2 * Linux Socket Filter - Kernel level socket filtering
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
20 * Andi Kleen - Fix a few bad bugs and races.
21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
24 #include <uapi/linux/btf.h>
25 #include <linux/filter.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/random.h>
29 #include <linux/moduleloader.h>
30 #include <linux/bpf.h>
31 #include <linux/btf.h>
32 #include <linux/frame.h>
33 #include <linux/rbtree_latch.h>
34 #include <linux/kallsyms.h>
35 #include <linux/rcupdate.h>
36 #include <linux/perf_event.h>
38 #include <asm/unaligned.h>
41 #define BPF_R0 regs[BPF_REG_0]
42 #define BPF_R1 regs[BPF_REG_1]
43 #define BPF_R2 regs[BPF_REG_2]
44 #define BPF_R3 regs[BPF_REG_3]
45 #define BPF_R4 regs[BPF_REG_4]
46 #define BPF_R5 regs[BPF_REG_5]
47 #define BPF_R6 regs[BPF_REG_6]
48 #define BPF_R7 regs[BPF_REG_7]
49 #define BPF_R8 regs[BPF_REG_8]
50 #define BPF_R9 regs[BPF_REG_9]
51 #define BPF_R10 regs[BPF_REG_10]
54 #define DST regs[insn->dst_reg]
55 #define SRC regs[insn->src_reg]
56 #define FP regs[BPF_REG_FP]
57 #define AX regs[BPF_REG_AX]
58 #define ARG1 regs[BPF_REG_ARG1]
59 #define CTX regs[BPF_REG_CTX]
62 /* No hurry in this branch
64 * Exported for the bpf jit load helper.
66 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
71 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
72 else if (k >= SKF_LL_OFF)
73 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
75 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
81 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
83 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
84 struct bpf_prog_aux *aux;
87 size = round_up(size, PAGE_SIZE);
88 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
92 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
98 fp->pages = size / PAGE_SIZE;
101 fp->jit_requested = ebpf_jit_enabled();
103 INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
107 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
109 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
111 if (!prog->aux->nr_linfo || !prog->jit_requested)
114 prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
115 sizeof(*prog->aux->jited_linfo),
116 GFP_KERNEL | __GFP_NOWARN);
117 if (!prog->aux->jited_linfo)
123 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
125 kfree(prog->aux->jited_linfo);
126 prog->aux->jited_linfo = NULL;
129 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
131 if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
132 bpf_prog_free_jited_linfo(prog);
135 /* The jit engine is responsible to provide an array
136 * for insn_off to the jited_off mapping (insn_to_jit_off).
138 * The idx to this array is the insn_off. Hence, the insn_off
139 * here is relative to the prog itself instead of the main prog.
140 * This array has one entry for each xlated bpf insn.
142 * jited_off is the byte off to the last byte of the jited insn.
146 * The first bpf insn off of the prog. The insn off
147 * here is relative to the main prog.
148 * e.g. if prog is a subprog, insn_start > 0
150 * The prog's idx to prog->aux->linfo and jited_linfo
152 * jited_linfo[linfo_idx] = prog->bpf_func
156 * jited_linfo[i] = prog->bpf_func +
157 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
159 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
160 const u32 *insn_to_jit_off)
162 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
163 const struct bpf_line_info *linfo;
166 if (!prog->aux->jited_linfo)
167 /* Userspace did not provide linfo */
170 linfo_idx = prog->aux->linfo_idx;
171 linfo = &prog->aux->linfo[linfo_idx];
172 insn_start = linfo[0].insn_off;
173 insn_end = insn_start + prog->len;
175 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
176 jited_linfo[0] = prog->bpf_func;
178 nr_linfo = prog->aux->nr_linfo - linfo_idx;
180 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
181 /* The verifier ensures that linfo[i].insn_off is
182 * strictly increasing
184 jited_linfo[i] = prog->bpf_func +
185 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
188 void bpf_prog_free_linfo(struct bpf_prog *prog)
190 bpf_prog_free_jited_linfo(prog);
191 kvfree(prog->aux->linfo);
194 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
195 gfp_t gfp_extra_flags)
197 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
202 BUG_ON(fp_old == NULL);
204 size = round_up(size, PAGE_SIZE);
205 pages = size / PAGE_SIZE;
206 if (pages <= fp_old->pages)
209 delta = pages - fp_old->pages;
210 ret = __bpf_prog_charge(fp_old->aux->user, delta);
214 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
216 __bpf_prog_uncharge(fp_old->aux->user, delta);
218 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
222 /* We keep fp->aux from fp_old around in the new
223 * reallocated structure.
226 __bpf_prog_free(fp_old);
232 void __bpf_prog_free(struct bpf_prog *fp)
238 int bpf_prog_calc_tag(struct bpf_prog *fp)
240 const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
241 u32 raw_size = bpf_prog_tag_scratch_size(fp);
242 u32 digest[SHA_DIGEST_WORDS];
243 u32 ws[SHA_WORKSPACE_WORDS];
244 u32 i, bsize, psize, blocks;
245 struct bpf_insn *dst;
251 raw = vmalloc(raw_size);
256 memset(ws, 0, sizeof(ws));
258 /* We need to take out the map fd for the digest calculation
259 * since they are unstable from user space side.
262 for (i = 0, was_ld_map = false; i < fp->len; i++) {
263 dst[i] = fp->insnsi[i];
265 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
266 dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
269 } else if (was_ld_map &&
271 dst[i].dst_reg == 0 &&
272 dst[i].src_reg == 0 &&
281 psize = bpf_prog_insn_size(fp);
282 memset(&raw[psize], 0, raw_size - psize);
285 bsize = round_up(psize, SHA_MESSAGE_BYTES);
286 blocks = bsize / SHA_MESSAGE_BYTES;
288 if (bsize - psize >= sizeof(__be64)) {
289 bits = (__be64 *)(todo + bsize - sizeof(__be64));
291 bits = (__be64 *)(todo + bsize + bits_offset);
294 *bits = cpu_to_be64((psize - 1) << 3);
297 sha_transform(digest, todo, ws);
298 todo += SHA_MESSAGE_BYTES;
301 result = (__force __be32 *)digest;
302 for (i = 0; i < SHA_DIGEST_WORDS; i++)
303 result[i] = cpu_to_be32(digest[i]);
304 memcpy(fp->tag, result, sizeof(fp->tag));
310 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, u32 delta,
311 u32 curr, const bool probe_pass)
313 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
316 if (curr < pos && curr + imm + 1 > pos)
318 else if (curr > pos + delta && curr + imm + 1 <= pos + delta)
320 if (imm < imm_min || imm > imm_max)
327 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, u32 delta,
328 u32 curr, const bool probe_pass)
330 const s32 off_min = S16_MIN, off_max = S16_MAX;
333 if (curr < pos && curr + off + 1 > pos)
335 else if (curr > pos + delta && curr + off + 1 <= pos + delta)
337 if (off < off_min || off > off_max)
344 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta,
345 const bool probe_pass)
347 u32 i, insn_cnt = prog->len + (probe_pass ? delta : 0);
348 struct bpf_insn *insn = prog->insnsi;
351 for (i = 0; i < insn_cnt; i++, insn++) {
354 /* In the probing pass we still operate on the original,
355 * unpatched image in order to check overflows before we
356 * do any other adjustments. Therefore skip the patchlet.
358 if (probe_pass && i == pos) {
363 if (BPF_CLASS(code) != BPF_JMP ||
364 BPF_OP(code) == BPF_EXIT)
366 /* Adjust offset of jmps if we cross patch boundaries. */
367 if (BPF_OP(code) == BPF_CALL) {
368 if (insn->src_reg != BPF_PSEUDO_CALL)
370 ret = bpf_adj_delta_to_imm(insn, pos, delta, i,
373 ret = bpf_adj_delta_to_off(insn, pos, delta, i,
383 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
385 struct bpf_line_info *linfo;
388 nr_linfo = prog->aux->nr_linfo;
389 if (!nr_linfo || !delta)
392 linfo = prog->aux->linfo;
394 for (i = 0; i < nr_linfo; i++)
395 if (off < linfo[i].insn_off)
398 /* Push all off < linfo[i].insn_off by delta */
399 for (; i < nr_linfo; i++)
400 linfo[i].insn_off += delta;
403 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
404 const struct bpf_insn *patch, u32 len)
406 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
407 const u32 cnt_max = S16_MAX;
408 struct bpf_prog *prog_adj;
410 /* Since our patchlet doesn't expand the image, we're done. */
411 if (insn_delta == 0) {
412 memcpy(prog->insnsi + off, patch, sizeof(*patch));
416 insn_adj_cnt = prog->len + insn_delta;
418 /* Reject anything that would potentially let the insn->off
419 * target overflow when we have excessive program expansions.
420 * We need to probe here before we do any reallocation where
421 * we afterwards may not fail anymore.
423 if (insn_adj_cnt > cnt_max &&
424 bpf_adj_branches(prog, off, insn_delta, true))
427 /* Several new instructions need to be inserted. Make room
428 * for them. Likely, there's no need for a new allocation as
429 * last page could have large enough tailroom.
431 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
436 prog_adj->len = insn_adj_cnt;
438 /* Patching happens in 3 steps:
440 * 1) Move over tail of insnsi from next instruction onwards,
441 * so we can patch the single target insn with one or more
442 * new ones (patching is always from 1 to n insns, n > 0).
443 * 2) Inject new instructions at the target location.
444 * 3) Adjust branch offsets if necessary.
446 insn_rest = insn_adj_cnt - off - len;
448 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
449 sizeof(*patch) * insn_rest);
450 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
452 /* We are guaranteed to not fail at this point, otherwise
453 * the ship has sailed to reverse to the original state. An
454 * overflow cannot happen at this point.
456 BUG_ON(bpf_adj_branches(prog_adj, off, insn_delta, false));
458 bpf_adj_linfo(prog_adj, off, insn_delta);
463 void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
467 for (i = 0; i < fp->aux->func_cnt; i++)
468 bpf_prog_kallsyms_del(fp->aux->func[i]);
471 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
473 bpf_prog_kallsyms_del_subprogs(fp);
474 bpf_prog_kallsyms_del(fp);
477 #ifdef CONFIG_BPF_JIT
478 /* All BPF JIT sysctl knobs here. */
479 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
480 int bpf_jit_harden __read_mostly;
481 int bpf_jit_kallsyms __read_mostly;
482 long bpf_jit_limit __read_mostly;
484 static __always_inline void
485 bpf_get_prog_addr_region(const struct bpf_prog *prog,
486 unsigned long *symbol_start,
487 unsigned long *symbol_end)
489 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
490 unsigned long addr = (unsigned long)hdr;
492 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
494 *symbol_start = addr;
495 *symbol_end = addr + hdr->pages * PAGE_SIZE;
498 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
500 const char *end = sym + KSYM_NAME_LEN;
501 const struct btf_type *type;
502 const char *func_name;
504 BUILD_BUG_ON(sizeof("bpf_prog_") +
505 sizeof(prog->tag) * 2 +
506 /* name has been null terminated.
507 * We should need +1 for the '_' preceding
508 * the name. However, the null character
509 * is double counted between the name and the
510 * sizeof("bpf_prog_") above, so we omit
513 sizeof(prog->aux->name) > KSYM_NAME_LEN);
515 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
516 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
518 /* prog->aux->name will be ignored if full btf name is available */
519 if (prog->aux->func_info_cnt) {
520 type = btf_type_by_id(prog->aux->btf,
521 prog->aux->func_info[prog->aux->func_idx].type_id);
522 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
523 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
527 if (prog->aux->name[0])
528 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
533 static __always_inline unsigned long
534 bpf_get_prog_addr_start(struct latch_tree_node *n)
536 unsigned long symbol_start, symbol_end;
537 const struct bpf_prog_aux *aux;
539 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
540 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
545 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
546 struct latch_tree_node *b)
548 return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
551 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
553 unsigned long val = (unsigned long)key;
554 unsigned long symbol_start, symbol_end;
555 const struct bpf_prog_aux *aux;
557 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
558 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
560 if (val < symbol_start)
562 if (val >= symbol_end)
568 static const struct latch_tree_ops bpf_tree_ops = {
569 .less = bpf_tree_less,
570 .comp = bpf_tree_comp,
573 static DEFINE_SPINLOCK(bpf_lock);
574 static LIST_HEAD(bpf_kallsyms);
575 static struct latch_tree_root bpf_tree __cacheline_aligned;
577 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
579 WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
580 list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
581 latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
584 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
586 if (list_empty(&aux->ksym_lnode))
589 latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
590 list_del_rcu(&aux->ksym_lnode);
593 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
595 return fp->jited && !bpf_prog_was_classic(fp);
598 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
600 return list_empty(&fp->aux->ksym_lnode) ||
601 fp->aux->ksym_lnode.prev == LIST_POISON2;
604 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
606 if (!bpf_prog_kallsyms_candidate(fp) ||
607 !capable(CAP_SYS_ADMIN))
610 spin_lock_bh(&bpf_lock);
611 bpf_prog_ksym_node_add(fp->aux);
612 spin_unlock_bh(&bpf_lock);
615 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
617 if (!bpf_prog_kallsyms_candidate(fp))
620 spin_lock_bh(&bpf_lock);
621 bpf_prog_ksym_node_del(fp->aux);
622 spin_unlock_bh(&bpf_lock);
625 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
627 struct latch_tree_node *n;
629 if (!bpf_jit_kallsyms_enabled())
632 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
634 container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
638 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
639 unsigned long *off, char *sym)
641 unsigned long symbol_start, symbol_end;
642 struct bpf_prog *prog;
646 prog = bpf_prog_kallsyms_find(addr);
648 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
649 bpf_get_prog_name(prog, sym);
653 *size = symbol_end - symbol_start;
655 *off = addr - symbol_start;
662 bool is_bpf_text_address(unsigned long addr)
667 ret = bpf_prog_kallsyms_find(addr) != NULL;
673 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
676 struct bpf_prog_aux *aux;
680 if (!bpf_jit_kallsyms_enabled())
684 list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
688 bpf_get_prog_name(aux->prog, sym);
690 *value = (unsigned long)aux->prog->bpf_func;
691 *type = BPF_SYM_ELF_TYPE;
701 static atomic_long_t bpf_jit_current;
703 /* Can be overridden by an arch's JIT compiler if it has a custom,
704 * dedicated BPF backend memory area, or if neither of the two
707 u64 __weak bpf_jit_alloc_exec_limit(void)
709 #if defined(MODULES_VADDR)
710 return MODULES_END - MODULES_VADDR;
712 return VMALLOC_END - VMALLOC_START;
716 static int __init bpf_jit_charge_init(void)
718 /* Only used as heuristic here to derive limit. */
719 bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
720 PAGE_SIZE), LONG_MAX);
723 pure_initcall(bpf_jit_charge_init);
725 static int bpf_jit_charge_modmem(u32 pages)
727 if (atomic_long_add_return(pages, &bpf_jit_current) >
728 (bpf_jit_limit >> PAGE_SHIFT)) {
729 if (!capable(CAP_SYS_ADMIN)) {
730 atomic_long_sub(pages, &bpf_jit_current);
738 static void bpf_jit_uncharge_modmem(u32 pages)
740 atomic_long_sub(pages, &bpf_jit_current);
743 void *__weak bpf_jit_alloc_exec(unsigned long size)
745 return module_alloc(size);
748 void __weak bpf_jit_free_exec(void *addr)
750 module_memfree(addr);
753 struct bpf_binary_header *
754 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
755 unsigned int alignment,
756 bpf_jit_fill_hole_t bpf_fill_ill_insns)
758 struct bpf_binary_header *hdr;
759 u32 size, hole, start, pages;
761 /* Most of BPF filters are really small, but if some of them
762 * fill a page, allow at least 128 extra bytes to insert a
763 * random section of illegal instructions.
765 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
766 pages = size / PAGE_SIZE;
768 if (bpf_jit_charge_modmem(pages))
770 hdr = bpf_jit_alloc_exec(size);
772 bpf_jit_uncharge_modmem(pages);
776 /* Fill space with illegal/arch-dep instructions. */
777 bpf_fill_ill_insns(hdr, size);
780 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
781 PAGE_SIZE - sizeof(*hdr));
782 start = (get_random_int() % hole) & ~(alignment - 1);
784 /* Leave a random number of instructions before BPF code. */
785 *image_ptr = &hdr->image[start];
790 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
792 u32 pages = hdr->pages;
794 bpf_jit_free_exec(hdr);
795 bpf_jit_uncharge_modmem(pages);
798 /* This symbol is only overridden by archs that have different
799 * requirements than the usual eBPF JITs, f.e. when they only
800 * implement cBPF JIT, do not set images read-only, etc.
802 void __weak bpf_jit_free(struct bpf_prog *fp)
805 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
807 bpf_jit_binary_unlock_ro(hdr);
808 bpf_jit_binary_free(hdr);
810 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
813 bpf_prog_unlock_free(fp);
816 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
817 const struct bpf_insn *insn, bool extra_pass,
818 u64 *func_addr, bool *func_addr_fixed)
824 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
825 if (!*func_addr_fixed) {
826 /* Place-holder address till the last pass has collected
827 * all addresses for JITed subprograms in which case we
828 * can pick them up from prog->aux.
832 else if (prog->aux->func &&
833 off >= 0 && off < prog->aux->func_cnt)
834 addr = (u8 *)prog->aux->func[off]->bpf_func;
838 /* Address of a BPF helper call. Since part of the core
839 * kernel, it's always at a fixed location. __bpf_call_base
840 * and the helper with imm relative to it are both in core
843 addr = (u8 *)__bpf_call_base + imm;
846 *func_addr = (unsigned long)addr;
850 static int bpf_jit_blind_insn(const struct bpf_insn *from,
851 const struct bpf_insn *aux,
852 struct bpf_insn *to_buff)
854 struct bpf_insn *to = to_buff;
855 u32 imm_rnd = get_random_int();
858 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
859 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
861 /* Constraints on AX register:
863 * AX register is inaccessible from user space. It is mapped in
864 * all JITs, and used here for constant blinding rewrites. It is
865 * typically "stateless" meaning its contents are only valid within
866 * the executed instruction, but not across several instructions.
867 * There are a few exceptions however which are further detailed
870 * Constant blinding is only used by JITs, not in the interpreter.
871 * The interpreter uses AX in some occasions as a local temporary
872 * register e.g. in DIV or MOD instructions.
874 * In restricted circumstances, the verifier can also use the AX
875 * register for rewrites as long as they do not interfere with
878 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
881 if (from->imm == 0 &&
882 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
883 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
884 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
888 switch (from->code) {
889 case BPF_ALU | BPF_ADD | BPF_K:
890 case BPF_ALU | BPF_SUB | BPF_K:
891 case BPF_ALU | BPF_AND | BPF_K:
892 case BPF_ALU | BPF_OR | BPF_K:
893 case BPF_ALU | BPF_XOR | BPF_K:
894 case BPF_ALU | BPF_MUL | BPF_K:
895 case BPF_ALU | BPF_MOV | BPF_K:
896 case BPF_ALU | BPF_DIV | BPF_K:
897 case BPF_ALU | BPF_MOD | BPF_K:
898 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
899 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
900 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
903 case BPF_ALU64 | BPF_ADD | BPF_K:
904 case BPF_ALU64 | BPF_SUB | BPF_K:
905 case BPF_ALU64 | BPF_AND | BPF_K:
906 case BPF_ALU64 | BPF_OR | BPF_K:
907 case BPF_ALU64 | BPF_XOR | BPF_K:
908 case BPF_ALU64 | BPF_MUL | BPF_K:
909 case BPF_ALU64 | BPF_MOV | BPF_K:
910 case BPF_ALU64 | BPF_DIV | BPF_K:
911 case BPF_ALU64 | BPF_MOD | BPF_K:
912 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
913 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
914 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
917 case BPF_JMP | BPF_JEQ | BPF_K:
918 case BPF_JMP | BPF_JNE | BPF_K:
919 case BPF_JMP | BPF_JGT | BPF_K:
920 case BPF_JMP | BPF_JLT | BPF_K:
921 case BPF_JMP | BPF_JGE | BPF_K:
922 case BPF_JMP | BPF_JLE | BPF_K:
923 case BPF_JMP | BPF_JSGT | BPF_K:
924 case BPF_JMP | BPF_JSLT | BPF_K:
925 case BPF_JMP | BPF_JSGE | BPF_K:
926 case BPF_JMP | BPF_JSLE | BPF_K:
927 case BPF_JMP | BPF_JSET | BPF_K:
928 /* Accommodate for extra offset in case of a backjump. */
932 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
933 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
934 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
937 case BPF_LD | BPF_IMM | BPF_DW:
938 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
939 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
940 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
941 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
943 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
944 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
945 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
946 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
949 case BPF_ST | BPF_MEM | BPF_DW:
950 case BPF_ST | BPF_MEM | BPF_W:
951 case BPF_ST | BPF_MEM | BPF_H:
952 case BPF_ST | BPF_MEM | BPF_B:
953 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
954 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
955 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
962 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
963 gfp_t gfp_extra_flags)
965 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
968 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
970 /* aux->prog still points to the fp_other one, so
971 * when promoting the clone to the real program,
972 * this still needs to be adapted.
974 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
980 static void bpf_prog_clone_free(struct bpf_prog *fp)
982 /* aux was stolen by the other clone, so we cannot free
983 * it from this path! It will be freed eventually by the
984 * other program on release.
986 * At this point, we don't need a deferred release since
987 * clone is guaranteed to not be locked.
993 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
995 /* We have to repoint aux->prog to self, as we don't
996 * know whether fp here is the clone or the original.
999 bpf_prog_clone_free(fp_other);
1002 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1004 struct bpf_insn insn_buff[16], aux[2];
1005 struct bpf_prog *clone, *tmp;
1006 int insn_delta, insn_cnt;
1007 struct bpf_insn *insn;
1010 if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1013 clone = bpf_prog_clone_create(prog, GFP_USER);
1015 return ERR_PTR(-ENOMEM);
1017 insn_cnt = clone->len;
1018 insn = clone->insnsi;
1020 for (i = 0; i < insn_cnt; i++, insn++) {
1021 /* We temporarily need to hold the original ld64 insn
1022 * so that we can still access the first part in the
1023 * second blinding run.
1025 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1027 memcpy(aux, insn, sizeof(aux));
1029 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
1033 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1035 /* Patching may have repointed aux->prog during
1036 * realloc from the original one, so we need to
1037 * fix it up here on error.
1039 bpf_jit_prog_release_other(prog, clone);
1040 return ERR_PTR(-ENOMEM);
1044 insn_delta = rewritten - 1;
1046 /* Walk new program and skip insns we just inserted. */
1047 insn = clone->insnsi + i + insn_delta;
1048 insn_cnt += insn_delta;
1055 #endif /* CONFIG_BPF_JIT */
1057 /* Base function for offset calculation. Needs to go into .text section,
1058 * therefore keeping it non-static as well; will also be used by JITs
1059 * anyway later on, so do not let the compiler omit it. This also needs
1060 * to go into kallsyms for correlation from e.g. bpftool, so naming
1063 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1067 EXPORT_SYMBOL_GPL(__bpf_call_base);
1069 /* All UAPI available opcodes. */
1070 #define BPF_INSN_MAP(INSN_2, INSN_3) \
1071 /* 32 bit ALU operations. */ \
1072 /* Register based. */ \
1073 INSN_3(ALU, ADD, X), \
1074 INSN_3(ALU, SUB, X), \
1075 INSN_3(ALU, AND, X), \
1076 INSN_3(ALU, OR, X), \
1077 INSN_3(ALU, LSH, X), \
1078 INSN_3(ALU, RSH, X), \
1079 INSN_3(ALU, XOR, X), \
1080 INSN_3(ALU, MUL, X), \
1081 INSN_3(ALU, MOV, X), \
1082 INSN_3(ALU, ARSH, X), \
1083 INSN_3(ALU, DIV, X), \
1084 INSN_3(ALU, MOD, X), \
1086 INSN_3(ALU, END, TO_BE), \
1087 INSN_3(ALU, END, TO_LE), \
1088 /* Immediate based. */ \
1089 INSN_3(ALU, ADD, K), \
1090 INSN_3(ALU, SUB, K), \
1091 INSN_3(ALU, AND, K), \
1092 INSN_3(ALU, OR, K), \
1093 INSN_3(ALU, LSH, K), \
1094 INSN_3(ALU, RSH, K), \
1095 INSN_3(ALU, XOR, K), \
1096 INSN_3(ALU, MUL, K), \
1097 INSN_3(ALU, MOV, K), \
1098 INSN_3(ALU, ARSH, K), \
1099 INSN_3(ALU, DIV, K), \
1100 INSN_3(ALU, MOD, K), \
1101 /* 64 bit ALU operations. */ \
1102 /* Register based. */ \
1103 INSN_3(ALU64, ADD, X), \
1104 INSN_3(ALU64, SUB, X), \
1105 INSN_3(ALU64, AND, X), \
1106 INSN_3(ALU64, OR, X), \
1107 INSN_3(ALU64, LSH, X), \
1108 INSN_3(ALU64, RSH, X), \
1109 INSN_3(ALU64, XOR, X), \
1110 INSN_3(ALU64, MUL, X), \
1111 INSN_3(ALU64, MOV, X), \
1112 INSN_3(ALU64, ARSH, X), \
1113 INSN_3(ALU64, DIV, X), \
1114 INSN_3(ALU64, MOD, X), \
1115 INSN_2(ALU64, NEG), \
1116 /* Immediate based. */ \
1117 INSN_3(ALU64, ADD, K), \
1118 INSN_3(ALU64, SUB, K), \
1119 INSN_3(ALU64, AND, K), \
1120 INSN_3(ALU64, OR, K), \
1121 INSN_3(ALU64, LSH, K), \
1122 INSN_3(ALU64, RSH, K), \
1123 INSN_3(ALU64, XOR, K), \
1124 INSN_3(ALU64, MUL, K), \
1125 INSN_3(ALU64, MOV, K), \
1126 INSN_3(ALU64, ARSH, K), \
1127 INSN_3(ALU64, DIV, K), \
1128 INSN_3(ALU64, MOD, K), \
1129 /* Call instruction. */ \
1130 INSN_2(JMP, CALL), \
1131 /* Exit instruction. */ \
1132 INSN_2(JMP, EXIT), \
1133 /* Jump instructions. */ \
1134 /* Register based. */ \
1135 INSN_3(JMP, JEQ, X), \
1136 INSN_3(JMP, JNE, X), \
1137 INSN_3(JMP, JGT, X), \
1138 INSN_3(JMP, JLT, X), \
1139 INSN_3(JMP, JGE, X), \
1140 INSN_3(JMP, JLE, X), \
1141 INSN_3(JMP, JSGT, X), \
1142 INSN_3(JMP, JSLT, X), \
1143 INSN_3(JMP, JSGE, X), \
1144 INSN_3(JMP, JSLE, X), \
1145 INSN_3(JMP, JSET, X), \
1146 /* Immediate based. */ \
1147 INSN_3(JMP, JEQ, K), \
1148 INSN_3(JMP, JNE, K), \
1149 INSN_3(JMP, JGT, K), \
1150 INSN_3(JMP, JLT, K), \
1151 INSN_3(JMP, JGE, K), \
1152 INSN_3(JMP, JLE, K), \
1153 INSN_3(JMP, JSGT, K), \
1154 INSN_3(JMP, JSLT, K), \
1155 INSN_3(JMP, JSGE, K), \
1156 INSN_3(JMP, JSLE, K), \
1157 INSN_3(JMP, JSET, K), \
1159 /* Store instructions. */ \
1160 /* Register based. */ \
1161 INSN_3(STX, MEM, B), \
1162 INSN_3(STX, MEM, H), \
1163 INSN_3(STX, MEM, W), \
1164 INSN_3(STX, MEM, DW), \
1165 INSN_3(STX, XADD, W), \
1166 INSN_3(STX, XADD, DW), \
1167 /* Immediate based. */ \
1168 INSN_3(ST, MEM, B), \
1169 INSN_3(ST, MEM, H), \
1170 INSN_3(ST, MEM, W), \
1171 INSN_3(ST, MEM, DW), \
1172 /* Load instructions. */ \
1173 /* Register based. */ \
1174 INSN_3(LDX, MEM, B), \
1175 INSN_3(LDX, MEM, H), \
1176 INSN_3(LDX, MEM, W), \
1177 INSN_3(LDX, MEM, DW), \
1178 /* Immediate based. */ \
1181 bool bpf_opcode_in_insntable(u8 code)
1183 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1184 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1185 static const bool public_insntable[256] = {
1186 [0 ... 255] = false,
1187 /* Now overwrite non-defaults ... */
1188 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1189 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1190 [BPF_LD | BPF_ABS | BPF_B] = true,
1191 [BPF_LD | BPF_ABS | BPF_H] = true,
1192 [BPF_LD | BPF_ABS | BPF_W] = true,
1193 [BPF_LD | BPF_IND | BPF_B] = true,
1194 [BPF_LD | BPF_IND | BPF_H] = true,
1195 [BPF_LD | BPF_IND | BPF_W] = true,
1197 #undef BPF_INSN_3_TBL
1198 #undef BPF_INSN_2_TBL
1199 return public_insntable[code];
1202 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1204 * __bpf_prog_run - run eBPF program on a given context
1205 * @ctx: is the data we are operating on
1206 * @insn: is the array of eBPF instructions
1208 * Decode and execute eBPF instructions.
1210 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1212 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1213 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1214 static const void *jumptable[256] = {
1215 [0 ... 255] = &&default_label,
1216 /* Now overwrite non-defaults ... */
1217 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1218 /* Non-UAPI available opcodes. */
1219 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1220 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1222 #undef BPF_INSN_3_LBL
1223 #undef BPF_INSN_2_LBL
1224 u32 tail_call_cnt = 0;
1226 #define CONT ({ insn++; goto select_insn; })
1227 #define CONT_JMP ({ insn++; goto select_insn; })
1230 goto *jumptable[insn->code];
1233 #define ALU(OPCODE, OP) \
1234 ALU64_##OPCODE##_X: \
1238 DST = (u32) DST OP (u32) SRC; \
1240 ALU64_##OPCODE##_K: \
1244 DST = (u32) DST OP (u32) IMM; \
1275 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1279 DST = (u64) (u32) ((*(s32 *) &DST) >> SRC);
1282 DST = (u64) (u32) ((*(s32 *) &DST) >> IMM);
1285 (*(s64 *) &DST) >>= SRC;
1288 (*(s64 *) &DST) >>= IMM;
1291 div64_u64_rem(DST, SRC, &AX);
1296 DST = do_div(AX, (u32) SRC);
1299 div64_u64_rem(DST, IMM, &AX);
1304 DST = do_div(AX, (u32) IMM);
1307 DST = div64_u64(DST, SRC);
1311 do_div(AX, (u32) SRC);
1315 DST = div64_u64(DST, IMM);
1319 do_div(AX, (u32) IMM);
1325 DST = (__force u16) cpu_to_be16(DST);
1328 DST = (__force u32) cpu_to_be32(DST);
1331 DST = (__force u64) cpu_to_be64(DST);
1338 DST = (__force u16) cpu_to_le16(DST);
1341 DST = (__force u32) cpu_to_le32(DST);
1344 DST = (__force u64) cpu_to_le64(DST);
1351 /* Function call scratches BPF_R1-BPF_R5 registers,
1352 * preserves BPF_R6-BPF_R9, and stores return value
1355 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1360 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1363 insn + insn->off + 1);
1367 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1368 struct bpf_array *array = container_of(map, struct bpf_array, map);
1369 struct bpf_prog *prog;
1372 if (unlikely(index >= array->map.max_entries))
1374 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1379 prog = READ_ONCE(array->ptrs[index]);
1383 /* ARG1 at this point is guaranteed to point to CTX from
1384 * the verifier side due to the fact that the tail call is
1385 * handeled like a helper, that is, bpf_tail_call_proto,
1386 * where arg1_type is ARG_PTR_TO_CTX.
1388 insn = prog->insnsi;
1470 if (((s64) DST) > ((s64) SRC)) {
1476 if (((s64) DST) > ((s64) IMM)) {
1482 if (((s64) DST) < ((s64) SRC)) {
1488 if (((s64) DST) < ((s64) IMM)) {
1494 if (((s64) DST) >= ((s64) SRC)) {
1500 if (((s64) DST) >= ((s64) IMM)) {
1506 if (((s64) DST) <= ((s64) SRC)) {
1512 if (((s64) DST) <= ((s64) IMM)) {
1532 /* STX and ST and LDX*/
1533 #define LDST(SIZEOP, SIZE) \
1535 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1538 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1541 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1549 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1550 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1553 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1554 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1559 /* If we ever reach this, we have a bug somewhere. Die hard here
1560 * instead of just returning 0; we could be somewhere in a subprog,
1561 * so execution could continue otherwise which we do /not/ want.
1563 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1565 pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1569 STACK_FRAME_NON_STANDARD(___bpf_prog_run); /* jump table */
1571 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1572 #define DEFINE_BPF_PROG_RUN(stack_size) \
1573 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1575 u64 stack[stack_size / sizeof(u64)]; \
1576 u64 regs[MAX_BPF_EXT_REG]; \
1578 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1579 ARG1 = (u64) (unsigned long) ctx; \
1580 return ___bpf_prog_run(regs, insn, stack); \
1583 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1584 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1585 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1586 const struct bpf_insn *insn) \
1588 u64 stack[stack_size / sizeof(u64)]; \
1589 u64 regs[MAX_BPF_EXT_REG]; \
1591 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1597 return ___bpf_prog_run(regs, insn, stack); \
1600 #define EVAL1(FN, X) FN(X)
1601 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1602 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1603 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1604 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1605 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1607 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1608 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1609 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1611 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1612 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1613 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1615 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1617 static unsigned int (*interpreters[])(const void *ctx,
1618 const struct bpf_insn *insn) = {
1619 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1620 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1621 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1623 #undef PROG_NAME_LIST
1624 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1625 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1626 const struct bpf_insn *insn) = {
1627 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1628 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1629 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1631 #undef PROG_NAME_LIST
1633 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1635 stack_depth = max_t(u32, stack_depth, 1);
1636 insn->off = (s16) insn->imm;
1637 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1638 __bpf_call_base_args;
1639 insn->code = BPF_JMP | BPF_CALL_ARGS;
1643 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1644 const struct bpf_insn *insn)
1646 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1647 * is not working properly, so warn about it!
1654 bool bpf_prog_array_compatible(struct bpf_array *array,
1655 const struct bpf_prog *fp)
1657 if (fp->kprobe_override)
1660 if (!array->owner_prog_type) {
1661 /* There's no owner yet where we could check for
1664 array->owner_prog_type = fp->type;
1665 array->owner_jited = fp->jited;
1670 return array->owner_prog_type == fp->type &&
1671 array->owner_jited == fp->jited;
1674 static int bpf_check_tail_call(const struct bpf_prog *fp)
1676 struct bpf_prog_aux *aux = fp->aux;
1679 for (i = 0; i < aux->used_map_cnt; i++) {
1680 struct bpf_map *map = aux->used_maps[i];
1681 struct bpf_array *array;
1683 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1686 array = container_of(map, struct bpf_array, map);
1687 if (!bpf_prog_array_compatible(array, fp))
1694 static void bpf_prog_select_func(struct bpf_prog *fp)
1696 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1697 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1699 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1701 fp->bpf_func = __bpf_prog_ret0_warn;
1706 * bpf_prog_select_runtime - select exec runtime for BPF program
1707 * @fp: bpf_prog populated with internal BPF program
1708 * @err: pointer to error variable
1710 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1711 * The BPF program will be executed via BPF_PROG_RUN() macro.
1713 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1715 /* In case of BPF to BPF calls, verifier did all the prep
1716 * work with regards to JITing, etc.
1721 bpf_prog_select_func(fp);
1723 /* eBPF JITs can rewrite the program in case constant
1724 * blinding is active. However, in case of error during
1725 * blinding, bpf_int_jit_compile() must always return a
1726 * valid program, which in this case would simply not
1727 * be JITed, but falls back to the interpreter.
1729 if (!bpf_prog_is_dev_bound(fp->aux)) {
1730 *err = bpf_prog_alloc_jited_linfo(fp);
1734 fp = bpf_int_jit_compile(fp);
1736 bpf_prog_free_jited_linfo(fp);
1737 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1742 bpf_prog_free_unused_jited_linfo(fp);
1745 *err = bpf_prog_offload_compile(fp);
1751 bpf_prog_lock_ro(fp);
1753 /* The tail call compatibility check can only be done at
1754 * this late stage as we need to determine, if we deal
1755 * with JITed or non JITed program concatenations and not
1756 * all eBPF JITs might immediately support all features.
1758 *err = bpf_check_tail_call(fp);
1762 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1764 static unsigned int __bpf_prog_ret1(const void *ctx,
1765 const struct bpf_insn *insn)
1770 static struct bpf_prog_dummy {
1771 struct bpf_prog prog;
1772 } dummy_bpf_prog = {
1774 .bpf_func = __bpf_prog_ret1,
1778 /* to avoid allocating empty bpf_prog_array for cgroups that
1779 * don't have bpf program attached use one global 'empty_prog_array'
1780 * It will not be modified the caller of bpf_prog_array_alloc()
1781 * (since caller requested prog_cnt == 0)
1782 * that pointer should be 'freed' by bpf_prog_array_free()
1785 struct bpf_prog_array hdr;
1786 struct bpf_prog *null_prog;
1787 } empty_prog_array = {
1791 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1794 return kzalloc(sizeof(struct bpf_prog_array) +
1795 sizeof(struct bpf_prog_array_item) *
1799 return &empty_prog_array.hdr;
1802 void bpf_prog_array_free(struct bpf_prog_array __rcu *progs)
1805 progs == (struct bpf_prog_array __rcu *)&empty_prog_array.hdr)
1807 kfree_rcu(progs, rcu);
1810 int bpf_prog_array_length(struct bpf_prog_array __rcu *array)
1812 struct bpf_prog_array_item *item;
1816 item = rcu_dereference(array)->items;
1817 for (; item->prog; item++)
1818 if (item->prog != &dummy_bpf_prog.prog)
1825 static bool bpf_prog_array_copy_core(struct bpf_prog_array __rcu *array,
1829 struct bpf_prog_array_item *item;
1832 item = rcu_dereference_check(array, 1)->items;
1833 for (; item->prog; item++) {
1834 if (item->prog == &dummy_bpf_prog.prog)
1836 prog_ids[i] = item->prog->aux->id;
1837 if (++i == request_cnt) {
1843 return !!(item->prog);
1846 int bpf_prog_array_copy_to_user(struct bpf_prog_array __rcu *array,
1847 __u32 __user *prog_ids, u32 cnt)
1849 unsigned long err = 0;
1853 /* users of this function are doing:
1854 * cnt = bpf_prog_array_length();
1856 * bpf_prog_array_copy_to_user(..., cnt);
1857 * so below kcalloc doesn't need extra cnt > 0 check, but
1858 * bpf_prog_array_length() releases rcu lock and
1859 * prog array could have been swapped with empty or larger array,
1860 * so always copy 'cnt' prog_ids to the user.
1861 * In a rare race the user will see zero prog_ids
1863 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1867 nospc = bpf_prog_array_copy_core(array, ids, cnt);
1869 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1878 void bpf_prog_array_delete_safe(struct bpf_prog_array __rcu *array,
1879 struct bpf_prog *old_prog)
1881 struct bpf_prog_array_item *item = array->items;
1883 for (; item->prog; item++)
1884 if (item->prog == old_prog) {
1885 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1890 int bpf_prog_array_copy(struct bpf_prog_array __rcu *old_array,
1891 struct bpf_prog *exclude_prog,
1892 struct bpf_prog *include_prog,
1893 struct bpf_prog_array **new_array)
1895 int new_prog_cnt, carry_prog_cnt = 0;
1896 struct bpf_prog_array_item *existing;
1897 struct bpf_prog_array *array;
1898 bool found_exclude = false;
1899 int new_prog_idx = 0;
1901 /* Figure out how many existing progs we need to carry over to
1905 existing = old_array->items;
1906 for (; existing->prog; existing++) {
1907 if (existing->prog == exclude_prog) {
1908 found_exclude = true;
1911 if (existing->prog != &dummy_bpf_prog.prog)
1913 if (existing->prog == include_prog)
1918 if (exclude_prog && !found_exclude)
1921 /* How many progs (not NULL) will be in the new array? */
1922 new_prog_cnt = carry_prog_cnt;
1926 /* Do we have any prog (not NULL) in the new array? */
1927 if (!new_prog_cnt) {
1932 /* +1 as the end of prog_array is marked with NULL */
1933 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1937 /* Fill in the new prog array */
1938 if (carry_prog_cnt) {
1939 existing = old_array->items;
1940 for (; existing->prog; existing++)
1941 if (existing->prog != exclude_prog &&
1942 existing->prog != &dummy_bpf_prog.prog) {
1943 array->items[new_prog_idx++].prog =
1948 array->items[new_prog_idx++].prog = include_prog;
1949 array->items[new_prog_idx].prog = NULL;
1954 int bpf_prog_array_copy_info(struct bpf_prog_array __rcu *array,
1955 u32 *prog_ids, u32 request_cnt,
1961 cnt = bpf_prog_array_length(array);
1965 /* return early if user requested only program count or nothing to copy */
1966 if (!request_cnt || !cnt)
1969 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1970 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
1974 static void bpf_prog_free_deferred(struct work_struct *work)
1976 struct bpf_prog_aux *aux;
1979 aux = container_of(work, struct bpf_prog_aux, work);
1980 if (bpf_prog_is_dev_bound(aux))
1981 bpf_prog_offload_destroy(aux->prog);
1982 #ifdef CONFIG_PERF_EVENTS
1983 if (aux->prog->has_callchain_buf)
1984 put_callchain_buffers();
1986 for (i = 0; i < aux->func_cnt; i++)
1987 bpf_jit_free(aux->func[i]);
1988 if (aux->func_cnt) {
1990 bpf_prog_unlock_free(aux->prog);
1992 bpf_jit_free(aux->prog);
1996 /* Free internal BPF program */
1997 void bpf_prog_free(struct bpf_prog *fp)
1999 struct bpf_prog_aux *aux = fp->aux;
2001 INIT_WORK(&aux->work, bpf_prog_free_deferred);
2002 schedule_work(&aux->work);
2004 EXPORT_SYMBOL_GPL(bpf_prog_free);
2006 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2007 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2009 void bpf_user_rnd_init_once(void)
2011 prandom_init_once(&bpf_user_rnd_state);
2014 BPF_CALL_0(bpf_user_rnd_u32)
2016 /* Should someone ever have the rather unwise idea to use some
2017 * of the registers passed into this function, then note that
2018 * this function is called from native eBPF and classic-to-eBPF
2019 * transformations. Register assignments from both sides are
2020 * different, f.e. classic always sets fn(ctx, A, X) here.
2022 struct rnd_state *state;
2025 state = &get_cpu_var(bpf_user_rnd_state);
2026 res = prandom_u32_state(state);
2027 put_cpu_var(bpf_user_rnd_state);
2032 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2033 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2034 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2035 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2036 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2037 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2038 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2040 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2041 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2042 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2043 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2045 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2046 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2047 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2048 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2049 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2051 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2057 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2058 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2062 EXPORT_SYMBOL_GPL(bpf_event_output);
2064 /* Always built-in helper functions. */
2065 const struct bpf_func_proto bpf_tail_call_proto = {
2068 .ret_type = RET_VOID,
2069 .arg1_type = ARG_PTR_TO_CTX,
2070 .arg2_type = ARG_CONST_MAP_PTR,
2071 .arg3_type = ARG_ANYTHING,
2074 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2075 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2076 * eBPF and implicitly also cBPF can get JITed!
2078 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2083 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2084 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2086 void __weak bpf_jit_compile(struct bpf_prog *prog)
2090 bool __weak bpf_helper_changes_pkt_data(void *func)
2095 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2096 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2098 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2104 /* All definitions of tracepoints related to BPF. */
2105 #define CREATE_TRACE_POINTS
2106 #include <linux/bpf_trace.h>
2108 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);