]> Git Repo - linux.git/blob - fs/f2fs/file.c
cifs: Fix SMB1 readv/writev callback in the same way as SMB2/3
[linux.git] / fs / f2fs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41         struct inode *inode = file_inode(vmf->vma->vm_file);
42         vm_flags_t flags = vmf->vma->vm_flags;
43         vm_fault_t ret;
44
45         ret = filemap_fault(vmf);
46         if (ret & VM_FAULT_LOCKED)
47                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
48                                         APP_MAPPED_READ_IO, F2FS_BLKSIZE);
49
50         trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
51
52         return ret;
53 }
54
55 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
56 {
57         struct page *page = vmf->page;
58         struct inode *inode = file_inode(vmf->vma->vm_file);
59         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
60         struct dnode_of_data dn;
61         bool need_alloc = !f2fs_is_pinned_file(inode);
62         int err = 0;
63         vm_fault_t ret;
64
65         if (unlikely(IS_IMMUTABLE(inode)))
66                 return VM_FAULT_SIGBUS;
67
68         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
69                 err = -EIO;
70                 goto out;
71         }
72
73         if (unlikely(f2fs_cp_error(sbi))) {
74                 err = -EIO;
75                 goto out;
76         }
77
78         if (!f2fs_is_checkpoint_ready(sbi)) {
79                 err = -ENOSPC;
80                 goto out;
81         }
82
83         err = f2fs_convert_inline_inode(inode);
84         if (err)
85                 goto out;
86
87 #ifdef CONFIG_F2FS_FS_COMPRESSION
88         if (f2fs_compressed_file(inode)) {
89                 int ret = f2fs_is_compressed_cluster(inode, page->index);
90
91                 if (ret < 0) {
92                         err = ret;
93                         goto out;
94                 } else if (ret) {
95                         need_alloc = false;
96                 }
97         }
98 #endif
99         /* should do out of any locked page */
100         if (need_alloc)
101                 f2fs_balance_fs(sbi, true);
102
103         sb_start_pagefault(inode->i_sb);
104
105         f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
106
107         file_update_time(vmf->vma->vm_file);
108         filemap_invalidate_lock_shared(inode->i_mapping);
109         lock_page(page);
110         if (unlikely(page->mapping != inode->i_mapping ||
111                         page_offset(page) > i_size_read(inode) ||
112                         !PageUptodate(page))) {
113                 unlock_page(page);
114                 err = -EFAULT;
115                 goto out_sem;
116         }
117
118         set_new_dnode(&dn, inode, NULL, NULL, 0);
119         if (need_alloc) {
120                 /* block allocation */
121                 err = f2fs_get_block_locked(&dn, page->index);
122         } else {
123                 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124                 f2fs_put_dnode(&dn);
125                 if (f2fs_is_pinned_file(inode) &&
126                     !__is_valid_data_blkaddr(dn.data_blkaddr))
127                         err = -EIO;
128         }
129
130         if (err) {
131                 unlock_page(page);
132                 goto out_sem;
133         }
134
135         f2fs_wait_on_page_writeback(page, DATA, false, true);
136
137         /* wait for GCed page writeback via META_MAPPING */
138         f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
139
140         /*
141          * check to see if the page is mapped already (no holes)
142          */
143         if (PageMappedToDisk(page))
144                 goto out_sem;
145
146         /* page is wholly or partially inside EOF */
147         if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
148                                                 i_size_read(inode)) {
149                 loff_t offset;
150
151                 offset = i_size_read(inode) & ~PAGE_MASK;
152                 zero_user_segment(page, offset, PAGE_SIZE);
153         }
154         set_page_dirty(page);
155
156         f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
157         f2fs_update_time(sbi, REQ_TIME);
158
159 out_sem:
160         filemap_invalidate_unlock_shared(inode->i_mapping);
161
162         sb_end_pagefault(inode->i_sb);
163 out:
164         ret = vmf_fs_error(err);
165
166         trace_f2fs_vm_page_mkwrite(inode, page->index, vmf->vma->vm_flags, ret);
167         return ret;
168 }
169
170 static const struct vm_operations_struct f2fs_file_vm_ops = {
171         .fault          = f2fs_filemap_fault,
172         .map_pages      = filemap_map_pages,
173         .page_mkwrite   = f2fs_vm_page_mkwrite,
174 };
175
176 static int get_parent_ino(struct inode *inode, nid_t *pino)
177 {
178         struct dentry *dentry;
179
180         /*
181          * Make sure to get the non-deleted alias.  The alias associated with
182          * the open file descriptor being fsync()'ed may be deleted already.
183          */
184         dentry = d_find_alias(inode);
185         if (!dentry)
186                 return 0;
187
188         *pino = d_parent_ino(dentry);
189         dput(dentry);
190         return 1;
191 }
192
193 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
194 {
195         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
196         enum cp_reason_type cp_reason = CP_NO_NEEDED;
197
198         if (!S_ISREG(inode->i_mode))
199                 cp_reason = CP_NON_REGULAR;
200         else if (f2fs_compressed_file(inode))
201                 cp_reason = CP_COMPRESSED;
202         else if (inode->i_nlink != 1)
203                 cp_reason = CP_HARDLINK;
204         else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
205                 cp_reason = CP_SB_NEED_CP;
206         else if (file_wrong_pino(inode))
207                 cp_reason = CP_WRONG_PINO;
208         else if (!f2fs_space_for_roll_forward(sbi))
209                 cp_reason = CP_NO_SPC_ROLL;
210         else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
211                 cp_reason = CP_NODE_NEED_CP;
212         else if (test_opt(sbi, FASTBOOT))
213                 cp_reason = CP_FASTBOOT_MODE;
214         else if (F2FS_OPTION(sbi).active_logs == 2)
215                 cp_reason = CP_SPEC_LOG_NUM;
216         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
217                 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
218                 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
219                                                         TRANS_DIR_INO))
220                 cp_reason = CP_RECOVER_DIR;
221
222         return cp_reason;
223 }
224
225 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
226 {
227         struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
228         bool ret = false;
229         /* But we need to avoid that there are some inode updates */
230         if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
231                 ret = true;
232         f2fs_put_page(i, 0);
233         return ret;
234 }
235
236 static void try_to_fix_pino(struct inode *inode)
237 {
238         struct f2fs_inode_info *fi = F2FS_I(inode);
239         nid_t pino;
240
241         f2fs_down_write(&fi->i_sem);
242         if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
243                         get_parent_ino(inode, &pino)) {
244                 f2fs_i_pino_write(inode, pino);
245                 file_got_pino(inode);
246         }
247         f2fs_up_write(&fi->i_sem);
248 }
249
250 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
251                                                 int datasync, bool atomic)
252 {
253         struct inode *inode = file->f_mapping->host;
254         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
255         nid_t ino = inode->i_ino;
256         int ret = 0;
257         enum cp_reason_type cp_reason = 0;
258         struct writeback_control wbc = {
259                 .sync_mode = WB_SYNC_ALL,
260                 .nr_to_write = LONG_MAX,
261                 .for_reclaim = 0,
262         };
263         unsigned int seq_id = 0;
264
265         if (unlikely(f2fs_readonly(inode->i_sb)))
266                 return 0;
267
268         trace_f2fs_sync_file_enter(inode);
269
270         if (S_ISDIR(inode->i_mode))
271                 goto go_write;
272
273         /* if fdatasync is triggered, let's do in-place-update */
274         if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
275                 set_inode_flag(inode, FI_NEED_IPU);
276         ret = file_write_and_wait_range(file, start, end);
277         clear_inode_flag(inode, FI_NEED_IPU);
278
279         if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
280                 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
281                 return ret;
282         }
283
284         /* if the inode is dirty, let's recover all the time */
285         if (!f2fs_skip_inode_update(inode, datasync)) {
286                 f2fs_write_inode(inode, NULL);
287                 goto go_write;
288         }
289
290         /*
291          * if there is no written data, don't waste time to write recovery info.
292          */
293         if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
294                         !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
295
296                 /* it may call write_inode just prior to fsync */
297                 if (need_inode_page_update(sbi, ino))
298                         goto go_write;
299
300                 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
301                                 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
302                         goto flush_out;
303                 goto out;
304         } else {
305                 /*
306                  * for OPU case, during fsync(), node can be persisted before
307                  * data when lower device doesn't support write barrier, result
308                  * in data corruption after SPO.
309                  * So for strict fsync mode, force to use atomic write semantics
310                  * to keep write order in between data/node and last node to
311                  * avoid potential data corruption.
312                  */
313                 if (F2FS_OPTION(sbi).fsync_mode ==
314                                 FSYNC_MODE_STRICT && !atomic)
315                         atomic = true;
316         }
317 go_write:
318         /*
319          * Both of fdatasync() and fsync() are able to be recovered from
320          * sudden-power-off.
321          */
322         f2fs_down_read(&F2FS_I(inode)->i_sem);
323         cp_reason = need_do_checkpoint(inode);
324         f2fs_up_read(&F2FS_I(inode)->i_sem);
325
326         if (cp_reason) {
327                 /* all the dirty node pages should be flushed for POR */
328                 ret = f2fs_sync_fs(inode->i_sb, 1);
329
330                 /*
331                  * We've secured consistency through sync_fs. Following pino
332                  * will be used only for fsynced inodes after checkpoint.
333                  */
334                 try_to_fix_pino(inode);
335                 clear_inode_flag(inode, FI_APPEND_WRITE);
336                 clear_inode_flag(inode, FI_UPDATE_WRITE);
337                 goto out;
338         }
339 sync_nodes:
340         atomic_inc(&sbi->wb_sync_req[NODE]);
341         ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
342         atomic_dec(&sbi->wb_sync_req[NODE]);
343         if (ret)
344                 goto out;
345
346         /* if cp_error was enabled, we should avoid infinite loop */
347         if (unlikely(f2fs_cp_error(sbi))) {
348                 ret = -EIO;
349                 goto out;
350         }
351
352         if (f2fs_need_inode_block_update(sbi, ino)) {
353                 f2fs_mark_inode_dirty_sync(inode, true);
354                 f2fs_write_inode(inode, NULL);
355                 goto sync_nodes;
356         }
357
358         /*
359          * If it's atomic_write, it's just fine to keep write ordering. So
360          * here we don't need to wait for node write completion, since we use
361          * node chain which serializes node blocks. If one of node writes are
362          * reordered, we can see simply broken chain, resulting in stopping
363          * roll-forward recovery. It means we'll recover all or none node blocks
364          * given fsync mark.
365          */
366         if (!atomic) {
367                 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
368                 if (ret)
369                         goto out;
370         }
371
372         /* once recovery info is written, don't need to tack this */
373         f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
374         clear_inode_flag(inode, FI_APPEND_WRITE);
375 flush_out:
376         if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
377             (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
378                 ret = f2fs_issue_flush(sbi, inode->i_ino);
379         if (!ret) {
380                 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
381                 clear_inode_flag(inode, FI_UPDATE_WRITE);
382                 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
383         }
384         f2fs_update_time(sbi, REQ_TIME);
385 out:
386         trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
387         return ret;
388 }
389
390 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
391 {
392         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
393                 return -EIO;
394         return f2fs_do_sync_file(file, start, end, datasync, false);
395 }
396
397 static bool __found_offset(struct address_space *mapping,
398                 struct dnode_of_data *dn, pgoff_t index, int whence)
399 {
400         block_t blkaddr = f2fs_data_blkaddr(dn);
401         struct inode *inode = mapping->host;
402         bool compressed_cluster = false;
403
404         if (f2fs_compressed_file(inode)) {
405                 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
406                     ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
407
408                 compressed_cluster = first_blkaddr == COMPRESS_ADDR;
409         }
410
411         switch (whence) {
412         case SEEK_DATA:
413                 if (__is_valid_data_blkaddr(blkaddr))
414                         return true;
415                 if (blkaddr == NEW_ADDR &&
416                     xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
417                         return true;
418                 if (compressed_cluster)
419                         return true;
420                 break;
421         case SEEK_HOLE:
422                 if (compressed_cluster)
423                         return false;
424                 if (blkaddr == NULL_ADDR)
425                         return true;
426                 break;
427         }
428         return false;
429 }
430
431 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
432 {
433         struct inode *inode = file->f_mapping->host;
434         loff_t maxbytes = inode->i_sb->s_maxbytes;
435         struct dnode_of_data dn;
436         pgoff_t pgofs, end_offset;
437         loff_t data_ofs = offset;
438         loff_t isize;
439         int err = 0;
440
441         inode_lock_shared(inode);
442
443         isize = i_size_read(inode);
444         if (offset >= isize)
445                 goto fail;
446
447         /* handle inline data case */
448         if (f2fs_has_inline_data(inode)) {
449                 if (whence == SEEK_HOLE) {
450                         data_ofs = isize;
451                         goto found;
452                 } else if (whence == SEEK_DATA) {
453                         data_ofs = offset;
454                         goto found;
455                 }
456         }
457
458         pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
459
460         for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461                 set_new_dnode(&dn, inode, NULL, NULL, 0);
462                 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
463                 if (err && err != -ENOENT) {
464                         goto fail;
465                 } else if (err == -ENOENT) {
466                         /* direct node does not exists */
467                         if (whence == SEEK_DATA) {
468                                 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
469                                 continue;
470                         } else {
471                                 goto found;
472                         }
473                 }
474
475                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
476
477                 /* find data/hole in dnode block */
478                 for (; dn.ofs_in_node < end_offset;
479                                 dn.ofs_in_node++, pgofs++,
480                                 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
481                         block_t blkaddr;
482
483                         blkaddr = f2fs_data_blkaddr(&dn);
484
485                         if (__is_valid_data_blkaddr(blkaddr) &&
486                                 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
487                                         blkaddr, DATA_GENERIC_ENHANCE)) {
488                                 f2fs_put_dnode(&dn);
489                                 goto fail;
490                         }
491
492                         if (__found_offset(file->f_mapping, &dn,
493                                                         pgofs, whence)) {
494                                 f2fs_put_dnode(&dn);
495                                 goto found;
496                         }
497                 }
498                 f2fs_put_dnode(&dn);
499         }
500
501         if (whence == SEEK_DATA)
502                 goto fail;
503 found:
504         if (whence == SEEK_HOLE && data_ofs > isize)
505                 data_ofs = isize;
506         inode_unlock_shared(inode);
507         return vfs_setpos(file, data_ofs, maxbytes);
508 fail:
509         inode_unlock_shared(inode);
510         return -ENXIO;
511 }
512
513 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
514 {
515         struct inode *inode = file->f_mapping->host;
516         loff_t maxbytes = inode->i_sb->s_maxbytes;
517
518         if (f2fs_compressed_file(inode))
519                 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
520
521         switch (whence) {
522         case SEEK_SET:
523         case SEEK_CUR:
524         case SEEK_END:
525                 return generic_file_llseek_size(file, offset, whence,
526                                                 maxbytes, i_size_read(inode));
527         case SEEK_DATA:
528         case SEEK_HOLE:
529                 if (offset < 0)
530                         return -ENXIO;
531                 return f2fs_seek_block(file, offset, whence);
532         }
533
534         return -EINVAL;
535 }
536
537 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
538 {
539         struct inode *inode = file_inode(file);
540
541         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
542                 return -EIO;
543
544         if (!f2fs_is_compress_backend_ready(inode))
545                 return -EOPNOTSUPP;
546
547         file_accessed(file);
548         vma->vm_ops = &f2fs_file_vm_ops;
549
550         f2fs_down_read(&F2FS_I(inode)->i_sem);
551         set_inode_flag(inode, FI_MMAP_FILE);
552         f2fs_up_read(&F2FS_I(inode)->i_sem);
553
554         return 0;
555 }
556
557 static int finish_preallocate_blocks(struct inode *inode)
558 {
559         int ret;
560
561         inode_lock(inode);
562         if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
563                 inode_unlock(inode);
564                 return 0;
565         }
566
567         if (!file_should_truncate(inode)) {
568                 set_inode_flag(inode, FI_OPENED_FILE);
569                 inode_unlock(inode);
570                 return 0;
571         }
572
573         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
574         filemap_invalidate_lock(inode->i_mapping);
575
576         truncate_setsize(inode, i_size_read(inode));
577         ret = f2fs_truncate(inode);
578
579         filemap_invalidate_unlock(inode->i_mapping);
580         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
581
582         if (!ret)
583                 set_inode_flag(inode, FI_OPENED_FILE);
584
585         inode_unlock(inode);
586         if (ret)
587                 return ret;
588
589         file_dont_truncate(inode);
590         return 0;
591 }
592
593 static int f2fs_file_open(struct inode *inode, struct file *filp)
594 {
595         int err = fscrypt_file_open(inode, filp);
596
597         if (err)
598                 return err;
599
600         if (!f2fs_is_compress_backend_ready(inode))
601                 return -EOPNOTSUPP;
602
603         err = fsverity_file_open(inode, filp);
604         if (err)
605                 return err;
606
607         filp->f_mode |= FMODE_NOWAIT;
608         filp->f_mode |= FMODE_CAN_ODIRECT;
609
610         err = dquot_file_open(inode, filp);
611         if (err)
612                 return err;
613
614         return finish_preallocate_blocks(inode);
615 }
616
617 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
618 {
619         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
620         int nr_free = 0, ofs = dn->ofs_in_node, len = count;
621         __le32 *addr;
622         bool compressed_cluster = false;
623         int cluster_index = 0, valid_blocks = 0;
624         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
625         bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
626
627         addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
628
629         /* Assumption: truncation starts with cluster */
630         for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
631                 block_t blkaddr = le32_to_cpu(*addr);
632
633                 if (f2fs_compressed_file(dn->inode) &&
634                                         !(cluster_index & (cluster_size - 1))) {
635                         if (compressed_cluster)
636                                 f2fs_i_compr_blocks_update(dn->inode,
637                                                         valid_blocks, false);
638                         compressed_cluster = (blkaddr == COMPRESS_ADDR);
639                         valid_blocks = 0;
640                 }
641
642                 if (blkaddr == NULL_ADDR)
643                         continue;
644
645                 f2fs_set_data_blkaddr(dn, NULL_ADDR);
646
647                 if (__is_valid_data_blkaddr(blkaddr)) {
648                         if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
649                                 continue;
650                         if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
651                                                 DATA_GENERIC_ENHANCE))
652                                 continue;
653                         if (compressed_cluster)
654                                 valid_blocks++;
655                 }
656
657                 f2fs_invalidate_blocks(sbi, blkaddr);
658
659                 if (!released || blkaddr != COMPRESS_ADDR)
660                         nr_free++;
661         }
662
663         if (compressed_cluster)
664                 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
665
666         if (nr_free) {
667                 pgoff_t fofs;
668                 /*
669                  * once we invalidate valid blkaddr in range [ofs, ofs + count],
670                  * we will invalidate all blkaddr in the whole range.
671                  */
672                 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
673                                                         dn->inode) + ofs;
674                 f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
675                 f2fs_update_age_extent_cache_range(dn, fofs, len);
676                 dec_valid_block_count(sbi, dn->inode, nr_free);
677         }
678         dn->ofs_in_node = ofs;
679
680         f2fs_update_time(sbi, REQ_TIME);
681         trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
682                                          dn->ofs_in_node, nr_free);
683 }
684
685 static int truncate_partial_data_page(struct inode *inode, u64 from,
686                                                                 bool cache_only)
687 {
688         loff_t offset = from & (PAGE_SIZE - 1);
689         pgoff_t index = from >> PAGE_SHIFT;
690         struct address_space *mapping = inode->i_mapping;
691         struct page *page;
692
693         if (!offset && !cache_only)
694                 return 0;
695
696         if (cache_only) {
697                 page = find_lock_page(mapping, index);
698                 if (page && PageUptodate(page))
699                         goto truncate_out;
700                 f2fs_put_page(page, 1);
701                 return 0;
702         }
703
704         page = f2fs_get_lock_data_page(inode, index, true);
705         if (IS_ERR(page))
706                 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
707 truncate_out:
708         f2fs_wait_on_page_writeback(page, DATA, true, true);
709         zero_user(page, offset, PAGE_SIZE - offset);
710
711         /* An encrypted inode should have a key and truncate the last page. */
712         f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
713         if (!cache_only)
714                 set_page_dirty(page);
715         f2fs_put_page(page, 1);
716         return 0;
717 }
718
719 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
720 {
721         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
722         struct dnode_of_data dn;
723         pgoff_t free_from;
724         int count = 0, err = 0;
725         struct page *ipage;
726         bool truncate_page = false;
727
728         trace_f2fs_truncate_blocks_enter(inode, from);
729
730         free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
731
732         if (free_from >= max_file_blocks(inode))
733                 goto free_partial;
734
735         if (lock)
736                 f2fs_lock_op(sbi);
737
738         ipage = f2fs_get_node_page(sbi, inode->i_ino);
739         if (IS_ERR(ipage)) {
740                 err = PTR_ERR(ipage);
741                 goto out;
742         }
743
744         if (f2fs_has_inline_data(inode)) {
745                 f2fs_truncate_inline_inode(inode, ipage, from);
746                 f2fs_put_page(ipage, 1);
747                 truncate_page = true;
748                 goto out;
749         }
750
751         set_new_dnode(&dn, inode, ipage, NULL, 0);
752         err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
753         if (err) {
754                 if (err == -ENOENT)
755                         goto free_next;
756                 goto out;
757         }
758
759         count = ADDRS_PER_PAGE(dn.node_page, inode);
760
761         count -= dn.ofs_in_node;
762         f2fs_bug_on(sbi, count < 0);
763
764         if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
765                 f2fs_truncate_data_blocks_range(&dn, count);
766                 free_from += count;
767         }
768
769         f2fs_put_dnode(&dn);
770 free_next:
771         err = f2fs_truncate_inode_blocks(inode, free_from);
772 out:
773         if (lock)
774                 f2fs_unlock_op(sbi);
775 free_partial:
776         /* lastly zero out the first data page */
777         if (!err)
778                 err = truncate_partial_data_page(inode, from, truncate_page);
779
780         trace_f2fs_truncate_blocks_exit(inode, err);
781         return err;
782 }
783
784 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
785 {
786         u64 free_from = from;
787         int err;
788
789 #ifdef CONFIG_F2FS_FS_COMPRESSION
790         /*
791          * for compressed file, only support cluster size
792          * aligned truncation.
793          */
794         if (f2fs_compressed_file(inode))
795                 free_from = round_up(from,
796                                 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
797 #endif
798
799         err = f2fs_do_truncate_blocks(inode, free_from, lock);
800         if (err)
801                 return err;
802
803 #ifdef CONFIG_F2FS_FS_COMPRESSION
804         /*
805          * For compressed file, after release compress blocks, don't allow write
806          * direct, but we should allow write direct after truncate to zero.
807          */
808         if (f2fs_compressed_file(inode) && !free_from
809                         && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
810                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
811
812         if (from != free_from) {
813                 err = f2fs_truncate_partial_cluster(inode, from, lock);
814                 if (err)
815                         return err;
816         }
817 #endif
818
819         return 0;
820 }
821
822 int f2fs_truncate(struct inode *inode)
823 {
824         int err;
825
826         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
827                 return -EIO;
828
829         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
830                                 S_ISLNK(inode->i_mode)))
831                 return 0;
832
833         trace_f2fs_truncate(inode);
834
835         if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
836                 return -EIO;
837
838         err = f2fs_dquot_initialize(inode);
839         if (err)
840                 return err;
841
842         /* we should check inline_data size */
843         if (!f2fs_may_inline_data(inode)) {
844                 err = f2fs_convert_inline_inode(inode);
845                 if (err)
846                         return err;
847         }
848
849         err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
850         if (err)
851                 return err;
852
853         inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
854         f2fs_mark_inode_dirty_sync(inode, false);
855         return 0;
856 }
857
858 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
859 {
860         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
861
862         if (!fscrypt_dio_supported(inode))
863                 return true;
864         if (fsverity_active(inode))
865                 return true;
866         if (f2fs_compressed_file(inode))
867                 return true;
868         if (f2fs_has_inline_data(inode))
869                 return true;
870
871         /* disallow direct IO if any of devices has unaligned blksize */
872         if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
873                 return true;
874         /*
875          * for blkzoned device, fallback direct IO to buffered IO, so
876          * all IOs can be serialized by log-structured write.
877          */
878         if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
879             !f2fs_is_pinned_file(inode))
880                 return true;
881         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
882                 return true;
883
884         return false;
885 }
886
887 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
888                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
889 {
890         struct inode *inode = d_inode(path->dentry);
891         struct f2fs_inode_info *fi = F2FS_I(inode);
892         struct f2fs_inode *ri = NULL;
893         unsigned int flags;
894
895         if (f2fs_has_extra_attr(inode) &&
896                         f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
897                         F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
898                 stat->result_mask |= STATX_BTIME;
899                 stat->btime.tv_sec = fi->i_crtime.tv_sec;
900                 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
901         }
902
903         /*
904          * Return the DIO alignment restrictions if requested.  We only return
905          * this information when requested, since on encrypted files it might
906          * take a fair bit of work to get if the file wasn't opened recently.
907          *
908          * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
909          * cannot represent that, so in that case we report no DIO support.
910          */
911         if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
912                 unsigned int bsize = i_blocksize(inode);
913
914                 stat->result_mask |= STATX_DIOALIGN;
915                 if (!f2fs_force_buffered_io(inode, WRITE)) {
916                         stat->dio_mem_align = bsize;
917                         stat->dio_offset_align = bsize;
918                 }
919         }
920
921         flags = fi->i_flags;
922         if (flags & F2FS_COMPR_FL)
923                 stat->attributes |= STATX_ATTR_COMPRESSED;
924         if (flags & F2FS_APPEND_FL)
925                 stat->attributes |= STATX_ATTR_APPEND;
926         if (IS_ENCRYPTED(inode))
927                 stat->attributes |= STATX_ATTR_ENCRYPTED;
928         if (flags & F2FS_IMMUTABLE_FL)
929                 stat->attributes |= STATX_ATTR_IMMUTABLE;
930         if (flags & F2FS_NODUMP_FL)
931                 stat->attributes |= STATX_ATTR_NODUMP;
932         if (IS_VERITY(inode))
933                 stat->attributes |= STATX_ATTR_VERITY;
934
935         stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
936                                   STATX_ATTR_APPEND |
937                                   STATX_ATTR_ENCRYPTED |
938                                   STATX_ATTR_IMMUTABLE |
939                                   STATX_ATTR_NODUMP |
940                                   STATX_ATTR_VERITY);
941
942         generic_fillattr(idmap, request_mask, inode, stat);
943
944         /* we need to show initial sectors used for inline_data/dentries */
945         if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
946                                         f2fs_has_inline_dentry(inode))
947                 stat->blocks += (stat->size + 511) >> 9;
948
949         return 0;
950 }
951
952 #ifdef CONFIG_F2FS_FS_POSIX_ACL
953 static void __setattr_copy(struct mnt_idmap *idmap,
954                            struct inode *inode, const struct iattr *attr)
955 {
956         unsigned int ia_valid = attr->ia_valid;
957
958         i_uid_update(idmap, attr, inode);
959         i_gid_update(idmap, attr, inode);
960         if (ia_valid & ATTR_ATIME)
961                 inode_set_atime_to_ts(inode, attr->ia_atime);
962         if (ia_valid & ATTR_MTIME)
963                 inode_set_mtime_to_ts(inode, attr->ia_mtime);
964         if (ia_valid & ATTR_CTIME)
965                 inode_set_ctime_to_ts(inode, attr->ia_ctime);
966         if (ia_valid & ATTR_MODE) {
967                 umode_t mode = attr->ia_mode;
968
969                 if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode)))
970                         mode &= ~S_ISGID;
971                 set_acl_inode(inode, mode);
972         }
973 }
974 #else
975 #define __setattr_copy setattr_copy
976 #endif
977
978 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
979                  struct iattr *attr)
980 {
981         struct inode *inode = d_inode(dentry);
982         struct f2fs_inode_info *fi = F2FS_I(inode);
983         int err;
984
985         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
986                 return -EIO;
987
988         if (unlikely(IS_IMMUTABLE(inode)))
989                 return -EPERM;
990
991         if (unlikely(IS_APPEND(inode) &&
992                         (attr->ia_valid & (ATTR_MODE | ATTR_UID |
993                                   ATTR_GID | ATTR_TIMES_SET))))
994                 return -EPERM;
995
996         if ((attr->ia_valid & ATTR_SIZE)) {
997                 if (!f2fs_is_compress_backend_ready(inode))
998                         return -EOPNOTSUPP;
999                 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
1000                         !IS_ALIGNED(attr->ia_size,
1001                         F2FS_BLK_TO_BYTES(fi->i_cluster_size)))
1002                         return -EINVAL;
1003         }
1004
1005         err = setattr_prepare(idmap, dentry, attr);
1006         if (err)
1007                 return err;
1008
1009         err = fscrypt_prepare_setattr(dentry, attr);
1010         if (err)
1011                 return err;
1012
1013         err = fsverity_prepare_setattr(dentry, attr);
1014         if (err)
1015                 return err;
1016
1017         if (is_quota_modification(idmap, inode, attr)) {
1018                 err = f2fs_dquot_initialize(inode);
1019                 if (err)
1020                         return err;
1021         }
1022         if (i_uid_needs_update(idmap, attr, inode) ||
1023             i_gid_needs_update(idmap, attr, inode)) {
1024                 f2fs_lock_op(F2FS_I_SB(inode));
1025                 err = dquot_transfer(idmap, inode, attr);
1026                 if (err) {
1027                         set_sbi_flag(F2FS_I_SB(inode),
1028                                         SBI_QUOTA_NEED_REPAIR);
1029                         f2fs_unlock_op(F2FS_I_SB(inode));
1030                         return err;
1031                 }
1032                 /*
1033                  * update uid/gid under lock_op(), so that dquot and inode can
1034                  * be updated atomically.
1035                  */
1036                 i_uid_update(idmap, attr, inode);
1037                 i_gid_update(idmap, attr, inode);
1038                 f2fs_mark_inode_dirty_sync(inode, true);
1039                 f2fs_unlock_op(F2FS_I_SB(inode));
1040         }
1041
1042         if (attr->ia_valid & ATTR_SIZE) {
1043                 loff_t old_size = i_size_read(inode);
1044
1045                 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1046                         /*
1047                          * should convert inline inode before i_size_write to
1048                          * keep smaller than inline_data size with inline flag.
1049                          */
1050                         err = f2fs_convert_inline_inode(inode);
1051                         if (err)
1052                                 return err;
1053                 }
1054
1055                 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
1056                 filemap_invalidate_lock(inode->i_mapping);
1057
1058                 truncate_setsize(inode, attr->ia_size);
1059
1060                 if (attr->ia_size <= old_size)
1061                         err = f2fs_truncate(inode);
1062                 /*
1063                  * do not trim all blocks after i_size if target size is
1064                  * larger than i_size.
1065                  */
1066                 filemap_invalidate_unlock(inode->i_mapping);
1067                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1068                 if (err)
1069                         return err;
1070
1071                 spin_lock(&fi->i_size_lock);
1072                 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1073                 fi->last_disk_size = i_size_read(inode);
1074                 spin_unlock(&fi->i_size_lock);
1075         }
1076
1077         __setattr_copy(idmap, inode, attr);
1078
1079         if (attr->ia_valid & ATTR_MODE) {
1080                 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1081
1082                 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1083                         if (!err)
1084                                 inode->i_mode = fi->i_acl_mode;
1085                         clear_inode_flag(inode, FI_ACL_MODE);
1086                 }
1087         }
1088
1089         /* file size may changed here */
1090         f2fs_mark_inode_dirty_sync(inode, true);
1091
1092         /* inode change will produce dirty node pages flushed by checkpoint */
1093         f2fs_balance_fs(F2FS_I_SB(inode), true);
1094
1095         return err;
1096 }
1097
1098 const struct inode_operations f2fs_file_inode_operations = {
1099         .getattr        = f2fs_getattr,
1100         .setattr        = f2fs_setattr,
1101         .get_inode_acl  = f2fs_get_acl,
1102         .set_acl        = f2fs_set_acl,
1103         .listxattr      = f2fs_listxattr,
1104         .fiemap         = f2fs_fiemap,
1105         .fileattr_get   = f2fs_fileattr_get,
1106         .fileattr_set   = f2fs_fileattr_set,
1107 };
1108
1109 static int fill_zero(struct inode *inode, pgoff_t index,
1110                                         loff_t start, loff_t len)
1111 {
1112         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1113         struct page *page;
1114
1115         if (!len)
1116                 return 0;
1117
1118         f2fs_balance_fs(sbi, true);
1119
1120         f2fs_lock_op(sbi);
1121         page = f2fs_get_new_data_page(inode, NULL, index, false);
1122         f2fs_unlock_op(sbi);
1123
1124         if (IS_ERR(page))
1125                 return PTR_ERR(page);
1126
1127         f2fs_wait_on_page_writeback(page, DATA, true, true);
1128         zero_user(page, start, len);
1129         set_page_dirty(page);
1130         f2fs_put_page(page, 1);
1131         return 0;
1132 }
1133
1134 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1135 {
1136         int err;
1137
1138         while (pg_start < pg_end) {
1139                 struct dnode_of_data dn;
1140                 pgoff_t end_offset, count;
1141
1142                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1143                 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1144                 if (err) {
1145                         if (err == -ENOENT) {
1146                                 pg_start = f2fs_get_next_page_offset(&dn,
1147                                                                 pg_start);
1148                                 continue;
1149                         }
1150                         return err;
1151                 }
1152
1153                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1154                 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1155
1156                 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1157
1158                 f2fs_truncate_data_blocks_range(&dn, count);
1159                 f2fs_put_dnode(&dn);
1160
1161                 pg_start += count;
1162         }
1163         return 0;
1164 }
1165
1166 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1167 {
1168         pgoff_t pg_start, pg_end;
1169         loff_t off_start, off_end;
1170         int ret;
1171
1172         ret = f2fs_convert_inline_inode(inode);
1173         if (ret)
1174                 return ret;
1175
1176         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1177         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1178
1179         off_start = offset & (PAGE_SIZE - 1);
1180         off_end = (offset + len) & (PAGE_SIZE - 1);
1181
1182         if (pg_start == pg_end) {
1183                 ret = fill_zero(inode, pg_start, off_start,
1184                                                 off_end - off_start);
1185                 if (ret)
1186                         return ret;
1187         } else {
1188                 if (off_start) {
1189                         ret = fill_zero(inode, pg_start++, off_start,
1190                                                 PAGE_SIZE - off_start);
1191                         if (ret)
1192                                 return ret;
1193                 }
1194                 if (off_end) {
1195                         ret = fill_zero(inode, pg_end, 0, off_end);
1196                         if (ret)
1197                                 return ret;
1198                 }
1199
1200                 if (pg_start < pg_end) {
1201                         loff_t blk_start, blk_end;
1202                         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1203
1204                         f2fs_balance_fs(sbi, true);
1205
1206                         blk_start = (loff_t)pg_start << PAGE_SHIFT;
1207                         blk_end = (loff_t)pg_end << PAGE_SHIFT;
1208
1209                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1210                         filemap_invalidate_lock(inode->i_mapping);
1211
1212                         truncate_pagecache_range(inode, blk_start, blk_end - 1);
1213
1214                         f2fs_lock_op(sbi);
1215                         ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1216                         f2fs_unlock_op(sbi);
1217
1218                         filemap_invalidate_unlock(inode->i_mapping);
1219                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1220                 }
1221         }
1222
1223         return ret;
1224 }
1225
1226 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1227                                 int *do_replace, pgoff_t off, pgoff_t len)
1228 {
1229         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1230         struct dnode_of_data dn;
1231         int ret, done, i;
1232
1233 next_dnode:
1234         set_new_dnode(&dn, inode, NULL, NULL, 0);
1235         ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1236         if (ret && ret != -ENOENT) {
1237                 return ret;
1238         } else if (ret == -ENOENT) {
1239                 if (dn.max_level == 0)
1240                         return -ENOENT;
1241                 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1242                                                 dn.ofs_in_node, len);
1243                 blkaddr += done;
1244                 do_replace += done;
1245                 goto next;
1246         }
1247
1248         done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1249                                                         dn.ofs_in_node, len);
1250         for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1251                 *blkaddr = f2fs_data_blkaddr(&dn);
1252
1253                 if (__is_valid_data_blkaddr(*blkaddr) &&
1254                         !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1255                                         DATA_GENERIC_ENHANCE)) {
1256                         f2fs_put_dnode(&dn);
1257                         return -EFSCORRUPTED;
1258                 }
1259
1260                 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1261
1262                         if (f2fs_lfs_mode(sbi)) {
1263                                 f2fs_put_dnode(&dn);
1264                                 return -EOPNOTSUPP;
1265                         }
1266
1267                         /* do not invalidate this block address */
1268                         f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1269                         *do_replace = 1;
1270                 }
1271         }
1272         f2fs_put_dnode(&dn);
1273 next:
1274         len -= done;
1275         off += done;
1276         if (len)
1277                 goto next_dnode;
1278         return 0;
1279 }
1280
1281 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1282                                 int *do_replace, pgoff_t off, int len)
1283 {
1284         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1285         struct dnode_of_data dn;
1286         int ret, i;
1287
1288         for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1289                 if (*do_replace == 0)
1290                         continue;
1291
1292                 set_new_dnode(&dn, inode, NULL, NULL, 0);
1293                 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1294                 if (ret) {
1295                         dec_valid_block_count(sbi, inode, 1);
1296                         f2fs_invalidate_blocks(sbi, *blkaddr);
1297                 } else {
1298                         f2fs_update_data_blkaddr(&dn, *blkaddr);
1299                 }
1300                 f2fs_put_dnode(&dn);
1301         }
1302         return 0;
1303 }
1304
1305 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1306                         block_t *blkaddr, int *do_replace,
1307                         pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1308 {
1309         struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1310         pgoff_t i = 0;
1311         int ret;
1312
1313         while (i < len) {
1314                 if (blkaddr[i] == NULL_ADDR && !full) {
1315                         i++;
1316                         continue;
1317                 }
1318
1319                 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1320                         struct dnode_of_data dn;
1321                         struct node_info ni;
1322                         size_t new_size;
1323                         pgoff_t ilen;
1324
1325                         set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1326                         ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1327                         if (ret)
1328                                 return ret;
1329
1330                         ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1331                         if (ret) {
1332                                 f2fs_put_dnode(&dn);
1333                                 return ret;
1334                         }
1335
1336                         ilen = min((pgoff_t)
1337                                 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1338                                                 dn.ofs_in_node, len - i);
1339                         do {
1340                                 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1341                                 f2fs_truncate_data_blocks_range(&dn, 1);
1342
1343                                 if (do_replace[i]) {
1344                                         f2fs_i_blocks_write(src_inode,
1345                                                         1, false, false);
1346                                         f2fs_i_blocks_write(dst_inode,
1347                                                         1, true, false);
1348                                         f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1349                                         blkaddr[i], ni.version, true, false);
1350
1351                                         do_replace[i] = 0;
1352                                 }
1353                                 dn.ofs_in_node++;
1354                                 i++;
1355                                 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1356                                 if (dst_inode->i_size < new_size)
1357                                         f2fs_i_size_write(dst_inode, new_size);
1358                         } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1359
1360                         f2fs_put_dnode(&dn);
1361                 } else {
1362                         struct page *psrc, *pdst;
1363
1364                         psrc = f2fs_get_lock_data_page(src_inode,
1365                                                         src + i, true);
1366                         if (IS_ERR(psrc))
1367                                 return PTR_ERR(psrc);
1368                         pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1369                                                                 true);
1370                         if (IS_ERR(pdst)) {
1371                                 f2fs_put_page(psrc, 1);
1372                                 return PTR_ERR(pdst);
1373                         }
1374
1375                         f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1376
1377                         memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1378                         set_page_dirty(pdst);
1379                         set_page_private_gcing(pdst);
1380                         f2fs_put_page(pdst, 1);
1381                         f2fs_put_page(psrc, 1);
1382
1383                         ret = f2fs_truncate_hole(src_inode,
1384                                                 src + i, src + i + 1);
1385                         if (ret)
1386                                 return ret;
1387                         i++;
1388                 }
1389         }
1390         return 0;
1391 }
1392
1393 static int __exchange_data_block(struct inode *src_inode,
1394                         struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1395                         pgoff_t len, bool full)
1396 {
1397         block_t *src_blkaddr;
1398         int *do_replace;
1399         pgoff_t olen;
1400         int ret;
1401
1402         while (len) {
1403                 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1404
1405                 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1406                                         array_size(olen, sizeof(block_t)),
1407                                         GFP_NOFS);
1408                 if (!src_blkaddr)
1409                         return -ENOMEM;
1410
1411                 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1412                                         array_size(olen, sizeof(int)),
1413                                         GFP_NOFS);
1414                 if (!do_replace) {
1415                         kvfree(src_blkaddr);
1416                         return -ENOMEM;
1417                 }
1418
1419                 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1420                                         do_replace, src, olen);
1421                 if (ret)
1422                         goto roll_back;
1423
1424                 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1425                                         do_replace, src, dst, olen, full);
1426                 if (ret)
1427                         goto roll_back;
1428
1429                 src += olen;
1430                 dst += olen;
1431                 len -= olen;
1432
1433                 kvfree(src_blkaddr);
1434                 kvfree(do_replace);
1435         }
1436         return 0;
1437
1438 roll_back:
1439         __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1440         kvfree(src_blkaddr);
1441         kvfree(do_replace);
1442         return ret;
1443 }
1444
1445 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1446 {
1447         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1448         pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1449         pgoff_t start = offset >> PAGE_SHIFT;
1450         pgoff_t end = (offset + len) >> PAGE_SHIFT;
1451         int ret;
1452
1453         f2fs_balance_fs(sbi, true);
1454
1455         /* avoid gc operation during block exchange */
1456         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1457         filemap_invalidate_lock(inode->i_mapping);
1458
1459         f2fs_lock_op(sbi);
1460         f2fs_drop_extent_tree(inode);
1461         truncate_pagecache(inode, offset);
1462         ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1463         f2fs_unlock_op(sbi);
1464
1465         filemap_invalidate_unlock(inode->i_mapping);
1466         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1467         return ret;
1468 }
1469
1470 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1471 {
1472         loff_t new_size;
1473         int ret;
1474
1475         if (offset + len >= i_size_read(inode))
1476                 return -EINVAL;
1477
1478         /* collapse range should be aligned to block size of f2fs. */
1479         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1480                 return -EINVAL;
1481
1482         ret = f2fs_convert_inline_inode(inode);
1483         if (ret)
1484                 return ret;
1485
1486         /* write out all dirty pages from offset */
1487         ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1488         if (ret)
1489                 return ret;
1490
1491         ret = f2fs_do_collapse(inode, offset, len);
1492         if (ret)
1493                 return ret;
1494
1495         /* write out all moved pages, if possible */
1496         filemap_invalidate_lock(inode->i_mapping);
1497         filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1498         truncate_pagecache(inode, offset);
1499
1500         new_size = i_size_read(inode) - len;
1501         ret = f2fs_truncate_blocks(inode, new_size, true);
1502         filemap_invalidate_unlock(inode->i_mapping);
1503         if (!ret)
1504                 f2fs_i_size_write(inode, new_size);
1505         return ret;
1506 }
1507
1508 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1509                                                                 pgoff_t end)
1510 {
1511         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1512         pgoff_t index = start;
1513         unsigned int ofs_in_node = dn->ofs_in_node;
1514         blkcnt_t count = 0;
1515         int ret;
1516
1517         for (; index < end; index++, dn->ofs_in_node++) {
1518                 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1519                         count++;
1520         }
1521
1522         dn->ofs_in_node = ofs_in_node;
1523         ret = f2fs_reserve_new_blocks(dn, count);
1524         if (ret)
1525                 return ret;
1526
1527         dn->ofs_in_node = ofs_in_node;
1528         for (index = start; index < end; index++, dn->ofs_in_node++) {
1529                 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1530                 /*
1531                  * f2fs_reserve_new_blocks will not guarantee entire block
1532                  * allocation.
1533                  */
1534                 if (dn->data_blkaddr == NULL_ADDR) {
1535                         ret = -ENOSPC;
1536                         break;
1537                 }
1538
1539                 if (dn->data_blkaddr == NEW_ADDR)
1540                         continue;
1541
1542                 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1543                                         DATA_GENERIC_ENHANCE)) {
1544                         ret = -EFSCORRUPTED;
1545                         break;
1546                 }
1547
1548                 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1549                 f2fs_set_data_blkaddr(dn, NEW_ADDR);
1550         }
1551
1552         f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1553         f2fs_update_age_extent_cache_range(dn, start, index - start);
1554
1555         return ret;
1556 }
1557
1558 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1559                                                                 int mode)
1560 {
1561         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1562         struct address_space *mapping = inode->i_mapping;
1563         pgoff_t index, pg_start, pg_end;
1564         loff_t new_size = i_size_read(inode);
1565         loff_t off_start, off_end;
1566         int ret = 0;
1567
1568         ret = inode_newsize_ok(inode, (len + offset));
1569         if (ret)
1570                 return ret;
1571
1572         ret = f2fs_convert_inline_inode(inode);
1573         if (ret)
1574                 return ret;
1575
1576         ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1577         if (ret)
1578                 return ret;
1579
1580         pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1581         pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1582
1583         off_start = offset & (PAGE_SIZE - 1);
1584         off_end = (offset + len) & (PAGE_SIZE - 1);
1585
1586         if (pg_start == pg_end) {
1587                 ret = fill_zero(inode, pg_start, off_start,
1588                                                 off_end - off_start);
1589                 if (ret)
1590                         return ret;
1591
1592                 new_size = max_t(loff_t, new_size, offset + len);
1593         } else {
1594                 if (off_start) {
1595                         ret = fill_zero(inode, pg_start++, off_start,
1596                                                 PAGE_SIZE - off_start);
1597                         if (ret)
1598                                 return ret;
1599
1600                         new_size = max_t(loff_t, new_size,
1601                                         (loff_t)pg_start << PAGE_SHIFT);
1602                 }
1603
1604                 for (index = pg_start; index < pg_end;) {
1605                         struct dnode_of_data dn;
1606                         unsigned int end_offset;
1607                         pgoff_t end;
1608
1609                         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1610                         filemap_invalidate_lock(mapping);
1611
1612                         truncate_pagecache_range(inode,
1613                                 (loff_t)index << PAGE_SHIFT,
1614                                 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1615
1616                         f2fs_lock_op(sbi);
1617
1618                         set_new_dnode(&dn, inode, NULL, NULL, 0);
1619                         ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1620                         if (ret) {
1621                                 f2fs_unlock_op(sbi);
1622                                 filemap_invalidate_unlock(mapping);
1623                                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1624                                 goto out;
1625                         }
1626
1627                         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1628                         end = min(pg_end, end_offset - dn.ofs_in_node + index);
1629
1630                         ret = f2fs_do_zero_range(&dn, index, end);
1631                         f2fs_put_dnode(&dn);
1632
1633                         f2fs_unlock_op(sbi);
1634                         filemap_invalidate_unlock(mapping);
1635                         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1636
1637                         f2fs_balance_fs(sbi, dn.node_changed);
1638
1639                         if (ret)
1640                                 goto out;
1641
1642                         index = end;
1643                         new_size = max_t(loff_t, new_size,
1644                                         (loff_t)index << PAGE_SHIFT);
1645                 }
1646
1647                 if (off_end) {
1648                         ret = fill_zero(inode, pg_end, 0, off_end);
1649                         if (ret)
1650                                 goto out;
1651
1652                         new_size = max_t(loff_t, new_size, offset + len);
1653                 }
1654         }
1655
1656 out:
1657         if (new_size > i_size_read(inode)) {
1658                 if (mode & FALLOC_FL_KEEP_SIZE)
1659                         file_set_keep_isize(inode);
1660                 else
1661                         f2fs_i_size_write(inode, new_size);
1662         }
1663         return ret;
1664 }
1665
1666 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1667 {
1668         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1669         struct address_space *mapping = inode->i_mapping;
1670         pgoff_t nr, pg_start, pg_end, delta, idx;
1671         loff_t new_size;
1672         int ret = 0;
1673
1674         new_size = i_size_read(inode) + len;
1675         ret = inode_newsize_ok(inode, new_size);
1676         if (ret)
1677                 return ret;
1678
1679         if (offset >= i_size_read(inode))
1680                 return -EINVAL;
1681
1682         /* insert range should be aligned to block size of f2fs. */
1683         if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1684                 return -EINVAL;
1685
1686         ret = f2fs_convert_inline_inode(inode);
1687         if (ret)
1688                 return ret;
1689
1690         f2fs_balance_fs(sbi, true);
1691
1692         filemap_invalidate_lock(mapping);
1693         ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1694         filemap_invalidate_unlock(mapping);
1695         if (ret)
1696                 return ret;
1697
1698         /* write out all dirty pages from offset */
1699         ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1700         if (ret)
1701                 return ret;
1702
1703         pg_start = offset >> PAGE_SHIFT;
1704         pg_end = (offset + len) >> PAGE_SHIFT;
1705         delta = pg_end - pg_start;
1706         idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1707
1708         /* avoid gc operation during block exchange */
1709         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1710         filemap_invalidate_lock(mapping);
1711         truncate_pagecache(inode, offset);
1712
1713         while (!ret && idx > pg_start) {
1714                 nr = idx - pg_start;
1715                 if (nr > delta)
1716                         nr = delta;
1717                 idx -= nr;
1718
1719                 f2fs_lock_op(sbi);
1720                 f2fs_drop_extent_tree(inode);
1721
1722                 ret = __exchange_data_block(inode, inode, idx,
1723                                         idx + delta, nr, false);
1724                 f2fs_unlock_op(sbi);
1725         }
1726         filemap_invalidate_unlock(mapping);
1727         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1728         if (ret)
1729                 return ret;
1730
1731         /* write out all moved pages, if possible */
1732         filemap_invalidate_lock(mapping);
1733         ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1734         truncate_pagecache(inode, offset);
1735         filemap_invalidate_unlock(mapping);
1736
1737         if (!ret)
1738                 f2fs_i_size_write(inode, new_size);
1739         return ret;
1740 }
1741
1742 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1743                                         loff_t len, int mode)
1744 {
1745         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1746         struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1747                         .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1748                         .m_may_create = true };
1749         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1750                         .init_gc_type = FG_GC,
1751                         .should_migrate_blocks = false,
1752                         .err_gc_skipped = true,
1753                         .nr_free_secs = 0 };
1754         pgoff_t pg_start, pg_end;
1755         loff_t new_size;
1756         loff_t off_end;
1757         block_t expanded = 0;
1758         int err;
1759
1760         err = inode_newsize_ok(inode, (len + offset));
1761         if (err)
1762                 return err;
1763
1764         err = f2fs_convert_inline_inode(inode);
1765         if (err)
1766                 return err;
1767
1768         f2fs_balance_fs(sbi, true);
1769
1770         pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1771         pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1772         off_end = (offset + len) & (PAGE_SIZE - 1);
1773
1774         map.m_lblk = pg_start;
1775         map.m_len = pg_end - pg_start;
1776         if (off_end)
1777                 map.m_len++;
1778
1779         if (!map.m_len)
1780                 return 0;
1781
1782         if (f2fs_is_pinned_file(inode)) {
1783                 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1784                 block_t sec_len = roundup(map.m_len, sec_blks);
1785
1786                 map.m_len = sec_blks;
1787 next_alloc:
1788                 if (has_not_enough_free_secs(sbi, 0,
1789                         GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1790                         f2fs_down_write(&sbi->gc_lock);
1791                         stat_inc_gc_call_count(sbi, FOREGROUND);
1792                         err = f2fs_gc(sbi, &gc_control);
1793                         if (err && err != -ENODATA)
1794                                 goto out_err;
1795                 }
1796
1797                 f2fs_down_write(&sbi->pin_sem);
1798
1799                 err = f2fs_allocate_pinning_section(sbi);
1800                 if (err) {
1801                         f2fs_up_write(&sbi->pin_sem);
1802                         goto out_err;
1803                 }
1804
1805                 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1806                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1807                 file_dont_truncate(inode);
1808
1809                 f2fs_up_write(&sbi->pin_sem);
1810
1811                 expanded += map.m_len;
1812                 sec_len -= map.m_len;
1813                 map.m_lblk += map.m_len;
1814                 if (!err && sec_len)
1815                         goto next_alloc;
1816
1817                 map.m_len = expanded;
1818         } else {
1819                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1820                 expanded = map.m_len;
1821         }
1822 out_err:
1823         if (err) {
1824                 pgoff_t last_off;
1825
1826                 if (!expanded)
1827                         return err;
1828
1829                 last_off = pg_start + expanded - 1;
1830
1831                 /* update new size to the failed position */
1832                 new_size = (last_off == pg_end) ? offset + len :
1833                                         (loff_t)(last_off + 1) << PAGE_SHIFT;
1834         } else {
1835                 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1836         }
1837
1838         if (new_size > i_size_read(inode)) {
1839                 if (mode & FALLOC_FL_KEEP_SIZE)
1840                         file_set_keep_isize(inode);
1841                 else
1842                         f2fs_i_size_write(inode, new_size);
1843         }
1844
1845         return err;
1846 }
1847
1848 static long f2fs_fallocate(struct file *file, int mode,
1849                                 loff_t offset, loff_t len)
1850 {
1851         struct inode *inode = file_inode(file);
1852         long ret = 0;
1853
1854         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1855                 return -EIO;
1856         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1857                 return -ENOSPC;
1858         if (!f2fs_is_compress_backend_ready(inode))
1859                 return -EOPNOTSUPP;
1860
1861         /* f2fs only support ->fallocate for regular file */
1862         if (!S_ISREG(inode->i_mode))
1863                 return -EINVAL;
1864
1865         if (IS_ENCRYPTED(inode) &&
1866                 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1867                 return -EOPNOTSUPP;
1868
1869         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1870                         FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1871                         FALLOC_FL_INSERT_RANGE))
1872                 return -EOPNOTSUPP;
1873
1874         inode_lock(inode);
1875
1876         /*
1877          * Pinned file should not support partial truncation since the block
1878          * can be used by applications.
1879          */
1880         if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1881                 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1882                         FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1883                 ret = -EOPNOTSUPP;
1884                 goto out;
1885         }
1886
1887         ret = file_modified(file);
1888         if (ret)
1889                 goto out;
1890
1891         if (mode & FALLOC_FL_PUNCH_HOLE) {
1892                 if (offset >= inode->i_size)
1893                         goto out;
1894
1895                 ret = f2fs_punch_hole(inode, offset, len);
1896         } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1897                 ret = f2fs_collapse_range(inode, offset, len);
1898         } else if (mode & FALLOC_FL_ZERO_RANGE) {
1899                 ret = f2fs_zero_range(inode, offset, len, mode);
1900         } else if (mode & FALLOC_FL_INSERT_RANGE) {
1901                 ret = f2fs_insert_range(inode, offset, len);
1902         } else {
1903                 ret = f2fs_expand_inode_data(inode, offset, len, mode);
1904         }
1905
1906         if (!ret) {
1907                 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1908                 f2fs_mark_inode_dirty_sync(inode, false);
1909                 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1910         }
1911
1912 out:
1913         inode_unlock(inode);
1914
1915         trace_f2fs_fallocate(inode, mode, offset, len, ret);
1916         return ret;
1917 }
1918
1919 static int f2fs_release_file(struct inode *inode, struct file *filp)
1920 {
1921         /*
1922          * f2fs_release_file is called at every close calls. So we should
1923          * not drop any inmemory pages by close called by other process.
1924          */
1925         if (!(filp->f_mode & FMODE_WRITE) ||
1926                         atomic_read(&inode->i_writecount) != 1)
1927                 return 0;
1928
1929         inode_lock(inode);
1930         f2fs_abort_atomic_write(inode, true);
1931         inode_unlock(inode);
1932
1933         return 0;
1934 }
1935
1936 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1937 {
1938         struct inode *inode = file_inode(file);
1939
1940         /*
1941          * If the process doing a transaction is crashed, we should do
1942          * roll-back. Otherwise, other reader/write can see corrupted database
1943          * until all the writers close its file. Since this should be done
1944          * before dropping file lock, it needs to do in ->flush.
1945          */
1946         if (F2FS_I(inode)->atomic_write_task == current &&
1947                                 (current->flags & PF_EXITING)) {
1948                 inode_lock(inode);
1949                 f2fs_abort_atomic_write(inode, true);
1950                 inode_unlock(inode);
1951         }
1952
1953         return 0;
1954 }
1955
1956 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1957 {
1958         struct f2fs_inode_info *fi = F2FS_I(inode);
1959         u32 masked_flags = fi->i_flags & mask;
1960
1961         /* mask can be shrunk by flags_valid selector */
1962         iflags &= mask;
1963
1964         /* Is it quota file? Do not allow user to mess with it */
1965         if (IS_NOQUOTA(inode))
1966                 return -EPERM;
1967
1968         if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1969                 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1970                         return -EOPNOTSUPP;
1971                 if (!f2fs_empty_dir(inode))
1972                         return -ENOTEMPTY;
1973         }
1974
1975         if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1976                 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1977                         return -EOPNOTSUPP;
1978                 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1979                         return -EINVAL;
1980         }
1981
1982         if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1983                 if (masked_flags & F2FS_COMPR_FL) {
1984                         if (!f2fs_disable_compressed_file(inode))
1985                                 return -EINVAL;
1986                 } else {
1987                         /* try to convert inline_data to support compression */
1988                         int err = f2fs_convert_inline_inode(inode);
1989                         if (err)
1990                                 return err;
1991
1992                         f2fs_down_write(&fi->i_sem);
1993                         if (!f2fs_may_compress(inode) ||
1994                                         (S_ISREG(inode->i_mode) &&
1995                                         F2FS_HAS_BLOCKS(inode))) {
1996                                 f2fs_up_write(&fi->i_sem);
1997                                 return -EINVAL;
1998                         }
1999                         err = set_compress_context(inode);
2000                         f2fs_up_write(&fi->i_sem);
2001
2002                         if (err)
2003                                 return err;
2004                 }
2005         }
2006
2007         fi->i_flags = iflags | (fi->i_flags & ~mask);
2008         f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2009                                         (fi->i_flags & F2FS_NOCOMP_FL));
2010
2011         if (fi->i_flags & F2FS_PROJINHERIT_FL)
2012                 set_inode_flag(inode, FI_PROJ_INHERIT);
2013         else
2014                 clear_inode_flag(inode, FI_PROJ_INHERIT);
2015
2016         inode_set_ctime_current(inode);
2017         f2fs_set_inode_flags(inode);
2018         f2fs_mark_inode_dirty_sync(inode, true);
2019         return 0;
2020 }
2021
2022 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2023
2024 /*
2025  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2026  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2027  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
2028  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2029  *
2030  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2031  * FS_IOC_FSSETXATTR is done by the VFS.
2032  */
2033
2034 static const struct {
2035         u32 iflag;
2036         u32 fsflag;
2037 } f2fs_fsflags_map[] = {
2038         { F2FS_COMPR_FL,        FS_COMPR_FL },
2039         { F2FS_SYNC_FL,         FS_SYNC_FL },
2040         { F2FS_IMMUTABLE_FL,    FS_IMMUTABLE_FL },
2041         { F2FS_APPEND_FL,       FS_APPEND_FL },
2042         { F2FS_NODUMP_FL,       FS_NODUMP_FL },
2043         { F2FS_NOATIME_FL,      FS_NOATIME_FL },
2044         { F2FS_NOCOMP_FL,       FS_NOCOMP_FL },
2045         { F2FS_INDEX_FL,        FS_INDEX_FL },
2046         { F2FS_DIRSYNC_FL,      FS_DIRSYNC_FL },
2047         { F2FS_PROJINHERIT_FL,  FS_PROJINHERIT_FL },
2048         { F2FS_CASEFOLD_FL,     FS_CASEFOLD_FL },
2049 };
2050
2051 #define F2FS_GETTABLE_FS_FL (           \
2052                 FS_COMPR_FL |           \
2053                 FS_SYNC_FL |            \
2054                 FS_IMMUTABLE_FL |       \
2055                 FS_APPEND_FL |          \
2056                 FS_NODUMP_FL |          \
2057                 FS_NOATIME_FL |         \
2058                 FS_NOCOMP_FL |          \
2059                 FS_INDEX_FL |           \
2060                 FS_DIRSYNC_FL |         \
2061                 FS_PROJINHERIT_FL |     \
2062                 FS_ENCRYPT_FL |         \
2063                 FS_INLINE_DATA_FL |     \
2064                 FS_NOCOW_FL |           \
2065                 FS_VERITY_FL |          \
2066                 FS_CASEFOLD_FL)
2067
2068 #define F2FS_SETTABLE_FS_FL (           \
2069                 FS_COMPR_FL |           \
2070                 FS_SYNC_FL |            \
2071                 FS_IMMUTABLE_FL |       \
2072                 FS_APPEND_FL |          \
2073                 FS_NODUMP_FL |          \
2074                 FS_NOATIME_FL |         \
2075                 FS_NOCOMP_FL |          \
2076                 FS_DIRSYNC_FL |         \
2077                 FS_PROJINHERIT_FL |     \
2078                 FS_CASEFOLD_FL)
2079
2080 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2081 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2082 {
2083         u32 fsflags = 0;
2084         int i;
2085
2086         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2087                 if (iflags & f2fs_fsflags_map[i].iflag)
2088                         fsflags |= f2fs_fsflags_map[i].fsflag;
2089
2090         return fsflags;
2091 }
2092
2093 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2094 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2095 {
2096         u32 iflags = 0;
2097         int i;
2098
2099         for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2100                 if (fsflags & f2fs_fsflags_map[i].fsflag)
2101                         iflags |= f2fs_fsflags_map[i].iflag;
2102
2103         return iflags;
2104 }
2105
2106 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2107 {
2108         struct inode *inode = file_inode(filp);
2109
2110         return put_user(inode->i_generation, (int __user *)arg);
2111 }
2112
2113 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2114 {
2115         struct inode *inode = file_inode(filp);
2116         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2117         struct f2fs_inode_info *fi = F2FS_I(inode);
2118         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2119         struct inode *pinode;
2120         loff_t isize;
2121         int ret;
2122
2123         if (!inode_owner_or_capable(idmap, inode))
2124                 return -EACCES;
2125
2126         if (!S_ISREG(inode->i_mode))
2127                 return -EINVAL;
2128
2129         if (filp->f_flags & O_DIRECT)
2130                 return -EINVAL;
2131
2132         ret = mnt_want_write_file(filp);
2133         if (ret)
2134                 return ret;
2135
2136         inode_lock(inode);
2137
2138         if (!f2fs_disable_compressed_file(inode) ||
2139                         f2fs_is_pinned_file(inode)) {
2140                 ret = -EINVAL;
2141                 goto out;
2142         }
2143
2144         if (f2fs_is_atomic_file(inode))
2145                 goto out;
2146
2147         ret = f2fs_convert_inline_inode(inode);
2148         if (ret)
2149                 goto out;
2150
2151         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2152
2153         /*
2154          * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2155          * f2fs_is_atomic_file.
2156          */
2157         if (get_dirty_pages(inode))
2158                 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2159                           inode->i_ino, get_dirty_pages(inode));
2160         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2161         if (ret) {
2162                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2163                 goto out;
2164         }
2165
2166         /* Check if the inode already has a COW inode */
2167         if (fi->cow_inode == NULL) {
2168                 /* Create a COW inode for atomic write */
2169                 pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2170                 if (IS_ERR(pinode)) {
2171                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2172                         ret = PTR_ERR(pinode);
2173                         goto out;
2174                 }
2175
2176                 ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2177                 iput(pinode);
2178                 if (ret) {
2179                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2180                         goto out;
2181                 }
2182
2183                 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2184                 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2185
2186                 /* Set the COW inode's atomic_inode to the atomic inode */
2187                 F2FS_I(fi->cow_inode)->atomic_inode = inode;
2188         } else {
2189                 /* Reuse the already created COW inode */
2190                 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2191                 if (ret) {
2192                         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2193                         goto out;
2194                 }
2195         }
2196
2197         f2fs_write_inode(inode, NULL);
2198
2199         stat_inc_atomic_inode(inode);
2200
2201         set_inode_flag(inode, FI_ATOMIC_FILE);
2202
2203         isize = i_size_read(inode);
2204         fi->original_i_size = isize;
2205         if (truncate) {
2206                 set_inode_flag(inode, FI_ATOMIC_REPLACE);
2207                 truncate_inode_pages_final(inode->i_mapping);
2208                 f2fs_i_size_write(inode, 0);
2209                 isize = 0;
2210         }
2211         f2fs_i_size_write(fi->cow_inode, isize);
2212
2213         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2214
2215         f2fs_update_time(sbi, REQ_TIME);
2216         fi->atomic_write_task = current;
2217         stat_update_max_atomic_write(inode);
2218         fi->atomic_write_cnt = 0;
2219 out:
2220         inode_unlock(inode);
2221         mnt_drop_write_file(filp);
2222         return ret;
2223 }
2224
2225 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2226 {
2227         struct inode *inode = file_inode(filp);
2228         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2229         int ret;
2230
2231         if (!inode_owner_or_capable(idmap, inode))
2232                 return -EACCES;
2233
2234         ret = mnt_want_write_file(filp);
2235         if (ret)
2236                 return ret;
2237
2238         f2fs_balance_fs(F2FS_I_SB(inode), true);
2239
2240         inode_lock(inode);
2241
2242         if (f2fs_is_atomic_file(inode)) {
2243                 ret = f2fs_commit_atomic_write(inode);
2244                 if (!ret)
2245                         ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2246
2247                 f2fs_abort_atomic_write(inode, ret);
2248         } else {
2249                 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2250         }
2251
2252         inode_unlock(inode);
2253         mnt_drop_write_file(filp);
2254         return ret;
2255 }
2256
2257 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2258 {
2259         struct inode *inode = file_inode(filp);
2260         struct mnt_idmap *idmap = file_mnt_idmap(filp);
2261         int ret;
2262
2263         if (!inode_owner_or_capable(idmap, inode))
2264                 return -EACCES;
2265
2266         ret = mnt_want_write_file(filp);
2267         if (ret)
2268                 return ret;
2269
2270         inode_lock(inode);
2271
2272         f2fs_abort_atomic_write(inode, true);
2273
2274         inode_unlock(inode);
2275
2276         mnt_drop_write_file(filp);
2277         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2278         return ret;
2279 }
2280
2281 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2282                                                         bool readonly)
2283 {
2284         struct super_block *sb = sbi->sb;
2285         int ret = 0;
2286
2287         switch (flag) {
2288         case F2FS_GOING_DOWN_FULLSYNC:
2289                 ret = bdev_freeze(sb->s_bdev);
2290                 if (ret)
2291                         goto out;
2292                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2293                 bdev_thaw(sb->s_bdev);
2294                 break;
2295         case F2FS_GOING_DOWN_METASYNC:
2296                 /* do checkpoint only */
2297                 ret = f2fs_sync_fs(sb, 1);
2298                 if (ret) {
2299                         if (ret == -EIO)
2300                                 ret = 0;
2301                         goto out;
2302                 }
2303                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2304                 break;
2305         case F2FS_GOING_DOWN_NOSYNC:
2306                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2307                 break;
2308         case F2FS_GOING_DOWN_METAFLUSH:
2309                 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2310                 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2311                 break;
2312         case F2FS_GOING_DOWN_NEED_FSCK:
2313                 set_sbi_flag(sbi, SBI_NEED_FSCK);
2314                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2315                 set_sbi_flag(sbi, SBI_IS_DIRTY);
2316                 /* do checkpoint only */
2317                 ret = f2fs_sync_fs(sb, 1);
2318                 if (ret == -EIO)
2319                         ret = 0;
2320                 goto out;
2321         default:
2322                 ret = -EINVAL;
2323                 goto out;
2324         }
2325
2326         if (readonly)
2327                 goto out;
2328
2329         f2fs_stop_gc_thread(sbi);
2330         f2fs_stop_discard_thread(sbi);
2331
2332         f2fs_drop_discard_cmd(sbi);
2333         clear_opt(sbi, DISCARD);
2334
2335         f2fs_update_time(sbi, REQ_TIME);
2336 out:
2337
2338         trace_f2fs_shutdown(sbi, flag, ret);
2339
2340         return ret;
2341 }
2342
2343 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2344 {
2345         struct inode *inode = file_inode(filp);
2346         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2347         __u32 in;
2348         int ret;
2349         bool need_drop = false, readonly = false;
2350
2351         if (!capable(CAP_SYS_ADMIN))
2352                 return -EPERM;
2353
2354         if (get_user(in, (__u32 __user *)arg))
2355                 return -EFAULT;
2356
2357         if (in != F2FS_GOING_DOWN_FULLSYNC) {
2358                 ret = mnt_want_write_file(filp);
2359                 if (ret) {
2360                         if (ret != -EROFS)
2361                                 return ret;
2362
2363                         /* fallback to nosync shutdown for readonly fs */
2364                         in = F2FS_GOING_DOWN_NOSYNC;
2365                         readonly = true;
2366                 } else {
2367                         need_drop = true;
2368                 }
2369         }
2370
2371         ret = f2fs_do_shutdown(sbi, in, readonly);
2372
2373         if (need_drop)
2374                 mnt_drop_write_file(filp);
2375
2376         return ret;
2377 }
2378
2379 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2380 {
2381         struct inode *inode = file_inode(filp);
2382         struct super_block *sb = inode->i_sb;
2383         struct fstrim_range range;
2384         int ret;
2385
2386         if (!capable(CAP_SYS_ADMIN))
2387                 return -EPERM;
2388
2389         if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2390                 return -EOPNOTSUPP;
2391
2392         if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2393                                 sizeof(range)))
2394                 return -EFAULT;
2395
2396         ret = mnt_want_write_file(filp);
2397         if (ret)
2398                 return ret;
2399
2400         range.minlen = max((unsigned int)range.minlen,
2401                            bdev_discard_granularity(sb->s_bdev));
2402         ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2403         mnt_drop_write_file(filp);
2404         if (ret < 0)
2405                 return ret;
2406
2407         if (copy_to_user((struct fstrim_range __user *)arg, &range,
2408                                 sizeof(range)))
2409                 return -EFAULT;
2410         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2411         return 0;
2412 }
2413
2414 static bool uuid_is_nonzero(__u8 u[16])
2415 {
2416         int i;
2417
2418         for (i = 0; i < 16; i++)
2419                 if (u[i])
2420                         return true;
2421         return false;
2422 }
2423
2424 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2425 {
2426         struct inode *inode = file_inode(filp);
2427         int ret;
2428
2429         if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2430                 return -EOPNOTSUPP;
2431
2432         ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2433         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2434         return ret;
2435 }
2436
2437 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2438 {
2439         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2440                 return -EOPNOTSUPP;
2441         return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2442 }
2443
2444 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2445 {
2446         struct inode *inode = file_inode(filp);
2447         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2448         u8 encrypt_pw_salt[16];
2449         int err;
2450
2451         if (!f2fs_sb_has_encrypt(sbi))
2452                 return -EOPNOTSUPP;
2453
2454         err = mnt_want_write_file(filp);
2455         if (err)
2456                 return err;
2457
2458         f2fs_down_write(&sbi->sb_lock);
2459
2460         if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2461                 goto got_it;
2462
2463         /* update superblock with uuid */
2464         generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2465
2466         err = f2fs_commit_super(sbi, false);
2467         if (err) {
2468                 /* undo new data */
2469                 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2470                 goto out_err;
2471         }
2472 got_it:
2473         memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2474 out_err:
2475         f2fs_up_write(&sbi->sb_lock);
2476         mnt_drop_write_file(filp);
2477
2478         if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2479                 err = -EFAULT;
2480
2481         return err;
2482 }
2483
2484 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2485                                              unsigned long arg)
2486 {
2487         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2488                 return -EOPNOTSUPP;
2489
2490         return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2491 }
2492
2493 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2494 {
2495         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2496                 return -EOPNOTSUPP;
2497
2498         return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2499 }
2500
2501 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2502 {
2503         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2504                 return -EOPNOTSUPP;
2505
2506         return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2507 }
2508
2509 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2510                                                     unsigned long arg)
2511 {
2512         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2513                 return -EOPNOTSUPP;
2514
2515         return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2516 }
2517
2518 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2519                                               unsigned long arg)
2520 {
2521         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2522                 return -EOPNOTSUPP;
2523
2524         return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2525 }
2526
2527 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2528 {
2529         if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2530                 return -EOPNOTSUPP;
2531
2532         return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2533 }
2534
2535 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2536 {
2537         struct inode *inode = file_inode(filp);
2538         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2539         struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2540                         .no_bg_gc = false,
2541                         .should_migrate_blocks = false,
2542                         .nr_free_secs = 0 };
2543         __u32 sync;
2544         int ret;
2545
2546         if (!capable(CAP_SYS_ADMIN))
2547                 return -EPERM;
2548
2549         if (get_user(sync, (__u32 __user *)arg))
2550                 return -EFAULT;
2551
2552         if (f2fs_readonly(sbi->sb))
2553                 return -EROFS;
2554
2555         ret = mnt_want_write_file(filp);
2556         if (ret)
2557                 return ret;
2558
2559         if (!sync) {
2560                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2561                         ret = -EBUSY;
2562                         goto out;
2563                 }
2564         } else {
2565                 f2fs_down_write(&sbi->gc_lock);
2566         }
2567
2568         gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2569         gc_control.err_gc_skipped = sync;
2570         stat_inc_gc_call_count(sbi, FOREGROUND);
2571         ret = f2fs_gc(sbi, &gc_control);
2572 out:
2573         mnt_drop_write_file(filp);
2574         return ret;
2575 }
2576
2577 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2578 {
2579         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2580         struct f2fs_gc_control gc_control = {
2581                         .init_gc_type = range->sync ? FG_GC : BG_GC,
2582                         .no_bg_gc = false,
2583                         .should_migrate_blocks = false,
2584                         .err_gc_skipped = range->sync,
2585                         .nr_free_secs = 0 };
2586         u64 end;
2587         int ret;
2588
2589         if (!capable(CAP_SYS_ADMIN))
2590                 return -EPERM;
2591         if (f2fs_readonly(sbi->sb))
2592                 return -EROFS;
2593
2594         end = range->start + range->len;
2595         if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2596                                         end >= MAX_BLKADDR(sbi))
2597                 return -EINVAL;
2598
2599         ret = mnt_want_write_file(filp);
2600         if (ret)
2601                 return ret;
2602
2603 do_more:
2604         if (!range->sync) {
2605                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2606                         ret = -EBUSY;
2607                         goto out;
2608                 }
2609         } else {
2610                 f2fs_down_write(&sbi->gc_lock);
2611         }
2612
2613         gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2614         stat_inc_gc_call_count(sbi, FOREGROUND);
2615         ret = f2fs_gc(sbi, &gc_control);
2616         if (ret) {
2617                 if (ret == -EBUSY)
2618                         ret = -EAGAIN;
2619                 goto out;
2620         }
2621         range->start += CAP_BLKS_PER_SEC(sbi);
2622         if (range->start <= end)
2623                 goto do_more;
2624 out:
2625         mnt_drop_write_file(filp);
2626         return ret;
2627 }
2628
2629 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2630 {
2631         struct f2fs_gc_range range;
2632
2633         if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2634                                                         sizeof(range)))
2635                 return -EFAULT;
2636         return __f2fs_ioc_gc_range(filp, &range);
2637 }
2638
2639 static int f2fs_ioc_write_checkpoint(struct file *filp)
2640 {
2641         struct inode *inode = file_inode(filp);
2642         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2643         int ret;
2644
2645         if (!capable(CAP_SYS_ADMIN))
2646                 return -EPERM;
2647
2648         if (f2fs_readonly(sbi->sb))
2649                 return -EROFS;
2650
2651         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2652                 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2653                 return -EINVAL;
2654         }
2655
2656         ret = mnt_want_write_file(filp);
2657         if (ret)
2658                 return ret;
2659
2660         ret = f2fs_sync_fs(sbi->sb, 1);
2661
2662         mnt_drop_write_file(filp);
2663         return ret;
2664 }
2665
2666 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2667                                         struct file *filp,
2668                                         struct f2fs_defragment *range)
2669 {
2670         struct inode *inode = file_inode(filp);
2671         struct f2fs_map_blocks map = { .m_next_extent = NULL,
2672                                         .m_seg_type = NO_CHECK_TYPE,
2673                                         .m_may_create = false };
2674         struct extent_info ei = {};
2675         pgoff_t pg_start, pg_end, next_pgofs;
2676         unsigned int total = 0, sec_num;
2677         block_t blk_end = 0;
2678         bool fragmented = false;
2679         int err;
2680
2681         f2fs_balance_fs(sbi, true);
2682
2683         inode_lock(inode);
2684         pg_start = range->start >> PAGE_SHIFT;
2685         pg_end = min_t(pgoff_t,
2686                                 (range->start + range->len) >> PAGE_SHIFT,
2687                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2688
2689         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2690                 err = -EINVAL;
2691                 goto unlock_out;
2692         }
2693
2694         /* if in-place-update policy is enabled, don't waste time here */
2695         set_inode_flag(inode, FI_OPU_WRITE);
2696         if (f2fs_should_update_inplace(inode, NULL)) {
2697                 err = -EINVAL;
2698                 goto out;
2699         }
2700
2701         /* writeback all dirty pages in the range */
2702         err = filemap_write_and_wait_range(inode->i_mapping,
2703                                                 pg_start << PAGE_SHIFT,
2704                                                 (pg_end << PAGE_SHIFT) - 1);
2705         if (err)
2706                 goto out;
2707
2708         /*
2709          * lookup mapping info in extent cache, skip defragmenting if physical
2710          * block addresses are continuous.
2711          */
2712         if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2713                 if (ei.fofs + ei.len >= pg_end)
2714                         goto out;
2715         }
2716
2717         map.m_lblk = pg_start;
2718         map.m_next_pgofs = &next_pgofs;
2719
2720         /*
2721          * lookup mapping info in dnode page cache, skip defragmenting if all
2722          * physical block addresses are continuous even if there are hole(s)
2723          * in logical blocks.
2724          */
2725         while (map.m_lblk < pg_end) {
2726                 map.m_len = pg_end - map.m_lblk;
2727                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2728                 if (err)
2729                         goto out;
2730
2731                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2732                         map.m_lblk = next_pgofs;
2733                         continue;
2734                 }
2735
2736                 if (blk_end && blk_end != map.m_pblk)
2737                         fragmented = true;
2738
2739                 /* record total count of block that we're going to move */
2740                 total += map.m_len;
2741
2742                 blk_end = map.m_pblk + map.m_len;
2743
2744                 map.m_lblk += map.m_len;
2745         }
2746
2747         if (!fragmented) {
2748                 total = 0;
2749                 goto out;
2750         }
2751
2752         sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2753
2754         /*
2755          * make sure there are enough free section for LFS allocation, this can
2756          * avoid defragment running in SSR mode when free section are allocated
2757          * intensively
2758          */
2759         if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2760                 err = -EAGAIN;
2761                 goto out;
2762         }
2763
2764         map.m_lblk = pg_start;
2765         map.m_len = pg_end - pg_start;
2766         total = 0;
2767
2768         while (map.m_lblk < pg_end) {
2769                 pgoff_t idx;
2770                 int cnt = 0;
2771
2772 do_map:
2773                 map.m_len = pg_end - map.m_lblk;
2774                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2775                 if (err)
2776                         goto clear_out;
2777
2778                 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2779                         map.m_lblk = next_pgofs;
2780                         goto check;
2781                 }
2782
2783                 set_inode_flag(inode, FI_SKIP_WRITES);
2784
2785                 idx = map.m_lblk;
2786                 while (idx < map.m_lblk + map.m_len &&
2787                                                 cnt < BLKS_PER_SEG(sbi)) {
2788                         struct page *page;
2789
2790                         page = f2fs_get_lock_data_page(inode, idx, true);
2791                         if (IS_ERR(page)) {
2792                                 err = PTR_ERR(page);
2793                                 goto clear_out;
2794                         }
2795
2796                         set_page_dirty(page);
2797                         set_page_private_gcing(page);
2798                         f2fs_put_page(page, 1);
2799
2800                         idx++;
2801                         cnt++;
2802                         total++;
2803                 }
2804
2805                 map.m_lblk = idx;
2806 check:
2807                 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2808                         goto do_map;
2809
2810                 clear_inode_flag(inode, FI_SKIP_WRITES);
2811
2812                 err = filemap_fdatawrite(inode->i_mapping);
2813                 if (err)
2814                         goto out;
2815         }
2816 clear_out:
2817         clear_inode_flag(inode, FI_SKIP_WRITES);
2818 out:
2819         clear_inode_flag(inode, FI_OPU_WRITE);
2820 unlock_out:
2821         inode_unlock(inode);
2822         if (!err)
2823                 range->len = (u64)total << PAGE_SHIFT;
2824         return err;
2825 }
2826
2827 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2828 {
2829         struct inode *inode = file_inode(filp);
2830         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2831         struct f2fs_defragment range;
2832         int err;
2833
2834         if (!capable(CAP_SYS_ADMIN))
2835                 return -EPERM;
2836
2837         if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2838                 return -EINVAL;
2839
2840         if (f2fs_readonly(sbi->sb))
2841                 return -EROFS;
2842
2843         if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2844                                                         sizeof(range)))
2845                 return -EFAULT;
2846
2847         /* verify alignment of offset & size */
2848         if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2849                 return -EINVAL;
2850
2851         if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2852                                         max_file_blocks(inode)))
2853                 return -EINVAL;
2854
2855         err = mnt_want_write_file(filp);
2856         if (err)
2857                 return err;
2858
2859         err = f2fs_defragment_range(sbi, filp, &range);
2860         mnt_drop_write_file(filp);
2861
2862         if (range.len)
2863                 f2fs_update_time(sbi, REQ_TIME);
2864         if (err < 0)
2865                 return err;
2866
2867         if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2868                                                         sizeof(range)))
2869                 return -EFAULT;
2870
2871         return 0;
2872 }
2873
2874 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2875                         struct file *file_out, loff_t pos_out, size_t len)
2876 {
2877         struct inode *src = file_inode(file_in);
2878         struct inode *dst = file_inode(file_out);
2879         struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2880         size_t olen = len, dst_max_i_size = 0;
2881         size_t dst_osize;
2882         int ret;
2883
2884         if (file_in->f_path.mnt != file_out->f_path.mnt ||
2885                                 src->i_sb != dst->i_sb)
2886                 return -EXDEV;
2887
2888         if (unlikely(f2fs_readonly(src->i_sb)))
2889                 return -EROFS;
2890
2891         if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2892                 return -EINVAL;
2893
2894         if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2895                 return -EOPNOTSUPP;
2896
2897         if (pos_out < 0 || pos_in < 0)
2898                 return -EINVAL;
2899
2900         if (src == dst) {
2901                 if (pos_in == pos_out)
2902                         return 0;
2903                 if (pos_out > pos_in && pos_out < pos_in + len)
2904                         return -EINVAL;
2905         }
2906
2907         inode_lock(src);
2908         if (src != dst) {
2909                 ret = -EBUSY;
2910                 if (!inode_trylock(dst))
2911                         goto out;
2912         }
2913
2914         if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2915                 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2916                 ret = -EOPNOTSUPP;
2917                 goto out_unlock;
2918         }
2919
2920         ret = -EINVAL;
2921         if (pos_in + len > src->i_size || pos_in + len < pos_in)
2922                 goto out_unlock;
2923         if (len == 0)
2924                 olen = len = src->i_size - pos_in;
2925         if (pos_in + len == src->i_size)
2926                 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2927         if (len == 0) {
2928                 ret = 0;
2929                 goto out_unlock;
2930         }
2931
2932         dst_osize = dst->i_size;
2933         if (pos_out + olen > dst->i_size)
2934                 dst_max_i_size = pos_out + olen;
2935
2936         /* verify the end result is block aligned */
2937         if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2938                         !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2939                         !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2940                 goto out_unlock;
2941
2942         ret = f2fs_convert_inline_inode(src);
2943         if (ret)
2944                 goto out_unlock;
2945
2946         ret = f2fs_convert_inline_inode(dst);
2947         if (ret)
2948                 goto out_unlock;
2949
2950         /* write out all dirty pages from offset */
2951         ret = filemap_write_and_wait_range(src->i_mapping,
2952                                         pos_in, pos_in + len);
2953         if (ret)
2954                 goto out_unlock;
2955
2956         ret = filemap_write_and_wait_range(dst->i_mapping,
2957                                         pos_out, pos_out + len);
2958         if (ret)
2959                 goto out_unlock;
2960
2961         f2fs_balance_fs(sbi, true);
2962
2963         f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2964         if (src != dst) {
2965                 ret = -EBUSY;
2966                 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2967                         goto out_src;
2968         }
2969
2970         f2fs_lock_op(sbi);
2971         ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2972                                 pos_out >> F2FS_BLKSIZE_BITS,
2973                                 len >> F2FS_BLKSIZE_BITS, false);
2974
2975         if (!ret) {
2976                 if (dst_max_i_size)
2977                         f2fs_i_size_write(dst, dst_max_i_size);
2978                 else if (dst_osize != dst->i_size)
2979                         f2fs_i_size_write(dst, dst_osize);
2980         }
2981         f2fs_unlock_op(sbi);
2982
2983         if (src != dst)
2984                 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2985 out_src:
2986         f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2987         if (ret)
2988                 goto out_unlock;
2989
2990         inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
2991         f2fs_mark_inode_dirty_sync(src, false);
2992         if (src != dst) {
2993                 inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
2994                 f2fs_mark_inode_dirty_sync(dst, false);
2995         }
2996         f2fs_update_time(sbi, REQ_TIME);
2997
2998 out_unlock:
2999         if (src != dst)
3000                 inode_unlock(dst);
3001 out:
3002         inode_unlock(src);
3003         return ret;
3004 }
3005
3006 static int __f2fs_ioc_move_range(struct file *filp,
3007                                 struct f2fs_move_range *range)
3008 {
3009         struct fd dst;
3010         int err;
3011
3012         if (!(filp->f_mode & FMODE_READ) ||
3013                         !(filp->f_mode & FMODE_WRITE))
3014                 return -EBADF;
3015
3016         dst = fdget(range->dst_fd);
3017         if (!dst.file)
3018                 return -EBADF;
3019
3020         if (!(dst.file->f_mode & FMODE_WRITE)) {
3021                 err = -EBADF;
3022                 goto err_out;
3023         }
3024
3025         err = mnt_want_write_file(filp);
3026         if (err)
3027                 goto err_out;
3028
3029         err = f2fs_move_file_range(filp, range->pos_in, dst.file,
3030                                         range->pos_out, range->len);
3031
3032         mnt_drop_write_file(filp);
3033 err_out:
3034         fdput(dst);
3035         return err;
3036 }
3037
3038 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3039 {
3040         struct f2fs_move_range range;
3041
3042         if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3043                                                         sizeof(range)))
3044                 return -EFAULT;
3045         return __f2fs_ioc_move_range(filp, &range);
3046 }
3047
3048 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3049 {
3050         struct inode *inode = file_inode(filp);
3051         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3052         struct sit_info *sm = SIT_I(sbi);
3053         unsigned int start_segno = 0, end_segno = 0;
3054         unsigned int dev_start_segno = 0, dev_end_segno = 0;
3055         struct f2fs_flush_device range;
3056         struct f2fs_gc_control gc_control = {
3057                         .init_gc_type = FG_GC,
3058                         .should_migrate_blocks = true,
3059                         .err_gc_skipped = true,
3060                         .nr_free_secs = 0 };
3061         int ret;
3062
3063         if (!capable(CAP_SYS_ADMIN))
3064                 return -EPERM;
3065
3066         if (f2fs_readonly(sbi->sb))
3067                 return -EROFS;
3068
3069         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3070                 return -EINVAL;
3071
3072         if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3073                                                         sizeof(range)))
3074                 return -EFAULT;
3075
3076         if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3077                         __is_large_section(sbi)) {
3078                 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3079                           range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3080                 return -EINVAL;
3081         }
3082
3083         ret = mnt_want_write_file(filp);
3084         if (ret)
3085                 return ret;
3086
3087         if (range.dev_num != 0)
3088                 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3089         dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3090
3091         start_segno = sm->last_victim[FLUSH_DEVICE];
3092         if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3093                 start_segno = dev_start_segno;
3094         end_segno = min(start_segno + range.segments, dev_end_segno);
3095
3096         while (start_segno < end_segno) {
3097                 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3098                         ret = -EBUSY;
3099                         goto out;
3100                 }
3101                 sm->last_victim[GC_CB] = end_segno + 1;
3102                 sm->last_victim[GC_GREEDY] = end_segno + 1;
3103                 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3104
3105                 gc_control.victim_segno = start_segno;
3106                 stat_inc_gc_call_count(sbi, FOREGROUND);
3107                 ret = f2fs_gc(sbi, &gc_control);
3108                 if (ret == -EAGAIN)
3109                         ret = 0;
3110                 else if (ret < 0)
3111                         break;
3112                 start_segno++;
3113         }
3114 out:
3115         mnt_drop_write_file(filp);
3116         return ret;
3117 }
3118
3119 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3120 {
3121         struct inode *inode = file_inode(filp);
3122         u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3123
3124         /* Must validate to set it with SQLite behavior in Android. */
3125         sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3126
3127         return put_user(sb_feature, (u32 __user *)arg);
3128 }
3129
3130 #ifdef CONFIG_QUOTA
3131 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3132 {
3133         struct dquot *transfer_to[MAXQUOTAS] = {};
3134         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3135         struct super_block *sb = sbi->sb;
3136         int err;
3137
3138         transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3139         if (IS_ERR(transfer_to[PRJQUOTA]))
3140                 return PTR_ERR(transfer_to[PRJQUOTA]);
3141
3142         err = __dquot_transfer(inode, transfer_to);
3143         if (err)
3144                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3145         dqput(transfer_to[PRJQUOTA]);
3146         return err;
3147 }
3148
3149 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3150 {
3151         struct f2fs_inode_info *fi = F2FS_I(inode);
3152         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3153         struct f2fs_inode *ri = NULL;
3154         kprojid_t kprojid;
3155         int err;
3156
3157         if (!f2fs_sb_has_project_quota(sbi)) {
3158                 if (projid != F2FS_DEF_PROJID)
3159                         return -EOPNOTSUPP;
3160                 else
3161                         return 0;
3162         }
3163
3164         if (!f2fs_has_extra_attr(inode))
3165                 return -EOPNOTSUPP;
3166
3167         kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3168
3169         if (projid_eq(kprojid, fi->i_projid))
3170                 return 0;
3171
3172         err = -EPERM;
3173         /* Is it quota file? Do not allow user to mess with it */
3174         if (IS_NOQUOTA(inode))
3175                 return err;
3176
3177         if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3178                 return -EOVERFLOW;
3179
3180         err = f2fs_dquot_initialize(inode);
3181         if (err)
3182                 return err;
3183
3184         f2fs_lock_op(sbi);
3185         err = f2fs_transfer_project_quota(inode, kprojid);
3186         if (err)
3187                 goto out_unlock;
3188
3189         fi->i_projid = kprojid;
3190         inode_set_ctime_current(inode);
3191         f2fs_mark_inode_dirty_sync(inode, true);
3192 out_unlock:
3193         f2fs_unlock_op(sbi);
3194         return err;
3195 }
3196 #else
3197 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3198 {
3199         return 0;
3200 }
3201
3202 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3203 {
3204         if (projid != F2FS_DEF_PROJID)
3205                 return -EOPNOTSUPP;
3206         return 0;
3207 }
3208 #endif
3209
3210 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3211 {
3212         struct inode *inode = d_inode(dentry);
3213         struct f2fs_inode_info *fi = F2FS_I(inode);
3214         u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3215
3216         if (IS_ENCRYPTED(inode))
3217                 fsflags |= FS_ENCRYPT_FL;
3218         if (IS_VERITY(inode))
3219                 fsflags |= FS_VERITY_FL;
3220         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3221                 fsflags |= FS_INLINE_DATA_FL;
3222         if (is_inode_flag_set(inode, FI_PIN_FILE))
3223                 fsflags |= FS_NOCOW_FL;
3224
3225         fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3226
3227         if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3228                 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3229
3230         return 0;
3231 }
3232
3233 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3234                       struct dentry *dentry, struct fileattr *fa)
3235 {
3236         struct inode *inode = d_inode(dentry);
3237         u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3238         u32 iflags;
3239         int err;
3240
3241         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3242                 return -EIO;
3243         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3244                 return -ENOSPC;
3245         if (fsflags & ~F2FS_GETTABLE_FS_FL)
3246                 return -EOPNOTSUPP;
3247         fsflags &= F2FS_SETTABLE_FS_FL;
3248         if (!fa->flags_valid)
3249                 mask &= FS_COMMON_FL;
3250
3251         iflags = f2fs_fsflags_to_iflags(fsflags);
3252         if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3253                 return -EOPNOTSUPP;
3254
3255         err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3256         if (!err)
3257                 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3258
3259         return err;
3260 }
3261
3262 int f2fs_pin_file_control(struct inode *inode, bool inc)
3263 {
3264         struct f2fs_inode_info *fi = F2FS_I(inode);
3265         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3266
3267         if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3268                 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3269                           __func__, inode->i_ino, fi->i_gc_failures);
3270                 clear_inode_flag(inode, FI_PIN_FILE);
3271                 return -EAGAIN;
3272         }
3273
3274         /* Use i_gc_failures for normal file as a risk signal. */
3275         if (inc)
3276                 f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3277
3278         return 0;
3279 }
3280
3281 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3282 {
3283         struct inode *inode = file_inode(filp);
3284         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3285         __u32 pin;
3286         int ret = 0;
3287
3288         if (get_user(pin, (__u32 __user *)arg))
3289                 return -EFAULT;
3290
3291         if (!S_ISREG(inode->i_mode))
3292                 return -EINVAL;
3293
3294         if (f2fs_readonly(sbi->sb))
3295                 return -EROFS;
3296
3297         ret = mnt_want_write_file(filp);
3298         if (ret)
3299                 return ret;
3300
3301         inode_lock(inode);
3302
3303         if (!pin) {
3304                 clear_inode_flag(inode, FI_PIN_FILE);
3305                 f2fs_i_gc_failures_write(inode, 0);
3306                 goto done;
3307         } else if (f2fs_is_pinned_file(inode)) {
3308                 goto done;
3309         }
3310
3311         if (F2FS_HAS_BLOCKS(inode)) {
3312                 ret = -EFBIG;
3313                 goto out;
3314         }
3315
3316         /* Let's allow file pinning on zoned device. */
3317         if (!f2fs_sb_has_blkzoned(sbi) &&
3318             f2fs_should_update_outplace(inode, NULL)) {
3319                 ret = -EINVAL;
3320                 goto out;
3321         }
3322
3323         if (f2fs_pin_file_control(inode, false)) {
3324                 ret = -EAGAIN;
3325                 goto out;
3326         }
3327
3328         ret = f2fs_convert_inline_inode(inode);
3329         if (ret)
3330                 goto out;
3331
3332         if (!f2fs_disable_compressed_file(inode)) {
3333                 ret = -EOPNOTSUPP;
3334                 goto out;
3335         }
3336
3337         set_inode_flag(inode, FI_PIN_FILE);
3338         ret = F2FS_I(inode)->i_gc_failures;
3339 done:
3340         f2fs_update_time(sbi, REQ_TIME);
3341 out:
3342         inode_unlock(inode);
3343         mnt_drop_write_file(filp);
3344         return ret;
3345 }
3346
3347 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3348 {
3349         struct inode *inode = file_inode(filp);
3350         __u32 pin = 0;
3351
3352         if (is_inode_flag_set(inode, FI_PIN_FILE))
3353                 pin = F2FS_I(inode)->i_gc_failures;
3354         return put_user(pin, (u32 __user *)arg);
3355 }
3356
3357 int f2fs_precache_extents(struct inode *inode)
3358 {
3359         struct f2fs_inode_info *fi = F2FS_I(inode);
3360         struct f2fs_map_blocks map;
3361         pgoff_t m_next_extent;
3362         loff_t end;
3363         int err;
3364
3365         if (is_inode_flag_set(inode, FI_NO_EXTENT))
3366                 return -EOPNOTSUPP;
3367
3368         map.m_lblk = 0;
3369         map.m_pblk = 0;
3370         map.m_next_pgofs = NULL;
3371         map.m_next_extent = &m_next_extent;
3372         map.m_seg_type = NO_CHECK_TYPE;
3373         map.m_may_create = false;
3374         end = F2FS_BLK_ALIGN(i_size_read(inode));
3375
3376         while (map.m_lblk < end) {
3377                 map.m_len = end - map.m_lblk;
3378
3379                 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3380                 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3381                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3382                 if (err || !map.m_len)
3383                         return err;
3384
3385                 map.m_lblk = m_next_extent;
3386         }
3387
3388         return 0;
3389 }
3390
3391 static int f2fs_ioc_precache_extents(struct file *filp)
3392 {
3393         return f2fs_precache_extents(file_inode(filp));
3394 }
3395
3396 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3397 {
3398         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3399         __u64 block_count;
3400
3401         if (!capable(CAP_SYS_ADMIN))
3402                 return -EPERM;
3403
3404         if (f2fs_readonly(sbi->sb))
3405                 return -EROFS;
3406
3407         if (copy_from_user(&block_count, (void __user *)arg,
3408                            sizeof(block_count)))
3409                 return -EFAULT;
3410
3411         return f2fs_resize_fs(filp, block_count);
3412 }
3413
3414 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3415 {
3416         struct inode *inode = file_inode(filp);
3417
3418         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3419
3420         if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3421                 f2fs_warn(F2FS_I_SB(inode),
3422                           "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3423                           inode->i_ino);
3424                 return -EOPNOTSUPP;
3425         }
3426
3427         return fsverity_ioctl_enable(filp, (const void __user *)arg);
3428 }
3429
3430 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3431 {
3432         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3433                 return -EOPNOTSUPP;
3434
3435         return fsverity_ioctl_measure(filp, (void __user *)arg);
3436 }
3437
3438 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3439 {
3440         if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3441                 return -EOPNOTSUPP;
3442
3443         return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3444 }
3445
3446 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3447 {
3448         struct inode *inode = file_inode(filp);
3449         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3450         char *vbuf;
3451         int count;
3452         int err = 0;
3453
3454         vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3455         if (!vbuf)
3456                 return -ENOMEM;
3457
3458         f2fs_down_read(&sbi->sb_lock);
3459         count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3460                         ARRAY_SIZE(sbi->raw_super->volume_name),
3461                         UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3462         f2fs_up_read(&sbi->sb_lock);
3463
3464         if (copy_to_user((char __user *)arg, vbuf,
3465                                 min(FSLABEL_MAX, count)))
3466                 err = -EFAULT;
3467
3468         kfree(vbuf);
3469         return err;
3470 }
3471
3472 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3473 {
3474         struct inode *inode = file_inode(filp);
3475         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3476         char *vbuf;
3477         int err = 0;
3478
3479         if (!capable(CAP_SYS_ADMIN))
3480                 return -EPERM;
3481
3482         vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3483         if (IS_ERR(vbuf))
3484                 return PTR_ERR(vbuf);
3485
3486         err = mnt_want_write_file(filp);
3487         if (err)
3488                 goto out;
3489
3490         f2fs_down_write(&sbi->sb_lock);
3491
3492         memset(sbi->raw_super->volume_name, 0,
3493                         sizeof(sbi->raw_super->volume_name));
3494         utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3495                         sbi->raw_super->volume_name,
3496                         ARRAY_SIZE(sbi->raw_super->volume_name));
3497
3498         err = f2fs_commit_super(sbi, false);
3499
3500         f2fs_up_write(&sbi->sb_lock);
3501
3502         mnt_drop_write_file(filp);
3503 out:
3504         kfree(vbuf);
3505         return err;
3506 }
3507
3508 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3509 {
3510         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3511                 return -EOPNOTSUPP;
3512
3513         if (!f2fs_compressed_file(inode))
3514                 return -EINVAL;
3515
3516         *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3517
3518         return 0;
3519 }
3520
3521 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3522 {
3523         struct inode *inode = file_inode(filp);
3524         __u64 blocks;
3525         int ret;
3526
3527         ret = f2fs_get_compress_blocks(inode, &blocks);
3528         if (ret < 0)
3529                 return ret;
3530
3531         return put_user(blocks, (u64 __user *)arg);
3532 }
3533
3534 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3535 {
3536         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3537         unsigned int released_blocks = 0;
3538         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3539         block_t blkaddr;
3540         int i;
3541
3542         for (i = 0; i < count; i++) {
3543                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3544                                                 dn->ofs_in_node + i);
3545
3546                 if (!__is_valid_data_blkaddr(blkaddr))
3547                         continue;
3548                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3549                                         DATA_GENERIC_ENHANCE)))
3550                         return -EFSCORRUPTED;
3551         }
3552
3553         while (count) {
3554                 int compr_blocks = 0;
3555
3556                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3557                         blkaddr = f2fs_data_blkaddr(dn);
3558
3559                         if (i == 0) {
3560                                 if (blkaddr == COMPRESS_ADDR)
3561                                         continue;
3562                                 dn->ofs_in_node += cluster_size;
3563                                 goto next;
3564                         }
3565
3566                         if (__is_valid_data_blkaddr(blkaddr))
3567                                 compr_blocks++;
3568
3569                         if (blkaddr != NEW_ADDR)
3570                                 continue;
3571
3572                         f2fs_set_data_blkaddr(dn, NULL_ADDR);
3573                 }
3574
3575                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3576                 dec_valid_block_count(sbi, dn->inode,
3577                                         cluster_size - compr_blocks);
3578
3579                 released_blocks += cluster_size - compr_blocks;
3580 next:
3581                 count -= cluster_size;
3582         }
3583
3584         return released_blocks;
3585 }
3586
3587 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3588 {
3589         struct inode *inode = file_inode(filp);
3590         struct f2fs_inode_info *fi = F2FS_I(inode);
3591         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3592         pgoff_t page_idx = 0, last_idx;
3593         unsigned int released_blocks = 0;
3594         int ret;
3595         int writecount;
3596
3597         if (!f2fs_sb_has_compression(sbi))
3598                 return -EOPNOTSUPP;
3599
3600         if (f2fs_readonly(sbi->sb))
3601                 return -EROFS;
3602
3603         ret = mnt_want_write_file(filp);
3604         if (ret)
3605                 return ret;
3606
3607         f2fs_balance_fs(sbi, true);
3608
3609         inode_lock(inode);
3610
3611         writecount = atomic_read(&inode->i_writecount);
3612         if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3613                         (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3614                 ret = -EBUSY;
3615                 goto out;
3616         }
3617
3618         if (!f2fs_compressed_file(inode) ||
3619                 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3620                 ret = -EINVAL;
3621                 goto out;
3622         }
3623
3624         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3625         if (ret)
3626                 goto out;
3627
3628         if (!atomic_read(&fi->i_compr_blocks)) {
3629                 ret = -EPERM;
3630                 goto out;
3631         }
3632
3633         set_inode_flag(inode, FI_COMPRESS_RELEASED);
3634         inode_set_ctime_current(inode);
3635         f2fs_mark_inode_dirty_sync(inode, true);
3636
3637         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3638         filemap_invalidate_lock(inode->i_mapping);
3639
3640         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3641
3642         while (page_idx < last_idx) {
3643                 struct dnode_of_data dn;
3644                 pgoff_t end_offset, count;
3645
3646                 f2fs_lock_op(sbi);
3647
3648                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3649                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3650                 if (ret) {
3651                         f2fs_unlock_op(sbi);
3652                         if (ret == -ENOENT) {
3653                                 page_idx = f2fs_get_next_page_offset(&dn,
3654                                                                 page_idx);
3655                                 ret = 0;
3656                                 continue;
3657                         }
3658                         break;
3659                 }
3660
3661                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3662                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3663                 count = round_up(count, fi->i_cluster_size);
3664
3665                 ret = release_compress_blocks(&dn, count);
3666
3667                 f2fs_put_dnode(&dn);
3668
3669                 f2fs_unlock_op(sbi);
3670
3671                 if (ret < 0)
3672                         break;
3673
3674                 page_idx += count;
3675                 released_blocks += ret;
3676         }
3677
3678         filemap_invalidate_unlock(inode->i_mapping);
3679         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3680 out:
3681         if (released_blocks)
3682                 f2fs_update_time(sbi, REQ_TIME);
3683         inode_unlock(inode);
3684
3685         mnt_drop_write_file(filp);
3686
3687         if (ret >= 0) {
3688                 ret = put_user(released_blocks, (u64 __user *)arg);
3689         } else if (released_blocks &&
3690                         atomic_read(&fi->i_compr_blocks)) {
3691                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3692                 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3693                         "iblocks=%llu, released=%u, compr_blocks=%u, "
3694                         "run fsck to fix.",
3695                         __func__, inode->i_ino, inode->i_blocks,
3696                         released_blocks,
3697                         atomic_read(&fi->i_compr_blocks));
3698         }
3699
3700         return ret;
3701 }
3702
3703 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3704                 unsigned int *reserved_blocks)
3705 {
3706         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3707         int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3708         block_t blkaddr;
3709         int i;
3710
3711         for (i = 0; i < count; i++) {
3712                 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3713                                                 dn->ofs_in_node + i);
3714
3715                 if (!__is_valid_data_blkaddr(blkaddr))
3716                         continue;
3717                 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3718                                         DATA_GENERIC_ENHANCE)))
3719                         return -EFSCORRUPTED;
3720         }
3721
3722         while (count) {
3723                 int compr_blocks = 0;
3724                 blkcnt_t reserved = 0;
3725                 blkcnt_t to_reserved;
3726                 int ret;
3727
3728                 for (i = 0; i < cluster_size; i++) {
3729                         blkaddr = data_blkaddr(dn->inode, dn->node_page,
3730                                                 dn->ofs_in_node + i);
3731
3732                         if (i == 0) {
3733                                 if (blkaddr != COMPRESS_ADDR) {
3734                                         dn->ofs_in_node += cluster_size;
3735                                         goto next;
3736                                 }
3737                                 continue;
3738                         }
3739
3740                         /*
3741                          * compressed cluster was not released due to it
3742                          * fails in release_compress_blocks(), so NEW_ADDR
3743                          * is a possible case.
3744                          */
3745                         if (blkaddr == NEW_ADDR) {
3746                                 reserved++;
3747                                 continue;
3748                         }
3749                         if (__is_valid_data_blkaddr(blkaddr)) {
3750                                 compr_blocks++;
3751                                 continue;
3752                         }
3753                 }
3754
3755                 to_reserved = cluster_size - compr_blocks - reserved;
3756
3757                 /* for the case all blocks in cluster were reserved */
3758                 if (to_reserved == 1) {
3759                         dn->ofs_in_node += cluster_size;
3760                         goto next;
3761                 }
3762
3763                 ret = inc_valid_block_count(sbi, dn->inode,
3764                                                 &to_reserved, false);
3765                 if (unlikely(ret))
3766                         return ret;
3767
3768                 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3769                         if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3770                                 f2fs_set_data_blkaddr(dn, NEW_ADDR);
3771                 }
3772
3773                 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3774
3775                 *reserved_blocks += to_reserved;
3776 next:
3777                 count -= cluster_size;
3778         }
3779
3780         return 0;
3781 }
3782
3783 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3784 {
3785         struct inode *inode = file_inode(filp);
3786         struct f2fs_inode_info *fi = F2FS_I(inode);
3787         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3788         pgoff_t page_idx = 0, last_idx;
3789         unsigned int reserved_blocks = 0;
3790         int ret;
3791
3792         if (!f2fs_sb_has_compression(sbi))
3793                 return -EOPNOTSUPP;
3794
3795         if (f2fs_readonly(sbi->sb))
3796                 return -EROFS;
3797
3798         ret = mnt_want_write_file(filp);
3799         if (ret)
3800                 return ret;
3801
3802         f2fs_balance_fs(sbi, true);
3803
3804         inode_lock(inode);
3805
3806         if (!f2fs_compressed_file(inode) ||
3807                 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3808                 ret = -EINVAL;
3809                 goto unlock_inode;
3810         }
3811
3812         if (atomic_read(&fi->i_compr_blocks))
3813                 goto unlock_inode;
3814
3815         f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3816         filemap_invalidate_lock(inode->i_mapping);
3817
3818         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3819
3820         while (page_idx < last_idx) {
3821                 struct dnode_of_data dn;
3822                 pgoff_t end_offset, count;
3823
3824                 f2fs_lock_op(sbi);
3825
3826                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3827                 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3828                 if (ret) {
3829                         f2fs_unlock_op(sbi);
3830                         if (ret == -ENOENT) {
3831                                 page_idx = f2fs_get_next_page_offset(&dn,
3832                                                                 page_idx);
3833                                 ret = 0;
3834                                 continue;
3835                         }
3836                         break;
3837                 }
3838
3839                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3840                 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3841                 count = round_up(count, fi->i_cluster_size);
3842
3843                 ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3844
3845                 f2fs_put_dnode(&dn);
3846
3847                 f2fs_unlock_op(sbi);
3848
3849                 if (ret < 0)
3850                         break;
3851
3852                 page_idx += count;
3853         }
3854
3855         filemap_invalidate_unlock(inode->i_mapping);
3856         f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3857
3858         if (!ret) {
3859                 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3860                 inode_set_ctime_current(inode);
3861                 f2fs_mark_inode_dirty_sync(inode, true);
3862         }
3863 unlock_inode:
3864         if (reserved_blocks)
3865                 f2fs_update_time(sbi, REQ_TIME);
3866         inode_unlock(inode);
3867         mnt_drop_write_file(filp);
3868
3869         if (!ret) {
3870                 ret = put_user(reserved_blocks, (u64 __user *)arg);
3871         } else if (reserved_blocks &&
3872                         atomic_read(&fi->i_compr_blocks)) {
3873                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3874                 f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
3875                         "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3876                         "run fsck to fix.",
3877                         __func__, inode->i_ino, inode->i_blocks,
3878                         reserved_blocks,
3879                         atomic_read(&fi->i_compr_blocks));
3880         }
3881
3882         return ret;
3883 }
3884
3885 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3886                 pgoff_t off, block_t block, block_t len, u32 flags)
3887 {
3888         sector_t sector = SECTOR_FROM_BLOCK(block);
3889         sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3890         int ret = 0;
3891
3892         if (flags & F2FS_TRIM_FILE_DISCARD) {
3893                 if (bdev_max_secure_erase_sectors(bdev))
3894                         ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3895                                         GFP_NOFS);
3896                 else
3897                         ret = blkdev_issue_discard(bdev, sector, nr_sects,
3898                                         GFP_NOFS);
3899         }
3900
3901         if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3902                 if (IS_ENCRYPTED(inode))
3903                         ret = fscrypt_zeroout_range(inode, off, block, len);
3904                 else
3905                         ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3906                                         GFP_NOFS, 0);
3907         }
3908
3909         return ret;
3910 }
3911
3912 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3913 {
3914         struct inode *inode = file_inode(filp);
3915         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3916         struct address_space *mapping = inode->i_mapping;
3917         struct block_device *prev_bdev = NULL;
3918         struct f2fs_sectrim_range range;
3919         pgoff_t index, pg_end, prev_index = 0;
3920         block_t prev_block = 0, len = 0;
3921         loff_t end_addr;
3922         bool to_end = false;
3923         int ret = 0;
3924
3925         if (!(filp->f_mode & FMODE_WRITE))
3926                 return -EBADF;
3927
3928         if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3929                                 sizeof(range)))
3930                 return -EFAULT;
3931
3932         if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3933                         !S_ISREG(inode->i_mode))
3934                 return -EINVAL;
3935
3936         if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3937                         !f2fs_hw_support_discard(sbi)) ||
3938                         ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3939                          IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3940                 return -EOPNOTSUPP;
3941
3942         ret = mnt_want_write_file(filp);
3943         if (ret)
3944                 return ret;
3945         inode_lock(inode);
3946
3947         if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3948                         range.start >= inode->i_size) {
3949                 ret = -EINVAL;
3950                 goto err;
3951         }
3952
3953         if (range.len == 0)
3954                 goto err;
3955
3956         if (inode->i_size - range.start > range.len) {
3957                 end_addr = range.start + range.len;
3958         } else {
3959                 end_addr = range.len == (u64)-1 ?
3960                         sbi->sb->s_maxbytes : inode->i_size;
3961                 to_end = true;
3962         }
3963
3964         if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3965                         (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3966                 ret = -EINVAL;
3967                 goto err;
3968         }
3969
3970         index = F2FS_BYTES_TO_BLK(range.start);
3971         pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3972
3973         ret = f2fs_convert_inline_inode(inode);
3974         if (ret)
3975                 goto err;
3976
3977         f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3978         filemap_invalidate_lock(mapping);
3979
3980         ret = filemap_write_and_wait_range(mapping, range.start,
3981                         to_end ? LLONG_MAX : end_addr - 1);
3982         if (ret)
3983                 goto out;
3984
3985         truncate_inode_pages_range(mapping, range.start,
3986                         to_end ? -1 : end_addr - 1);
3987
3988         while (index < pg_end) {
3989                 struct dnode_of_data dn;
3990                 pgoff_t end_offset, count;
3991                 int i;
3992
3993                 set_new_dnode(&dn, inode, NULL, NULL, 0);
3994                 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3995                 if (ret) {
3996                         if (ret == -ENOENT) {
3997                                 index = f2fs_get_next_page_offset(&dn, index);
3998                                 continue;
3999                         }
4000                         goto out;
4001                 }
4002
4003                 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
4004                 count = min(end_offset - dn.ofs_in_node, pg_end - index);
4005                 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4006                         struct block_device *cur_bdev;
4007                         block_t blkaddr = f2fs_data_blkaddr(&dn);
4008
4009                         if (!__is_valid_data_blkaddr(blkaddr))
4010                                 continue;
4011
4012                         if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4013                                                 DATA_GENERIC_ENHANCE)) {
4014                                 ret = -EFSCORRUPTED;
4015                                 f2fs_put_dnode(&dn);
4016                                 goto out;
4017                         }
4018
4019                         cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4020                         if (f2fs_is_multi_device(sbi)) {
4021                                 int di = f2fs_target_device_index(sbi, blkaddr);
4022
4023                                 blkaddr -= FDEV(di).start_blk;
4024                         }
4025
4026                         if (len) {
4027                                 if (prev_bdev == cur_bdev &&
4028                                                 index == prev_index + len &&
4029                                                 blkaddr == prev_block + len) {
4030                                         len++;
4031                                 } else {
4032                                         ret = f2fs_secure_erase(prev_bdev,
4033                                                 inode, prev_index, prev_block,
4034                                                 len, range.flags);
4035                                         if (ret) {
4036                                                 f2fs_put_dnode(&dn);
4037                                                 goto out;
4038                                         }
4039
4040                                         len = 0;
4041                                 }
4042                         }
4043
4044                         if (!len) {
4045                                 prev_bdev = cur_bdev;
4046                                 prev_index = index;
4047                                 prev_block = blkaddr;
4048                                 len = 1;
4049                         }
4050                 }
4051
4052                 f2fs_put_dnode(&dn);
4053
4054                 if (fatal_signal_pending(current)) {
4055                         ret = -EINTR;
4056                         goto out;
4057                 }
4058                 cond_resched();
4059         }
4060
4061         if (len)
4062                 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4063                                 prev_block, len, range.flags);
4064         f2fs_update_time(sbi, REQ_TIME);
4065 out:
4066         filemap_invalidate_unlock(mapping);
4067         f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4068 err:
4069         inode_unlock(inode);
4070         mnt_drop_write_file(filp);
4071
4072         return ret;
4073 }
4074
4075 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4076 {
4077         struct inode *inode = file_inode(filp);
4078         struct f2fs_comp_option option;
4079
4080         if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4081                 return -EOPNOTSUPP;
4082
4083         inode_lock_shared(inode);
4084
4085         if (!f2fs_compressed_file(inode)) {
4086                 inode_unlock_shared(inode);
4087                 return -ENODATA;
4088         }
4089
4090         option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4091         option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4092
4093         inode_unlock_shared(inode);
4094
4095         if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4096                                 sizeof(option)))
4097                 return -EFAULT;
4098
4099         return 0;
4100 }
4101
4102 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4103 {
4104         struct inode *inode = file_inode(filp);
4105         struct f2fs_inode_info *fi = F2FS_I(inode);
4106         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4107         struct f2fs_comp_option option;
4108         int ret = 0;
4109
4110         if (!f2fs_sb_has_compression(sbi))
4111                 return -EOPNOTSUPP;
4112
4113         if (!(filp->f_mode & FMODE_WRITE))
4114                 return -EBADF;
4115
4116         if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4117                                 sizeof(option)))
4118                 return -EFAULT;
4119
4120         if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4121                 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4122                 option.algorithm >= COMPRESS_MAX)
4123                 return -EINVAL;
4124
4125         ret = mnt_want_write_file(filp);
4126         if (ret)
4127                 return ret;
4128         inode_lock(inode);
4129
4130         f2fs_down_write(&F2FS_I(inode)->i_sem);
4131         if (!f2fs_compressed_file(inode)) {
4132                 ret = -EINVAL;
4133                 goto out;
4134         }
4135
4136         if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4137                 ret = -EBUSY;
4138                 goto out;
4139         }
4140
4141         if (F2FS_HAS_BLOCKS(inode)) {
4142                 ret = -EFBIG;
4143                 goto out;
4144         }
4145
4146         fi->i_compress_algorithm = option.algorithm;
4147         fi->i_log_cluster_size = option.log_cluster_size;
4148         fi->i_cluster_size = BIT(option.log_cluster_size);
4149         /* Set default level */
4150         if (fi->i_compress_algorithm == COMPRESS_ZSTD)
4151                 fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4152         else
4153                 fi->i_compress_level = 0;
4154         /* Adjust mount option level */
4155         if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4156             F2FS_OPTION(sbi).compress_level)
4157                 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4158         f2fs_mark_inode_dirty_sync(inode, true);
4159
4160         if (!f2fs_is_compress_backend_ready(inode))
4161                 f2fs_warn(sbi, "compression algorithm is successfully set, "
4162                         "but current kernel doesn't support this algorithm.");
4163 out:
4164         f2fs_up_write(&fi->i_sem);
4165         inode_unlock(inode);
4166         mnt_drop_write_file(filp);
4167
4168         return ret;
4169 }
4170
4171 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4172 {
4173         DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4174         struct address_space *mapping = inode->i_mapping;
4175         struct page *page;
4176         pgoff_t redirty_idx = page_idx;
4177         int i, page_len = 0, ret = 0;
4178
4179         page_cache_ra_unbounded(&ractl, len, 0);
4180
4181         for (i = 0; i < len; i++, page_idx++) {
4182                 page = read_cache_page(mapping, page_idx, NULL, NULL);
4183                 if (IS_ERR(page)) {
4184                         ret = PTR_ERR(page);
4185                         break;
4186                 }
4187                 page_len++;
4188         }
4189
4190         for (i = 0; i < page_len; i++, redirty_idx++) {
4191                 page = find_lock_page(mapping, redirty_idx);
4192
4193                 /* It will never fail, when page has pinned above */
4194                 f2fs_bug_on(F2FS_I_SB(inode), !page);
4195
4196                 set_page_dirty(page);
4197                 set_page_private_gcing(page);
4198                 f2fs_put_page(page, 1);
4199                 f2fs_put_page(page, 0);
4200         }
4201
4202         return ret;
4203 }
4204
4205 static int f2fs_ioc_decompress_file(struct file *filp)
4206 {
4207         struct inode *inode = file_inode(filp);
4208         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4209         struct f2fs_inode_info *fi = F2FS_I(inode);
4210         pgoff_t page_idx = 0, last_idx;
4211         int cluster_size = fi->i_cluster_size;
4212         int count, ret;
4213
4214         if (!f2fs_sb_has_compression(sbi) ||
4215                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4216                 return -EOPNOTSUPP;
4217
4218         if (!(filp->f_mode & FMODE_WRITE))
4219                 return -EBADF;
4220
4221         f2fs_balance_fs(sbi, true);
4222
4223         ret = mnt_want_write_file(filp);
4224         if (ret)
4225                 return ret;
4226         inode_lock(inode);
4227
4228         if (!f2fs_is_compress_backend_ready(inode)) {
4229                 ret = -EOPNOTSUPP;
4230                 goto out;
4231         }
4232
4233         if (!f2fs_compressed_file(inode) ||
4234                 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4235                 ret = -EINVAL;
4236                 goto out;
4237         }
4238
4239         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4240         if (ret)
4241                 goto out;
4242
4243         if (!atomic_read(&fi->i_compr_blocks))
4244                 goto out;
4245
4246         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4247
4248         count = last_idx - page_idx;
4249         while (count && count >= cluster_size) {
4250                 ret = redirty_blocks(inode, page_idx, cluster_size);
4251                 if (ret < 0)
4252                         break;
4253
4254                 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4255                         ret = filemap_fdatawrite(inode->i_mapping);
4256                         if (ret < 0)
4257                                 break;
4258                 }
4259
4260                 count -= cluster_size;
4261                 page_idx += cluster_size;
4262
4263                 cond_resched();
4264                 if (fatal_signal_pending(current)) {
4265                         ret = -EINTR;
4266                         break;
4267                 }
4268         }
4269
4270         if (!ret)
4271                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4272                                                         LLONG_MAX);
4273
4274         if (ret)
4275                 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4276                           __func__, ret);
4277         f2fs_update_time(sbi, REQ_TIME);
4278 out:
4279         inode_unlock(inode);
4280         mnt_drop_write_file(filp);
4281
4282         return ret;
4283 }
4284
4285 static int f2fs_ioc_compress_file(struct file *filp)
4286 {
4287         struct inode *inode = file_inode(filp);
4288         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4289         pgoff_t page_idx = 0, last_idx;
4290         int cluster_size = F2FS_I(inode)->i_cluster_size;
4291         int count, ret;
4292
4293         if (!f2fs_sb_has_compression(sbi) ||
4294                         F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4295                 return -EOPNOTSUPP;
4296
4297         if (!(filp->f_mode & FMODE_WRITE))
4298                 return -EBADF;
4299
4300         f2fs_balance_fs(sbi, true);
4301
4302         ret = mnt_want_write_file(filp);
4303         if (ret)
4304                 return ret;
4305         inode_lock(inode);
4306
4307         if (!f2fs_is_compress_backend_ready(inode)) {
4308                 ret = -EOPNOTSUPP;
4309                 goto out;
4310         }
4311
4312         if (!f2fs_compressed_file(inode) ||
4313                 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4314                 ret = -EINVAL;
4315                 goto out;
4316         }
4317
4318         ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4319         if (ret)
4320                 goto out;
4321
4322         set_inode_flag(inode, FI_ENABLE_COMPRESS);
4323
4324         last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4325
4326         count = last_idx - page_idx;
4327         while (count && count >= cluster_size) {
4328                 ret = redirty_blocks(inode, page_idx, cluster_size);
4329                 if (ret < 0)
4330                         break;
4331
4332                 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4333                         ret = filemap_fdatawrite(inode->i_mapping);
4334                         if (ret < 0)
4335                                 break;
4336                 }
4337
4338                 count -= cluster_size;
4339                 page_idx += cluster_size;
4340
4341                 cond_resched();
4342                 if (fatal_signal_pending(current)) {
4343                         ret = -EINTR;
4344                         break;
4345                 }
4346         }
4347
4348         if (!ret)
4349                 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4350                                                         LLONG_MAX);
4351
4352         clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4353
4354         if (ret)
4355                 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4356                           __func__, ret);
4357         f2fs_update_time(sbi, REQ_TIME);
4358 out:
4359         inode_unlock(inode);
4360         mnt_drop_write_file(filp);
4361
4362         return ret;
4363 }
4364
4365 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4366 {
4367         switch (cmd) {
4368         case FS_IOC_GETVERSION:
4369                 return f2fs_ioc_getversion(filp, arg);
4370         case F2FS_IOC_START_ATOMIC_WRITE:
4371                 return f2fs_ioc_start_atomic_write(filp, false);
4372         case F2FS_IOC_START_ATOMIC_REPLACE:
4373                 return f2fs_ioc_start_atomic_write(filp, true);
4374         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4375                 return f2fs_ioc_commit_atomic_write(filp);
4376         case F2FS_IOC_ABORT_ATOMIC_WRITE:
4377                 return f2fs_ioc_abort_atomic_write(filp);
4378         case F2FS_IOC_START_VOLATILE_WRITE:
4379         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4380                 return -EOPNOTSUPP;
4381         case F2FS_IOC_SHUTDOWN:
4382                 return f2fs_ioc_shutdown(filp, arg);
4383         case FITRIM:
4384                 return f2fs_ioc_fitrim(filp, arg);
4385         case FS_IOC_SET_ENCRYPTION_POLICY:
4386                 return f2fs_ioc_set_encryption_policy(filp, arg);
4387         case FS_IOC_GET_ENCRYPTION_POLICY:
4388                 return f2fs_ioc_get_encryption_policy(filp, arg);
4389         case FS_IOC_GET_ENCRYPTION_PWSALT:
4390                 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4391         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4392                 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4393         case FS_IOC_ADD_ENCRYPTION_KEY:
4394                 return f2fs_ioc_add_encryption_key(filp, arg);
4395         case FS_IOC_REMOVE_ENCRYPTION_KEY:
4396                 return f2fs_ioc_remove_encryption_key(filp, arg);
4397         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4398                 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4399         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4400                 return f2fs_ioc_get_encryption_key_status(filp, arg);
4401         case FS_IOC_GET_ENCRYPTION_NONCE:
4402                 return f2fs_ioc_get_encryption_nonce(filp, arg);
4403         case F2FS_IOC_GARBAGE_COLLECT:
4404                 return f2fs_ioc_gc(filp, arg);
4405         case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4406                 return f2fs_ioc_gc_range(filp, arg);
4407         case F2FS_IOC_WRITE_CHECKPOINT:
4408                 return f2fs_ioc_write_checkpoint(filp);
4409         case F2FS_IOC_DEFRAGMENT:
4410                 return f2fs_ioc_defragment(filp, arg);
4411         case F2FS_IOC_MOVE_RANGE:
4412                 return f2fs_ioc_move_range(filp, arg);
4413         case F2FS_IOC_FLUSH_DEVICE:
4414                 return f2fs_ioc_flush_device(filp, arg);
4415         case F2FS_IOC_GET_FEATURES:
4416                 return f2fs_ioc_get_features(filp, arg);
4417         case F2FS_IOC_GET_PIN_FILE:
4418                 return f2fs_ioc_get_pin_file(filp, arg);
4419         case F2FS_IOC_SET_PIN_FILE:
4420                 return f2fs_ioc_set_pin_file(filp, arg);
4421         case F2FS_IOC_PRECACHE_EXTENTS:
4422                 return f2fs_ioc_precache_extents(filp);
4423         case F2FS_IOC_RESIZE_FS:
4424                 return f2fs_ioc_resize_fs(filp, arg);
4425         case FS_IOC_ENABLE_VERITY:
4426                 return f2fs_ioc_enable_verity(filp, arg);
4427         case FS_IOC_MEASURE_VERITY:
4428                 return f2fs_ioc_measure_verity(filp, arg);
4429         case FS_IOC_READ_VERITY_METADATA:
4430                 return f2fs_ioc_read_verity_metadata(filp, arg);
4431         case FS_IOC_GETFSLABEL:
4432                 return f2fs_ioc_getfslabel(filp, arg);
4433         case FS_IOC_SETFSLABEL:
4434                 return f2fs_ioc_setfslabel(filp, arg);
4435         case F2FS_IOC_GET_COMPRESS_BLOCKS:
4436                 return f2fs_ioc_get_compress_blocks(filp, arg);
4437         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4438                 return f2fs_release_compress_blocks(filp, arg);
4439         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4440                 return f2fs_reserve_compress_blocks(filp, arg);
4441         case F2FS_IOC_SEC_TRIM_FILE:
4442                 return f2fs_sec_trim_file(filp, arg);
4443         case F2FS_IOC_GET_COMPRESS_OPTION:
4444                 return f2fs_ioc_get_compress_option(filp, arg);
4445         case F2FS_IOC_SET_COMPRESS_OPTION:
4446                 return f2fs_ioc_set_compress_option(filp, arg);
4447         case F2FS_IOC_DECOMPRESS_FILE:
4448                 return f2fs_ioc_decompress_file(filp);
4449         case F2FS_IOC_COMPRESS_FILE:
4450                 return f2fs_ioc_compress_file(filp);
4451         default:
4452                 return -ENOTTY;
4453         }
4454 }
4455
4456 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4457 {
4458         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4459                 return -EIO;
4460         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4461                 return -ENOSPC;
4462
4463         return __f2fs_ioctl(filp, cmd, arg);
4464 }
4465
4466 /*
4467  * Return %true if the given read or write request should use direct I/O, or
4468  * %false if it should use buffered I/O.
4469  */
4470 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4471                                 struct iov_iter *iter)
4472 {
4473         unsigned int align;
4474
4475         if (!(iocb->ki_flags & IOCB_DIRECT))
4476                 return false;
4477
4478         if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4479                 return false;
4480
4481         /*
4482          * Direct I/O not aligned to the disk's logical_block_size will be
4483          * attempted, but will fail with -EINVAL.
4484          *
4485          * f2fs additionally requires that direct I/O be aligned to the
4486          * filesystem block size, which is often a stricter requirement.
4487          * However, f2fs traditionally falls back to buffered I/O on requests
4488          * that are logical_block_size-aligned but not fs-block aligned.
4489          *
4490          * The below logic implements this behavior.
4491          */
4492         align = iocb->ki_pos | iov_iter_alignment(iter);
4493         if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4494             IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4495                 return false;
4496
4497         return true;
4498 }
4499
4500 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4501                                 unsigned int flags)
4502 {
4503         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4504
4505         dec_page_count(sbi, F2FS_DIO_READ);
4506         if (error)
4507                 return error;
4508         f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4509         return 0;
4510 }
4511
4512 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4513         .end_io = f2fs_dio_read_end_io,
4514 };
4515
4516 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4517 {
4518         struct file *file = iocb->ki_filp;
4519         struct inode *inode = file_inode(file);
4520         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4521         struct f2fs_inode_info *fi = F2FS_I(inode);
4522         const loff_t pos = iocb->ki_pos;
4523         const size_t count = iov_iter_count(to);
4524         struct iomap_dio *dio;
4525         ssize_t ret;
4526
4527         if (count == 0)
4528                 return 0; /* skip atime update */
4529
4530         trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4531
4532         if (iocb->ki_flags & IOCB_NOWAIT) {
4533                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4534                         ret = -EAGAIN;
4535                         goto out;
4536                 }
4537         } else {
4538                 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4539         }
4540
4541         /*
4542          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4543          * the higher-level function iomap_dio_rw() in order to ensure that the
4544          * F2FS_DIO_READ counter will be decremented correctly in all cases.
4545          */
4546         inc_page_count(sbi, F2FS_DIO_READ);
4547         dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4548                              &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4549         if (IS_ERR_OR_NULL(dio)) {
4550                 ret = PTR_ERR_OR_ZERO(dio);
4551                 if (ret != -EIOCBQUEUED)
4552                         dec_page_count(sbi, F2FS_DIO_READ);
4553         } else {
4554                 ret = iomap_dio_complete(dio);
4555         }
4556
4557         f2fs_up_read(&fi->i_gc_rwsem[READ]);
4558
4559         file_accessed(file);
4560 out:
4561         trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4562         return ret;
4563 }
4564
4565 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4566                                     int rw)
4567 {
4568         struct inode *inode = file_inode(file);
4569         char *buf, *path;
4570
4571         buf = f2fs_getname(F2FS_I_SB(inode));
4572         if (!buf)
4573                 return;
4574         path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4575         if (IS_ERR(path))
4576                 goto free_buf;
4577         if (rw == WRITE)
4578                 trace_f2fs_datawrite_start(inode, pos, count,
4579                                 current->pid, path, current->comm);
4580         else
4581                 trace_f2fs_dataread_start(inode, pos, count,
4582                                 current->pid, path, current->comm);
4583 free_buf:
4584         f2fs_putname(buf);
4585 }
4586
4587 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4588 {
4589         struct inode *inode = file_inode(iocb->ki_filp);
4590         const loff_t pos = iocb->ki_pos;
4591         ssize_t ret;
4592
4593         if (!f2fs_is_compress_backend_ready(inode))
4594                 return -EOPNOTSUPP;
4595
4596         if (trace_f2fs_dataread_start_enabled())
4597                 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4598                                         iov_iter_count(to), READ);
4599
4600         if (f2fs_should_use_dio(inode, iocb, to)) {
4601                 ret = f2fs_dio_read_iter(iocb, to);
4602         } else {
4603                 ret = filemap_read(iocb, to, 0);
4604                 if (ret > 0)
4605                         f2fs_update_iostat(F2FS_I_SB(inode), inode,
4606                                                 APP_BUFFERED_READ_IO, ret);
4607         }
4608         if (trace_f2fs_dataread_end_enabled())
4609                 trace_f2fs_dataread_end(inode, pos, ret);
4610         return ret;
4611 }
4612
4613 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4614                                      struct pipe_inode_info *pipe,
4615                                      size_t len, unsigned int flags)
4616 {
4617         struct inode *inode = file_inode(in);
4618         const loff_t pos = *ppos;
4619         ssize_t ret;
4620
4621         if (!f2fs_is_compress_backend_ready(inode))
4622                 return -EOPNOTSUPP;
4623
4624         if (trace_f2fs_dataread_start_enabled())
4625                 f2fs_trace_rw_file_path(in, pos, len, READ);
4626
4627         ret = filemap_splice_read(in, ppos, pipe, len, flags);
4628         if (ret > 0)
4629                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4630                                    APP_BUFFERED_READ_IO, ret);
4631
4632         if (trace_f2fs_dataread_end_enabled())
4633                 trace_f2fs_dataread_end(inode, pos, ret);
4634         return ret;
4635 }
4636
4637 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4638 {
4639         struct file *file = iocb->ki_filp;
4640         struct inode *inode = file_inode(file);
4641         ssize_t count;
4642         int err;
4643
4644         if (IS_IMMUTABLE(inode))
4645                 return -EPERM;
4646
4647         if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4648                 return -EPERM;
4649
4650         count = generic_write_checks(iocb, from);
4651         if (count <= 0)
4652                 return count;
4653
4654         err = file_modified(file);
4655         if (err)
4656                 return err;
4657         return count;
4658 }
4659
4660 /*
4661  * Preallocate blocks for a write request, if it is possible and helpful to do
4662  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4663  * blocks were preallocated, or a negative errno value if something went
4664  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4665  * requested blocks (not just some of them) have been allocated.
4666  */
4667 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4668                                    bool dio)
4669 {
4670         struct inode *inode = file_inode(iocb->ki_filp);
4671         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4672         const loff_t pos = iocb->ki_pos;
4673         const size_t count = iov_iter_count(iter);
4674         struct f2fs_map_blocks map = {};
4675         int flag;
4676         int ret;
4677
4678         /* If it will be an out-of-place direct write, don't bother. */
4679         if (dio && f2fs_lfs_mode(sbi))
4680                 return 0;
4681         /*
4682          * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4683          * buffered IO, if DIO meets any holes.
4684          */
4685         if (dio && i_size_read(inode) &&
4686                 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4687                 return 0;
4688
4689         /* No-wait I/O can't allocate blocks. */
4690         if (iocb->ki_flags & IOCB_NOWAIT)
4691                 return 0;
4692
4693         /* If it will be a short write, don't bother. */
4694         if (fault_in_iov_iter_readable(iter, count))
4695                 return 0;
4696
4697         if (f2fs_has_inline_data(inode)) {
4698                 /* If the data will fit inline, don't bother. */
4699                 if (pos + count <= MAX_INLINE_DATA(inode))
4700                         return 0;
4701                 ret = f2fs_convert_inline_inode(inode);
4702                 if (ret)
4703                         return ret;
4704         }
4705
4706         /* Do not preallocate blocks that will be written partially in 4KB. */
4707         map.m_lblk = F2FS_BLK_ALIGN(pos);
4708         map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4709         if (map.m_len > map.m_lblk)
4710                 map.m_len -= map.m_lblk;
4711         else
4712                 return 0;
4713
4714         map.m_may_create = true;
4715         if (dio) {
4716                 map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4717                                                 inode->i_write_hint);
4718                 flag = F2FS_GET_BLOCK_PRE_DIO;
4719         } else {
4720                 map.m_seg_type = NO_CHECK_TYPE;
4721                 flag = F2FS_GET_BLOCK_PRE_AIO;
4722         }
4723
4724         ret = f2fs_map_blocks(inode, &map, flag);
4725         /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4726         if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4727                 return ret;
4728         if (ret == 0)
4729                 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4730         return map.m_len;
4731 }
4732
4733 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4734                                         struct iov_iter *from)
4735 {
4736         struct file *file = iocb->ki_filp;
4737         struct inode *inode = file_inode(file);
4738         ssize_t ret;
4739
4740         if (iocb->ki_flags & IOCB_NOWAIT)
4741                 return -EOPNOTSUPP;
4742
4743         ret = generic_perform_write(iocb, from);
4744
4745         if (ret > 0) {
4746                 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4747                                                 APP_BUFFERED_IO, ret);
4748         }
4749         return ret;
4750 }
4751
4752 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4753                                  unsigned int flags)
4754 {
4755         struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4756
4757         dec_page_count(sbi, F2FS_DIO_WRITE);
4758         if (error)
4759                 return error;
4760         f2fs_update_time(sbi, REQ_TIME);
4761         f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4762         return 0;
4763 }
4764
4765 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
4766                                         struct bio *bio, loff_t file_offset)
4767 {
4768         struct inode *inode = iter->inode;
4769         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4770         int seg_type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
4771         enum temp_type temp = f2fs_get_segment_temp(seg_type);
4772
4773         bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
4774         submit_bio(bio);
4775 }
4776
4777 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4778         .end_io         = f2fs_dio_write_end_io,
4779         .submit_io      = f2fs_dio_write_submit_io,
4780 };
4781
4782 static void f2fs_flush_buffered_write(struct address_space *mapping,
4783                                       loff_t start_pos, loff_t end_pos)
4784 {
4785         int ret;
4786
4787         ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4788         if (ret < 0)
4789                 return;
4790         invalidate_mapping_pages(mapping,
4791                                  start_pos >> PAGE_SHIFT,
4792                                  end_pos >> PAGE_SHIFT);
4793 }
4794
4795 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4796                                    bool *may_need_sync)
4797 {
4798         struct file *file = iocb->ki_filp;
4799         struct inode *inode = file_inode(file);
4800         struct f2fs_inode_info *fi = F2FS_I(inode);
4801         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4802         const bool do_opu = f2fs_lfs_mode(sbi);
4803         const loff_t pos = iocb->ki_pos;
4804         const ssize_t count = iov_iter_count(from);
4805         unsigned int dio_flags;
4806         struct iomap_dio *dio;
4807         ssize_t ret;
4808
4809         trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4810
4811         if (iocb->ki_flags & IOCB_NOWAIT) {
4812                 /* f2fs_convert_inline_inode() and block allocation can block */
4813                 if (f2fs_has_inline_data(inode) ||
4814                     !f2fs_overwrite_io(inode, pos, count)) {
4815                         ret = -EAGAIN;
4816                         goto out;
4817                 }
4818
4819                 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4820                         ret = -EAGAIN;
4821                         goto out;
4822                 }
4823                 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4824                         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4825                         ret = -EAGAIN;
4826                         goto out;
4827                 }
4828         } else {
4829                 ret = f2fs_convert_inline_inode(inode);
4830                 if (ret)
4831                         goto out;
4832
4833                 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4834                 if (do_opu)
4835                         f2fs_down_read(&fi->i_gc_rwsem[READ]);
4836         }
4837
4838         /*
4839          * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4840          * the higher-level function iomap_dio_rw() in order to ensure that the
4841          * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4842          */
4843         inc_page_count(sbi, F2FS_DIO_WRITE);
4844         dio_flags = 0;
4845         if (pos + count > inode->i_size)
4846                 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4847         dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4848                              &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4849         if (IS_ERR_OR_NULL(dio)) {
4850                 ret = PTR_ERR_OR_ZERO(dio);
4851                 if (ret == -ENOTBLK)
4852                         ret = 0;
4853                 if (ret != -EIOCBQUEUED)
4854                         dec_page_count(sbi, F2FS_DIO_WRITE);
4855         } else {
4856                 ret = iomap_dio_complete(dio);
4857         }
4858
4859         if (do_opu)
4860                 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4861         f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4862
4863         if (ret < 0)
4864                 goto out;
4865         if (pos + ret > inode->i_size)
4866                 f2fs_i_size_write(inode, pos + ret);
4867         if (!do_opu)
4868                 set_inode_flag(inode, FI_UPDATE_WRITE);
4869
4870         if (iov_iter_count(from)) {
4871                 ssize_t ret2;
4872                 loff_t bufio_start_pos = iocb->ki_pos;
4873
4874                 /*
4875                  * The direct write was partial, so we need to fall back to a
4876                  * buffered write for the remainder.
4877                  */
4878
4879                 ret2 = f2fs_buffered_write_iter(iocb, from);
4880                 if (iov_iter_count(from))
4881                         f2fs_write_failed(inode, iocb->ki_pos);
4882                 if (ret2 < 0)
4883                         goto out;
4884
4885                 /*
4886                  * Ensure that the pagecache pages are written to disk and
4887                  * invalidated to preserve the expected O_DIRECT semantics.
4888                  */
4889                 if (ret2 > 0) {
4890                         loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4891
4892                         ret += ret2;
4893
4894                         f2fs_flush_buffered_write(file->f_mapping,
4895                                                   bufio_start_pos,
4896                                                   bufio_end_pos);
4897                 }
4898         } else {
4899                 /* iomap_dio_rw() already handled the generic_write_sync(). */
4900                 *may_need_sync = false;
4901         }
4902 out:
4903         trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4904         return ret;
4905 }
4906
4907 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4908 {
4909         struct inode *inode = file_inode(iocb->ki_filp);
4910         const loff_t orig_pos = iocb->ki_pos;
4911         const size_t orig_count = iov_iter_count(from);
4912         loff_t target_size;
4913         bool dio;
4914         bool may_need_sync = true;
4915         int preallocated;
4916         const loff_t pos = iocb->ki_pos;
4917         const ssize_t count = iov_iter_count(from);
4918         ssize_t ret;
4919
4920         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4921                 ret = -EIO;
4922                 goto out;
4923         }
4924
4925         if (!f2fs_is_compress_backend_ready(inode)) {
4926                 ret = -EOPNOTSUPP;
4927                 goto out;
4928         }
4929
4930         if (iocb->ki_flags & IOCB_NOWAIT) {
4931                 if (!inode_trylock(inode)) {
4932                         ret = -EAGAIN;
4933                         goto out;
4934                 }
4935         } else {
4936                 inode_lock(inode);
4937         }
4938
4939         if (f2fs_is_pinned_file(inode) &&
4940             !f2fs_overwrite_io(inode, pos, count)) {
4941                 ret = -EIO;
4942                 goto out_unlock;
4943         }
4944
4945         ret = f2fs_write_checks(iocb, from);
4946         if (ret <= 0)
4947                 goto out_unlock;
4948
4949         /* Determine whether we will do a direct write or a buffered write. */
4950         dio = f2fs_should_use_dio(inode, iocb, from);
4951
4952         /* Possibly preallocate the blocks for the write. */
4953         target_size = iocb->ki_pos + iov_iter_count(from);
4954         preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4955         if (preallocated < 0) {
4956                 ret = preallocated;
4957         } else {
4958                 if (trace_f2fs_datawrite_start_enabled())
4959                         f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4960                                                 orig_count, WRITE);
4961
4962                 /* Do the actual write. */
4963                 ret = dio ?
4964                         f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4965                         f2fs_buffered_write_iter(iocb, from);
4966
4967                 if (trace_f2fs_datawrite_end_enabled())
4968                         trace_f2fs_datawrite_end(inode, orig_pos, ret);
4969         }
4970
4971         /* Don't leave any preallocated blocks around past i_size. */
4972         if (preallocated && i_size_read(inode) < target_size) {
4973                 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4974                 filemap_invalidate_lock(inode->i_mapping);
4975                 if (!f2fs_truncate(inode))
4976                         file_dont_truncate(inode);
4977                 filemap_invalidate_unlock(inode->i_mapping);
4978                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4979         } else {
4980                 file_dont_truncate(inode);
4981         }
4982
4983         clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4984 out_unlock:
4985         inode_unlock(inode);
4986 out:
4987         trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4988
4989         if (ret > 0 && may_need_sync)
4990                 ret = generic_write_sync(iocb, ret);
4991
4992         /* If buffered IO was forced, flush and drop the data from
4993          * the page cache to preserve O_DIRECT semantics
4994          */
4995         if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4996                 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4997                                           orig_pos,
4998                                           orig_pos + ret - 1);
4999
5000         return ret;
5001 }
5002
5003 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
5004                 int advice)
5005 {
5006         struct address_space *mapping;
5007         struct backing_dev_info *bdi;
5008         struct inode *inode = file_inode(filp);
5009         int err;
5010
5011         if (advice == POSIX_FADV_SEQUENTIAL) {
5012                 if (S_ISFIFO(inode->i_mode))
5013                         return -ESPIPE;
5014
5015                 mapping = filp->f_mapping;
5016                 if (!mapping || len < 0)
5017                         return -EINVAL;
5018
5019                 bdi = inode_to_bdi(mapping->host);
5020                 filp->f_ra.ra_pages = bdi->ra_pages *
5021                         F2FS_I_SB(inode)->seq_file_ra_mul;
5022                 spin_lock(&filp->f_lock);
5023                 filp->f_mode &= ~FMODE_RANDOM;
5024                 spin_unlock(&filp->f_lock);
5025                 return 0;
5026         } else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
5027                 /* Load extent cache at the first readahead. */
5028                 f2fs_precache_extents(inode);
5029         }
5030
5031         err = generic_fadvise(filp, offset, len, advice);
5032         if (!err && advice == POSIX_FADV_DONTNEED &&
5033                 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5034                 f2fs_compressed_file(inode))
5035                 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5036
5037         return err;
5038 }
5039
5040 #ifdef CONFIG_COMPAT
5041 struct compat_f2fs_gc_range {
5042         u32 sync;
5043         compat_u64 start;
5044         compat_u64 len;
5045 };
5046 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE        _IOW(F2FS_IOCTL_MAGIC, 11,\
5047                                                 struct compat_f2fs_gc_range)
5048
5049 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5050 {
5051         struct compat_f2fs_gc_range __user *urange;
5052         struct f2fs_gc_range range;
5053         int err;
5054
5055         urange = compat_ptr(arg);
5056         err = get_user(range.sync, &urange->sync);
5057         err |= get_user(range.start, &urange->start);
5058         err |= get_user(range.len, &urange->len);
5059         if (err)
5060                 return -EFAULT;
5061
5062         return __f2fs_ioc_gc_range(file, &range);
5063 }
5064
5065 struct compat_f2fs_move_range {
5066         u32 dst_fd;
5067         compat_u64 pos_in;
5068         compat_u64 pos_out;
5069         compat_u64 len;
5070 };
5071 #define F2FS_IOC32_MOVE_RANGE           _IOWR(F2FS_IOCTL_MAGIC, 9,      \
5072                                         struct compat_f2fs_move_range)
5073
5074 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5075 {
5076         struct compat_f2fs_move_range __user *urange;
5077         struct f2fs_move_range range;
5078         int err;
5079
5080         urange = compat_ptr(arg);
5081         err = get_user(range.dst_fd, &urange->dst_fd);
5082         err |= get_user(range.pos_in, &urange->pos_in);
5083         err |= get_user(range.pos_out, &urange->pos_out);
5084         err |= get_user(range.len, &urange->len);
5085         if (err)
5086                 return -EFAULT;
5087
5088         return __f2fs_ioc_move_range(file, &range);
5089 }
5090
5091 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5092 {
5093         if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5094                 return -EIO;
5095         if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5096                 return -ENOSPC;
5097
5098         switch (cmd) {
5099         case FS_IOC32_GETVERSION:
5100                 cmd = FS_IOC_GETVERSION;
5101                 break;
5102         case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5103                 return f2fs_compat_ioc_gc_range(file, arg);
5104         case F2FS_IOC32_MOVE_RANGE:
5105                 return f2fs_compat_ioc_move_range(file, arg);
5106         case F2FS_IOC_START_ATOMIC_WRITE:
5107         case F2FS_IOC_START_ATOMIC_REPLACE:
5108         case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5109         case F2FS_IOC_START_VOLATILE_WRITE:
5110         case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5111         case F2FS_IOC_ABORT_ATOMIC_WRITE:
5112         case F2FS_IOC_SHUTDOWN:
5113         case FITRIM:
5114         case FS_IOC_SET_ENCRYPTION_POLICY:
5115         case FS_IOC_GET_ENCRYPTION_PWSALT:
5116         case FS_IOC_GET_ENCRYPTION_POLICY:
5117         case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5118         case FS_IOC_ADD_ENCRYPTION_KEY:
5119         case FS_IOC_REMOVE_ENCRYPTION_KEY:
5120         case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5121         case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5122         case FS_IOC_GET_ENCRYPTION_NONCE:
5123         case F2FS_IOC_GARBAGE_COLLECT:
5124         case F2FS_IOC_WRITE_CHECKPOINT:
5125         case F2FS_IOC_DEFRAGMENT:
5126         case F2FS_IOC_FLUSH_DEVICE:
5127         case F2FS_IOC_GET_FEATURES:
5128         case F2FS_IOC_GET_PIN_FILE:
5129         case F2FS_IOC_SET_PIN_FILE:
5130         case F2FS_IOC_PRECACHE_EXTENTS:
5131         case F2FS_IOC_RESIZE_FS:
5132         case FS_IOC_ENABLE_VERITY:
5133         case FS_IOC_MEASURE_VERITY:
5134         case FS_IOC_READ_VERITY_METADATA:
5135         case FS_IOC_GETFSLABEL:
5136         case FS_IOC_SETFSLABEL:
5137         case F2FS_IOC_GET_COMPRESS_BLOCKS:
5138         case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5139         case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5140         case F2FS_IOC_SEC_TRIM_FILE:
5141         case F2FS_IOC_GET_COMPRESS_OPTION:
5142         case F2FS_IOC_SET_COMPRESS_OPTION:
5143         case F2FS_IOC_DECOMPRESS_FILE:
5144         case F2FS_IOC_COMPRESS_FILE:
5145                 break;
5146         default:
5147                 return -ENOIOCTLCMD;
5148         }
5149         return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5150 }
5151 #endif
5152
5153 const struct file_operations f2fs_file_operations = {
5154         .llseek         = f2fs_llseek,
5155         .read_iter      = f2fs_file_read_iter,
5156         .write_iter     = f2fs_file_write_iter,
5157         .iopoll         = iocb_bio_iopoll,
5158         .open           = f2fs_file_open,
5159         .release        = f2fs_release_file,
5160         .mmap           = f2fs_file_mmap,
5161         .flush          = f2fs_file_flush,
5162         .fsync          = f2fs_sync_file,
5163         .fallocate      = f2fs_fallocate,
5164         .unlocked_ioctl = f2fs_ioctl,
5165 #ifdef CONFIG_COMPAT
5166         .compat_ioctl   = f2fs_compat_ioctl,
5167 #endif
5168         .splice_read    = f2fs_file_splice_read,
5169         .splice_write   = iter_file_splice_write,
5170         .fadvise        = f2fs_file_fadvise,
5171         .fop_flags      = FOP_BUFFER_RASYNC,
5172 };
This page took 0.31669 seconds and 4 git commands to generate.