irec_compact(ifp);
4162 * Create, destroy, or resize a linear (direct) block of extents.
4165 xfs_iext_realloc_direct(
4166 xfs_ifork_t *ifp, /* inode fork pointer */
4167 int new_size) /* new size of extents */
4169 int rnew_size; /* real new size of extents */
4171 rnew_size = new_size;
4173 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4174 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4175 (new_size != ifp->if_real_bytes)));
4177 /* Free extent records */
4178 if (new_size == 0) {
4179 xfs_iext_destroy(ifp);
4181 /* Resize direct extent list and zero any new bytes */
4182 else if (ifp->if_real_bytes) {
4183 /* Check if extents will fit inside the inode */
4184 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4185 xfs_iext_direct_to_inline(ifp, new_size /
4186 (uint)sizeof(xfs_bmbt_rec_t));
4187 ifp->if_bytes = new_size;
4190 if (!is_power_of_2(new_size)){
4191 rnew_size = xfs_iroundup(new_size);
4193 if (rnew_size != ifp->if_real_bytes) {
4194 ifp->if_u1.if_extents =
4195 kmem_realloc(ifp->if_u1.if_extents,
4200 if (rnew_size > ifp->if_real_bytes) {
4201 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4202 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4203 rnew_size - ifp->if_real_bytes);
4207 * Switch from the inline extent buffer to a direct
4208 * extent list. Be sure to include the inline extent
4209 * bytes in new_size.
4212 new_size += ifp->if_bytes;
4213 if (!is_power_of_2(new_size)) {
4214 rnew_size = xfs_iroundup(new_size);
4216 xfs_iext_inline_to_direct(ifp, rnew_size);
4218 ifp->if_real_bytes = rnew_size;
4219 ifp->if_bytes = new_size;
4223 * Switch from linear (direct) extent records to inline buffer.
4226 xfs_iext_direct_to_inline(
4227 xfs_ifork_t *ifp, /* inode fork pointer */
4228 xfs_extnum_t nextents) /* number of extents in file */
4230 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4231 ASSERT(nextents <= XFS_INLINE_EXTS);
4233 * The inline buffer was zeroed when we switched
4234 * from inline to direct extent allocation mode,
4235 * so we don't need to clear it here.
4237 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4238 nextents * sizeof(xfs_bmbt_rec_t));
4239 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4240 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4241 ifp->if_real_bytes = 0;
4245 * Switch from inline buffer to linear (direct) extent records.
4246 * new_size should already be rounded up to the next power of 2
4247 * by the caller (when appropriate), so use new_size as it is.
4248 * However, since new_size may be rounded up, we can't update
4249 * if_bytes here. It is the caller's responsibility to update
4250 * if_bytes upon return.
4253 xfs_iext_inline_to_direct(
4254 xfs_ifork_t *ifp, /* inode fork pointer */
4255 int new_size) /* number of extents in file */
4257 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4258 memset(ifp->if_u1.if_extents, 0, new_size);
4259 if (ifp->if_bytes) {
4260 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4262 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4263 sizeof(xfs_bmbt_rec_t));
4265 ifp->if_real_bytes = new_size;
4269 * Resize an extent indirection array to new_size bytes.
4272 xfs_iext_realloc_indirect(
4273 xfs_ifork_t *ifp, /* inode fork pointer */
4274 int new_size) /* new indirection array size */
4276 int nlists; /* number of irec's (ex lists) */
4277 int size; /* current indirection array size */
4279 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4280 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4281 size = nlists * sizeof(xfs_ext_irec_t);
4282 ASSERT(ifp->if_real_bytes);
4283 ASSERT((new_size >= 0) && (new_size != size));
4284 if (new_size == 0) {
4285 xfs_iext_destroy(ifp);
4287 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4288 kmem_realloc(ifp->if_u1.if_ext_irec,
4289 new_size, size, KM_SLEEP);
4294 * Switch from indirection array to linear (direct) extent allocations.
4297 xfs_iext_indirect_to_direct(
4298 xfs_ifork_t *ifp) /* inode fork pointer */
4300 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
4301 xfs_extnum_t nextents; /* number of extents in file */
4302 int size; /* size of file extents */
4304 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4305 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4306 ASSERT(nextents <= XFS_LINEAR_EXTS);
4307 size = nextents * sizeof(xfs_bmbt_rec_t);
4309 xfs_iext_irec_compact_full(ifp);
4310 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4312 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4313 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4314 ifp->if_flags &= ~XFS_IFEXTIREC;
4315 ifp->if_u1.if_extents = ep;
4316 ifp->if_bytes = size;
4317 if (nextents < XFS_LINEAR_EXTS) {
4318 xfs_iext_realloc_direct(ifp, size);
4323 * Free incore file extents.
4327 xfs_ifork_t *ifp) /* inode fork pointer */
4329 if (ifp->if_flags & XFS_IFEXTIREC) {
4333 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4334 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4335 xfs_iext_irec_remove(ifp, erp_idx);
4337 ifp->if_flags &= ~XFS_IFEXTIREC;
4338 } else if (ifp->if_real_bytes) {
4339 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4340 } else if (ifp->if_bytes) {
4341 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4342 sizeof(xfs_bmbt_rec_t));
4344 ifp->if_u1.if_extents = NULL;
4345 ifp->if_real_bytes = 0;
4350 * Return a pointer to the extent record for file system block bno.
4352 xfs_bmbt_rec_host_t * /* pointer to found extent record */
4353 xfs_iext_bno_to_ext(
4354 xfs_ifork_t *ifp, /* inode fork pointer */
4355 xfs_fileoff_t bno, /* block number to search for */
4356 xfs_extnum_t *idxp) /* index of target extent */
4358 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
4359 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4360 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
4361 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4362 int high; /* upper boundary in search */
4363 xfs_extnum_t idx = 0; /* index of target extent */
4364 int low; /* lower boundary in search */
4365 xfs_extnum_t nextents; /* number of file extents */
4366 xfs_fileoff_t startoff = 0; /* start offset of extent */
4368 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4369 if (nextents == 0) {
4374 if (ifp->if_flags & XFS_IFEXTIREC) {
4375 /* Find target extent list */
4377 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4378 base = erp->er_extbuf;
4379 high = erp->er_extcount - 1;
4381 base = ifp->if_u1.if_extents;
4382 high = nextents - 1;
4384 /* Binary search extent records */
4385 while (low <= high) {
4386 idx = (low + high) >> 1;
4388 startoff = xfs_bmbt_get_startoff(ep);
4389 blockcount = xfs_bmbt_get_blockcount(ep);
4390 if (bno < startoff) {
4392 } else if (bno >= startoff + blockcount) {
4395 /* Convert back to file-based extent index */
4396 if (ifp->if_flags & XFS_IFEXTIREC) {
4397 idx += erp->er_extoff;
4403 /* Convert back to file-based extent index */
4404 if (ifp->if_flags & XFS_IFEXTIREC) {
4405 idx += erp->er_extoff;
4407 if (bno >= startoff + blockcount) {
4408 if (++idx == nextents) {
4411 ep = xfs_iext_get_ext(ifp, idx);
4419 * Return a pointer to the indirection array entry containing the
4420 * extent record for filesystem block bno. Store the index of the
4421 * target irec in *erp_idxp.
4423 xfs_ext_irec_t * /* pointer to found extent record */
4424 xfs_iext_bno_to_irec(
4425 xfs_ifork_t *ifp, /* inode fork pointer */
4426 xfs_fileoff_t bno, /* block number to search for */
4427 int *erp_idxp) /* irec index of target ext list */
4429 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4430 xfs_ext_irec_t *erp_next; /* next indirection array entry */
4431 int erp_idx; /* indirection array index */
4432 int nlists; /* number of extent irec's (lists) */
4433 int high; /* binary search upper limit */
4434 int low; /* binary search lower limit */
4436 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4437 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4441 while (low <= high) {
4442 erp_idx = (low + high) >> 1;
4443 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4444 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4445 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4447 } else if (erp_next && bno >=
4448 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4454 *erp_idxp = erp_idx;
4459 * Return a pointer to the indirection array entry containing the
4460 * extent record at file extent index *idxp. Store the index of the
4461 * target irec in *erp_idxp and store the page index of the target
4462 * extent record in *idxp.
4465 xfs_iext_idx_to_irec(
4466 xfs_ifork_t *ifp, /* inode fork pointer */
4467 xfs_extnum_t *idxp, /* extent index (file -> page) */
4468 int *erp_idxp, /* pointer to target irec */
4469 int realloc) /* new bytes were just added */
4471 xfs_ext_irec_t *prev; /* pointer to previous irec */
4472 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4473 int erp_idx; /* indirection array index */
4474 int nlists; /* number of irec's (ex lists) */
4475 int high; /* binary search upper limit */
4476 int low; /* binary search lower limit */
4477 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4479 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4480 ASSERT(page_idx >= 0 && page_idx <=
4481 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4482 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4487 /* Binary search extent irec's */
4488 while (low <= high) {
4489 erp_idx = (low + high) >> 1;
4490 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4491 prev = erp_idx > 0 ? erp - 1 : NULL;
4492 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4493 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4495 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4496 (page_idx == erp->er_extoff + erp->er_extcount &&
4499 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4500 erp->er_extcount == XFS_LINEAR_EXTS) {
4504 erp = erp_idx < nlists ? erp + 1 : NULL;
4507 page_idx -= erp->er_extoff;
4512 *erp_idxp = erp_idx;
4517 * Allocate and initialize an indirection array once the space needed
4518 * for incore extents increases above XFS_IEXT_BUFSZ.
4522 xfs_ifork_t *ifp) /* inode fork pointer */
4524 xfs_ext_irec_t *erp; /* indirection array pointer */
4525 xfs_extnum_t nextents; /* number of extents in file */
4527 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4528 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4529 ASSERT(nextents <= XFS_LINEAR_EXTS);
4531 erp = (xfs_ext_irec_t *)
4532 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4534 if (nextents == 0) {
4535 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4536 } else if (!ifp->if_real_bytes) {
4537 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4538 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4539 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4541 erp->er_extbuf = ifp->if_u1.if_extents;
4542 erp->er_extcount = nextents;
4545 ifp->if_flags |= XFS_IFEXTIREC;
4546 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4547 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4548 ifp->if_u1.if_ext_irec = erp;
4554 * Allocate and initialize a new entry in the indirection array.
4558 xfs_ifork_t *ifp, /* inode fork pointer */
4559 int erp_idx) /* index for new irec */
4561 xfs_ext_irec_t *erp; /* indirection array pointer */
4562 int i; /* loop counter */
4563 int nlists; /* number of irec's (ex lists) */
4565 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4566 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4568 /* Resize indirection array */
4569 xfs_iext_realloc_indirect(ifp, ++nlists *
4570 sizeof(xfs_ext_irec_t));
4572 * Move records down in the array so the
4573 * new page can use erp_idx.
4575 erp = ifp->if_u1.if_ext_irec;
4576 for (i = nlists - 1; i > erp_idx; i--) {
4577 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4579 ASSERT(i == erp_idx);
4581 /* Initialize new extent record */
4582 erp = ifp->if_u1.if_ext_irec;
4583 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4584 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4585 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4586 erp[erp_idx].er_extcount = 0;
4587 erp[erp_idx].er_extoff = erp_idx > 0 ?
4588 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4589 return (&erp[erp_idx]);
4593 * Remove a record from the indirection array.
4596 xfs_iext_irec_remove(
4597 xfs_ifork_t *ifp, /* inode fork pointer */
4598 int erp_idx) /* irec index to remove */
4600 xfs_ext_irec_t *erp; /* indirection array pointer */
4601 int i; /* loop counter */
4602 int nlists; /* number of irec's (ex lists) */
4604 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4605 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4606 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4607 if (erp->er_extbuf) {
4608 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4610 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4612 /* Compact extent records */
4613 erp = ifp->if_u1.if_ext_irec;
4614 for (i = erp_idx; i < nlists - 1; i++) {
4615 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4618 * Manually free the last extent record from the indirection
4619 * array. A call to xfs_iext_realloc_indirect() with a size
4620 * of zero would result in a call to xfs_iext_destroy() which
4621 * would in turn call this function again, creating a nasty
4625 xfs_iext_realloc_indirect(ifp,
4626 nlists * sizeof(xfs_ext_irec_t));
4628 kmem_free(ifp->if_u1.if_ext_irec,
4629 sizeof(xfs_ext_irec_t));
4631 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4635 * This is called to clean up large amounts of unused memory allocated
4636 * by the indirection array. Before compacting anything though, verify
4637 * that the indirection array is still needed and switch back to the
4638 * linear extent list (or even the inline buffer) if possible. The
4639 * compaction policy is as follows:
4641 * Full Compaction: Extents fit into a single page (or inline buffer)
4642 * Full Compaction: Extents occupy less than 10% of allocated space
4643 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4644 * No Compaction: Extents occupy at least 50% of allocated space
4647 xfs_iext_irec_compact(
4648 xfs_ifork_t *ifp) /* inode fork pointer */
4650 xfs_extnum_t nextents; /* number of extents in file */
4651 int nlists; /* number of irec's (ex lists) */
4653 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4654 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4655 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4657 if (nextents == 0) {
4658 xfs_iext_destroy(ifp);
4659 } else if (nextents <= XFS_INLINE_EXTS) {
4660 xfs_iext_indirect_to_direct(ifp);
4661 xfs_iext_direct_to_inline(ifp, nextents);
4662 } else if (nextents <= XFS_LINEAR_EXTS) {
4663 xfs_iext_indirect_to_direct(ifp);
4664 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4665 xfs_iext_irec_compact_full(ifp);
4666 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4667 xfs_iext_irec_compact_pages(ifp);
4672 * Combine extents from neighboring extent pages.
4675 xfs_iext_irec_compact_pages(
4676 xfs_ifork_t *ifp) /* inode fork pointer */
4678 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4679 int erp_idx = 0; /* indirection array index */
4680 int nlists; /* number of irec's (ex lists) */
4682 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4683 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4684 while (erp_idx < nlists - 1) {
4685 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4687 if (erp_next->er_extcount <=
4688 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4689 memmove(&erp->er_extbuf[erp->er_extcount],
4690 erp_next->er_extbuf, erp_next->er_extcount *
4691 sizeof(xfs_bmbt_rec_t));
4692 erp->er_extcount += erp_next->er_extcount;
4694 * Free page before removing extent record
4695 * so er_extoffs don't get modified in
4696 * xfs_iext_irec_remove.
4698 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4699 erp_next->er_extbuf = NULL;
4700 xfs_iext_irec_remove(ifp, erp_idx + 1);
4701 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4709 * Fully compact the extent records managed by the indirection array.
4712 xfs_iext_irec_compact_full(
4713 xfs_ifork_t *ifp) /* inode fork pointer */
4715 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
4716 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4717 int erp_idx = 0; /* extent irec index */
4718 int ext_avail; /* empty entries in ex list */
4719 int ext_diff; /* number of exts to add */
4720 int nlists; /* number of irec's (ex lists) */
4722 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4723 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4724 erp = ifp->if_u1.if_ext_irec;
4725 ep = &erp->er_extbuf[erp->er_extcount];
4727 ep_next = erp_next->er_extbuf;
4728 while (erp_idx < nlists - 1) {
4729 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4730 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4731 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4732 erp->er_extcount += ext_diff;
4733 erp_next->er_extcount -= ext_diff;
4734 /* Remove next page */
4735 if (erp_next->er_extcount == 0) {
4737 * Free page before removing extent record
4738 * so er_extoffs don't get modified in
4739 * xfs_iext_irec_remove.
4741 kmem_free(erp_next->er_extbuf,
4742 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4743 erp_next->er_extbuf = NULL;
4744 xfs_iext_irec_remove(ifp, erp_idx + 1);
4745 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4746 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4747 /* Update next page */
4749 /* Move rest of page up to become next new page */
4750 memmove(erp_next->er_extbuf, ep_next,
4751 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4752 ep_next = erp_next->er_extbuf;
4753 memset(&ep_next[erp_next->er_extcount], 0,
4754 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4755 sizeof(xfs_bmbt_rec_t));
4757 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4759 if (erp_idx < nlists)
4760 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4764 ep = &erp->er_extbuf[erp->er_extcount];
4766 ep_next = erp_next->er_extbuf;
4771 * This is called to update the er_extoff field in the indirection
4772 * array when extents have been added or removed from one of the
4773 * extent lists. erp_idx contains the irec index to begin updating
4774 * at and ext_diff contains the number of extents that were added
4778 xfs_iext_irec_update_extoffs(
4779 xfs_ifork_t *ifp, /* inode fork pointer */
4780 int erp_idx, /* irec index to update */
4781 int ext_diff) /* number of new extents */
4783 int i; /* loop counter */
4784 int nlists; /* number of irec's (ex lists */
4786 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4787 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4788 for (i = erp_idx; i < nlists; i++) {
4789 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;