]> Git Repo - linux.git/blob - net/core/page_pool.c
cifs: Fix SMB1 readv/writev callback in the same way as SMB2/3
[linux.git] / net / core / page_pool.c
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool.c
4  *      Author: Jesper Dangaard Brouer <[email protected]>
5  *      Copyright (C) 2016 Red Hat, Inc.
6  */
7
8 #include <linux/error-injection.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/device.h>
13
14 #include <net/page_pool/helpers.h>
15 #include <net/xdp.h>
16
17 #include <linux/dma-direction.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/page-flags.h>
20 #include <linux/mm.h> /* for put_page() */
21 #include <linux/poison.h>
22 #include <linux/ethtool.h>
23 #include <linux/netdevice.h>
24
25 #include <trace/events/page_pool.h>
26
27 #include "page_pool_priv.h"
28
29 #define DEFER_TIME (msecs_to_jiffies(1000))
30 #define DEFER_WARN_INTERVAL (60 * HZ)
31
32 #define BIAS_MAX        (LONG_MAX >> 1)
33
34 #ifdef CONFIG_PAGE_POOL_STATS
35 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats);
36
37 /* alloc_stat_inc is intended to be used in softirq context */
38 #define alloc_stat_inc(pool, __stat)    (pool->alloc_stats.__stat++)
39 /* recycle_stat_inc is safe to use when preemption is possible. */
40 #define recycle_stat_inc(pool, __stat)                                                  \
41         do {                                                                            \
42                 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;       \
43                 this_cpu_inc(s->__stat);                                                \
44         } while (0)
45
46 #define recycle_stat_add(pool, __stat, val)                                             \
47         do {                                                                            \
48                 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;       \
49                 this_cpu_add(s->__stat, val);                                           \
50         } while (0)
51
52 static const char pp_stats[][ETH_GSTRING_LEN] = {
53         "rx_pp_alloc_fast",
54         "rx_pp_alloc_slow",
55         "rx_pp_alloc_slow_ho",
56         "rx_pp_alloc_empty",
57         "rx_pp_alloc_refill",
58         "rx_pp_alloc_waive",
59         "rx_pp_recycle_cached",
60         "rx_pp_recycle_cache_full",
61         "rx_pp_recycle_ring",
62         "rx_pp_recycle_ring_full",
63         "rx_pp_recycle_released_ref",
64 };
65
66 /**
67  * page_pool_get_stats() - fetch page pool stats
68  * @pool:       pool from which page was allocated
69  * @stats:      struct page_pool_stats to fill in
70  *
71  * Retrieve statistics about the page_pool. This API is only available
72  * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
73  * A pointer to a caller allocated struct page_pool_stats structure
74  * is passed to this API which is filled in. The caller can then report
75  * those stats to the user (perhaps via ethtool, debugfs, etc.).
76  */
77 bool page_pool_get_stats(const struct page_pool *pool,
78                          struct page_pool_stats *stats)
79 {
80         int cpu = 0;
81
82         if (!stats)
83                 return false;
84
85         /* The caller is responsible to initialize stats. */
86         stats->alloc_stats.fast += pool->alloc_stats.fast;
87         stats->alloc_stats.slow += pool->alloc_stats.slow;
88         stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
89         stats->alloc_stats.empty += pool->alloc_stats.empty;
90         stats->alloc_stats.refill += pool->alloc_stats.refill;
91         stats->alloc_stats.waive += pool->alloc_stats.waive;
92
93         for_each_possible_cpu(cpu) {
94                 const struct page_pool_recycle_stats *pcpu =
95                         per_cpu_ptr(pool->recycle_stats, cpu);
96
97                 stats->recycle_stats.cached += pcpu->cached;
98                 stats->recycle_stats.cache_full += pcpu->cache_full;
99                 stats->recycle_stats.ring += pcpu->ring;
100                 stats->recycle_stats.ring_full += pcpu->ring_full;
101                 stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
102         }
103
104         return true;
105 }
106 EXPORT_SYMBOL(page_pool_get_stats);
107
108 u8 *page_pool_ethtool_stats_get_strings(u8 *data)
109 {
110         int i;
111
112         for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
113                 memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
114                 data += ETH_GSTRING_LEN;
115         }
116
117         return data;
118 }
119 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
120
121 int page_pool_ethtool_stats_get_count(void)
122 {
123         return ARRAY_SIZE(pp_stats);
124 }
125 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
126
127 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats)
128 {
129         const struct page_pool_stats *pool_stats = stats;
130
131         *data++ = pool_stats->alloc_stats.fast;
132         *data++ = pool_stats->alloc_stats.slow;
133         *data++ = pool_stats->alloc_stats.slow_high_order;
134         *data++ = pool_stats->alloc_stats.empty;
135         *data++ = pool_stats->alloc_stats.refill;
136         *data++ = pool_stats->alloc_stats.waive;
137         *data++ = pool_stats->recycle_stats.cached;
138         *data++ = pool_stats->recycle_stats.cache_full;
139         *data++ = pool_stats->recycle_stats.ring;
140         *data++ = pool_stats->recycle_stats.ring_full;
141         *data++ = pool_stats->recycle_stats.released_refcnt;
142
143         return data;
144 }
145 EXPORT_SYMBOL(page_pool_ethtool_stats_get);
146
147 #else
148 #define alloc_stat_inc(pool, __stat)
149 #define recycle_stat_inc(pool, __stat)
150 #define recycle_stat_add(pool, __stat, val)
151 #endif
152
153 static bool page_pool_producer_lock(struct page_pool *pool)
154         __acquires(&pool->ring.producer_lock)
155 {
156         bool in_softirq = in_softirq();
157
158         if (in_softirq)
159                 spin_lock(&pool->ring.producer_lock);
160         else
161                 spin_lock_bh(&pool->ring.producer_lock);
162
163         return in_softirq;
164 }
165
166 static void page_pool_producer_unlock(struct page_pool *pool,
167                                       bool in_softirq)
168         __releases(&pool->ring.producer_lock)
169 {
170         if (in_softirq)
171                 spin_unlock(&pool->ring.producer_lock);
172         else
173                 spin_unlock_bh(&pool->ring.producer_lock);
174 }
175
176 static void page_pool_struct_check(void)
177 {
178         CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users);
179         CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page);
180         CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset);
181         CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag,
182                                     PAGE_POOL_FRAG_GROUP_ALIGN);
183 }
184
185 static int page_pool_init(struct page_pool *pool,
186                           const struct page_pool_params *params,
187                           int cpuid)
188 {
189         unsigned int ring_qsize = 1024; /* Default */
190
191         page_pool_struct_check();
192
193         memcpy(&pool->p, &params->fast, sizeof(pool->p));
194         memcpy(&pool->slow, &params->slow, sizeof(pool->slow));
195
196         pool->cpuid = cpuid;
197
198         /* Validate only known flags were used */
199         if (pool->slow.flags & ~PP_FLAG_ALL)
200                 return -EINVAL;
201
202         if (pool->p.pool_size)
203                 ring_qsize = pool->p.pool_size;
204
205         /* Sanity limit mem that can be pinned down */
206         if (ring_qsize > 32768)
207                 return -E2BIG;
208
209         /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
210          * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
211          * which is the XDP_TX use-case.
212          */
213         if (pool->slow.flags & PP_FLAG_DMA_MAP) {
214                 if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
215                     (pool->p.dma_dir != DMA_BIDIRECTIONAL))
216                         return -EINVAL;
217
218                 pool->dma_map = true;
219         }
220
221         if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) {
222                 /* In order to request DMA-sync-for-device the page
223                  * needs to be mapped
224                  */
225                 if (!(pool->slow.flags & PP_FLAG_DMA_MAP))
226                         return -EINVAL;
227
228                 if (!pool->p.max_len)
229                         return -EINVAL;
230
231                 pool->dma_sync = true;
232
233                 /* pool->p.offset has to be set according to the address
234                  * offset used by the DMA engine to start copying rx data
235                  */
236         }
237
238         pool->has_init_callback = !!pool->slow.init_callback;
239
240 #ifdef CONFIG_PAGE_POOL_STATS
241         if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) {
242                 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
243                 if (!pool->recycle_stats)
244                         return -ENOMEM;
245         } else {
246                 /* For system page pool instance we use a singular stats object
247                  * instead of allocating a separate percpu variable for each
248                  * (also percpu) page pool instance.
249                  */
250                 pool->recycle_stats = &pp_system_recycle_stats;
251                 pool->system = true;
252         }
253 #endif
254
255         if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
256 #ifdef CONFIG_PAGE_POOL_STATS
257                 if (!pool->system)
258                         free_percpu(pool->recycle_stats);
259 #endif
260                 return -ENOMEM;
261         }
262
263         atomic_set(&pool->pages_state_release_cnt, 0);
264
265         /* Driver calling page_pool_create() also call page_pool_destroy() */
266         refcount_set(&pool->user_cnt, 1);
267
268         if (pool->dma_map)
269                 get_device(pool->p.dev);
270
271         return 0;
272 }
273
274 static void page_pool_uninit(struct page_pool *pool)
275 {
276         ptr_ring_cleanup(&pool->ring, NULL);
277
278         if (pool->dma_map)
279                 put_device(pool->p.dev);
280
281 #ifdef CONFIG_PAGE_POOL_STATS
282         if (!pool->system)
283                 free_percpu(pool->recycle_stats);
284 #endif
285 }
286
287 /**
288  * page_pool_create_percpu() - create a page pool for a given cpu.
289  * @params: parameters, see struct page_pool_params
290  * @cpuid: cpu identifier
291  */
292 struct page_pool *
293 page_pool_create_percpu(const struct page_pool_params *params, int cpuid)
294 {
295         struct page_pool *pool;
296         int err;
297
298         pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
299         if (!pool)
300                 return ERR_PTR(-ENOMEM);
301
302         err = page_pool_init(pool, params, cpuid);
303         if (err < 0)
304                 goto err_free;
305
306         err = page_pool_list(pool);
307         if (err)
308                 goto err_uninit;
309
310         return pool;
311
312 err_uninit:
313         page_pool_uninit(pool);
314 err_free:
315         pr_warn("%s() gave up with errno %d\n", __func__, err);
316         kfree(pool);
317         return ERR_PTR(err);
318 }
319 EXPORT_SYMBOL(page_pool_create_percpu);
320
321 /**
322  * page_pool_create() - create a page pool
323  * @params: parameters, see struct page_pool_params
324  */
325 struct page_pool *page_pool_create(const struct page_pool_params *params)
326 {
327         return page_pool_create_percpu(params, -1);
328 }
329 EXPORT_SYMBOL(page_pool_create);
330
331 static void page_pool_return_page(struct page_pool *pool, netmem_ref netmem);
332
333 static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool)
334 {
335         struct ptr_ring *r = &pool->ring;
336         netmem_ref netmem;
337         int pref_nid; /* preferred NUMA node */
338
339         /* Quicker fallback, avoid locks when ring is empty */
340         if (__ptr_ring_empty(r)) {
341                 alloc_stat_inc(pool, empty);
342                 return 0;
343         }
344
345         /* Softirq guarantee CPU and thus NUMA node is stable. This,
346          * assumes CPU refilling driver RX-ring will also run RX-NAPI.
347          */
348 #ifdef CONFIG_NUMA
349         pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
350 #else
351         /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
352         pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
353 #endif
354
355         /* Refill alloc array, but only if NUMA match */
356         do {
357                 netmem = (__force netmem_ref)__ptr_ring_consume(r);
358                 if (unlikely(!netmem))
359                         break;
360
361                 if (likely(page_to_nid(netmem_to_page(netmem)) == pref_nid)) {
362                         pool->alloc.cache[pool->alloc.count++] = netmem;
363                 } else {
364                         /* NUMA mismatch;
365                          * (1) release 1 page to page-allocator and
366                          * (2) break out to fallthrough to alloc_pages_node.
367                          * This limit stress on page buddy alloactor.
368                          */
369                         page_pool_return_page(pool, netmem);
370                         alloc_stat_inc(pool, waive);
371                         netmem = 0;
372                         break;
373                 }
374         } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
375
376         /* Return last page */
377         if (likely(pool->alloc.count > 0)) {
378                 netmem = pool->alloc.cache[--pool->alloc.count];
379                 alloc_stat_inc(pool, refill);
380         }
381
382         return netmem;
383 }
384
385 /* fast path */
386 static netmem_ref __page_pool_get_cached(struct page_pool *pool)
387 {
388         netmem_ref netmem;
389
390         /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
391         if (likely(pool->alloc.count)) {
392                 /* Fast-path */
393                 netmem = pool->alloc.cache[--pool->alloc.count];
394                 alloc_stat_inc(pool, fast);
395         } else {
396                 netmem = page_pool_refill_alloc_cache(pool);
397         }
398
399         return netmem;
400 }
401
402 static void __page_pool_dma_sync_for_device(const struct page_pool *pool,
403                                             netmem_ref netmem,
404                                             u32 dma_sync_size)
405 {
406 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC)
407         dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem);
408
409         dma_sync_size = min(dma_sync_size, pool->p.max_len);
410         __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset,
411                                      dma_sync_size, pool->p.dma_dir);
412 #endif
413 }
414
415 static __always_inline void
416 page_pool_dma_sync_for_device(const struct page_pool *pool,
417                               netmem_ref netmem,
418                               u32 dma_sync_size)
419 {
420         if (pool->dma_sync && dma_dev_need_sync(pool->p.dev))
421                 __page_pool_dma_sync_for_device(pool, netmem, dma_sync_size);
422 }
423
424 static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem)
425 {
426         dma_addr_t dma;
427
428         /* Setup DMA mapping: use 'struct page' area for storing DMA-addr
429          * since dma_addr_t can be either 32 or 64 bits and does not always fit
430          * into page private data (i.e 32bit cpu with 64bit DMA caps)
431          * This mapping is kept for lifetime of page, until leaving pool.
432          */
433         dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0,
434                                  (PAGE_SIZE << pool->p.order), pool->p.dma_dir,
435                                  DMA_ATTR_SKIP_CPU_SYNC |
436                                          DMA_ATTR_WEAK_ORDERING);
437         if (dma_mapping_error(pool->p.dev, dma))
438                 return false;
439
440         if (page_pool_set_dma_addr_netmem(netmem, dma))
441                 goto unmap_failed;
442
443         page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len);
444
445         return true;
446
447 unmap_failed:
448         WARN_ONCE(1, "unexpected DMA address, please report to netdev@");
449         dma_unmap_page_attrs(pool->p.dev, dma,
450                              PAGE_SIZE << pool->p.order, pool->p.dma_dir,
451                              DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
452         return false;
453 }
454
455 static void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem)
456 {
457         struct page *page = netmem_to_page(netmem);
458
459         page->pp = pool;
460         page->pp_magic |= PP_SIGNATURE;
461
462         /* Ensuring all pages have been split into one fragment initially:
463          * page_pool_set_pp_info() is only called once for every page when it
464          * is allocated from the page allocator and page_pool_fragment_page()
465          * is dirtying the same cache line as the page->pp_magic above, so
466          * the overhead is negligible.
467          */
468         page_pool_fragment_netmem(netmem, 1);
469         if (pool->has_init_callback)
470                 pool->slow.init_callback(netmem, pool->slow.init_arg);
471 }
472
473 static void page_pool_clear_pp_info(netmem_ref netmem)
474 {
475         struct page *page = netmem_to_page(netmem);
476
477         page->pp_magic = 0;
478         page->pp = NULL;
479 }
480
481 static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
482                                                  gfp_t gfp)
483 {
484         struct page *page;
485
486         gfp |= __GFP_COMP;
487         page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
488         if (unlikely(!page))
489                 return NULL;
490
491         if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page)))) {
492                 put_page(page);
493                 return NULL;
494         }
495
496         alloc_stat_inc(pool, slow_high_order);
497         page_pool_set_pp_info(pool, page_to_netmem(page));
498
499         /* Track how many pages are held 'in-flight' */
500         pool->pages_state_hold_cnt++;
501         trace_page_pool_state_hold(pool, page_to_netmem(page),
502                                    pool->pages_state_hold_cnt);
503         return page;
504 }
505
506 /* slow path */
507 static noinline netmem_ref __page_pool_alloc_pages_slow(struct page_pool *pool,
508                                                         gfp_t gfp)
509 {
510         const int bulk = PP_ALLOC_CACHE_REFILL;
511         unsigned int pp_order = pool->p.order;
512         bool dma_map = pool->dma_map;
513         netmem_ref netmem;
514         int i, nr_pages;
515
516         /* Don't support bulk alloc for high-order pages */
517         if (unlikely(pp_order))
518                 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp));
519
520         /* Unnecessary as alloc cache is empty, but guarantees zero count */
521         if (unlikely(pool->alloc.count > 0))
522                 return pool->alloc.cache[--pool->alloc.count];
523
524         /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */
525         memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
526
527         nr_pages = alloc_pages_bulk_array_node(gfp,
528                                                pool->p.nid, bulk,
529                                                (struct page **)pool->alloc.cache);
530         if (unlikely(!nr_pages))
531                 return 0;
532
533         /* Pages have been filled into alloc.cache array, but count is zero and
534          * page element have not been (possibly) DMA mapped.
535          */
536         for (i = 0; i < nr_pages; i++) {
537                 netmem = pool->alloc.cache[i];
538                 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem))) {
539                         put_page(netmem_to_page(netmem));
540                         continue;
541                 }
542
543                 page_pool_set_pp_info(pool, netmem);
544                 pool->alloc.cache[pool->alloc.count++] = netmem;
545                 /* Track how many pages are held 'in-flight' */
546                 pool->pages_state_hold_cnt++;
547                 trace_page_pool_state_hold(pool, netmem,
548                                            pool->pages_state_hold_cnt);
549         }
550
551         /* Return last page */
552         if (likely(pool->alloc.count > 0)) {
553                 netmem = pool->alloc.cache[--pool->alloc.count];
554                 alloc_stat_inc(pool, slow);
555         } else {
556                 netmem = 0;
557         }
558
559         /* When page just alloc'ed is should/must have refcnt 1. */
560         return netmem;
561 }
562
563 /* For using page_pool replace: alloc_pages() API calls, but provide
564  * synchronization guarantee for allocation side.
565  */
566 netmem_ref page_pool_alloc_netmem(struct page_pool *pool, gfp_t gfp)
567 {
568         netmem_ref netmem;
569
570         /* Fast-path: Get a page from cache */
571         netmem = __page_pool_get_cached(pool);
572         if (netmem)
573                 return netmem;
574
575         /* Slow-path: cache empty, do real allocation */
576         netmem = __page_pool_alloc_pages_slow(pool, gfp);
577         return netmem;
578 }
579 EXPORT_SYMBOL(page_pool_alloc_netmem);
580
581 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
582 {
583         return netmem_to_page(page_pool_alloc_netmem(pool, gfp));
584 }
585 EXPORT_SYMBOL(page_pool_alloc_pages);
586 ALLOW_ERROR_INJECTION(page_pool_alloc_pages, NULL);
587
588 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
589  *  https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
590  */
591 #define _distance(a, b) (s32)((a) - (b))
592
593 s32 page_pool_inflight(const struct page_pool *pool, bool strict)
594 {
595         u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
596         u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
597         s32 inflight;
598
599         inflight = _distance(hold_cnt, release_cnt);
600
601         if (strict) {
602                 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
603                 WARN(inflight < 0, "Negative(%d) inflight packet-pages",
604                      inflight);
605         } else {
606                 inflight = max(0, inflight);
607         }
608
609         return inflight;
610 }
611
612 static __always_inline void __page_pool_release_page_dma(struct page_pool *pool,
613                                                          netmem_ref netmem)
614 {
615         dma_addr_t dma;
616
617         if (!pool->dma_map)
618                 /* Always account for inflight pages, even if we didn't
619                  * map them
620                  */
621                 return;
622
623         dma = page_pool_get_dma_addr_netmem(netmem);
624
625         /* When page is unmapped, it cannot be returned to our pool */
626         dma_unmap_page_attrs(pool->p.dev, dma,
627                              PAGE_SIZE << pool->p.order, pool->p.dma_dir,
628                              DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
629         page_pool_set_dma_addr_netmem(netmem, 0);
630 }
631
632 /* Disconnects a page (from a page_pool).  API users can have a need
633  * to disconnect a page (from a page_pool), to allow it to be used as
634  * a regular page (that will eventually be returned to the normal
635  * page-allocator via put_page).
636  */
637 void page_pool_return_page(struct page_pool *pool, netmem_ref netmem)
638 {
639         int count;
640
641         __page_pool_release_page_dma(pool, netmem);
642
643         /* This may be the last page returned, releasing the pool, so
644          * it is not safe to reference pool afterwards.
645          */
646         count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
647         trace_page_pool_state_release(pool, netmem, count);
648
649         page_pool_clear_pp_info(netmem);
650         put_page(netmem_to_page(netmem));
651         /* An optimization would be to call __free_pages(page, pool->p.order)
652          * knowing page is not part of page-cache (thus avoiding a
653          * __page_cache_release() call).
654          */
655 }
656
657 static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem)
658 {
659         int ret;
660         /* BH protection not needed if current is softirq */
661         if (in_softirq())
662                 ret = ptr_ring_produce(&pool->ring, (__force void *)netmem);
663         else
664                 ret = ptr_ring_produce_bh(&pool->ring, (__force void *)netmem);
665
666         if (!ret) {
667                 recycle_stat_inc(pool, ring);
668                 return true;
669         }
670
671         return false;
672 }
673
674 /* Only allow direct recycling in special circumstances, into the
675  * alloc side cache.  E.g. during RX-NAPI processing for XDP_DROP use-case.
676  *
677  * Caller must provide appropriate safe context.
678  */
679 static bool page_pool_recycle_in_cache(netmem_ref netmem,
680                                        struct page_pool *pool)
681 {
682         if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
683                 recycle_stat_inc(pool, cache_full);
684                 return false;
685         }
686
687         /* Caller MUST have verified/know (page_ref_count(page) == 1) */
688         pool->alloc.cache[pool->alloc.count++] = netmem;
689         recycle_stat_inc(pool, cached);
690         return true;
691 }
692
693 static bool __page_pool_page_can_be_recycled(netmem_ref netmem)
694 {
695         return page_ref_count(netmem_to_page(netmem)) == 1 &&
696                !page_is_pfmemalloc(netmem_to_page(netmem));
697 }
698
699 /* If the page refcnt == 1, this will try to recycle the page.
700  * If pool->dma_sync is set, we'll try to sync the DMA area for
701  * the configured size min(dma_sync_size, pool->max_len).
702  * If the page refcnt != 1, then the page will be returned to memory
703  * subsystem.
704  */
705 static __always_inline netmem_ref
706 __page_pool_put_page(struct page_pool *pool, netmem_ref netmem,
707                      unsigned int dma_sync_size, bool allow_direct)
708 {
709         lockdep_assert_no_hardirq();
710
711         /* This allocator is optimized for the XDP mode that uses
712          * one-frame-per-page, but have fallbacks that act like the
713          * regular page allocator APIs.
714          *
715          * refcnt == 1 means page_pool owns page, and can recycle it.
716          *
717          * page is NOT reusable when allocated when system is under
718          * some pressure. (page_is_pfmemalloc)
719          */
720         if (likely(__page_pool_page_can_be_recycled(netmem))) {
721                 /* Read barrier done in page_ref_count / READ_ONCE */
722
723                 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size);
724
725                 if (allow_direct && page_pool_recycle_in_cache(netmem, pool))
726                         return 0;
727
728                 /* Page found as candidate for recycling */
729                 return netmem;
730         }
731         /* Fallback/non-XDP mode: API user have elevated refcnt.
732          *
733          * Many drivers split up the page into fragments, and some
734          * want to keep doing this to save memory and do refcnt based
735          * recycling. Support this use case too, to ease drivers
736          * switching between XDP/non-XDP.
737          *
738          * In-case page_pool maintains the DMA mapping, API user must
739          * call page_pool_put_page once.  In this elevated refcnt
740          * case, the DMA is unmapped/released, as driver is likely
741          * doing refcnt based recycle tricks, meaning another process
742          * will be invoking put_page.
743          */
744         recycle_stat_inc(pool, released_refcnt);
745         page_pool_return_page(pool, netmem);
746
747         return 0;
748 }
749
750 static bool page_pool_napi_local(const struct page_pool *pool)
751 {
752         const struct napi_struct *napi;
753         u32 cpuid;
754
755         if (unlikely(!in_softirq()))
756                 return false;
757
758         /* Allow direct recycle if we have reasons to believe that we are
759          * in the same context as the consumer would run, so there's
760          * no possible race.
761          * __page_pool_put_page() makes sure we're not in hardirq context
762          * and interrupts are enabled prior to accessing the cache.
763          */
764         cpuid = smp_processor_id();
765         if (READ_ONCE(pool->cpuid) == cpuid)
766                 return true;
767
768         napi = READ_ONCE(pool->p.napi);
769
770         return napi && READ_ONCE(napi->list_owner) == cpuid;
771 }
772
773 void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem,
774                                   unsigned int dma_sync_size, bool allow_direct)
775 {
776         if (!allow_direct)
777                 allow_direct = page_pool_napi_local(pool);
778
779         netmem =
780                 __page_pool_put_page(pool, netmem, dma_sync_size, allow_direct);
781         if (netmem && !page_pool_recycle_in_ring(pool, netmem)) {
782                 /* Cache full, fallback to free pages */
783                 recycle_stat_inc(pool, ring_full);
784                 page_pool_return_page(pool, netmem);
785         }
786 }
787 EXPORT_SYMBOL(page_pool_put_unrefed_netmem);
788
789 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page,
790                                 unsigned int dma_sync_size, bool allow_direct)
791 {
792         page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size,
793                                      allow_direct);
794 }
795 EXPORT_SYMBOL(page_pool_put_unrefed_page);
796
797 /**
798  * page_pool_put_page_bulk() - release references on multiple pages
799  * @pool:       pool from which pages were allocated
800  * @data:       array holding page pointers
801  * @count:      number of pages in @data
802  *
803  * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring
804  * producer lock. If the ptr_ring is full, page_pool_put_page_bulk()
805  * will release leftover pages to the page allocator.
806  * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx
807  * completion loop for the XDP_REDIRECT use case.
808  *
809  * Please note the caller must not use data area after running
810  * page_pool_put_page_bulk(), as this function overwrites it.
811  */
812 void page_pool_put_page_bulk(struct page_pool *pool, void **data,
813                              int count)
814 {
815         int i, bulk_len = 0;
816         bool allow_direct;
817         bool in_softirq;
818
819         allow_direct = page_pool_napi_local(pool);
820
821         for (i = 0; i < count; i++) {
822                 netmem_ref netmem = page_to_netmem(virt_to_head_page(data[i]));
823
824                 /* It is not the last user for the page frag case */
825                 if (!page_pool_is_last_ref(netmem))
826                         continue;
827
828                 netmem = __page_pool_put_page(pool, netmem, -1, allow_direct);
829                 /* Approved for bulk recycling in ptr_ring cache */
830                 if (netmem)
831                         data[bulk_len++] = (__force void *)netmem;
832         }
833
834         if (!bulk_len)
835                 return;
836
837         /* Bulk producer into ptr_ring page_pool cache */
838         in_softirq = page_pool_producer_lock(pool);
839         for (i = 0; i < bulk_len; i++) {
840                 if (__ptr_ring_produce(&pool->ring, data[i])) {
841                         /* ring full */
842                         recycle_stat_inc(pool, ring_full);
843                         break;
844                 }
845         }
846         recycle_stat_add(pool, ring, i);
847         page_pool_producer_unlock(pool, in_softirq);
848
849         /* Hopefully all pages was return into ptr_ring */
850         if (likely(i == bulk_len))
851                 return;
852
853         /* ptr_ring cache full, free remaining pages outside producer lock
854          * since put_page() with refcnt == 1 can be an expensive operation
855          */
856         for (; i < bulk_len; i++)
857                 page_pool_return_page(pool, (__force netmem_ref)data[i]);
858 }
859 EXPORT_SYMBOL(page_pool_put_page_bulk);
860
861 static netmem_ref page_pool_drain_frag(struct page_pool *pool,
862                                        netmem_ref netmem)
863 {
864         long drain_count = BIAS_MAX - pool->frag_users;
865
866         /* Some user is still using the page frag */
867         if (likely(page_pool_unref_netmem(netmem, drain_count)))
868                 return 0;
869
870         if (__page_pool_page_can_be_recycled(netmem)) {
871                 page_pool_dma_sync_for_device(pool, netmem, -1);
872                 return netmem;
873         }
874
875         page_pool_return_page(pool, netmem);
876         return 0;
877 }
878
879 static void page_pool_free_frag(struct page_pool *pool)
880 {
881         long drain_count = BIAS_MAX - pool->frag_users;
882         netmem_ref netmem = pool->frag_page;
883
884         pool->frag_page = 0;
885
886         if (!netmem || page_pool_unref_netmem(netmem, drain_count))
887                 return;
888
889         page_pool_return_page(pool, netmem);
890 }
891
892 netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool,
893                                        unsigned int *offset, unsigned int size,
894                                        gfp_t gfp)
895 {
896         unsigned int max_size = PAGE_SIZE << pool->p.order;
897         netmem_ref netmem = pool->frag_page;
898
899         if (WARN_ON(size > max_size))
900                 return 0;
901
902         size = ALIGN(size, dma_get_cache_alignment());
903         *offset = pool->frag_offset;
904
905         if (netmem && *offset + size > max_size) {
906                 netmem = page_pool_drain_frag(pool, netmem);
907                 if (netmem) {
908                         alloc_stat_inc(pool, fast);
909                         goto frag_reset;
910                 }
911         }
912
913         if (!netmem) {
914                 netmem = page_pool_alloc_netmem(pool, gfp);
915                 if (unlikely(!netmem)) {
916                         pool->frag_page = 0;
917                         return 0;
918                 }
919
920                 pool->frag_page = netmem;
921
922 frag_reset:
923                 pool->frag_users = 1;
924                 *offset = 0;
925                 pool->frag_offset = size;
926                 page_pool_fragment_netmem(netmem, BIAS_MAX);
927                 return netmem;
928         }
929
930         pool->frag_users++;
931         pool->frag_offset = *offset + size;
932         alloc_stat_inc(pool, fast);
933         return netmem;
934 }
935 EXPORT_SYMBOL(page_pool_alloc_frag_netmem);
936
937 struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset,
938                                   unsigned int size, gfp_t gfp)
939 {
940         return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size,
941                                                           gfp));
942 }
943 EXPORT_SYMBOL(page_pool_alloc_frag);
944
945 static void page_pool_empty_ring(struct page_pool *pool)
946 {
947         netmem_ref netmem;
948
949         /* Empty recycle ring */
950         while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) {
951                 /* Verify the refcnt invariant of cached pages */
952                 if (!(page_ref_count(netmem_to_page(netmem)) == 1))
953                         pr_crit("%s() page_pool refcnt %d violation\n",
954                                 __func__, netmem_ref_count(netmem));
955
956                 page_pool_return_page(pool, netmem);
957         }
958 }
959
960 static void __page_pool_destroy(struct page_pool *pool)
961 {
962         if (pool->disconnect)
963                 pool->disconnect(pool);
964
965         page_pool_unlist(pool);
966         page_pool_uninit(pool);
967         kfree(pool);
968 }
969
970 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
971 {
972         netmem_ref netmem;
973
974         if (pool->destroy_cnt)
975                 return;
976
977         /* Empty alloc cache, assume caller made sure this is
978          * no-longer in use, and page_pool_alloc_pages() cannot be
979          * call concurrently.
980          */
981         while (pool->alloc.count) {
982                 netmem = pool->alloc.cache[--pool->alloc.count];
983                 page_pool_return_page(pool, netmem);
984         }
985 }
986
987 static void page_pool_scrub(struct page_pool *pool)
988 {
989         page_pool_empty_alloc_cache_once(pool);
990         pool->destroy_cnt++;
991
992         /* No more consumers should exist, but producers could still
993          * be in-flight.
994          */
995         page_pool_empty_ring(pool);
996 }
997
998 static int page_pool_release(struct page_pool *pool)
999 {
1000         int inflight;
1001
1002         page_pool_scrub(pool);
1003         inflight = page_pool_inflight(pool, true);
1004         if (!inflight)
1005                 __page_pool_destroy(pool);
1006
1007         return inflight;
1008 }
1009
1010 static void page_pool_release_retry(struct work_struct *wq)
1011 {
1012         struct delayed_work *dwq = to_delayed_work(wq);
1013         struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
1014         void *netdev;
1015         int inflight;
1016
1017         inflight = page_pool_release(pool);
1018         if (!inflight)
1019                 return;
1020
1021         /* Periodic warning for page pools the user can't see */
1022         netdev = READ_ONCE(pool->slow.netdev);
1023         if (time_after_eq(jiffies, pool->defer_warn) &&
1024             (!netdev || netdev == NET_PTR_POISON)) {
1025                 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
1026
1027                 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n",
1028                         __func__, pool->user.id, inflight, sec);
1029                 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
1030         }
1031
1032         /* Still not ready to be disconnected, retry later */
1033         schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1034 }
1035
1036 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
1037                            const struct xdp_mem_info *mem)
1038 {
1039         refcount_inc(&pool->user_cnt);
1040         pool->disconnect = disconnect;
1041         pool->xdp_mem_id = mem->id;
1042 }
1043
1044 void page_pool_disable_direct_recycling(struct page_pool *pool)
1045 {
1046         /* Disable direct recycling based on pool->cpuid.
1047          * Paired with READ_ONCE() in page_pool_napi_local().
1048          */
1049         WRITE_ONCE(pool->cpuid, -1);
1050
1051         if (!pool->p.napi)
1052                 return;
1053
1054         /* To avoid races with recycling and additional barriers make sure
1055          * pool and NAPI are unlinked when NAPI is disabled.
1056          */
1057         WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state));
1058         WARN_ON(READ_ONCE(pool->p.napi->list_owner) != -1);
1059
1060         WRITE_ONCE(pool->p.napi, NULL);
1061 }
1062 EXPORT_SYMBOL(page_pool_disable_direct_recycling);
1063
1064 void page_pool_destroy(struct page_pool *pool)
1065 {
1066         if (!pool)
1067                 return;
1068
1069         if (!page_pool_put(pool))
1070                 return;
1071
1072         page_pool_disable_direct_recycling(pool);
1073         page_pool_free_frag(pool);
1074
1075         if (!page_pool_release(pool))
1076                 return;
1077
1078         page_pool_detached(pool);
1079         pool->defer_start = jiffies;
1080         pool->defer_warn  = jiffies + DEFER_WARN_INTERVAL;
1081
1082         INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
1083         schedule_delayed_work(&pool->release_dw, DEFER_TIME);
1084 }
1085 EXPORT_SYMBOL(page_pool_destroy);
1086
1087 /* Caller must provide appropriate safe context, e.g. NAPI. */
1088 void page_pool_update_nid(struct page_pool *pool, int new_nid)
1089 {
1090         netmem_ref netmem;
1091
1092         trace_page_pool_update_nid(pool, new_nid);
1093         pool->p.nid = new_nid;
1094
1095         /* Flush pool alloc cache, as refill will check NUMA node */
1096         while (pool->alloc.count) {
1097                 netmem = pool->alloc.cache[--pool->alloc.count];
1098                 page_pool_return_page(pool, netmem);
1099         }
1100 }
1101 EXPORT_SYMBOL(page_pool_update_nid);
This page took 0.089166 seconds and 4 git commands to generate.