1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
41 struct inode *inode = file_inode(vmf->vma->vm_file);
42 vm_flags_t flags = vmf->vma->vm_flags;
45 ret = filemap_fault(vmf);
46 if (ret & VM_FAULT_LOCKED)
47 f2fs_update_iostat(F2FS_I_SB(inode), inode,
48 APP_MAPPED_READ_IO, F2FS_BLKSIZE);
50 trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
55 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
57 struct page *page = vmf->page;
58 struct inode *inode = file_inode(vmf->vma->vm_file);
59 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
60 struct dnode_of_data dn;
61 bool need_alloc = !f2fs_is_pinned_file(inode);
65 if (unlikely(IS_IMMUTABLE(inode)))
66 return VM_FAULT_SIGBUS;
68 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
73 if (unlikely(f2fs_cp_error(sbi))) {
78 if (!f2fs_is_checkpoint_ready(sbi)) {
83 err = f2fs_convert_inline_inode(inode);
87 #ifdef CONFIG_F2FS_FS_COMPRESSION
88 if (f2fs_compressed_file(inode)) {
89 int ret = f2fs_is_compressed_cluster(inode, page->index);
99 /* should do out of any locked page */
101 f2fs_balance_fs(sbi, true);
103 sb_start_pagefault(inode->i_sb);
105 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
107 file_update_time(vmf->vma->vm_file);
108 filemap_invalidate_lock_shared(inode->i_mapping);
110 if (unlikely(page->mapping != inode->i_mapping ||
111 page_offset(page) > i_size_read(inode) ||
112 !PageUptodate(page))) {
118 set_new_dnode(&dn, inode, NULL, NULL, 0);
120 /* block allocation */
121 err = f2fs_get_block_locked(&dn, page->index);
123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
125 if (f2fs_is_pinned_file(inode) &&
126 !__is_valid_data_blkaddr(dn.data_blkaddr))
135 f2fs_wait_on_page_writeback(page, DATA, false, true);
137 /* wait for GCed page writeback via META_MAPPING */
138 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
141 * check to see if the page is mapped already (no holes)
143 if (PageMappedToDisk(page))
146 /* page is wholly or partially inside EOF */
147 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
148 i_size_read(inode)) {
151 offset = i_size_read(inode) & ~PAGE_MASK;
152 zero_user_segment(page, offset, PAGE_SIZE);
154 set_page_dirty(page);
156 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
157 f2fs_update_time(sbi, REQ_TIME);
160 filemap_invalidate_unlock_shared(inode->i_mapping);
162 sb_end_pagefault(inode->i_sb);
164 ret = vmf_fs_error(err);
166 trace_f2fs_vm_page_mkwrite(inode, page->index, vmf->vma->vm_flags, ret);
170 static const struct vm_operations_struct f2fs_file_vm_ops = {
171 .fault = f2fs_filemap_fault,
172 .map_pages = filemap_map_pages,
173 .page_mkwrite = f2fs_vm_page_mkwrite,
176 static int get_parent_ino(struct inode *inode, nid_t *pino)
178 struct dentry *dentry;
181 * Make sure to get the non-deleted alias. The alias associated with
182 * the open file descriptor being fsync()'ed may be deleted already.
184 dentry = d_find_alias(inode);
188 *pino = d_parent_ino(dentry);
193 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
195 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
196 enum cp_reason_type cp_reason = CP_NO_NEEDED;
198 if (!S_ISREG(inode->i_mode))
199 cp_reason = CP_NON_REGULAR;
200 else if (f2fs_compressed_file(inode))
201 cp_reason = CP_COMPRESSED;
202 else if (inode->i_nlink != 1)
203 cp_reason = CP_HARDLINK;
204 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
205 cp_reason = CP_SB_NEED_CP;
206 else if (file_wrong_pino(inode))
207 cp_reason = CP_WRONG_PINO;
208 else if (!f2fs_space_for_roll_forward(sbi))
209 cp_reason = CP_NO_SPC_ROLL;
210 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
211 cp_reason = CP_NODE_NEED_CP;
212 else if (test_opt(sbi, FASTBOOT))
213 cp_reason = CP_FASTBOOT_MODE;
214 else if (F2FS_OPTION(sbi).active_logs == 2)
215 cp_reason = CP_SPEC_LOG_NUM;
216 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
217 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
218 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
220 cp_reason = CP_RECOVER_DIR;
225 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
227 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
229 /* But we need to avoid that there are some inode updates */
230 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
236 static void try_to_fix_pino(struct inode *inode)
238 struct f2fs_inode_info *fi = F2FS_I(inode);
241 f2fs_down_write(&fi->i_sem);
242 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
243 get_parent_ino(inode, &pino)) {
244 f2fs_i_pino_write(inode, pino);
245 file_got_pino(inode);
247 f2fs_up_write(&fi->i_sem);
250 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
251 int datasync, bool atomic)
253 struct inode *inode = file->f_mapping->host;
254 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
255 nid_t ino = inode->i_ino;
257 enum cp_reason_type cp_reason = 0;
258 struct writeback_control wbc = {
259 .sync_mode = WB_SYNC_ALL,
260 .nr_to_write = LONG_MAX,
263 unsigned int seq_id = 0;
265 if (unlikely(f2fs_readonly(inode->i_sb)))
268 trace_f2fs_sync_file_enter(inode);
270 if (S_ISDIR(inode->i_mode))
273 /* if fdatasync is triggered, let's do in-place-update */
274 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
275 set_inode_flag(inode, FI_NEED_IPU);
276 ret = file_write_and_wait_range(file, start, end);
277 clear_inode_flag(inode, FI_NEED_IPU);
279 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
280 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
284 /* if the inode is dirty, let's recover all the time */
285 if (!f2fs_skip_inode_update(inode, datasync)) {
286 f2fs_write_inode(inode, NULL);
291 * if there is no written data, don't waste time to write recovery info.
293 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
294 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
296 /* it may call write_inode just prior to fsync */
297 if (need_inode_page_update(sbi, ino))
300 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
301 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
306 * for OPU case, during fsync(), node can be persisted before
307 * data when lower device doesn't support write barrier, result
308 * in data corruption after SPO.
309 * So for strict fsync mode, force to use atomic write semantics
310 * to keep write order in between data/node and last node to
311 * avoid potential data corruption.
313 if (F2FS_OPTION(sbi).fsync_mode ==
314 FSYNC_MODE_STRICT && !atomic)
319 * Both of fdatasync() and fsync() are able to be recovered from
322 f2fs_down_read(&F2FS_I(inode)->i_sem);
323 cp_reason = need_do_checkpoint(inode);
324 f2fs_up_read(&F2FS_I(inode)->i_sem);
327 /* all the dirty node pages should be flushed for POR */
328 ret = f2fs_sync_fs(inode->i_sb, 1);
331 * We've secured consistency through sync_fs. Following pino
332 * will be used only for fsynced inodes after checkpoint.
334 try_to_fix_pino(inode);
335 clear_inode_flag(inode, FI_APPEND_WRITE);
336 clear_inode_flag(inode, FI_UPDATE_WRITE);
340 atomic_inc(&sbi->wb_sync_req[NODE]);
341 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
342 atomic_dec(&sbi->wb_sync_req[NODE]);
346 /* if cp_error was enabled, we should avoid infinite loop */
347 if (unlikely(f2fs_cp_error(sbi))) {
352 if (f2fs_need_inode_block_update(sbi, ino)) {
353 f2fs_mark_inode_dirty_sync(inode, true);
354 f2fs_write_inode(inode, NULL);
359 * If it's atomic_write, it's just fine to keep write ordering. So
360 * here we don't need to wait for node write completion, since we use
361 * node chain which serializes node blocks. If one of node writes are
362 * reordered, we can see simply broken chain, resulting in stopping
363 * roll-forward recovery. It means we'll recover all or none node blocks
367 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
372 /* once recovery info is written, don't need to tack this */
373 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
374 clear_inode_flag(inode, FI_APPEND_WRITE);
376 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
377 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
378 ret = f2fs_issue_flush(sbi, inode->i_ino);
380 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
381 clear_inode_flag(inode, FI_UPDATE_WRITE);
382 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
384 f2fs_update_time(sbi, REQ_TIME);
386 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
390 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
392 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
394 return f2fs_do_sync_file(file, start, end, datasync, false);
397 static bool __found_offset(struct address_space *mapping,
398 struct dnode_of_data *dn, pgoff_t index, int whence)
400 block_t blkaddr = f2fs_data_blkaddr(dn);
401 struct inode *inode = mapping->host;
402 bool compressed_cluster = false;
404 if (f2fs_compressed_file(inode)) {
405 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
406 ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
408 compressed_cluster = first_blkaddr == COMPRESS_ADDR;
413 if (__is_valid_data_blkaddr(blkaddr))
415 if (blkaddr == NEW_ADDR &&
416 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
418 if (compressed_cluster)
422 if (compressed_cluster)
424 if (blkaddr == NULL_ADDR)
431 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
433 struct inode *inode = file->f_mapping->host;
434 loff_t maxbytes = inode->i_sb->s_maxbytes;
435 struct dnode_of_data dn;
436 pgoff_t pgofs, end_offset;
437 loff_t data_ofs = offset;
441 inode_lock_shared(inode);
443 isize = i_size_read(inode);
447 /* handle inline data case */
448 if (f2fs_has_inline_data(inode)) {
449 if (whence == SEEK_HOLE) {
452 } else if (whence == SEEK_DATA) {
458 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
460 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461 set_new_dnode(&dn, inode, NULL, NULL, 0);
462 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
463 if (err && err != -ENOENT) {
465 } else if (err == -ENOENT) {
466 /* direct node does not exists */
467 if (whence == SEEK_DATA) {
468 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
475 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
477 /* find data/hole in dnode block */
478 for (; dn.ofs_in_node < end_offset;
479 dn.ofs_in_node++, pgofs++,
480 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
483 blkaddr = f2fs_data_blkaddr(&dn);
485 if (__is_valid_data_blkaddr(blkaddr) &&
486 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
487 blkaddr, DATA_GENERIC_ENHANCE)) {
492 if (__found_offset(file->f_mapping, &dn,
501 if (whence == SEEK_DATA)
504 if (whence == SEEK_HOLE && data_ofs > isize)
506 inode_unlock_shared(inode);
507 return vfs_setpos(file, data_ofs, maxbytes);
509 inode_unlock_shared(inode);
513 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
515 struct inode *inode = file->f_mapping->host;
516 loff_t maxbytes = inode->i_sb->s_maxbytes;
518 if (f2fs_compressed_file(inode))
519 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
525 return generic_file_llseek_size(file, offset, whence,
526 maxbytes, i_size_read(inode));
531 return f2fs_seek_block(file, offset, whence);
537 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
539 struct inode *inode = file_inode(file);
541 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
544 if (!f2fs_is_compress_backend_ready(inode))
548 vma->vm_ops = &f2fs_file_vm_ops;
550 f2fs_down_read(&F2FS_I(inode)->i_sem);
551 set_inode_flag(inode, FI_MMAP_FILE);
552 f2fs_up_read(&F2FS_I(inode)->i_sem);
557 static int finish_preallocate_blocks(struct inode *inode)
562 if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
567 if (!file_should_truncate(inode)) {
568 set_inode_flag(inode, FI_OPENED_FILE);
573 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
574 filemap_invalidate_lock(inode->i_mapping);
576 truncate_setsize(inode, i_size_read(inode));
577 ret = f2fs_truncate(inode);
579 filemap_invalidate_unlock(inode->i_mapping);
580 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
583 set_inode_flag(inode, FI_OPENED_FILE);
589 file_dont_truncate(inode);
593 static int f2fs_file_open(struct inode *inode, struct file *filp)
595 int err = fscrypt_file_open(inode, filp);
600 if (!f2fs_is_compress_backend_ready(inode))
603 err = fsverity_file_open(inode, filp);
607 filp->f_mode |= FMODE_NOWAIT;
608 filp->f_mode |= FMODE_CAN_ODIRECT;
610 err = dquot_file_open(inode, filp);
614 return finish_preallocate_blocks(inode);
617 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
619 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
620 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
622 bool compressed_cluster = false;
623 int cluster_index = 0, valid_blocks = 0;
624 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
625 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
627 addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
629 /* Assumption: truncation starts with cluster */
630 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
631 block_t blkaddr = le32_to_cpu(*addr);
633 if (f2fs_compressed_file(dn->inode) &&
634 !(cluster_index & (cluster_size - 1))) {
635 if (compressed_cluster)
636 f2fs_i_compr_blocks_update(dn->inode,
637 valid_blocks, false);
638 compressed_cluster = (blkaddr == COMPRESS_ADDR);
642 if (blkaddr == NULL_ADDR)
645 f2fs_set_data_blkaddr(dn, NULL_ADDR);
647 if (__is_valid_data_blkaddr(blkaddr)) {
648 if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
650 if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
651 DATA_GENERIC_ENHANCE))
653 if (compressed_cluster)
657 f2fs_invalidate_blocks(sbi, blkaddr);
659 if (!released || blkaddr != COMPRESS_ADDR)
663 if (compressed_cluster)
664 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
669 * once we invalidate valid blkaddr in range [ofs, ofs + count],
670 * we will invalidate all blkaddr in the whole range.
672 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
674 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
675 f2fs_update_age_extent_cache_range(dn, fofs, len);
676 dec_valid_block_count(sbi, dn->inode, nr_free);
678 dn->ofs_in_node = ofs;
680 f2fs_update_time(sbi, REQ_TIME);
681 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
682 dn->ofs_in_node, nr_free);
685 static int truncate_partial_data_page(struct inode *inode, u64 from,
688 loff_t offset = from & (PAGE_SIZE - 1);
689 pgoff_t index = from >> PAGE_SHIFT;
690 struct address_space *mapping = inode->i_mapping;
693 if (!offset && !cache_only)
697 page = find_lock_page(mapping, index);
698 if (page && PageUptodate(page))
700 f2fs_put_page(page, 1);
704 page = f2fs_get_lock_data_page(inode, index, true);
706 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
708 f2fs_wait_on_page_writeback(page, DATA, true, true);
709 zero_user(page, offset, PAGE_SIZE - offset);
711 /* An encrypted inode should have a key and truncate the last page. */
712 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
714 set_page_dirty(page);
715 f2fs_put_page(page, 1);
719 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
721 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
722 struct dnode_of_data dn;
724 int count = 0, err = 0;
726 bool truncate_page = false;
728 trace_f2fs_truncate_blocks_enter(inode, from);
730 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
732 if (free_from >= max_file_blocks(inode))
738 ipage = f2fs_get_node_page(sbi, inode->i_ino);
740 err = PTR_ERR(ipage);
744 if (f2fs_has_inline_data(inode)) {
745 f2fs_truncate_inline_inode(inode, ipage, from);
746 f2fs_put_page(ipage, 1);
747 truncate_page = true;
751 set_new_dnode(&dn, inode, ipage, NULL, 0);
752 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
759 count = ADDRS_PER_PAGE(dn.node_page, inode);
761 count -= dn.ofs_in_node;
762 f2fs_bug_on(sbi, count < 0);
764 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
765 f2fs_truncate_data_blocks_range(&dn, count);
771 err = f2fs_truncate_inode_blocks(inode, free_from);
776 /* lastly zero out the first data page */
778 err = truncate_partial_data_page(inode, from, truncate_page);
780 trace_f2fs_truncate_blocks_exit(inode, err);
784 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
786 u64 free_from = from;
789 #ifdef CONFIG_F2FS_FS_COMPRESSION
791 * for compressed file, only support cluster size
792 * aligned truncation.
794 if (f2fs_compressed_file(inode))
795 free_from = round_up(from,
796 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
799 err = f2fs_do_truncate_blocks(inode, free_from, lock);
803 #ifdef CONFIG_F2FS_FS_COMPRESSION
805 * For compressed file, after release compress blocks, don't allow write
806 * direct, but we should allow write direct after truncate to zero.
808 if (f2fs_compressed_file(inode) && !free_from
809 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
810 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
812 if (from != free_from) {
813 err = f2fs_truncate_partial_cluster(inode, from, lock);
822 int f2fs_truncate(struct inode *inode)
826 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
829 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
830 S_ISLNK(inode->i_mode)))
833 trace_f2fs_truncate(inode);
835 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
838 err = f2fs_dquot_initialize(inode);
842 /* we should check inline_data size */
843 if (!f2fs_may_inline_data(inode)) {
844 err = f2fs_convert_inline_inode(inode);
849 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
853 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
854 f2fs_mark_inode_dirty_sync(inode, false);
858 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
860 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
862 if (!fscrypt_dio_supported(inode))
864 if (fsverity_active(inode))
866 if (f2fs_compressed_file(inode))
868 if (f2fs_has_inline_data(inode))
871 /* disallow direct IO if any of devices has unaligned blksize */
872 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
875 * for blkzoned device, fallback direct IO to buffered IO, so
876 * all IOs can be serialized by log-structured write.
878 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
879 !f2fs_is_pinned_file(inode))
881 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
887 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
888 struct kstat *stat, u32 request_mask, unsigned int query_flags)
890 struct inode *inode = d_inode(path->dentry);
891 struct f2fs_inode_info *fi = F2FS_I(inode);
892 struct f2fs_inode *ri = NULL;
895 if (f2fs_has_extra_attr(inode) &&
896 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
897 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
898 stat->result_mask |= STATX_BTIME;
899 stat->btime.tv_sec = fi->i_crtime.tv_sec;
900 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
904 * Return the DIO alignment restrictions if requested. We only return
905 * this information when requested, since on encrypted files it might
906 * take a fair bit of work to get if the file wasn't opened recently.
908 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN
909 * cannot represent that, so in that case we report no DIO support.
911 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
912 unsigned int bsize = i_blocksize(inode);
914 stat->result_mask |= STATX_DIOALIGN;
915 if (!f2fs_force_buffered_io(inode, WRITE)) {
916 stat->dio_mem_align = bsize;
917 stat->dio_offset_align = bsize;
922 if (flags & F2FS_COMPR_FL)
923 stat->attributes |= STATX_ATTR_COMPRESSED;
924 if (flags & F2FS_APPEND_FL)
925 stat->attributes |= STATX_ATTR_APPEND;
926 if (IS_ENCRYPTED(inode))
927 stat->attributes |= STATX_ATTR_ENCRYPTED;
928 if (flags & F2FS_IMMUTABLE_FL)
929 stat->attributes |= STATX_ATTR_IMMUTABLE;
930 if (flags & F2FS_NODUMP_FL)
931 stat->attributes |= STATX_ATTR_NODUMP;
932 if (IS_VERITY(inode))
933 stat->attributes |= STATX_ATTR_VERITY;
935 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
937 STATX_ATTR_ENCRYPTED |
938 STATX_ATTR_IMMUTABLE |
942 generic_fillattr(idmap, request_mask, inode, stat);
944 /* we need to show initial sectors used for inline_data/dentries */
945 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
946 f2fs_has_inline_dentry(inode))
947 stat->blocks += (stat->size + 511) >> 9;
952 #ifdef CONFIG_F2FS_FS_POSIX_ACL
953 static void __setattr_copy(struct mnt_idmap *idmap,
954 struct inode *inode, const struct iattr *attr)
956 unsigned int ia_valid = attr->ia_valid;
958 i_uid_update(idmap, attr, inode);
959 i_gid_update(idmap, attr, inode);
960 if (ia_valid & ATTR_ATIME)
961 inode_set_atime_to_ts(inode, attr->ia_atime);
962 if (ia_valid & ATTR_MTIME)
963 inode_set_mtime_to_ts(inode, attr->ia_mtime);
964 if (ia_valid & ATTR_CTIME)
965 inode_set_ctime_to_ts(inode, attr->ia_ctime);
966 if (ia_valid & ATTR_MODE) {
967 umode_t mode = attr->ia_mode;
969 if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode)))
971 set_acl_inode(inode, mode);
975 #define __setattr_copy setattr_copy
978 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
981 struct inode *inode = d_inode(dentry);
982 struct f2fs_inode_info *fi = F2FS_I(inode);
985 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
988 if (unlikely(IS_IMMUTABLE(inode)))
991 if (unlikely(IS_APPEND(inode) &&
992 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
993 ATTR_GID | ATTR_TIMES_SET))))
996 if ((attr->ia_valid & ATTR_SIZE)) {
997 if (!f2fs_is_compress_backend_ready(inode))
999 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
1000 !IS_ALIGNED(attr->ia_size,
1001 F2FS_BLK_TO_BYTES(fi->i_cluster_size)))
1005 err = setattr_prepare(idmap, dentry, attr);
1009 err = fscrypt_prepare_setattr(dentry, attr);
1013 err = fsverity_prepare_setattr(dentry, attr);
1017 if (is_quota_modification(idmap, inode, attr)) {
1018 err = f2fs_dquot_initialize(inode);
1022 if (i_uid_needs_update(idmap, attr, inode) ||
1023 i_gid_needs_update(idmap, attr, inode)) {
1024 f2fs_lock_op(F2FS_I_SB(inode));
1025 err = dquot_transfer(idmap, inode, attr);
1027 set_sbi_flag(F2FS_I_SB(inode),
1028 SBI_QUOTA_NEED_REPAIR);
1029 f2fs_unlock_op(F2FS_I_SB(inode));
1033 * update uid/gid under lock_op(), so that dquot and inode can
1034 * be updated atomically.
1036 i_uid_update(idmap, attr, inode);
1037 i_gid_update(idmap, attr, inode);
1038 f2fs_mark_inode_dirty_sync(inode, true);
1039 f2fs_unlock_op(F2FS_I_SB(inode));
1042 if (attr->ia_valid & ATTR_SIZE) {
1043 loff_t old_size = i_size_read(inode);
1045 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1047 * should convert inline inode before i_size_write to
1048 * keep smaller than inline_data size with inline flag.
1050 err = f2fs_convert_inline_inode(inode);
1055 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
1056 filemap_invalidate_lock(inode->i_mapping);
1058 truncate_setsize(inode, attr->ia_size);
1060 if (attr->ia_size <= old_size)
1061 err = f2fs_truncate(inode);
1063 * do not trim all blocks after i_size if target size is
1064 * larger than i_size.
1066 filemap_invalidate_unlock(inode->i_mapping);
1067 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1071 spin_lock(&fi->i_size_lock);
1072 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1073 fi->last_disk_size = i_size_read(inode);
1074 spin_unlock(&fi->i_size_lock);
1077 __setattr_copy(idmap, inode, attr);
1079 if (attr->ia_valid & ATTR_MODE) {
1080 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1082 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1084 inode->i_mode = fi->i_acl_mode;
1085 clear_inode_flag(inode, FI_ACL_MODE);
1089 /* file size may changed here */
1090 f2fs_mark_inode_dirty_sync(inode, true);
1092 /* inode change will produce dirty node pages flushed by checkpoint */
1093 f2fs_balance_fs(F2FS_I_SB(inode), true);
1098 const struct inode_operations f2fs_file_inode_operations = {
1099 .getattr = f2fs_getattr,
1100 .setattr = f2fs_setattr,
1101 .get_inode_acl = f2fs_get_acl,
1102 .set_acl = f2fs_set_acl,
1103 .listxattr = f2fs_listxattr,
1104 .fiemap = f2fs_fiemap,
1105 .fileattr_get = f2fs_fileattr_get,
1106 .fileattr_set = f2fs_fileattr_set,
1109 static int fill_zero(struct inode *inode, pgoff_t index,
1110 loff_t start, loff_t len)
1112 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1118 f2fs_balance_fs(sbi, true);
1121 page = f2fs_get_new_data_page(inode, NULL, index, false);
1122 f2fs_unlock_op(sbi);
1125 return PTR_ERR(page);
1127 f2fs_wait_on_page_writeback(page, DATA, true, true);
1128 zero_user(page, start, len);
1129 set_page_dirty(page);
1130 f2fs_put_page(page, 1);
1134 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1138 while (pg_start < pg_end) {
1139 struct dnode_of_data dn;
1140 pgoff_t end_offset, count;
1142 set_new_dnode(&dn, inode, NULL, NULL, 0);
1143 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1145 if (err == -ENOENT) {
1146 pg_start = f2fs_get_next_page_offset(&dn,
1153 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1154 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1156 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1158 f2fs_truncate_data_blocks_range(&dn, count);
1159 f2fs_put_dnode(&dn);
1166 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1168 pgoff_t pg_start, pg_end;
1169 loff_t off_start, off_end;
1172 ret = f2fs_convert_inline_inode(inode);
1176 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1177 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1179 off_start = offset & (PAGE_SIZE - 1);
1180 off_end = (offset + len) & (PAGE_SIZE - 1);
1182 if (pg_start == pg_end) {
1183 ret = fill_zero(inode, pg_start, off_start,
1184 off_end - off_start);
1189 ret = fill_zero(inode, pg_start++, off_start,
1190 PAGE_SIZE - off_start);
1195 ret = fill_zero(inode, pg_end, 0, off_end);
1200 if (pg_start < pg_end) {
1201 loff_t blk_start, blk_end;
1202 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1204 f2fs_balance_fs(sbi, true);
1206 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1207 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1209 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1210 filemap_invalidate_lock(inode->i_mapping);
1212 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1215 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1216 f2fs_unlock_op(sbi);
1218 filemap_invalidate_unlock(inode->i_mapping);
1219 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1226 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1227 int *do_replace, pgoff_t off, pgoff_t len)
1229 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1230 struct dnode_of_data dn;
1234 set_new_dnode(&dn, inode, NULL, NULL, 0);
1235 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1236 if (ret && ret != -ENOENT) {
1238 } else if (ret == -ENOENT) {
1239 if (dn.max_level == 0)
1241 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1242 dn.ofs_in_node, len);
1248 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1249 dn.ofs_in_node, len);
1250 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1251 *blkaddr = f2fs_data_blkaddr(&dn);
1253 if (__is_valid_data_blkaddr(*blkaddr) &&
1254 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1255 DATA_GENERIC_ENHANCE)) {
1256 f2fs_put_dnode(&dn);
1257 return -EFSCORRUPTED;
1260 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1262 if (f2fs_lfs_mode(sbi)) {
1263 f2fs_put_dnode(&dn);
1267 /* do not invalidate this block address */
1268 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1272 f2fs_put_dnode(&dn);
1281 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1282 int *do_replace, pgoff_t off, int len)
1284 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1285 struct dnode_of_data dn;
1288 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1289 if (*do_replace == 0)
1292 set_new_dnode(&dn, inode, NULL, NULL, 0);
1293 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1295 dec_valid_block_count(sbi, inode, 1);
1296 f2fs_invalidate_blocks(sbi, *blkaddr);
1298 f2fs_update_data_blkaddr(&dn, *blkaddr);
1300 f2fs_put_dnode(&dn);
1305 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1306 block_t *blkaddr, int *do_replace,
1307 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1309 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1314 if (blkaddr[i] == NULL_ADDR && !full) {
1319 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1320 struct dnode_of_data dn;
1321 struct node_info ni;
1325 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1326 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1330 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1332 f2fs_put_dnode(&dn);
1336 ilen = min((pgoff_t)
1337 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1338 dn.ofs_in_node, len - i);
1340 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1341 f2fs_truncate_data_blocks_range(&dn, 1);
1343 if (do_replace[i]) {
1344 f2fs_i_blocks_write(src_inode,
1346 f2fs_i_blocks_write(dst_inode,
1348 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1349 blkaddr[i], ni.version, true, false);
1355 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1356 if (dst_inode->i_size < new_size)
1357 f2fs_i_size_write(dst_inode, new_size);
1358 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1360 f2fs_put_dnode(&dn);
1362 struct page *psrc, *pdst;
1364 psrc = f2fs_get_lock_data_page(src_inode,
1367 return PTR_ERR(psrc);
1368 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1371 f2fs_put_page(psrc, 1);
1372 return PTR_ERR(pdst);
1375 f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1377 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1378 set_page_dirty(pdst);
1379 set_page_private_gcing(pdst);
1380 f2fs_put_page(pdst, 1);
1381 f2fs_put_page(psrc, 1);
1383 ret = f2fs_truncate_hole(src_inode,
1384 src + i, src + i + 1);
1393 static int __exchange_data_block(struct inode *src_inode,
1394 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1395 pgoff_t len, bool full)
1397 block_t *src_blkaddr;
1403 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1405 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1406 array_size(olen, sizeof(block_t)),
1411 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1412 array_size(olen, sizeof(int)),
1415 kvfree(src_blkaddr);
1419 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1420 do_replace, src, olen);
1424 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1425 do_replace, src, dst, olen, full);
1433 kvfree(src_blkaddr);
1439 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1440 kvfree(src_blkaddr);
1445 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1447 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1448 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1449 pgoff_t start = offset >> PAGE_SHIFT;
1450 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1453 f2fs_balance_fs(sbi, true);
1455 /* avoid gc operation during block exchange */
1456 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1457 filemap_invalidate_lock(inode->i_mapping);
1460 f2fs_drop_extent_tree(inode);
1461 truncate_pagecache(inode, offset);
1462 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1463 f2fs_unlock_op(sbi);
1465 filemap_invalidate_unlock(inode->i_mapping);
1466 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1470 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1475 if (offset + len >= i_size_read(inode))
1478 /* collapse range should be aligned to block size of f2fs. */
1479 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1482 ret = f2fs_convert_inline_inode(inode);
1486 /* write out all dirty pages from offset */
1487 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1491 ret = f2fs_do_collapse(inode, offset, len);
1495 /* write out all moved pages, if possible */
1496 filemap_invalidate_lock(inode->i_mapping);
1497 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1498 truncate_pagecache(inode, offset);
1500 new_size = i_size_read(inode) - len;
1501 ret = f2fs_truncate_blocks(inode, new_size, true);
1502 filemap_invalidate_unlock(inode->i_mapping);
1504 f2fs_i_size_write(inode, new_size);
1508 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1511 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1512 pgoff_t index = start;
1513 unsigned int ofs_in_node = dn->ofs_in_node;
1517 for (; index < end; index++, dn->ofs_in_node++) {
1518 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1522 dn->ofs_in_node = ofs_in_node;
1523 ret = f2fs_reserve_new_blocks(dn, count);
1527 dn->ofs_in_node = ofs_in_node;
1528 for (index = start; index < end; index++, dn->ofs_in_node++) {
1529 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1531 * f2fs_reserve_new_blocks will not guarantee entire block
1534 if (dn->data_blkaddr == NULL_ADDR) {
1539 if (dn->data_blkaddr == NEW_ADDR)
1542 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1543 DATA_GENERIC_ENHANCE)) {
1544 ret = -EFSCORRUPTED;
1548 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1549 f2fs_set_data_blkaddr(dn, NEW_ADDR);
1552 f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1553 f2fs_update_age_extent_cache_range(dn, start, index - start);
1558 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1561 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1562 struct address_space *mapping = inode->i_mapping;
1563 pgoff_t index, pg_start, pg_end;
1564 loff_t new_size = i_size_read(inode);
1565 loff_t off_start, off_end;
1568 ret = inode_newsize_ok(inode, (len + offset));
1572 ret = f2fs_convert_inline_inode(inode);
1576 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1580 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1581 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1583 off_start = offset & (PAGE_SIZE - 1);
1584 off_end = (offset + len) & (PAGE_SIZE - 1);
1586 if (pg_start == pg_end) {
1587 ret = fill_zero(inode, pg_start, off_start,
1588 off_end - off_start);
1592 new_size = max_t(loff_t, new_size, offset + len);
1595 ret = fill_zero(inode, pg_start++, off_start,
1596 PAGE_SIZE - off_start);
1600 new_size = max_t(loff_t, new_size,
1601 (loff_t)pg_start << PAGE_SHIFT);
1604 for (index = pg_start; index < pg_end;) {
1605 struct dnode_of_data dn;
1606 unsigned int end_offset;
1609 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1610 filemap_invalidate_lock(mapping);
1612 truncate_pagecache_range(inode,
1613 (loff_t)index << PAGE_SHIFT,
1614 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1618 set_new_dnode(&dn, inode, NULL, NULL, 0);
1619 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1621 f2fs_unlock_op(sbi);
1622 filemap_invalidate_unlock(mapping);
1623 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1627 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1628 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1630 ret = f2fs_do_zero_range(&dn, index, end);
1631 f2fs_put_dnode(&dn);
1633 f2fs_unlock_op(sbi);
1634 filemap_invalidate_unlock(mapping);
1635 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1637 f2fs_balance_fs(sbi, dn.node_changed);
1643 new_size = max_t(loff_t, new_size,
1644 (loff_t)index << PAGE_SHIFT);
1648 ret = fill_zero(inode, pg_end, 0, off_end);
1652 new_size = max_t(loff_t, new_size, offset + len);
1657 if (new_size > i_size_read(inode)) {
1658 if (mode & FALLOC_FL_KEEP_SIZE)
1659 file_set_keep_isize(inode);
1661 f2fs_i_size_write(inode, new_size);
1666 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1668 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1669 struct address_space *mapping = inode->i_mapping;
1670 pgoff_t nr, pg_start, pg_end, delta, idx;
1674 new_size = i_size_read(inode) + len;
1675 ret = inode_newsize_ok(inode, new_size);
1679 if (offset >= i_size_read(inode))
1682 /* insert range should be aligned to block size of f2fs. */
1683 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1686 ret = f2fs_convert_inline_inode(inode);
1690 f2fs_balance_fs(sbi, true);
1692 filemap_invalidate_lock(mapping);
1693 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1694 filemap_invalidate_unlock(mapping);
1698 /* write out all dirty pages from offset */
1699 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1703 pg_start = offset >> PAGE_SHIFT;
1704 pg_end = (offset + len) >> PAGE_SHIFT;
1705 delta = pg_end - pg_start;
1706 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1708 /* avoid gc operation during block exchange */
1709 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1710 filemap_invalidate_lock(mapping);
1711 truncate_pagecache(inode, offset);
1713 while (!ret && idx > pg_start) {
1714 nr = idx - pg_start;
1720 f2fs_drop_extent_tree(inode);
1722 ret = __exchange_data_block(inode, inode, idx,
1723 idx + delta, nr, false);
1724 f2fs_unlock_op(sbi);
1726 filemap_invalidate_unlock(mapping);
1727 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1731 /* write out all moved pages, if possible */
1732 filemap_invalidate_lock(mapping);
1733 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1734 truncate_pagecache(inode, offset);
1735 filemap_invalidate_unlock(mapping);
1738 f2fs_i_size_write(inode, new_size);
1742 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1743 loff_t len, int mode)
1745 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1746 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1747 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1748 .m_may_create = true };
1749 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1750 .init_gc_type = FG_GC,
1751 .should_migrate_blocks = false,
1752 .err_gc_skipped = true,
1753 .nr_free_secs = 0 };
1754 pgoff_t pg_start, pg_end;
1757 block_t expanded = 0;
1760 err = inode_newsize_ok(inode, (len + offset));
1764 err = f2fs_convert_inline_inode(inode);
1768 f2fs_balance_fs(sbi, true);
1770 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1771 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1772 off_end = (offset + len) & (PAGE_SIZE - 1);
1774 map.m_lblk = pg_start;
1775 map.m_len = pg_end - pg_start;
1782 if (f2fs_is_pinned_file(inode)) {
1783 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1784 block_t sec_len = roundup(map.m_len, sec_blks);
1786 map.m_len = sec_blks;
1788 if (has_not_enough_free_secs(sbi, 0,
1789 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1790 f2fs_down_write(&sbi->gc_lock);
1791 stat_inc_gc_call_count(sbi, FOREGROUND);
1792 err = f2fs_gc(sbi, &gc_control);
1793 if (err && err != -ENODATA)
1797 f2fs_down_write(&sbi->pin_sem);
1799 err = f2fs_allocate_pinning_section(sbi);
1801 f2fs_up_write(&sbi->pin_sem);
1805 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1806 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1807 file_dont_truncate(inode);
1809 f2fs_up_write(&sbi->pin_sem);
1811 expanded += map.m_len;
1812 sec_len -= map.m_len;
1813 map.m_lblk += map.m_len;
1814 if (!err && sec_len)
1817 map.m_len = expanded;
1819 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1820 expanded = map.m_len;
1829 last_off = pg_start + expanded - 1;
1831 /* update new size to the failed position */
1832 new_size = (last_off == pg_end) ? offset + len :
1833 (loff_t)(last_off + 1) << PAGE_SHIFT;
1835 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1838 if (new_size > i_size_read(inode)) {
1839 if (mode & FALLOC_FL_KEEP_SIZE)
1840 file_set_keep_isize(inode);
1842 f2fs_i_size_write(inode, new_size);
1848 static long f2fs_fallocate(struct file *file, int mode,
1849 loff_t offset, loff_t len)
1851 struct inode *inode = file_inode(file);
1854 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1856 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1858 if (!f2fs_is_compress_backend_ready(inode))
1861 /* f2fs only support ->fallocate for regular file */
1862 if (!S_ISREG(inode->i_mode))
1865 if (IS_ENCRYPTED(inode) &&
1866 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1869 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1870 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1871 FALLOC_FL_INSERT_RANGE))
1877 * Pinned file should not support partial truncation since the block
1878 * can be used by applications.
1880 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1881 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1882 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1887 ret = file_modified(file);
1891 if (mode & FALLOC_FL_PUNCH_HOLE) {
1892 if (offset >= inode->i_size)
1895 ret = f2fs_punch_hole(inode, offset, len);
1896 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1897 ret = f2fs_collapse_range(inode, offset, len);
1898 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1899 ret = f2fs_zero_range(inode, offset, len, mode);
1900 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1901 ret = f2fs_insert_range(inode, offset, len);
1903 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1907 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1908 f2fs_mark_inode_dirty_sync(inode, false);
1909 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1913 inode_unlock(inode);
1915 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1919 static int f2fs_release_file(struct inode *inode, struct file *filp)
1922 * f2fs_release_file is called at every close calls. So we should
1923 * not drop any inmemory pages by close called by other process.
1925 if (!(filp->f_mode & FMODE_WRITE) ||
1926 atomic_read(&inode->i_writecount) != 1)
1930 f2fs_abort_atomic_write(inode, true);
1931 inode_unlock(inode);
1936 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1938 struct inode *inode = file_inode(file);
1941 * If the process doing a transaction is crashed, we should do
1942 * roll-back. Otherwise, other reader/write can see corrupted database
1943 * until all the writers close its file. Since this should be done
1944 * before dropping file lock, it needs to do in ->flush.
1946 if (F2FS_I(inode)->atomic_write_task == current &&
1947 (current->flags & PF_EXITING)) {
1949 f2fs_abort_atomic_write(inode, true);
1950 inode_unlock(inode);
1956 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1958 struct f2fs_inode_info *fi = F2FS_I(inode);
1959 u32 masked_flags = fi->i_flags & mask;
1961 /* mask can be shrunk by flags_valid selector */
1964 /* Is it quota file? Do not allow user to mess with it */
1965 if (IS_NOQUOTA(inode))
1968 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1969 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1971 if (!f2fs_empty_dir(inode))
1975 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1976 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1978 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1982 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1983 if (masked_flags & F2FS_COMPR_FL) {
1984 if (!f2fs_disable_compressed_file(inode))
1987 /* try to convert inline_data to support compression */
1988 int err = f2fs_convert_inline_inode(inode);
1992 f2fs_down_write(&fi->i_sem);
1993 if (!f2fs_may_compress(inode) ||
1994 (S_ISREG(inode->i_mode) &&
1995 F2FS_HAS_BLOCKS(inode))) {
1996 f2fs_up_write(&fi->i_sem);
1999 err = set_compress_context(inode);
2000 f2fs_up_write(&fi->i_sem);
2007 fi->i_flags = iflags | (fi->i_flags & ~mask);
2008 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2009 (fi->i_flags & F2FS_NOCOMP_FL));
2011 if (fi->i_flags & F2FS_PROJINHERIT_FL)
2012 set_inode_flag(inode, FI_PROJ_INHERIT);
2014 clear_inode_flag(inode, FI_PROJ_INHERIT);
2016 inode_set_ctime_current(inode);
2017 f2fs_set_inode_flags(inode);
2018 f2fs_mark_inode_dirty_sync(inode, true);
2022 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2025 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2026 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2027 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
2028 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2030 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2031 * FS_IOC_FSSETXATTR is done by the VFS.
2034 static const struct {
2037 } f2fs_fsflags_map[] = {
2038 { F2FS_COMPR_FL, FS_COMPR_FL },
2039 { F2FS_SYNC_FL, FS_SYNC_FL },
2040 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
2041 { F2FS_APPEND_FL, FS_APPEND_FL },
2042 { F2FS_NODUMP_FL, FS_NODUMP_FL },
2043 { F2FS_NOATIME_FL, FS_NOATIME_FL },
2044 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
2045 { F2FS_INDEX_FL, FS_INDEX_FL },
2046 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
2047 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
2048 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
2051 #define F2FS_GETTABLE_FS_FL ( \
2061 FS_PROJINHERIT_FL | \
2063 FS_INLINE_DATA_FL | \
2068 #define F2FS_SETTABLE_FS_FL ( \
2077 FS_PROJINHERIT_FL | \
2080 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2081 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2086 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2087 if (iflags & f2fs_fsflags_map[i].iflag)
2088 fsflags |= f2fs_fsflags_map[i].fsflag;
2093 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2094 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2099 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2100 if (fsflags & f2fs_fsflags_map[i].fsflag)
2101 iflags |= f2fs_fsflags_map[i].iflag;
2106 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2108 struct inode *inode = file_inode(filp);
2110 return put_user(inode->i_generation, (int __user *)arg);
2113 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2115 struct inode *inode = file_inode(filp);
2116 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2117 struct f2fs_inode_info *fi = F2FS_I(inode);
2118 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2119 struct inode *pinode;
2123 if (!inode_owner_or_capable(idmap, inode))
2126 if (!S_ISREG(inode->i_mode))
2129 if (filp->f_flags & O_DIRECT)
2132 ret = mnt_want_write_file(filp);
2138 if (!f2fs_disable_compressed_file(inode) ||
2139 f2fs_is_pinned_file(inode)) {
2144 if (f2fs_is_atomic_file(inode))
2147 ret = f2fs_convert_inline_inode(inode);
2151 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2154 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2155 * f2fs_is_atomic_file.
2157 if (get_dirty_pages(inode))
2158 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2159 inode->i_ino, get_dirty_pages(inode));
2160 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2162 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2166 /* Check if the inode already has a COW inode */
2167 if (fi->cow_inode == NULL) {
2168 /* Create a COW inode for atomic write */
2169 pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2170 if (IS_ERR(pinode)) {
2171 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2172 ret = PTR_ERR(pinode);
2176 ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2179 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2183 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2184 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2186 /* Set the COW inode's atomic_inode to the atomic inode */
2187 F2FS_I(fi->cow_inode)->atomic_inode = inode;
2189 /* Reuse the already created COW inode */
2190 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2192 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2197 f2fs_write_inode(inode, NULL);
2199 stat_inc_atomic_inode(inode);
2201 set_inode_flag(inode, FI_ATOMIC_FILE);
2203 isize = i_size_read(inode);
2204 fi->original_i_size = isize;
2206 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2207 truncate_inode_pages_final(inode->i_mapping);
2208 f2fs_i_size_write(inode, 0);
2211 f2fs_i_size_write(fi->cow_inode, isize);
2213 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2215 f2fs_update_time(sbi, REQ_TIME);
2216 fi->atomic_write_task = current;
2217 stat_update_max_atomic_write(inode);
2218 fi->atomic_write_cnt = 0;
2220 inode_unlock(inode);
2221 mnt_drop_write_file(filp);
2225 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2227 struct inode *inode = file_inode(filp);
2228 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2231 if (!inode_owner_or_capable(idmap, inode))
2234 ret = mnt_want_write_file(filp);
2238 f2fs_balance_fs(F2FS_I_SB(inode), true);
2242 if (f2fs_is_atomic_file(inode)) {
2243 ret = f2fs_commit_atomic_write(inode);
2245 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2247 f2fs_abort_atomic_write(inode, ret);
2249 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2252 inode_unlock(inode);
2253 mnt_drop_write_file(filp);
2257 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2259 struct inode *inode = file_inode(filp);
2260 struct mnt_idmap *idmap = file_mnt_idmap(filp);
2263 if (!inode_owner_or_capable(idmap, inode))
2266 ret = mnt_want_write_file(filp);
2272 f2fs_abort_atomic_write(inode, true);
2274 inode_unlock(inode);
2276 mnt_drop_write_file(filp);
2277 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2281 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2284 struct super_block *sb = sbi->sb;
2288 case F2FS_GOING_DOWN_FULLSYNC:
2289 ret = bdev_freeze(sb->s_bdev);
2292 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2293 bdev_thaw(sb->s_bdev);
2295 case F2FS_GOING_DOWN_METASYNC:
2296 /* do checkpoint only */
2297 ret = f2fs_sync_fs(sb, 1);
2303 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2305 case F2FS_GOING_DOWN_NOSYNC:
2306 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2308 case F2FS_GOING_DOWN_METAFLUSH:
2309 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2310 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2312 case F2FS_GOING_DOWN_NEED_FSCK:
2313 set_sbi_flag(sbi, SBI_NEED_FSCK);
2314 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2315 set_sbi_flag(sbi, SBI_IS_DIRTY);
2316 /* do checkpoint only */
2317 ret = f2fs_sync_fs(sb, 1);
2329 f2fs_stop_gc_thread(sbi);
2330 f2fs_stop_discard_thread(sbi);
2332 f2fs_drop_discard_cmd(sbi);
2333 clear_opt(sbi, DISCARD);
2335 f2fs_update_time(sbi, REQ_TIME);
2338 trace_f2fs_shutdown(sbi, flag, ret);
2343 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2345 struct inode *inode = file_inode(filp);
2346 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2349 bool need_drop = false, readonly = false;
2351 if (!capable(CAP_SYS_ADMIN))
2354 if (get_user(in, (__u32 __user *)arg))
2357 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2358 ret = mnt_want_write_file(filp);
2363 /* fallback to nosync shutdown for readonly fs */
2364 in = F2FS_GOING_DOWN_NOSYNC;
2371 ret = f2fs_do_shutdown(sbi, in, readonly);
2374 mnt_drop_write_file(filp);
2379 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2381 struct inode *inode = file_inode(filp);
2382 struct super_block *sb = inode->i_sb;
2383 struct fstrim_range range;
2386 if (!capable(CAP_SYS_ADMIN))
2389 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2392 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2396 ret = mnt_want_write_file(filp);
2400 range.minlen = max((unsigned int)range.minlen,
2401 bdev_discard_granularity(sb->s_bdev));
2402 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2403 mnt_drop_write_file(filp);
2407 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2410 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2414 static bool uuid_is_nonzero(__u8 u[16])
2418 for (i = 0; i < 16; i++)
2424 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2426 struct inode *inode = file_inode(filp);
2429 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2432 ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2433 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2437 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2439 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2441 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2444 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2446 struct inode *inode = file_inode(filp);
2447 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2448 u8 encrypt_pw_salt[16];
2451 if (!f2fs_sb_has_encrypt(sbi))
2454 err = mnt_want_write_file(filp);
2458 f2fs_down_write(&sbi->sb_lock);
2460 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2463 /* update superblock with uuid */
2464 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2466 err = f2fs_commit_super(sbi, false);
2469 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2473 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2475 f2fs_up_write(&sbi->sb_lock);
2476 mnt_drop_write_file(filp);
2478 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2484 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2487 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2490 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2493 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2495 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2498 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2501 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2503 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2506 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2509 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2512 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2515 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2518 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2521 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2524 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2527 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2529 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2532 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2535 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2537 struct inode *inode = file_inode(filp);
2538 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2539 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2541 .should_migrate_blocks = false,
2542 .nr_free_secs = 0 };
2546 if (!capable(CAP_SYS_ADMIN))
2549 if (get_user(sync, (__u32 __user *)arg))
2552 if (f2fs_readonly(sbi->sb))
2555 ret = mnt_want_write_file(filp);
2560 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2565 f2fs_down_write(&sbi->gc_lock);
2568 gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2569 gc_control.err_gc_skipped = sync;
2570 stat_inc_gc_call_count(sbi, FOREGROUND);
2571 ret = f2fs_gc(sbi, &gc_control);
2573 mnt_drop_write_file(filp);
2577 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2579 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2580 struct f2fs_gc_control gc_control = {
2581 .init_gc_type = range->sync ? FG_GC : BG_GC,
2583 .should_migrate_blocks = false,
2584 .err_gc_skipped = range->sync,
2585 .nr_free_secs = 0 };
2589 if (!capable(CAP_SYS_ADMIN))
2591 if (f2fs_readonly(sbi->sb))
2594 end = range->start + range->len;
2595 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2596 end >= MAX_BLKADDR(sbi))
2599 ret = mnt_want_write_file(filp);
2605 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2610 f2fs_down_write(&sbi->gc_lock);
2613 gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2614 stat_inc_gc_call_count(sbi, FOREGROUND);
2615 ret = f2fs_gc(sbi, &gc_control);
2621 range->start += CAP_BLKS_PER_SEC(sbi);
2622 if (range->start <= end)
2625 mnt_drop_write_file(filp);
2629 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2631 struct f2fs_gc_range range;
2633 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2636 return __f2fs_ioc_gc_range(filp, &range);
2639 static int f2fs_ioc_write_checkpoint(struct file *filp)
2641 struct inode *inode = file_inode(filp);
2642 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2645 if (!capable(CAP_SYS_ADMIN))
2648 if (f2fs_readonly(sbi->sb))
2651 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2652 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2656 ret = mnt_want_write_file(filp);
2660 ret = f2fs_sync_fs(sbi->sb, 1);
2662 mnt_drop_write_file(filp);
2666 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2668 struct f2fs_defragment *range)
2670 struct inode *inode = file_inode(filp);
2671 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2672 .m_seg_type = NO_CHECK_TYPE,
2673 .m_may_create = false };
2674 struct extent_info ei = {};
2675 pgoff_t pg_start, pg_end, next_pgofs;
2676 unsigned int total = 0, sec_num;
2677 block_t blk_end = 0;
2678 bool fragmented = false;
2681 f2fs_balance_fs(sbi, true);
2684 pg_start = range->start >> PAGE_SHIFT;
2685 pg_end = min_t(pgoff_t,
2686 (range->start + range->len) >> PAGE_SHIFT,
2687 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2689 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2694 /* if in-place-update policy is enabled, don't waste time here */
2695 set_inode_flag(inode, FI_OPU_WRITE);
2696 if (f2fs_should_update_inplace(inode, NULL)) {
2701 /* writeback all dirty pages in the range */
2702 err = filemap_write_and_wait_range(inode->i_mapping,
2703 pg_start << PAGE_SHIFT,
2704 (pg_end << PAGE_SHIFT) - 1);
2709 * lookup mapping info in extent cache, skip defragmenting if physical
2710 * block addresses are continuous.
2712 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2713 if (ei.fofs + ei.len >= pg_end)
2717 map.m_lblk = pg_start;
2718 map.m_next_pgofs = &next_pgofs;
2721 * lookup mapping info in dnode page cache, skip defragmenting if all
2722 * physical block addresses are continuous even if there are hole(s)
2723 * in logical blocks.
2725 while (map.m_lblk < pg_end) {
2726 map.m_len = pg_end - map.m_lblk;
2727 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2731 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2732 map.m_lblk = next_pgofs;
2736 if (blk_end && blk_end != map.m_pblk)
2739 /* record total count of block that we're going to move */
2742 blk_end = map.m_pblk + map.m_len;
2744 map.m_lblk += map.m_len;
2752 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2755 * make sure there are enough free section for LFS allocation, this can
2756 * avoid defragment running in SSR mode when free section are allocated
2759 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2764 map.m_lblk = pg_start;
2765 map.m_len = pg_end - pg_start;
2768 while (map.m_lblk < pg_end) {
2773 map.m_len = pg_end - map.m_lblk;
2774 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2778 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2779 map.m_lblk = next_pgofs;
2783 set_inode_flag(inode, FI_SKIP_WRITES);
2786 while (idx < map.m_lblk + map.m_len &&
2787 cnt < BLKS_PER_SEG(sbi)) {
2790 page = f2fs_get_lock_data_page(inode, idx, true);
2792 err = PTR_ERR(page);
2796 set_page_dirty(page);
2797 set_page_private_gcing(page);
2798 f2fs_put_page(page, 1);
2807 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2810 clear_inode_flag(inode, FI_SKIP_WRITES);
2812 err = filemap_fdatawrite(inode->i_mapping);
2817 clear_inode_flag(inode, FI_SKIP_WRITES);
2819 clear_inode_flag(inode, FI_OPU_WRITE);
2821 inode_unlock(inode);
2823 range->len = (u64)total << PAGE_SHIFT;
2827 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2829 struct inode *inode = file_inode(filp);
2830 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2831 struct f2fs_defragment range;
2834 if (!capable(CAP_SYS_ADMIN))
2837 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2840 if (f2fs_readonly(sbi->sb))
2843 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2847 /* verify alignment of offset & size */
2848 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2851 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2852 max_file_blocks(inode)))
2855 err = mnt_want_write_file(filp);
2859 err = f2fs_defragment_range(sbi, filp, &range);
2860 mnt_drop_write_file(filp);
2863 f2fs_update_time(sbi, REQ_TIME);
2867 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2874 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2875 struct file *file_out, loff_t pos_out, size_t len)
2877 struct inode *src = file_inode(file_in);
2878 struct inode *dst = file_inode(file_out);
2879 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2880 size_t olen = len, dst_max_i_size = 0;
2884 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2885 src->i_sb != dst->i_sb)
2888 if (unlikely(f2fs_readonly(src->i_sb)))
2891 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2894 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2897 if (pos_out < 0 || pos_in < 0)
2901 if (pos_in == pos_out)
2903 if (pos_out > pos_in && pos_out < pos_in + len)
2910 if (!inode_trylock(dst))
2914 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2915 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2921 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2924 olen = len = src->i_size - pos_in;
2925 if (pos_in + len == src->i_size)
2926 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2932 dst_osize = dst->i_size;
2933 if (pos_out + olen > dst->i_size)
2934 dst_max_i_size = pos_out + olen;
2936 /* verify the end result is block aligned */
2937 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2938 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2939 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2942 ret = f2fs_convert_inline_inode(src);
2946 ret = f2fs_convert_inline_inode(dst);
2950 /* write out all dirty pages from offset */
2951 ret = filemap_write_and_wait_range(src->i_mapping,
2952 pos_in, pos_in + len);
2956 ret = filemap_write_and_wait_range(dst->i_mapping,
2957 pos_out, pos_out + len);
2961 f2fs_balance_fs(sbi, true);
2963 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2966 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2971 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2972 pos_out >> F2FS_BLKSIZE_BITS,
2973 len >> F2FS_BLKSIZE_BITS, false);
2977 f2fs_i_size_write(dst, dst_max_i_size);
2978 else if (dst_osize != dst->i_size)
2979 f2fs_i_size_write(dst, dst_osize);
2981 f2fs_unlock_op(sbi);
2984 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2986 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2990 inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
2991 f2fs_mark_inode_dirty_sync(src, false);
2993 inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
2994 f2fs_mark_inode_dirty_sync(dst, false);
2996 f2fs_update_time(sbi, REQ_TIME);
3006 static int __f2fs_ioc_move_range(struct file *filp,
3007 struct f2fs_move_range *range)
3012 if (!(filp->f_mode & FMODE_READ) ||
3013 !(filp->f_mode & FMODE_WRITE))
3016 dst = fdget(range->dst_fd);
3020 if (!(dst.file->f_mode & FMODE_WRITE)) {
3025 err = mnt_want_write_file(filp);
3029 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
3030 range->pos_out, range->len);
3032 mnt_drop_write_file(filp);
3038 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3040 struct f2fs_move_range range;
3042 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3045 return __f2fs_ioc_move_range(filp, &range);
3048 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3050 struct inode *inode = file_inode(filp);
3051 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3052 struct sit_info *sm = SIT_I(sbi);
3053 unsigned int start_segno = 0, end_segno = 0;
3054 unsigned int dev_start_segno = 0, dev_end_segno = 0;
3055 struct f2fs_flush_device range;
3056 struct f2fs_gc_control gc_control = {
3057 .init_gc_type = FG_GC,
3058 .should_migrate_blocks = true,
3059 .err_gc_skipped = true,
3060 .nr_free_secs = 0 };
3063 if (!capable(CAP_SYS_ADMIN))
3066 if (f2fs_readonly(sbi->sb))
3069 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3072 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3076 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3077 __is_large_section(sbi)) {
3078 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3079 range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3083 ret = mnt_want_write_file(filp);
3087 if (range.dev_num != 0)
3088 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3089 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3091 start_segno = sm->last_victim[FLUSH_DEVICE];
3092 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3093 start_segno = dev_start_segno;
3094 end_segno = min(start_segno + range.segments, dev_end_segno);
3096 while (start_segno < end_segno) {
3097 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3101 sm->last_victim[GC_CB] = end_segno + 1;
3102 sm->last_victim[GC_GREEDY] = end_segno + 1;
3103 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3105 gc_control.victim_segno = start_segno;
3106 stat_inc_gc_call_count(sbi, FOREGROUND);
3107 ret = f2fs_gc(sbi, &gc_control);
3115 mnt_drop_write_file(filp);
3119 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3121 struct inode *inode = file_inode(filp);
3122 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3124 /* Must validate to set it with SQLite behavior in Android. */
3125 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3127 return put_user(sb_feature, (u32 __user *)arg);
3131 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3133 struct dquot *transfer_to[MAXQUOTAS] = {};
3134 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3135 struct super_block *sb = sbi->sb;
3138 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3139 if (IS_ERR(transfer_to[PRJQUOTA]))
3140 return PTR_ERR(transfer_to[PRJQUOTA]);
3142 err = __dquot_transfer(inode, transfer_to);
3144 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3145 dqput(transfer_to[PRJQUOTA]);
3149 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3151 struct f2fs_inode_info *fi = F2FS_I(inode);
3152 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3153 struct f2fs_inode *ri = NULL;
3157 if (!f2fs_sb_has_project_quota(sbi)) {
3158 if (projid != F2FS_DEF_PROJID)
3164 if (!f2fs_has_extra_attr(inode))
3167 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3169 if (projid_eq(kprojid, fi->i_projid))
3173 /* Is it quota file? Do not allow user to mess with it */
3174 if (IS_NOQUOTA(inode))
3177 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3180 err = f2fs_dquot_initialize(inode);
3185 err = f2fs_transfer_project_quota(inode, kprojid);
3189 fi->i_projid = kprojid;
3190 inode_set_ctime_current(inode);
3191 f2fs_mark_inode_dirty_sync(inode, true);
3193 f2fs_unlock_op(sbi);
3197 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3202 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3204 if (projid != F2FS_DEF_PROJID)
3210 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3212 struct inode *inode = d_inode(dentry);
3213 struct f2fs_inode_info *fi = F2FS_I(inode);
3214 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3216 if (IS_ENCRYPTED(inode))
3217 fsflags |= FS_ENCRYPT_FL;
3218 if (IS_VERITY(inode))
3219 fsflags |= FS_VERITY_FL;
3220 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3221 fsflags |= FS_INLINE_DATA_FL;
3222 if (is_inode_flag_set(inode, FI_PIN_FILE))
3223 fsflags |= FS_NOCOW_FL;
3225 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3227 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3228 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3233 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3234 struct dentry *dentry, struct fileattr *fa)
3236 struct inode *inode = d_inode(dentry);
3237 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3241 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3243 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3245 if (fsflags & ~F2FS_GETTABLE_FS_FL)
3247 fsflags &= F2FS_SETTABLE_FS_FL;
3248 if (!fa->flags_valid)
3249 mask &= FS_COMMON_FL;
3251 iflags = f2fs_fsflags_to_iflags(fsflags);
3252 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3255 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3257 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3262 int f2fs_pin_file_control(struct inode *inode, bool inc)
3264 struct f2fs_inode_info *fi = F2FS_I(inode);
3265 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3267 if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3268 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3269 __func__, inode->i_ino, fi->i_gc_failures);
3270 clear_inode_flag(inode, FI_PIN_FILE);
3274 /* Use i_gc_failures for normal file as a risk signal. */
3276 f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3281 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3283 struct inode *inode = file_inode(filp);
3284 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3288 if (get_user(pin, (__u32 __user *)arg))
3291 if (!S_ISREG(inode->i_mode))
3294 if (f2fs_readonly(sbi->sb))
3297 ret = mnt_want_write_file(filp);
3304 clear_inode_flag(inode, FI_PIN_FILE);
3305 f2fs_i_gc_failures_write(inode, 0);
3307 } else if (f2fs_is_pinned_file(inode)) {
3311 if (F2FS_HAS_BLOCKS(inode)) {
3316 /* Let's allow file pinning on zoned device. */
3317 if (!f2fs_sb_has_blkzoned(sbi) &&
3318 f2fs_should_update_outplace(inode, NULL)) {
3323 if (f2fs_pin_file_control(inode, false)) {
3328 ret = f2fs_convert_inline_inode(inode);
3332 if (!f2fs_disable_compressed_file(inode)) {
3337 set_inode_flag(inode, FI_PIN_FILE);
3338 ret = F2FS_I(inode)->i_gc_failures;
3340 f2fs_update_time(sbi, REQ_TIME);
3342 inode_unlock(inode);
3343 mnt_drop_write_file(filp);
3347 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3349 struct inode *inode = file_inode(filp);
3352 if (is_inode_flag_set(inode, FI_PIN_FILE))
3353 pin = F2FS_I(inode)->i_gc_failures;
3354 return put_user(pin, (u32 __user *)arg);
3357 int f2fs_precache_extents(struct inode *inode)
3359 struct f2fs_inode_info *fi = F2FS_I(inode);
3360 struct f2fs_map_blocks map;
3361 pgoff_t m_next_extent;
3365 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3370 map.m_next_pgofs = NULL;
3371 map.m_next_extent = &m_next_extent;
3372 map.m_seg_type = NO_CHECK_TYPE;
3373 map.m_may_create = false;
3374 end = F2FS_BLK_ALIGN(i_size_read(inode));
3376 while (map.m_lblk < end) {
3377 map.m_len = end - map.m_lblk;
3379 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3380 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3381 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3382 if (err || !map.m_len)
3385 map.m_lblk = m_next_extent;
3391 static int f2fs_ioc_precache_extents(struct file *filp)
3393 return f2fs_precache_extents(file_inode(filp));
3396 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3398 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3401 if (!capable(CAP_SYS_ADMIN))
3404 if (f2fs_readonly(sbi->sb))
3407 if (copy_from_user(&block_count, (void __user *)arg,
3408 sizeof(block_count)))
3411 return f2fs_resize_fs(filp, block_count);
3414 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3416 struct inode *inode = file_inode(filp);
3418 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3420 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3421 f2fs_warn(F2FS_I_SB(inode),
3422 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3427 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3430 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3432 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3435 return fsverity_ioctl_measure(filp, (void __user *)arg);
3438 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3440 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3443 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3446 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3448 struct inode *inode = file_inode(filp);
3449 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3454 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3458 f2fs_down_read(&sbi->sb_lock);
3459 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3460 ARRAY_SIZE(sbi->raw_super->volume_name),
3461 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3462 f2fs_up_read(&sbi->sb_lock);
3464 if (copy_to_user((char __user *)arg, vbuf,
3465 min(FSLABEL_MAX, count)))
3472 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3474 struct inode *inode = file_inode(filp);
3475 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3479 if (!capable(CAP_SYS_ADMIN))
3482 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3484 return PTR_ERR(vbuf);
3486 err = mnt_want_write_file(filp);
3490 f2fs_down_write(&sbi->sb_lock);
3492 memset(sbi->raw_super->volume_name, 0,
3493 sizeof(sbi->raw_super->volume_name));
3494 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3495 sbi->raw_super->volume_name,
3496 ARRAY_SIZE(sbi->raw_super->volume_name));
3498 err = f2fs_commit_super(sbi, false);
3500 f2fs_up_write(&sbi->sb_lock);
3502 mnt_drop_write_file(filp);
3508 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3510 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3513 if (!f2fs_compressed_file(inode))
3516 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3521 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3523 struct inode *inode = file_inode(filp);
3527 ret = f2fs_get_compress_blocks(inode, &blocks);
3531 return put_user(blocks, (u64 __user *)arg);
3534 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3536 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3537 unsigned int released_blocks = 0;
3538 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3542 for (i = 0; i < count; i++) {
3543 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3544 dn->ofs_in_node + i);
3546 if (!__is_valid_data_blkaddr(blkaddr))
3548 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3549 DATA_GENERIC_ENHANCE)))
3550 return -EFSCORRUPTED;
3554 int compr_blocks = 0;
3556 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3557 blkaddr = f2fs_data_blkaddr(dn);
3560 if (blkaddr == COMPRESS_ADDR)
3562 dn->ofs_in_node += cluster_size;
3566 if (__is_valid_data_blkaddr(blkaddr))
3569 if (blkaddr != NEW_ADDR)
3572 f2fs_set_data_blkaddr(dn, NULL_ADDR);
3575 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3576 dec_valid_block_count(sbi, dn->inode,
3577 cluster_size - compr_blocks);
3579 released_blocks += cluster_size - compr_blocks;
3581 count -= cluster_size;
3584 return released_blocks;
3587 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3589 struct inode *inode = file_inode(filp);
3590 struct f2fs_inode_info *fi = F2FS_I(inode);
3591 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3592 pgoff_t page_idx = 0, last_idx;
3593 unsigned int released_blocks = 0;
3597 if (!f2fs_sb_has_compression(sbi))
3600 if (f2fs_readonly(sbi->sb))
3603 ret = mnt_want_write_file(filp);
3607 f2fs_balance_fs(sbi, true);
3611 writecount = atomic_read(&inode->i_writecount);
3612 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3613 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3618 if (!f2fs_compressed_file(inode) ||
3619 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3624 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3628 if (!atomic_read(&fi->i_compr_blocks)) {
3633 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3634 inode_set_ctime_current(inode);
3635 f2fs_mark_inode_dirty_sync(inode, true);
3637 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3638 filemap_invalidate_lock(inode->i_mapping);
3640 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3642 while (page_idx < last_idx) {
3643 struct dnode_of_data dn;
3644 pgoff_t end_offset, count;
3648 set_new_dnode(&dn, inode, NULL, NULL, 0);
3649 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3651 f2fs_unlock_op(sbi);
3652 if (ret == -ENOENT) {
3653 page_idx = f2fs_get_next_page_offset(&dn,
3661 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3662 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3663 count = round_up(count, fi->i_cluster_size);
3665 ret = release_compress_blocks(&dn, count);
3667 f2fs_put_dnode(&dn);
3669 f2fs_unlock_op(sbi);
3675 released_blocks += ret;
3678 filemap_invalidate_unlock(inode->i_mapping);
3679 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3681 if (released_blocks)
3682 f2fs_update_time(sbi, REQ_TIME);
3683 inode_unlock(inode);
3685 mnt_drop_write_file(filp);
3688 ret = put_user(released_blocks, (u64 __user *)arg);
3689 } else if (released_blocks &&
3690 atomic_read(&fi->i_compr_blocks)) {
3691 set_sbi_flag(sbi, SBI_NEED_FSCK);
3692 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3693 "iblocks=%llu, released=%u, compr_blocks=%u, "
3695 __func__, inode->i_ino, inode->i_blocks,
3697 atomic_read(&fi->i_compr_blocks));
3703 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3704 unsigned int *reserved_blocks)
3706 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3707 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3711 for (i = 0; i < count; i++) {
3712 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3713 dn->ofs_in_node + i);
3715 if (!__is_valid_data_blkaddr(blkaddr))
3717 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3718 DATA_GENERIC_ENHANCE)))
3719 return -EFSCORRUPTED;
3723 int compr_blocks = 0;
3724 blkcnt_t reserved = 0;
3725 blkcnt_t to_reserved;
3728 for (i = 0; i < cluster_size; i++) {
3729 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3730 dn->ofs_in_node + i);
3733 if (blkaddr != COMPRESS_ADDR) {
3734 dn->ofs_in_node += cluster_size;
3741 * compressed cluster was not released due to it
3742 * fails in release_compress_blocks(), so NEW_ADDR
3743 * is a possible case.
3745 if (blkaddr == NEW_ADDR) {
3749 if (__is_valid_data_blkaddr(blkaddr)) {
3755 to_reserved = cluster_size - compr_blocks - reserved;
3757 /* for the case all blocks in cluster were reserved */
3758 if (to_reserved == 1) {
3759 dn->ofs_in_node += cluster_size;
3763 ret = inc_valid_block_count(sbi, dn->inode,
3764 &to_reserved, false);
3768 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3769 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3770 f2fs_set_data_blkaddr(dn, NEW_ADDR);
3773 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3775 *reserved_blocks += to_reserved;
3777 count -= cluster_size;
3783 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3785 struct inode *inode = file_inode(filp);
3786 struct f2fs_inode_info *fi = F2FS_I(inode);
3787 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3788 pgoff_t page_idx = 0, last_idx;
3789 unsigned int reserved_blocks = 0;
3792 if (!f2fs_sb_has_compression(sbi))
3795 if (f2fs_readonly(sbi->sb))
3798 ret = mnt_want_write_file(filp);
3802 f2fs_balance_fs(sbi, true);
3806 if (!f2fs_compressed_file(inode) ||
3807 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3812 if (atomic_read(&fi->i_compr_blocks))
3815 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3816 filemap_invalidate_lock(inode->i_mapping);
3818 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3820 while (page_idx < last_idx) {
3821 struct dnode_of_data dn;
3822 pgoff_t end_offset, count;
3826 set_new_dnode(&dn, inode, NULL, NULL, 0);
3827 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3829 f2fs_unlock_op(sbi);
3830 if (ret == -ENOENT) {
3831 page_idx = f2fs_get_next_page_offset(&dn,
3839 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3840 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3841 count = round_up(count, fi->i_cluster_size);
3843 ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3845 f2fs_put_dnode(&dn);
3847 f2fs_unlock_op(sbi);
3855 filemap_invalidate_unlock(inode->i_mapping);
3856 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3859 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3860 inode_set_ctime_current(inode);
3861 f2fs_mark_inode_dirty_sync(inode, true);
3864 if (reserved_blocks)
3865 f2fs_update_time(sbi, REQ_TIME);
3866 inode_unlock(inode);
3867 mnt_drop_write_file(filp);
3870 ret = put_user(reserved_blocks, (u64 __user *)arg);
3871 } else if (reserved_blocks &&
3872 atomic_read(&fi->i_compr_blocks)) {
3873 set_sbi_flag(sbi, SBI_NEED_FSCK);
3874 f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
3875 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3877 __func__, inode->i_ino, inode->i_blocks,
3879 atomic_read(&fi->i_compr_blocks));
3885 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3886 pgoff_t off, block_t block, block_t len, u32 flags)
3888 sector_t sector = SECTOR_FROM_BLOCK(block);
3889 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3892 if (flags & F2FS_TRIM_FILE_DISCARD) {
3893 if (bdev_max_secure_erase_sectors(bdev))
3894 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3897 ret = blkdev_issue_discard(bdev, sector, nr_sects,
3901 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3902 if (IS_ENCRYPTED(inode))
3903 ret = fscrypt_zeroout_range(inode, off, block, len);
3905 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3912 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3914 struct inode *inode = file_inode(filp);
3915 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3916 struct address_space *mapping = inode->i_mapping;
3917 struct block_device *prev_bdev = NULL;
3918 struct f2fs_sectrim_range range;
3919 pgoff_t index, pg_end, prev_index = 0;
3920 block_t prev_block = 0, len = 0;
3922 bool to_end = false;
3925 if (!(filp->f_mode & FMODE_WRITE))
3928 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3932 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3933 !S_ISREG(inode->i_mode))
3936 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3937 !f2fs_hw_support_discard(sbi)) ||
3938 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3939 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3942 ret = mnt_want_write_file(filp);
3947 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3948 range.start >= inode->i_size) {
3956 if (inode->i_size - range.start > range.len) {
3957 end_addr = range.start + range.len;
3959 end_addr = range.len == (u64)-1 ?
3960 sbi->sb->s_maxbytes : inode->i_size;
3964 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3965 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3970 index = F2FS_BYTES_TO_BLK(range.start);
3971 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3973 ret = f2fs_convert_inline_inode(inode);
3977 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3978 filemap_invalidate_lock(mapping);
3980 ret = filemap_write_and_wait_range(mapping, range.start,
3981 to_end ? LLONG_MAX : end_addr - 1);
3985 truncate_inode_pages_range(mapping, range.start,
3986 to_end ? -1 : end_addr - 1);
3988 while (index < pg_end) {
3989 struct dnode_of_data dn;
3990 pgoff_t end_offset, count;
3993 set_new_dnode(&dn, inode, NULL, NULL, 0);
3994 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3996 if (ret == -ENOENT) {
3997 index = f2fs_get_next_page_offset(&dn, index);
4003 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
4004 count = min(end_offset - dn.ofs_in_node, pg_end - index);
4005 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4006 struct block_device *cur_bdev;
4007 block_t blkaddr = f2fs_data_blkaddr(&dn);
4009 if (!__is_valid_data_blkaddr(blkaddr))
4012 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4013 DATA_GENERIC_ENHANCE)) {
4014 ret = -EFSCORRUPTED;
4015 f2fs_put_dnode(&dn);
4019 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4020 if (f2fs_is_multi_device(sbi)) {
4021 int di = f2fs_target_device_index(sbi, blkaddr);
4023 blkaddr -= FDEV(di).start_blk;
4027 if (prev_bdev == cur_bdev &&
4028 index == prev_index + len &&
4029 blkaddr == prev_block + len) {
4032 ret = f2fs_secure_erase(prev_bdev,
4033 inode, prev_index, prev_block,
4036 f2fs_put_dnode(&dn);
4045 prev_bdev = cur_bdev;
4047 prev_block = blkaddr;
4052 f2fs_put_dnode(&dn);
4054 if (fatal_signal_pending(current)) {
4062 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4063 prev_block, len, range.flags);
4064 f2fs_update_time(sbi, REQ_TIME);
4066 filemap_invalidate_unlock(mapping);
4067 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4069 inode_unlock(inode);
4070 mnt_drop_write_file(filp);
4075 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4077 struct inode *inode = file_inode(filp);
4078 struct f2fs_comp_option option;
4080 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4083 inode_lock_shared(inode);
4085 if (!f2fs_compressed_file(inode)) {
4086 inode_unlock_shared(inode);
4090 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4091 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4093 inode_unlock_shared(inode);
4095 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4102 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4104 struct inode *inode = file_inode(filp);
4105 struct f2fs_inode_info *fi = F2FS_I(inode);
4106 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4107 struct f2fs_comp_option option;
4110 if (!f2fs_sb_has_compression(sbi))
4113 if (!(filp->f_mode & FMODE_WRITE))
4116 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4120 if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4121 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4122 option.algorithm >= COMPRESS_MAX)
4125 ret = mnt_want_write_file(filp);
4130 f2fs_down_write(&F2FS_I(inode)->i_sem);
4131 if (!f2fs_compressed_file(inode)) {
4136 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4141 if (F2FS_HAS_BLOCKS(inode)) {
4146 fi->i_compress_algorithm = option.algorithm;
4147 fi->i_log_cluster_size = option.log_cluster_size;
4148 fi->i_cluster_size = BIT(option.log_cluster_size);
4149 /* Set default level */
4150 if (fi->i_compress_algorithm == COMPRESS_ZSTD)
4151 fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4153 fi->i_compress_level = 0;
4154 /* Adjust mount option level */
4155 if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4156 F2FS_OPTION(sbi).compress_level)
4157 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4158 f2fs_mark_inode_dirty_sync(inode, true);
4160 if (!f2fs_is_compress_backend_ready(inode))
4161 f2fs_warn(sbi, "compression algorithm is successfully set, "
4162 "but current kernel doesn't support this algorithm.");
4164 f2fs_up_write(&fi->i_sem);
4165 inode_unlock(inode);
4166 mnt_drop_write_file(filp);
4171 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4173 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4174 struct address_space *mapping = inode->i_mapping;
4176 pgoff_t redirty_idx = page_idx;
4177 int i, page_len = 0, ret = 0;
4179 page_cache_ra_unbounded(&ractl, len, 0);
4181 for (i = 0; i < len; i++, page_idx++) {
4182 page = read_cache_page(mapping, page_idx, NULL, NULL);
4184 ret = PTR_ERR(page);
4190 for (i = 0; i < page_len; i++, redirty_idx++) {
4191 page = find_lock_page(mapping, redirty_idx);
4193 /* It will never fail, when page has pinned above */
4194 f2fs_bug_on(F2FS_I_SB(inode), !page);
4196 set_page_dirty(page);
4197 set_page_private_gcing(page);
4198 f2fs_put_page(page, 1);
4199 f2fs_put_page(page, 0);
4205 static int f2fs_ioc_decompress_file(struct file *filp)
4207 struct inode *inode = file_inode(filp);
4208 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4209 struct f2fs_inode_info *fi = F2FS_I(inode);
4210 pgoff_t page_idx = 0, last_idx;
4211 int cluster_size = fi->i_cluster_size;
4214 if (!f2fs_sb_has_compression(sbi) ||
4215 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4218 if (!(filp->f_mode & FMODE_WRITE))
4221 f2fs_balance_fs(sbi, true);
4223 ret = mnt_want_write_file(filp);
4228 if (!f2fs_is_compress_backend_ready(inode)) {
4233 if (!f2fs_compressed_file(inode) ||
4234 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4239 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4243 if (!atomic_read(&fi->i_compr_blocks))
4246 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4248 count = last_idx - page_idx;
4249 while (count && count >= cluster_size) {
4250 ret = redirty_blocks(inode, page_idx, cluster_size);
4254 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4255 ret = filemap_fdatawrite(inode->i_mapping);
4260 count -= cluster_size;
4261 page_idx += cluster_size;
4264 if (fatal_signal_pending(current)) {
4271 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4275 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4277 f2fs_update_time(sbi, REQ_TIME);
4279 inode_unlock(inode);
4280 mnt_drop_write_file(filp);
4285 static int f2fs_ioc_compress_file(struct file *filp)
4287 struct inode *inode = file_inode(filp);
4288 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4289 pgoff_t page_idx = 0, last_idx;
4290 int cluster_size = F2FS_I(inode)->i_cluster_size;
4293 if (!f2fs_sb_has_compression(sbi) ||
4294 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4297 if (!(filp->f_mode & FMODE_WRITE))
4300 f2fs_balance_fs(sbi, true);
4302 ret = mnt_want_write_file(filp);
4307 if (!f2fs_is_compress_backend_ready(inode)) {
4312 if (!f2fs_compressed_file(inode) ||
4313 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4318 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4322 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4324 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4326 count = last_idx - page_idx;
4327 while (count && count >= cluster_size) {
4328 ret = redirty_blocks(inode, page_idx, cluster_size);
4332 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4333 ret = filemap_fdatawrite(inode->i_mapping);
4338 count -= cluster_size;
4339 page_idx += cluster_size;
4342 if (fatal_signal_pending(current)) {
4349 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4352 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4355 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4357 f2fs_update_time(sbi, REQ_TIME);
4359 inode_unlock(inode);
4360 mnt_drop_write_file(filp);
4365 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4368 case FS_IOC_GETVERSION:
4369 return f2fs_ioc_getversion(filp, arg);
4370 case F2FS_IOC_START_ATOMIC_WRITE:
4371 return f2fs_ioc_start_atomic_write(filp, false);
4372 case F2FS_IOC_START_ATOMIC_REPLACE:
4373 return f2fs_ioc_start_atomic_write(filp, true);
4374 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4375 return f2fs_ioc_commit_atomic_write(filp);
4376 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4377 return f2fs_ioc_abort_atomic_write(filp);
4378 case F2FS_IOC_START_VOLATILE_WRITE:
4379 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4381 case F2FS_IOC_SHUTDOWN:
4382 return f2fs_ioc_shutdown(filp, arg);
4384 return f2fs_ioc_fitrim(filp, arg);
4385 case FS_IOC_SET_ENCRYPTION_POLICY:
4386 return f2fs_ioc_set_encryption_policy(filp, arg);
4387 case FS_IOC_GET_ENCRYPTION_POLICY:
4388 return f2fs_ioc_get_encryption_policy(filp, arg);
4389 case FS_IOC_GET_ENCRYPTION_PWSALT:
4390 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4391 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4392 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4393 case FS_IOC_ADD_ENCRYPTION_KEY:
4394 return f2fs_ioc_add_encryption_key(filp, arg);
4395 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4396 return f2fs_ioc_remove_encryption_key(filp, arg);
4397 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4398 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4399 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4400 return f2fs_ioc_get_encryption_key_status(filp, arg);
4401 case FS_IOC_GET_ENCRYPTION_NONCE:
4402 return f2fs_ioc_get_encryption_nonce(filp, arg);
4403 case F2FS_IOC_GARBAGE_COLLECT:
4404 return f2fs_ioc_gc(filp, arg);
4405 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4406 return f2fs_ioc_gc_range(filp, arg);
4407 case F2FS_IOC_WRITE_CHECKPOINT:
4408 return f2fs_ioc_write_checkpoint(filp);
4409 case F2FS_IOC_DEFRAGMENT:
4410 return f2fs_ioc_defragment(filp, arg);
4411 case F2FS_IOC_MOVE_RANGE:
4412 return f2fs_ioc_move_range(filp, arg);
4413 case F2FS_IOC_FLUSH_DEVICE:
4414 return f2fs_ioc_flush_device(filp, arg);
4415 case F2FS_IOC_GET_FEATURES:
4416 return f2fs_ioc_get_features(filp, arg);
4417 case F2FS_IOC_GET_PIN_FILE:
4418 return f2fs_ioc_get_pin_file(filp, arg);
4419 case F2FS_IOC_SET_PIN_FILE:
4420 return f2fs_ioc_set_pin_file(filp, arg);
4421 case F2FS_IOC_PRECACHE_EXTENTS:
4422 return f2fs_ioc_precache_extents(filp);
4423 case F2FS_IOC_RESIZE_FS:
4424 return f2fs_ioc_resize_fs(filp, arg);
4425 case FS_IOC_ENABLE_VERITY:
4426 return f2fs_ioc_enable_verity(filp, arg);
4427 case FS_IOC_MEASURE_VERITY:
4428 return f2fs_ioc_measure_verity(filp, arg);
4429 case FS_IOC_READ_VERITY_METADATA:
4430 return f2fs_ioc_read_verity_metadata(filp, arg);
4431 case FS_IOC_GETFSLABEL:
4432 return f2fs_ioc_getfslabel(filp, arg);
4433 case FS_IOC_SETFSLABEL:
4434 return f2fs_ioc_setfslabel(filp, arg);
4435 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4436 return f2fs_ioc_get_compress_blocks(filp, arg);
4437 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4438 return f2fs_release_compress_blocks(filp, arg);
4439 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4440 return f2fs_reserve_compress_blocks(filp, arg);
4441 case F2FS_IOC_SEC_TRIM_FILE:
4442 return f2fs_sec_trim_file(filp, arg);
4443 case F2FS_IOC_GET_COMPRESS_OPTION:
4444 return f2fs_ioc_get_compress_option(filp, arg);
4445 case F2FS_IOC_SET_COMPRESS_OPTION:
4446 return f2fs_ioc_set_compress_option(filp, arg);
4447 case F2FS_IOC_DECOMPRESS_FILE:
4448 return f2fs_ioc_decompress_file(filp);
4449 case F2FS_IOC_COMPRESS_FILE:
4450 return f2fs_ioc_compress_file(filp);
4456 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4458 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4460 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4463 return __f2fs_ioctl(filp, cmd, arg);
4467 * Return %true if the given read or write request should use direct I/O, or
4468 * %false if it should use buffered I/O.
4470 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4471 struct iov_iter *iter)
4475 if (!(iocb->ki_flags & IOCB_DIRECT))
4478 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4482 * Direct I/O not aligned to the disk's logical_block_size will be
4483 * attempted, but will fail with -EINVAL.
4485 * f2fs additionally requires that direct I/O be aligned to the
4486 * filesystem block size, which is often a stricter requirement.
4487 * However, f2fs traditionally falls back to buffered I/O on requests
4488 * that are logical_block_size-aligned but not fs-block aligned.
4490 * The below logic implements this behavior.
4492 align = iocb->ki_pos | iov_iter_alignment(iter);
4493 if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4494 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4500 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4503 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4505 dec_page_count(sbi, F2FS_DIO_READ);
4508 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4512 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4513 .end_io = f2fs_dio_read_end_io,
4516 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4518 struct file *file = iocb->ki_filp;
4519 struct inode *inode = file_inode(file);
4520 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4521 struct f2fs_inode_info *fi = F2FS_I(inode);
4522 const loff_t pos = iocb->ki_pos;
4523 const size_t count = iov_iter_count(to);
4524 struct iomap_dio *dio;
4528 return 0; /* skip atime update */
4530 trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4532 if (iocb->ki_flags & IOCB_NOWAIT) {
4533 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4538 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4542 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4543 * the higher-level function iomap_dio_rw() in order to ensure that the
4544 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4546 inc_page_count(sbi, F2FS_DIO_READ);
4547 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4548 &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4549 if (IS_ERR_OR_NULL(dio)) {
4550 ret = PTR_ERR_OR_ZERO(dio);
4551 if (ret != -EIOCBQUEUED)
4552 dec_page_count(sbi, F2FS_DIO_READ);
4554 ret = iomap_dio_complete(dio);
4557 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4559 file_accessed(file);
4561 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4565 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4568 struct inode *inode = file_inode(file);
4571 buf = f2fs_getname(F2FS_I_SB(inode));
4574 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4578 trace_f2fs_datawrite_start(inode, pos, count,
4579 current->pid, path, current->comm);
4581 trace_f2fs_dataread_start(inode, pos, count,
4582 current->pid, path, current->comm);
4587 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4589 struct inode *inode = file_inode(iocb->ki_filp);
4590 const loff_t pos = iocb->ki_pos;
4593 if (!f2fs_is_compress_backend_ready(inode))
4596 if (trace_f2fs_dataread_start_enabled())
4597 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4598 iov_iter_count(to), READ);
4600 if (f2fs_should_use_dio(inode, iocb, to)) {
4601 ret = f2fs_dio_read_iter(iocb, to);
4603 ret = filemap_read(iocb, to, 0);
4605 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4606 APP_BUFFERED_READ_IO, ret);
4608 if (trace_f2fs_dataread_end_enabled())
4609 trace_f2fs_dataread_end(inode, pos, ret);
4613 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4614 struct pipe_inode_info *pipe,
4615 size_t len, unsigned int flags)
4617 struct inode *inode = file_inode(in);
4618 const loff_t pos = *ppos;
4621 if (!f2fs_is_compress_backend_ready(inode))
4624 if (trace_f2fs_dataread_start_enabled())
4625 f2fs_trace_rw_file_path(in, pos, len, READ);
4627 ret = filemap_splice_read(in, ppos, pipe, len, flags);
4629 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4630 APP_BUFFERED_READ_IO, ret);
4632 if (trace_f2fs_dataread_end_enabled())
4633 trace_f2fs_dataread_end(inode, pos, ret);
4637 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4639 struct file *file = iocb->ki_filp;
4640 struct inode *inode = file_inode(file);
4644 if (IS_IMMUTABLE(inode))
4647 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4650 count = generic_write_checks(iocb, from);
4654 err = file_modified(file);
4661 * Preallocate blocks for a write request, if it is possible and helpful to do
4662 * so. Returns a positive number if blocks may have been preallocated, 0 if no
4663 * blocks were preallocated, or a negative errno value if something went
4664 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4665 * requested blocks (not just some of them) have been allocated.
4667 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4670 struct inode *inode = file_inode(iocb->ki_filp);
4671 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4672 const loff_t pos = iocb->ki_pos;
4673 const size_t count = iov_iter_count(iter);
4674 struct f2fs_map_blocks map = {};
4678 /* If it will be an out-of-place direct write, don't bother. */
4679 if (dio && f2fs_lfs_mode(sbi))
4682 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4683 * buffered IO, if DIO meets any holes.
4685 if (dio && i_size_read(inode) &&
4686 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4689 /* No-wait I/O can't allocate blocks. */
4690 if (iocb->ki_flags & IOCB_NOWAIT)
4693 /* If it will be a short write, don't bother. */
4694 if (fault_in_iov_iter_readable(iter, count))
4697 if (f2fs_has_inline_data(inode)) {
4698 /* If the data will fit inline, don't bother. */
4699 if (pos + count <= MAX_INLINE_DATA(inode))
4701 ret = f2fs_convert_inline_inode(inode);
4706 /* Do not preallocate blocks that will be written partially in 4KB. */
4707 map.m_lblk = F2FS_BLK_ALIGN(pos);
4708 map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4709 if (map.m_len > map.m_lblk)
4710 map.m_len -= map.m_lblk;
4714 map.m_may_create = true;
4716 map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4717 inode->i_write_hint);
4718 flag = F2FS_GET_BLOCK_PRE_DIO;
4720 map.m_seg_type = NO_CHECK_TYPE;
4721 flag = F2FS_GET_BLOCK_PRE_AIO;
4724 ret = f2fs_map_blocks(inode, &map, flag);
4725 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4726 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4729 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4733 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4734 struct iov_iter *from)
4736 struct file *file = iocb->ki_filp;
4737 struct inode *inode = file_inode(file);
4740 if (iocb->ki_flags & IOCB_NOWAIT)
4743 ret = generic_perform_write(iocb, from);
4746 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4747 APP_BUFFERED_IO, ret);
4752 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4755 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4757 dec_page_count(sbi, F2FS_DIO_WRITE);
4760 f2fs_update_time(sbi, REQ_TIME);
4761 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4765 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
4766 struct bio *bio, loff_t file_offset)
4768 struct inode *inode = iter->inode;
4769 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4770 int seg_type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
4771 enum temp_type temp = f2fs_get_segment_temp(seg_type);
4773 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
4777 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4778 .end_io = f2fs_dio_write_end_io,
4779 .submit_io = f2fs_dio_write_submit_io,
4782 static void f2fs_flush_buffered_write(struct address_space *mapping,
4783 loff_t start_pos, loff_t end_pos)
4787 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4790 invalidate_mapping_pages(mapping,
4791 start_pos >> PAGE_SHIFT,
4792 end_pos >> PAGE_SHIFT);
4795 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4796 bool *may_need_sync)
4798 struct file *file = iocb->ki_filp;
4799 struct inode *inode = file_inode(file);
4800 struct f2fs_inode_info *fi = F2FS_I(inode);
4801 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4802 const bool do_opu = f2fs_lfs_mode(sbi);
4803 const loff_t pos = iocb->ki_pos;
4804 const ssize_t count = iov_iter_count(from);
4805 unsigned int dio_flags;
4806 struct iomap_dio *dio;
4809 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4811 if (iocb->ki_flags & IOCB_NOWAIT) {
4812 /* f2fs_convert_inline_inode() and block allocation can block */
4813 if (f2fs_has_inline_data(inode) ||
4814 !f2fs_overwrite_io(inode, pos, count)) {
4819 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4823 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4824 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4829 ret = f2fs_convert_inline_inode(inode);
4833 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4835 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4839 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4840 * the higher-level function iomap_dio_rw() in order to ensure that the
4841 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4843 inc_page_count(sbi, F2FS_DIO_WRITE);
4845 if (pos + count > inode->i_size)
4846 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4847 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4848 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4849 if (IS_ERR_OR_NULL(dio)) {
4850 ret = PTR_ERR_OR_ZERO(dio);
4851 if (ret == -ENOTBLK)
4853 if (ret != -EIOCBQUEUED)
4854 dec_page_count(sbi, F2FS_DIO_WRITE);
4856 ret = iomap_dio_complete(dio);
4860 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4861 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4865 if (pos + ret > inode->i_size)
4866 f2fs_i_size_write(inode, pos + ret);
4868 set_inode_flag(inode, FI_UPDATE_WRITE);
4870 if (iov_iter_count(from)) {
4872 loff_t bufio_start_pos = iocb->ki_pos;
4875 * The direct write was partial, so we need to fall back to a
4876 * buffered write for the remainder.
4879 ret2 = f2fs_buffered_write_iter(iocb, from);
4880 if (iov_iter_count(from))
4881 f2fs_write_failed(inode, iocb->ki_pos);
4886 * Ensure that the pagecache pages are written to disk and
4887 * invalidated to preserve the expected O_DIRECT semantics.
4890 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4894 f2fs_flush_buffered_write(file->f_mapping,
4899 /* iomap_dio_rw() already handled the generic_write_sync(). */
4900 *may_need_sync = false;
4903 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4907 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4909 struct inode *inode = file_inode(iocb->ki_filp);
4910 const loff_t orig_pos = iocb->ki_pos;
4911 const size_t orig_count = iov_iter_count(from);
4914 bool may_need_sync = true;
4916 const loff_t pos = iocb->ki_pos;
4917 const ssize_t count = iov_iter_count(from);
4920 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4925 if (!f2fs_is_compress_backend_ready(inode)) {
4930 if (iocb->ki_flags & IOCB_NOWAIT) {
4931 if (!inode_trylock(inode)) {
4939 if (f2fs_is_pinned_file(inode) &&
4940 !f2fs_overwrite_io(inode, pos, count)) {
4945 ret = f2fs_write_checks(iocb, from);
4949 /* Determine whether we will do a direct write or a buffered write. */
4950 dio = f2fs_should_use_dio(inode, iocb, from);
4952 /* Possibly preallocate the blocks for the write. */
4953 target_size = iocb->ki_pos + iov_iter_count(from);
4954 preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4955 if (preallocated < 0) {
4958 if (trace_f2fs_datawrite_start_enabled())
4959 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4962 /* Do the actual write. */
4964 f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4965 f2fs_buffered_write_iter(iocb, from);
4967 if (trace_f2fs_datawrite_end_enabled())
4968 trace_f2fs_datawrite_end(inode, orig_pos, ret);
4971 /* Don't leave any preallocated blocks around past i_size. */
4972 if (preallocated && i_size_read(inode) < target_size) {
4973 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4974 filemap_invalidate_lock(inode->i_mapping);
4975 if (!f2fs_truncate(inode))
4976 file_dont_truncate(inode);
4977 filemap_invalidate_unlock(inode->i_mapping);
4978 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4980 file_dont_truncate(inode);
4983 clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4985 inode_unlock(inode);
4987 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4989 if (ret > 0 && may_need_sync)
4990 ret = generic_write_sync(iocb, ret);
4992 /* If buffered IO was forced, flush and drop the data from
4993 * the page cache to preserve O_DIRECT semantics
4995 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4996 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4998 orig_pos + ret - 1);
5003 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
5006 struct address_space *mapping;
5007 struct backing_dev_info *bdi;
5008 struct inode *inode = file_inode(filp);
5011 if (advice == POSIX_FADV_SEQUENTIAL) {
5012 if (S_ISFIFO(inode->i_mode))
5015 mapping = filp->f_mapping;
5016 if (!mapping || len < 0)
5019 bdi = inode_to_bdi(mapping->host);
5020 filp->f_ra.ra_pages = bdi->ra_pages *
5021 F2FS_I_SB(inode)->seq_file_ra_mul;
5022 spin_lock(&filp->f_lock);
5023 filp->f_mode &= ~FMODE_RANDOM;
5024 spin_unlock(&filp->f_lock);
5026 } else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
5027 /* Load extent cache at the first readahead. */
5028 f2fs_precache_extents(inode);
5031 err = generic_fadvise(filp, offset, len, advice);
5032 if (!err && advice == POSIX_FADV_DONTNEED &&
5033 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5034 f2fs_compressed_file(inode))
5035 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5040 #ifdef CONFIG_COMPAT
5041 struct compat_f2fs_gc_range {
5046 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
5047 struct compat_f2fs_gc_range)
5049 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5051 struct compat_f2fs_gc_range __user *urange;
5052 struct f2fs_gc_range range;
5055 urange = compat_ptr(arg);
5056 err = get_user(range.sync, &urange->sync);
5057 err |= get_user(range.start, &urange->start);
5058 err |= get_user(range.len, &urange->len);
5062 return __f2fs_ioc_gc_range(file, &range);
5065 struct compat_f2fs_move_range {
5071 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
5072 struct compat_f2fs_move_range)
5074 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5076 struct compat_f2fs_move_range __user *urange;
5077 struct f2fs_move_range range;
5080 urange = compat_ptr(arg);
5081 err = get_user(range.dst_fd, &urange->dst_fd);
5082 err |= get_user(range.pos_in, &urange->pos_in);
5083 err |= get_user(range.pos_out, &urange->pos_out);
5084 err |= get_user(range.len, &urange->len);
5088 return __f2fs_ioc_move_range(file, &range);
5091 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5093 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5095 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5099 case FS_IOC32_GETVERSION:
5100 cmd = FS_IOC_GETVERSION;
5102 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5103 return f2fs_compat_ioc_gc_range(file, arg);
5104 case F2FS_IOC32_MOVE_RANGE:
5105 return f2fs_compat_ioc_move_range(file, arg);
5106 case F2FS_IOC_START_ATOMIC_WRITE:
5107 case F2FS_IOC_START_ATOMIC_REPLACE:
5108 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5109 case F2FS_IOC_START_VOLATILE_WRITE:
5110 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5111 case F2FS_IOC_ABORT_ATOMIC_WRITE:
5112 case F2FS_IOC_SHUTDOWN:
5114 case FS_IOC_SET_ENCRYPTION_POLICY:
5115 case FS_IOC_GET_ENCRYPTION_PWSALT:
5116 case FS_IOC_GET_ENCRYPTION_POLICY:
5117 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5118 case FS_IOC_ADD_ENCRYPTION_KEY:
5119 case FS_IOC_REMOVE_ENCRYPTION_KEY:
5120 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5121 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5122 case FS_IOC_GET_ENCRYPTION_NONCE:
5123 case F2FS_IOC_GARBAGE_COLLECT:
5124 case F2FS_IOC_WRITE_CHECKPOINT:
5125 case F2FS_IOC_DEFRAGMENT:
5126 case F2FS_IOC_FLUSH_DEVICE:
5127 case F2FS_IOC_GET_FEATURES:
5128 case F2FS_IOC_GET_PIN_FILE:
5129 case F2FS_IOC_SET_PIN_FILE:
5130 case F2FS_IOC_PRECACHE_EXTENTS:
5131 case F2FS_IOC_RESIZE_FS:
5132 case FS_IOC_ENABLE_VERITY:
5133 case FS_IOC_MEASURE_VERITY:
5134 case FS_IOC_READ_VERITY_METADATA:
5135 case FS_IOC_GETFSLABEL:
5136 case FS_IOC_SETFSLABEL:
5137 case F2FS_IOC_GET_COMPRESS_BLOCKS:
5138 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5139 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5140 case F2FS_IOC_SEC_TRIM_FILE:
5141 case F2FS_IOC_GET_COMPRESS_OPTION:
5142 case F2FS_IOC_SET_COMPRESS_OPTION:
5143 case F2FS_IOC_DECOMPRESS_FILE:
5144 case F2FS_IOC_COMPRESS_FILE:
5147 return -ENOIOCTLCMD;
5149 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5153 const struct file_operations f2fs_file_operations = {
5154 .llseek = f2fs_llseek,
5155 .read_iter = f2fs_file_read_iter,
5156 .write_iter = f2fs_file_write_iter,
5157 .iopoll = iocb_bio_iopoll,
5158 .open = f2fs_file_open,
5159 .release = f2fs_release_file,
5160 .mmap = f2fs_file_mmap,
5161 .flush = f2fs_file_flush,
5162 .fsync = f2fs_sync_file,
5163 .fallocate = f2fs_fallocate,
5164 .unlocked_ioctl = f2fs_ioctl,
5165 #ifdef CONFIG_COMPAT
5166 .compat_ioctl = f2fs_compat_ioctl,
5168 .splice_read = f2fs_file_splice_read,
5169 .splice_write = iter_file_splice_write,
5170 .fadvise = f2fs_file_fadvise,
5171 .fop_flags = FOP_BUFFER_RASYNC,