2 * Copyright © 2015-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
29 * DOC: i915 Perf Overview
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
51 * DOC: i915 Perf History and Comparison with Core Perf
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
106 * - The perf based OA PMU driver broke some significant design assumptions:
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_execlists_submission.h"
202 #include "gt/intel_gpu_commands.h"
203 #include "gt/intel_gt.h"
204 #include "gt/intel_gt_clock_utils.h"
205 #include "gt/intel_lrc.h"
206 #include "gt/intel_ring.h"
208 #include "i915_drv.h"
209 #include "i915_perf.h"
211 /* HW requires this to be a power of two, between 128k and 16M, though driver
212 * is currently generally designed assuming the largest 16M size is used such
213 * that the overflow cases are unlikely in normal operation.
215 #define OA_BUFFER_SIZE SZ_16M
217 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
220 * DOC: OA Tail Pointer Race
222 * There's a HW race condition between OA unit tail pointer register updates and
223 * writes to memory whereby the tail pointer can sometimes get ahead of what's
224 * been written out to the OA buffer so far (in terms of what's visible to the
227 * Although this can be observed explicitly while copying reports to userspace
228 * by checking for a zeroed report-id field in tail reports, we want to account
229 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
230 * redundant read() attempts.
232 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
233 * in the OA buffer, starting from the tail reported by the HW until we find a
234 * report with its first 2 dwords not 0 meaning its previous report is
235 * completely in memory and ready to be read. Those dwords are also set to 0
236 * once read and the whole buffer is cleared upon OA buffer initialization. The
237 * first dword is the reason for this report while the second is the timestamp,
238 * making the chances of having those 2 fields at 0 fairly unlikely. A more
239 * detailed explanation is available in oa_buffer_check_unlocked().
241 * Most of the implementation details for this workaround are in
242 * oa_buffer_check_unlocked() and _append_oa_reports()
244 * Note for posterity: previously the driver used to define an effective tail
245 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
246 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
247 * This was flawed considering that the OA unit may also automatically generate
248 * non-periodic reports (such as on context switch) or the OA unit may be
249 * enabled without any periodic sampling.
251 #define OA_TAIL_MARGIN_NSEC 100000ULL
252 #define INVALID_TAIL_PTR 0xffffffff
254 /* The default frequency for checking whether the OA unit has written new
255 * reports to the circular OA buffer...
257 #define DEFAULT_POLL_FREQUENCY_HZ 200
258 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
260 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
261 static u32 i915_perf_stream_paranoid = true;
263 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
264 * of the 64bit timestamp bits to trigger reports from) but there's currently
265 * no known use case for sampling as infrequently as once per 47 thousand years.
267 * Since the timestamps included in OA reports are only 32bits it seems
268 * reasonable to limit the OA exponent where it's still possible to account for
269 * overflow in OA report timestamps.
271 #define OA_EXPONENT_MAX 31
273 #define INVALID_CTX_ID 0xffffffff
275 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
276 #define OAREPORT_REASON_MASK 0x3f
277 #define OAREPORT_REASON_MASK_EXTENDED 0x7f
278 #define OAREPORT_REASON_SHIFT 19
279 #define OAREPORT_REASON_TIMER (1<<0)
280 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
281 #define OAREPORT_REASON_CLK_RATIO (1<<5)
284 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
286 * The highest sampling frequency we can theoretically program the OA unit
287 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
289 * Initialized just before we register the sysctl parameter.
291 static int oa_sample_rate_hard_limit;
293 /* Theoretically we can program the OA unit to sample every 160ns but don't
294 * allow that by default unless root...
296 * The default threshold of 100000Hz is based on perf's similar
297 * kernel.perf_event_max_sample_rate sysctl parameter.
299 static u32 i915_oa_max_sample_rate = 100000;
301 /* XXX: beware if future OA HW adds new report formats that the current
302 * code assumes all reports have a power-of-two size and ~(size - 1) can
303 * be used as a mask to align the OA tail pointer.
305 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
306 [I915_OA_FORMAT_A13] = { 0, 64 },
307 [I915_OA_FORMAT_A29] = { 1, 128 },
308 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
309 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
310 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
311 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
312 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
313 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
316 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
317 [I915_OA_FORMAT_A12] = { 0, 64 },
318 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
319 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
320 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
323 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
324 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
327 #define SAMPLE_OA_REPORT (1<<0)
330 * struct perf_open_properties - for validated properties given to open a stream
331 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
332 * @single_context: Whether a single or all gpu contexts should be monitored
333 * @hold_preemption: Whether the preemption is disabled for the filtered
335 * @ctx_handle: A gem ctx handle for use with @single_context
336 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
337 * @oa_format: An OA unit HW report format
338 * @oa_periodic: Whether to enable periodic OA unit sampling
339 * @oa_period_exponent: The OA unit sampling period is derived from this
340 * @engine: The engine (typically rcs0) being monitored by the OA unit
341 * @has_sseu: Whether @sseu was specified by userspace
342 * @sseu: internal SSEU configuration computed either from the userspace
343 * specified configuration in the opening parameters or a default value
344 * (see get_default_sseu_config())
345 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
348 * As read_properties_unlocked() enumerates and validates the properties given
349 * to open a stream of metrics the configuration is built up in the structure
350 * which starts out zero initialized.
352 struct perf_open_properties {
355 u64 single_context:1;
356 u64 hold_preemption:1;
359 /* OA sampling state */
363 int oa_period_exponent;
365 struct intel_engine_cs *engine;
368 struct intel_sseu sseu;
373 struct i915_oa_config_bo {
374 struct llist_node node;
376 struct i915_oa_config *oa_config;
377 struct i915_vma *vma;
380 static struct ctl_table_header *sysctl_header;
382 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
384 void i915_oa_config_release(struct kref *ref)
386 struct i915_oa_config *oa_config =
387 container_of(ref, typeof(*oa_config), ref);
389 kfree(oa_config->flex_regs);
390 kfree(oa_config->b_counter_regs);
391 kfree(oa_config->mux_regs);
393 kfree_rcu(oa_config, rcu);
396 struct i915_oa_config *
397 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
399 struct i915_oa_config *oa_config;
402 oa_config = idr_find(&perf->metrics_idr, metrics_set);
404 oa_config = i915_oa_config_get(oa_config);
410 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
412 i915_oa_config_put(oa_bo->oa_config);
413 i915_vma_put(oa_bo->vma);
417 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
419 struct intel_uncore *uncore = stream->uncore;
421 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
422 GEN12_OAG_OATAILPTR_MASK;
425 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
427 struct intel_uncore *uncore = stream->uncore;
429 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
432 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
434 struct intel_uncore *uncore = stream->uncore;
435 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
437 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
441 * oa_buffer_check_unlocked - check for data and update tail ptr state
442 * @stream: i915 stream instance
444 * This is either called via fops (for blocking reads in user ctx) or the poll
445 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
446 * if there is data available for userspace to read.
448 * This function is central to providing a workaround for the OA unit tail
449 * pointer having a race with respect to what data is visible to the CPU.
450 * It is responsible for reading tail pointers from the hardware and giving
451 * the pointers time to 'age' before they are made available for reading.
452 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
454 * Besides returning true when there is data available to read() this function
455 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
458 * Note: It's safe to read OA config state here unlocked, assuming that this is
459 * only called while the stream is enabled, while the global OA configuration
462 * Returns: %true if the OA buffer contains data, else %false
464 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
466 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
467 int report_size = stream->oa_buffer.format_size;
473 /* We have to consider the (unlikely) possibility that read() errors
474 * could result in an OA buffer reset which might reset the head and
477 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
479 hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
481 /* The tail pointer increases in 64 byte increments,
482 * not in report_size steps...
484 hw_tail &= ~(report_size - 1);
486 now = ktime_get_mono_fast_ns();
488 if (hw_tail == stream->oa_buffer.aging_tail &&
489 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
490 /* If the HW tail hasn't move since the last check and the HW
491 * tail has been aging for long enough, declare it the new
494 stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
496 u32 head, tail, aged_tail;
498 /* NB: The head we observe here might effectively be a little
499 * out of date. If a read() is in progress, the head could be
500 * anywhere between this head and stream->oa_buffer.tail.
502 head = stream->oa_buffer.head - gtt_offset;
503 aged_tail = stream->oa_buffer.tail - gtt_offset;
505 hw_tail -= gtt_offset;
508 /* Walk the stream backward until we find a report with dword 0
509 * & 1 not at 0. Since the circular buffer pointers progress by
510 * increments of 64 bytes and that reports can be up to 256
511 * bytes long, we can't tell whether a report has fully landed
512 * in memory before the first 2 dwords of the following report
513 * have effectively landed.
515 * This is assuming that the writes of the OA unit land in
516 * memory in the order they were written to.
517 * If not : (╯°□°)╯︵ ┻━┻
519 while (OA_TAKEN(tail, aged_tail) >= report_size) {
520 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
522 if (report32[0] != 0 || report32[1] != 0)
525 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
528 if (OA_TAKEN(hw_tail, tail) > report_size &&
529 __ratelimit(&stream->perf->tail_pointer_race))
530 DRM_NOTE("unlanded report(s) head=0x%x "
531 "tail=0x%x hw_tail=0x%x\n",
532 head, tail, hw_tail);
534 stream->oa_buffer.tail = gtt_offset + tail;
535 stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
536 stream->oa_buffer.aging_timestamp = now;
539 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
540 stream->oa_buffer.head - gtt_offset) >= report_size;
542 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
548 * append_oa_status - Appends a status record to a userspace read() buffer.
549 * @stream: An i915-perf stream opened for OA metrics
550 * @buf: destination buffer given by userspace
551 * @count: the number of bytes userspace wants to read
552 * @offset: (inout): the current position for writing into @buf
553 * @type: The kind of status to report to userspace
555 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
556 * into the userspace read() buffer.
558 * The @buf @offset will only be updated on success.
560 * Returns: 0 on success, negative error code on failure.
562 static int append_oa_status(struct i915_perf_stream *stream,
566 enum drm_i915_perf_record_type type)
568 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
570 if ((count - *offset) < header.size)
573 if (copy_to_user(buf + *offset, &header, sizeof(header)))
576 (*offset) += header.size;
582 * append_oa_sample - Copies single OA report into userspace read() buffer.
583 * @stream: An i915-perf stream opened for OA metrics
584 * @buf: destination buffer given by userspace
585 * @count: the number of bytes userspace wants to read
586 * @offset: (inout): the current position for writing into @buf
587 * @report: A single OA report to (optionally) include as part of the sample
589 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
590 * properties when opening a stream, tracked as `stream->sample_flags`. This
591 * function copies the requested components of a single sample to the given
594 * The @buf @offset will only be updated on success.
596 * Returns: 0 on success, negative error code on failure.
598 static int append_oa_sample(struct i915_perf_stream *stream,
604 int report_size = stream->oa_buffer.format_size;
605 struct drm_i915_perf_record_header header;
606 u32 sample_flags = stream->sample_flags;
608 header.type = DRM_I915_PERF_RECORD_SAMPLE;
610 header.size = stream->sample_size;
612 if ((count - *offset) < header.size)
616 if (copy_to_user(buf, &header, sizeof(header)))
618 buf += sizeof(header);
620 if (sample_flags & SAMPLE_OA_REPORT) {
621 if (copy_to_user(buf, report, report_size))
625 (*offset) += header.size;
631 * gen8_append_oa_reports - Copies all buffered OA reports into
632 * userspace read() buffer.
633 * @stream: An i915-perf stream opened for OA metrics
634 * @buf: destination buffer given by userspace
635 * @count: the number of bytes userspace wants to read
636 * @offset: (inout): the current position for writing into @buf
638 * Notably any error condition resulting in a short read (-%ENOSPC or
639 * -%EFAULT) will be returned even though one or more records may
640 * have been successfully copied. In this case it's up to the caller
641 * to decide if the error should be squashed before returning to
644 * Note: reports are consumed from the head, and appended to the
645 * tail, so the tail chases the head?... If you think that's mad
646 * and back-to-front you're not alone, but this follows the
647 * Gen PRM naming convention.
649 * Returns: 0 on success, negative error code on failure.
651 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
656 struct intel_uncore *uncore = stream->uncore;
657 int report_size = stream->oa_buffer.format_size;
658 u8 *oa_buf_base = stream->oa_buffer.vaddr;
659 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
660 u32 mask = (OA_BUFFER_SIZE - 1);
661 size_t start_offset = *offset;
667 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
670 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
672 head = stream->oa_buffer.head;
673 tail = stream->oa_buffer.tail;
675 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
678 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
679 * while indexing relative to oa_buf_base.
685 * An out of bounds or misaligned head or tail pointer implies a driver
686 * bug since we validate + align the tail pointers we read from the
687 * hardware and we are in full control of the head pointer which should
688 * only be incremented by multiples of the report size (notably also
689 * all a power of two).
691 if (drm_WARN_ONCE(&uncore->i915->drm,
692 head > OA_BUFFER_SIZE || head % report_size ||
693 tail > OA_BUFFER_SIZE || tail % report_size,
694 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
700 (taken = OA_TAKEN(tail, head));
701 head = (head + report_size) & mask) {
702 u8 *report = oa_buf_base + head;
703 u32 *report32 = (void *)report;
708 * All the report sizes factor neatly into the buffer
709 * size so we never expect to see a report split
710 * between the beginning and end of the buffer.
712 * Given the initial alignment check a misalignment
713 * here would imply a driver bug that would result
716 if (drm_WARN_ON(&uncore->i915->drm,
717 (OA_BUFFER_SIZE - head) < report_size)) {
718 drm_err(&uncore->i915->drm,
719 "Spurious OA head ptr: non-integral report offset\n");
724 * The reason field includes flags identifying what
725 * triggered this specific report (mostly timer
726 * triggered or e.g. due to a context switch).
728 * This field is never expected to be zero so we can
729 * check that the report isn't invalid before copying
732 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
733 (IS_GEN(stream->perf->i915, 12) ?
734 OAREPORT_REASON_MASK_EXTENDED :
735 OAREPORT_REASON_MASK));
737 if (__ratelimit(&stream->perf->spurious_report_rs))
738 DRM_NOTE("Skipping spurious, invalid OA report\n");
742 ctx_id = report32[2] & stream->specific_ctx_id_mask;
745 * Squash whatever is in the CTX_ID field if it's marked as
746 * invalid to be sure we avoid false-positive, single-context
749 * Note: that we don't clear the valid_ctx_bit so userspace can
750 * understand that the ID has been squashed by the kernel.
752 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
753 INTEL_GEN(stream->perf->i915) <= 11)
754 ctx_id = report32[2] = INVALID_CTX_ID;
757 * NB: For Gen 8 the OA unit no longer supports clock gating
758 * off for a specific context and the kernel can't securely
759 * stop the counters from updating as system-wide / global
762 * Automatic reports now include a context ID so reports can be
763 * filtered on the cpu but it's not worth trying to
764 * automatically subtract/hide counter progress for other
765 * contexts while filtering since we can't stop userspace
766 * issuing MI_REPORT_PERF_COUNT commands which would still
767 * provide a side-band view of the real values.
769 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
770 * to normalize counters for a single filtered context then it
771 * needs be forwarded bookend context-switch reports so that it
772 * can track switches in between MI_REPORT_PERF_COUNT commands
773 * and can itself subtract/ignore the progress of counters
774 * associated with other contexts. Note that the hardware
775 * automatically triggers reports when switching to a new
776 * context which are tagged with the ID of the newly active
777 * context. To avoid the complexity (and likely fragility) of
778 * reading ahead while parsing reports to try and minimize
779 * forwarding redundant context switch reports (i.e. between
780 * other, unrelated contexts) we simply elect to forward them
783 * We don't rely solely on the reason field to identify context
784 * switches since it's not-uncommon for periodic samples to
785 * identify a switch before any 'context switch' report.
787 if (!stream->perf->exclusive_stream->ctx ||
788 stream->specific_ctx_id == ctx_id ||
789 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
790 reason & OAREPORT_REASON_CTX_SWITCH) {
793 * While filtering for a single context we avoid
794 * leaking the IDs of other contexts.
796 if (stream->perf->exclusive_stream->ctx &&
797 stream->specific_ctx_id != ctx_id) {
798 report32[2] = INVALID_CTX_ID;
801 ret = append_oa_sample(stream, buf, count, offset,
806 stream->oa_buffer.last_ctx_id = ctx_id;
810 * Clear out the first 2 dword as a mean to detect unlanded
817 if (start_offset != *offset) {
818 i915_reg_t oaheadptr;
820 oaheadptr = IS_GEN(stream->perf->i915, 12) ?
821 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
823 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
826 * We removed the gtt_offset for the copy loop above, indexing
827 * relative to oa_buf_base so put back here...
830 intel_uncore_write(uncore, oaheadptr,
831 head & GEN12_OAG_OAHEADPTR_MASK);
832 stream->oa_buffer.head = head;
834 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
841 * gen8_oa_read - copy status records then buffered OA reports
842 * @stream: An i915-perf stream opened for OA metrics
843 * @buf: destination buffer given by userspace
844 * @count: the number of bytes userspace wants to read
845 * @offset: (inout): the current position for writing into @buf
847 * Checks OA unit status registers and if necessary appends corresponding
848 * status records for userspace (such as for a buffer full condition) and then
849 * initiate appending any buffered OA reports.
851 * Updates @offset according to the number of bytes successfully copied into
852 * the userspace buffer.
854 * NB: some data may be successfully copied to the userspace buffer
855 * even if an error is returned, and this is reflected in the
858 * Returns: zero on success or a negative error code
860 static int gen8_oa_read(struct i915_perf_stream *stream,
865 struct intel_uncore *uncore = stream->uncore;
867 i915_reg_t oastatus_reg;
870 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
873 oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
874 GEN12_OAG_OASTATUS : GEN8_OASTATUS;
876 oastatus = intel_uncore_read(uncore, oastatus_reg);
879 * We treat OABUFFER_OVERFLOW as a significant error:
881 * Although theoretically we could handle this more gracefully
882 * sometimes, some Gens don't correctly suppress certain
883 * automatically triggered reports in this condition and so we
884 * have to assume that old reports are now being trampled
887 * Considering how we don't currently give userspace control
888 * over the OA buffer size and always configure a large 16MB
889 * buffer, then a buffer overflow does anyway likely indicate
890 * that something has gone quite badly wrong.
892 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
893 ret = append_oa_status(stream, buf, count, offset,
894 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
898 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
899 stream->period_exponent);
901 stream->perf->ops.oa_disable(stream);
902 stream->perf->ops.oa_enable(stream);
905 * Note: .oa_enable() is expected to re-init the oabuffer and
906 * reset GEN8_OASTATUS for us
908 oastatus = intel_uncore_read(uncore, oastatus_reg);
911 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
912 ret = append_oa_status(stream, buf, count, offset,
913 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
917 intel_uncore_rmw(uncore, oastatus_reg,
918 GEN8_OASTATUS_COUNTER_OVERFLOW |
919 GEN8_OASTATUS_REPORT_LOST,
920 IS_GEN_RANGE(uncore->i915, 8, 11) ?
921 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
922 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
925 return gen8_append_oa_reports(stream, buf, count, offset);
929 * gen7_append_oa_reports - Copies all buffered OA reports into
930 * userspace read() buffer.
931 * @stream: An i915-perf stream opened for OA metrics
932 * @buf: destination buffer given by userspace
933 * @count: the number of bytes userspace wants to read
934 * @offset: (inout): the current position for writing into @buf
936 * Notably any error condition resulting in a short read (-%ENOSPC or
937 * -%EFAULT) will be returned even though one or more records may
938 * have been successfully copied. In this case it's up to the caller
939 * to decide if the error should be squashed before returning to
942 * Note: reports are consumed from the head, and appended to the
943 * tail, so the tail chases the head?... If you think that's mad
944 * and back-to-front you're not alone, but this follows the
945 * Gen PRM naming convention.
947 * Returns: 0 on success, negative error code on failure.
949 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
954 struct intel_uncore *uncore = stream->uncore;
955 int report_size = stream->oa_buffer.format_size;
956 u8 *oa_buf_base = stream->oa_buffer.vaddr;
957 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
958 u32 mask = (OA_BUFFER_SIZE - 1);
959 size_t start_offset = *offset;
965 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
968 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
970 head = stream->oa_buffer.head;
971 tail = stream->oa_buffer.tail;
973 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
975 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
976 * while indexing relative to oa_buf_base.
981 /* An out of bounds or misaligned head or tail pointer implies a driver
982 * bug since we validate + align the tail pointers we read from the
983 * hardware and we are in full control of the head pointer which should
984 * only be incremented by multiples of the report size (notably also
985 * all a power of two).
987 if (drm_WARN_ONCE(&uncore->i915->drm,
988 head > OA_BUFFER_SIZE || head % report_size ||
989 tail > OA_BUFFER_SIZE || tail % report_size,
990 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
996 (taken = OA_TAKEN(tail, head));
997 head = (head + report_size) & mask) {
998 u8 *report = oa_buf_base + head;
999 u32 *report32 = (void *)report;
1001 /* All the report sizes factor neatly into the buffer
1002 * size so we never expect to see a report split
1003 * between the beginning and end of the buffer.
1005 * Given the initial alignment check a misalignment
1006 * here would imply a driver bug that would result
1009 if (drm_WARN_ON(&uncore->i915->drm,
1010 (OA_BUFFER_SIZE - head) < report_size)) {
1011 drm_err(&uncore->i915->drm,
1012 "Spurious OA head ptr: non-integral report offset\n");
1016 /* The report-ID field for periodic samples includes
1017 * some undocumented flags related to what triggered
1018 * the report and is never expected to be zero so we
1019 * can check that the report isn't invalid before
1020 * copying it to userspace...
1022 if (report32[0] == 0) {
1023 if (__ratelimit(&stream->perf->spurious_report_rs))
1024 DRM_NOTE("Skipping spurious, invalid OA report\n");
1028 ret = append_oa_sample(stream, buf, count, offset, report);
1032 /* Clear out the first 2 dwords as a mean to detect unlanded
1039 if (start_offset != *offset) {
1040 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1042 /* We removed the gtt_offset for the copy loop above, indexing
1043 * relative to oa_buf_base so put back here...
1047 intel_uncore_write(uncore, GEN7_OASTATUS2,
1048 (head & GEN7_OASTATUS2_HEAD_MASK) |
1049 GEN7_OASTATUS2_MEM_SELECT_GGTT);
1050 stream->oa_buffer.head = head;
1052 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1059 * gen7_oa_read - copy status records then buffered OA reports
1060 * @stream: An i915-perf stream opened for OA metrics
1061 * @buf: destination buffer given by userspace
1062 * @count: the number of bytes userspace wants to read
1063 * @offset: (inout): the current position for writing into @buf
1065 * Checks Gen 7 specific OA unit status registers and if necessary appends
1066 * corresponding status records for userspace (such as for a buffer full
1067 * condition) and then initiate appending any buffered OA reports.
1069 * Updates @offset according to the number of bytes successfully copied into
1070 * the userspace buffer.
1072 * Returns: zero on success or a negative error code
1074 static int gen7_oa_read(struct i915_perf_stream *stream,
1079 struct intel_uncore *uncore = stream->uncore;
1083 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1086 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1088 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1089 * bits while the OA unit is enabled (while the tail pointer
1090 * may be updated asynchronously) so we ignore status bits
1091 * that have already been reported to userspace.
1093 oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1095 /* We treat OABUFFER_OVERFLOW as a significant error:
1097 * - The status can be interpreted to mean that the buffer is
1098 * currently full (with a higher precedence than OA_TAKEN()
1099 * which will start to report a near-empty buffer after an
1100 * overflow) but it's awkward that we can't clear the status
1101 * on Haswell, so without a reset we won't be able to catch
1104 * - Since it also implies the HW has started overwriting old
1105 * reports it may also affect our sanity checks for invalid
1106 * reports when copying to userspace that assume new reports
1107 * are being written to cleared memory.
1109 * - In the future we may want to introduce a flight recorder
1110 * mode where the driver will automatically maintain a safe
1111 * guard band between head/tail, avoiding this overflow
1112 * condition, but we avoid the added driver complexity for
1115 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1116 ret = append_oa_status(stream, buf, count, offset,
1117 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1121 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1122 stream->period_exponent);
1124 stream->perf->ops.oa_disable(stream);
1125 stream->perf->ops.oa_enable(stream);
1127 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1130 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1131 ret = append_oa_status(stream, buf, count, offset,
1132 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1135 stream->perf->gen7_latched_oastatus1 |=
1136 GEN7_OASTATUS1_REPORT_LOST;
1139 return gen7_append_oa_reports(stream, buf, count, offset);
1143 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1144 * @stream: An i915-perf stream opened for OA metrics
1146 * Called when userspace tries to read() from a blocking stream FD opened
1147 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1148 * OA buffer and wakes us.
1150 * Note: it's acceptable to have this return with some false positives
1151 * since any subsequent read handling will return -EAGAIN if there isn't
1152 * really data ready for userspace yet.
1154 * Returns: zero on success or a negative error code
1156 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1158 /* We would wait indefinitely if periodic sampling is not enabled */
1159 if (!stream->periodic)
1162 return wait_event_interruptible(stream->poll_wq,
1163 oa_buffer_check_unlocked(stream));
1167 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1168 * @stream: An i915-perf stream opened for OA metrics
1169 * @file: An i915 perf stream file
1170 * @wait: poll() state table
1172 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1173 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1174 * when it sees data ready to read in the circular OA buffer.
1176 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1180 poll_wait(file, &stream->poll_wq, wait);
1184 * i915_oa_read - just calls through to &i915_oa_ops->read
1185 * @stream: An i915-perf stream opened for OA metrics
1186 * @buf: destination buffer given by userspace
1187 * @count: the number of bytes userspace wants to read
1188 * @offset: (inout): the current position for writing into @buf
1190 * Updates @offset according to the number of bytes successfully copied into
1191 * the userspace buffer.
1193 * Returns: zero on success or a negative error code
1195 static int i915_oa_read(struct i915_perf_stream *stream,
1200 return stream->perf->ops.read(stream, buf, count, offset);
1203 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1205 struct i915_gem_engines_iter it;
1206 struct i915_gem_context *ctx = stream->ctx;
1207 struct intel_context *ce;
1208 struct i915_gem_ww_ctx ww;
1211 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1212 if (ce->engine != stream->engine) /* first match! */
1218 i915_gem_context_unlock_engines(ctx);
1221 return ERR_PTR(err);
1223 i915_gem_ww_ctx_init(&ww, true);
1226 * As the ID is the gtt offset of the context's vma we
1227 * pin the vma to ensure the ID remains fixed.
1229 err = intel_context_pin_ww(ce, &ww);
1230 if (err == -EDEADLK) {
1231 err = i915_gem_ww_ctx_backoff(&ww);
1235 i915_gem_ww_ctx_fini(&ww);
1238 return ERR_PTR(err);
1240 stream->pinned_ctx = ce;
1241 return stream->pinned_ctx;
1245 * oa_get_render_ctx_id - determine and hold ctx hw id
1246 * @stream: An i915-perf stream opened for OA metrics
1248 * Determine the render context hw id, and ensure it remains fixed for the
1249 * lifetime of the stream. This ensures that we don't have to worry about
1250 * updating the context ID in OACONTROL on the fly.
1252 * Returns: zero on success or a negative error code
1254 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1256 struct intel_context *ce;
1258 ce = oa_pin_context(stream);
1262 switch (INTEL_GEN(ce->engine->i915)) {
1265 * On Haswell we don't do any post processing of the reports
1266 * and don't need to use the mask.
1268 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1269 stream->specific_ctx_id_mask = 0;
1276 if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1277 stream->specific_ctx_id_mask =
1278 (1U << GEN8_CTX_ID_WIDTH) - 1;
1279 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1282 * When using GuC, the context descriptor we write in
1283 * i915 is read by GuC and rewritten before it's
1284 * actually written into the hardware. The LRCA is
1285 * what is put into the context id field of the
1286 * context descriptor by GuC. Because it's aligned to
1287 * a page, the lower 12bits are always at 0 and
1288 * dropped by GuC. They won't be part of the context
1289 * ID in the OA reports, so squash those lower bits.
1291 stream->specific_ctx_id = ce->lrc.lrca >> 12;
1294 * GuC uses the top bit to signal proxy submission, so
1297 stream->specific_ctx_id_mask =
1298 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1304 stream->specific_ctx_id_mask =
1305 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1307 * Pick an unused context id
1308 * 0 - BITS_PER_LONG are used by other contexts
1309 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1311 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1316 MISSING_CASE(INTEL_GEN(ce->engine->i915));
1319 ce->tag = stream->specific_ctx_id;
1321 drm_dbg(&stream->perf->i915->drm,
1322 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1323 stream->specific_ctx_id,
1324 stream->specific_ctx_id_mask);
1330 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1331 * @stream: An i915-perf stream opened for OA metrics
1333 * In case anything needed doing to ensure the context HW ID would remain valid
1334 * for the lifetime of the stream, then that can be undone here.
1336 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1338 struct intel_context *ce;
1340 ce = fetch_and_zero(&stream->pinned_ctx);
1342 ce->tag = 0; /* recomputed on next submission after parking */
1343 intel_context_unpin(ce);
1346 stream->specific_ctx_id = INVALID_CTX_ID;
1347 stream->specific_ctx_id_mask = 0;
1351 free_oa_buffer(struct i915_perf_stream *stream)
1353 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1354 I915_VMA_RELEASE_MAP);
1356 stream->oa_buffer.vaddr = NULL;
1360 free_oa_configs(struct i915_perf_stream *stream)
1362 struct i915_oa_config_bo *oa_bo, *tmp;
1364 i915_oa_config_put(stream->oa_config);
1365 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1366 free_oa_config_bo(oa_bo);
1370 free_noa_wait(struct i915_perf_stream *stream)
1372 i915_vma_unpin_and_release(&stream->noa_wait, 0);
1375 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1377 struct i915_perf *perf = stream->perf;
1379 BUG_ON(stream != perf->exclusive_stream);
1382 * Unset exclusive_stream first, it will be checked while disabling
1383 * the metric set on gen8+.
1385 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1387 WRITE_ONCE(perf->exclusive_stream, NULL);
1388 perf->ops.disable_metric_set(stream);
1390 free_oa_buffer(stream);
1392 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1393 intel_engine_pm_put(stream->engine);
1396 oa_put_render_ctx_id(stream);
1398 free_oa_configs(stream);
1399 free_noa_wait(stream);
1401 if (perf->spurious_report_rs.missed) {
1402 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1403 perf->spurious_report_rs.missed);
1407 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1409 struct intel_uncore *uncore = stream->uncore;
1410 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1411 unsigned long flags;
1413 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1415 /* Pre-DevBDW: OABUFFER must be set with counters off,
1416 * before OASTATUS1, but after OASTATUS2
1418 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1419 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1420 stream->oa_buffer.head = gtt_offset;
1422 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1424 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1425 gtt_offset | OABUFFER_SIZE_16M);
1427 /* Mark that we need updated tail pointers to read from... */
1428 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1429 stream->oa_buffer.tail = gtt_offset;
1431 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1433 /* On Haswell we have to track which OASTATUS1 flags we've
1434 * already seen since they can't be cleared while periodic
1435 * sampling is enabled.
1437 stream->perf->gen7_latched_oastatus1 = 0;
1439 /* NB: although the OA buffer will initially be allocated
1440 * zeroed via shmfs (and so this memset is redundant when
1441 * first allocating), we may re-init the OA buffer, either
1442 * when re-enabling a stream or in error/reset paths.
1444 * The reason we clear the buffer for each re-init is for the
1445 * sanity check in gen7_append_oa_reports() that looks at the
1446 * report-id field to make sure it's non-zero which relies on
1447 * the assumption that new reports are being written to zeroed
1450 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1453 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1455 struct intel_uncore *uncore = stream->uncore;
1456 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1457 unsigned long flags;
1459 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1461 intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1462 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1463 stream->oa_buffer.head = gtt_offset;
1465 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1470 * "This MMIO must be set before the OATAILPTR
1471 * register and after the OAHEADPTR register. This is
1472 * to enable proper functionality of the overflow
1475 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1476 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1477 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1479 /* Mark that we need updated tail pointers to read from... */
1480 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1481 stream->oa_buffer.tail = gtt_offset;
1484 * Reset state used to recognise context switches, affecting which
1485 * reports we will forward to userspace while filtering for a single
1488 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1490 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1493 * NB: although the OA buffer will initially be allocated
1494 * zeroed via shmfs (and so this memset is redundant when
1495 * first allocating), we may re-init the OA buffer, either
1496 * when re-enabling a stream or in error/reset paths.
1498 * The reason we clear the buffer for each re-init is for the
1499 * sanity check in gen8_append_oa_reports() that looks at the
1500 * reason field to make sure it's non-zero which relies on
1501 * the assumption that new reports are being written to zeroed
1504 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1507 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1509 struct intel_uncore *uncore = stream->uncore;
1510 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1511 unsigned long flags;
1513 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1515 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1516 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1517 gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1518 stream->oa_buffer.head = gtt_offset;
1523 * "This MMIO must be set before the OATAILPTR
1524 * register and after the OAHEADPTR register. This is
1525 * to enable proper functionality of the overflow
1528 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1529 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1530 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1531 gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1533 /* Mark that we need updated tail pointers to read from... */
1534 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1535 stream->oa_buffer.tail = gtt_offset;
1538 * Reset state used to recognise context switches, affecting which
1539 * reports we will forward to userspace while filtering for a single
1542 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1544 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1547 * NB: although the OA buffer will initially be allocated
1548 * zeroed via shmfs (and so this memset is redundant when
1549 * first allocating), we may re-init the OA buffer, either
1550 * when re-enabling a stream or in error/reset paths.
1552 * The reason we clear the buffer for each re-init is for the
1553 * sanity check in gen8_append_oa_reports() that looks at the
1554 * reason field to make sure it's non-zero which relies on
1555 * the assumption that new reports are being written to zeroed
1558 memset(stream->oa_buffer.vaddr, 0,
1559 stream->oa_buffer.vma->size);
1562 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1564 struct drm_i915_private *i915 = stream->perf->i915;
1565 struct drm_i915_gem_object *bo;
1566 struct i915_vma *vma;
1569 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1572 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1573 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1575 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1577 drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1581 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1583 /* PreHSW required 512K alignment, HSW requires 16M */
1584 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1589 stream->oa_buffer.vma = vma;
1591 stream->oa_buffer.vaddr =
1592 i915_gem_object_pin_map(bo, I915_MAP_WB);
1593 if (IS_ERR(stream->oa_buffer.vaddr)) {
1594 ret = PTR_ERR(stream->oa_buffer.vaddr);
1601 __i915_vma_unpin(vma);
1604 i915_gem_object_put(bo);
1606 stream->oa_buffer.vaddr = NULL;
1607 stream->oa_buffer.vma = NULL;
1612 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1613 bool save, i915_reg_t reg, u32 offset,
1619 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1620 cmd |= MI_SRM_LRM_GLOBAL_GTT;
1621 if (INTEL_GEN(stream->perf->i915) >= 8)
1624 for (d = 0; d < dword_count; d++) {
1626 *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1627 *cs++ = intel_gt_scratch_offset(stream->engine->gt,
1635 static int alloc_noa_wait(struct i915_perf_stream *stream)
1637 struct drm_i915_private *i915 = stream->perf->i915;
1638 struct drm_i915_gem_object *bo;
1639 struct i915_vma *vma;
1640 const u64 delay_ticks = 0xffffffffffffffff -
1641 intel_gt_ns_to_clock_interval(stream->perf->i915->ggtt.vm.gt,
1642 atomic64_read(&stream->perf->noa_programming_delay));
1643 const u32 base = stream->engine->mmio_base;
1644 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1645 u32 *batch, *ts0, *cs, *jump;
1656 bo = i915_gem_object_create_internal(i915, 4096);
1659 "Failed to allocate NOA wait batchbuffer\n");
1664 * We pin in GGTT because we jump into this buffer now because
1665 * multiple OA config BOs will have a jump to this address and it
1666 * needs to be fixed during the lifetime of the i915/perf stream.
1668 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1674 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1675 if (IS_ERR(batch)) {
1676 ret = PTR_ERR(batch);
1680 /* Save registers. */
1681 for (i = 0; i < N_CS_GPR; i++)
1682 cs = save_restore_register(
1683 stream, cs, true /* save */, CS_GPR(i),
1684 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1685 cs = save_restore_register(
1686 stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1687 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1689 /* First timestamp snapshot location. */
1693 * Initial snapshot of the timestamp register to implement the wait.
1694 * We work with 32b values, so clear out the top 32b bits of the
1695 * register because the ALU works 64bits.
1697 *cs++ = MI_LOAD_REGISTER_IMM(1);
1698 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1700 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1701 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1702 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1705 * This is the location we're going to jump back into until the
1706 * required amount of time has passed.
1711 * Take another snapshot of the timestamp register. Take care to clear
1712 * up the top 32bits of CS_GPR(1) as we're using it for other
1715 *cs++ = MI_LOAD_REGISTER_IMM(1);
1716 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1718 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1719 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1720 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1723 * Do a diff between the 2 timestamps and store the result back into
1727 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1728 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1729 *cs++ = MI_MATH_SUB;
1730 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1731 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1734 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1735 * timestamp have rolled over the 32bits) into the predicate register
1736 * to be used for the predicated jump.
1738 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1739 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1740 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1742 /* Restart from the beginning if we had timestamps roll over. */
1743 *cs++ = (INTEL_GEN(i915) < 8 ?
1744 MI_BATCH_BUFFER_START :
1745 MI_BATCH_BUFFER_START_GEN8) |
1747 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1751 * Now add the diff between to previous timestamps and add it to :
1752 * (((1 * << 64) - 1) - delay_ns)
1754 * When the Carry Flag contains 1 this means the elapsed time is
1755 * longer than the expected delay, and we can exit the wait loop.
1757 *cs++ = MI_LOAD_REGISTER_IMM(2);
1758 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1759 *cs++ = lower_32_bits(delay_ticks);
1760 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1761 *cs++ = upper_32_bits(delay_ticks);
1764 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1765 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1766 *cs++ = MI_MATH_ADD;
1767 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1769 *cs++ = MI_ARB_CHECK;
1772 * Transfer the result into the predicate register to be used for the
1775 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1776 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1777 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1779 /* Predicate the jump. */
1780 *cs++ = (INTEL_GEN(i915) < 8 ?
1781 MI_BATCH_BUFFER_START :
1782 MI_BATCH_BUFFER_START_GEN8) |
1784 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1787 /* Restore registers. */
1788 for (i = 0; i < N_CS_GPR; i++)
1789 cs = save_restore_register(
1790 stream, cs, false /* restore */, CS_GPR(i),
1791 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1792 cs = save_restore_register(
1793 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1794 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1796 /* And return to the ring. */
1797 *cs++ = MI_BATCH_BUFFER_END;
1799 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1801 i915_gem_object_flush_map(bo);
1802 __i915_gem_object_release_map(bo);
1804 stream->noa_wait = vma;
1808 i915_vma_unpin_and_release(&vma, 0);
1810 i915_gem_object_put(bo);
1814 static u32 *write_cs_mi_lri(u32 *cs,
1815 const struct i915_oa_reg *reg_data,
1820 for (i = 0; i < n_regs; i++) {
1821 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1822 u32 n_lri = min_t(u32,
1824 MI_LOAD_REGISTER_IMM_MAX_REGS);
1826 *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1828 *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1829 *cs++ = reg_data[i].value;
1835 static int num_lri_dwords(int num_regs)
1840 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1841 count += num_regs * 2;
1847 static struct i915_oa_config_bo *
1848 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1849 struct i915_oa_config *oa_config)
1851 struct drm_i915_gem_object *obj;
1852 struct i915_oa_config_bo *oa_bo;
1853 size_t config_length = 0;
1857 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1859 return ERR_PTR(-ENOMEM);
1861 config_length += num_lri_dwords(oa_config->mux_regs_len);
1862 config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1863 config_length += num_lri_dwords(oa_config->flex_regs_len);
1864 config_length += 3; /* MI_BATCH_BUFFER_START */
1865 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1867 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1873 cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1879 cs = write_cs_mi_lri(cs,
1880 oa_config->mux_regs,
1881 oa_config->mux_regs_len);
1882 cs = write_cs_mi_lri(cs,
1883 oa_config->b_counter_regs,
1884 oa_config->b_counter_regs_len);
1885 cs = write_cs_mi_lri(cs,
1886 oa_config->flex_regs,
1887 oa_config->flex_regs_len);
1889 /* Jump into the active wait. */
1890 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1891 MI_BATCH_BUFFER_START :
1892 MI_BATCH_BUFFER_START_GEN8);
1893 *cs++ = i915_ggtt_offset(stream->noa_wait);
1896 i915_gem_object_flush_map(obj);
1897 __i915_gem_object_release_map(obj);
1899 oa_bo->vma = i915_vma_instance(obj,
1900 &stream->engine->gt->ggtt->vm,
1902 if (IS_ERR(oa_bo->vma)) {
1903 err = PTR_ERR(oa_bo->vma);
1907 oa_bo->oa_config = i915_oa_config_get(oa_config);
1908 llist_add(&oa_bo->node, &stream->oa_config_bos);
1913 i915_gem_object_put(obj);
1916 return ERR_PTR(err);
1919 static struct i915_vma *
1920 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1922 struct i915_oa_config_bo *oa_bo;
1925 * Look for the buffer in the already allocated BOs attached
1928 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1929 if (oa_bo->oa_config == oa_config &&
1930 memcmp(oa_bo->oa_config->uuid,
1932 sizeof(oa_config->uuid)) == 0)
1936 oa_bo = alloc_oa_config_buffer(stream, oa_config);
1938 return ERR_CAST(oa_bo);
1941 return i915_vma_get(oa_bo->vma);
1945 emit_oa_config(struct i915_perf_stream *stream,
1946 struct i915_oa_config *oa_config,
1947 struct intel_context *ce,
1948 struct i915_active *active)
1950 struct i915_request *rq;
1951 struct i915_vma *vma;
1952 struct i915_gem_ww_ctx ww;
1955 vma = get_oa_vma(stream, oa_config);
1957 return PTR_ERR(vma);
1959 i915_gem_ww_ctx_init(&ww, true);
1961 err = i915_gem_object_lock(vma->obj, &ww);
1965 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1969 intel_engine_pm_get(ce->engine);
1970 rq = i915_request_create(ce);
1971 intel_engine_pm_put(ce->engine);
1977 if (!IS_ERR_OR_NULL(active)) {
1978 /* After all individual context modifications */
1979 err = i915_request_await_active(rq, active,
1980 I915_ACTIVE_AWAIT_ACTIVE);
1982 goto err_add_request;
1984 err = i915_active_add_request(active, rq);
1986 goto err_add_request;
1989 err = i915_request_await_object(rq, vma->obj, 0);
1991 err = i915_vma_move_to_active(vma, rq, 0);
1993 goto err_add_request;
1995 err = rq->engine->emit_bb_start(rq,
1997 I915_DISPATCH_SECURE);
1999 goto err_add_request;
2002 i915_request_add(rq);
2004 i915_vma_unpin(vma);
2006 if (err == -EDEADLK) {
2007 err = i915_gem_ww_ctx_backoff(&ww);
2012 i915_gem_ww_ctx_fini(&ww);
2017 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2019 return stream->pinned_ctx ?: stream->engine->kernel_context;
2023 hsw_enable_metric_set(struct i915_perf_stream *stream,
2024 struct i915_active *active)
2026 struct intel_uncore *uncore = stream->uncore;
2031 * OA unit is using “crclk” for its functionality. When trunk
2032 * level clock gating takes place, OA clock would be gated,
2033 * unable to count the events from non-render clock domain.
2034 * Render clock gating must be disabled when OA is enabled to
2035 * count the events from non-render domain. Unit level clock
2036 * gating for RCS should also be disabled.
2038 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2039 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2040 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2041 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2043 return emit_oa_config(stream,
2044 stream->oa_config, oa_context(stream),
2048 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2050 struct intel_uncore *uncore = stream->uncore;
2052 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2053 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2054 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2055 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2057 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2060 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2063 u32 mmio = i915_mmio_reg_offset(reg);
2067 * This arbitrary default will select the 'EU FPU0 Pipeline
2068 * Active' event. In the future it's anticipated that there
2069 * will be an explicit 'No Event' we can select, but not yet...
2074 for (i = 0; i < oa_config->flex_regs_len; i++) {
2075 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2076 return oa_config->flex_regs[i].value;
2082 * NB: It must always remain pointer safe to run this even if the OA unit
2083 * has been disabled.
2085 * It's fine to put out-of-date values into these per-context registers
2086 * in the case that the OA unit has been disabled.
2089 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2090 const struct i915_perf_stream *stream)
2092 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2093 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2094 /* The MMIO offsets for Flex EU registers aren't contiguous */
2095 i915_reg_t flex_regs[] = {
2104 u32 *reg_state = ce->lrc_reg_state;
2107 reg_state[ctx_oactxctrl + 1] =
2108 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2109 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2110 GEN8_OA_COUNTER_RESUME;
2112 for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2113 reg_state[ctx_flexeu0 + i * 2 + 1] =
2114 oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2124 gen8_store_flex(struct i915_request *rq,
2125 struct intel_context *ce,
2126 const struct flex *flex, unsigned int count)
2131 cs = intel_ring_begin(rq, 4 * count);
2135 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2137 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2138 *cs++ = offset + flex->offset * sizeof(u32);
2140 *cs++ = flex->value;
2141 } while (flex++, --count);
2143 intel_ring_advance(rq, cs);
2149 gen8_load_flex(struct i915_request *rq,
2150 struct intel_context *ce,
2151 const struct flex *flex, unsigned int count)
2155 GEM_BUG_ON(!count || count > 63);
2157 cs = intel_ring_begin(rq, 2 * count + 2);
2161 *cs++ = MI_LOAD_REGISTER_IMM(count);
2163 *cs++ = i915_mmio_reg_offset(flex->reg);
2164 *cs++ = flex->value;
2165 } while (flex++, --count);
2168 intel_ring_advance(rq, cs);
2173 static int gen8_modify_context(struct intel_context *ce,
2174 const struct flex *flex, unsigned int count)
2176 struct i915_request *rq;
2179 rq = intel_engine_create_kernel_request(ce->engine);
2183 /* Serialise with the remote context */
2184 err = intel_context_prepare_remote_request(ce, rq);
2186 err = gen8_store_flex(rq, ce, flex, count);
2188 i915_request_add(rq);
2193 gen8_modify_self(struct intel_context *ce,
2194 const struct flex *flex, unsigned int count,
2195 struct i915_active *active)
2197 struct i915_request *rq;
2200 intel_engine_pm_get(ce->engine);
2201 rq = i915_request_create(ce);
2202 intel_engine_pm_put(ce->engine);
2206 if (!IS_ERR_OR_NULL(active)) {
2207 err = i915_active_add_request(active, rq);
2209 goto err_add_request;
2212 err = gen8_load_flex(rq, ce, flex, count);
2214 goto err_add_request;
2217 i915_request_add(rq);
2221 static int gen8_configure_context(struct i915_gem_context *ctx,
2222 struct flex *flex, unsigned int count)
2224 struct i915_gem_engines_iter it;
2225 struct intel_context *ce;
2228 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2229 GEM_BUG_ON(ce == ce->engine->kernel_context);
2231 if (ce->engine->class != RENDER_CLASS)
2234 /* Otherwise OA settings will be set upon first use */
2235 if (!intel_context_pin_if_active(ce))
2238 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2239 err = gen8_modify_context(ce, flex, count);
2241 intel_context_unpin(ce);
2245 i915_gem_context_unlock_engines(ctx);
2250 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2251 struct i915_active *active)
2254 struct intel_context *ce = stream->pinned_ctx;
2255 u32 format = stream->oa_buffer.format;
2256 struct flex regs_context[] = {
2259 stream->perf->ctx_oactxctrl_offset + 1,
2260 active ? GEN8_OA_COUNTER_RESUME : 0,
2263 /* Offsets in regs_lri are not used since this configuration is only
2264 * applied using LRI. Initialize the correct offsets for posterity.
2266 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2267 struct flex regs_lri[] = {
2269 GEN12_OAR_OACONTROL,
2270 GEN12_OAR_OACONTROL_OFFSET + 1,
2271 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2272 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2275 RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2276 CTX_CONTEXT_CONTROL,
2277 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2279 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2284 /* Modify the context image of pinned context with regs_context*/
2285 err = intel_context_lock_pinned(ce);
2289 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2290 intel_context_unlock_pinned(ce);
2294 /* Apply regs_lri using LRI with pinned context */
2295 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2299 * Manages updating the per-context aspects of the OA stream
2300 * configuration across all contexts.
2302 * The awkward consideration here is that OACTXCONTROL controls the
2303 * exponent for periodic sampling which is primarily used for system
2304 * wide profiling where we'd like a consistent sampling period even in
2305 * the face of context switches.
2307 * Our approach of updating the register state context (as opposed to
2308 * say using a workaround batch buffer) ensures that the hardware
2309 * won't automatically reload an out-of-date timer exponent even
2310 * transiently before a WA BB could be parsed.
2312 * This function needs to:
2313 * - Ensure the currently running context's per-context OA state is
2315 * - Ensure that all existing contexts will have the correct per-context
2316 * OA state if they are scheduled for use.
2317 * - Ensure any new contexts will be initialized with the correct
2318 * per-context OA state.
2320 * Note: it's only the RCS/Render context that has any OA state.
2321 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2324 oa_configure_all_contexts(struct i915_perf_stream *stream,
2327 struct i915_active *active)
2329 struct drm_i915_private *i915 = stream->perf->i915;
2330 struct intel_engine_cs *engine;
2331 struct i915_gem_context *ctx, *cn;
2334 lockdep_assert_held(&stream->perf->lock);
2337 * The OA register config is setup through the context image. This image
2338 * might be written to by the GPU on context switch (in particular on
2339 * lite-restore). This means we can't safely update a context's image,
2340 * if this context is scheduled/submitted to run on the GPU.
2342 * We could emit the OA register config through the batch buffer but
2343 * this might leave small interval of time where the OA unit is
2344 * configured at an invalid sampling period.
2346 * Note that since we emit all requests from a single ring, there
2347 * is still an implicit global barrier here that may cause a high
2348 * priority context to wait for an otherwise independent low priority
2349 * context. Contexts idle at the time of reconfiguration are not
2350 * trapped behind the barrier.
2352 spin_lock(&i915->gem.contexts.lock);
2353 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2354 if (!kref_get_unless_zero(&ctx->ref))
2357 spin_unlock(&i915->gem.contexts.lock);
2359 err = gen8_configure_context(ctx, regs, num_regs);
2361 i915_gem_context_put(ctx);
2365 spin_lock(&i915->gem.contexts.lock);
2366 list_safe_reset_next(ctx, cn, link);
2367 i915_gem_context_put(ctx);
2369 spin_unlock(&i915->gem.contexts.lock);
2372 * After updating all other contexts, we need to modify ourselves.
2373 * If we don't modify the kernel_context, we do not get events while
2376 for_each_uabi_engine(engine, i915) {
2377 struct intel_context *ce = engine->kernel_context;
2379 if (engine->class != RENDER_CLASS)
2382 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2384 err = gen8_modify_self(ce, regs, num_regs, active);
2393 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2394 const struct i915_oa_config *oa_config,
2395 struct i915_active *active)
2397 struct flex regs[] = {
2399 GEN8_R_PWR_CLK_STATE,
2400 CTX_R_PWR_CLK_STATE,
2404 return oa_configure_all_contexts(stream,
2405 regs, ARRAY_SIZE(regs),
2410 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2411 const struct i915_oa_config *oa_config,
2412 struct i915_active *active)
2414 /* The MMIO offsets for Flex EU registers aren't contiguous */
2415 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2416 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2417 struct flex regs[] = {
2419 GEN8_R_PWR_CLK_STATE,
2420 CTX_R_PWR_CLK_STATE,
2424 stream->perf->ctx_oactxctrl_offset + 1,
2426 { EU_PERF_CNTL0, ctx_flexeuN(0) },
2427 { EU_PERF_CNTL1, ctx_flexeuN(1) },
2428 { EU_PERF_CNTL2, ctx_flexeuN(2) },
2429 { EU_PERF_CNTL3, ctx_flexeuN(3) },
2430 { EU_PERF_CNTL4, ctx_flexeuN(4) },
2431 { EU_PERF_CNTL5, ctx_flexeuN(5) },
2432 { EU_PERF_CNTL6, ctx_flexeuN(6) },
2438 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2439 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2440 GEN8_OA_COUNTER_RESUME;
2442 for (i = 2; i < ARRAY_SIZE(regs); i++)
2443 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2445 return oa_configure_all_contexts(stream,
2446 regs, ARRAY_SIZE(regs),
2451 gen8_enable_metric_set(struct i915_perf_stream *stream,
2452 struct i915_active *active)
2454 struct intel_uncore *uncore = stream->uncore;
2455 struct i915_oa_config *oa_config = stream->oa_config;
2459 * We disable slice/unslice clock ratio change reports on SKL since
2460 * they are too noisy. The HW generates a lot of redundant reports
2461 * where the ratio hasn't really changed causing a lot of redundant
2462 * work to processes and increasing the chances we'll hit buffer
2465 * Although we don't currently use the 'disable overrun' OABUFFER
2466 * feature it's worth noting that clock ratio reports have to be
2467 * disabled before considering to use that feature since the HW doesn't
2468 * correctly block these reports.
2470 * Currently none of the high-level metrics we have depend on knowing
2471 * this ratio to normalize.
2473 * Note: This register is not power context saved and restored, but
2474 * that's OK considering that we disable RC6 while the OA unit is
2477 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2478 * be read back from automatically triggered reports, as part of the
2481 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2482 intel_uncore_write(uncore, GEN8_OA_DEBUG,
2483 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2484 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2488 * Update all contexts prior writing the mux configurations as we need
2489 * to make sure all slices/subslices are ON before writing to NOA
2492 ret = lrc_configure_all_contexts(stream, oa_config, active);
2496 return emit_oa_config(stream,
2497 stream->oa_config, oa_context(stream),
2501 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2503 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2504 (stream->sample_flags & SAMPLE_OA_REPORT) ?
2505 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2509 gen12_enable_metric_set(struct i915_perf_stream *stream,
2510 struct i915_active *active)
2512 struct intel_uncore *uncore = stream->uncore;
2513 struct i915_oa_config *oa_config = stream->oa_config;
2514 bool periodic = stream->periodic;
2515 u32 period_exponent = stream->period_exponent;
2518 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2519 /* Disable clk ratio reports, like previous Gens. */
2520 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2521 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2523 * If the user didn't require OA reports, instruct
2524 * the hardware not to emit ctx switch reports.
2526 oag_report_ctx_switches(stream));
2528 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2529 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2530 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2531 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2535 * Update all contexts prior writing the mux configurations as we need
2536 * to make sure all slices/subslices are ON before writing to NOA
2539 ret = gen12_configure_all_contexts(stream, oa_config, active);
2544 * For Gen12, performance counters are context
2545 * saved/restored. Only enable it for the context that
2549 ret = gen12_configure_oar_context(stream, active);
2554 return emit_oa_config(stream,
2555 stream->oa_config, oa_context(stream),
2559 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2561 struct intel_uncore *uncore = stream->uncore;
2563 /* Reset all contexts' slices/subslices configurations. */
2564 lrc_configure_all_contexts(stream, NULL, NULL);
2566 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2569 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2571 struct intel_uncore *uncore = stream->uncore;
2573 /* Reset all contexts' slices/subslices configurations. */
2574 lrc_configure_all_contexts(stream, NULL, NULL);
2576 /* Make sure we disable noa to save power. */
2577 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2580 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2582 struct intel_uncore *uncore = stream->uncore;
2584 /* Reset all contexts' slices/subslices configurations. */
2585 gen12_configure_all_contexts(stream, NULL, NULL);
2587 /* disable the context save/restore or OAR counters */
2589 gen12_configure_oar_context(stream, NULL);
2591 /* Make sure we disable noa to save power. */
2592 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2595 static void gen7_oa_enable(struct i915_perf_stream *stream)
2597 struct intel_uncore *uncore = stream->uncore;
2598 struct i915_gem_context *ctx = stream->ctx;
2599 u32 ctx_id = stream->specific_ctx_id;
2600 bool periodic = stream->periodic;
2601 u32 period_exponent = stream->period_exponent;
2602 u32 report_format = stream->oa_buffer.format;
2605 * Reset buf pointers so we don't forward reports from before now.
2607 * Think carefully if considering trying to avoid this, since it
2608 * also ensures status flags and the buffer itself are cleared
2609 * in error paths, and we have checks for invalid reports based
2610 * on the assumption that certain fields are written to zeroed
2611 * memory which this helps maintains.
2613 gen7_init_oa_buffer(stream);
2615 intel_uncore_write(uncore, GEN7_OACONTROL,
2616 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2618 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2619 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2620 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2621 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2622 GEN7_OACONTROL_ENABLE);
2625 static void gen8_oa_enable(struct i915_perf_stream *stream)
2627 struct intel_uncore *uncore = stream->uncore;
2628 u32 report_format = stream->oa_buffer.format;
2631 * Reset buf pointers so we don't forward reports from before now.
2633 * Think carefully if considering trying to avoid this, since it
2634 * also ensures status flags and the buffer itself are cleared
2635 * in error paths, and we have checks for invalid reports based
2636 * on the assumption that certain fields are written to zeroed
2637 * memory which this helps maintains.
2639 gen8_init_oa_buffer(stream);
2642 * Note: we don't rely on the hardware to perform single context
2643 * filtering and instead filter on the cpu based on the context-id
2646 intel_uncore_write(uncore, GEN8_OACONTROL,
2647 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2648 GEN8_OA_COUNTER_ENABLE);
2651 static void gen12_oa_enable(struct i915_perf_stream *stream)
2653 struct intel_uncore *uncore = stream->uncore;
2654 u32 report_format = stream->oa_buffer.format;
2657 * If we don't want OA reports from the OA buffer, then we don't even
2658 * need to program the OAG unit.
2660 if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2663 gen12_init_oa_buffer(stream);
2665 intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2666 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2667 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2671 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2672 * @stream: An i915 perf stream opened for OA metrics
2674 * [Re]enables hardware periodic sampling according to the period configured
2675 * when opening the stream. This also starts a hrtimer that will periodically
2676 * check for data in the circular OA buffer for notifying userspace (e.g.
2677 * during a read() or poll()).
2679 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2681 stream->pollin = false;
2683 stream->perf->ops.oa_enable(stream);
2685 if (stream->periodic)
2686 hrtimer_start(&stream->poll_check_timer,
2687 ns_to_ktime(stream->poll_oa_period),
2688 HRTIMER_MODE_REL_PINNED);
2691 static void gen7_oa_disable(struct i915_perf_stream *stream)
2693 struct intel_uncore *uncore = stream->uncore;
2695 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2696 if (intel_wait_for_register(uncore,
2697 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2699 drm_err(&stream->perf->i915->drm,
2700 "wait for OA to be disabled timed out\n");
2703 static void gen8_oa_disable(struct i915_perf_stream *stream)
2705 struct intel_uncore *uncore = stream->uncore;
2707 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2708 if (intel_wait_for_register(uncore,
2709 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2711 drm_err(&stream->perf->i915->drm,
2712 "wait for OA to be disabled timed out\n");
2715 static void gen12_oa_disable(struct i915_perf_stream *stream)
2717 struct intel_uncore *uncore = stream->uncore;
2719 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2720 if (intel_wait_for_register(uncore,
2721 GEN12_OAG_OACONTROL,
2722 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2724 drm_err(&stream->perf->i915->drm,
2725 "wait for OA to be disabled timed out\n");
2727 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2728 if (intel_wait_for_register(uncore,
2729 GEN12_OA_TLB_INV_CR,
2732 drm_err(&stream->perf->i915->drm,
2733 "wait for OA tlb invalidate timed out\n");
2737 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2738 * @stream: An i915 perf stream opened for OA metrics
2740 * Stops the OA unit from periodically writing counter reports into the
2741 * circular OA buffer. This also stops the hrtimer that periodically checks for
2742 * data in the circular OA buffer, for notifying userspace.
2744 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2746 stream->perf->ops.oa_disable(stream);
2748 if (stream->periodic)
2749 hrtimer_cancel(&stream->poll_check_timer);
2752 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2753 .destroy = i915_oa_stream_destroy,
2754 .enable = i915_oa_stream_enable,
2755 .disable = i915_oa_stream_disable,
2756 .wait_unlocked = i915_oa_wait_unlocked,
2757 .poll_wait = i915_oa_poll_wait,
2758 .read = i915_oa_read,
2761 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2763 struct i915_active *active;
2766 active = i915_active_create();
2770 err = stream->perf->ops.enable_metric_set(stream, active);
2772 __i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2774 i915_active_put(active);
2779 get_default_sseu_config(struct intel_sseu *out_sseu,
2780 struct intel_engine_cs *engine)
2782 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2784 *out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2786 if (IS_GEN(engine->i915, 11)) {
2788 * We only need subslice count so it doesn't matter which ones
2789 * we select - just turn off low bits in the amount of half of
2790 * all available subslices per slice.
2792 out_sseu->subslice_mask =
2793 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2794 out_sseu->slice_mask = 0x1;
2799 get_sseu_config(struct intel_sseu *out_sseu,
2800 struct intel_engine_cs *engine,
2801 const struct drm_i915_gem_context_param_sseu *drm_sseu)
2803 if (drm_sseu->engine.engine_class != engine->uabi_class ||
2804 drm_sseu->engine.engine_instance != engine->uabi_instance)
2807 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2811 * i915_oa_stream_init - validate combined props for OA stream and init
2812 * @stream: An i915 perf stream
2813 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2814 * @props: The property state that configures stream (individually validated)
2816 * While read_properties_unlocked() validates properties in isolation it
2817 * doesn't ensure that the combination necessarily makes sense.
2819 * At this point it has been determined that userspace wants a stream of
2820 * OA metrics, but still we need to further validate the combined
2821 * properties are OK.
2823 * If the configuration makes sense then we can allocate memory for
2824 * a circular OA buffer and apply the requested metric set configuration.
2826 * Returns: zero on success or a negative error code.
2828 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2829 struct drm_i915_perf_open_param *param,
2830 struct perf_open_properties *props)
2832 struct drm_i915_private *i915 = stream->perf->i915;
2833 struct i915_perf *perf = stream->perf;
2837 if (!props->engine) {
2838 DRM_DEBUG("OA engine not specified\n");
2843 * If the sysfs metrics/ directory wasn't registered for some
2844 * reason then don't let userspace try their luck with config
2847 if (!perf->metrics_kobj) {
2848 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2852 if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2853 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2854 DRM_DEBUG("Only OA report sampling supported\n");
2858 if (!perf->ops.enable_metric_set) {
2859 DRM_DEBUG("OA unit not supported\n");
2864 * To avoid the complexity of having to accurately filter
2865 * counter reports and marshal to the appropriate client
2866 * we currently only allow exclusive access
2868 if (perf->exclusive_stream) {
2869 DRM_DEBUG("OA unit already in use\n");
2873 if (!props->oa_format) {
2874 DRM_DEBUG("OA report format not specified\n");
2878 stream->engine = props->engine;
2879 stream->uncore = stream->engine->gt->uncore;
2881 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2883 format_size = perf->oa_formats[props->oa_format].size;
2885 stream->sample_flags = props->sample_flags;
2886 stream->sample_size += format_size;
2888 stream->oa_buffer.format_size = format_size;
2889 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2892 stream->hold_preemption = props->hold_preemption;
2894 stream->oa_buffer.format =
2895 perf->oa_formats[props->oa_format].format;
2897 stream->periodic = props->oa_periodic;
2898 if (stream->periodic)
2899 stream->period_exponent = props->oa_period_exponent;
2902 ret = oa_get_render_ctx_id(stream);
2904 DRM_DEBUG("Invalid context id to filter with\n");
2909 ret = alloc_noa_wait(stream);
2911 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2912 goto err_noa_wait_alloc;
2915 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2916 if (!stream->oa_config) {
2917 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2922 /* PRM - observability performance counters:
2924 * OACONTROL, performance counter enable, note:
2926 * "When this bit is set, in order to have coherent counts,
2927 * RC6 power state and trunk clock gating must be disabled.
2928 * This can be achieved by programming MMIO registers as
2929 * 0xA094=0 and 0xA090[31]=1"
2931 * In our case we are expecting that taking pm + FORCEWAKE
2932 * references will effectively disable RC6.
2934 intel_engine_pm_get(stream->engine);
2935 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2937 ret = alloc_oa_buffer(stream);
2939 goto err_oa_buf_alloc;
2941 stream->ops = &i915_oa_stream_ops;
2943 perf->sseu = props->sseu;
2944 WRITE_ONCE(perf->exclusive_stream, stream);
2946 ret = i915_perf_stream_enable_sync(stream);
2948 DRM_DEBUG("Unable to enable metric set\n");
2952 DRM_DEBUG("opening stream oa config uuid=%s\n",
2953 stream->oa_config->uuid);
2955 hrtimer_init(&stream->poll_check_timer,
2956 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2957 stream->poll_check_timer.function = oa_poll_check_timer_cb;
2958 init_waitqueue_head(&stream->poll_wq);
2959 spin_lock_init(&stream->oa_buffer.ptr_lock);
2964 WRITE_ONCE(perf->exclusive_stream, NULL);
2965 perf->ops.disable_metric_set(stream);
2967 free_oa_buffer(stream);
2970 free_oa_configs(stream);
2972 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2973 intel_engine_pm_put(stream->engine);
2976 free_noa_wait(stream);
2980 oa_put_render_ctx_id(stream);
2985 void i915_oa_init_reg_state(const struct intel_context *ce,
2986 const struct intel_engine_cs *engine)
2988 struct i915_perf_stream *stream;
2990 if (engine->class != RENDER_CLASS)
2993 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2994 stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2995 if (stream && INTEL_GEN(stream->perf->i915) < 12)
2996 gen8_update_reg_state_unlocked(ce, stream);
3000 * i915_perf_read - handles read() FOP for i915 perf stream FDs
3001 * @file: An i915 perf stream file
3002 * @buf: destination buffer given by userspace
3003 * @count: the number of bytes userspace wants to read
3004 * @ppos: (inout) file seek position (unused)
3006 * The entry point for handling a read() on a stream file descriptor from
3007 * userspace. Most of the work is left to the i915_perf_read_locked() and
3008 * &i915_perf_stream_ops->read but to save having stream implementations (of
3009 * which we might have multiple later) we handle blocking read here.
3011 * We can also consistently treat trying to read from a disabled stream
3012 * as an IO error so implementations can assume the stream is enabled
3015 * Returns: The number of bytes copied or a negative error code on failure.
3017 static ssize_t i915_perf_read(struct file *file,
3022 struct i915_perf_stream *stream = file->private_data;
3023 struct i915_perf *perf = stream->perf;
3027 /* To ensure it's handled consistently we simply treat all reads of a
3028 * disabled stream as an error. In particular it might otherwise lead
3029 * to a deadlock for blocking file descriptors...
3031 if (!stream->enabled)
3034 if (!(file->f_flags & O_NONBLOCK)) {
3035 /* There's the small chance of false positives from
3036 * stream->ops->wait_unlocked.
3038 * E.g. with single context filtering since we only wait until
3039 * oabuffer has >= 1 report we don't immediately know whether
3040 * any reports really belong to the current context
3043 ret = stream->ops->wait_unlocked(stream);
3047 mutex_lock(&perf->lock);
3048 ret = stream->ops->read(stream, buf, count, &offset);
3049 mutex_unlock(&perf->lock);
3050 } while (!offset && !ret);
3052 mutex_lock(&perf->lock);
3053 ret = stream->ops->read(stream, buf, count, &offset);
3054 mutex_unlock(&perf->lock);
3057 /* We allow the poll checking to sometimes report false positive EPOLLIN
3058 * events where we might actually report EAGAIN on read() if there's
3059 * not really any data available. In this situation though we don't
3060 * want to enter a busy loop between poll() reporting a EPOLLIN event
3061 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3062 * effectively ensures we back off until the next hrtimer callback
3063 * before reporting another EPOLLIN event.
3064 * The exception to this is if ops->read() returned -ENOSPC which means
3065 * that more OA data is available than could fit in the user provided
3066 * buffer. In this case we want the next poll() call to not block.
3069 stream->pollin = false;
3071 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3072 return offset ?: (ret ?: -EAGAIN);
3075 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3077 struct i915_perf_stream *stream =
3078 container_of(hrtimer, typeof(*stream), poll_check_timer);
3080 if (oa_buffer_check_unlocked(stream)) {
3081 stream->pollin = true;
3082 wake_up(&stream->poll_wq);
3085 hrtimer_forward_now(hrtimer,
3086 ns_to_ktime(stream->poll_oa_period));
3088 return HRTIMER_RESTART;
3092 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3093 * @stream: An i915 perf stream
3094 * @file: An i915 perf stream file
3095 * @wait: poll() state table
3097 * For handling userspace polling on an i915 perf stream, this calls through to
3098 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3099 * will be woken for new stream data.
3101 * Note: The &perf->lock mutex has been taken to serialize
3102 * with any non-file-operation driver hooks.
3104 * Returns: any poll events that are ready without sleeping
3106 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3110 __poll_t events = 0;
3112 stream->ops->poll_wait(stream, file, wait);
3114 /* Note: we don't explicitly check whether there's something to read
3115 * here since this path may be very hot depending on what else
3116 * userspace is polling, or on the timeout in use. We rely solely on
3117 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3127 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3128 * @file: An i915 perf stream file
3129 * @wait: poll() state table
3131 * For handling userspace polling on an i915 perf stream, this ensures
3132 * poll_wait() gets called with a wait queue that will be woken for new stream
3135 * Note: Implementation deferred to i915_perf_poll_locked()
3137 * Returns: any poll events that are ready without sleeping
3139 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3141 struct i915_perf_stream *stream = file->private_data;
3142 struct i915_perf *perf = stream->perf;
3145 mutex_lock(&perf->lock);
3146 ret = i915_perf_poll_locked(stream, file, wait);
3147 mutex_unlock(&perf->lock);
3153 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3154 * @stream: A disabled i915 perf stream
3156 * [Re]enables the associated capture of data for this stream.
3158 * If a stream was previously enabled then there's currently no intention
3159 * to provide userspace any guarantee about the preservation of previously
3162 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3164 if (stream->enabled)
3167 /* Allow stream->ops->enable() to refer to this */
3168 stream->enabled = true;
3170 if (stream->ops->enable)
3171 stream->ops->enable(stream);
3173 if (stream->hold_preemption)
3174 intel_context_set_nopreempt(stream->pinned_ctx);
3178 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3179 * @stream: An enabled i915 perf stream
3181 * Disables the associated capture of data for this stream.
3183 * The intention is that disabling an re-enabling a stream will ideally be
3184 * cheaper than destroying and re-opening a stream with the same configuration,
3185 * though there are no formal guarantees about what state or buffered data
3186 * must be retained between disabling and re-enabling a stream.
3188 * Note: while a stream is disabled it's considered an error for userspace
3189 * to attempt to read from the stream (-EIO).
3191 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3193 if (!stream->enabled)
3196 /* Allow stream->ops->disable() to refer to this */
3197 stream->enabled = false;
3199 if (stream->hold_preemption)
3200 intel_context_clear_nopreempt(stream->pinned_ctx);
3202 if (stream->ops->disable)
3203 stream->ops->disable(stream);
3206 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3207 unsigned long metrics_set)
3209 struct i915_oa_config *config;
3210 long ret = stream->oa_config->id;
3212 config = i915_perf_get_oa_config(stream->perf, metrics_set);
3216 if (config != stream->oa_config) {
3220 * If OA is bound to a specific context, emit the
3221 * reconfiguration inline from that context. The update
3222 * will then be ordered with respect to submission on that
3225 * When set globally, we use a low priority kernel context,
3226 * so it will effectively take effect when idle.
3228 err = emit_oa_config(stream, config, oa_context(stream), NULL);
3230 config = xchg(&stream->oa_config, config);
3235 i915_oa_config_put(config);
3241 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3242 * @stream: An i915 perf stream
3243 * @cmd: the ioctl request
3244 * @arg: the ioctl data
3246 * Note: The &perf->lock mutex has been taken to serialize
3247 * with any non-file-operation driver hooks.
3249 * Returns: zero on success or a negative error code. Returns -EINVAL for
3250 * an unknown ioctl request.
3252 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3257 case I915_PERF_IOCTL_ENABLE:
3258 i915_perf_enable_locked(stream);
3260 case I915_PERF_IOCTL_DISABLE:
3261 i915_perf_disable_locked(stream);
3263 case I915_PERF_IOCTL_CONFIG:
3264 return i915_perf_config_locked(stream, arg);
3271 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3272 * @file: An i915 perf stream file
3273 * @cmd: the ioctl request
3274 * @arg: the ioctl data
3276 * Implementation deferred to i915_perf_ioctl_locked().
3278 * Returns: zero on success or a negative error code. Returns -EINVAL for
3279 * an unknown ioctl request.
3281 static long i915_perf_ioctl(struct file *file,
3285 struct i915_perf_stream *stream = file->private_data;
3286 struct i915_perf *perf = stream->perf;
3289 mutex_lock(&perf->lock);
3290 ret = i915_perf_ioctl_locked(stream, cmd, arg);
3291 mutex_unlock(&perf->lock);
3297 * i915_perf_destroy_locked - destroy an i915 perf stream
3298 * @stream: An i915 perf stream
3300 * Frees all resources associated with the given i915 perf @stream, disabling
3301 * any associated data capture in the process.
3303 * Note: The &perf->lock mutex has been taken to serialize
3304 * with any non-file-operation driver hooks.
3306 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3308 if (stream->enabled)
3309 i915_perf_disable_locked(stream);
3311 if (stream->ops->destroy)
3312 stream->ops->destroy(stream);
3315 i915_gem_context_put(stream->ctx);
3321 * i915_perf_release - handles userspace close() of a stream file
3322 * @inode: anonymous inode associated with file
3323 * @file: An i915 perf stream file
3325 * Cleans up any resources associated with an open i915 perf stream file.
3327 * NB: close() can't really fail from the userspace point of view.
3329 * Returns: zero on success or a negative error code.
3331 static int i915_perf_release(struct inode *inode, struct file *file)
3333 struct i915_perf_stream *stream = file->private_data;
3334 struct i915_perf *perf = stream->perf;
3336 mutex_lock(&perf->lock);
3337 i915_perf_destroy_locked(stream);
3338 mutex_unlock(&perf->lock);
3340 /* Release the reference the perf stream kept on the driver. */
3341 drm_dev_put(&perf->i915->drm);
3347 static const struct file_operations fops = {
3348 .owner = THIS_MODULE,
3349 .llseek = no_llseek,
3350 .release = i915_perf_release,
3351 .poll = i915_perf_poll,
3352 .read = i915_perf_read,
3353 .unlocked_ioctl = i915_perf_ioctl,
3354 /* Our ioctl have no arguments, so it's safe to use the same function
3355 * to handle 32bits compatibility.
3357 .compat_ioctl = i915_perf_ioctl,
3362 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3363 * @perf: i915 perf instance
3364 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3365 * @props: individually validated u64 property value pairs
3368 * See i915_perf_ioctl_open() for interface details.
3370 * Implements further stream config validation and stream initialization on
3371 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3372 * taken to serialize with any non-file-operation driver hooks.
3374 * Note: at this point the @props have only been validated in isolation and
3375 * it's still necessary to validate that the combination of properties makes
3378 * In the case where userspace is interested in OA unit metrics then further
3379 * config validation and stream initialization details will be handled by
3380 * i915_oa_stream_init(). The code here should only validate config state that
3381 * will be relevant to all stream types / backends.
3383 * Returns: zero on success or a negative error code.
3386 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3387 struct drm_i915_perf_open_param *param,
3388 struct perf_open_properties *props,
3389 struct drm_file *file)
3391 struct i915_gem_context *specific_ctx = NULL;
3392 struct i915_perf_stream *stream = NULL;
3393 unsigned long f_flags = 0;
3394 bool privileged_op = true;
3398 if (props->single_context) {
3399 u32 ctx_handle = props->ctx_handle;
3400 struct drm_i915_file_private *file_priv = file->driver_priv;
3402 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3403 if (!specific_ctx) {
3404 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3412 * On Haswell the OA unit supports clock gating off for a specific
3413 * context and in this mode there's no visibility of metrics for the
3414 * rest of the system, which we consider acceptable for a
3415 * non-privileged client.
3417 * For Gen8->11 the OA unit no longer supports clock gating off for a
3418 * specific context and the kernel can't securely stop the counters
3419 * from updating as system-wide / global values. Even though we can
3420 * filter reports based on the included context ID we can't block
3421 * clients from seeing the raw / global counter values via
3422 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3423 * enable the OA unit by default.
3425 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3426 * per context basis. So we can relax requirements there if the user
3427 * doesn't request global stream access (i.e. query based sampling
3428 * using MI_RECORD_PERF_COUNT.
3430 if (IS_HASWELL(perf->i915) && specific_ctx)
3431 privileged_op = false;
3432 else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3433 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3434 privileged_op = false;
3436 if (props->hold_preemption) {
3437 if (!props->single_context) {
3438 DRM_DEBUG("preemption disable with no context\n");
3442 privileged_op = true;
3446 * Asking for SSEU configuration is a priviliged operation.
3448 if (props->has_sseu)
3449 privileged_op = true;
3451 get_default_sseu_config(&props->sseu, props->engine);
3453 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3454 * we check a dev.i915.perf_stream_paranoid sysctl option
3455 * to determine if it's ok to access system wide OA counters
3456 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3458 if (privileged_op &&
3459 i915_perf_stream_paranoid && !perfmon_capable()) {
3460 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3465 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3471 stream->perf = perf;
3472 stream->ctx = specific_ctx;
3473 stream->poll_oa_period = props->poll_oa_period;
3475 ret = i915_oa_stream_init(stream, param, props);
3479 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3480 * to have _stream_init check the combination of sample flags more
3481 * thoroughly, but still this is the expected result at this point.
3483 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3488 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3489 f_flags |= O_CLOEXEC;
3490 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3491 f_flags |= O_NONBLOCK;
3493 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3494 if (stream_fd < 0) {
3499 if (!(param->flags & I915_PERF_FLAG_DISABLED))
3500 i915_perf_enable_locked(stream);
3502 /* Take a reference on the driver that will be kept with stream_fd
3503 * until its release.
3505 drm_dev_get(&perf->i915->drm);
3510 if (stream->ops->destroy)
3511 stream->ops->destroy(stream);
3516 i915_gem_context_put(specific_ctx);
3521 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3523 return intel_gt_clock_interval_to_ns(perf->i915->ggtt.vm.gt,
3528 * read_properties_unlocked - validate + copy userspace stream open properties
3529 * @perf: i915 perf instance
3530 * @uprops: The array of u64 key value pairs given by userspace
3531 * @n_props: The number of key value pairs expected in @uprops
3532 * @props: The stream configuration built up while validating properties
3534 * Note this function only validates properties in isolation it doesn't
3535 * validate that the combination of properties makes sense or that all
3536 * properties necessary for a particular kind of stream have been set.
3538 * Note that there currently aren't any ordering requirements for properties so
3539 * we shouldn't validate or assume anything about ordering here. This doesn't
3540 * rule out defining new properties with ordering requirements in the future.
3542 static int read_properties_unlocked(struct i915_perf *perf,
3545 struct perf_open_properties *props)
3547 u64 __user *uprop = uprops;
3551 memset(props, 0, sizeof(struct perf_open_properties));
3552 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3555 DRM_DEBUG("No i915 perf properties given\n");
3559 /* At the moment we only support using i915-perf on the RCS. */
3560 props->engine = intel_engine_lookup_user(perf->i915,
3561 I915_ENGINE_CLASS_RENDER,
3563 if (!props->engine) {
3564 DRM_DEBUG("No RENDER-capable engines\n");
3568 /* Considering that ID = 0 is reserved and assuming that we don't
3569 * (currently) expect any configurations to ever specify duplicate
3570 * values for a particular property ID then the last _PROP_MAX value is
3571 * one greater than the maximum number of properties we expect to get
3574 if (n_props >= DRM_I915_PERF_PROP_MAX) {
3575 DRM_DEBUG("More i915 perf properties specified than exist\n");
3579 for (i = 0; i < n_props; i++) {
3580 u64 oa_period, oa_freq_hz;
3583 ret = get_user(id, uprop);
3587 ret = get_user(value, uprop + 1);
3591 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3592 DRM_DEBUG("Unknown i915 perf property ID\n");
3596 switch ((enum drm_i915_perf_property_id)id) {
3597 case DRM_I915_PERF_PROP_CTX_HANDLE:
3598 props->single_context = 1;
3599 props->ctx_handle = value;
3601 case DRM_I915_PERF_PROP_SAMPLE_OA:
3603 props->sample_flags |= SAMPLE_OA_REPORT;
3605 case DRM_I915_PERF_PROP_OA_METRICS_SET:
3607 DRM_DEBUG("Unknown OA metric set ID\n");
3610 props->metrics_set = value;
3612 case DRM_I915_PERF_PROP_OA_FORMAT:
3613 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3614 DRM_DEBUG("Out-of-range OA report format %llu\n",
3618 if (!perf->oa_formats[value].size) {
3619 DRM_DEBUG("Unsupported OA report format %llu\n",
3623 props->oa_format = value;
3625 case DRM_I915_PERF_PROP_OA_EXPONENT:
3626 if (value > OA_EXPONENT_MAX) {
3627 DRM_DEBUG("OA timer exponent too high (> %u)\n",
3632 /* Theoretically we can program the OA unit to sample
3633 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3634 * for BXT. We don't allow such high sampling
3635 * frequencies by default unless root.
3638 BUILD_BUG_ON(sizeof(oa_period) != 8);
3639 oa_period = oa_exponent_to_ns(perf, value);
3641 /* This check is primarily to ensure that oa_period <=
3642 * UINT32_MAX (before passing to do_div which only
3643 * accepts a u32 denominator), but we can also skip
3644 * checking anything < 1Hz which implicitly can't be
3645 * limited via an integer oa_max_sample_rate.
3647 if (oa_period <= NSEC_PER_SEC) {
3648 u64 tmp = NSEC_PER_SEC;
3649 do_div(tmp, oa_period);
3654 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3655 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3656 i915_oa_max_sample_rate);
3660 props->oa_periodic = true;
3661 props->oa_period_exponent = value;
3663 case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3664 props->hold_preemption = !!value;
3666 case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3667 struct drm_i915_gem_context_param_sseu user_sseu;
3669 if (copy_from_user(&user_sseu,
3670 u64_to_user_ptr(value),
3671 sizeof(user_sseu))) {
3672 DRM_DEBUG("Unable to copy global sseu parameter\n");
3676 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3678 DRM_DEBUG("Invalid SSEU configuration\n");
3681 props->has_sseu = true;
3684 case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3685 if (value < 100000 /* 100us */) {
3686 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3690 props->poll_oa_period = value;
3692 case DRM_I915_PERF_PROP_MAX:
3704 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3706 * @data: ioctl data copied from userspace (unvalidated)
3709 * Validates the stream open parameters given by userspace including flags
3710 * and an array of u64 key, value pair properties.
3712 * Very little is assumed up front about the nature of the stream being
3713 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3714 * i915-perf stream is expected to be a suitable interface for other forms of
3715 * buffered data written by the GPU besides periodic OA metrics.
3717 * Note we copy the properties from userspace outside of the i915 perf
3718 * mutex to avoid an awkward lockdep with mmap_lock.
3720 * Most of the implementation details are handled by
3721 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3722 * mutex for serializing with any non-file-operation driver hooks.
3724 * Return: A newly opened i915 Perf stream file descriptor or negative
3725 * error code on failure.
3727 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3728 struct drm_file *file)
3730 struct i915_perf *perf = &to_i915(dev)->perf;
3731 struct drm_i915_perf_open_param *param = data;
3732 struct perf_open_properties props;
3733 u32 known_open_flags;
3737 DRM_DEBUG("i915 perf interface not available for this system\n");
3741 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3742 I915_PERF_FLAG_FD_NONBLOCK |
3743 I915_PERF_FLAG_DISABLED;
3744 if (param->flags & ~known_open_flags) {
3745 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3749 ret = read_properties_unlocked(perf,
3750 u64_to_user_ptr(param->properties_ptr),
3751 param->num_properties,
3756 mutex_lock(&perf->lock);
3757 ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3758 mutex_unlock(&perf->lock);
3764 * i915_perf_register - exposes i915-perf to userspace
3765 * @i915: i915 device instance
3767 * In particular OA metric sets are advertised under a sysfs metrics/
3768 * directory allowing userspace to enumerate valid IDs that can be
3769 * used to open an i915-perf stream.
3771 void i915_perf_register(struct drm_i915_private *i915)
3773 struct i915_perf *perf = &i915->perf;
3778 /* To be sure we're synchronized with an attempted
3779 * i915_perf_open_ioctl(); considering that we register after
3780 * being exposed to userspace.
3782 mutex_lock(&perf->lock);
3784 perf->metrics_kobj =
3785 kobject_create_and_add("metrics",
3786 &i915->drm.primary->kdev->kobj);
3788 mutex_unlock(&perf->lock);
3792 * i915_perf_unregister - hide i915-perf from userspace
3793 * @i915: i915 device instance
3795 * i915-perf state cleanup is split up into an 'unregister' and
3796 * 'deinit' phase where the interface is first hidden from
3797 * userspace by i915_perf_unregister() before cleaning up
3798 * remaining state in i915_perf_fini().
3800 void i915_perf_unregister(struct drm_i915_private *i915)
3802 struct i915_perf *perf = &i915->perf;
3804 if (!perf->metrics_kobj)
3807 kobject_put(perf->metrics_kobj);
3808 perf->metrics_kobj = NULL;
3811 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3813 static const i915_reg_t flex_eu_regs[] = {
3824 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3825 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3831 #define ADDR_IN_RANGE(addr, start, end) \
3832 ((addr) >= (start) && \
3835 #define REG_IN_RANGE(addr, start, end) \
3836 ((addr) >= i915_mmio_reg_offset(start) && \
3837 (addr) <= i915_mmio_reg_offset(end))
3839 #define REG_EQUAL(addr, mmio) \
3840 ((addr) == i915_mmio_reg_offset(mmio))
3842 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3844 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3845 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3846 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3849 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3851 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3852 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3853 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3854 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3857 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3859 return gen7_is_valid_mux_addr(perf, addr) ||
3860 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3861 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3864 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3866 return gen8_is_valid_mux_addr(perf, addr) ||
3867 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3868 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3871 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3873 return gen7_is_valid_mux_addr(perf, addr) ||
3874 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3875 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3876 REG_EQUAL(addr, HSW_MBVID2_MISR0);
3879 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3881 return gen7_is_valid_mux_addr(perf, addr) ||
3882 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3885 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3887 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3888 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3889 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3890 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3891 REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3892 REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3893 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3896 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3898 return REG_EQUAL(addr, NOA_WRITE) ||
3899 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3900 REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3901 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3902 REG_EQUAL(addr, RPM_CONFIG0) ||
3903 REG_EQUAL(addr, RPM_CONFIG1) ||
3904 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3907 static u32 mask_reg_value(u32 reg, u32 val)
3909 /* HALF_SLICE_CHICKEN2 is programmed with a the
3910 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3911 * programmed by userspace doesn't change this.
3913 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3914 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3916 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3917 * indicated by its name and a bunch of selection fields used by OA
3920 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3921 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3926 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3927 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3931 struct i915_oa_reg *oa_regs;
3938 /* No is_valid function means we're not allowing any register to be programmed. */
3939 GEM_BUG_ON(!is_valid);
3941 return ERR_PTR(-EINVAL);
3943 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3945 return ERR_PTR(-ENOMEM);
3947 for (i = 0; i < n_regs; i++) {
3950 err = get_user(addr, regs);
3954 if (!is_valid(perf, addr)) {
3955 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3960 err = get_user(value, regs + 1);
3964 oa_regs[i].addr = _MMIO(addr);
3965 oa_regs[i].value = mask_reg_value(addr, value);
3974 return ERR_PTR(err);
3977 static ssize_t show_dynamic_id(struct device *dev,
3978 struct device_attribute *attr,
3981 struct i915_oa_config *oa_config =
3982 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3984 return sprintf(buf, "%d\n", oa_config->id);
3987 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3988 struct i915_oa_config *oa_config)
3990 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3991 oa_config->sysfs_metric_id.attr.name = "id";
3992 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3993 oa_config->sysfs_metric_id.show = show_dynamic_id;
3994 oa_config->sysfs_metric_id.store = NULL;
3996 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3997 oa_config->attrs[1] = NULL;
3999 oa_config->sysfs_metric.name = oa_config->uuid;
4000 oa_config->sysfs_metric.attrs = oa_config->attrs;
4002 return sysfs_create_group(perf->metrics_kobj,
4003 &oa_config->sysfs_metric);
4007 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4009 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4010 * userspace (unvalidated)
4013 * Validates the submitted OA register to be saved into a new OA config that
4014 * can then be used for programming the OA unit and its NOA network.
4016 * Returns: A new allocated config number to be used with the perf open ioctl
4017 * or a negative error code on failure.
4019 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4020 struct drm_file *file)
4022 struct i915_perf *perf = &to_i915(dev)->perf;
4023 struct drm_i915_perf_oa_config *args = data;
4024 struct i915_oa_config *oa_config, *tmp;
4025 struct i915_oa_reg *regs;
4029 DRM_DEBUG("i915 perf interface not available for this system\n");
4033 if (!perf->metrics_kobj) {
4034 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4038 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4039 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4043 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4044 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4045 (!args->flex_regs_ptr || !args->n_flex_regs)) {
4046 DRM_DEBUG("No OA registers given\n");
4050 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4052 DRM_DEBUG("Failed to allocate memory for the OA config\n");
4056 oa_config->perf = perf;
4057 kref_init(&oa_config->ref);
4059 if (!uuid_is_valid(args->uuid)) {
4060 DRM_DEBUG("Invalid uuid format for OA config\n");
4065 /* Last character in oa_config->uuid will be 0 because oa_config is
4068 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4070 oa_config->mux_regs_len = args->n_mux_regs;
4071 regs = alloc_oa_regs(perf,
4072 perf->ops.is_valid_mux_reg,
4073 u64_to_user_ptr(args->mux_regs_ptr),
4077 DRM_DEBUG("Failed to create OA config for mux_regs\n");
4078 err = PTR_ERR(regs);
4081 oa_config->mux_regs = regs;
4083 oa_config->b_counter_regs_len = args->n_boolean_regs;
4084 regs = alloc_oa_regs(perf,
4085 perf->ops.is_valid_b_counter_reg,
4086 u64_to_user_ptr(args->boolean_regs_ptr),
4087 args->n_boolean_regs);
4090 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4091 err = PTR_ERR(regs);
4094 oa_config->b_counter_regs = regs;
4096 if (INTEL_GEN(perf->i915) < 8) {
4097 if (args->n_flex_regs != 0) {
4102 oa_config->flex_regs_len = args->n_flex_regs;
4103 regs = alloc_oa_regs(perf,
4104 perf->ops.is_valid_flex_reg,
4105 u64_to_user_ptr(args->flex_regs_ptr),
4109 DRM_DEBUG("Failed to create OA config for flex_regs\n");
4110 err = PTR_ERR(regs);
4113 oa_config->flex_regs = regs;
4116 err = mutex_lock_interruptible(&perf->metrics_lock);
4120 /* We shouldn't have too many configs, so this iteration shouldn't be
4123 idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4124 if (!strcmp(tmp->uuid, oa_config->uuid)) {
4125 DRM_DEBUG("OA config already exists with this uuid\n");
4131 err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4133 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4137 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4138 oa_config->id = idr_alloc(&perf->metrics_idr,
4141 if (oa_config->id < 0) {
4142 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4143 err = oa_config->id;
4147 mutex_unlock(&perf->metrics_lock);
4149 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4151 return oa_config->id;
4154 mutex_unlock(&perf->metrics_lock);
4156 i915_oa_config_put(oa_config);
4157 DRM_DEBUG("Failed to add new OA config\n");
4162 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4164 * @data: ioctl data (pointer to u64 integer) copied from userspace
4167 * Configs can be removed while being used, the will stop appearing in sysfs
4168 * and their content will be freed when the stream using the config is closed.
4170 * Returns: 0 on success or a negative error code on failure.
4172 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4173 struct drm_file *file)
4175 struct i915_perf *perf = &to_i915(dev)->perf;
4177 struct i915_oa_config *oa_config;
4181 DRM_DEBUG("i915 perf interface not available for this system\n");
4185 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4186 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4190 ret = mutex_lock_interruptible(&perf->metrics_lock);
4194 oa_config = idr_find(&perf->metrics_idr, *arg);
4196 DRM_DEBUG("Failed to remove unknown OA config\n");
4201 GEM_BUG_ON(*arg != oa_config->id);
4203 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4205 idr_remove(&perf->metrics_idr, *arg);
4207 mutex_unlock(&perf->metrics_lock);
4209 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4211 i915_oa_config_put(oa_config);
4216 mutex_unlock(&perf->metrics_lock);
4220 static struct ctl_table oa_table[] = {
4222 .procname = "perf_stream_paranoid",
4223 .data = &i915_perf_stream_paranoid,
4224 .maxlen = sizeof(i915_perf_stream_paranoid),
4226 .proc_handler = proc_dointvec_minmax,
4227 .extra1 = SYSCTL_ZERO,
4228 .extra2 = SYSCTL_ONE,
4231 .procname = "oa_max_sample_rate",
4232 .data = &i915_oa_max_sample_rate,
4233 .maxlen = sizeof(i915_oa_max_sample_rate),
4235 .proc_handler = proc_dointvec_minmax,
4236 .extra1 = SYSCTL_ZERO,
4237 .extra2 = &oa_sample_rate_hard_limit,
4242 static struct ctl_table i915_root[] = {
4252 static struct ctl_table dev_root[] = {
4263 * i915_perf_init - initialize i915-perf state on module bind
4264 * @i915: i915 device instance
4266 * Initializes i915-perf state without exposing anything to userspace.
4268 * Note: i915-perf initialization is split into an 'init' and 'register'
4269 * phase with the i915_perf_register() exposing state to userspace.
4271 void i915_perf_init(struct drm_i915_private *i915)
4273 struct i915_perf *perf = &i915->perf;
4275 /* XXX const struct i915_perf_ops! */
4277 if (IS_HASWELL(i915)) {
4278 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4279 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4280 perf->ops.is_valid_flex_reg = NULL;
4281 perf->ops.enable_metric_set = hsw_enable_metric_set;
4282 perf->ops.disable_metric_set = hsw_disable_metric_set;
4283 perf->ops.oa_enable = gen7_oa_enable;
4284 perf->ops.oa_disable = gen7_oa_disable;
4285 perf->ops.read = gen7_oa_read;
4286 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4288 perf->oa_formats = hsw_oa_formats;
4289 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4290 /* Note: that although we could theoretically also support the
4291 * legacy ringbuffer mode on BDW (and earlier iterations of
4292 * this driver, before upstreaming did this) it didn't seem
4293 * worth the complexity to maintain now that BDW+ enable
4294 * execlist mode by default.
4296 perf->ops.read = gen8_oa_read;
4298 if (IS_GEN_RANGE(i915, 8, 9)) {
4299 perf->oa_formats = gen8_plus_oa_formats;
4301 perf->ops.is_valid_b_counter_reg =
4302 gen7_is_valid_b_counter_addr;
4303 perf->ops.is_valid_mux_reg =
4304 gen8_is_valid_mux_addr;
4305 perf->ops.is_valid_flex_reg =
4306 gen8_is_valid_flex_addr;
4308 if (IS_CHERRYVIEW(i915)) {
4309 perf->ops.is_valid_mux_reg =
4310 chv_is_valid_mux_addr;
4313 perf->ops.oa_enable = gen8_oa_enable;
4314 perf->ops.oa_disable = gen8_oa_disable;
4315 perf->ops.enable_metric_set = gen8_enable_metric_set;
4316 perf->ops.disable_metric_set = gen8_disable_metric_set;
4317 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4319 if (IS_GEN(i915, 8)) {
4320 perf->ctx_oactxctrl_offset = 0x120;
4321 perf->ctx_flexeu0_offset = 0x2ce;
4323 perf->gen8_valid_ctx_bit = BIT(25);
4325 perf->ctx_oactxctrl_offset = 0x128;
4326 perf->ctx_flexeu0_offset = 0x3de;
4328 perf->gen8_valid_ctx_bit = BIT(16);
4330 } else if (IS_GEN_RANGE(i915, 10, 11)) {
4331 perf->oa_formats = gen8_plus_oa_formats;
4333 perf->ops.is_valid_b_counter_reg =
4334 gen7_is_valid_b_counter_addr;
4335 perf->ops.is_valid_mux_reg =
4336 gen10_is_valid_mux_addr;
4337 perf->ops.is_valid_flex_reg =
4338 gen8_is_valid_flex_addr;
4340 perf->ops.oa_enable = gen8_oa_enable;
4341 perf->ops.oa_disable = gen8_oa_disable;
4342 perf->ops.enable_metric_set = gen8_enable_metric_set;
4343 perf->ops.disable_metric_set = gen10_disable_metric_set;
4344 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4346 if (IS_GEN(i915, 10)) {
4347 perf->ctx_oactxctrl_offset = 0x128;
4348 perf->ctx_flexeu0_offset = 0x3de;
4350 perf->ctx_oactxctrl_offset = 0x124;
4351 perf->ctx_flexeu0_offset = 0x78e;
4353 perf->gen8_valid_ctx_bit = BIT(16);
4354 } else if (IS_GEN(i915, 12)) {
4355 perf->oa_formats = gen12_oa_formats;
4357 perf->ops.is_valid_b_counter_reg =
4358 gen12_is_valid_b_counter_addr;
4359 perf->ops.is_valid_mux_reg =
4360 gen12_is_valid_mux_addr;
4361 perf->ops.is_valid_flex_reg =
4362 gen8_is_valid_flex_addr;
4364 perf->ops.oa_enable = gen12_oa_enable;
4365 perf->ops.oa_disable = gen12_oa_disable;
4366 perf->ops.enable_metric_set = gen12_enable_metric_set;
4367 perf->ops.disable_metric_set = gen12_disable_metric_set;
4368 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4370 perf->ctx_flexeu0_offset = 0;
4371 perf->ctx_oactxctrl_offset = 0x144;
4375 if (perf->ops.enable_metric_set) {
4376 mutex_init(&perf->lock);
4378 /* Choose a representative limit */
4379 oa_sample_rate_hard_limit = i915->gt.clock_frequency / 2;
4381 mutex_init(&perf->metrics_lock);
4382 idr_init_base(&perf->metrics_idr, 1);
4384 /* We set up some ratelimit state to potentially throttle any
4385 * _NOTES about spurious, invalid OA reports which we don't
4386 * forward to userspace.
4388 * We print a _NOTE about any throttling when closing the
4389 * stream instead of waiting until driver _fini which no one
4392 * Using the same limiting factors as printk_ratelimit()
4394 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4395 /* Since we use a DRM_NOTE for spurious reports it would be
4396 * inconsistent to let __ratelimit() automatically print a
4397 * warning for throttling.
4399 ratelimit_set_flags(&perf->spurious_report_rs,
4400 RATELIMIT_MSG_ON_RELEASE);
4402 ratelimit_state_init(&perf->tail_pointer_race,
4404 ratelimit_set_flags(&perf->tail_pointer_race,
4405 RATELIMIT_MSG_ON_RELEASE);
4407 atomic64_set(&perf->noa_programming_delay,
4408 500 * 1000 /* 500us */);
4414 static int destroy_config(int id, void *p, void *data)
4416 i915_oa_config_put(p);
4420 void i915_perf_sysctl_register(void)
4422 sysctl_header = register_sysctl_table(dev_root);
4425 void i915_perf_sysctl_unregister(void)
4427 unregister_sysctl_table(sysctl_header);
4431 * i915_perf_fini - Counter part to i915_perf_init()
4432 * @i915: i915 device instance
4434 void i915_perf_fini(struct drm_i915_private *i915)
4436 struct i915_perf *perf = &i915->perf;
4441 idr_for_each(&perf->metrics_idr, destroy_config, perf);
4442 idr_destroy(&perf->metrics_idr);
4444 memset(&perf->ops, 0, sizeof(perf->ops));
4449 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4451 * This version number is used by userspace to detect available features.
4453 int i915_perf_ioctl_version(void)
4456 * 1: Initial version
4457 * I915_PERF_IOCTL_ENABLE
4458 * I915_PERF_IOCTL_DISABLE
4460 * 2: Added runtime modification of OA config.
4461 * I915_PERF_IOCTL_CONFIG
4463 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4464 * preemption on a particular context so that performance data is
4465 * accessible from a delta of MI_RPC reports without looking at the
4468 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4469 * be run for the duration of the performance recording based on
4470 * their SSEU configuration.
4472 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4473 * interval for the hrtimer used to check for OA data.
4478 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4479 #include "selftests/i915_perf.c"